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ABSTRACT

For many decades, the study of positive definite (PD) matrices has been one of
the most popular subjects among a wide range of scientific researches. A huge
mass of successful models on PD matrices have been proposed and developed in
the fields of mathematics, physics, biology, etc., leading to a celebrated richness of
theories and algorithms. In this thesis, we draw our attention to a general class of
PD matrices featured by the generic form A =

∑m
k=1 Ek , where {Ek }

m
k=1 is a finite

sequence of positive semidefinite matrices reflecting the topological and structural
nature of A. For this class of PD matrices, we will develop theories and algorithms
on operator compression, multilevel decomposition, eigenpair computation, and
spectrum concentration. We divide these contents into three main parts.

In the first part, we propose an adaptive fast solver for the preceding class of PD
matrices which includes the well-known graph Laplacians. We achieve this by
establishing an adaptive operator compression scheme and a multiresolution matrix
factorization algorithm which have nearly optimal performance on both complexity
and well-posedness. To develop our methods, we introduce a novel notion of energy
decomposition for PD matrices and two important local measurement quantities,
which provide theoretical guarantee and computational guidance for the construction
of an appropriate partition and a nested adaptive basis.

In the second part, we propose a new iterative method to hierarchically compute
a relatively large number of leftmost eigenpairs of a sparse PD matrix under the
multiresolution matrix compression framework. We exploit the well-conditioned
property of every decomposition components by integrating the multiresolution
framework into the Implicitly Restarted Lanczos method. We achieve this combina-
tion by proposing an extension-refinement iterative scheme, in which the intrinsic
idea is to decompose the target spectrum into several segments such that the corre-
sponding eigenproblem in each segment is well-conditioned.

In the third part, we derive concentration inequalities on partial sums of eigenvalues
of random PD matrices by introducing the notion of k-trace. For this purpose,
we establish a generalized Lieb’s concavity theorem, which extends the original
Lieb’s concavity theorem from the normal trace to k-traces. Our argument employs
a variety of matrix techniques and concepts, including exterior algebra, mixed
discriminant, and operator interpolation.
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C h a p t e r 1

INTRODUCTION

1.1 Operator Compression and Fast Linear Solver
Fast algorithms for solving symmetric positive definite (PD) linear systems have
found broad applications across both theories and practice, including machine learn-
ing [11, 21, 106], computer vision [10, 15, 135], image processing [5, 23, 81],
computational biology [32, 83], etc. For instance, solving linear systems of graph
Laplacians, which has a deep connection to the spectral properties of the under-
lying graphs, is one of the foundational problems in data analysis. Performing
finite element simulation on a wide range of physical systems will introduce the
corresponding stiffness matrix, which is also symmetric and positive definite.

Many related works have drawn inspiration from the spectral graph theory [30, 84]
in which the spectrum and the geometry of graphs are found to be highly correlated.
By computing the spectrum of the graph, the intrinsic geometric information can be
directly obtained and various applications can be found [16, 57]. However, the price
for finding the spectrum of graph is relatively expensive as it involves solving global
eigen problems. On the contrary, the Algebraic Multigrid method [118, 123, 125] is
a purely matrix-based multiresolution type solver. It simply uses the interaction of
nonzero entries within the matrix as an indicator to describe the geometry implicitly.
These stimulating techniques and concepts motivate us to look into the problems
from two different points of view and search for a brand new framework which can
integrate the advantages from both ends.

In the first part of the thesis, we propose an adaptive fast solver for a general class
of PD matrices. We achieve this by developing an adaptive operator compression
scheme and a multiresolution matrix factorization algorithm both with nearly opti-
mal performance on complexity and well-posedness. These methods are developed
based on a newly introduced framework, namely, the energy decomposition for a
PD matrix A to extract its hidden geometric information. For the ease of discussion,
we first consider A = L, the graph Laplacian of an undirected graph G. Under this
framework, we reformulate the connectivity of subgraphs in G as the interaction
between energies. These interactions reveal the intrinsic geometric information
hidden in L. In particular, this framework naturally leads into two important local
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measurements, which are the error factor and the condition factor. Computing
these two measurements only involves solving a localized eigenvalue problem and
consequently no global computation or information is involved. These twomeasure-
ments serve as guidances to define an appropriate partition of the graph G. Using
this partition, a modified coarse space and corresponding basis with exponential
decaying property can be constructed. Compression of L−1 can thus be achieved.
Furthermore, the systematic clustering procedure of the graph regardless of the
knowledge of the geometric information allows us to introduce a multiresolution
matrix decomposition (MMD) framework for graph Laplacian, and more generally,
PD linear systems. In particular, following the work in [88], we propose a nearly-
linear time fast solver for general PD matrices. Given the prescribed well-posedness
requirement (i.e., the condition factor), every component from MMD will be a
well-conditioned, lower dimensional PD linear system. Any generic iterative solver
can then be applied in parallel to obtain the approximated solution of the given
arbitrary PD matrix satisfying the prescribed accuracy.

Problem Setting
Given an n × n PD matrix A, our ultimate goal is to develop a fast algorithm to
efficiently solve Ax = b, or equivalently, compress the solver A−1 with a desired
compression error. We make the following assumptions on the matrix A. First of
all, λmin(A) = O(1) for well-posedness, where λmin(A) is the minimum eigenvalue
of the matrix A. Second, the spectrum of the matrix A is broad-banded. Third, it is
stemmed from summation of symmetric and positive semidefinite (PSD) matrices,
i.e. A =

∑m
k=1 Ek for a sequence {Ek }

m
k=1 of PSD matrices. We remark that the

second assumption can be interpreted as the sparsity requirement of A, which is, the
existence of some intrinsic, localized geometric information. For instance, if A = L

is a graph Laplacian, such sparsity can be described by the requirement

#Nk (i) = O(kd), ∀i,

where #Nk (i) is the number of vertices near the vertex i with logic distance no greater
than k and d is the geometric dimension of the graph (i.e., the optimal embedding
dimension). This is equivalent to assuming that the portion of long interaction edges
is small. The third assumption, in many concerning cases, is a natural consequence
during the assembling of the matrix A. In particular, a graph Laplacian L can be
viewed as a summation of 2-by-2 matrices representing edges in the graph G. These
2 by 2 matrices are PSD matrices and can be obtained automatically if G is given.
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Another illustrative example is the patch-wise stiffness matrix of a finite element
from the discretization of partial differential equation (PDE) using finite element
type methods.

Operator Compression
To compress the operator A−1 (where A satisfies the above assumptions) with a
desired error bound, we adopt the idea of constructing a modified coarse space as
proposed in [53, 75, 88]. The procedure is summarized in Figure 1.1. Note that one
common strategy of these PDE approaches is to make use of the natural partition
under some a priori geometric assumption on the computational domain. In contrast,
we adaptively construct an appropriate partition using the energy decomposition
framework, which requires no a priori knowledge related to the underlying geometry
of the domain. This partitioning idea is requisite and advantageous in the scenario
when no explicit geometry information is provided, especially in the case of graph
Laplacian. Therefore, one of our main contributions is to develop various criteria
and systematic procedures to obtain an appropriate partitionP = {Pj }

M
j=1 (e.g., graph

partitioning in the case of graph Laplacian) which reveals the structural property of
A.

Figure 1.1: Process flowchart for compressing A−1.

Leaving aside the difficulties of finding an appropriate partition, our next task is to
define a coarse spaceΦ such that ‖x−PΦx‖2 ≤ ε ‖x‖A. As shown in [53, 88], having
such requirement, togetherwith themodification of coarse spaceΦ intoΨ = A−1(Φ),
we have ‖A−1−PA

Ψ
A−1‖2 ≤ ε2. This affirms us thatΦmust be constructed carefully

in order to achieve the prescribed compression accuracy. Further, under the energy
decomposition setting, we can ensure such requirement by simply considering local
accuracy ‖x − PΦ j x‖2, which in turns gives a local computation procedure for
checking the qualification of the local Φ j . Specifically, we introduce the error
factor

ε(P, q) = max
Pj∈P

1√
(λq+1(Pj ))

(where λq+1(Pj ) corresponds to the (q + 1)th smallest eigenvalue of some eigen
problem defined on the patch Pj) as our defender to strictly control the overall com-
pression error. The error factor guides us to construct a subspace Φq

j ∈ span(Pj )
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for every patch Pj satisfying the local accuracy, and eventually, the global accuracy
requirement. Afterwards, we apply the formulation of the modified coarse space
Ψ to build up the exponential decaying basis ψ j for the operator compression. To
be general, we reformulate the coarse space modification procedure by using purely
matrix-based arguments. In addition, this reformulation immediately introduces
another criterion, called the condition factor δ(Pj ) over every patch Pj ∈ P. This
second measurement serves as another defender to control the well-posedness of
our compressed operator. Similar to the error factor, the condition factor is a
local measurement which can be obtained by solving a partial local eigen problem.
This local restriction can naturally convey in a global sense to bound the maximum
eigenvalue of the compressed operator. In particular, we prove that the compressed
operator Ast satisfies κ(Ast) ≤ maxPj∈P δ(Pj )‖A−1‖2.

Up to this point, we can see that the choice of the partition has a direct influence on
both the accuracy and the well-posedness of the compressed operator. In this work,
we propose a nearly-linear time partitioning algorithmwhich is purely matrix-based,
and with complexity

O(d · s2 · log s · n) +O(log s · n · log n),

where s is the average patch size and d is the intrinsic geometric dimension. With
the relationship between the error factor and condition factor, we can reversely
treat the local properties as the blueprint to govern the process of partitioning.
This in turn regularizes the condition number of the compressed operator such that
computational complexity of solving the original linear system can be significantly
reduced.

Multiresolution Matrix Decomposition
Having a generic operator compression scheme, we follow the idea in [88] to extend
the compression scheme hierarchically to form a multiresolution matrix decompo-
sition (MMD) algorithm. However, instead of using a precedent nested partitioning
of the domain, we perform the decomposition level-by-level in a recursive manner.
In other words, every new level is generated inductively from the previous level
(subject to some uniform well-posedness constraints) by applying our adaptive par-
titioning technique. This provides more flexibility and convenience to deal with
various, and even unknown multiresolution behavior appearing in the matrix. This
decomposition further leads us to develop a fast solver for PD matrices with time
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complexity
O(nnz(A) · log n ·

(
log ε−1 + log n

)c
log ε−1),

where nnz(A) is the number of nonzero entries in A and c is some absolute con-
stant depending only on the geometric property of A. We would like to emphasize
that the construction of the appropriate partition is essential to the formation of the
hierarchical decomposition procedure. Our study shows that the hidden geometric
information of A can be subtly recovered from the inherited energy decomposition
of compressed operator using our framework. The interaction between these inher-
ited energies serve a purpose similar to that of the energy elements of A. Therefore
we can recognize the compressed operator as an initial operator in the second level
of the decomposition procedure and proceed to the next level repeatedly. We would
like to emphasize that with an appropriate choice of partitioning, the sparsity and
the well-posedness properties of the compressed operator can be inherited through
layers. This nice property enables us to decompose the original problem of solv-
ing A−1 into sets of independent problems with similar complexities and condition
numbers, which favors the parallel implementation of the solver.

Related Previous Works
In the past few years, several works relevant to the compression of elliptic operators
with heterogeneous and highly varying coefficients have been proposed. Målqvist
and Peterseim et al. [63, 75] constructed localized multiscale basis functions from
the modified coarse space V ms

H = VH − FVH , where VH is the original coarse
space spanned by conforming nodal basis, and F is the energy projection onto the
space (VH )⊥. The exponential decaying property of this modified basis has also
been shown both theoretically and numerically. Meanwhile, a beautifully insightful
work by Owhadi [88] reformulated the problem from the perspective of Decision
Theory using the idea of Gamblets as the modified basis. In particular, a coarse
space Φ of measurement functions is constructed from a Bayesian perspective,
and the gamblet space is explicitly given as Ψ = A−1(Φ), which turns out to
be a counterpart of the modified coarse space in [75]. In addition, the basis of
Φ is generalized to nonconforming measurement functions and the gamblets still
enjoy the exponential decay property which makes localization possible. Hou and
Zhang in [53] extended these works such that localized basis functions can also be
constructed for higher-order strongly elliptic operators. Owhadi further generalized
these frameworks to a more unified methodology for arbitrary elliptic operators on
Sobolev spaces in [89] using the Gaussian process interpretation. Note that for the
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above-mentioned works, since the problems they considered are originated from
PDE-type modeling, the computational domains are naturally assumed to be given,
that is, the partition P can be obtained directly (which is not available for graph
Laplacians or general PD matrices). This assumption greatly helps the immersion
of the nested coarse spaces with different scales into the computational domain.
In other words, the exponential decaying property of the basis can be precisely
achieved. Recently, Schäfer et al. [104] proposed a near-linear running time
algorithm to compress a large class of dense kernel matrices Θ ∈ Rn×n. The authors
also provided rigorous complexity analyses and showed that the storage complexity
of the proposed algorithm isO(n log(n) logd (n/ε )) and the running time complexity
is O(n log2(n) log2d (n/ε )), where d is the intrinsic dimension of the problem.

Recall that for solving linear systems exhibiting multiple scales of behavior, the class
of multiresolution methods decomposes the problem additively in terms of different
scales of resolution. This captures the features of different scales and allows us
to treat these components differently. For instance, the widely used Geometric
Multigrid (GMG) methods [28, 103, 129] provide fast solvers for linear systems
which are stemmed from discretization of linear elliptic differential equations. The
main idea is to accelerate the convergence of basic iterativemethods by introducing a
nested structure on the computational domain so that successive subspace correction
can be performed. However, the performance is hindered when the regularity of the
coefficients is lost. To overcome this deficiency, an enormous amount of significant
progress has been made. Numerous methods ranging from geometry specific to
purely algebraic/ matrix-based approach have been developed (See [7, 44, 118] for
review). Using the tools of compressing the operator A−1 possessing multiple scale
features, Owhadi in [88] also proposed a straightforward but intelligible way to
solve the roughness issue. By introducing a natural nested structure on the given
computational domain, a systematic multiresolution algorithm for hierarchically
decomposing elliptic operators was proposed. This in turn provides a near-linear
complexity solver with guaranteed prescribed error bounds. The efficiency of
this multilevel solver is guaranteed by carefully choosing a nested structure of
measurement functionsΦ, which satisfies (i) the Poincaré inequality; (ii) the inverse
Poincaré inequality; and (iii) the frame inequality. In [89], Owhadi and Scovel
extended the result to problems with general PD matrices, where the existence of Φ
satisfying (i), (ii) and (iii) is assumed. In particular, for discretization of continuous
linear bijections from H s (Ω) to H−s (Ω) or L2(Ω) space these assumptions are shown
to hold true using prior information on the geometry of the computational domainΩ.
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However, the practical construction of this nested global structure Φ still presents
some essential difficulty when no intrinsic geometric information is provided a
priori. To solve this generic problem, we introduce the energy decomposition and
the inherited system of energy elements. Instead of a priori assuming the existence
of such nested structure Φ, we use the idea of inherited energy decomposition to
level-wisely constructΦ and the corresponding energy decomposition by using local
spectral information and an adaptive clustering technique.

On the other hand, to mimic the functionality and convergence behavior of GMG
without providing the nested meshes, the Algebraic Multigrid (AMG) methods
[118, 123, 125] take advantage of the connectivity information given in the matrix A

itself to define intergrid transfer operators, which avoids the direct construction of the
restriction and relaxation operators in GMG methods. Intuitively, the connectivity
information reveals the hidden geometry of the problem subtly. This purely algebraic
framework bypasses the “geometric" requirement in GMG, and is widely used in
practice on graphs with sufficiently nice topologies. In particular, a recent AMG
method called LAMG has been proposed by Livne and Brandt [71], where the run
time and storage of the algorithm are empirically demonstrated to scale linearly with
the number of edges. We would like to emphasize that the difference between our
proposed solver and a general recursive-typed iterative solver is the absence of nested
iterations. Our solver decomposes the matrix adaptively according to the inherited
multiple scales of the matrix itself. The matrix decomposition divides the original
problem into components of controllable well-conditioned, lower dimensional PD
linear systems, which can then be solved in parallel using any generic iterative
solver. In other words, this decomposition also provides a parallelizable framework
for solving PD linear systems.

Another inspiring stream of nearly-linear time algorithm for solving graph Laplacian
systemwas given by Spielman and Teng [112–115]. With the innovative discoveries
in spectral graph theory and graph algorithms, such as the fast construction of
low-stretch spanning trees and clustering scheme, they successfully employed all
these important techniques in developing an effective preconditioned iterative solver.
Later, Koutis, Miller and Peng [59] followed these ideas and simplified the solver
with computation complexity O(m log n log log n log ε−1), where m and n are the
number of edges and vertices respectively. In contrast, we employ the idea of
modified coarse space to compress a general PD matrix (i.e., the graph Laplacian in
this case) hierarchically with the control of sparsity and well-posedness.
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1.2 Hierarchically Preconditioned Eigensolver
The computation of eigenpairs for large and sparse matrices, particularly for positive
semidefinite matrices (PSD) matrices, is one of the most fundamental tasks in many
scientific applications. For example, the leftmost eigenpairs (i.e., the eigenpairs
associated with the N smallest eigenvalues for some N ∈ N) of a graph Laplacian
L help reveal the topological information of the corresponding network from real
data. One illustrative example is that the multiplicity of the smallest eigenvalue λ1
of L coincides with the number of the connected components of the corresponding
graph G. In particular, the second-smallest eigenvalue of L is well known as the
algebraic connectivity or the Fiedler value of the graph G, which is applied to de-
velop algorithms for graph partitioning [30, 82, 84]. Another important example
regarding the use of leftmost eigenpairs is the computation of betweenness central-
ity of graphs as mentioned in [12, 17, 18]. Computing the leftmost eigenpairs of
large and sparse PSD matrices also stems from the problem of predicting electronic
properties in complex structural systems [41]. Such prediction is achieved by solv-
ing the Schrödinger equation HΨ = EΨ, where H is the Hamiltonian operator
for the system, E corresponds to the total energy and |Ψ(r) |2 represents the charge
density at location r . Solving this equation using the self-consistent field requires
computing the eigenpairs of H repeatedly, which dominates the total computation
cost of the overall iterations. Thus, an efficient algorithm to solve the eigenproblem
is indispensable. Usage of leftmost eigenpairs can also be found in vibrational
analysis in mechanical engineering [78]. In [31], authors also suggest that the left-
most eigenpairs of the covariance matrix between residues are important to extract
functional and structural information about protein families. Efficient algorithms
for computing p smallest eigenpairs for relatively large p are therefore crucial in
various applications.

Iterative Methods
As most of the linear systems from engineering problems or networks are typically
large and sparse in nature, iterative methods are preferred. Recently, several effi-
cient algorithms have been developed to obtain leftmost eigenpairs of A. These
include the Jacobi–Davidson method [108], implicit restarted Arnoldi/Lanczos
method [22, 65, 110], and the deflation-accelerated Newton method [13]. All these
methods give promising results [12, 76], especially for finding a small number of
leftmost eigenpairs. Other methods for computing accurate leftmost eigenpairs us-
ing hierarchical refinement/correction techniques were proposed in [69, 133, 134].
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However, as reported in [76], the Implicit Restarted Lanczos Method (IRLM) is
still the best performing algorithm when a large number of smallest eigenpairs are
required. Therefore, it is highly desirable to develop a new algorithm, based on the
architecture of the IRLM, that can further optimize the performance.

The main purpose of this part of work is to explore the possibility of exploiting the
advantageous energy decomposition framework under the architecture of the IRLM.
In particular, we propose a new spectrum-preserving preconditioned hierarchical
eigensolver for computing a large number of the leftmost eigenpairs. This eigen-
solver takes full advantage of the intrinsic structure of the given matrix, the nice
spectral property in the Lanczos procedure and also the preconditioning character-
istics of the Conjugate Gradient (CG) method. Given a sparse symmetric positive
matrix A which is assumed to be energy decomposable (See Section 2.1 for details),
we integrate the well-behaved matrix properties that are inherited from the MMD
with IRLM. The preconditioner we propose for the CG method (which hence be-
comes the Preconditioned Conjugate Gradient (PCG) method) can also preserve the
narrowed residual spectrum of A during the Lanzcos procedure. Throughout this
thesis, theoretical performance of our proposed algorithm is analyzed rigorously
and we conduct a number of numerical experiments to verify the efficiency and ef-
fectiveness of the algorithm in practice. To summarize, our contributions are three
folds:

• We establish a hierarchical framework to compute a relatively large number
of leftmost eigenpairs of a sparse symmetric positive matrix. This framework
employs the MMD algorithm to further optimize the performance of IRLM.
In particular, a specially designed spectrum-preserving preconditioner is in-
troduced for the PCG method to compute x = A−1b for some vector b.

• The proposed framework improves the running time of finding the mtar left-
most eigenpairs of amatrix A ∈ Rn×n fromO(mtar ·κ(A)·nnz(A) log 1

ε ) (which
is achieved by the classical IRLM) to O

(
mtar · nnz(A) · (log 1

ε + log n)C
)
,

where κ(A) is the condition number of A, nnz(·) is the number of nonzero
entries and C is some small constant independent of mtar, nnz(A) and κ(A).

• We also provide a rigorous analysis on both the accuracy and the asymptotic
computational complexity of our proposed algorithm. This ensures the cor-
rectness and efficiency of the algorithm even in large-scale, ill-conditioned
scenarios.
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In many practical applications, the operator A may not be explicitly stored entry-
wisely and only the evaluation of Ax is available. In this situation, our proposed
algorithm also works as it only requires the storage of the stiffness matrices corre-
sponding to some hierarchical basis Ψ according to the accuracy requirement. To
construct these stiffness matrices, we only need to evaluate Ax. Therefore, for the
ease of discussion, we simply assume that the given operator A is a finite-dimensional
accessible matrix.

Overview of Our Method
In this part of work, we propose and develop an iterative scheme for computing
a relatively large number of the left most eigenpairs of a PSD matrix, under the
framework of operator compression and decomposition introduced in the first part
of the thesis. Note that we can transfer a PSD matrix into a PD matrix by adding to
it a constant multiple of the identity matrix, which does not change the eigenvectors
and only shifts all eigenvalues by one uniform constant. Under our preceding
framework, we can decompose the inverse A−1 of a PD matrix A ∈ Rn×n into

A−1 = PA
U

A−1 + PA
Ψ

A−1 := PA
U

A−1 + Θ,

where [U,Ψ] corresponds to a basis of Rn; PA
U

and PA
Ψ

are the corresponding
subspace projections. Recursively, we can also consider Θ as a “new” A−1 and
further decompose Θ in the same manner. This will give a MMD of A−1 =∑K

k=1 PA
U (k ) A−1 + Θ(K ). To illustrate, we first consider a 1-level decomposition,

i.e., K = 1. One important observation regarding this decomposition is that the
spectrum of the original operator A−1 resembles that of the compressed operator Θ.
In particular, if λi,Θ is the ith smallest eigenvalue of Θ and ζi,Θ is the corresponding
eigenvector, then (λ−1i,Θ, ζi,Θ) is a good approximation of (λ−1i , qi) for small λi, where
(λ−1i , qi) denotes the ith eigenpair of A−1. These approximate eigenpairs (λ−1i,Θ, ζi,Θ)
can then be used as the initial approximation of the targeted eigenpairs. Notice that
compression errors are introduced into these eigenpairs by thematrix decomposition.
Therefore, a refinement procedure should be carried out to reduce these errors up to
the prescribed accuracy. Once we obtain the refined eigenpairs, we may extend the
spectrum in order to obtain the targeted number of eigenpairs. As observed in [76],
the IRLM is the best performing algorithm when a large number of eigenpairs are
considered, we therefore employ the Krylov subspace extension technique to extend
spectrum up to some prescribed control of the well-posedness. Intuitively, theMMD
decomposes the spectrum of A−1 into different segments of different scales. Using a
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subset of the decomposed components to approximate A−1 yields a great reduction
of the relative condition number. Thus, we can further trim down the complexity of
the IRLM by approximating A−1 during the shifting process.

To generalize from the 1-level algorithm to the K-level algorithm, we develop a
hierarchical scheme to compute the leftmost eigenpairs of an energy decomposable
matrix. Given the K-level multiresolution decomposition {Θ(k)}Kk=1 of an energy
decomposable matrix A, we first compute the eigen decomposition [V (K )

ex , D(K )
ex ]

of Θ(K ) (with dimension N (K )) corresponding to the coarsest level by using some
standard direct method. Then we propose a compatible refinement scheme for
both V (K )

ex and D(K )
ex to obtain V (K−1)

ini and D(K−1)
ini , which will then be used as the

initial spectrum in the consecutive finer level. The efficiency of the cross-level
refinement is achieved by a modified version of the orthogonal iteration with the
Ritz Acceleration, where we exploit the proximity of the eigenspace across levels
to accelerate the CG/PCG method within the refinement step. Using this refined
initial spectrum, our second stage is to extend spectrum up to some prescribed
control of the well-posedness using the Implicit Restarted Lanczos architecture.
Recall that a shifting approach is introduced to reduce the iteration number for the
extension, which again requires solving A(K−1) x = w with the PCG method in each
iteration. However, the preconditioner for PCG when we are solving for A(K−1)w

must be chosen carefully. Otherwise the orthogonal property brought about by the
Krylov subspace methods may not be utilized and a large CG iteration number will
be required (See Section 4.7). In view of this, we propose a spectrum-preserving
hierarchical preconditioner M (K−1) := (Ψ(K−1))TΨ(K−1) for accelerating the CG
iteration during the Lanczos iteration. In particular, we can show that using the
preconditioner M (K−1), the number of PCG iterations to achieve a relative ε in
A(K−1)-norm can be controlled in terms of the condition factor δ(P) (from the
energy decomposition of the matrix) and an extension threshold µ(K−1)

ex .

This process then repeats hierarchically until we reach the finest level. Under
this framework, the condition numbers of all the corresponding operators within
each level are controlled. The overall accuracy of our proposed algorithm is also
determined by the prescribed compression error at the highest level.

Related Previous Works
Several important iterative methods have been proposed to tackle the eigenproblems
of PD matrices. One of the well-established algorithms is the Implicitly Restarted
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Lanczos Method (IRLM) (or the Implicitly Restarted Arnoldi Method (IRAM)
for asymmetrical sparse matrices), which has been implemented in various popular
scientific computing packages likeMATLAB,R andARPACK.The IRLMcombines
both the techniques of the implicitly shifted QR method and the shifting of the
operators to avoid the difficulties for obtaining the leftmost eigenpairs. Another
popular algorithm for finding leftmost eigenpairs is the Jacobi–Davidson method.
The main idea is to minimize the Rayleigh quotient q(x) = xT Ax

xT x using a Newton-
type methodology. Efficacy and stability of the algorithm are then achieved by
using a projected simplification of the Hessian of the Rayleigh quotient namely,
J̃ (xk ) := (I − xk xT

k )(A − q(xk )I)(I − xk xT
k ) with the update of xk given by

xk+1 = xk − J̃ (xk )−1(Axk − q(xk )xk ). (1.1)

Notice that the advantage of such approach is the low accuracy requirement for solv-
ing (1.1). A parallel implementation of this algorithm was also proposed [99]. In
[13], the authors proposed the Deflation-Accelerated Conjugate Gradient (DACG)
method designed for solving the eigenproblem of PD matrices. The main idea is to
replace the Newton’s minimization procedure of the Rayleigh quotient r (x) by the
nonlinear CG method which avoids solving linear systems within the algorithm. A
comprehensive numerical comparison between the three algorithms was reported
in [12]. Recently, Martínez [76] studied a class of tuned preconditioners for accel-
erating both the DACG and the IRLM for the computation of the smallest set of
eigenpairs of large and sparse PD matrices. However, as reported in [76], the IRLM
still outperforms the others when a relatively large number of leftmost eigenpairs is
desired. By virtue of this, we are motivated to develop a more efficient algorithm
particularly designed for computing a large number of leftmost eigenpairs.

Another class of methods is designed for constructing localized/compressed eigen-
modes that capture the space spanned by the true leftmost eigenvectors. One of
the representative pioneer works was proposed by Ozoliņš et al. in [90]. The goal
of this work is to obtain a spatially localized solution of a class of problems in
mathematical physics by constructing the compressed modes. In particular, finding
these localized modes can be formulated as an optimization problem

ΨN = argmin
Ψ̂N

1
µ
‖ΨN ‖1 + Tr(Ψ̂T

N HΨ̂N ) such that Ψ̂
T
N Ψ̂N = I .

The authors of [90] proposed an algorithm based on the split Bregman iteration to
solve the L1 minimization problem. Replacing the Hamiltonian operator H by a
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graph Laplacian matrix, one obtains the L1 regularized Principal Component Anal-
ysis. In particular, if there is no L1 regularization term in the optimization problem,
the optimal ΨN will be the first N eigenvectors of A. Furthermore, when N is
reasonably larger than some integer mtar , the localized basis functions ΨN produced
with L1 regularization can approximately span the mtar leftmost eigenspace (i.e.,
the eigenspace spanned by the mtar leftmost eigenvectors). Similarly, the MMD
framework provides us the hierarchical and sparse/localized basis Ψ. These lo-
calized basis functions capture the compressed modes and eventually provide us a
convenient way to control the complexity of the eigensolver.

1.3 Concentration of Eigenvalue Sums
As we have discussed in the preceding sections, theories and algorithms on the
leftmost eigenpairs of PSDmatrices, have drawn great attention from awide range of
studies, due to their importance inmany scientificmodelings. In the study of physical
Hamiltonian systems, the leftmost eigenpairs of a Hamiltonian operator represent
the ground states and their energies [61, 128]. Computing the leftmost eigenpairs is
therefore a fundamental task for understanding a Hamiltonian system. As we have
mentioned in the previous section, the smallest eigenvalues of a graph Laplacian
reflect the connectivity of the graph, and the corresponding eigenvectors divide the
graph into closely connected clusters. Based on this, a great numbers of spectral
clustering techniques have been developed over the last decades [29, 84, 127].

The importance of developing efficient algorithms for computing the leftmost eigen-
pairs of PSD matrices is then beyond question. However, the efficiency of the
hierarchical eigensolver we proposed, and of many other iterative methods, relies
heavily on the sparsity of the target PSD matrix. When we deal with a large and
dense matrix in practice, random sparsification or random sampling provides an ef-
fective way to remarkably reduce the computational cost [111, 113]. The purpose of
random sparsification is to reduce the complexity of a system without significantly
perturbing its spectrum. Then by applying eigensolvers to the sparsified matrices,
we can still be confident that the resulting eigenpairs are close to the ground truth.
The practicability of these random approaches is guaranteed by the well-established
theories of matrix concentration.

In this thesis, we will establish concentration results on the sum of the smallest
eigenvalues of PSDmatrices. The reason why we study this quantity is that it carries
meaningful algebraic and geometric information of the matrix. By an extended
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version of the Courant-Fisher characterization of eigenvalues, the sum of the k

smallest eigenvalues of a PSD matrix A (denoted by Sk (A)) is the minimum of the
optimization problem

min
Q∈Cn×k,Q∗Q=Ik

Tr[Q∗AQ],

and this minimum is achieved by the orthogonal matrix V = [v1, v2, · · · , vk] ∈ Cn×k

whose columns are the k leftmost eigenvectors of A. Therefore, if we obtain an ap-
proximation V̂ ofV , the accuracy of this approximation can be measured by the ratio
Tr[V̂ ∗AV̂ ]/Sk (A), which requires knowing the value of Sk (A). When A is large and
dense, computing Sk (A) can be a computationally intractable problem. However,
if we can efficiently compute the smallest eigenvalues of a random sparsification Ã

of A and if we have concentration guarantee on Sk ( Ã) such that Sk ( Ã) − Sk (A) is
small, thenwe can use Sk ( Ã) as a substitute tomeasure the accuracy of approximated
eigenvectors.

Another illustration of the importance of the sum of the smallest eigenvalues arises in
the connectivity study of graphs. By spectral theory, the number of zero eigenvalues
of the Laplacian of a graph indicates the number of connected components in the
graph. A relaxed version is that the number of the Laplacian’s eigenvalues that are
close to zero indicates the number of major clusters in the graph. Based on this
observation, many researchers have developed clustering methods by investigating
the smallest eigenvalues of graph Laplacians. Therefore, if the sum of the smallest
eigenvalues has a concentration property, we can indirectly study the clustering of a
graph by only looking at the Laplacian of an associated sparsified graph. Moreover,
in many cases of interest the number k of clusters is assumed to be known a priori
[29, 96, 98], then the smallness of the sum of the k smallest of a sparsified Laplacian
is a good indicator that it preserves the connectivity property of the original graph.

We remark that the rightmost eigenpairs of PSD matrices also play a significant role
in many applications. In fact, studying the outstanding rightmost eigenpairs of a
correlation matrix is the foundation of the Principal Component Analysis [55, 56],
which aims to extract an intrinsic low-dimensional structure from high-dimensional
data. We will therefore simultaneously develop concentration results on the sum of
the smallest eigenvalues and the sum of the largest eigenvalues.

Matrix Concentration Inequalities
Matrix concentration describes how likely a randommatrix is close to its expectation.
As noncommutative extensions of their scalar counterparts, matrix concentration
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inequalities have been widely studied through many efforts and have had a profound
impact on a wide range of areas in computational mathematics and statistics. In
particular, many important results on concentration phenomena of sums of indepen-
dent random matrices [73, 87, 101, 121] and matrix-valued martingale sequences
[86, 94, 120] have been developed over the past decades; we refer to the monograph
[122] by Tropp for a detailed overview on this subject and an extensive bibliography.

These matrix concentration results provide rich theoretical supports for studies and
developments in stochastic models and algorithms for random matrices [77, 130] in
fields ranging from quantum physics [43] to financial statistics [62, 95]. A typical
example is the study of clustering of random graphs [1, 38] arising from research
on social networks [79], image classification [9, 20] and so on.

In our setting, we are interested in the concentration phenomena of a class of
random PSD matrices that admit an energy decomposition. To be specific, we want
to study how far does the spectrum of a random PSD matrix Y deviate from the
spectrum of its expectation EY , where Y =

∑m
i=1 X (i) is the sum of a sequence of

independent random PSD matrices {X (i)}mi=1. For this type of random matrices,
concentration inequalities on the extreme eigenvalues have been well developed
[122]. For example, the following Chernoff-type tail bounds regarding the largest
and the smallest eigenvalues are due to Tropp [121, Theorem 1.1]:

P {λmax(Y ) ≥ (1 + ε)λmax(EY )} ≤ n
(

eε

(1 + ε)1+ε

)λmax(EY )/c

, ε ≥ 0,

P {λmin(Y ) ≤ (1 − ε)λmin(EY )} ≤ n
(

e−ε

(1 − ε)1−ε

)λmin(EY )/c

, ε ∈ [0, 1),

where n is the dimension of Y and c = maxi ‖X (i) ‖. This inequality indicates that,
with a high probability, the largest (or smallest) eigenvalue ofY still provides a good
approximation to that of EY .

The main purpose of this part of the thesis is to generalize these concentration
inequalities on the extreme eigenvalues to their counterparts on the sum of the k

largest (or smallest) eigenvalues for any natural number k. In particular, we will
extend the preceding Tropp’s inequalities to the following new Chernoff-type tail
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bounds:

P



k∑
i=1

λi (Y ) ≥ (1 + ε)
k∑

i=1
λi (EY )




≤

(
n
k

) 1
k
(

eε

(1 + ε)1+ε

) 1
ck

∑k
i=1 λi (EY )

, ε ≥ 0,

P



k∑
i=1

λn−i+1(Y ) ≤ (1 − ε)
k∑

i=1
λn−i+1(EY )




≤

(
n
k

) 1
k
(

e−ε

(1 − ε)1−ε

) 1
ck

∑k
i=1 λn−i+1(EY )

, ε ∈ [0, 1),

where λi (Y ) denotes the ith largest eigenvalue of Y so
∑k

i=1 λn−i+1(Y ) is the sum of
the smallest k eigenvalues of Y . Our result shows that, the sum of the k largest (or
smallest) eigenvalues obeys a similar concentration law as the largest (or smallest)
eigenvalue.

Lieb’s Concavity Theorem
Tropp’s proof of his concentration inequalities on extreme eigenvalues is based
on the matrix Laplace transform method (see, for example, [74]) and also relies
critically on a concavity theorem by Lieb: the function

A 7−→ Tr
[
exp(H + log A)

]
, (1.2)

is concave on H++n , for any n × n Hermitian matrix H . Here H++n denotes the
convex cone of all Hermitian, PD matrices. Note that this part of theories does
not restrict to real symmetric matrices, hence we will be dealing with Hermitian
matrices. The concavity of (1.2) is equivalent to a celebrated result in the study of
trace inequalities, the joint concavity of the function

(A, B) 7−→ Tr[K∗ApK Bq] (1.3)

on H+n × H+m, for any K ∈ Cn×m, p, q ∈ [0, 1], p + q ≤ 1, known as Lieb’s Con-
cavity Theorem [67]. Here H+n is the convex cone of all n × n Hermitian, positive
semidefinite matrices. This theorem answered affirmatively an important conjec-
ture by Wigner, Yanase and Dyson [131] in information theory. It also led to Lieb’s
three-matrix extension of the Golden–Thompson inequality

Tr
[
eA+B+C]

≤ Tr
[
eA

∫ ∞

0
(e−B + t I)−1eC (e−B + t I)−1dt

]
(1.4)
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for arbitrary Hermitian matrices A, B,C of the same size, which was then used by
Lieb and Ruskai [68] to prove the strong subadditivity of quantum entropy.

In this part of work, we will generalize Lieb’s concavity theorem from trace to a
class of homogeneous matrix functions. In particular, we will prove that the function

(A, B) 7−→ Trk
[
(B

q
2 K∗ApK B

q
2 )s] 1

k (1.5)

is jointly concave on H+n × H+m, for any K ∈ Cn×m and any p, q ∈ [0, 1], s ∈
[0, 1

p+q ]. The k-trace functionTrk[A] of a squarematrix Adenotes the kth elementary
symmetric polynomial of the eigenvalues of A:

Trk[A] =
∑

1≤i1<i2<···<ik≤n

λi1λi2 · · · λik , 1 ≤ k ≤ n, (1.6)

where λ1, λ2, · · · , λn are all eigenvalues of A. In particular, we have Tr1[A] = Tr[A]
and Trn[A] = det[A].

In the case k = 1, the concavity of function (1.5) has been studied by many and
results with an increasing range of s have been obtained over time: 1 ≤ s ≤ 1

p+q

[49] and 1
2 ≤ s ≤ 1

p+q [47] by Hiai, and 0 ≤ s ≤ 1
1+q by Carlen, Frank and Lieb

[25]. These partial results together already suffice to conclude the concavity for
the full range 0 ≤ p, q ≤ 1, 0 ≤ s ≤ 1

p+q . The first complete proof of concavity
covering the full range is due to Hiai [48]. Meanwhile, the convexity of function
(1.5) with k = 1 for different ranges of p, q, s has also been established. A complete
convexity/concavity result for the full range of p, q, s was recently accomplished by
Zhang [136] using an elegant variational approach that is modified from a variational
method developed by Carlen and Lieb [27]. Here “full” means the conditions are
also necessary for the corresponding convexity/concavity to hold for all dimensions
n,m. We refer to the papers [26] by Carlen, Frank and Lieb, and [136] by Zhang for
historical overviews on this topic in more detail. In this thesis, we will only work
on the concavity of function (1.5), since the map A 7→ Trk[A]

1
k is homogeneous of

order 1 and concave on H+n for k ≥ 2. Our work therefore extends the established
concavity results from the normal trace to a class of k-trace functions.

After establishing our generalized Lieb’s concavity theorem, it is easy to further
derive the concavity of the map

A 7−→ Trk
[
exp(H + log A)

] 1
k (1.7)

on H++n , for any Hermitian matrix H of the same size. This will then yield the
desired concentration inequalities on sums of eigenvalues. Our proof of this part



18

is similar in spirit to Tropp’s argument based on the original Lieb’s theorem (1.2).
However, the extension from trace to k-trace will endow this argument the power to
control the partial sums of eigenvalues rather than just the extreme eigenvalues.

Since Lieb’s original establishment of his concavity theorem, alternative proofs have
been developed from different aspects of matrix theories, including matrix tensors
(Ando [3], Carlen [24], Nikoufar et al. [85]), the theory of Herglotz functions
(Epstein [37]), and interpolation theories (Uhlmann [124], Kosaki [58]). The tensor
approaches prove the theorem elegantly by translating the concavity of (1.3) to
the operator concavity of the map (A, B) 7→ Ap ⊗ Bq, but have difficulties in
generalizing to our k-trace case due to the nonlinearity of Trk . However, the k-trace
has two good properties that are most essential to the desired results: (i) the map
A 7→ Trk[A]

1
k is concave on H+n , and (ii) the k-trace satisfies Hölder’s inequality

as the normal trace does. We, therefore, turned to the more generalizable methods
of operator interpolation based essentially on Hölder’s inequality. Originating from
the Hadamard three-lines theorem [45], the interpolation of operators has been a
powerful tool in operator and functional analysis, with variants including the Riesz-
Thorin interpolation theorem [97], Stein’s interpolation of holomorphic operators
[116], Peetre’s K-method [92] and many others. In particular, we found Stein’s
complex interpolation technique most compatible and easiest to use in the k-trace
setting. Our use of interpolation technique was inspired by a recent work of Sutter
et al. [119], in which they applied Stein’s interpolation to derive a multivariate
extension of the Golden–Thompson inequality. This interpolation technique will
help us first prove a key lemma that the function

A 7−→ Trk
[
(K∗ApK )s] 1

k (1.8)

is concave onH+n , for any K ∈ Cn×n and any p ∈ [0, 1], s ∈ [0, 1p ]. Note that function
(1.8) is a special case of function (1.5) with q = 0. Given this lemma, the concavity
in the more general case can be obtained via a powerful variational argument that
originates in [27] by Carlen and Lieb. This kind of variational methods, introducing
supremum/infimum characterizations of trace functions, has been widely used in the
study of the convexity/concavity of function (1.5) and its variants in the trace case
(see, e.g., [24–27]). Our proof for the k-trace case is similar in inspirit to a refined
variational approach by Zhang [136], which is again based on Hölder’s inequalities.

1.4 Summary of the Thesis
The remaining thesis is organized as follows.
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• In Chapter 2, we present the general framework of operator compression via
energy decomposition. The overall approach consists of three major parts:
(i) the construction of an adaptive partition P, (ii) the choice of the coarse
space Φ and its basis, and (iii) the construction of the modified coarse space
Ψ and its (localized) basis. We prove the spatially exponential decay property
of the basis functions of Ψ, which ensures the nearly optimal complexity of
our method. We introduce two local measurement factors, the error factor
and the condition factor, to provide a theoretical guarantee (error estimate and
complexity estimate) for our method and practical guidance for the design of
our algorithms. The performance of our operator compression framework is
then tested on a PDE example.

• In Chapter 3, we extend our operator compression framework to a MMD
scheme. The development of our MMD relies on the inheritance of the
energy decomposition through a pyramid-like hierarchical structure, from
the finest level to the coarsest level. Our MMD scheme naturally leads to a
parallelizable fast linear solver for large sparse PD linear systems. We illustrate
by several graph Laplacian examples the effectiveness of our MMD approach
in resolving the large condition number of a PD matrix by decomposing it
into many well-conditioned pieces.

• In Chapter 4, we develop our MMD framework into a hierarchically pre-
conditioned eigensolver for sparse positive semidefinite matrices, based on
the celebrated scheme of the Implicit Restarted Lanczos Method. Our hi-
erarchical eigensolver consists of two alternating procedures: the level-wise
spectrum extension process that finds new eigenpair candidates, and the cross-
level spectrum refinement process that refines the computed eigenspace. The
extension process relies critically on the careful design of a spectral preserv-
ing preconditioner. The refinement process follows the Orthogonal Iteration
with Ritz Acceleration which converges exponentially fast with properly cho-
sen parameters. Our hierarchical eigensolver is tested on multiple numerical
examples, which provide evidence that our method could outperform other
existing methods.

• In Chapter 5, we prove some concentration inequalities on eigenvalue sums
of random positive semidefinite matrices, extending existing concentration
results on extreme eigenvalues. We introduce the notion of k-traces to pro-
vide bounds on sums of the largest (or smallest) eigenvalues. These new
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concentration inequalities are consequences of a generalized Lieb’s concavity
theorem, which extends the famous Lieb’s concavity theorem from normal
trace to k-traces. The proof of our generalized Lieb’s concavity theorem in-
corporates a variety of mathematical concepts and techniques, including the
mixed discriminant, the exterior algebra, derivatives of matrix functions and
operator interpolation.
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C h a p t e r 2

OPERATOR COMPRESSION VIA ENERGY DECOMPOSITION

In this chapter, we introduce a novel framework of operator compression via en-
ergy decomposition. It provides a robust methodology for extracting the leading
components of the inverse of a general class of positive definite (PD) matrix. Our
approach consists of three major parts: the construction of an adaptive partition P,
the choice of the coarse space Φ and its basis, and the construction of the modified
coarse space Ψ and its (localized) basis. We provide rigorous compression error
estimate and complexity estimate by introducing two local measurements which
can be calculated efficiently by solving a local and partial eigen problem. These
concepts and methods will be discussed under the following outline.

In Section 2.1, we will introduce the foundation of our work, which is the notion of
energy decomposition of general PD matrices. Section 2.2 discusses the construc-
tion of the coarse space and its corresponding modified coarse space, which serves
to construct the basis with exponential decaying property. Concurrently, the local
measurements error factor and the condition factor are introduced. The analysis
in this section will guide us to design the systematic algorithm for constructing
the partition P, which is described in Section 2.3. Discussion of the computa-
tional complexity is also included. To demonstrate the efficacy of our partitioning
algorithm, two numerical results are reported in Section 2.4.

2.1 Energy Decomposition
We start by considering the linear system Lx = b, where L is the Laplacian of an
undirected, positive-weighted graphG = {V ;E,W }, i.e.

Li j =




∑
(i, j ′)∈E wi j ′ if i = j;

−wi j if i , j and (i, j) ∈ E;

0 otherwise.

(2.1)

We allow for the existence of self-loops (i, i) ∈ E. When L is singular we mean to
solve x = L†b, where L† is the pseudo-inverse of L. Our algorithm will base on a
fast clustering technique using local spectral information to give a good partition of
the graph, upon which special local basis will be constructed and used to compress
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the operator L−1 into a low dimensional approximation L−1com subject to a prescribed
accuracy.

As we will see, our clustering technique exploits local path-wise information of the
graph G by operating on each single edge in E, which can be easily adapted to a
larger class of linear systems with symmetric, positive semidefinite matrix. Notice
that the contribution of an edge (i, j) ∈ E with weight wi j to the Laplacian matrix
L is simply

Eii ,

i

*..
,

+//
-

0
wii i

0
, i = j; Ei j ,

i j

*.........
,

+/////////
-

0
wi j −wi j i

. . .

−wi j wi j j

0

, i , j .

(2.2)
And we have L =

∑
(i, j)∈E Ei j . In view of such matrix decomposition, our algo-

rithm works for any symmetric, positive semidefinite matrix A that has a similar
decomposition A =

∑m
k=1 Ek with each Ek � 0. Here Ek � 0 means Ek is posi-

tive semidefinite. Therefore, we will theoretically develop our method for general
decomposable PD matrices. Also we assume that A is invertible, as we can easily
generalize our method to the case when A†b is pursued.

We therefore introduce the idea of energy decomposition and the corresponding
mathematical formulation which motivates the methodology for solving linear sys-
tems with energy decomposable linear operator. Let A be a n×n symmetric, positive
definite matrix. We define the energy decomposition as follows:

Definition 2.1.1 (Energy Decomposition). We call {Ek }
m
k=1 an energy decomposi-

tion of A and Ek to be an energy element of A if

A =
m∑

k=1
Ek, Ek � 0 ∀k = 1, . . . ,m. (2.3)

Intuitively, the underlying structural(geometric) information of the original matrix
A can be realized through an appropriate energy decomposition. And to preserve
as much detailed information of A as possible, it is better to use the finest energy
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decomposition that we can have, which actually comes naturally from the generat-
ing of A as we will see in some coming examples. More precisely, for an energy
decomposition E = {Ek }

m
k=1 of A, if there is some Ek that has its own energy decom-

position Ek = Ek,1 + Ek,2 that comes naturally, then the finer energy decomposition
E f ine = {Ek }

m
k=2∪{Ek,1, Ek,2} is more preferred as it gives us more detailed informa-

tion of A. However one would see that any Ek can have some trivial decomposition
Ek =

1
2Ek +

1
2Ek , which makes no essential difference. To make it clear what should

be the finest underlying energy decomposition of A that we will use in our algorithm,
we first introduce the neighboring relation between energy elements and basis.

Let E = {Ek }
m
k=1 be an energy decomposition of A, andV = {vi}

n
i=1 be an orthonor-

mal basis of Rn. we introduce the following notation:

• For any E ∈ E and any v ∈ V , we denote E ∼ v if vT Ev > 0 ( or equivalently
Ev , 0, since E � 0 );

• For any u, v ∈ V , we denote u ∼ v if ∃E ∈ E such that uT Ev , 0.

As an immediate example, if we take V to be the set of all distinct eigen vectors
of A, then v / u for any two v, u ∈ V , namely all basis functions are isolated and
everything is clear. But such choice of V is not trivial in that we know everything
about A if we know its eigen vectors. Therefore, instead of doing things in the
frequency space, we assume the least knowledge of A and work in the physical
space, that is we will chooseV to be the natural basis {ei}

n
i=1 of R

n in all practical
use. But for theoretical analysis, we still use the general basis notationV = {vi}

n
i=1.

Also, for those who are familiar with graph theory, it is more convenient to un-
derstand the sets V, E from graph perspective. Indeed, one can keep in mind that
G = {V, E} is the generalized concept of undirected graphs, whereV stands for the
set of vertices, and E stands for the set of edges. For any vertices (basis) v, u ∈ V ,
and any edge (energy) E ∈ E, v ∼ E means that E is an edge of v, and v ∼ u means
that v and u share some common edge. However, different from the traditional
graph setting, here one edge(energy) E may involve multiple vertices instead of just
two, and two vertices(basis) v, u may share multiple edges that involve different sets
of vertices. Further, the spectrum magnitude of the “multi-vertex edge" E can be
viewed as a counterpart of edge weight in graph setting. Conversely, if the problem
comes directly from a weighted graph, then one can naturally construct the sets V
and E from the vertices and edges of the graph as we will see in Example 2.1.10.
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Definition 2.1.2 (Neighboring). Let E = {Ek }
m
k=1 be an energy decomposition of

A, and V = {vi}
n
i=1 be an orthonormal basis of Rn. For any E ∈ E, We define

N (E;V ) := {v ∈ V : E ∼ v} to be the set of v ∈ V neighboring E. Similarly, for
any v ∈ V , we define N (v; E) := {E ∈ E : E ∼ v} and N (v) := {u ∈ V : u ∼ v}

to be the set of E ∈ E and the set of u ∈ V neighboring v ∈ V respectively.
Furthermore, for any S ⊂ V and any E ∈ E, we denote E ∼ S ifN (E;V )∩S , ∅
and E ∈ S if N (E;V ) ⊂ S.

In what follows, we will see that if two energy elements Ek, Ek ′ have the same
neighbor basis, namelyN (Ek ;V ) = N (Ek ′;V ), then there is no need to distinguish
between them, since it is the neighboring relation between energy elements and basis
that matters in how we make use of the energy decomposition. Therefore we say an
energy decomposition E = {Ek }

m
k=1 is the finest underlying energy decomposition

of A if no Ek ∈ E can be further decomposed as

Ek = Ek,1 + Ek,2,

where eitherN (Ek,1;V ) & N (Ek ;V ) orN (Ek,2;V ) & N (Ek ;V ). From now on,
we will always assume that E = {Ek }

m
k=1 is the finest underlying energy decomposi-

tion of A that comes along with A.

Using the neighboring concept between energy elements and orthonormal basis, we
can then define various energies of a subset S ⊂ V as follows:

Definition 2.1.3 (Restricted, Interior and Closed energy). Let E = {Ek }
m
k=1 be a

energy decomposition of A. Let S be a subset of V , and PS be the orthogonal
projection onto S. The restricted energy of S with respect to A is defined as

AS := PSAPS; (2.4)

The interior energy of S with respect to A and E is defined as

AE
S
=

∑
E∈S

E; (2.5)

The closed energy of S with respect to A and E is defined as

A
E

S =
∑
E∈S

E +
∑

E<S,E∼S

PSEd PS, (2.6)

where
Ed =

∑
v∈V

( ∑
u∈V

��vT Eu��
)
vvT =

∑
v∼E

(∑
u∼v

��vT Eu��
)
vvT (2.7)
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is called the diagonal concentration of E, and we have

PSEd PS =
∑

v∈S,v∼E

(∑
u∼v

��vT Eu��
)
vvT (2.8)

Remark2.1.4. The restricted energy ofS can be simply viewed as the restriction of A

on the subsetS. The interior energy (closed energy) ofS is AS excluding (including)
contributions from other energy elements E < S neighboring S. The following
example illustrates the idea of various energies introduced in Definition 2.1.3 by
considering the 1-dimensional discrete Laplace operator with Dirichlet boundary
conditions.

Example 2.1.5. Consider A to be the (n + 1) × (n + 1) tridiagonal matrix with
entries -1 and 2 on off-diagonals and diagonal respectively. Let

E1 =
( 2 −1
−1 1

0
)
, En =

( 0
1 −1
−1 2

)
, and Ek = *

,

0
1 −1
−1 1

0
+
-

(2.9)

for k = 2, . . . n − 1. Let V = {ei}
n
i=0 to be the standard orthonormal basis for

Euclidean space Rn+1. Formally Ek is the edge between ek−1 and ek . If S =
{e3, e4, e5, e6}, then we have

AS =
*...
,

0
2 −1
−1 2 −1
−1 2 −1
−1 2

0

+///
-

, AE
S
=

*...
,

0
1 −1
−1 2 −1
−1 2 −1
−1 1

0

+///
-

,

and A
E

S =
*...
,

0
3 −1
−1 2 −1
−1 2 −1
−1 3

0

+///
-

.

Recall that the interior energy AE
S
=

∑
Ek∈S

Ek =
∑6

k=4 Ek , while the closed energy

A
E

S = AE
S
+

∑
E<S,E∼S

PSEd PS

= AE
S
+ |eT

3 E3e2 |e3eT
3 + |e

T
3 E3e3 |e3eT

3 + |e
T
7 E7e6 |e6eT

6 + |e
T
6 E7e6 |e6eT

6

includes the partial contributions from other energy elements E < S neighboring
S, which are E3 and E7 respectively.

Remark 2.1.6.

- Notice that any eigenvector x of AS (or AE
S
, A
E

S) corresponding to nonzero
eigenvalue must satisfy x ∈ span(S). In this sense, we also say AS (or AE

S
,

A
E

S) is local to S.
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- For any energy E, we have E � Ed since for any x =
∑n

i=1 civi, we have

xT Ex =
∑

i

c2i v
T
i Evi +

∑
i, j

2cic jv
T
i Ev j

≤
∑

i

c2i v
T
i Evi +

∑
i, j

(c2i + c2j )��vT
i Ev j ��

=
∑

i

∑
j

c2i ��vT
i Ev j ��

= xT Ed x.

Proposition 2.1.7. For any S ⊂ V , we have that AE
S
� AS � A

E

S .

Proof. We have

AE
S
=

∑
E∈S

E �
∑
E∈S

E +
∑
E<S,
E∼S

PSEPS �
∑
E∈S

E +
∑
E<S,
E∼S

PSEd PS = A
E

S .

Notice that PSEPS = E for E ∈ S, and PSEPS = 0 for E / S, thus

AS = PSAPS =
∑
E∈S

E +
∑
E<S,
E∼S

PSEPS,

and the desired result follows. �

Definition 2.1.8 (Partition of basis). LetV = {vi}
n
i=1 be an orthonormal basis ofR

n.
We say P = {Pj }

M
j=1 is a partition ofV = {vi}

n
i=1 if (i) Pj ⊂ V ∀ j; (ii) Pj ∩ Pj ′ = ∅

if j , j′; and (iii)
⋃M

j=1 Pj = V .

Again one can see the partition of basis as partition of vertices. This partitionP is the
key to construction of local basis for operator compression purpose. The following
proposition serves to bound the matrix A from both sides with blocked(patched)
matrices, which will further serve to characterize properties of local basis.

Proposition 2.1.9. Let E = {Ek }
m
k=1 be an energy decomposition of A, and P =

{Pj }
M
j=1 be a partition ofV . Then

M∑
j=1

AEPj
� A �

M∑
j=1

A
E

Pj
. (2.10)
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Proof. Let EP = {E ∈ E : ∃Pj ∈ P such that E ∈ Pj }, and Ec
P
= E\EP . Recall

that E ∈ Pj if N (E,V ) ⊂ Pj (See Definition 2.1.2). We will use Pj to denote the
orthogonal projection onto Pj . Since Pj ∩ Pj ′ = ∅ for j , j′, we have

∑
j Pj = Id.

Then ∑
j

AEPj
=

∑
j

∑
E∈Pj

E

�
∑

j

∑
E∈Pj

E +
∑

E∈Ec
P

E

�
∑

j

∑
E∈Pj

E +
∑

E∈Ec
P

[(∑
j

Pj
)
Ed (∑

j ′
Pj ′

)]

=
∑

j

∑
E∈Pj

E +
∑

E∈Ec
P

(∑
j

Pj Ed Pj
)

=
∑

j

( ∑
E∈Pj

E +
∑

E<Pj,E∼Pj

Pj Ed Pj
)

=
∑

j

A
E

Pj
.

We have used the fact that Pj Ed Pj ′ = 0 for j , j′. Notice that

A =
∑

E∈EP

E +
∑

E∈Ec
P

E =
∑

j

∑
E∈Pj

E +
∑

E∈Ec
P

E,

and the desired result follows. �

Throughout the thesis, we will always assume that A has a finest energy decompo-
sition E = {Ek }

m
k=1, and all the other discussed energies of A are constructed from

E with respect to some orthonormal basis V (by taking interior or closed energy).
Therefore we will simply use A

S
, AS to denote AE

S
, A
E

S for any S ⊂ V .

Example 2.1.10. Consider L to be the graph Laplacian matrix of the graph given in
Figure 2.1. For graph Laplacian, an intrinsic energy decomposition arises during
the assembling of the matrix in which the energy element is defined over each
edge(see Equation (2.2)). Now suppose we have given the partition P =

{
Pj

}3
j=1

with P1 = [e1, e2, e3], P2 = [e4, e5, e6, e7] and P3 = [e8, e9, e10, e11], where ei are the
standard basis of R11. Then we can obtain LPj

and LPj as follows:

LP1
=

(
4 −2 −2
−2 4 −2
−2 −2 4

)
P1
, LP2

=

( 5 −2 −1 −2
−2 4 −2 0
−1 −2 5 2
−2 0 −2 4

)
P2

, LP3
=

( 4 −2 −2 0
−2 5 −1 −2
−2 −1 5 −2
0 −2 −2 4

)
P3

LP1 =

(
6 −2 −2
−2 6 −2
−2 −2 8

)
P1
, LP2 =

( 7 −2 −1 −2
−2 4 −2 0
−1 −2 7 2
−2 0 −2 8

)
P2

, LP3 =

( 6 −2 −2 0
−2 5 −1 −2
−2 −1 9 −2
0 −2 −2 6

)
P3
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(a) (b)

Figure 2.1: (a) An illustration of a graph example . (b) An illustration of a partition
P = {{1, 2, 3}, {4, 5, 6, 7}, {8, 9, 10, 11}}.

Here we denote the matrix (·)Pj
to be the matrix in R11×11 but with nonzero entries

on Pj only.

2.2 Operator Compression
As mentioned in the Section 1.1, inspired by the Finite Element Method (FEM)
approach for solving partial differential equation (PDE) in which the variational for-
mulation naturally gives the energy decomposition of the operator, we adopt a similar
strategy of FEM to find a subspace Φ approximating the solution space of a linear
system involving A that are energy decomposable. In particular, approximation of
A−1 can also be obtained.

For traditional FEM, the accuracy of these approximations relies on the regularity
of the given coefficients. Without assuming any smoothness on coefficients, one
promising way to approximate the operator is to consider projecting the operator
into the modified subspace Ψ = Φ − PA

UΦ in [75], or Ψ = A−1(Φ) as proposed in
[53, 88]. Here U = (Φ)⊥ is the l2-orthogonal complement space and PA

U is the A-
orthogonal projection operator. In the case where A is invertible, these two modified
spaces are equivalent. Therefore, we propose to employ a similar methodology for
compressing a general symmetric, PD matrix A.

We first obtain a general error estimate for projecting the matrix A into a subspace
Ψ = A−1(Φ) ofRn, given the projection type approximation property of the subspace
Φ. With this observation, the operator compression problem is narrowed down into
choosing an appropriate Φ which satisfies condition (2.11). The following theorem
also gives us a general idea on how we can control the errors introduced during the
compression of the operator A.
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Theorem 2.2.1. Let Φ be a subspace of Rn, and PΦ be the orthogonal projection
onto Φ with respect to 〈·, ·〉2. Let Ψ be the subspace of Rn given by Ψ = A−1(Φ),
and PA

Ψ
be the orthogonal projection onto Ψ with respect to 〈·, ·〉A. If

‖x − PΦx‖2 ≤ ε ‖x‖A, ∀x ∈ Rn, (2.11)

for some ε > 0, then

1. For any x ∈ Rn, and b = Ax, we have

‖x − PA
Ψ

x‖A ≤ ε ‖b‖2. (2.12)

2. For any x ∈ Rn, and b = Ax, we have

‖x − PA
Ψ

x‖2 ≤ ε2‖b‖2. (2.13)

3. We have
‖A−1 − PA

Ψ
A−1‖2 ≤ ε2. (2.14)

Proof. 1. Let y = A−1(PΦb) ∈ Ψ, then

‖x − y‖2A = (x − y, A(x − y)) = (x − y − PΦ(x − y), b − PΦb)

≤ ‖x − y − PΦ(x − y)‖2‖b − PΦb‖2 ≤ ε ‖x − y‖A‖b‖2,

and thus we have

‖x − PA
Ψ

x‖A ≤ ‖x − y‖A ≤ ε ‖b‖2.

2. Let z = A−1(x − PA
Ψ

x), then

‖x − PA
Ψ

x‖22 = (x − PA
Ψ

x, x − PA
Ψ

x) = (x − PA
Ψ

x, Az)

= (x − PA
Ψ

x, z − PA
Ψ

z)A ≤ ‖x − PA
Ψ

x‖A‖z − PA
Ψ

z‖A

≤ ε ‖x − PA
Ψ

x‖A‖Az‖2,

and thus
‖x − PA

Ψ
x‖2 ≤ ε ‖x − PA

Ψ
x‖A ≤ ε2‖b‖2.

3. Immediate result of 2.

�
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Interchangeably, we will use Φ and Ψ to denote the basis matrix of the space Φ and
Ψ respectively, such that ΦTΦ = IN and Ψ = A−1ΦT . Here N is the dimension of
Φ, and T is some N × N nonsingular matrix to be determined. Then we have

PA
Ψ
= Ψ(ΨT AΨ)−1ΨT A = A−1Φ(ΦT A−1Φ)−1ΦT, (2.15)

which is the A-orthogonal projectionmatrix into the subspaceΨ. The corresponding
compressed approximation of A−1 is given by

PA
Ψ

A−1 = Ψ(ΨT AΨ)−1ΨT . (2.16)

In [75], Målqvist and Petersein proposed the use of modified coarse space in order
to handle roughness of coefficients when solving elliptic equations with FEM.
Assuming that the finite elements are conforming and if we see Φ as the original
coarse space VH in [75], then Ψ is exactly the modified coarse space V ms

H as they
proposed, and the first error estimate in Theorem 2.2.1 is consistent to their error
analysis. More generally, Owhadi in [89] makes use of the Gamblet framework to
construct the basis of modified coarse space such that the conforming properties
of that basis is no longer required. In particular, (2.15) is an analogy of ΨΦ =
KΨT (ΦKΦT )−1Φ in page 9 of [88] and the error estimate in (2.12) is corresponding
to Proposition 3.6 in that paper.

As a FEM type method, the choice of Φ determines the operator compression error
or the solution approximation error. We know that the optimal rank-N approximator
of A−1 is given by taking Φ to be the eigenspace of A corresponding to the first N

smallest eigenvalues, which is essentially the Principal Component Analysis (PCA)
[55]. And the optimal compression error is given by ε2 = (λN+1(A))−1. Though
with optimal approximation property, the drawback of the PCA is nonnegligible in
that the eigenvectors of A are almost always dense even when A has strong local
properties. While the sparse PCA [34, 80, 137] provides a strategy to obtain a sparse
approximation of A−1, it implicitly assumes that the operators inherit a low rank
characteristics such that l1 minimization approach is effective. To fully use the local
properties of A, we would prefer to choose Φ that can be locally computed but still
has good approximation property, namely satisfying condition (2.11) with a pretty
good error ε and a nearly optimal dimension N . Also we hope the a priori error
bound ε can be estimated locally.

Indeed when solving elliptic PDEs using FEM, the nodal basis can be chosen as
(discretized) piece-wise polynomials with compact local supports, and the error
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is given by the resolution of the partition of the computational domain [8, 19].
However, such choices of partition of the computational domain do not depend
on the operator A in traditional FEM. Yet it only depends on the geometry of the
computational domain, and thus the performance relies on the regularity of A. So
a natural question arises: can we do better if we choose the partition and the nodal
basis using the local information of A?

Furthermore, what can we do if we do not have a priori the computational domain?
Such scenario arises, for example, when the underlying geometry of some operators
A, like graph Laplacian, is unknown and no embedding maps to the physical domain
can be found easily. In this case, one of the promising ways to accomplish such task
lies in the deep connection between our energy representation of the operator A and
its hidden geometric structure. More specifically, the energy decomposition of the
operator introduced in Section 2.1 reveals the intrinsic locality of the underlying
geometry in an algebraic way, so that we can construct an optimal partition of
the computational space and choose a proper subspace/basis Φ using only local
information.

After constructing the partition and the basis Φ, the next mission is to find a good
basis Ψ of the space A−1(Φ). The choice of Ψ serves to preserve the locality of the
stiffness matrix Ast = Ψ

T AΨ inherited from A, and to give a reasonable bound on
the condition number of Ast.

Algorithm 1 Operator Compression
Input: Energy decomposition E, underlying basisV , desire accuracy ε
1: Construct partition P subject to ε using Algorithm 4;
2: Construct Φ using Algorithm 2;
3: Construct Ψ̃ using Algorithm 3 subject to ε ;
4: Compute PA

Ψ̃
A−1 = Ψ̃(Ψ̃T AΨ̃)−1Ψ̃T as the compressed operator;

In summary, as mentioned in Section 1.1, our approach is to (i) construct a partition
of the computational space/basis using local information of A; (ii) constructΦ that is
locally computable in each patch of the partition and satisfies error condition (2.11);
(iii) construct Ψ that provides stiffness matrix Ast with locality and reasonable
condition number. The whole process can be summarized as the Algorithm 1, and
each step will be discussed in following sections.

But to theoretically develop our approach, we first assume that we are given an
imaginary partition P, and then derive proper constructions of Φ and Ψ serving the
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desired purposes based on this partition. In the derivation process, we come up with
some desired conditions that will, in return, guide us how to construct the adaptive
partition P with the desirable properties.

2.2.1 Choice of Φ
As discussed in the last subsection, the underlying geometry of the operator may
not be given. Therefore determining Φ which archives the condition (2.11) is not
a trivial task. Instead of tackling this problem directly, the following proposition
provides us a more apparent and local criterion on choosing Φ.

Proposition 2.2.2. Let P = {Pj }
M
j=1 be a partition of V , and {APj

}Mj=1 be the
corresponding interior energies as defined in Definition 2.1.3. For each 1 ≤ j ≤ M ,
let Φ j be some subspace of span{Pj } such that

‖x − PΦ j x‖2 ≤ ε ‖x‖APj
, ∀x ∈ span{Pj }, (2.17)

for some constant ε . Then we have

‖x − PΦx‖2 ≤ ε ‖x‖A, ∀x ∈ Rn, (2.18)

where Φ =
⊕

j Φ j .

Proof. Since P = {Pj }
M
j=1 is a partition ofV , we have PΦ =

∑
j PΦ j , and thus

‖x − PΦx‖22 = ‖
∑

j

(Pj x − PΦ j x)‖22 =
∑

j

‖Pj x − PΦ j x‖
2
2 ≤ ε

2
∑

j

‖Pj x‖2APj

.

Notice that ∑
j

‖Pj x‖2APj

=
∑

j

‖x‖2APj

= ‖x‖2A ≤ ‖x‖
2
A,

and the conclusion follows. �

Intuitively, given a partition P ofV , we can constructΦ locally by choosingΦ j that
satisfies (2.17) for each Pj . Apparently, the choice of Φ j depends on the partition
P and the feasibility of this problem is guaranteed since we can always set P = V
to fulfill (2.17). But this choice is not optimal. We should adaptively choose P and
Φ in such a way that it minimizes N , the dimension of Φ.

Suppose we are given the partition P = {Pj }
M
j=1. Then minimizing N is equivalent

to minimizing the dimension of each Φ j . In the following, we will first define
the notion of interior spectrum of the interior energy AS for a subset S ⊂ V .
Lemma 2.2.4 will then show the relationship between the interior spectrum and the
minimum dimension that can be achieved for each Φ j .
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Definition 2.2.3 (Interior Spectrum). Let S be a subset of V . We define the
interior spectrum {λ j (S, A)}sj=1 as the set of eigenvalues of A

S
, where s = #S =

dim(span{S}) and A
S
is the interior energy of S with respect to A (as an operator

restricted to the space span{S}).

In what follows, since A is generally given and fixed, we will write λ j (S; A) as
λ j (S). Also we will always assume the ordering λ1(S) ≤ λ2(S) ≤ · · · ≤ λs (S).

Lemma 2.2.4. Given a set S ⊂ V and a constant ε , let q(ε ) be the smallest
integer such that 1

ε2
≤ λq(ε )+1(S). Also define G(ε ) = {Θ ⊂ span{S} : ‖x −

PΘx‖2 ≤ ε ‖x‖A
S
, ∀x ∈ span{S}}, and let p(ε ) = minΘ∈G(ε ) dimΘ. Then we have

q(ε ) = p(ε ).

Proof. Let Φk ⊂ span{S} denote the eigenspace of A
S
(as an operator restricted

to span{S}) corresponding to interior eigenvalues λ1(S) ≤ λ2(S) ≤ · · · ≤ λk (S).
On the one hand, for all x ∈ span{S}, we have

‖x‖2A
S
≥ ‖x − PΦq (ε) x‖2A

S

= (x − PΦq (ε) x)T A
S

(x − PΦq (ε) x) ≥ λq(ε )+1(S)‖x − PΦq (ε) x‖22,

which is
‖x − PΦq (ε) x‖2 ≤

1√
λq(ε )+1(S)

‖x‖A
S
≤ ε ‖x‖A

S
.

Thus Φq(ε ) ∈ G(ε ), q(ε ) ≥ p(ε ). On the other hand, assume that the minimum
p(ε ) is achieved by some space Θ̃, then one can check that

λp(ε )+1 = max
Θ⊂span{S}
dimΘ=p(ε )

min
x∈span{S}

‖x − PΘx‖2A
S

‖x − PΘx‖22

≥ min
x∈span{S}

‖x − P
Θ̃

x‖2A
S

‖x − P
Θ̃

x‖22

= min
x∈span{S}

‖x − P
Θ̃

x‖2A
S

‖x − P
Θ̃

x − P
Θ̃

(x − P
Θ̃

x)‖22

(
since P

Θ̃
(x − P

Θ̃
x) = 0

)
= min

y=x−P
Θ̃

x
x∈span{S}

‖y‖2A
S

‖y − P
Θ̃
y‖22

≥ min
y∈span{S}

‖y‖2A
S

‖y − P
Θ̃
y‖22
≥

1
ε2
,
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which implies p(ε ) ≥ q(ε ) by the definition of q(ε ). Therefore, we have p(ε ) =
q(ε ). �

By Lemma 2.2.4, one optimal way to minimize dimΦ j for each Pj subject to
condition (2.17), is to take Φ j = Φ

qj (ε )
j , the eigenspace corresponding to interior

eigenvalues λ1(Pj ) ≤ λ2(Pj ) ≤ · · · ≤ λqj (ε ) (Pj ), where qj (ε ) is the smallest integer
such that 1

ε2
≤ λqj (ε )+1(Pj ). Recall that this criterion for choosing Φ j is based on

the fact that the partition P is given. Then one shall ask a more practical question:
how do we construct an “optimal” partition P, in the sense that it has a smallest
total dimension of Φ?

Instead of answering this question directly, we consider the problem in a more
tractable way. We fix an integer q, and choose a q-dimensional local space Φ j for
each Pj . Then the problem of minimizing dimΦ subject to the condition (2.17)
is reduced to finding a partition P = {Pj }

M
j=1 with a minimal patch number. Still

guided by Lemma 2.2.4, we know that we should chooseΦ j = Φ
q
j , and the condition

(2.17) is satisfied if and only if 1
ε2
≤ λq+1(Pj ) for each Pj .

Definition 2.2.5 (Error factor). Let P = {Pj }
M
j=1 be a partition of V . The error

factors of P are defined as

ε(Pj, q) =
1√

λq+1(Pj )
, 1 ≤ j ≤ M, and ε(P, q) = max

j

1√
λq+1(Pj )

.

(2.19)

Therefore, given a constant ε , we need to minimize the patch number of P subject
to ε(P, q) ≤ ε .

Construction 2.2.6 (Construction of Φ). We choose Φ =
⊕M

j=1Φ
q
j , where Φ

q
j ⊂

span{Pj } is the eigenspace corresponding to the first q interior eigenvalues of patch
Pj . We also require (Φq

j )TΦ
q
j = Iq, i.e. ΦTΦ = IN . Then the condition (2.17) is

satisfied if ε(P, q) ≤ ε .

Guided by Construction 2.2.6, we propose Algorithm 2 to construct Φ. Notice that
it also computes the compliment space Uj of Φ j in each span(Pj ), which will serve
for the purpose of performing MMD in Section 3.1.

Remark 2.2.7.
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- The construction of Uj can be implicitly done, for example, by extending Φ j

to an orthonormal basis of span(Pj ) with local QR factorization, where only
q Householder vectors [h1, h2, · · · , hq] need to be stored. In fact, we can
apply economic QR factorization toΦ j to obtain (I − h1hT

1 )(I − h2hT
2 ) · · · (I −

hqhT
q ) = [Q j,Uj] where [Q j,Uj] is orthogonal and Span(Φ j ) = Span(Q j ).

In following algorithms there are only two kinds of operation that involve
Uj , namely UT

j x for some x ∈ Rs and Uj x for some x ∈ Rs−q. The former
one can be done by computing y = (I − hqhT

q ) · · · (I − h2hT
2 )(I − h1hT

1 )x

and then taking the last s − q entries of y; the latter one can be done by
extending x to x̃ = [0, x] with additional q 0s in front and then computing
(I − h1hT

1 )(I − h2hT
2 ) · · · (I − hqhT

q ) x̃.

- The integer q is given before the partition is constructed, and the choice of q

will be discussed in Section 2.3.

Algorithm 2 Construction of Φ
Input: Energy decomposition E, partition P subject to ε(P, q) ≤ ε .
1: for each Pj ∈ P do
2: Extract APj

from E;
3: Find the first q normalized eigenvectors of APj

as Φ j ;
4: Find Uj such that [Φ j,Uj] is an orthonormal basis of span(Pj );
5: end for
6: Collect all Φ j as Φ, and all Uj as U .

Complexity of Algorithm 2
For simplicity, we assume that all patches in partition P have the same patch size s.
Then number of patches is #P = n

s . Let F (s) denote the local patch-wise complexity
of solving partial eigen problem and extending Φ j to [Φ j,Uj]. Then the complexity
of Algorithm 2 is

O(
F (s)

s
· n). (2.20)

2.2.2 Choice of Ψ
Suppose that we have determined the space Φ = [ϕ1, ϕ2, · · · , ϕN ], the next step is
to find Ψ = [ψ1, ψ2, · · · , ψN ] = A−1ΦT , namely to determine T , so that

1. each ψi is locally computable, or can be approximated by some ψ̃i that is
locally computable;
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2. the stiffness matrix Ast = Ψ
T AΨ has relatively small condition number, or the

condition number can be bounded by some local information.

Generally each A−1φi is not local (sparse), so it may be impossible to find even one
ψ ∈ span{A−1Φ} that is locally computable. A more promising idea is to find ψ that
can be well approximated by some ψ̃i which is locally computable.

Lemma 2.2.8. Assume that Ψ = [ψ1, ψ2, · · · , ψN ] satisfies ‖x − PA
Ψ

x‖A ≤ ε ‖Ax‖2
and ‖A−1st ‖2 ≤ ‖A−1‖2, and that Ψ̃ = [ψ̃1, ψ̃2, · · · , ψ̃N ] satisfies ‖ψi−ψ̃i‖A ≤

Cε√
N
, 1 ≤

i ≤ N for some constant C. Then we have

1. For any x ∈ Rn, and b = Ax, we have

‖x − PA
Ψ̃

x‖A ≤ (1 + C‖A−1‖2)ε ‖b‖2.

2. For any x ∈ Rn, and b = Ax, we have

‖x − PA
Ψ̃

x‖2 ≤ (1 + C‖A−1‖2)2ε2‖b‖2.

3. We have
‖A−1 − PA

Ψ̃
A−1‖2 ≤ (1 + C‖A−1‖2)2ε2.

Proof. We only need to prove property 1, properties 2 and 3 follow by using the
same argument as in Theorem 2.2.1. Recall that we have

‖x − PA
Ψ

x‖A = ‖x − Ψc‖A ≤ ε ‖b‖2,

with c = A−1st Ψ
T Ax. Let y1 = Ψc =

∑N
i=1 ciψi, y2 = Ψ̃c =

∑N
i=1 ciψ̃i. Then we have

‖y1−y2‖A =



N∑
i=1

ci (ψi − ψ̃i)
A

≤

N∑
i=1
|ci |‖ψi−ψ̃i‖A ≤

Cε
√

N
√

N

( N∑
i=1

c2i
) 1
2 = Cε

√
cT c.

Notice that
cT c = xT AΨA−2st Ψ

T Ax ≤ ‖A
1
2ΨA−2st Ψ

T A
1
2 ‖2‖x‖2A,

‖A
1
2ΨA−2st Ψ

T A
1
2 ‖2 = ‖A−1st Ψ

T AΨA−1st ‖2 = ‖A
−1
st ‖2,

‖x‖2A = bT A−1b ≤ ‖A−1‖2‖b‖22,

therefore we get

‖y1 − y2‖A ≤ Cε
√
‖A−1st ‖2‖A−1‖2‖b‖2 ≤ Cε ‖A−1‖2‖b‖2.
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Then we have

‖x−y2‖A ≤ ‖x−y1‖A+‖y1−y2‖A ≤ ε ‖b‖2+Cε ‖A−1‖2‖b‖2 = (1+C‖A−1‖2)ε ‖b‖2.

Since y2 ∈ span{Ψ̃}, we obtain

‖x − PA
Ψ̃

x‖A ≤ ‖x − y2‖A ≤ (1 + C‖A−1‖2)ε ‖b‖2.

�

Guided by Lemma 2.2.8, in order to preserve the compression accuracy, we require
that each ψi be approximated accurately in energy norm ‖ · ‖A by some ψ̃i that is
locally computable. To implement this idea, we consider the problem reversely.
Suppose we already have some ψ̃i that is locally computable, so the construction of
Ψ is to find ψi ∈ A−1(Φ) so that ‖ψi − ψ̃i‖A is small for each i. Since ψ̃i is given,
minimizing ‖ψi − ψ̃i‖A can be simply solved by taking ψi = PA

Ψ
ψ̃i. Thanks to the

expression PA
Ψ
= A−1Φ(ΦT A−1Φ)−1ΦT , we can perform the energy projection PA

Ψ

as long as we know Φ. Therefore we have

Ψ = PA
Ψ
Ψ̃ = A−1Φ(ΦT A−1Φ)−1ΦT

Ψ̃, (2.21)

=⇒ Φ
T
Ψ = ΦT A−1Φ(ΦT A−1Φ)−1ΦT

Ψ̃ = ΦT
Ψ̃. (2.22)

Then we shall discuss how to describe the locality of each ψ̃i. Similar to the locality
of Φ, though seems greedy, we can also require that ψ̃i ∈ span{Pji } for some ji, and
this requirement implies that ϕT

i′ψ̃i = 0, for all ϕi′ < span{Pji }. Then to determine
ΦTΨ = ΦT Ψ̃, we still need to determine ϕT

i′ψ̃i for each ϕi′ ∈ span{Pji }. But actually,
in the following proof of exponential decay of ψi, we can see that the value of ϕT

i′ψ̃i

for each ϕi′ ∈ span{Pji } does not essentially change the decay property of ψi. We
only need to make sure that Ψ̃ has the same dimension as Φ. So for simplicity, we
require that

ϕT
i′ψ̃i = δi′,i, 1 ≤ i′ ≤ N, i.e. Φ

T
Ψ = ΦT

Ψ̃ = IN . (2.23)

Adding this extra localization constraint to the form of Ψ = A−1ΦT , we can choose
Ψ as follows:

Construction 2.2.9 (Construction ofΨ). We chooseΨ = A−1ΦT so thatΦTΨ = IN ,
that is

Ψ = A−1Φ(ΦT A−1Φ)−1, T = (ΦT A−1Φ)−1, (2.24)
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and we have
Ast = Ψ

T AΨ = (ΦT A−1Φ)−1. (2.25)

Remark 2.2.10. Our choice of Ψ is inspired by the result proposed by Owhadi in
[88], where the author obtained the same format ofΨ from amarvelous probabilistic
perspective. In this work, the idea of Gamblet Transformation is introduced. Such
transformation gives a particular choice of basis in the modified coarse space, which
ensures the exponential decay feature of Ψ. Our derivation of the choice of Ψ can
be seen as a algebraic interpretation of Owhadi’s probabilistic construction.

Though we construct each ψi from some local vector ψ̃i, the error ‖ψi − ψ̃i‖A is
not necessarily small. To have both good locality and small error, we need to use
something in between. The following lemma (see also Section 3.2 in [88]) shows
that the construction of Ψ in (2.24) is equivalent to the optimizer of a minimization
problem.

Lemma 2.2.11. Let Ψ be constructed as in (2.24). Then for each i, ψi satisfies

ψi = argminx∈Rn ‖x‖A,

subject to ϕT
i′x = δi′,i, ∀ i′ = 1, . . . , N .

Proof. Notice that Aψi ∈ Φ, thus for any x that satisfies ϕT
i′x = δi′,i, we have

ΦT (x − ψi) = 0, and ψT
i A(x − ψi) = 0. Then we have

‖x‖2A = ‖x − ψi + ψi‖
2
A = ‖ψi‖

2
A + ‖x − ψi‖

2
A + 2ψ

T
i A(x − ψi) ≥ ‖ψi‖

2
A. (2.26)

�

By the construction given in (2.24) and guided by Lemma 2.2.11, we can obtain
every ψi by solving the optimization problem. Our next step is to make use of this
minimal property to construct local ψ̃i that will be proved exponentially convergent
to ψi.

Definition 2.2.12 (Layers of neighbors). Let P = {Pj }
M
j=1 be a partition ofV . For

any Pj ∈ P, we recursively define S0(Pj ) = Pj , and

Sk+1(Pj ) =
⋃

Pj ′∼Sk (Pj )

Pj ′, k = 0, 1, 2, · · · . (2.27)



39

Sk (Pj ) is called the kth neighbor patch ball of Pj , and Sk (Pj )/Sk−1(Pj ) the kth
neighbor patch layer of Pj .

Remark 2.2.13. By making use of the notion of neighboring introduced in Defi-
nition 2.1.2, we can construct the “algebraic neighbor layers” starting from any
initial patch Pj . Still we do not implicitly assume any underlying physical domain
to the operator A.

Definition 2.2.14 (Local approximator). For each ψi, let Pji be the patch such that
ϕi ∈ Φ ji ⊂ span{Pji }. Then for each k ≥ 0, we define the k-local approximator of
ψi as

ψk
i = argmin

x∈span{Sk (Pji
)}
‖x‖A,

subject to ϕT
i′x = δi′,i, ∀ i′ = 1, . . . , N .

(2.28)

Remark 2.2.15. Here k is called the radius of ψk
i . The condition ϕT

i′ψ
k
i = δi′,i is

equivalent to ΦTψk
i = Φ

Tψi. By Lemma 2.2.11 and the definition of ψk
i , we have

(ψk
i − ψi)T Aψi = 0, (ψk−1

i − ψk
i )T Aψk

i = 0, ∀k, (2.29)

and hence

‖ψk
i ‖

2
A = ‖ψi‖

2
A + ‖ψ

k
i − ψi‖

2
A, (2.30)

‖ψk−1
i ‖2A = ‖ψ

k
i ‖

2
A + ‖ψ

k−1
i − ψk

i ‖
2
A. (2.31)

Definition 2.2.16 (Condition factor). Let P = {Pj }
M
j=1 be a partition of V , and let

A
−1
Pj

denote the inverse of APj as an operator restricted on span{Pj }. The condition
factors are defined as

δ(Pj,Φ j ) = max
x∈Φ j

xT x

xT A
−1
Pj

x
, 1 ≤ j ≤ M, and δ(P,Φ) = max

Pj∈P
δ(Pj,Φ j ).

(2.32)

Remark 2.2.17.

- In what follows, since we always fix a choice of Φ for a partition P, we will
simply use δ(Pj ) and δ(P) to denote δ(Pj,Φ j ) and δ(P,Φ) respectively. In
particular, when we use the Construction 2.2.6 for Φ with some integer q, we
correspondingly use the notations δ(P, q).
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- If we follow the construction ΦT
jΦ j = Iqj , where qj is the dimension of Φ j ,

then we have

δ(Pj,Φ j ) = max
c∈Rq j

cTΦT
jΦ jc

cTΦT
j A
−1
Pj
Φ jc
= max

c∈Rq j

cT c

cTΦT
j A
−1
Pj
Φ jc
= ‖(ΦT

j A
−1
Pj
Φ j )−1‖2,

(2.33)
that is

(ΦT
j A
−1
Pj
Φ j )−1 � δ(Pj )Iqj � δ(P)Iqj . (2.34)

Moreover, by block-wise inequalities we have

(ΦT (
M∑

j=1
APj )

−1
Φ)−1 � δ(P)IN . (2.35)

This analysis will help us to bound the maximum eigenvalue of the stiffness
matrix Ast = Ψ

T AΨ by δ(P).

Example 2.2.18. In this example, we consider the operator A to be the discretization
of 2-D second-order elliptic operator by standard 5-point Finite Difference scheme.
Similar to the case of graph Laplacian in Example 2.1.10, we have a natural energy
decomposition inherited from the assembling of such discretization. Specifically,
for every pair of vertices ehori := [(i, j), (i, j + 1)] and evert := [(i, j), (i + 1, j)] in
the finite difference grid, the energy elements are

Ei j
hori = −

1
|ehori |

2

(i, j) (i, j + 1)

*..........
,

+//////////
-

0
ai, j+ 1

2
−ai, j+ 1

2
(i, j)

. . .

−ai, j+ 1
2

ai, j+ 1
2

(i, j + 1)

0

, and

Ei j
vert = −

1
|evert |

2

(i, j) (i + 1, j)

*..........
,

+//////////
-

0
ai+ 1

2 , j
−ai+ 1

2 , j
(i, j)

. . .

−ai+ 1
2 , j

ai+ 1
2 , j

(i + 1, j)

0

.

Now suppose we are given a partition P, we focus on a particular local patch Pj to
study how mesh size and contrast affect the error factor and the condition factor.
Figure 2.2a shows the high-contrast field (colored in black) in Pj . For simplicity,
we set Pj as a square domain with fixed length H = |ehori | = |evert |. We also
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set the coefficient in high-contrast field to be 103 (and 1 otherwise). Figure 2.2b
shows the decreasing trend of the error factor ε (Pj, 1) as the vertex number #V

inside the patches (i.e. the vertex density in Pj) increases. Here we choose q =

1 for illustration purpose. Figure 2.2c shows a similar decreasing trend of the
condition factor δ(Pj, 1) and Figure 2.2d plots ε (Pj, 1)2 ·δ(Pj, 1) versus #V . Fixing
the vertex number #V in the patch Pj , we also study the relationship of ε (Pj, 1),
δ(Pj, 1) and the contrast. In particular, we double the contrast by 2 in each single
computation and investigate the trend of ε (Pj, 1) and δ(Pj, 1). Figure 2.2e shows the
decrease of ε (Pj, 1) as contrast increases. For δ(Pj, 1), although it also increases
as the contrast increases, we can clearly see that there is an upper bound (around
220 in this example), even when the contrast jumps up to 220. Figure 2.2g plots
ε (Pj, 1)2 · δ(Pj, 1) versus contrast.
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Figure 2.2: An example showing the relationship between mesh size, the error
factor ε (Pj, 1), the condition factor δ(Pj, 1) and contrast.

The following theorem shows the scaling properties of ψi, ψk
i under Construc-

tion 2.2.9 and Definition 2.2.14, which will help to prove the exponential decay of
the basis function ψi.

Theorem 2.2.19. For each ψi, we have

‖ψi‖A ≤ ‖ψ
k
i ‖A ≤ ‖ψ

0
i ‖A ≤

√
δ(Pji ). (2.36)
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Proof. ‖ψi‖A ≤ ‖ψ
k
i ‖A ≤ ‖ψ

0
i ‖A has been proved in the construction of local

approximators. We only need to prove ‖ψ0
i ‖A ≤

√
δ(Pji ). Recall that ψ0

i is defined
as

ψ0
i = argmin

x∈span{Pji
}

‖x‖A,

subject to ϕT
i′x = δi′,i, ∀ i′ = 1, . . . , N .

Without loss of generality, we can assume that ϕi is the first column of Φ ji . And
notice that ‖x‖A = ‖x‖APji

, therefore the optimization formation can be rewritten
as

ψ0
i = argmin

x∈span{Pji
}

‖x‖APji
,

subject to ΦT
ji

x = zi,
(2.37)

where zi = (1, 0, 0, · · · , 0)T ∈ Rqji . This optimization problem can be uniquely and
explicitly solved as

ψ0
i = A−1Pji

Φ ji (Φ
T
ji A−1Pji

Φ ji )
−1zi, (2.38)

where again A−1Pji
denotes the inverse of APji

as an operator restricted to span{Pji }.
And thus we have

‖ψ0
i ‖

2
A = ‖ψ

0
i ‖

2
APji

= zT
i (ΦT

ji A−1Pji
Φ ji )

−1zi . (2.39)

Notice that

APji
� APji

⇒ A−1Pji
� A

−1
Pji
⇒ Φ

T
ji A−1Pji

Φ ji � Φ
T
ji A
−1
Pji
Φ ji

⇒ (ΦT
ji A
−1
Pji
Φ ji )

−1 � (ΦT
ji A−1Pji

Φ ji )
−1,

since APji
and APji

are both symmetric, positive definite as operators restricted to
span{Pji }. Therefore by (2.35) we have

‖ψ0
i ‖

2
A ≤ zT

i (ΦT
ji A
−1
Pji
Φ ji )

−1zi ≤ ‖(ΦT
ji A
−1
Pji
Φ ji )

−1‖2‖zi‖
2
2 = δ(Pji ). (2.40)

�

Compliment Space

For each Pj , without causing any ambiguity, we use Uj interchangeably to denote
both the orthogonal compliment of Φ j with respect to span{Pj }, or an orthonormal
basis matrix ofUj . Namely we haveUj ⊂ span{Pj }, and ΦT

j Uj = 0. Then we define

α(Pj ) = max
x∈Uj

xT APj x

xT APj
x
, 1 ≤ j ≤ M, and α(P) = max

Pj∈P
α(Pj ). (2.41)
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Remark 2.2.20.

- If we choose Φ j so that it satisfies condition (2.17), then we have

xT APj
x = ‖x‖2APj

≥
1
ε2
‖x − PΦ j x‖

2
2 =

1
ε2
‖x‖22, ∀x ∈ Uj,

and xT APj x ≤ ‖APj ‖2‖x‖
2
2 . Thus α(Pj ) ≤ ε2‖APj ‖2. This argument is

meant to show that we can have α(P) < +∞ if we choose P and Φ properly.
But this bound is not tight, as α(P) can be much smaller in general.

- An immediate result of the definition of α(Pj ) is that

UT
j APjUj � α(Pj )UT

j APj
Uj, ∀ j .

The following theorem shows that the local basis function ψ̃k
i is exponentially

convergent to ψi as its support Sk (Pji ) extends(or as k increases). Indeed, the
exponential decay of ψi has been proved in [53, 75, 88, 89] in different manners
based on a common observation that the energy of ψi in the region beyond a certain
single layer of patches is comparable to its energy only on this layer, which reflects
the local interacting feature of the operator A itself. Also based on this observation,
we modify the proof in Section 6 of [89] using matrix framework coherent to our
energy settings.

Theorem 2.2.21 (Exponential decay). For each ψi, we have

‖ψk
i − ψi‖

2
A ≤

(α(P) − 1
α(P)

) k
‖ψ0

i − ψi‖
2
A ≤

(α(P) − 1
α(P)

) k
δ(Pji ). (2.42)

Proof. For simplicity, we will write ψi as ψ, ψk
i as ψk , Pji as P, and Sk (Pji ) as Sk .

Let Yk denote the joint space of all Uj such that Pj ⊂ Sk , and Zk the joint space of
all Uj such that Pj ⊂ V\Sk . We still use Yk, Zk as the basis matrix for the spaces
Yk, Zk , so that each Uj is a bunch of columns of either Yk or Zk . We use U to denote
Y∞. Notice that we can always arrange Uj in a particular order so that the matrix
form U = [Yk, Zk] holds. We define

r k = ψk − ψ, k ≥ 0; wk = ψk−1 − ψk, k ≥ 1, (2.43)

then according to (2.31) we have

‖r k−1‖2A = ‖r
k ‖2A + ‖w

k ‖2A. (2.44)
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Since ΦT (ψk − ψ) = ΦT (ψk−1 − ψk ) = 0, we have r k ∈ U and wk ∈ Yk . Then by
the minimal properties of ψk and ψ, we actually have

r k−1 = PA
Uψ

k−1 = U (UT AU)−1UT Aψk−1, (2.45)

wk = PA
Ykψ

k−1 = Yk (YT
k AYk )−1YT

k Aψk−1 = Yk (YT
k ASkYk )−1YT

k ASkψ
k−1. (2.46)

By the definition of Sk , we know that Sk−1 / V\Sk , and therefore ZT
k Aψk−1 = 0.

Then we get

‖r k−1‖2A = ψ
k−1,T AU (UT AU)−1UT Aψk−1

= ψk−1,T A
[

Yk 0
]

(UT AU)−1


YT
k

0


Aψk−1.

Due to the locality of APj, APj
, we obtain

UT AU � UT
( M∑

j=1
APj

)
U =

M∑
j=1

*
,

0
UT

j APj
Uj

0
+
-
�

1
α(P)

M∑
j=1

*
,

0
UT

j APj
Uj

0
+
-
.

As a simple inference of Proposition 2.1.9, we have∑
Pj⊂Sk

APj � ASk ,
∑

Pj⊂V\Sk

APj � AV\Sk ,

and therefore
M∑

j=1

*
,

0
UT

j APj
Uj

0
+
-
= *

,

YT
k

(∑
Pj ⊂Sk

APj

)
Yk

ZT
k

(∑
Pj ⊂V\Sk

APj

)
Zk

+
-

�

(
YT
k

ASk
Yk

ZT
k

AV\Sk Zk

)
.

Combining all results above, we have

(UT AU)−1 � α(P) *
,

YT
k ASkYk

ZT
k AV\Sk Zk

+
-

−1

= α(P) *
,

(YT
k ASkYk )−1

(ZT
k AV\Sk Zk )−1

+
-
,

and thus

‖r k−1‖2A ≤ α(P)ψk−1,T A
[

Yk 0
] (

(YT
k

ASk
Yk )−1

(ZT
k

AV\Sk Zk )−1

) 

YT
k

0


Aψk−1

= α(P)ψk−1,T AYk (YT
k ASkYk )−1YT

k Aψk−1

= α(P)ψk−1,T ASkYk (YT
k ASkYk )−1YT

k ASkψ
k−1

= α(P)‖wk ‖2A.
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This gives us

‖r k−1‖2A = ‖r
k ‖2A + ‖w

k ‖2A ≥ ‖r
k ‖2A +

1
α(P)

‖r k−1‖2A

=⇒ ‖r k ‖2A ≤
α(P) − 1
α(P)

‖r k−1‖2A.

Applying this recursively, we have

‖ψk − ψ‖2A ≤
(α(P) − 1

α(P)

) k
‖ψ0 − ψ‖2A. (2.47)

Notice that ‖ψ0 − ψ‖2A = ‖ψ
0‖2A − ‖ψ‖

2
A ≤ ‖ψ

0‖2A ≤ δ(P), and this completes our
proof. �

Remark 2.2.22.

- Recall that in Lemma 2.2.8, to make a k-layer approximator Ψk become a
good approximator, we need ‖ψi − ψ

k
i ‖A ≤

Cε√
N
for some constant C, and thus

Theorem 2.2.21 guides us to choose

k = O(log
1
ε
+ log N + log δ(P)). (2.48)

And the locality of ψk
i lies in the local connection property of the matrix A.

- By the definition in Equation (2.41), α(P) is locally scaling invariant. There-
fore the layer-wise decay rate is unchanged when A is locally multiplied by
some scaling constant.

Corollary 2.2.23. For any ψi, the interior energy of ψi on V/Sk (Pji ) = Sc
k (Pji )

decays exponentially with k, namely

‖ψi‖
2
ASc

k
(Pji

)
≤

(α(P) − 1
α(P)

) k
δ(Pji ).

Moreover, for any two ψi, ψi′, we have

|ψT
i Aψi′ | ≤

(α(P) − 1
α(P)

) kii ′

4 −
1
2 δ(P),

where kii′ is the largest integer such that Pji ′ ⊂ Sc
kii ′

(Pji )( or equivalently Pji ⊂

Sc
kii ′

(Pji ′ )).

Proof. This proof basically follows the idea in [88]. For any ψi, recall that ψk
i ∈

span(Sk (Pji )), thus ASc
k

(Pji
)ψ

k
i = 0, and

‖ψi‖
2
ASc

k
(Pji

)
= ‖ψi − ψ

k
i ‖

2
ASc

k
(Pji

)
≤ ‖ψi − ψ

k
i ‖

2
A ≤

(α(P) − 1
α(P)

) k
δ(Pji ).
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For any twoψi, ψi′, since (ψi−ψ
k
i )TΦ = 0, and Aψi′ ∈ Φ, we have (ψi−ψ

k
i )T Aψi′ = 0

for all k. Also notice that (ψk
i )T Aψk

i′ = 0 for k <
kii ′
2 , since Sk (Pji ) ∩ Sk (Pji ′ ) = ∅

when 2k < kii′. Therefore taking k = d kii ′
2 e − 1 we have

|ψT
i Aψi′ | = |(ψk

i )T A(ψi′ − ψ
k
i′) | ≤ ‖ψ

k
i ‖A‖ψi′ − ψ

k
i′‖A

≤
(α(P) − 1

α(P)

) k
2 δ(P) ≤

(α(P) − 1
α(P)

) kii ′

4 −
1
2 δ(P).

�

Remark 2.2.24. Recall that in Lemma 2.2.8 for the compression error with local-
ization ε̃2com to be bounded by some prescribed accuracy ε2, we need the localization
error ε2loc ≤

ε2

N . But now with the exponential decaying feature ofΨ, empirically, we
observe that we can relax the requirement of the localization error to be ε2loc ≤ O(ε2)
in practice.

Now we have constructed a Ψ that can be approximated by local computable basis
in energy norm. So the remaining task is to tackle with the second criteria: to give
a control on the condition number of Ast = Ψ

T AΨ.

Theorem 2.2.25. Let λmin(Ast) and λmax(Ast) denote the smallest and largest eigen-
values of Ast respectively, then we have

λmin(Ast) ≥ λmin(A), λmax(Ast) ≤ δ(P), (2.49)

and so we have
κ(Ast) =

λmax(Ast)
λmin(Ast)

≤ δ(P)‖A−1‖2. (2.50)

Proof. Thanks to (2.25), and since ΦTΦ = IM , we have

‖A−1st ‖2 = ‖Φ
T A−1Φ‖2 ≤ ‖A−1‖2 =⇒ λmin(Ast) ≥ λmin(A). (2.51)

Thanks to (2.35), and since A �
∑M

j=1 APj , we have

δ(P)IM � (ΦT (
M∑

j=1
APj )

−1
Φ)−1 � (ΦT A−1Φ)−1 = Ast =⇒ λmax(Ast) ≤ δ(P).

(2.52)
�
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Corollary 2.2.26. Let Ψ̃ be the local approximator of Ψ defined in Lemma 2.2.8
such that ‖ψi − ψ̃i‖A ≤

ε√
N
, then we have

λmin( Ãst) ≥ λmin(A), λmax( Ãst) ≤
(
1 +

ε
√
δ(P)

)2
δ(P), (2.53)

and thus

κ( Ãst) =
λmax( Ãst)

λmin( Ãst)
≤

(
1 +

ε
√
δ(P)

)2
δ(P)‖A−1‖2. (2.54)

Proof. Notice that PA
Ψ̃
= Ψ̃ Ã−1st Ψ̃

T A is a projection with respect to the energy inner
product, we have

AΨ̃ Ã−1st Ψ̃
T A � A =⇒ Ψ̃ Ã−1st Ψ̃

T � A−1,

and since ΦT Ψ̃ = IN , we have

‖ Ã−1st ‖2 ≤ ‖Φ
T A−1Φ‖2 ≤ ‖A−1‖2 =⇒ λmin( Ãst) ≥ λmin(A).

For any c ∈ RN , using a similar argument in Lemma 2.2.8, we have

‖Ψc − Ψ̃c‖A ≤ Cε ‖c‖2,

then we get

cT Ãstc = ‖Ψ̃c‖2A ≤
(
‖Ψc − Ψ̃c‖A + ‖Ψc‖A

)2
≤ (Cε +

√
λmax(Ast))2‖c‖22,

and using λmax(Ast) ≤ δ(P), we have

λmax( Ãst) ≤
(
1 +

Cε
√
δ(P)

)2δ(P).

�

Guided by Theorem 2.2.25, we obtain a simple methodology on the control of
condition number of the stiffness matrix Ast. As shown in (2.49) and (2.2.25),
the only variable is the choice of partition P and thus the burden again falls to
the construction of the partition P. Nevertheless, this new criterion allows us to
regulate the quality of partitions directly by avoiding large δ(P).

Now we can design an algorithm to construct the local approximator Ψ̃ of Ψ subject
to a desired localization error ε loc. Intuitively, a straightforward way is to choose a
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large enough uniform decay radius r and directly compute Ψ̃ = Ψr . The localization
error can then be guaranteed by Lemma 2.2.8. But redundant computation will
probably occur since some ψ may decay much faster than the others. Instead, we
propose to compute each ψ̃i hierarchically from the center patch Pji by making
use of optimization property (2.28). Suppose that we already obtain ψk−1

i , then
by optimization property (2.28), one can check that wk

i = ψ
k−1
i − ψk

i satisfies the
following optimization problem

wk
i = argmin

w∈span{Sk (Pji
)}
‖ψk−1

i − w‖A,

subject to ΦTw = 0.

(2.55)

Similar to the proof of Theorem 2.2.21, let Yi,k denote the joint space of all Uj such
that Pj ⊂ {Sk (Pji )}. Then the constraints in optimization problem (2.55) imply that
wk

i ∈ span{Yi,k }. Therefore we can explicitly compute wk
i as

wk
i = PA

Yi,kψ
k−1
i = Yi,k

(
YT

i,k ASk (Pji
)Yi,k

)−1YT
i,k ASk (Pji

)ψ
k−1
i , (2.56)

and thus
ψk

i = ψ
k−1
i − Yi,k

(
YT

i,k ASk (Pji
)Yi,k

)−1YT
i,k ASk (Pji

)ψ
k−1
i . (2.57)

Specially, we can compute ψ0
i by (2.57) with an initial guess ψ0−1

i ∈ span{Pji }

satisfying ϕT
i′ψ

0−1
i = δi′,i, ∀ i′ = 1, . . . , N . Notice that the main cost of computa-

tion of ψk
i involves inverting the matrix YT

i,k AYi,k , whose condition number can be
bounded by ε(P, q)2λmax(A)κ(YT

i,kYi,k ) as we will see in (3.1.1). By choosing all Uj

orthonormal, we have κ(YT
i,kYi,k ) = 1, then the computation efficiency is measured

by ε(P, q)2λmax(A) if we use CG type method. When we prescribe some certain
accuracy ε(P, q)2 but λmax(A) is really large, a multiresolution strategy will be
adopted to ensure the efficiency of computing ψk

i .

To summarize, the process of computing a sufficient approximator ψ̃i starts with the
formation of ψ0

i , then inductively computes ψk
i by solving inverse problem (2.57)

with initializer ψk−1
i , and finally ends with ψ̃i = ψ

r
i when some stopping criterion is

attained for k = r . Such inductive computation suggests us to use the CG method to
take advantage of the exponential convergence ofψk

i . Having faith in the exponential
decay of ‖ψk

i − ψi‖A, we choose the stopping criterion as

η2k

1 − η2k
‖ψk−1

i − ψk
i ‖

2
A ≤ ε

2
loc, for ηk =

‖ψk−1
i − ψk

i ‖A

‖ψk−2
i − ψk−1

i ‖A
.
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The reason is that if ‖ψk
i −ψi‖A does decay as ‖ψk

i −ψi‖A = O(ηk ) for some constant
η ∈ (0, 1), then

‖ψk
i − ψi‖

2
A =

η2

1 − η2
O(‖ψk−1

i − ψi‖
2
A − ‖ψ

k
i − ψi‖

2
A) =

η2

1 − η2
O(‖ψk−1

i − ψk
i ‖

2
A),

where we have used (2.31). With the analysis above, we propose Algorithm 3 for
constructing Ψ̃.

Complexity of Algorithm 3
For simplicity, we assume that all patches in partition P have the same patch size
s. Let r be the necessary number of layers for ‖ψr

i − ψi‖A ≤
ε√
N
, where N is the

dimension of Φ(or Ψ), then we have

r = O(log
1
ε
+ log N + log δ(P)). (2.58)

Since we are actually compressing A−1, we can bound N by the original dimension
n. Further we assume that locality condition (2.63), (2.64) and (2.65) are satisfied,
then the support size of each ψr

i is O(s · rd). Since we also only need to solve (2.57)
up to the same relative accuracyO( ε√

N
) using the CGmethod, the cost of computing

ψr
i can be estimated by

O(κ(YT
i,k AYi,k ) · s · rd · (log

1
ε
+ log N + log δ(P)))

≤ O(ε(P, q)2 · λmax(A) · s · (log
1
ε
+ log n + log δ(P))d+1) (2.59)

Finally the total complexity of Algorithm 3 is N times the cost for every ψr
i , i.e.

O(n · q · ε(P, q)2 · λmax(A) · (log
1
ε
+ log n + log δ(P))d+1), (2.60)

where we have used the relation N = nq/s.

2.3 Construction of Partition
With the analysis in the previous sections, we now have a blueprint for the con-
struction of partition P = {Pj }

M
j=1. Given an underlying energy decomposition

E = {Ek }
m
k=1 of a PD matrix A and an orthonormal basisV of Rn, the basic idea is

to find a partition P ofV with small patch number #P and small condition factor
δ(P, q), while subject to a prescribed error bound on the error factor ε(P, q). In
particular, our goal is to find the optimizer of the following problem:

P = argmin
P̃

f1(#P̃) + f2(δ(P̃, q)),

subject to ε(P̃, q) ≤ ε,
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Algorithm 3 Construction of Ψ̃
Input: Energy decomposition E, partition P, Φ, desired accuracy ε loc
Output: Ψ̃
1: for i = 1, 2, · · · , dim(Φ) do
2: Compute ψ0

i by solving (2.57) on S0(Pji );
3: Compute ψ1

i by solving (2.57) on S1(Pji ) with initializer ψ0
i ;

4: repeat
5: Compute ψk

i by solving (2.57) on Sk (Pji ) with initializer ψk−1
i ;

6: η ←
‖ψk

i −ψ
k−1
i ‖A

‖ψk−1
i −ψk−2

i ‖A
;

7: until η2

1−η2 ‖ψ
k
i − ψ

k−1
i ‖2A < ε2loc;

8: ψ̃i ← ψk
i ;

9: end for
10: Ψ̃ = [ψ̃0, ψ̃1, . . . , ψ̃dim(Φ)].

where f1, f2 are some penalty functions, q is a chosen integer, and ε is the desired
accuracy. This ideal optimization problem is intractable, since in general such
discrete optimization means to search over all possible combinations. Instead, we
propose to use local clustering approach to ensure efficiency.

Generally, if we have a priori knowledge of the underlying computational domain
of the problem, like Ω ⊂ Rd , one of the optimal choices of partition will be the
uniform regular partition. For instance, in [19], regular partitions are used in the
sense that each patch (finite element) has a circumcircle of radius H and an inscribed
circle of radius ρH for some ρ ∈ (0, 1). The performance under regular partitioning
relies on the regularity of the coefficients of A (low contrast, strong ellipticity),
and the equivalence between energy norm defined by A and some universal norm
independent of A. In particular, since regular partitioning of the computational
domain is simply constructed regardless of the properties of A, its performance
cannot be ensured when A loses some regularity in some local or micro-scaled
regions.

In view of this, a more reasonable approach is to construct a partition P based
on the information extracted from A, which is represented by the local energy
decomposition E of A in our proposed framework. For computational efficiency,
the construction procedure should rely only on local information (rather than global
spectral information as in the procedure of Eigendecomposition). This explains why
we introduce the localmeasurements in Section 2.2: the error factor ε (P, q) and the
condition factor δ(P, q), which keep track of the performance of partition in our
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searching approach. These measurements are locally (patch-wisely) computable
and thus provide the operability of constructing partition with local operations
interacting with only neighbor data.

To make use of the local spectral information, we propose to construct the desired
partition P of V by iteratively clustering basis functions in V into patches. In
particular, small patches(sets of basis) are combined into larger ones, and the scale
of the partition becomes relatively coarser and coarser. For every such newly
generated patch Pj , we check if ε(Pj, q) still satisfies the required accuracy (See
(2.17)). The whole clustering process stops when no patch combination occurs, that
is, when the partition achieves the resolution limit. Also, for patch Pj to be well-
conditioned, we set a bound c on δ(Pj, q)ε(Pj, q)2. The motivation of such bound
will be explained in Section 3.1. And for large δ(Pj, q) to diminish, patches with
large condition factor are combined first. To realize the partitioning procedure and
maintain the computation efficiency, we combine patches pair-wisely. Our proposed
clustering algorithm is summarized in Algorithm 4 and Algorithm 5.

Algorithm 4 Pair-Clustering
Input: energy decomposition E, underlying basisV , desired accuracy ε , condition

bound c.
Output: Partition P.
1: Initialize: Pj = {v j }, δ(Pj, q) = APj (scalar), 1 ≤ j ≤ n;
2: while Number of active patches > 0, do
3: Sort active {Pj } with respect to δ(Pj, q) in descending order;
4: Mark all (active and inactive) Pj as unoperated;
5: for each active Pj in descending order of δ(Pj, q), do
6: Find_Match(Pj, ε, c);
7: if Find_Match succeeds, then
8: Mark Pj as operated;
9: else if all neighbor patches of Pj are unoperated, then
10: Mark Pj as inactive;
11: end if
12: end for
13: end while

Remark 2.3.1.

- If we see 1/ε(Pj ∪ Pj ′, q)2 as the gain, and δ(Pj ∪ Pj ′, q) as the cost, the
well-conditioning bound ε(Pj ∪ Pj ′, q)2δ(Pj ∪ Pj ′, q) ≤ c implies that the
cost is proportional to the gain.



52

Algorithm 5 Find_Match
Input: Pj , ε , c.
Output: Succeeds or Fails.
1: for Pj ′′ ∼ Pj do
2: Find largest Con(Pj, Pj ′′) among all unoperated Pj ′′ (stored as Pj ′);
3: end for
4: Compute ε(Pj ∪ Pj ′, q) and δ(Pj ∪ Pj ′, q);
5: if ε(Pj ∪ Pj ′, q) ≤ ε & δ(Pj ∪ Pj ′, q)ε(Pj ∪ Pj ′, q)2 ≤ c, then
6: combine Pj and Pj ′ to form Pj (Pj ′ no longer exists);
7: update δ(Pj, q);
8: return Find_Match succeeds.
9: else
10: return Find_Match Fails.
11: end if

- If we want the patch sizes to grow homogeneously, we can take patch size into
consideration when sorting the patches (Line 3 in Algorithm 4).

- The local basis functions,Φ j , are also computed in the sub-functionFind_Match,
and can be stored for future use.

The sub-function Find_Match in Line 6 of Algorithm 4 takes a patch Pj as input
and finds another patch Pj ′ that will be absorbed by Pj . As a local operation,
the possible candidates for Pj ′ are just the neighboring patches of Pj . To further
accelerate the algorithm, we avoid checking the error factor for all possible pair
(Pj, Pj ′) with Pj ′ ∼ Pj . Alternatively, we check the patch Pj ′ that has the largest
“connection" (correlation) with Pj . Undoubtedly, this quantity can be defined in
different ways. Here we propose the connection between Pj and Pj ′ as:

Con(Pj, Pj ′) =
∑

E∼Pj,E∼Pj ′

( ∑
u∈Pj,v∈Pj ′

u∼v

|uT Ev |
)
. (2.61)

On the one hand, noted that Con(Pj, Pj ′) can be easily computed and inherited
directly after patch combination since one can check that Con(Pj ∪ Pj ′, Pj ′′) =
Con(Pj, Pj ′′) + Con(Pj ′, Pj ′′). On the other hand, we observe that

APj∪Pj ′
= APj

+ APj ′
+

∑
E∼Pj,E∼Pj ′

E∈Pj∪Pj ′

E = APj
+ APj ′

+ Cross Energy. (2.62)

In other words, a larger cross energy implies larger interior eigenvalues of APj∪Pj ′
,

which means APj∪Pj ′
is less likely to violate the accuracy requirement. One can
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also recall the similarity of this observation to the findings in spectral graph theory,
where stronger connectivity of the graph corresponds to larger eigenvalues of the
graph Laplacian L. These motivate us to simplify the procedure by examining the
patch candidate P′j with largest connection to Pj .

Though our algorithm does not assume any a priori structural information of A,
its efficiency and effectiveness may rely on the hidden locality properties of A. To
perform a complexity analysis of Algorithm 4, we first introduce some notations.
Similar to the layers of neighbors defined in (2.2.12), we defineN1(v) = N (v), and

Nk+1(v) = N (Nk (v)) = {u ∈ V : u ∼ Nk (v)},

that is, for any u ∈ Nk (v), there is a path of length k that connects u and v with
respect to the connection relation “∼” defined in Definition 2.1.2. The following
definition describes the local interaction property of A:

Definition 2.3.2 (Locality/Sparsity of A). A is said to be local of dimension d with
respect toV , if

#Nk (v) = O(kd), ∀k ≥ 1, ∀v ∈ V . (2.63)

The following definition describes the local spectral properties of an energy decom-
position of A. It states that a smaller local patch corresponds to a smaller scale, and
that ε(P, q) tends to increase and δ(P, q) tends to decrease as the patch size of P

increases. This explains why we combine patches from finer scales to coarser scales
to construct the desired partition P.

Definition 2.3.3 (Local energy decomposition). E = {Ek }
m
k=1 is said to be a local

energy decomposition of A of order (q, p) with respect to V , if there exists some
constant h, such that

ε(Nk (v), q) = O((hk)p), ∀k ≥ 1, ∀v ∈ V . (2.64)

Moreover, E is said to be well-conditioned if there is some constant c such that

ε(Nk (v), q)2δ(Nk (v), q) ≤ c, ∀k ≥ 1, ∀v ∈ V . (2.65)

Remark 2.3.4.

- The locality of A implies that #Nk+1(v)−#Nk (v) = O(d · kd−1). In particular
#N1(v) = O(d), and thus the number of nonzero entries of A is m = O(d · n).
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- LetP be a partition ofV such that each patch P ∈ P satisfies diam(P) = O(r)
and #P = O(rd), where r is an integer, and “diam” is the path diameter with
respect to the adjacency relation “∼” defined in Definition 2.1.2. Let Sk (P)
be the layers of neighbors (patch layers) defined in (2.2.12), and #PSk (P)
denote the number of patches in Sk (P). Then the locality of A implies that

#PSk (P) = O(
#Sk (P)

rd ) = O(
(rk)d

rd ) = O(kd).

This means that a V with adjacency relation defined by A has a self-similar
property between fine scale and coarse scale.

These abstract formulations/notations actually summarize a large class of problems
of interest. For instance, suppose A is assembled from the FEM discretization of a
well-posed elliptic equation with homogeneous Dirichlet boundary conditions:

Lu =
∑

0≤|σ |,|γ |≤p

(−1) |σ |Dσ (aσγDγu) = f , u ∈ Hp
0 (Ω),

where Ω ⊂ Rd is a bounded domain. LetV be the nodal basis of the discretization,
and each energy element E in E be the energy inner product matrix (i.e. the stiffness
matrix) of the neighbor nodal functions on a fine mesh patch. The locality of L
and the underlying dimension of Ω ensure that A is local of dimension d with
respect to V . With a consistent discretization of L on local domains, the interior
energy corresponds to a Neumann boundary condition, while the closed energy
corresponds to a Dirichlet boundary condition. In this sense, using a continuous
limit argument and the strong ellipticity assumption, Hou and Zhang in [53] prove
that if q ≥

(
p+d−1

d

)
, then ε(Nk (v), q) . (hk)p (generalized Poincaré inequality)

where h is the fine mesh scale and p is half the order of the elliptic equation; and
ε(Nk (v), q)2δ(Nk (v), q) ≤ c (inverse estimate) for some scaling-invariant constant
c. Unfortunately these arguments would be compromised if strong ellipticity is not
assumed, especially when high-contrast coefficients are present. However, as we see
in Example 2.2.18, ε(Nk (v), q) and δ(Nk (v), q) actually converge when the contrast
of the coefficient becomes large, which is not explained by general analysis. So we
could still hope that the matrix A and the energy decomposition E have the desired
locality that can be numerically learned, even when conventional analysis fails.
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Estimate of patch number
Intuitively, if A is local of dimension d, and E is well-conditioned and local of order
q, then the patch number of an ideal partition P subject to accuracy ε should be

#P = O
( n

(ε1/p/h)d

)
= O

( nhd

εd/p

)
, δ(P, q) = O

( c
ε2

)
, (2.66)

where we estimate the path diameter of each patch in P by O(ε1/p/h), and thus the
patch size by O((ε1/p/h)d).

Inherited locality
As we have made the locality assumption on A, we would hope that the compressed
operator PA

Ψ̃
A−1 = Ψ̃ Ã−1st Ψ̃

T can also take advantage of such locality. In fact,
the localization of Ψ not only ensures the efficiency of the construction of Ψ̃, but
also conveys the locality of A to the stiffness matrix Ãst . Suppose A is local of
dimension d. Let Ψ̃ be the local approximator obtained in Algorithm 3 such that
ψ̃i = ψ

r
i , 1 ≤ i ≤ N for some uniform radius r . Let Ṽ = {ṽi}

N
i=1 be the orthonormal

basis of RN such that

ṽT
i Ãstṽ j = ṽT

i Ψ̃
T AΨ̃ṽ j = ψ̃

T
i Aψ̃ j, ∀ 1 ≤ i, j ≤ N .

We then similarly define the adjacency relation between basis vectors in Ṽ with
respect to Ãst. Since each localized basis ψ̃i interacts with patches in r patch layers
(thus interacts with other ψ̃i′ corresponding to patches in 2r layers), and each patch
corresponds to q localized basis functions, using the result in Remark 2.3.4 we have

#Nk (ṽ) = O((rk)d · q) = q · rd · O(kd), ∀k ≥ 1, ∀ṽ ∈ Ṽ .

That means Ãst inherits the locality of dimension d from A. In addition, by using
the same argument as in Remark 2.3.4, we have #N1(ṽ) = O(d · q · rd), which is the
number nonzero entries (NNZ) of one single column of Ãst. Therefore the number
of nonzero entries(NNZ) of Ãst can be bounded byO(N ·d ·q ·rd) = O(m ·q2 ·rd/s),
where m = O(d · n) is the NNZ of A, s is the average patch size, and we have used
the relation N = nq/s. In particular, if the localization error is subject to ε loc =

ε√
N
,

then the radius has estimate r = O(log 1
ε + log n + log δ(P, q)), and thus the bound

on the NNZ of Ãst becomes

O(m · q2 ·
1
s
· (log

1
ε
+ log n + log δ(P, q))d). (2.67)
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Choice of q

Recall that, instead of choosing a larger enough qj for each patch Pj to satisfied
ε(Pj, qj ) ≤ ε , we use a uniform integer q for all patches, and leave the mission of
accuracy to the construction of partition. So before we proceed to the algorithm,
we still need to know what q we should choose. In some problems, q can be
determined by theoretical analysis. For example, when solving elliptic equation of
order 2p with FEM, we should at least choose q =

(
p+d−1

d

)
to obtain an optimal

rate of convergence. And as for graph Laplacians that are generally considered as
a discrete second-order elliptic problem (p = 1), we can thus choose q = 1. But
when the problem is more complicated and has no intrinsic order, the choice of q

can be tricky. So one practical strategy is to start from q = 1, and increase q when
the partition obtained is not acceptable.

Complexity of Algorithm 4
For simplicity, we assume that all patches in the final output partition P have the
same patch size s. Under locality assumption of A given in (2.63), the local operation
cost of Find_Match(Pj) is approximately

O(d · F (size(Pj ))) ≤ O(d · F (s)).

Here F (#Pj ) is a function of #Pj that depends only on complexity of solving local
eigen problems(with respect to APj

) and local inverse problems(with respect to APj )
on patch Pj , thus we can bound F (s) by O(s3). Since patches are combined pair-
wise, the number of while-loops starting at Line 2 is of order O(log s), and in each
while-loop, the operation cost can be bounded by

O(d ·
F (s)

s
· n) +O(n · log n) = O(d · s2 · n) +O(n · log n),

where O(d · F (s)
s · n) comes from operating Find_Match(Pj) for all surviving active

patch Pj , and O(n · log n) comes from sorting operations. Therefore the total
complexity of Algorithm 4 is

O
(
d · s2 · log s · n

)
+O(log s · n · log n). (2.68)

Complexity of Algorithm 1
Combining all procedures together and noticing that Algorithm 2 can be absorbed
to Algorithm 4, the complexity of Algorithm 1 is

O
(
d ·s2 ·log s ·n

)
+O(log s ·n·log n)+O

(
q ·n·ε2 · ‖A‖2 ·(log

1
ε
+log n+log δ(P))d+1),

(2.69)
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where n is the original dimension of basis, s is the maximal patch size, ε is the
prescribed accuracy, and we have used the fact ε(P, q) ≤ ε .

Remark 2.3.5.

- The maximum patch size s can be viewed as the compression rate since s ∼ n
M

where M is the patch number. The complexity analysis above implies that for
a fixed compression rate s, complexity of Algorithm 4 is linear in n. However,
when the locality conditions (2.63) and (2.64) are assumed, one can see that
s ∼

(
ε

1
p /h

)d , where ε is the desired (input) accuracy. As a consequence,
while the desired accuracy is fixed, if n increases, then the complexity is
no longer linear in n since h (finest scale of the problem) may change as n

changes. In other words, Algorithm 4 loses the near-linear complexity when
the desired accuracy ε is set too large compared to the finest scale of the
problem. To overcome such limitation, we should consider a hierarchical
partitioning introduced in Section 3.1.

- As we mentioned before, the factor ε2‖A‖2 also suggests a hierarchical com-
pression strategy, when ‖A‖2 is too large compared to the prescribed accuracy
ε2.

2.4 Numerical Examples
In this section, two numerical examples are reported to demonstrate the efficacy and
effectiveness of our proposed operator compression algorithm. For consistency, all
the experiments are performed on a singlemachine equippedwith Intel(R)Core(TM)
i5-4460 CPU with 3.2GHz and 8GB DDR3 1600MHz RAM.

2.4.1 Numerical Example 1: A Graph Laplacian Example
The first numerical example arises from solving the finite graph Laplacian system
Lx = b, where L is the Laplacian matrix of a d-dimensional undirected random
graph G = [V, E]. Vertices xi = (xi

1, · · · , xi
d) ∈ V ⊂ Rd are generated subject to a

uniform distribution over the domain Ω = [0, 1]d . Edge weights are then given by

wii = ci, ∀i; wi j =



r−2i j , if r2i j ≤ η/n
2
d ,

0, otherwise,
∀ i , j,

where ri j = ‖xi −x j ‖2, n = #V is the number of vertices and η > 0 is some density
factor for truncating long distance interactions. We set ci = 1 ∀i for the sake of
well-posedness and invertibility of the graph Laplacian, which gives ‖L−1‖2 = 1.
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Figure 2.3: An illustration of the running time of Algorithm 4. (a) plots the
running time against the number of vertices of random generated graphs in different
dimensions and density factor η. (b)-(d) plot the running time against the number
of nonzero entries (NNZ) in the graph Laplacian operators.

We also remark that our choice of η ensures that the graph is locally connected
and that the second smallest eigenvalue of L is of order O(1). This also gives
n ∝ Number of nonzero entries (NNZ) of L in this example (which is actually not
required by our algorithm). The basis V ⊂ Rn is given by the natural basis with
respect to vertices values, and the energy decomposition E = {Ek }

m
k=1 is collected

as described in Example 2.1.10, where each Ek corresponds to an edge in G. Since
p = 1 for graph Laplacian, we set q = 1 throughout this numerical example.

We first verify the complexity of Algorithm 4 by applying it to partition random
graphs generated as described above. To be consistent, we set the prescribed
accuracy 1

εd
∝ n and the upper bound c of δ(P, 1)ε(P, 1)2 to be 100 in all cases,

which is large enough for patches to combine with each other. Figure 2.3 illustrates
the nearly-linear time complexity of our algorithm with respect to the graphs’ vertex
number n, which is consistent to our complexity estimation in Section 2.3. Every dot
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represents the partitioning result of the given 2-D/3-D graph. In particular, the red
and blue sets of dots are the partition results for 2-D graphs under the construction
of η = 2.5 and η = 3 respectively, while the magenta point set represents the
partitioning of the random 3-D graphs under the setting of η = 4. Similarly,
Figure 2.3b - Figure 2.3d show, respectively, the time complexity of Algorithm 4
versus the NNZ of L. Notice that for graphs having NNZ with order up to 105, the
running time is still within seconds. These demonstrate the lightweight nature of
Algorithm 4.
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Figure 2.4: Intrinsic dimension of the sets of graphs.

Second, we record the patch numbers of partition P obtained fromAlgorithm 4. We
fix the domainΩ = [0, 1]× [0, 1] and gradually increase the density of vertices in the
graph. Therefore, we have n ∝ 1

hd and thus #P ∝ 1
εd

by the observation in (2.66).
The relationship between 1

εd
and patch number #P for the three cases is plotted

in Figure 2.4a - Figure 2.4c respectively. Figure 2.4a and (2.4b) show the linear
relationship between #P and 1

ε2
, meaning that d = 2 in these cases. Similarly, the

plot in Figure 2.4c that discloses the dimension of the input graphs is 3-dimensional
as #P ∝ 1

ε3
. These results precisely justify the capability of our framework in

capturing geometric information of the domain.

Third, we focus on one particular 2-D random graph with vertex number n =

10000 to verify the performance of our algorithm on controlling the error and well-
posedness of the corresponding compressed operator. We employ the concept of the
k-nearest neighbor (KNN) to impose local interaction. Specifically, for each vertex
xi, we denote NN(xi, ki) to be the set of the ki nearest vertices of xi. Any two
vertices xi and x j have an edge of weight wi j = 1/r2i j if and only if xi ∈ NN(x j ; k j )
or x j ∈ NN(xi; ki). Let y = (0.5, 0.5) be the center of Ω. We set ki = 15 if
‖xi − y‖2 ≤ 0.25 and ki = 5 otherwise. Therefore the sub-graph inside the disk
B(y, 0.25) has a stronger connectivity than the sub-graph outside.
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We perform Algorithm 1 with a fixed condition control c = 50 and a prescribed
accuracy ε2 varies from 0.001 to 0.0001. Figure 2.5a shows the ratios ε2com/ε2

and ε(P, 1)2/ε2, where ε2com = ‖L−1 − PL
Ψ

L−1‖2 is the compression error. Using
Algorithm 4, we achieve a nearly optimal local error control. Also notice that the
global compression error ratio ε2com/ε2 is strictly bounded by 1 but also above 0.5,
meaning that our approach is neither playing down nor overdoing the compression.
Figure 2.5b shows the condition number of Ast, which is consistent to the prescribed
accuracy, and is strictly bounded by ε2 · δ(P, 1) and the prescribed condition bound
c. Figure 2.5c plots patch number #P versus ε−2 (the blue curve). Though the
graph has different connectivity at different parts, it is still a 2-D graph and is locally
connected in the sense of Equation (2.63). Therefore the curve is below linear,
which is consistent to estimate (2.66) with d = 2. As comparison, the red curve is
the optimal compression dimension subject to the same prescribed accuracy given
by eigenvalue decomposition. Since Algorithm 4 combines patches pair-wisely,
the output patch number #P can be up to 2 times the optimal case. Figure 2.5d
shows the partition result with #P = 298 for the case ε2 = 0.001, where the black
lines outline the boundaries of patches. Figure 2.5e illustrates the patch sizes of the
partition. We can see that patches near the center of the domain have larger sizes
than the ones near the boundary, since the graph has a higher connectivity inside
the disk B((0.5, 0.5), 14 ).

We also fix the prescribed accuracy ε2 = 0.0001 to study the performance of
compression with localization. In this case we have N = #P = dim(Φ) = 1446. Let
Ψ̃ be the local approximator of Ψ constructed by Algorithm 3 subject to localization
error ‖ψ̃i − ψi‖

2
A ≤ ε2loc. Figure 2.6 shows the compression error ε̃2com = ‖L−1 −

PL
Ψ̃

L−1‖2, mean radius and mean support size of Ψ̃ with different ε2loc varies from
0.1 to 0.0001. Recall that Lemma 2.2.8 requires a localization error ε2loc = ε

2/N

to ensure ε̃2com ≤ ε2, but Figure 2.6a shows that ε2loc = ε
2 is adequate. Figure 2.6b

shows the linearity between mean radius and log 1
ε loc

, which is consistent to the
exponential decay of Ψ proved in Theorem 2.2.21. Figure 2.6c shows the quadratic
relation between mean support size and mean radius of Ψ̃, which again reflects the
geometric dimension of the graph is 2.

By fixing ε2loc = 0.0001, we have the mean radius of Ψ̃ ≈ 4.5 and the mean support
size ≈ 449. We pick three functions ψ1, ψ2, ψ3 such that ψ1 is close to the center of
Ω, ψ2 is near the boundary of connectivity change, and ψ3 is close to the boundary
of Ω. Figure 2.7a-2.7f (first two rows of Figure 2.7) show the profiles of |ψi | and
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(a) (b) (c)

(d) (e)

Figure 2.5: Error and well-posedness studies of the compressed operators.

log10 |ψi | for i = 1, 2, 3. Though all of them decay exponentially from their center
patches to outer layers, ψ1 decays slower than ψ3 since the graph has a higher
connectivity (i.e., larger patch sizes) near the center. Figure 2.7g and Figure 2.7h
show the profiles of |ψ̃i | and log10 |ψ̃i | for i = 1, 2, 3. The bird’s-eye view of their
supports is shown in Figure 2.7i. Similarly, ψ̃1 needs a larger support than ψ̃3 to
achieve the same accuracy, which implies that ψ1 decays slower than ψ3. Figure 2.8
shows the spectrum of L−1, L−1 − PL

Ψ
L−1 and L−1 − PL

Ψ̃
L−1. Notice that if we

truncate the fine-scale part of L−1 with prescribed accuracy ε2, then L−1 − PL
Ψ

L−1

has rank n− N and the compression error is 8.13× 10−5 < ε2. Similarly, if the local
approximator ψ̃ is applied (instead of ψ), then L−1 − PL

Ψ̃
L−1 also has rank n − N ,

and the compression error is also 8.13 × 10−5 < ε2. This means that the same
compression error is achieved by the compression PL

Ψ̃
L−1 with localization.

Fourth, we compare our results with the compression given by the PCA [55],
that is, L−1 ≈

∑NPCA
i=1 λ−1i qiqT

i , where λi is the ith smallest eigenvalue of L and
qi is the corresponding normalized eigenvector. On the one hand, to achieve the
same compression error 8.13 × 10−5, we need NPCA = 893, which is the optimal
compression dimension for such accuracy. But we remark that such achievement
requires solving global eigen problem and the compressed operator

∑Npca

i=1 λ−1i qiqT
i
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(a) (b) (c)

Figure 2.6: Compression error ε2com and the mean radius of Ψ̃.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2.7: Profiles of ψ1, ψ2, ψ3, and the corresponding approximator ψ̃1, ψ̃2, ψ̃3.

usually loses the original sparsity features. On the other hand, our approach has a
larger number of basis functions (N = 1446) since only local eigen information is
used and patches are combined pair-wisely. But our approach gives local functions
with compressed dimension just up to 2 times of the optimal dimension. Further, it
turns out that we can recover the eigenvectors of L corresponding to relatively small
eigenvalues by solving eigenvalue problem of Ast (or Ãst). Figure 2.10 shows the
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2nd, 10th, 20th and 50th eigenvectors corresponding to the small eigenvalues of L−1

(first row) and Ã−1st (second row) respectively. Let λ̃i,st be the ith smallest eigenvalue
of Ãst, and ξ̃i be the corresponding eigenvector so that q̃i = Ψ̃ξ̃i has l2-norm equal
to 1. From the experiment, we observe that λ̃−1i,st is a good approximation of λ−1i and
q̃i is a good approximation of qi for small λi, as shown in Figure 2.9. In other words,
this procedure provides us convenience for computing the first few eigenvalues and
eigenvectors of L, since Ãst has the compressed size with a much smaller condition
number (κ( Ãst) = 1.14 × 105 vs. κ(L) = 4.29 × 108).

(a) Spectrum of L−1 and L−1 − PL
Ψ

L−1 (b) Spectrum of L−1 and L−1 − PL

Ψ̃
L−1

Figure 2.8: Spectrum of L−1, L−1 − PL
Ψ

L−1 and L−1 − PL
Ψ̃

L−1.

(a) (b)

Figure 2.9: Difference between the true eigenvalues/eigenvectors and the approxi-
mated ones.

2.4.2 Numerical Example 2: A PDE Example
Our second numerical example arises from using GFEM to solve the following
elliptic equation with homogeneous Dirichlet boundary conditions:

−∇ · (a · ∇u) = f , u ∈ H1
0 (Ω), (2.70)
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(a) q2 (b) q10 (c) q20 (d) q50

(e) q̃2 (f) q̃10 (g) q̃20 (h) q̃50

Figure 2.10: Plot of 2nd, 10th, 20th and 50th eigenvectors corresponding to L−1 (first
row) and Ã−1st (second row) respectively.

whereΩ = [0, 1]×[0, 1], f ∈ L2(Ω), and the coefficient a is a 2-by-2matrix function
of (x, y) of the form

a = *
,

a11 a12
a12 a22

+
-
= *

,

cos θ sin θ
− sin θ cos θ

+
-

*
,

µ · e1 0
0 µ · e2

+
-

*
,

cos θ − sin θ
sin θ cos θ

+
-
.

(2.71)
Here θ = θ(x, y) ∈ C(Ω) is the rotation (deformation) factor, µ = µ(x, y) ∈ L∞(Ω)
is the contrast factor, and ei = ei (x, y) ∈ L∞(Ω), i = 1, 2 are the roughness
factor. For the problem to be elliptic and well-posed, we require that µe1, µe2 > C

for some uniform constant C > 0. To increase the level of difficulty in solving
this elliptic PDE, we choose e1 and e2 to be highly oscillatory and µ varies from
O(1) to O(106) (high contrasts). More precisely, e1, e2 are generated with extreme
roughness as ei (x, y) = 1 + wi (x, y), i = 1, 2, where for each point (x, y), we set
w1(x, y),w2(x, y) i.i.d

∼ U ([−0.1, 0.1]), a uniform distribution on [−0.1, 0.1]. The
contrast factor µ(x, y) is generated from the background permeability as shown in
Figure 2.11a. θ is given by θ(x, y) = π · (x + y). The magnitude of |a11(x, y) | in Ω
is also plotted in Figure 2.11d as a reference.

We use GFEM [19] with a regular triangularization to form a finite system that is
fine enough to capture the details of the background field. The basisV ∈ Rn is the
vector representation of the Galerkin nodal basis and the PDmatrix A is the stiffness
matrix of nodal basis with respect to the energy inner product

∫
Ω

(∇·)T a(∇·)dxdy.
The energy decomposition E = {Ek }

m
k=1 is the collection of all patch-wise stiffness
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matrices Ek on every triangle τk . Specifically, each Ek has the form

Ek =
*.
,

0
w1k ,2k w1k ,2k w1k ,3k
w2k ,1k w2k ,2k w2k ,3k
w3k ,1k w3k ,2k w3k ,3k

0

+/
-
, wik, jk =

∫
τk

(∇φik )T a(∇φ jk )dxdy, i, j = 1, 2, 3

where φik , i = 1, 2, 3 are the three nodal basis surrounding τk . In this case, every
finest energy element involves three functions, which generalizes the concept of
graphs’ edges as we mentioned before. One should also notice that for patch τk

touching the boundary ofΩ, the corresponding Ek reduces to involve only two or one
function since nodal basis functions on boundary are not required for homogeneous
Dirichlet boundary conditions. Moreover, following the discussion in Section 2.3,
we will choose q = 1 since the problem (2.70) is of second order. That is, we only
construct one measurement function ϕ on each patch of the partition.

Partition #P ε (P)2 δ (P) κ (Ast) δ (P) ‖A−1 ‖2 max δ (P j )ε (P j )2

200 × 200
Ours 1396 9.99 × 10−5 3.87 × 106 4.80 × 103 1.15 × 104 233.31

Regular 1156 5.77 × 10−5 2.53 × 1011 2.53 × 108 7.49 × 108 454.70

400 × 400
Ours 1199 9.99 × 10−5 4.05 × 106 3.12 × 103 1.11 × 104 277.60

Regular 1156 5.05 × 10−5 3.14 × 1011 2.26 × 108 8.59 × 108 1.06 × 103

Table 2.1: Comparison with the uniform regular partitioning for 200 × 200 and
400 × 400 resolutions.

In this example, we compare our partitioning technique with the performance of
regular partition to illustrate the adaptivity of our algorithm to the features of
the coefficient function a(x, y). Here we consider the cases with two different
resolutions, which are the regular triangulations with 200 × 200 and 400 × 400
vertices respectively. We set q = 1, the prescribed accuracy ε2 = 10−4 and the
upper bound c = 300. We apply Algorithm 1 to compute the compressed operator
for both cases. In the case of regular partition, we use a uniform and regular partition
on Ω that achieves the prescribed accuracy (i.e., ε(P, 1)2 < 10−4). Notice that in
this case, the first eigenvector, Φ j on every patch is a constant. Such choice of
Φ, along with the use of regular partition is equivalent to the set up in [53, 88].
Therefore, the only modification we apply in this numerical example is the adaptive
construction of the construction P, which remarkably improves the behavior of the
compressed operator A−1. We would also like to remark that in the case without
high-contrasted channels, Algorithm 4 coherently gives a regular partitioning on the
domain as conventional partition methods.

Table 2.1 summarizes the partitioning results in both cases. Under regular partition-
ing, we have #P = 1156 and each Pj has the size of at most 6×6 (Figure 2.11b) and
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(a) Distribution of µ(x, y) (b) 200 × 200 regular (c) 400 × 400 regular

(d) |a11(x, y) | for (x, y) ∈ Ω (e) 200 × 200 proposed (f) 400 × 400 proposed

Figure 2.11: Partitioning result: operator stemmed from the FEM of an elliptic PDE
with high-contrast coefficients. (a) shows the distribution of the high-contrast factor
in the domain Ω. (b) and (c) shows the regular partition in resolution 200× 200 and
400 × 400 respectively. (d) shows the value of a11(x, y) on Ω. (e) and (f) show the
partition results obtained from Algorithm 4.

12×12 (Figure 2.11c) vertices respectively. Notably, the condition factors for both
cases go up to 1011 and the corresponding true condition numbers κ(Ast) are having
an order of 108, which show that such partition will produce an ill-posed compressed
operator. Using our approach, the square error factors ε(P, 1)2 achieved in both
cases are strictly bounded above by the prescribed accuracy ε2 = 10−4 and δ(P, 1)
is of the order of 106 only. Indeed, the true compression error is even smaller as
the square error factor ε(P, 1)2 is only the theoretical upper bound as required in
Proposition 2.2.2. Furthermore, the true condition numbers κ(Ast) are in the order
of 103 (compare to 108 from regular partitioning), which are again bounded by (and
is much smaller than) δ(P, 1)‖A−1‖2 as observed in Theorem 2.2.25. Moreover,
the patch number #P is comparable to the case of regular partitioning. Also notice
that maxPj∈P δ(Pj, 1) · ε(Pj, 1)2 < c = 300 in both cases, which are coherent to
the prescribed requirement. These results successfully illustrate the consistency be-
tween the numerical results and theoretical discoveries in the previous sections. The
partition results obtained by Algorithm 4 are shown in Figure 2.11e and Figure 2.11f
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respectively.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2.12: Samples of the localized basis functions.

We remark that the reason for the huge difference in the condition number is caused
by the nonadaptivity of the partitioning (i.e., regular partition) to the given operator
A. Specifically, if some patches are fully covered in the high channel regions, the ac-
curacy achieved by this patch is obviously very promising. However, corresponding
patch-wise condition factor will jump up to the similar order as the high contrast
factor. In other words, patches which are fully covered by regions of high contrast
should be avoided. As shown in Figure 2.11f and Figure 2.11e, our proposed Algo-
rithm 4 can automatically extract the intrinsic geometric information of the operator
(which is the distribution of high-contrast regions) and prevent patches which are
fully enclosed in the high-contrast regions.

We also consider the profiles, log-profiles and supports of three localized functions
ψ̃1, ψ̃2, ψ̃3 obtained by Algorithm 3 with prescribed localization error ε2loc = 10−4

in the 200 × 200 resolution case. The plots are shown in Figure 2.12. We can see
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(a) (b) (c)

(d) (e) (f)

Figure 2.13: Samples of the localized basis functions from a regular partition.

in Figure 2.12a that ψ̃1 has multiple peaks (three peaks exactly), with one high-
contrast channel cutting through. This means that this single function characterizes
the local feature of the operator. Though the exponential decaying feature is still
obvious, to achieve the prescribed localization error, some local functions (ψ̃1, ψ̃3)
have to extend along the high permeability channels and thus end up with relatively
large supports. Recall that Remark 2.2.22 implies that the decay rate of ψi and
thus the radius of ψ̃i are invariant under local scaling (contrast scaling). But higher
permeability means stronger connectivity and consequently larger patch sizes, and
therefore ψ̃i extends farther in physical distance along high permeability channels.
As a limitation of our approach, this long range decaying compromises the sparsity
of the localized basis and the stiffness matrix, which is an issue that we plan to
resolve in our future work. As comparison, Figure 2.13 plots the log-profile and the
supports of three localized functions ψ̃re

1 , ψ̃
re
2 , ψ̃

re
3 obtained similarly but with the

regular partition in the 200 × 200 resolution case. We can see that some localized
functions under regular partition also have relative large support size. However,
such long distance extension is not the result of large patch sizes (since regular
partition has uniform patch size), but the result of large condition factor δ(P, 1).
Recall that to achieve an desired localization error, the radius of localized basis is
also affected by log δ(P, 1).
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C h a p t e r 3

MULTIRESOLUTION MATRIX DECOMPOSITION

In this chapter, we extend our preceding operator compression method to a MMD
framework. OurMMDmethod is the product of a hierarchical partitioning procedure
and an associated construction of a nested basis structure, which passes the energy
decomposition from the finest level to the coarsest level. It resolves the large
condition number of a PD matrix by decomposing it into many well-conditioned
pieces. This MMD scheme naturally leads to a parallelizable fast linear solver for
PD linear systems.

In Section 3.1, we systematically explain the how to generalize our operator com-
pression method to a MMD framework, based on a hierarchically inherited energy
decomposition. In Section 3.2, we propose the concept of localization of MMD and
the inherited locality of the compressed operator. These essential ingredients guides
us to develop the parallelizable solver with nearly-linear time complexity for large
and sparse PD linear systems. We further discuss our MMD frame in Section 3.3
from the perspective of a multilevel operator compression. Section 3.4 is dedicated
to several graph Laplacian examples that illustrate the effectiveness of our MMD
approach in resolving the large condition number of a PD matrix. Error estimate
and numerical results are reported to show the efficacy of this proposed algorithm.

3.1 Multiresolution Matrix Decomposition (MMD)
One can see that what we have been doing with operator compression is essentially
to truncate the microscopic/fine-scale part of A while preserving the necessary
macroscopic/coarse-scale part that dominates the accuracy. And in the meanwhile,
the condition number of the compressed operator also drops to the level consistent
to the prescribed accuracy. This consistency inspires us to perform the compression
procedure hierarchically in order to separate the operator into multiple scales of
resolution rather than just two.

Now consider that, instead of just compressing the inverse A−1, we want to solve
the problem Ax = b. Due to the sparsity of A, a straightforward idea is to employ
iterative methods. But these methods will suffer from the large condition number
of A. Alternatively, we would like to use the energy decomposition of A, and
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the locality (i.e. sparsity) of the energy decomposition to resolve the difficulty
of large condition number. The main idea is to decompose the computation of
A−1 into hierarchical resolutions such that (i)the relative condition number in each
scale/level can be well bounded, and (ii)the sub-system to be solved on each level
is as sparse as the original A. Here we will make use of the choice of the partition
P, the basis Φ and Ψ obtained in Section 2.2 and Section 2.3 to serve the purpose
of multiresolution operator decomposition. In the following, We first implement a
one-level decomposition.

3.1.1 One-level Operator Decomposition
Let P, Φ, Ψ and U be constructed as in Algorithm 1, namely

(i) P = {Pj }
M
j=1 is a partition ofV;

(ii) Φ = [Φ1,Φ2, · · · ,ΦM] such that every Φ j ⊂ span{Pj } has dimension qj ;

(iii) Ψ = A−1Φ(ΦT A−1Φ)−1;

(iv) U = [U1,U2, · · · ,UM] such that everyUj ⊂ span{Pj } has dimension dim(Uj ) =
dim(span{Pj }) − qj and satisfies ΦT

j Uj = 0.

Then [U,Ψ] forms a basis of Rn, and we have

UT AΨ = UT
Φ(ΦT A−1Φ)−1 = 0. (3.1)

Thus the inverse of A can be written as

A−1 =
( 

UT

ΨT



−1 

UT

ΨT


A

[
U Ψ

] [
U Ψ

]−1 )−1
=U (UT AU)−1UT + Ψ(ΨT AΨ)−1ΨT .

(3.2)

In the following we denote ΨT AΨ = Ast and UT AU = Bst respectively. We also
use the phrase “solving A−1” to mean “solving A−1b for any b". From (3.2), we
observe that solving A−1 is equivalent to solving A−1st and B−1st separately. For Bst,
notice that since the space/basis U is constructed locally with respect to each patch
Pj , Bst will inherit the sparsity characteristic from A if A is local/sparse. Thus it
will be efficient to solve B−1st using iterative type methods if the condition number
of Bst is bounded. In the following, we introduce Lemma 3.1.1 which provides an
upper bounded of the Bst that ensures the efficiency of solving B−1st . The proof of the
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lemma imitates the proof from Theorem 10.9 of [89], where the required condition
(2.18) corresponds to Equation (2.3) in [89].

Lemma 3.1.1. If Φ satisfies the condition (2.18) with constant ε , then

λmax(Bst) ≤ λmax(A) · λmax(UTU), λmin(Bst) ≥
1
ε2
· λmin(UTU), (3.3)

and thus
κ(Bst) ≤ ε2 · λmax(A) · κ(UTU). (3.4)

Proof. For λmax(Bst), we have

λmax(Bst) = ‖Bst‖2 = ‖UT AU ‖2 ≤ ‖A‖2‖U ‖22
= ‖A‖2‖UTU ‖2 = λmax(A)λmax(UTU).

For λmin(Bst), since Φ satisfies the condition (2.18) with constant ε and ΦTU = 0,
we have

‖x‖22 ≤
1

λmin(UTU)
xTUTU x ≤

ε2

λmin(UTU)
xTUT AU x =

ε2

λmin(UTU)
xT Bstx,

thus λmin(Bst) ≥ 1
ε2
λmin(UTU). �

We shall have some discussions on the bound ε2 · λmax(A) · κ(UTU) separately into
two parts, namely (i) ε2 · λmax(A); and (ii) κ(UTU). Notice that UTU is actually
block-diagonal with blocks UT

j Uj , therefore

κ(UTU) =
λmax(UTU)
λmin(UTU)

=
max1≤ j≤M λmax(UT

j Uj )

min1≤ j≤M λmin(UT
j Uj )

. (3.5)

In other words, we can bound κ(UTU) well by choosing proper Uj for each Pj . For
instance, if we allow any kind of local computation on Pj , we may simply extend
Φ j to an orthonormal basis of span{Pj } to get Uj by using QR factorization [102].
In this case, we have κ(UTU) = 1.

For the part ε2λmax(A), recall that we construct Φ based on a partition P and an
integer q so thatΦ satisfies condition (2.18) with constant ε(P, q), thus the posterior
bound of κ(Bst) is ε(P, q)2λmax(A)(when κ(UTU) = 1). Recall that κ(Ast) is
bounded by δ(P, q)‖A−1‖2, therefore κ(Ast)κ(Bst) ≤ ε(P, q)2δ(P, q)κ(A). That is,
Ast and Bst divide the burden of the large condition number of Awith an amplification
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factor ε(P, q)2δ(P, q). We call κ(P, q) , ε(P, q)2δ(P, q) the qth-order condition
number of the partition P. This explains why we attempt to bound κ(P, q) in the
construction of the partition P.

Ideally, we hope the one-level operator decomposition gives κ(Ast) ≈ κ(Bst), so
that the two parts equally share the burden in parallel. But such result may not
be good enough when κ(Ast) and κ(Bst) are still large. To fully decompose the
large condition number of A, a simple idea is to recursively apply the one-level
decomposition. That is, we first set a small enough ε to sufficiently bound κ(Bst);
then if κ(Ast) is still large, we apply the decomposition to A−1st again to further
decompose κ(Ast). However, the decomposition of A−1 is based on the construction
of P and Φ, namely on the underlying energy decomposition E = {Ek }

m
k=1 of A.

Hence, we have to construct the corresponding energy decomposition of Ast before
we implement the same operator decomposition on A−1st .

3.1.2 Inherited Energy Decomposition
Let E = {Ek }

m
k=1 be the energy decomposition of A, then the inherited energy

decomposition of Ast = Ψ
T AΨ with respect to E is simply given by EΨ = {EΨ

k }
m
k=1

where
EΨ

k = Ψ
T EkΨ, k = 1, 2, · · · ,m. (3.6)

Notice that this inherited energy decomposition of Ast with respect to E has the same
number of energy elements as E, which is not preferred and actually redundant
in practice. Therefore we shall consider reducing the energy decomposition of
Ast. Indeed we will use Ψ̃ instead of Ψ in practice, where each ψ̃i is some local
approximator of ψi (obtained by Construction 2.2.9). Specifically, we will actually
deal with Ãst = Ψ̃

T AΨ̃ and thus we shall consider to find a proper condensed energy
decomposition of Ãst.

If we see Ãst as a matrix with respect to the reduced space RN , then for any vector
x = {x1, . . . , xN } ∈ R

N , the connection x ∼ EΨ̃ between x and some EΨ̃ = Ψ̃T EΨ̃

comes from the connection between E and those ψ̃i corresponding to nonzero xi,
and such connections are the key to constructing a partition Pst for Ãst. Recall that
the support of each ψ̃i(Sk (Pji ) for some k) is a union of patches, there is no need
to distinguish among energy elements interior to the same patch when we deal with
the connections between these elements and the basis Ψ̃. Therefore we introduce
the reduced inherited energy decomposition of Ãst = Ψ̃

T AΨ̃ as follows:

Definition 3.1.2 (Reduced inherited energy decomposition). With respect to the
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underlying energy decomposition E of A, the partition P and the corresponding
Ψ̃, the reduced inherited energy decomposition of Ãst = Ψ̃

T AΨ̃ is given by EΨ̃re =

{AΨ̃Pj
}Mj=1 ∪ {E

Ψ̃ : E ∈ Ec
P
} with

AΨ̃Pj
= Ψ̃T APj

Ψ̃, j = 1, 2, · · · , M, and (3.7)

EΨ̃ = Ψ̃T EΨ̃, ∀E ∈ Ec
P
, (3.8)

where Ec
P
= E\EP with EP = {E ∈ E : ∃Pj ∈ P s.t. E ∈ Pj }.

Once we have the underlying energy decomposition of Ast (or Ãst), we can repeat
the procedure to decompose A−1st (or Ã−1st ) in RN as what we have done to A−1 in Rn.
We will introduce the multi-level decomposition of A−1 in the following subsection.

3.1.3 Multiresolution Matrix Decomposition
Let A(0) = A, and we construct A(k), B(k) recursively from A(0). More precisely,
let E (k−1) be the underlying energy decomposition of A(k−1), and P (k), Φ(k), Ψ(k)

and U (k) be constructed corresponding to A(k−1) and E (k−1) in space RN (k−1) , where
N (k−1) is the dimension of A(k−1). We use one-level operator decomposition to
decompose (A(k−1))−1 as

(A(k−1))−1 =U (k) ((U (k))T A(k−1)U (k))−1(U (k))T

+ Ψ(k) ((Ψ(k))T A(k−1)
Ψ

(k))−1(Ψ(k))T,

and then define A(k) = (Ψ(k))T A(k−1)Ψ(k), B(k) = (U (k))T A(k−1)U (k), and E (k) =

(E (k−1))Ψ
(k )

re as in Definition 3.1.2. Moreover, if we write

Φ(1) = Φ(1), Φ(k) = Φ(1)
Φ

(2) · · ·Φ(k−1)
Φ

(k), k ≥ 1, (3.9a)

U (1) = U (1), U (k) = Ψ(1)
Ψ

(2) · · ·Ψ(k−1)U (k), k ≥ 1, (3.9b)

Ψ(1) = Ψ(1), Ψ(k) = Ψ(1)
Ψ

(2) · · ·Ψ(k−1)
Ψ

(k), k ≥ 1, (3.9c)

then one can prove by induction that for k ≥ 1,

A(k) = (Ψ(k))T AΨ(k) =
(
(Φ(k))T A−1Φ(k))−1, B(k) = (U (k))T AU (k),

(Φ(k))TΦ(k) = (Φ(k))TΨ(k) = IN (k ), Ψ(k) = A−1Φ(k) ((Φ(k))T A−1Φ(k))−1,
and for any integer K ,

A−1 = (A(0))−1

=

K∑
k=1
U (k) ((U (k))T AU (k))−1(U (k))T + Ψ(K ) ((Ψ(K ))T AΨ(K ))−1(Ψ(K ))T .

(3.10)
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Remark 3.1.3.

- One shall notice that the partition P (k) on each level k is not a partition
of the whole space Rn, but a partition of the reduced space RN (k−1) , and
Φ(k),Ψ(k),U (k) are all constructed corresponding to this P (k) in the same
reduced space. Intuitively, if the average patch sizes (basis number in a
patch) for partition P (k) is s(k), then we have N (k) =

q(k )

s(k ) N (k−1), where q(k)

is the integer for constructing Φ(k).

- Generally, methods of multiresolution type use nested partitions/meshes that
are generated only based on the computational domain [8, 123]. But here
the nested partitions are replaced by level-wisely constructed ones which
are adaptive to A(k) on each level and require no a priori knowledge of the
computational domain/space.

- In the Gamblet setting introduced in [88], equations (3.9) together with (3.10)
can be viewed as the Gamblet Transform.

The multiresolution operator decomposition up to a level K is essentially equivalent
to a decomposition of the whole space Rn [88] as

Rn = U (1) ⊕ U (2) ⊕ · · · ⊕ U (K ) ⊕ Ψ(K ),

where again we also useU (k)( or Ψ(k)) to denote the subspace spanned by the basis
U (k)( or Ψ(k)). Due to the A-orthogonality between these subspaces, using this
decomposition to solve A−1 is equivalent to solving A−1 in each subspace separately
(or more precisely solving (B(k))−1, k = 1, · · · , K , or (A(K ))−1), and by doing so we
decompose the large condition number of A into bounded pieces as the following
corollary states.

Corollary 3.1.4. If on each level Φ(k) is given by Construction 2.2.6 with integer
q(k), then for k ≥ 1 we have

λmax(A(k)) ≤ δ(P (k), q(k)), λmin(A(k)) ≥ λmin(A),

λmax(B(k)) ≤ δ(P (k−1), q(k−1))λmax
(
(U (k))TU (k)),

λmin(B(k)) ≥
1

ε(P (k), q(k))2
λmin

(
(U (k))TU (k)),

and thus
κ(A(k)) ≤ δ(P (k), q(k))‖A−1‖2,
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κ(B(k)) ≤ ε(P (k), q(k))2δ(P (k−1), q(k−1))κ
(
(U (k))TU (k)) .

For consistency, we write δ(P (0), q(0)) = λmax(A(0)) = λmax(A).

Proof. These results follow directly from Theorem 2.2.25 and Lemma 3.1.1. �

Remark 3.1.5. The fact λmin(B(k)) & 1
ε(P (k ),q(k ) )2 implies that the level k is a level

with resolution of scale no greater than ε(P (k), q(k)), namely the space U (k) is a
subspace of the whole space Rn of scale finer than ε(P (k), q(k)) with respect to A.
This is essentially what multiresolution means in this decomposition.

Now we have a multiresolution decomposition of A−1, the applying of A−1 (namely
solving linear system Ax = b)) can break into the applying of (B(k))−1 on each level
and the applying of (A(K ))−1 on the bottom level. In what follows, we always assume
κ((U (k))TU (k)) = 1. Then the efficiency of the multiresolution decomposition in
resolving the difficulty of large condition number of A lies in the effort to bound
each ε(P (k), q(k))2δ(P (k−1), q(k−1)) so that B(k) has a controlled spectrum width
and can be efficiently solved using the CG type method. Define κ(P (k), q(k)) =
ε(P (k), q(k))2δ(P (k), q(k)) and γ (k) =

ε(P (k ),q(k ) )
ε(P (k−1),q(k−1) ) , then we can write

κ(B(k)) ≤ ε(P (k), q(k))2δ(P (k−1), q(k−1)) = (γ (k))2κ(P (k−1), q(k−1)). (3.11)

The partition condition number κ(P (k), q(k))) is a level-wise information only con-
cerning the partition P (k). Similar to what we do in Algorithm 4, we will impose a
uniform bound c in the partitioning process so that κ(P (k), q(k))) ≤ c on every level.
The ratio γ (k) reflects the scale gap between level k−1 and k, which is why it should
measure the condition number(spectrum width) of B(k). However, it turns out that
the choice of γ (k) is not arbitrary, and it will be subject to a restriction derived out
of concern of sparsity.

So far the A(k) and B(k+1) are dense for k ≥ 1 since the basisΨ(k) are global. It would
be pointless to bound the condition number of B(k) if we cannot take advantage of the
locality/sparsity of A. So in practice, the multiresolution operator decomposition is
performed with localization on each level to ensure locality/sparsity. Thus we have
the modified multiresolution operator decomposition in the following subsection.

3.2 MMD with Localization
Let Ã(0) = A, and we construct Ã(k), B̃(k) recursively from Ã(0). More precisely,
let Ẽ (k−1) be the underlying energy decomposition of Ã(k−1), and P (k), Φ(k), Ψ(k)
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and U (k) be constructed corresponding to Ã(k−1) and Ẽ (k−1) in space RN (k−1) . We
decompose ( Ã(k−1))−1 as

( Ã(k−1))−1 =U (k) ((U (k))T Ã(k−1)U (k))−1(U (k))T

+ Ψ(k) ((Ψ(k))T Ã(k−1)
Ψ

(k))−1(Ψ(k))T .
(3.12)

Let Ψ̃(k) be a local approximator of Ψ(k). Then we define

Ã(k) = (Ψ̃(k))T Ã(k−1)
Ψ̃

(k), B̃(k) = (U (k))T Ã(k−1)U (k), (3.13)

and Ẽ (k) = (Ẽ (k−1))Ψ̃
(k )

re as in Definition 3.1.2.

Similar to Corollary 3.1.4, we have the following estimates on the condition numbers
of A(k) and B(k):

Corollary 3.2.1. If on each level Φ(k) is given by Construction 2.2.6 with integer
q(k), and Ψ̃(k) is a local approximator of Ψ(k) subject to localization error ‖ψ̃ (k)

i −

ψ (k)
i ‖A(k−1) ≤

ε√
N (k )

, then for k ≥ 1 we have

λmax( Ã(k)) ≤
(
1 +

ε√
δ(P (k), q(k))

)2
δ(P (k), q(k)), λmin( Ã(k)) ≥ λmin(A),

λmax(B̃(k)) ≤
(
1 +

ε√
δ(Pk−1), q(k−1))

)2
δ(P (k−1), q(k−1))λmax

(
(U (k))TU (k)),

λmin(B̃(k)) ≥
1

ε(P (k), q(k))2
λmin

(
(U (k))TU (k)),

and thus
κ( Ã(k)) ≤

(
1 +

ε√
δ(P (k), q(k))

)2
δ(P (k), q(k))‖A−1‖2,

κ(B̃(k)) ≤
(
1+

ε√
δ(P (k−1), q(k−1))

)2
ε(P (k), q(k))2δ(P (k−1), q(k−1))κ

(
(U (k))TU (k)) .

For consistency, we write δ(P (0), q(0)) = λmax( Ã(0)) = λmax(A).

Proof. These results follow directly from the proof of Theorem 2.2.25, Corol-
lary 2.2.26 and Lemma 3.1.1. �

One can indeed prove that δ(P (k), q(k)) ≥ 1
ε(P (k ),q(k ) )2 , and thus ε√

δ(P (k−1),q(k−1) )
≤

εε(P (k), q(k)) is a small number. Therefore Corollary 3.2.1 states that the mul-
tiresolution decomposition with localization has estimates on condition numbers of
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the same order as in Corollary 3.1.4, i.e. κ( Ã(k)) ≤ O(δ(P (k), q(k))‖A−1‖2) and
κ(B̃(k)) ≤ O(ε(P (k), q(k))2δ(P (k−1), q(k−1))). Having this in hand, we proceed to
discuss the desired sparsity of Ã(k) and B̃(k).

Locality Preservation: Similar to the locality discussion of Ãst in Section 2.3,
under the locality condition (2.63), we have the following recursive estimate on the
number of nonzero entries of each A(k) as

nnz( Ã(k)) = O(nnz( Ã(k−1)) · (q(k))2 ·
1

s(k) · (r
(k))d), (3.14)

where s(k) is the average patch size of P (k), and r (k) is the decay radius of Ψ̃(k).
Also, noticing that B̃(k) = (U (k))T Ã(k−1)U (k) and that the basisU (k) are local vectors
of support size s(k), we have

nnz(B̃(k)) = O(nnz( Ã(k−1)) · s(k)). (3.15)

In fact, the basisU (k) can be computed fromΦ(k) using the implicit QR factorization
[102], and thus the matrix multiplication with respect to U (k) can be done by using
the Householder vectors in time linear to q(k) · N (k). Therefore, when we evaluate
B̃(k) = (U (k))T Ã(k−1)U (k) (in iterative method), only the NNZ of Ã(k−1) matters.
In brief, we need to preserve the locality of A(k) down through all the levels to
ensure the efficiency of the multiresolution decomposition with localization. But
the accumulation of the factor (q(k ) )2(r (k ) )d

s(k ) , if not well controlled, will compromise
the sparsity inherited from Ã(0) = A. Therefore a necessary condition for the
decomposition to keep sparsity is

o(s(k)) ≥ (q(k))2(r (k))d, k ≥ 1,

under which we have the sparsity estimate nnz( Ã(k)) = O(nnz(A)). In particular,
when we impose the localization error ‖ψ̃ (k)

i −ψ
(k)
i ‖A(k−1) ≤

ε√
N (k )

on each level k for
some uniform ε , we have r (k) = O(log 1

ε + log N (k) + log δ(P (k), q(k))) according
the discussions in Section 2.2.2. Then the sparsity condition becomes

o(s(k)) ≥ (q(k))2
(
log

1
ε
+ log N (k) + log δ(P (k), q(k))

)d, k ≥ 1. (3.16)

This lower bound of the patch size s(k) means that we need to compress enough
dimensions from higher level to lower level in order to preserve sparsity due to the
outreaching support of the localized basis Ψ̃(k).
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In practice, we will choose some ε smaller than the top level scale ε(P (1), q(1)) and
a uniform integer q. By imposing uniform condition bound κ(P (k), q(k)) ≤ c we
have δ(P (k), q(k)) ≤ c

ε(P (k ),q(k ) )2 ≤
c
ε2
. Therefore a safe uniform criterion for patch

size s(k) is
O(s(k)) = s = q2(log

1
ε
+ log n)d+l, (3.17)

for some small l > 0, which asymptotically, when n goes large and ε goes small,
will ensure nnz(A(k)) = O(nnz(A)) down through the decomposition. Since the
decomposition should stop when N (K ), the dimension of A(K ) is small enough,
namely when n = O((s/q)K ), (3.17) also gives us an estimate of the total level
number as

K = O(logs/q n) = O
( log n

log(q(log 1
ε + log n)d+l )

)
= O

( log n

log(log 1
ε + log n)

)
. (3.18)

Choice of scale ratio γ
Recall that the partition P (k) is a partition of basis in the space RN (k−1) . By tracing
back to the top level, we can also see it as a partition in the original space Rn.
Denoting R(k) to be the average radius (with respect to adjacency defined by A)
and S(k) to be the average patch size of the patches (with respect to Rn) in P (k),
we have S(k) = O((R(k))d) under the locality condition (2.63), and an intuitive
geometry estimate gives S(k )

S(k−1) = s(k). As a consequence, under the local energy
decomposition condition (2.64) of order (q, p), we have the following estimate

γ (k) =
ε(P (k), q)
ε(P (k−1), q)

= O(
( R(k)

R(k−1)

) p
) = O(

( S(k)

S(k−1)

) p
d ) = O((s(k))

p
d ). (3.19)

Such estimate arises naturally in a lot of PDE problems, especially when the smallest
eigenvalues of local operators have clear dependence on the domain size, the dimen-
sion of the space and the order of the equation [53]. Under the sparsity condition
(3.16) and considering q as a constant, we require

o(γ (k)) ≥ (log
1
ε
+ log N (k) + log δ(P (k), q(k)))p, (3.20)

to ensure the sparsity of the decomposition, and similarly a safe, uniform choice of
the scale ratio γ (k) is

γ (k) = γ = (log
1
ε
+ log n)p+l, (3.21)

for some small l > 0. Such choice provides a uniform bound on the condition
number of B̃(k) as

κ(B̃(k)) ≤ O(ε(P (k), q(k))2δ(P (k−1), q(k−1))) ≤ O((log
1
ε
+ log n)p+l ) (3.22)
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when a uniform condition bound κ(P (k), q(k)) ≤ c is imposed by algorithm. Notice
that the ratio γ (k) is only defined for k ≥ 2, thus the estimate (3.22) is valid for
k ≥ 2. For consistency, we choose ε(P (1), q(1))2 = O( (log 1

ε+log n)p+l

‖A‖2
) so that (3.22)

is also valid for k = 1.

Remark 3.2.2. By estimate (3.22), the bound on κ(B̃(k)) will go to infinity when
n goes to infinity. In our construction of the multiresolution decomposition for
resolving large condition number of A, we cannot asymptotically have an absolute
constant bound for κ(B̃(k)) on all levels, due to the required preservation of sparsity.
This difficulty comes from the inductive nature of the algorithm that the posterior
estimate of the sparsity of Ã(k) is based on the sparsity of Ã(k−1), as shown in (3.14).
However, in [89], the existence of nested measurement function Φ is assumed a-
priori before the construction of the multiresolution structure, and thus the sparsity
of Ã(k) can be inherited directly from Ã(0), which avoids the accumulation of the
factor (q(k ) )2(r (k ) )d

s(k ) through levels. As a result, the sparsity of Ã(k) does not contradict
the uniform bound of κ(B̃(k)).

Error estimate
Using multiresolution operator decomposition with localization to solve A−1, the
error on each level comes from two main sources: (i) the localization error between
Ψ(k) ((Ψ(k))T Ã(k−1)Ψ(k))−1(Ψ(k))T and Ψ̃(k) ((Ψ̃(k))T Ã(k−1)Ψ̃(k))−1(Ψ̃(k))T ; (ii) the
error caused by solving (A(k))−1 =

(
(Ψ̃(k))T Ã(k−1)Ψ̃(k))−1 (or (B̃(k))−1) with iter-

ative type methods. To come up with an estimate of the total error, we perform a
standard analysis of error accumulation in an inductive manner.

Theorem 3.2.3. Given an integer K , let Inv(A) denote the solver for A−1 using
K-level’s multiresolution operator decomposition with localization. Assume that

(i) each (B̃(k))−1 can be solved efficiently subject to a uniform relative error bound
errB in the sense that the solver Inv(B̃(k)) (as a linear operator) satisfies

‖(B̃(k))−1b− Inv(B̃(k))b‖B̃(k ) ≤ errB‖b‖(B̃(k ) )−1, ∀b ∈ RN (k )
, ∀1 ≤ k ≤ K ;

(3.23)

(ii) at level K , ( Ã(K ))−1 can be solved efficiently subject to a relative error err(K )
A

in the sense that the solver Inv( Ã(K )) satisfies

‖( Ã(K ))−1b − Inv( Ã(K ))b‖Ã(K ) ≤ err(K )
A ‖b‖( Ã(K ) )−1, ∀b ∈ RN (K )

. (3.24)
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(iii) each Ψ̃(k) satisfies the localization approximation property

‖ψ̃ (k)
i − ψ (k)

i ‖Ã(k−1) ≤
errloc

2
√

N (k) ‖A−1‖2
, 1 ≤ i ≤ N (k), (3.25)

with a uniform constant errloc.

Then we have

‖A−1b − Inv(A)b‖A ≤ errtotal ‖b‖A−1, ∀b ∈ Rn,

and in ‖ · ‖2,

‖A−1b − Inv(A)b‖2 ≤ errtotal ‖A−1‖2‖b‖2, ∀b ∈ Rn.

where
errtotal = K (errB + errloc) + err(K )

A .

Proof. First by assumption (ii), we have

‖( Ã(K ))−1b − Inv( Ã(k))b‖Ã(K ) ≤ err(K )
A ‖b‖( Ã(K ) )−1, ∀b ∈ RN (K )

.

To perform induction, we assume that at level k, ( Ã(k))−1 can be solved subject to a
relative error err(k)

A in the sense that the solver Inv( Ã(k)) satisfies

‖( Ã(k))−1b − Inv( Ã(k))b‖Ã(k ) ≤ err(k)
A ‖b‖( Ã(k ) )−1, ∀b ∈ RN (k )

.

Recall that ( Ã(k−1))−1 and the solver Inv( Ã(k−1)) are given by

( Ã(k−1))−1 = U (k) ((U (k))T Ã(k−1)U (k))−1(U (k))T+Ψ(k) ((Ψ(k))T Ã(k−1)
Ψ

(k))−1(Ψ(k))T,

(3.26)

Inv( Ã(k−1)) = U (k)Inv(B̃(k))(U (k))T + Ψ̃(k)Inv( Ã(k))(Ψ̃(k))T, (3.27)

then for any b ∈ RN (k−1) , we have

‖( Ã(k−1))−1b − Inv( Ã(k))b‖Ã(k−1)

≤ ‖U (k) ((U (k))T Ã(k−1)U (k))−1(U (k))T b −U (k)Inv(B̃(k))(U (k))T b‖Ã(k−1)

+ ‖Ψ(k) ((Ψ(k))T Ã(k−1)
Ψ

(k))−1(Ψ(k))T b − Ψ̃(k) ((Ψ̃(k))T Ã(k−1)
Ψ̃

(k))−1(Ψ̃(k))T b‖Ã(k−1)

+ ‖Ψ̃(k) ((Ψ̃(k))T Ã(k−1)
Ψ̃

(k))−1(Ψ̃(k))T b − Ψ̃(k)Inv( Ã(k))(Ψ̃(k))T b‖Ã(k−1)

= I1 + I2 + I3.
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Recall that Ã(k) = (Ψ̃(k))T Ã(k−1)Ψ̃(k), B̃(k) = (U (k))T Ã(k−1)U (k), then by assump-
tion (i) we have

I1 = ‖(B̃(k))−1(U (k))T b − Inv(B̃(k))(U (k))T b‖B̃(k )

≤ errB
(
bTU (k) (B̃(k))−1(U (k))T b

) 1
2

≤ errB‖( Ã(k−1))
1
2U (k) ((U (k))T Ã(k−1)U (k))−1(U (k))T ( Ã(k−1))

1
2 ‖2‖b‖( Ã(k−1) )−1

≤ errB‖b‖( Ã(k−1) )−1 .

Similarly by the assumption of induction, we have

I3 = ‖( Ã(k))−1(Ψ̃(k))T b − Inv( Ã(k))(Ψ̃(k))T b‖Ã(k ) ≤ err(k)
A ‖b‖( Ã(k−1) )−1 .

Let x = ( Ã(k−1))−1b, then we get

I2 = ‖P Ã(k−1)

Ψ(k ) x − P Ã(k−1)

Ψ̃(k ) x‖Ã(k−1)

≤ ‖P Ã(k−1)

Ψ(k ) x − P Ã(k−1)

Ψ̃(k ) P Ã(k−1)

Ψ(k ) x‖Ã(k−1) + ‖P Ã(k−1)

Ψ̃(k ) P Ã(k−1)

U (k ) x‖Ã(k−1) .

Using a similar argument in Lemma 2.2.8 we can actually prove by assumption (iii)
that

‖P Ã(k−1)

Ψ(k ) x − P Ã(k−1)

Ψ̃(k ) P Ã(k−1)

Ψ(k ) x‖Ã(k−1) ≤
1
2
errloc‖P Ã(k−1)

Ψ(k ) x‖Ã(k−1) ≤
1
2
errloc‖b‖( Ã(k−1) )−1,

and

‖P Ã(k−1)

Ψ̃(k ) P Ã(k−1)

U (k ) x‖Ã(k−1)

≤ ‖((Ψ̃(k))T Ã(k−1)
Ψ̃

(k))−1‖
1
2
2 ‖(Ψ̃

(k))T Ã(k−1) P Ã(k−1)

U (k ) x‖2

≤ ‖A−1‖
1
2
2 ‖(Ψ̃

(k) − Ψ(k))T Ã(k−1) P Ã(k−1)

U (k ) x‖2

≤ ‖A−1‖
1
2
2 ‖(Ψ̃

(k) − Ψ(k))T Ã(k−1) (Ψ̃(k) − Ψ(k))‖
1
2
2 ‖P

Ã(k−1)

U (k ) x‖Ã(k−1)

≤
1
2
errloc‖b‖( Ã(k−1) )−1,

thus I2 ≤ errloc‖b‖( Ã(k−1) )−1 . Finally we have

‖( Ã(k−1))−1b − Inv( Ã(k−1))b‖Ã(k−1) ≤ (errB + errloc + err(k)
A )‖b‖( Ã(k−1) )−1,

that is we have
err(k−1)

A = (errB + errloc + err(k)
A ).

Then by induction the relative total error using K-level’s decomposition with local-
ization for solving A−1 is

errtotal = err(0)
A = K (errB + errloc) + err(K )

A .

�
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Remark 3.2.4. Assumption (i) is reasonable since each B̃(k) inherit the sparsity from
A, and its condition numbers can be well bounded in orderO((log 1

errloc + log n)p+l ).
Assumption ((ii)) is reasonable since each Ã(K ) is of small dimension when K is
as large as in (3.18). Assumption (iii) is reasonable due to the exponential decay
property of each Ψ(k). Indeed, to ensure locality of reduced energy decomposition,
the localization error control can be relaxed in practice. Such relaxed error can be
fixed by doing compensation computation as we will see in Section 3.4.

Figure 3.1: Process flowchart of Algorithm 6.

3.2.1 Algorithm
We now summarize the procedure of MMD with localization as Algorithm 6, and
the use of MMD to solve linear system as Algorithm 7. Also, Figure 3.1 shows the
flowchart of Algorithm 6.

Algorithm 6 MMD with localization

Input: PD matrix A = Ã(0), energy decomposition E = Ẽ (0), underlying basis
V , localization constant ε , level number K , q(k), error factor bound ε(k) and
condition bound c(k) for each level.

Output: Ã(K ), Ψ̃(k),U (k), and B̃(k).
1: for k = 1 : K do
2: Construct P (k),Φ(k),U (k), Ψ̃(k) with Algorithm 1, with respect to

Ã(k−1), Ẽ (k−1), and subject to q(k), ε(k), c(k) and localization error ε√
N (k )

;
3: Compute Ã(k) and B̃(k) by (3.13);
4: Compute reduced energy Ẽ (k) by (3.8);
5: output/store Ψ̃(k),U (k), B̃(k);
6: end for
7: output/store Ã(K ).

Remark 3.2.5.

- Once the MMD is obtained, the first for-loop (Line 1) in Algorithm 7 can be
performed in parallel, which makes it much more efficient than nonparalleliz-
able iterative methods.

- Once the whole decomposition structure is completed, we can a posterior
omit the level-wise energy decompositions and partitions. Then if we see our
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Algorithm 7 Solving linear system with MMD with localization

Input: Ψ̃(k),U (k), B̃(k) for k = 1, 2, · · · , K , Ã(K ), load vector b = b(0), prescribed
relative accuracy ε

Output: Approximated solution x (0).
1: for k = 1 : K do
2: z(k) = (U (k))T b(k−1);
3: Solve B̃(k)y(k) = z(k) up to relative error ε ;
4: b(k) = (Ψ̃(k))T b(k−1);
5: end for
6: Solve Ã(K ) x (K ) = b(K ) up to relative error ε ;
7: for k = K : 1 do
8: x (k−1) = U (k)y(k) + Ψ̃(k) x (k);
9: end for

level-wisely constructed Φ as a nested sequence (3.9a), our decomposition
is structurally equivalent to the result obtained in [89], where the existence
of such nested Φ is a priori assumed. Therefore, the required properties of
the nested sequence in Condition 2.3 of [89] are similar to the assumption in
Theorem 3.2.3.

Complexity of Algorithm 6
Assume that locality conditions (2.63),(2.64),(2.65) are true with constant d, p, q, c.
Then all q(k) and c(k) are chosen uniformly over levels to be q, c respectively. ε(k)

is chosen subject to scale ratio choice (3.21), (ε(1))2 = (log 1
ε+log n)p+l

‖A‖2
for some small

l > 0, and ε is chosen so that ε ≤ ε(1). Due to the condition bound c, we have
condition number estimate (3.22). Then the complexity of Line 2 can be modified
from (2.69) as

O
(
d · s2 · log s ·n

)
+O(log s ·n · log n)+O

(
q ·n · (log

1
ε
+log n)p+l · (log

1
ε
+log n)d+1),

where s = O((log 1
ε + log n)d(1+l/p)) according to estimate (3.19). The complexity

of Line 3 and 4(sparse matrices multiplication) together can be bounded by

O(n · (log
1
ε
+ log n)3d)

due to the locality of Ψ̃(k) and the inherited locality of Ã(k−1) and B̃(k−1). Therefore
the complexity on each level can be bounded by

O
(
d · s2 · log s · n

)
+O(log s · n · log n) +O

(
q · n · (log

1
ε
+ log n)3d+p), (3.28)
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where we have assumed that d ≥ 1 ≥ l. The total complexity of Algorithm 6 is
then the level number K times (3.28). By (3.18), we have K = O

( log n
log(log 1

ε+log n)

)
≤

O(log n) and K log s = O(log n). Thus the total complexity of Algorithm 6 is

O
(
d · s2 · log n · n

)
+O(n · (log n)2) +O

(
K · q · n · (log

1
ε
+ log n)3d+p)

≤ O(m · log n · (log
1
ε
+ log n)3d+p). (3.29)

where m = O(d · n) is the number of nonzero entries of A.

Complexity of Algorithm 7
Assume that the relative accuracy ε is the same as the ε in Algorithm 6. Recall that
the number of nonzero entries of each Ã(k) is bounded by O(nnz(A)) = O(m), and
the condition number each B̃(k) can be bounded by O((log 1

ε + log n)p+l ), then the
complexity of solving linear system in Line 3 using a CG type method is bounded
by

O(m · (log
1
ε
+ log n)p+l · log

1
ε

).

Therefore if we use a CG type method to solve all inverse problems involved in
Algorithm 7, based on the MMD with localization given by Algorithm 6, the
running time of Algorithm 7 subject to level-wise relative accuracy ε is

O(K · m · (log
1
ε
+ log n)p+l · log

1
ε

) ≤ O(m · (log
1
ε
+ log n)p+l · log

1
ε
· log n).

However, by Theorem 3.2.3, the total accuracy is ε total = O(Kε ). Thus the com-
plexity of Algorithm 7 subject to a total relative accuracy ε total is

O(m · (log
1

ε total
+ log n)p+l · (log

1
ε total

+ log log n) · log n). (3.30)

3.3 Multilevel Operator Compression
We can also consider the MMD from the perspective of operator compression. For
any K , by omitting the finer scale subspaces U (k), k = 1, 2, · · · , K , we get an
effective approximator of A−1 as

A−1 ≈ Ψ(K ) ((Ψ(K ))T AΨ(K ))−1(Ψ(K ))T = PA
Ψ(K ) A−1. (3.31)

Intuitively, this approximation lies above the scale of ε(P (K ), q(K )), and therefore
should have a corresponding dominant compression error. However we should again
notice that the composite basis Φ(k) is not given a priori and directly in Rn, but
constructed level-by-level using the information of A(k) on each level, and recall that
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the error factor ε(P (k), q(k)) is computed with respect to the reduced space RN (k ) ,
not to the whole spaceRn. Thus the total error of compression (3.31) is accumulated
over all levels finer than level K . To quantify such compression error, we introduce
the following theorem:

Theorem 3.3.1. Assume that on each level Φ(k) is given by Construction 2.2.6 with
integer q(k). Then we have

‖x − PΦ(K ) x‖2 ≤
( K∑

k=0
ε(P (k), q(k))2

) 1
2
‖x‖A, ∀x ∈ Rn, (3.32)

and thus for any x ∈ Rn and b = Ax, we have

‖x − PA
Ψ(K ) x‖A ≤

( K∑
k=1

ε(P (k), q(k))2
) 1
2
‖b‖2,

‖x − PA
Ψ(K ) x‖2 ≤

( K∑
k=1

ε(P (k), q(k))2
)
‖b‖2,

‖A−1 − PA
Ψ(K ) A−1‖2 ≤

( K∑
k=1

ε(P (k), q(k))2
)
.

Proof. Again by Theorem 2.2.1, we only need to prove (3.32). For consistency, we
writeΦ(0) = In, and correspondingly Ψ(0) = In, PΦ(0) = In, PA

Ψ(0) = In. Using (3.9),
it is easy to check that for any x ∈ Rn and any k1 ≤ k2 ≤ k3,

(PΦ(k1) x − PΦ(k2) x)T (PΦ(k2) x − PΦ(k3) x) = 0,

thus we have

‖x − PΦ(K ) x‖22 = ‖
K∑

k=1
(PΦ(k−1) x − PΦ(k ) x)‖22 =

K∑
k=1
‖PΦ(k−1) x − PΦ(k ) x‖22 .

Notice that

PΦ(k−1) x − PΦ(k ) x = Φ(k−1) (Φ(k−1))T x −Φ(k−1)
Φ

(k) (Φ(k))T (Φ(k−1))T x,

thus by the construction of Φ(k)( or Φ(k)), we have

‖PΦ(k−1) x − PΦ(k ) x‖22 = ‖(Φ
(k−1))T x − Φ(k) (Φ(k))T (Φ(k−1))T x‖22

≤ ε(P (k), q(k))2‖(Φ(k−1))T x‖2A(k−1)

= ε(P (k), q(k))2xTΦ(k−1) ((Φ(k−1))T A−1Φ(k−1))−1(Φ(k−1))T x

= ε(P (k), q(k))2‖PA
Ψ(k−1) x‖

2
A

≤ ε(P (k), q(k))2‖x‖2A.
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We have used the fact that

‖PA
Ψ(k ) x‖

2
A = xT AΨ(k) ((Ψ(k))T AΨ(k))−1(Ψ(k))T Ax

= xTΦ(k) ((Φ(k))T A−1Φ(k))−1(Φ(k))T x, ∀k ≥ 0.

Therefore we have

‖x − PΦ(K ) x‖22 ≤
( K∑

k=0
ε(P (k), q(k))2

)
‖x‖2A.

�

Remark 3.3.2.

- Though the compression error is in a cumulative form, if we assume that
ε(P (k), q(k)) increases with k at a certain ratio ε(P (k ),q(k ) )

ε(P (k−1),q(k−1) ) ≥ γ for some
γ > 1, then it is easy to see that

K∑
k=1

ε(P (k), q(k))2 ≤
γ2

γ2 − 1
ε(P (K ), q(K ))2,

which is an error of scale ε(P (K ), q(K ))2 as we expected.

- Again one shall be aware of the difference between the one-level compres-
sion with error factor ε(P (K ), q(K )) and the multi-level compression in Sec-
tion 3.1.3. A one-level compression with error factor ε(P (K ), q(K )) requires
to construct P (K ),Φ(k) and so on directly with respect to A in the whole space
Rn, which involves solving eigenvalue problems on considerably large patches
in P (K ) when ε(P (K ), q(K )) is a coarse scale. But the multi-level compres-
sion in Section 3.1.3 is computed hierarchically with bounded compression
ratio between levels, and thus only involves eigenvalue problems on patches
of well-bounded size(s = O(log 1

ε + log n)d+l) in each reduced space RN (k ) ,
and is thus more tractable in practice.

- One can also analyze the compression error when localization of each Ψ(k)

is considered. The analysis would be similar to the one in Theorem 3.3.1.

3.4 Numerical Example for MMD
Our third numerical example shows the effectiveness of using MMD with localiza-
tion to solve a graph Laplacian system. Again we use the same setup in the Example
1 in Section 2.4.1, with density factor η = 2. But this time the vertices of the graph
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(a) Front view (b) Top view

Figure 3.2: A “Roll surface” constructed by (3.33).

are randomly distributed around a 2-dimensional roll surface of area 1 in R3. The
distribution is a combination of a uniform distribution over the surface and an up
to 10% random displacement off the surface. More precisely, the two-dimensional
roll is characterized as

(x(t), y(t), z) = (ρ(t) cos(θ(t)), ρ(t) sin(θ(t)), z), t ∈ [0, 1], z ∈ [0, 1],

where

θ(t) =
1
a
log

(
1 + t

(
e4πa − 1

))
, ρ(t) =

a
√
1 + a2

(
t +

1
e4πa − 1

)
,

and so
√

(ρ′(t))2 + (ρ(t)θ′(t))2 = 1. Each vertex (xi, yi, zi) is generated by

(xi, yi, zi) = (ηi ρ(ti) cos(θ(ti)), ηi ρ(ti) sin(θ(ti)), zi), i = 1, 2, · · · , n, (3.33)

where ti
i.i.d
∼ U [0, 1], zi

i.i.d
∼ U [0, 1], and ηi

i.i.d
∼ U [0.9, 1.1]. In this example we

take n = 10000 and a = 0.1. Figure 3.2a and Figure 3.2b show the point cloud of
all vertices. This explicit expression, however, is considered as a hidden geometric
information, and is not employed in our partitioning algorithm.

The Laplacian L = A0 and the energy decomposition E are given as in Exam-
ple 2.1.10, and we apply a 4-level multiresolution matrix decomposition with lo-
calization using Algorithm 6 to decompose the problem of solving L−1. In this
particular case we have λmax(L) = 1.93 × 107 and λmin(L) = 1. Again for graph
Laplacian, we choose q = 1. On each level k, the partition is constructed sub-
ject to ε(P (k), 1)2 = 10k−6 (i.e. {ε(P (k), 1)2}4k=1 = {0.00001, 0.0001, 0.001, 0.01})
and δ(P (k), 1)ε(P (k), 1)2 ≤ 50. The compliment space U (k) are extended from
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Level Size #Nonzeros Condition Number Complexity

L 10000 × 10000 128018 , m 1.93 × 107 2.47 × 1012

B̃(1) 1898 × 1898 9812 ≈ 0.07m 1.72 × 102 1.69 × 106

B̃(2) 6639 × 6639 391499 ≈ 3.06m 1.80 × 101 7.04 × 106

B̃(3) 1244 × 1244 417156 ≈ 3.26m 7.27 × 101 3.03 × 107

B̃(4) 186 × 186 34596 ≈ 0.27m 4.47 × 101 1.55 × 106

Ã(4) 33 × 33 1025 ≈ 0.008m 2.83 × 103 2.90 × 106

total - 854088 ≈ 6.67m - 4.34 × 107

Table 3.1: Complexity results of 4-level MMDwith localization using Algorithm 6.

(a) Spectrum (b) Complexity

Figure 3.3: Spectrum and complexity of each layer in a 4-level MMD obtained from
Algorithm 6.

Φ(k) using a patch-wise QR factorization. So according to Corollary 3.2.1, each
κ(B̃(k)), k = 2, 3, 4 is expected to be bounded by

δ(P (k−1), 1)ε(P (k), 1)2 = δ(P (k−1), 1)ε(P (k−1), 1)2
ε(P (k), 1)2

ε(P (k−1), 1)2
≤ 500,

κ(B̃(1)) is expected bounded by λmax(L)ε(P (0), 1)2 = 1.93 × 102, and κ( Ã(4)) is
expected to be bounded by

δ(P (3), 1)λmin(L)−1 = δ(P (3), 1)ε(P (3), 1)2
λmin(L)−1

ε(P (3), 1)2
≤ 5000.

Since we will use a CG type method to compare the effectiveness of solving L−1

directly and using the 4-level decomposition, the complexities of both approaches are
proportional to the product of the number of nonzero (NNZ) entries and the condition
number of the matrix concerned, given a fixed prescribed relative accuracy [102].
Therefore we define the complexity of a matrix as the product of its NNZ entries and
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its condition number. Though here we use the sparsity of B(k) = (U (k))T A(k−1)U (k),
in practice only the sparsity of A(k−1) matters and the matrix multiplication with
respect to U (k) can be done by using the Householder vectors from the implicit QR
factorization [102]. The results not only satisfy the theoretical prediction, but also
turn out to be much better than expected as shown in Table 3.1 and Figure 3.3. We

Level Size #Nonzero Condition Number Complexity

L 10000 × 10000 128018 , m 1.93 × 107 2.47 × 1012

B̃(1) 1898 × 1898 9812 ≈ 0.07m 1.72 × 102 1.69 × 106

B̃(2) 6639 × 6639 391499 ≈ 3.06m 1.80 × 101 7.04 × 106

B̃(3) 1014 × 1014 237212 ≈ 1.85m 2.56 × 101 6.09 × 106

B̃(4) 313 × 313 86323 ≈ 0.67m 1.62 × 101 1.40 × 106

B̃(5) 114 × 114 12996 ≈ 0.10m 5.54 × 101 7.20 × 105

Ã(5) 22 × 22 442 ≈ 0.004m 1.60 × 103 7.07 × 105

total - 738284 ≈ 5.77m - 1.76 × 107

Table 3.2: Complexity results of a 5-levelMMDwith localization usingAlgorithm6.

(a) (b)

Figure 3.4: Spectrum and complexity of each layer in a 5-level MMD obtained from
Algorithm 6.

now verify the performance of the 4-level and the 5-level MMDs by solving two
particular systems Lu∗ = b, where

Case 1: u∗i = (x2i + y2i + z2i )
1
2 , i = 1, 2, · · · , n, b = Lu∗;

Case 2: u∗i = xi + yi + sin(zi), i = 1, 2, · · · , n, b = Lu∗.

For both cases, we set the prescribed relative accuracy to be ε = 10−5 such that
‖û − u∗‖L ≤ ε ‖b‖2. By Theorem 3.2.3, this accuracy can be achieved by imposing
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a corresponding accuracy control on each level’s linear system relative error (i.e.,
err(K )

A and errB ) and localization error (errloc). In practice, instead of imposing a
hard error control, we relax the localization error to ε(P (k), 1) (instead of ε ) in order
to ensure sparsity, which is actually how we obtain the 4-level decomposition with
localization. Such relaxed localization error can be fixed by doing a compensation
correction at level-0, which takes the output of Algorithm 7 as an initialization to
solve Lu = b. As shown in the gray columns “# Iteration" in Table 3.3 and Table 3.4,
the number of iterations in the compensation calculation (which is the computation
at Level 0) are fewer than 25 in both cases, which indicate that the localization error
on each level is still small even when relaxed.

Scale Matrix # Iteration Main Cost

Direct λ−1max (L) ∼ λ−1min (L) L 572 7.32 × 107

Level 4-level 5-level 4-lvl 5-lvl 4-lvl 5-lvl 4-lvl 5-lvl

0 10−5 ∼ λ−1max (L) 10−5 ∼ λ−1max (L) B̃(1) B̃(1) 22 22 2.15 × 105 2.15 × 105

1 10−5 ∼ 10−4 10−5 ∼ 10−4 B̃(2) B̃(2) 11 11 4.31 × 106 4.31 × 106

2
10−4 ∼ 10−3 10−4 ∼ 3 × 10−3 B̃(3) B̃(3) 25 14 1.04 × 107 3.32 × 106

3 × 10−3 ∼ 10−3 B̃(4) 14 1.21 × 106

3 10−3 ∼ 10−2 10−3 ∼ 10−2 B̃(4) B̃(5) 23 22 7.96 × 105 2.86 × 105

4 10−2 ∼ λ−1min (L) 10−2 ∼ λ−1min (L) Ã(4) Ã(5) 31 22 3.18 × 104 9.72 × 103

0 - - L L 25 30 3.20 × 106 3.84 × 106

Total - - - - 137 135 1.90 × 107 1.31 × 107

Parallel - - - - - - 1.36 × 107 8.15 × 106

Table 3.3: Case 1: Performance of the 4-level and the 5-level decompositions.

Scale Matrix # Iteration Main Cost

Direct λ−1max (L) ∼ λ−1min (L) L 586 7.50 × 107

Level 4-level 5-level 4-lvl 5-lvl 4-lvl 5-lvl 4-lvl 5-lvl

0 10−5 ∼ λ−1max (L) 10−5 ∼ λ−1max (L) B̃(1) B̃(1) 24 24 2.35 × 105 2.35 × 105

1 10−5 ∼ 10−4 10−5 ∼ 10−4 B̃(2) B̃(2) 11 11 4.31 × 106 4.31 × 106

2
10−4 ∼ 10−3 10−4 ∼ 3 × 10−3 B̃(3) B̃(3) 25 14 1.04 × 107 3.32 × 106

3 × 10−3 ∼ 10−3 B̃(4) 14 1.21 × 106

3 10−3 ∼ 10−2 10−3 ∼ 10−2 B̃(4) B̃(5) 23 23 7.96 × 105 2.99 × 105

4 10−2 ∼ λ−1min (L) 10−2 ∼ λ−1min (L) Ã(4) Ã(5) 30 22 3.08 × 104 9.72 × 103

0 - - L L 16 23 2.05 × 106 2.94 × 106

Total - - - - 129 131 1.78 × 107 1.23 × 107

Parallel - - - - - - 1.24 × 107 7.25 × 106

Table 3.4: Case 2: Performance of the 4-level and the 5-level decompositions.

In particular, we use a preconditioned CG method to solve any involved linear
systems Au = b in Algorithm 7. The precondition matrix D is chosen as the
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diagonal part of A and we take 0 (all-zeros vector) as initials if no preconditioning
vector is provided. The main computational cost of a single use of the PCG method
is measured by the product of the number of iterations and the NNZ entries of the
matrix involved (See the gray column “Main Cost” in both Table 3.3 and Table 3.4).

In both cases, we can see that the total computational costs of our approach are
obviously reduced compared to the direct use of PCG.Moreover, since the downward
level-wise computation can be done in parallel, the effective computational costs of
our approach are even less, which is the sum of the maximal cost among all levels
and the cost of the compensation correction (See “Parallel" row in Table 3.3 and
Table 3.4 respectively).

Further, from the results we can see that the costs among all levels in both cases
are mainly concentrated on level 2, namely, the inverting of B̃(3). This observation
implies that the structural/geometrical details of L have more proportion on the
scale corresponding to level 2 than on other scales, which is consistent to the fact
that B̃(3) on level 2 has the largest complexity of all. Though in practice we do not
have the information in Table 3.3 and Table 3.4, we may observe the dominance
of time complexity on level 2 after numbers of calls of our solver. As a natural
improvement, we can simply further decompose the problem at level 2. More
precisely, to relieve the dominance of level 2, we add one extra scale of 0.0003
between the scales of 0.0001 and 0.001. Consequently, we obtain a similar 5-level
decomposition with {ε(P (k), 1)2}5k=1 = {0.00001, 0.0001, 0.0003, 0.001, 0.01} (See
Table 3.2 and Figure 3.4). From the “Main Cost 5-level” columns of Table 3.3 and
Table 3.4), we can see that this simple improvement of further decomposition based
on the feedback of computational results does reduce the computational cost.
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C h a p t e r 4

HIERARCHICALLY PRECONDITIONED EIGENSOLVER

In this chapter, we develop ourMMD framework into a hierarchically preconditioned
eigensolver for large and sparse positive semidefinite matrices. The foundation of
our eigensolver is the celebrated Implicit Restarted Lanczos Method (IRLM), which
is integrated into a hierarchical structure consisting of two alternating processes: the
level-wise spectrum extension process that finds new eigenpair candidates, and the
cross-level spectrum refinement process that refines the computed eigenspace. In the
extension process, we propose a spectral preserving preconditioner to guarantee the
computational efficacy of each iteration. We apply theOrthogonal IterationwithRitz
Acceleration to design a efficient refinement process that converges exponentially
fast with properly chosen parameters.

The layout of the rest of this chapter is as follows: We briefly review the Implicitly
Restarted Lanczos Method in Section 4.1. Some spectrum error analysis and per-
turbation theories subject to our operator compression framework are discussed in
Section 4.2. Theoretical developments and algorithms of the hierarchical spectrum
extension process and the eigenpair refinement process are then proposed in Sec-
tion 4.3 and Section 4.4 respectively. Combining these two procedures, we propose
our hierarchical eigensolver in Section 4.5, where details of the choice of param-
eters are discussed. Section 4.6 is devoted to experimental results to justify the
effectiveness of our proposed algorithm. In Section 4.7, we provide a quantitative
numerical comparison with the conventional IRLM. The numerical results show that
our proposed algorithm gives a promising results in terms of runtime complexity.
In Section 4.8, we further compare our approach to a class of existing works on
eigenspace approximation via the computation of compressed eigenmodes.

4.1 Implicitly Restarted Lanczos Method (IRLM)
The Arnoldi iteration is a widely used method to find eigenvalues of general asym-
metric sparse matrices. It belongs to the family of Krylov subspace methods. In
the symmetric case, we can further simplify it as the Lanczos iteration. A direct
application of Lanczos iteration gives the largest eigenvalues of an operator by cal-
culating the eigenvalues of its projection on a Krylov subspace. In each step the
algorithm expands the Krylov subspace and finds an orthogonal basis of the space.
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Namely, after k steps, the factorization is

AVk = VkTk + f k eT
k . (4.1)

where we recall that Tk is a tridiagonal matrix when A is symmetric. Denote (θ, y)
as an eigenpair of Tk . Let x = Vk y. Then we have

‖Ax − xθ‖2 = ‖AVk y − Vk yθ‖2= ‖ f k ‖2 |eT
k y |. (4.2)

Therefore θ is a good approximation of the eigenvalue of A if and only if ‖ f k ‖2 |eT
k y |

is small. The latter is called the Ritz residual. An analogy to the power method
shows that, to compute the largest m eigenvalues, the convergence rate of the largest
m eigenvalues of A is (λm+1/λm)k where λi is the ith largest eigenvalue of A.

The direct Lanczos method is not practical due to the fact that ‖ f k ‖2 rarely becomes
small enough until the size of Tk approaches that of A. An improvement is the
IRLM [64, 109]. The IRLM employs the idea analogous to the implicitly shifted
QR-iteration [39]. With this approach, the “unwanted” eigenvalues (in this case the
leftmost ones) are shifted away implicitly in each round of implicit restart, and Tk

is kept with a small size equal to the number of desired eigenvalues. This is one of
the state-of-the-art algorithms for large-scale partial eigen problems.

Yet, it is still complicated if we want to find the leftmost eigenvalues. One possible
approach is to use a shifted IRLM. Namely, to find eigenvalues nearest to σ, we
can replace A with (A − σI)−1 as the target operator. By taking σ = 0 we get the
eigenvalues with smallest magnitude. Such approach usually converges with a few
iterations, but it requires solving A−1 in every iteration. For large sparse problems,
A−1 is usually solved by the CGmethod. The complexity of CG is the complexity of
matrix-vector product times the number of CG iterations. The former is equal to the
number of nonzero entries of A (denoted as nnz(A)), while the latter is controlled
by the condition number κ(A). Therefore, the total complexity of the shifted IRLM
for solving mtar smallest eigenvalues is

O(RIRLM · mtar · nnz(A) · κ(A)), (4.3)

where RIRLM is the number of IRLM rounds. In the following, we will develop the
extension-refinement algorithm to integrate the MMD framework with the shifted
IRLM which gives considerable improvement in terms of iteration numbers of CG
and PCG throughout the algorithm.
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Algorithm 8 Lanczos Iteration (p-step extension)
Input: V , T , f , target operator op(·), p.
Output: V , T , f .
1: k = column number of V ;
2: for i = 1 : p do
3: β = ‖ f ‖2;
4: if β < ε then
5: generate a new random f , β = ‖ f ‖2;
6: end if
7: T ←

( T
βeT

k+i−1

)
, v = f /β, V ← [V, v];

8: w = op(v);
9: h = VTw, T ← [T, h];
10: f = w − V h;
11: Re-orthogonalize to adjust f ;
12: end for

Algorithm 9 Inner Iteration of the IRLM
Input: V , T , f , p.
Output: V , T , f .
1: k = column number of V ;
2: Perform Algorithm 8 on V , T and f for p steps;
3: Set Q = Ik+p and {σ j } to be the p smallest eigenvalues of T ;
4: for j = 1 : p do
5: T − σ j I = Q j R j ;
6: T = QT

j TQ j,Q ← QQ j ;
7: end for
8: f ← V · Q(:, k + 1) · T (k + 1, k) + f · Q(k + p, k);
9: V ← V · Q(:, 1 : k), T ← T (1 : k, 1 : k);

4.2 The Compressed Eigen Problem
In the previous section, we introduced an effective compression technique for a PD
matrix A subject to a prescribed compression error ε . The compressed operator
is also symmetric and positive definite. Therefore, by the well-known eigenvalue
perturbation theory, we know that the eigenpairs of the compressed operator can be
used as good approximations for the eigenpairs of the original matrix. In particular,
we have the following estimate:

Lemma 4.2.1. Let Θ = Ψ(ΨT AΨ)−1ΨT be a rank-N compressed approximation of
A−1 introduced in Theorem 2.2.1 such that ‖A−1 − Θ‖2 ≤ ε. Let µ1 ≥ µ2 ≥ · · · ≥

µn > 0 be the eigenvalues of A−1 in a descending order, and µ̃1 ≥ µ̃2 ≥ · · · ≥ µ̃N >
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0 be the nonzero eigenvalues of Θ in a descending order. Then we have

|µi − µ̃i | ≤ ε, 1 ≤ i ≤ N ; µi ≤ ε, N < i ≤ n.

Moreover, let ṽi, i = 1, · · · , N , be the corresponding normalized eigenvectors of Θ
such that Θṽi = µ̃i ṽi, then we have

‖A−1ṽi − µi ṽi‖2 ≤ 2ε, 1 ≤ i ≤ N .

Since the nonzero eigenvalues of Θ and the corresponding eigenvectors actually re-
sult from the nonsingular stiffness matrix Ast = Ψ

T AΨ, we will call these eigenpairs
the essential eigenpairs of Θ in what follows. We will also need the following
lemma for developing our algorithms.

Lemma 4.2.2. Let ( µ̃i, ṽi), i = 1, · · · , N , be the N essential eigenpairs of Θ given
in Lemma 4.2.1.

(i) Let wi = Ψ
T ṽi, then

Ψ
T
ΨA−1st wi = µ̃iwi, 1 ≤ i ≤ N .

(ii) Let zi = Ψ
†ṽi = (ΨTΨ)−1ΨT ṽi, then

A−1st Ψ
T
Ψzi = µ̃i zi, 1 ≤ i ≤ N,

where Ast = Ψ
T AΨ is the stiffness matrix. Conversely, if either (i) or (ii) is true,

then ( µ̃i, ṽi), i = 1, · · · , N , are eigenpairs of Θ.

Similar to Lemma 4.2.1, we have the following estimates for multiresolution de-
composition.

Lemma 4.2.3. Given an integer K , let Θ(k) = Ψ(k) ((Ψ(k))T AΨ(k))−1(Ψ(k))T , k =

1, 2, · · · , K , with Ψ(k) given in (3.9). Write A−1 = Θ(0). Let (µ(k)
i , v (k)

i ), i =

1, 2, · · · , N (k), be the essential eigenpairs of Θ(k) where µ(k)
1 ≥ µ(k)

2 ≥ · · · ≥

µ(k)
N (k ) > 0. Then for any 0 ≤ k′ < k ≤ K , we have

|µ(k ′)
i − µ(k)

i | ≤ εk, 1 ≤ i ≤ N (k); |µ(k ′)
i | ≤ εk, N (k) < i ≤ N (k ′),

and
‖Θ(k ′)v (k)

i − µ(k ′)
i v (k)

i ‖2 ≤ 2εk, 1 ≤ i ≤ N (k) .
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Proof. By Theorem 3.3.1 we have that ‖Θ(0) − Θ(k) ‖2 = ‖A−1 − Θ(k) ‖2 ≤ εk ,
k = 1, 2, · · · , K . From the definition of Θ(k) and the decomposition (3.10), one can
easily check that

A−1 = Θ(0) � Θ(1) � · · · � Θ(K−1) � Θ(K ) .

Then the results follow immediately. �

On Compressed Eigenproblems
Recall that the efficiency of constructing the compressed operator we propose relies
on the exponential decay property of the basis Ψ. This spacial exponential decay
feature allows us to localize Ψ and to construct sparse stiffness matrix Ast = Ψ

T AΨ

without compromising compression accuracy ε in O(nnz(A) · (log( 1ε ) + log n)c)
time. In fact, the problem of using spatially localized/compact basis to compress
high-dimensional operator and to approximate eigenspace of smallest eigenvalues
has long been studied in different ways. A representative pioneer work is the
method of compressed modes proposed by Ozoliņš et al. [90], intended originally
for Schrödinger’s equation in quantum physics. By adding a L1 regularization to
the variational form of an eigenproblem, they obtained spatially compressed basis
modes that well span the desired eigenspace. Though the way they obtain sparsity
is quite different from what we do, both methods obtain interestingly similar results
for some model problems. It can be inspiring to make comparison between their
method and ours, so that readers can have better understanding of our approach. We
leave the detailed comparison to Section 4.2.

4.3 Hierarchical Spectrum Completion
Now that we have a sequence of compressed approximations, we next seek to use
this decomposition to compute the dominant spectrum of A−1 down to a prescribed
value in a hierarchical manner. In particular, we propose to decompose the target
spectrum into several segments of different scales, and then allocate the computation
of each segment to a certain level of the compressing sequence so that the problem
on each level is well-conditioned.

To implement this idea, we first go back to the one-level compression settings.
Suppose that we have accurately obtained the first m essential eigenpairs (µi, vi),
i = 1, · · · ,m, of Θ = Ψ(ΨT AΨ)−1ΨT = ΨA−1st Ψ

T , and our aim is to compute the
following mtar − m eigenpairs (namely extend to the first mtar eigenpairs) using the
Lanczos method. Define Vm = span{vi : 1 ≤ i ≤ m} and Vm+ = span{vi : m < i ≤
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N } = V⊥m ∩ span{Ψ}. Then to perform the Lanczos method to compute the next
segment of eigenpairs of Θ, we need to repeatedly apply the operator ΨA−1st Ψ

T to
vectors in Vm+ , which requires to compute A−1st w for w ∈ Wm+ = Ψ

T (Vm+ ).

Ideally we want the computation of the following mtar −m eigenpairs to be restricted
to a problem with bounded spectrum width that is proportional to µm/µmtar . This
is possible since we assume that we have accurately obtained the span space Vm

of the first m eigenvectors, and thus we can consider our problem in the reduced
space orthogonal to Vm. In this case, the CG method will be efficient for computing
inverse matrix operations.

Definition 4.3.1. Let A be a symmetric, positive definite matrix, and V be an
invariant subspace of A. We define the condition number of A with respect to V as

κ(A,V ) =
λmax (A,V )
λmin(A,V )

,

where

λmax (A,V ) = max
v∈V,v,0

vT Av
vTv

, λmin(A,V ) = min
v∈V,v,0

vT Av
vTv

.

Theorem4.3.2. Let A be a symmetric, positive definite matrix, andV be an invariant
subspace of A. When using the conjugate gradient method to solve Ax = b with
initial guess x0 such that r0 = b − Ax0 ∈ V , we have the following estimate

‖xk − x∗‖A ≤ 2
(√κ(A,V ) − 1
√
κ(A,V ) + 1

) k
‖x0 − x∗‖A,

and
‖xk − x∗‖2 ≤ 2

√
κ(A,V )

(√κ(A,V ) − 1
√
κ(A,V ) + 1

) k
‖x0 − x∗‖2,

where x∗ is the exact solution, and xk ∈ x∗ + V is the solution at the kth step
of CG iteration. Thus it takes k = O(κ(A,V ) · log 1

ε ) steps (or k = O
(
κ(A,V ) ·

(log κ(A,V ) + log 1
ε )

)
steps) to obtain a solution subject to relative error ε in the

energy norm (or l2 norm).

Proof. We only need to notice that the k-order Krylov subspace K (A, r0, k) gener-
ated by A and r0 satisfies

K (A, r0, k) ⊂ V, ∀k ∈ Z.

�
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Notice that, for any i = m + 1, · · · , N , though vi ∈ Vm+ is an eigenvector of
Θ = ΨA−1st Ψ

T , wi = ΨTvi is not an eigenvector of A−1st (but an eigenvector of
ΨTΨA−1st ) since we do not require Ψ to be orthonormal. Therefore the space Wm+

is not an invariant space of Ast , and if we directly use the CG method to solve
Ast x = w, the convergence rate will depend on κ(Ast ) = λmax (Ast )λmin(Ast )−1 ,
instead of λmax (Ast )µm as intended. Though we bound λmax (Ast ) from above by
δ(P) and λmin(Ast ) from below by λmin(A) (See Theorem 2.2.25), κ(Ast ) can be
still large since we prescribe a bounded compression rate in practice to ensure the
efficiency of the compression algorithm.

Therefore, we need to find a proper invariant space, so that we can make use of the
knowledge of the space Vm and restrict the computation of A−1st w to a problem of
narrower spectrum.

Lemma 4.3.3. Let (µi, vi), i = 1, · · · , N , be the essential eigenpairs of Θ =
Ψ(ΨT AΨ)−1ΨT = ΨA−1st Ψ

T , such that µ1 ≥ µ2 ≥ · · · ≥ µN > 0. Let (ΨTΨ)
1
2

be the square root of the symmetric, positive definite matrix ΨTΨ. Then (µi, zi),
i = 1, · · · , N , are all eigenpairs of (ΨTΨ)

1
2 A−1st (ΨTΨ)

1
2 , where

zi = (ΨT
Ψ)−

1
2Ψ

Tvi, 1 ≤ i ≤ N .

Moreover, for any subset S ⊂ {1, 2, · · · , N }, and ZS = span{zi : i ∈ S}, we have

K (AΨ, z, k) ⊂ ZS, ∀z ∈ ZS, ∀k ∈ Z,

where AΨ = (ΨTΨ)−
1
2 Ast (ΨTΨ)−

1
2 .

Lemma 4.3.4. Let Ψ be given in Construction 2.2.9, then we have

λmin(ΨT
Ψ) ≥ 1, λmax (ΨT

Ψ) ≤ 1 + ε(P)δ(P),

and thus
κ(ΨT

Ψ) ≤ 1 + ε(P)δ(P).

Proof. Let U be the orthogonal complement basis of Φ as given in (3.2), so [Φ,U]
is an orthonormal basis of Rn, and we have ΦΦT + UUT = In. Since ΦTΨ =

ΦT A−1Φ(ΦT A−1Φ)−1 = IN , we have

Ψ
T
Ψ = ΨT

ΦΦ
T
Ψ + ΨTUUT

Ψ = IN + Ψ
TUUT

Ψ.
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We then immediately obtain ΨTΨ � IN , and thus λmin(ΨTΨ) ≥ 1. To obtain an
upper bound of λmax (ΨTΨ), we notice that from the construction of Φ we have

‖x − PΦx‖22 ≤ ε(P)xT Ax, ∀x ∈ Rn =⇒ (In − PΦ)2 � ε(P) A,

where PΦ = ΦΦT denotes the orthogonal projection into span{Φ}. Since ΦΦT +

UUT = In, we have

UUT = In − ΦΦ
T = (In − ΦΦ

T )2 � ε(P)A.

Therefore we have

Ψ
T
Ψ = IN + Ψ

TUUT
Ψ � IN + ε(P)ΨT AΨ = IN + ε(P) Ast,

and by Theorem 2.2.25 we obtain

λmax (ΨT
Ψ) ≤ 1 + ε(P)λmax (Ast ) ≤ 1 + ε(P)δ(P).

�

Theorem 4.3.5. Let AΨ and (µi, zi) be defined as in Lemma 4.3.3. Let Zm+ =

span{zi : m < i ≤ N }, then Zm+ is an invariant space of AΨ, and we have

κ(AΨ, Zm+ ) ≤ µm+1δ(P).

Proof. By Lemma 4.3.3 and Lemma 4.3.4, we have

λmax (AΨ, Zm+ ) ≤ λmax (AΨ) = ‖(ΨT
Ψ)−

1
2 Ast (ΨT

Ψ)−
1
2 ‖2

≤ ‖Ast ‖2‖(ΨT
Ψ)−1‖2 ≤ δ(P).

And by the definition of Zm+ , we have

λmin(AΨ, Zm+ ) =
1

λmax (A−1
Ψ
, Zm+ )

=
1

λmax ((ΨTΨ)
1
2 A−1st (ΨTΨ)

1
2 , Zm+ )

=
1

µm+1
.

�

Inspired by Lemma 4.3.4 and Theorem 4.3.5, we now consider to solve Ast x = w

efficiently forw ∈ Wm+ = Ψ
T (Vm+ ) = (ΨTΨ)

1
2 (Zm+ ) bymaking use of the controlled

condition number κ(AΨ, Zm+ ) and κ(ΨTΨ). Theoretically, we can compute x =

A−1st w by the following steps:
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(i) Compute b = (ΨTΨ)−
1
2w ∈ Zm+;

(ii) Use the CG method to compute y = A−1
Ψ

b with initial guess y0 such that
b − AΨy0 ∈ Zm+;

(iii) Compute x = (ΨTΨ)−
1
2 y.

Notice that this procedure is exactly solving Ast x = w using the preconditioned CG
method with preconditioner ΨTΨ, which only involves applying Ast and (ΨTΨ)−1

to vectors, but still enjoys the good conditioning property of AΨ restricted to Zm+ .
Therefore we have the following estimate:

Corollary 4.3.6. Consider using the PCG method to solve Ast x = w for w ∈ Wm+

with preconditioner ΨTΨ and initial guess x0 such that r0 = w − Ast x0 ∈ Wm+ . Let
x∗ be the exact solution, and xk be the solution at the kth step of the PCG iteration.
Then we have

‖xk − x∗‖Ast ≤ 2
(√κ(AΨ, Zm+ ) − 1
√
κ(AΨ, Zm+ ) + 1

) k
‖x0 − x∗‖Ast ,

and

‖xk − x∗‖2 ≤ 2
√
κ(ΨTΨ)κ(AΨ, Zm+ )

(√κ(AΨ, Zm+ ) − 1
√
κ(AΨ, Zm+ ) + 1

) k
‖x0 − x∗‖2.

Proof. Let yk = (ΨTΨ)
1
2 xk and y∗ = (ΨTΨ)

1
2 x∗, then we have

‖yk − y∗‖
2
2 = (xk − x∗)T

Ψ
T
Ψ(xk − x∗),

and
‖yk − y∗‖

2
AΨ = (yk − y∗)T AΨ(yk − y∗) = ‖xk − x∗‖2Ast

.

Noticing that (ΨTΨ)−
1
2 r0 ∈ Zm+ and K (AΨ, (ΨTΨ)−

1
2 r0, k) ⊂ Zm+ ∀k, the results

follow from Theorem 4.3.2. �

By Corollary 4.3.6, to compute a solution of Ast x = w subject to a relative error ε
in the Ast-norm, the number of needed PCG iterations is

O
(
κ(AΨ, Zm+ ) · log

1
ε

)
= O

(
µm+1δ(P) · log

1
ε

)
.
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This is also an estimate of the number of needed PCG iterations for a relative error
ε in the l2-norm, if we assume that κ(ΨTΨ), κ(AΨ, Zm+ ) ≤ 1

ε .

In what follows we will denote M = ΨTΨ. Notice that the nonzero entries of M

are due to the overlapping support of column basis vectors of Ψ, while the nonzero
entries of Ast = Ψ

T AΨ are results of interactions between column basis vectors of
Ψ with respect to A. Thus we can reasonably assume that nnz(M) ≤ nnz(Ast ).
Suppose that in each iteration of the whole PCG procedure, we also use the CG
method to compute M−1b for some b subject to a relatively higher precision ε̂ ,
which requires a cost of O(nnz(M) · κ(M) · log 1

ε̂ ). In practice it is sufficient to
take ε̂ smaller than but comparable to ε (e.g. ε̂ = 0.1ε), so log( 1ε̂ ) = O(log 1

ε ). By
Lemma 4.3.4 we have κ(M) = O(ε(P)δ(P)). Then the computational complexity
of each single iteration can be bounded by

O
(
nnz(Ast )

)
+O

(
nnz(M) · κ(M) · log

1
ε

)
= O

(
nnz(Ast ) · ε(P)δ(P) · log

1
ε

)
,

and the total cost of computing a solution of Ast x = w subject to a relative error ε
is

O
(
µm+1δ(P) · nnz(Ast ) · ε(P)δ(P) · (log

1
ε

)2
)
. (4.4)

We remark that when the original size of A ∈ Rn×n is large, the eigenvectors V

are long and dense. It would be expensive to compute inner products with these
long vectors over and over again. In fact, in the previous discussions the operator
Θ = ΨA−1st Ψ

T (of the same size as A) and the eigenvectors V are only for purpose
of analysis use to explain the idea of our method. In practical, for a long vector
v = Ψv̂, we do not need to keep track of the whole vector, but only need to store
its much shorter coefficients v̂ of compressed dimension N instead. When we
compute v2 = Θv1 = ΨA−1st Ψ

Tv1, it is equivalent to computing v̂2 = A−1st M v̂1, where
v j = Ψv̂ j, j = 1, 2, and M = ΨTΨ. One can check that the analysis presented above
still applies. So in the implementation of our method, we only deal with operator
A−1st M and short vectors V̂ , and the long eigenvectors V and Ψ will not appear until
in the very end when we recover V = ΨV̂ . We remark that since the eigenvectors
of Θ are orthogonal, their coefficient vectors V̂ are M-orthogonal, i.e. V̂T MV̂ = I.
We use ‖x‖M to denote the norm

√
xT M x.

Recall that in the Lanczos method with respect to operator Θ, the upper-Hessenberg
matrix T in the Arnoldi relation

ΘV = VT + f eT
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is indeed tridiagonal, since Θ is symmetric, and VT [V, f ] = [I, 0]. This upper-
Hessenberg matrix T being tridiagonal is the reason why the implicit restarting
process(Algorithm 9) is efficient. Now since we are actually dealing with the
operator A−1st M and the coefficient vectors V̂T = M−1ΨTV , the Arnoldi relation
becomes

A−1st MV̂ = V̂T + f̂ eT,

where f̂ = M−1ΨT f . So as long as we keep V̂ M-orthogonal and f̂ M-orthogonal
to V̂ , T will still be tridiagonal since

T = V̂T MV̂T = V̂T M (V̂T + f̂ eT ) = V̂T M A−1st MV̂

is symmetric. We therefore modified Algorithm 8 to Algorithm 10 to take M-
orthogonality into consideration.

Summarizing the analysis above, we proposeAlgorithm 11 for extending a given col-
lection of eigenpairs using theLanczos typemethod. The operatorOP( · ; Ast, M, εop)
exploits our key idea that uses M = ΨTΨ as the preconditioner to effectively reduce
the number of PCG iterations in every operation of A−1st M . For convenience, we
will use “x = pcg(A, b, M, x0, ε )” to represent the operation of computing x = A−1b

using the PCGmethod with preconditioner M and initial guess x0, subject to relative
error ε . “x = pcg(A, b,−, x0, ε )” means no preconditioner is used (i.e. the normal
CG method), and “x = pcg(A, b, M,−, ε )” means an all zero vector is used as the
initial guess.

Algorithm 10 General Lanczos Iteration (p-step extension)

Input: V̂ , T , f̂ , target operator op(·), p, inner product matrix M
Output: V̂ , T , f̂
1: k = column number of V̂ ;
2: for i = 1 : p do
3: β = ‖ f̂ ‖M ;
4: if β < ε then
5: generate a new random f̂ , β = ‖ f̂ ‖M ;
6: end if
7: T ←

( T
βeT

k+i−1

)
, v̂ = f̂ /β, V̂ ← [V̂, v̂];

8: w = op(v̂);
9: h = V̂T Mw, T ← [T, h];
10: f̂ = w − V̂ h;
11: Re-orthogonalize to adjust f (with respect to M-orthogonality);
12: end for
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Function y = Operator OP(x; Ast, M, εop)

1: w = M x;
2: y = pcg(Ast,w, M,−, εop);

Algorithm 11 Eigenpair Extension

Input: V̂ini, Dini, OP( · ; Ast, M, εop), target number mtar ,
prescribed accuracy ε , eigenvalue threshold µ, searching step d.

Output: V̂ex , Dex .
1: Generate random initial vector V̂ = v̂ that is M-orthogonal to V̂ini;
2: repeat
3: perform d steps of general Lanczos iteration (Algorithm 10) with operator

OP to extend V̂,T ;
4: while Lanczos residual > ε , do
5: Perform c · d steps of shifts to restart Lanczos (Algorithm 9) and renew

V̂,T ;
6: end while
7: Find the smallest eigenvalue of T as µ̂;
8: until µ̂ < µ or dim(V̂ ) ≥ mtar − dim(V̂ini).
9: mnew = dim(V̂ );
10: while Lanczos residual > ε , do
11: Perform c · mnew steps of shifts to restart Lanczos (Algorithm 9) and renew

V̂,T ;
12: end while
13: PSPT = T (Schur Decomposition);

14: V̂ex = [V̂ini, V̂ P], Dex =

[
Dini

S

]
;

Given an existing eigenspace Vini = ΨV̂ini, Algorithm 11 basically uses the Lanczos
method to find the following eigenpairs ofΘ in the space V⊥ini. Notice that the output
V̂ex gives the coefficients of the desired eigenvectors Vex in the basis Ψ. However,
different from the classical Lanczos method, we do not prescribe a specific number
for the output eigenpairs. Instead, we set a threshold µ to bound the last output
eigenvalue. As we will develop our idea into a multi-level algorithm that pursues
a number of target eigenpairs hierarchically, the output of the current level will be
used to generate the initial eigenspace for the higher level. Therefore, the purpose of
setting a threshold µ on the current level is to bound the restricted condition number
on the higher level, as the initial eigenspace Vini from the lower level helps to bound
the restricted condition number on the current level.

The choice of the threshold µ will be discussed in detail after we introduce the
refinement procedure. Here, to develop a hierarchical spectrum completion method
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using the analysis above, we state the hierarchical versions of Lemma 4.3.4 and
Theorem 4.3.5.

Lemma 4.3.7. Let Ψ(k) be given in (3.9), and M (k) = (Ψ(k))TΨ(k). Then we have

λmin(M (k)) ≥ 1, λmax (M (k)) ≤ 1 + εkδk,

and thus
κ(M (k)) ≤ 1 + εkδk .

Proof. The proof is similar to the proof of Lemma 4.3.4. Let U (k) = (Φ(k))⊥ be
the orthogonal complement basis of Φ(k). According to Theorem 3.3.1, we have

‖x − PΦ(k ) x‖22 ≤ εk ‖x‖2A,

which implies that

U (k) (U (k))T = (In −Φ
(k) (Φ(k))T ) ≤ εk A.

Notice that (Φ(k))TΨ(k) = IN (k ) , Φ(k) (Φ(k))T +U (k) (U (k))T = In, we thus have

M (k) = (Ψ(k))TΦ(k) (Φ(k))TΨ(k) + (Ψ(k))TU (k) (U (k))TΨ(k)

= IN (k ) + (Ψ(k))TU (k) (U (k))TΨ(k),

=⇒ IN (k ) � M (k) � IN (k ) + εk (Ψ(k))T AΨ(k) = IN (k ) + εk A(k) .

Therefore we have λmin(M (k)) ≥ 1, and by Corollary 3.1.4 we have

λmax (M (k)) ≤ 1 + εkλmax (A(k)) ≤ 1 + εkδk .

�

Theorem 4.3.8. Let A(k) and Ψ(k) be given in (3.9), and M (k) = (Ψ(k))TΨ(k). Let
(µ(k)

i , v (k)
i ), i = 1, · · · , N (k), be the essential eigenpairs ofΘ(k) = Ψ(k) (A(k))−1(Ψ(k))T .

Define
z(k)

i = (M (k))−
1
2 (Ψ(k))Tv (k)

i , 1 ≤ i ≤ N (k) .

Given an integer mk , let Z (k)
m+
k

= span{z(k)
i : mk < i ≤ N (k)}, then Z (k)

m+
k

is an invariant

space of A(k)
Ψ
= (M (k))−

1
2 A(k) (M (k))−

1
2 , and we have

κ(A(k)
Ψ
, Z (k)

m+ ) ≤ µ(k)
mk+1δk .
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Moreover, consider using the PCG method to solve A(k) x = w for w ∈ W (k)
m+
k

with

preconditioner M (k) and initial guess x0 such that r0 = w − A(k) x0 ∈ W (k)
m+
k

, where

W (k)
m+
k

= span{(Ψ(k))Tv (k)
i : mk < i ≤ N (k)}. Let x∗ be the exact solution, and xt be

the solution at the tth step of the PCG iteration. Then we have

‖xt − x∗‖A(k ) ≤ 2
(√µ(k)

mk+1δk − 1√
µ(k)

mk+1δk + 1

) t
‖x0 − x∗‖A(k ),

and

‖xt − x∗‖2 ≤ 2
√
εk µ

(k)
mk+1δ

2
k

(√µ(k)
mk+1δk − 1√
µ(k)

mk+1δk + 1

) t
‖x0 − x∗‖2.

Recall that we will use the CG method to implement Lanczos iteration on each
level k to complete the target spectrum. To ensure the efficiency of the CG method,
namely to bound the restricted condition number κ(A(k)

Ψ
, Z (k)

m+ ) on each level, we need
a priori knowledge of the spectrum {(µ(k)

i , v (k)
i ) : 1 ≤ i ≤ mk } such that µ(k)

mk+1δk

is uniformly bounded. This given spectrum should be inductively computed on the
lower level k + 1. But notice that there is a compression error between each two
neighbor levels, which will compromise the orthogonality and thus the theoretical
bound for restricted condition number, if we directly use the spectrum of the lower
level as a priori spectrum of the current level. Therefore we introduce a refinement
method in Section 4.4 to overcome this difficulty.

4.4 Cross-Level Refinement of Eigenspace
In the previous section we have established a one-level spectrum extension method,
given that a partial accurate spectrum is provided. To develop this method into an
inductive hierarchical spectrum completion procedure, a natural idea is to use the
spectrum computed at the lower level as the initial spectrum to be used in the higher
level. However, such initial spectrum is not actually good enough since there is a
compression error between each two neighboring levels. Thus we need to use a
compatible refinement technique to refine the initial spectrum.

Now consider the cross-level spectrum refinement between the two consecutive lev-
els, the h-level and the l-level. The two operators areΘh = Ψh ((Ψh)T AΨh)−1(Ψh)T

and Θl = Ψl ((Ψl )T AΨl )−1(Ψl )T respectively. We have the relations

Ψl = Ψh
Ψ

l, U l = ΨhU l,



106

Al
st = (Ψl )T AΨl = (Ψl )T (Ψh)T AΨh

Ψ
l = (Ψl )T Ah

stΨ
l,

Bl
st = (U l )T AU l = (U l )T (Ψh)T AΨhU l = (U l )T Ah

stU
l,

(Ah
st )
−1 = Ψl (Al

st )
−1(Ψl )T +U l (Bl

st )
−1(U l )T,

Θ
h = Ψh (

Ψ
l (Al

st )
−1(Ψl )T +U l (Bl

st )
−1(U l )T )

(Ψh)T = Θl +U l (Bl
st )
−1(U l )T .

(4.5)

Now suppose that we have obtained the first ml essential eigenpairs (µl,i, vl,i), i =

1, · · · ,ml , of Θl . We want to use these eigenpairs as initial guess to obtain the first
mh essential eigenpairs of Θh. Recall that we have the estimates

|µh,i − µl,i | ≤ εl, 1 ≤ i ≤ ml,

and
‖Θhvl,i − µh,ivl,i‖2 ≤ 2εl, 1 ≤ i ≤ ml,

where εl is the compression error bound. These estimates give us confidence that
we can obtain (µh,i, vh,i), i = 1, · · · ,mh, efficiently from (µl,i, vl,i), i = 1, · · · ,ml , by
using some refinement technique.

Indeed, wewill use theOrthogonal IterationwithRitzAcceleration as our refinement
method. Consider an initial guess Q(0) of the first m eigenvectors of a PD operator
Θ. To obtain more accurate eigenvalues and eigenspace, the Orthogonal Iteration
with Ritz Acceleration runs as follows:

Q(0) ∈ Rn×m given with (Q(0))TQ(0) = Im

F (0) = ΘQ(0)

for k = 1, 2, · · ·

Q(k) R(k) = F (k−1) (QR factorization)

F (k) = ΘQ(k) (∗)

S(k) = (Q(k))T F (k)

P(k) D(k) (P(k))T = S(k) (Schur decomposition)

Q(k) ← Q(k) P(k)

F (k) ← F (k) P(k)

end
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To state the convergence property of the Orthogonal Iterationwith Ritz Acceleration,
we first define the distance between two spaces. LetV1,V2 ⊂ R

n be two linear spaces,
and PV1,PV2 be the orthogonal projections onto V1,V2 respectively. We define the
distance between V1 and V2 as

dist(V1,V2) = ‖PV1 − PV2 ‖2.

We also use the same notation dist(V1,V2) when V1,V2 are matrices of column
vectors. In this case dist(V1,V2) means dist(span{V1}, span{V2}).

Suppose that the diagonal entries µ(k)
i , i = 1, · · · ,m, of D(k) are in a decreasing

order, then µ(k)
i is a good approximation of the ith eigenvalue of Θ, and span{Q(k)

i }

is a good approximation of the eigenspace spanned by the first i eigenvectors of Θ,
where Q(k)

i denotes the first i columns of Q(k). We would like to emphasize that the
meaning of the superscript (k) of µ(k)

i is different from those in Section 4.3. More
precisely, we have the following convergence estimate:

Theorem (Stewart [117], 1968): Let (µi, vi), i = 1, · · · , N , be the ordered (es-
sential) eigenpairs of Θ, and let µ(k)

i , i = 1, · · · ,m, be the ordered eigenvalues of
D(k) = (Q(k))TΘQ(k) given in the Orthogonal Iteration with Ritz Acceleration (∗).
Let Vm = [v1, v2, · · · , vm], and d (0) = dist(Vm,Q(0)). Then we have

|µi − µ
(k)
i | ≤ O

(( µm+1
µi

)2k
· ‖Θ‖2 ·

(d (0))2

1 − (d (0))2
)
, 1 ≤ i ≤ m.

Moreover, we have

dist(Vm,Q(k)) ≤ O
(( µm+1

µm

) k
·

d (0)√
1 − (d (0))2

)
,

and for i = 1, · · · ,m − 1, if we further assume that αi = µi − µi+1 > 0, then we have

dist(Vi,Q
(k)
i ) ≤ O

(( µm+1
µi

) k
·

d (0)√
1 − (d (0))2

)
+O

(√i
αi
·
( µ2m+1
µmµi

) k
· ‖Θ‖2 ·

(d (0))2

1 − (d (0))2
)
,

where Vi and Q(k)
i are the first i columns of Vm and Q(k) respectively.

Now we go back to our problem, where we have Θ = Θh, m = ml , and Q(0) =

V l
ml
= [vl,1, · · · , vl,ml

]. We next consider the efficiency of this refinement technique
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in our problem. As long as the initial distance d (0) = dist(V h
ml
,V l

ml
) < 1, the first

mh eigenvalues and the eigenspace of the first mh eigenvectors of Θh converges
exponentially fast at a rate (

µh,ml+1
µh,mh

)k . We can expect that a few iterations of
refinement will be sufficient to give an accurate eigenspace for narrowing down
the residual spectrum of Θh, if we can ensure that the ratio µh,ml+1

µh,mh
is small enough.

This will be verified in our numerical examples to be presented in Section 4.6. In
particular, to refine the first mh eigenpairs subject to a prescribed accuracy ε , we
need K = O(log( 1ε )/ log(

µh,mh

µh,ml+1
)) refinement iterations.

The main cost of the refinement procedure comes from the computation of ΘhQ(0)

and the computation of ΘhQ(k) in each iteration. We will reduce the computational
cost by using the fact that Q(k) is a good approximation of eigenvectors of Θh. We
first consider how to compute ΘhQ(0) efficiently.

Notice that in our problem, we take Q(0) = V l
ml
, whose columns are the first ml

eigenvectors of Θl . Therefore by (4.5), we have

Θ
hQ(0) = ΘhV l

ml
= ΘlV l

ml
+U l (Bl

st )
−1(U l )TV l

ml
= V l

ml
Dl

ml
+U l (Bl

st )
−1(U l )TV l

ml
,

where Dl
ml

is a diagonalmatrixwhose diagonal entries are µl,1, µl,2, · · · , µl,ml
. Recall

that by Lemma 3.1.1 and Corollary 3.1.4, κ(Bl
st ) is bounded by εlδh that can be

well controlled in the decomposition procedure. Thus it is efficient to solve (Bl
st )
−1

using the CG method. As we have mentioned before, applying (U l )T or U l from
the left is performed by doing patch-wise Householder transformations that involve
only one local Householder vector on each patch, which takes O(N h) computational
cost, where N h is the compressed dimension on level h or the size of Ah

st . Therefore
in the CG method, the cost of matrix multiplication of Bl

st = (U l )T Ah
stU

l mainly
comes from the number of nonzero entries of Ah

st . Then the total computational cost
of computing ΘhQ(0) subject to a relative error ε can be bounded by

O
(
ml · nnz(Ah

st ) · εlδh · log(
1
ε

)
)
.

Next, we consider how to compute ΘhQ(k). To do so, we first compute w(k)
i =

(Ψh)T q(k)
i , where q(k)

i is the ith column of Q(k), then compute (Ah
st )
−1w(k)

i , and
apply Ψh. Again we will use the PCG method with predictioner Mh = (Ψh)TΨh to
compute (Ah

st )
−1w(k)

i . Aswe have discussed in Section 4.3, this is equivalent to using
the CGmethod to compute (Ah

Ψ)−1z(k)
i , where Ah

Ψ = (Mh)−
1
2 Ah

st (Mh)−
1
2 , and z(k)

i =

(Mh)−
1
2w(k)

i = (Mh)−
1
2 (Ψh)T q(k)

i . Inspired by Corollary 4.3.6, we seek to provide
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a good initial guess for the CG method to ensure efficiency. In the Orthogonal Itera-
tion with Ritz Acceleration (∗), one can check that (Q(k))T (ΘhQ(k)−Q(k) D(k)) = 0,
where D(k) is a diagonal matrix with diagonal entries µ(k)

1 , µ(k)
2 , · · · , µ(k)

ml
, and there-

fore

(Z (k))T (
(Ah
Ψ)−1Z (k) − Z (k) D(k))

= (Q(k))TΨh(Mh)−
1
2

(
(Ah
Ψ)−1(Mh)−

1
2 (Ψh)TQ(k) − (Mh)−

1
2 (Ψh)TQ(k) D(k)

)
= (Q(k))T

(
Ψh(Ah

st )
−1(Ψh)TQ(k) − Ψh(Mh)−1(Ψh)TQ(k) D(k)

)
= (Q(k))T

(
Θ

hQ(k) −Q(k) D(k)
)

= 0,

where we have used that Q(k) ∈ span{Ψh} and so Ψh(Mh)−1(Ψh)TQ(k) = Q(k).
This observation implies that if we use µ(k)

i z(k)
i as the initial guess for computing

(Ah
Ψ)−1z(k)

i using the CGmethod, the initial residual z(k)
i − (Ah

Ψ)(µ(k)
i z(k)

i ) is orthog-
onal to (Ah

Ψ)−1Z (k). Since Q(k) are already good approximate essential eigenvectors
of Θh, Z (k) are good approximate eigenvectors of (Ah

Ψ)−1, we can expect that the
target eigenspace Zmh

, namely the eigenspace of the first mh eigenvectors of (Ah
Ψ)−1,

can be well spanned in span{(Ah
Ψ)−1Z (k)}. Therefore we can reasonably assume that

z(k)
i − (Ah

Ψ)(µ(k)
i z(k)

i ) ∈ Zm+
h
= Z⊥mh

, and so again we can benefit from the restricted
condition number κ(Ah

Ψ, Zm+
h
) ≤ µh,mh+1δh as introduced in Section 4.3. More-

over, we notice that the spectral residual ‖Θhq(k)
i − µ(k)

i q(k)
i ‖2 is bounded by 2εl by

Lemma 4.2.3, and we have

‖(Ah
st )
−1w(k)

i −µ
(k)
i (Mh)−1w(k)

i ‖2 ≤ ‖(Ah
Ψ)−1z(k)

i −µ
(k)
i z(k)

i ‖2 = ‖Θ
hq(k)

i −µ
(k)
i q(k)

i ‖2,

(4.6)
where we have used λmin(Mh) ≥ 1 (Lemma 4.3.7). Thus if we use µ(k)

i z(k)
i as the

initial guess, the initial error will be bounded by 2εl at most, and the CG procedure
will only need

O
(
κ(Ah

Ψ, Zm+
h
) · log(

εl

ε
)
)
= O

(
µh,mh+1δh · log(

εl

ε
)
)

iterations to achieve a relative accuracy ε , instead ofO(κ(Ah
Ψ, Zm+

h
) · log( 1ε )). Notice

that using the initial guess µ(k)
i z(k)

i for (Ah
Ψ)−1z(k)

i is equivalent to using the initial
guess µ(k)

i (Mh)−1w(k)
i for (Ah

st )
−1w(k)

i .

Supported by the analysis above, we will compute (Ah
st )
−1w(k)

i using the precondi-
tioned CGmethod with preconditioner Mh and initial guess µ(k)

i (Mh)−1w(k)
i . Again

suppose that in each PCG iteration, we also use the CG method to apply (Mh)−1
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subject to a higher relative accuracy ε̂ , which takes O(nnz(Mh) · κ(Mh) · log( 1ε̂ ))
computational cost. In practice, it is sufficient to take ε̂ comparable to ε . Recall that
nnz(Mh) ≤ nnz(Ah

st ), and κ(Mh) ≤ O(εhδh) (Lemma 4.3.7), the cost of computing
ΘhQ(k) subject to a relative error ε is then bounded by

O
(
ml · µh,mh+1δh · log(

εl

ε
) · nnz(Ah

st ) · εhδh · log(
1
ε

)
)
.

Notice that in each refinement iterationwe also need to perform oneQR factorization
and one Schur decomposition, which together cost O(N h · m2

l ). However, as we
have mentioned in the introduction, we only consider the asymptotic complexity
of our method when the original A becomes super large. In this case, the number
mtar of the target eigenpairs is considered as a fixed constant, and so the term
O(N h · m2

l ) ≤ O(N hm2
tar ) is considered to be minor and will be omitted in our

complexity analysis. Therefore, the total cost of refining the first mh eigenpairs
subject to a prescribed accuracy ε can be bounded by

O
(
ml · nnz(Ah

st ) · εlδh · log(
1
ε

)
)

(4.7)

+O
(
ml · µh,mh+1δh · log(

εl

ε
) · nnz(Ah

st ) · εhδh · log(
1
ε

) · log(
1
ε

)/ log(
µh,mh

µh,ml+1
)
)
.

Again we remark that the operator Θh, the long vectors Q(k), F (k), V l and V h are
only for analysis use. Operations on long vectors of size n will be very expensive and
unnecessary, especially on lower levels where the compression dimension N h(the
size of Ah

st) is small. Notice that all long vectors on the h-level are in span{Ψh} as

Q(k) = ΨhQ̂(k), F (k) = ΨhF̂ (k), V l
ml
= ΨhV̂ l

ml
, V h

mh
= ΨhV̂ h

mh
,

we thus only operate on their coefficients in the basis Ψh. Correspondingly, when-
ever we need to consider orthogonality of long vectors, we replace it by the Mh-
orthogonality of their coefficient vectors. One can check that all discussions above
still apply. Also another advantage of using the coefficient vectors is that in the previ-
ous discussions, the good initial guess µ(k)

i (Mh)−1w(k)
i = µ(k)

i (Mh)−1(Ψh)T q(k)
i =

µ(k)
i q̂(k) is obtained explicitly.

Summarizing the analysis above, we propose the following Algorithm 12 as our re-
finement method. Since wewant the eigenspace spanned by the first mh eigenvectors
of Θh to be computed accurately, the refinement stops when dist(Q(k−1)

mh
,Q(k)

mh
) < ε
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for some prescribed accuracy ε , where Q(k)
mh

denotes the first mh columns of Q(k).
Since Q(k) is orthogonal, one can check that

dist(Q(k−1)
mh

,Q(k)
mh

) = ‖Q(k)
mh
−Q(k−1)

mh
(Q(k−1)

mh
)TQ(k)

mh
‖2

= ‖Q̂(k)
mh
− Q̂(k−1)

mh
(Q̂(k−1)

mh
)T MhQ̂(k)

mh
‖Mh

≤

√
λmax (Mh)‖Q̂(k)

mh
− Q̂(k−1)

mh
(Q̂(k−1)

mh
)T MhQ̂(k)

mh
‖2

≤
√
1 + εhδh‖Q̂

(k)
mh
− Q̂(k−1)

mh
(Q̂(k−1)

mh
)T MhQ̂(k)

mh
‖F .

In practical, we use ‖Q̂(k)
mh
− Q̂(k−1)

mh
(Q̂(k−1)

mh
)T MhQ̂(k)

mh
‖F < ε√

1+εhδh
as the stopping

criterion since it is easy to check. We have used Lemma 4.3.7 to bound λmax (Mh).

Algorithm 12 Eigenpair Refinement

Input: V̂ l
ml
, Dl

ml
, prescribed accuracy ε , target eigenvalue threshold µh.

Output: V̂ h
mh
, Dh

mh
.

1: Set Q̂(0) = V l
ml
, D(0) = Dl

ml
, k = 0;

2: for i = 1 : ml do
3: gi = pcg(Bl

st, (U
l )T Mhq̂(0)

i ,−,−, ε ); (Q̂ = [q̂1, · · · , q̂ml
])

4: end for
5: F̂ (0) = Q̂(0) D(0) +U lG; (G = [g1, · · · , gml

])
6: repeat
7: k ← k + 1;
8: Q̂(k) R(k) = F̂ (k−1); (QR factorization with respect to Mh orthogonality, i.e.

(Q̂(k))T MhQ̂(k) = I)
9: W (k) = MhQ̂(k);
10: for i = 1 : ml do
11: f̂ (k)

i = pcg(Ah
st,w

(k)
i , Mh, µ(k−1)

i q̂(k)
i , ε ); (F̂ = [ f̂1, · · · , f̂ml

])
12: end for
13: S(k) = (W (k))T F̂ (k);
14: P(k) D(k) (Pk))T = S(k) (Schur decomposition, diagonals of D(k) in decreas-

ing order);
15: renew mh so that µ(k)

mh
≥ µh > µ(k)

mh+1;
16: Q̂(k) ← Q̂(k) P(k), F̂ (k) ← F̂ (k) P(k);
17: until ‖Q̂(k)

mh
− Q̂(k−1)

mh
(Q̂(k−1)

mh
)T MhQ̂(k)

mh
‖F < ε .

18: V̂ h
mh
= Q̂(k)

mh
, Dh

mh
= D(k)

mh
. (D(k)

mh
denotes the first mh-size block of D(k))

4.5 Overall Algorithms
Combining the refinement method and the extension method, we now propose our
overall Algorithm 13 for computing partial eigenpairs of a PD matrix A. It utilizes
the a priori multiresolution decomposition of A to compute the first mtar eigenpairs
of A−1, by passing approximate eigenpairs from lower levels to higher levels to
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finally reach a prescribed accuracy. In particular, this algorithm starts with the
eigen decomposition of the lowest level (whose dimension is small enough), refines
and extends the approximate eigenpairs on each level, and stops at the highest
level. The overall accuracy is achieved by the prescribed compression error of the
highest level. It could be clearer using a flow chart (Figure 4.1) to illustrate the
procedure of our method. If we see the eigenproblem of the original matrix A as a
complicated model, our algorithm resolves the model complexity by hierarchically
simplifying/coarsening the originalmodel into an inductive sequence of approximate
models.

Figure 4.1: A flow chart illustrating the procedure of Algorithm 13.

Recall that the output V̂ (k)
ex of the extension process and the initializing process are

the coefficients of V (k)
ex in the basis Ψ(k). When passing these results from level k

to level k − 1, we need to recover the coefficients of V (k)
ex in the basis Ψ(k−1). This

can be done by simply reforming V̂ (k)
ex ← Ψ(k)V̂ (k)

ex (Line 3 in Algorithm 13), since
V (k)

ex = Ψ
(k)V̂ (k)

ex = Ψ
(k−1)Ψ(k)V̂ (k)

ex .

In Algorithm 13, the parameters should be chosen carefully to ensure computational
efficiency, by using the analysis in the previous sections. We shall discuss the choice
of each parameter separately. To be consistent, we first clarify some notations. Let
m̂k,mk be the numbers of output eigenpairs of the refinement process and the
extension process respectively on level k. Ignoring numerical errors, let (µ(k)

i , v (k)
i ),

i = 1, · · · , N (k), be the essential eigenpairs of the operator Θ(k) as in Section 4.3.
Let (µ(k)

i , v (k)
i ), i = 1, · · · ,mk , denote the output eigenpairs on level k. Notice that

(µ(k)
i , v (k)

i ), i = 1, · · · , m̂k , are the output of the refinement process, and (µ(k)
i , v (k)

i ),
i = m̂k + 1, · · · ,mk , are the output of the extension process.



113

Choice Of Multi-level Accuracies {ε (k)}: Notice that there is a compression error
εk between level k and level k − 1. That is to say, no matter how accurately we
compute the eigenpairs of Θ(k), they are approximations of eigenpairs of Θ(k−1)

subject to accuracy no better that εk . Therefore, on the one hand, the choice of
the algorithm accuracy ε (k) for the eigenpairs of Θ(k) on each level should not
compromise the compression error. On the other hand, the accuracy should not be
over-achieved due to the presence of the compression error. Therefore, we choose
ε (k) = 0.1 × εk in practice.

Choice Of Thresholds {(µ(k)
re , µ

(k)
ex )}Kk=1: These thresholds provide control on the

smallest eigenvalues of output eigenpairs of both the refinement process and the
extension process in that

µ(k)
m̂k
≥ µ(k)

re > µ(k)
m̂k+1, µ(k)

ex ≥ µ(k)
mk
, k = 1, 2, · · · , K .

Recall that the outputs of the refinement process are the inputs of the extension
process, and the outputs of the extension process are the inputs of the refinement
process on the higher level. By Theorem 4.3.8, to ensure the efficiency of the
extension process, we need to uniformly control the restricted condition number

κ(A(k)
Ψ
, Z (k)

m̂+
k

) ≤ µ(k)
m̂k+1δk < µ(k)

re δk .

Recall that in Section 4.4 the convergence rate of the refinement process is given by
µh,ml+1
µh,mh

, where l corresponds to k + 1 and h corresponds to k on each level k. Thus
to ensure the efficiency of the refinement process we need to uniformly control the
ratio

µ(k)
mk+1+1

µ(k)
m̂k

≤
µ(k)

mk+1

µ(k)
re

≤
µ(k+1)

mk+1 + εk+1

µ(k)
re

≤
µ(k+1)

ex + εk+1

µ(k)
re

,

where εk+1 is the compression error between level k+1 and level k, andwe have used
Lemma 4.2.3. Thus, more precisely, we need to choose thresholds {(µ(k)

re , µ
(k)
ex )}Kk=1

so that there exist uniform constants κ > 0, γ ∈ (0, 1) so that

(i) µ(k)
re δk ≤ κ, (ii)

µ(k+1)
ex + εk+1

µ(k)
re

≤ γ. (4.8)

Due to the existence of εk , condition (ii) implies that there is no need to choose µ(k)
ex

much smaller than εk , which suffers from over-computing but barely improves the
efficiency of the refinement process. So one convenient way is to choose

µ(k)
re = αεk+1, µ(k)

ex = βεk, (4.9)
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for some uniform constants α, β > 0 such that α > 1 + β. Recall that when
constructing the multiresolution decomposition, we impose conditions εkδk ≤ c

and εk = ηεk+1 for some uniform constants c > 0 and η ∈ (0, 1). Thus we have

µ(k)
re δk =

α

η
εkδk ≤

αc
η
= κ,

µ(k+1)
ex + εk+1

µ(k)
re

=
1 + β
α
= γ < 1.

Choice of Searching Step d: In the first part of the extension algorithm, we explore
the number mk so that µ(k)

mk
≤ µ(k)

ex , and we do this by setting an exploring step size
d and examining the last few eigenvalues every d steps of the Lanczos iteration.
The step size d should neither be too large to avoid over computing, nor too small
to ensure efficiency. In practical, we choose d = min{b dimΨ

(k )

10 c, bmtar

10 c}.

Complexity: Now we summarize the complexity of Algorithm 13 for computing
the first mtar largest eigenpairs of A−1 for a PD matrix A ∈ Rn×n subject to an error
ε. Suppose we are provided a K-level MMD of A with εkδk ≤ c, εk = ηεk+1,
and ε1 = ε. In what follows, we will uniformly estimate nnz(A(k)

st ) ≤ nnz(A),
ε (k) ≥ ε (1) = 0.1ε1 and mk ≤ mtar .

We first consider the complexity of all refinement process. Notice that by our choice
εk+1
ε (k ) =

εk+1
0.1ε (k ) =

1
0.1η , the factor log( εlε ) in (4.7), which is now log( εk+1

ε (k ) ), can be

estimated as O(log( 1η )). Since we can will make sure
µ(k )
mk+1+1

µ(k )
m̂k

≤ γ for some constant

γ < 1, the factor log(
µh,mh

µh,ml+1
) in (4.7), which is now log(

µ(k )
m̂k

µ(k )
mk+1+1

), can be seen as

a constant. Also using estimates µh,mh
δh ≤

αc
η = O( c

η ), εlδh ≤
c
η , εhδh ≤ c and

log 1
ε = O(log 1

ε ), we modify (4.7) to obtain the complexity of all K-level refinement
process

O
(
mtar · nnz(A) ·

c2

η
log(

1
η

) · (log
1
ε

)2 · K
)
. (4.10)

Next we consider the complexity of all extension process. As we have discussed
in Section 4.3, the major cost of the extension process comes from the operation
of adding a new vector (the adding operation) to the Lanzcos vectors (Line 7 of
Algorithm 10 that happens in Line 3 of Algorithm 11). Using estimates µmδ(P) ≤
αc
η = O( c

η ), ε(P)δ(P) ≤ c, log 1
ε = O(log 1

ε ), we modify (4.4) to obtain the cost of
every single call of the adding operation as

O
(

c2

η
· nnz(A) · (log

1
ε

)2
)
.
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On every level, the indexes contributing to adding operations go from m̂k + 1 to mk .
Due to the refinement process, we have m̂k ≤ mk+1, and so every single index from
1 to mtar may contribute more than one adding operations. But if we reasonably
assume that µ(k+1)

ex > µ(k−1)
re , namely β > αη under parameter choice (4.9), we will

have m(k+1) < m̂(k−1), and so every index from 1 to mtar will contribute no more
than two adding operations. Therefore the total cost of all extension process can be
estimated as

O
(
mtar ·

c2

η
· nnz(A) · (log

1
ε

)2
)
. (4.11)

We remark that the cost of implicit restarting process is only a constant multiple of
(4.11). Combining (4.10) and (4.11), we obtain the total complexity of our method

O
(
mtar · nnz(A) ·

c2

η
log(

1
η

) · (log
1
ε

)2 · K
)
. (4.12)

To further simplify (4.12), we need to use estimates for the MMD given in Sec-
tion 3.2. In particular, to preserve sparsity nnz(A(k)

st ) ≤ nnz(A), we need to choose
the scale ratio η−1 = (log 1

ε+log n)p as in (3.21) for some constant p. We remark that
for graph Laplacian, p = 1. The resulting level number is K = O( log n

log(log 1
ε+log n)

).
The condition bound c can be imposed to be uniform constant by Algorithm 6 in
Section 3.2.1. Then the overall complexity of Algorithm 13 can be estimated as

O
(
mtar · nnz(A) · (log

1
ε
+ log n)p · (log

1
ε

)2 · log n
)

= O
(
mtar · nnz(A) · (log

1
ε
+ log n)p+3

)
.

(4.13)

4.6 Numerical Examples
In this section we present several numerical examples for the eigensolver. We will
use Algorithm 13 to compute a relative large number of eigenpairs of large matrices
subject to prescribed accuracies.

4.6.1 Dataset Description
The datasets we use are drawn from different physical contexts. They are generated
as 3D point clouds and transformed into graphs by adding edges in the KNN setting.

• The first dataset is the well-known “Stanford Bunny” from Stanford 3D Scan-
ning Repository1. A reconstructed bunny has 35947 vertices that can be
embedded into a surface in R3 with 5 holes in the bottom.

1http://graphics.stanford.edu/data/3Dscanrep/
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Algorithm 13 Hierarchical Eigenpair Computation
Input: K-level decomposition {Θ(k)}Kk=1 of PD matrix A, target number mtar ,

searching step d,
prescribed multi-level accuracies {ε (k)}, extension thresholds {µ(k)

ex }
K
k=1, refine-

ment thresholds {µ(k)
re }

K
k=1.

Output: V , D.
1: Find the eigen pairs [V̂ (K )

ex , D(K )
ex ] of the eigen problem (A(K )

st )−1M (K ) x = µx;
2: for k = K − 1 : 1 do
3: V̂ (k+1)

ex ← Ψ(k+1)V̂ (k+1)
ex

4: [V̂ (k)
ini , D(k)

ini ] = Eigen_Refine([V̂ (k+1)
ex , D(k+1)

ex ]; ε (k), µ(k)
re );

5: op = OP( · ; A(k), M (k), ε (k));
6: [V̂ (k)

ex , D(k)
ex ] = Eigen_Extend([V̂ (k)

ini , D(k)
ini ]; op, ε (k), µ(k)

ex , d,mtar );
7: end for
8: V = Ψ(1)V̂ (1)

ex D = D(1)
ex .

• The second dataset is a MRI data of brain from the Open Access Series of
Imaging Sciences (OASIS)2. They use FreeSurfer to reconstruct the surface
from MRI scan and obtain a point cloud with 48463 points.

• The third dataset is a “SwissRoll” model, which is popular in manifold learn-
ing. Vertices are generated by

(xi, yi, zi) = (ticos(ti), yi, tisin(ti)) + ηi, i = 1, 2, ..., n, (4.14)

where ti
i.i.d
∼ U [1.5π, 4.5π], yi

i.i.d
∼ U [0, 20], and ηi

i.i.d
∼ N (0, 0.05I3). It can

be viewed as a spiral of one and a half rounds plus random noise. In our
examples the roll has n = 20000 points.

With point clouds at hand, we apply the KNN setting to construct graphs with
kbunny = 20, kbrain = 20 and kswissroll = 10. Each existing edge ei j is weighted as
e−r2i, j/σ, where ri, j is the Euclidean distance between vertices vi and v j , and σ is a
parameter. We have σbunny = 10−6, σbrain = 10−4 and σswiss = 0.1. Figure 4.2
shows the point clouds of datasets.

From the graphs given above, we construct their related graph Laplacians L in
2http://www.oasis-brains.org/
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the general setting:

Li j =




∑
k∼i wik, i = j,

−wi j, i , j .

Further, without loss of generality, we rescale all graph Laplacians and add uni-
form self-loops of weight 1 to them, so that each of them satisfies (i)λ1 = 1, (ii)
λ2 = O(1). Under this construction, we obtain three graph Laplacian matrices
Lbunny, Lbrain, Lswissroll . Lbunny has size n = 35947, sparsity nnz = 714647 and
condition number κ(Lbunny) = 1.86 × 104; Lbrain has size n = 48463, sparsity
nnz = 1038065 and condition number κ(Lbunny) = 1.14 × 105; Lswissroll has size
n = 20000, sparsity nnz = 248010 and condition number κ(Lbunny) = 1.15 × 106.

Figure 4.2: Point cloud of datasets. From left to right: (1) bunny (point cloud and
sculpture); (2) brain; (3) Swiss roll.

4.6.2 Numerical MMD
Before computing eigenpairs of graph Laplacians from our datasets using Algo-
rithm 13, we need to apply Algorithm 6 in Section 3.2.1 to obtain the MMDs,
which is the only pre-computation step in our proposed algorithm. For each graph
Laplacian, we perform the decomposition with a prescribed condition bound c and a
series of multi-level resolutions (compression errors) {εk }

K
k=1. Note that we perform

two decompositions with different multiresolutions for the SwissRoll data. The
decomposition time for each example is reported in Table 4.1. Recall that the to-
tal complexity of Algorithm 6 is O

(
nnz(A) · log n ·

(
log 1

ε + log n)3d+p
))
, where d

denotes the intrinsic geometric dimension of the graph. By comparingwith the com-
plexity estimate in (4.13), when mtar �

(
log 1

ε + log n
)3d−2

, the pre-computation
time for constructingMMD only takes up a relative small portion of overall time. As
illustrated later in Table 4.8, even with the pre-computation time taken into account,
our proposed algorithm is still faster than other well-established methods.
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Data 2-level Bunny 4-level Brain 4-level SwissRoll 3-level SwissRoll
Time 10.245 34.589 8.124 9.430

Table 4.1: Matrix decomposition time (in seconds) for different examples.

Table 4.2 and Table 4.3 give the detailed information of all decompositions we will
use for eigenpair computation. In Table 4.2, K is the number of levels, ε1 is the
finest (prescribed) accuracy, η is the ratio εk/εk+1 and c is the condition bound
such that εkδk ≤ c. By Lemma 4.3.7, the condition number of M (k) is bounded as
κ(M (k)) ≤ 1 + εkδk ≈ c, and by Corollary 3.1.4, the condition number of B(k) is
bounded as κ(B(k)) ≤ εkδk−1 ≤ c/η. We can see in Table 4.3 that these bounds are
well satisfied. Recall that the bounded condition number of M (k) is essential for the
efficiency of Algorithm 11, and the bounded condition number of B(k) is essential
for the efficiency of Algorithm 12.

Table 4.3 also shows the detailed information for all four decompositions. The
2-norm of A(k), namely λmax (A(k)) decreases as k increases, and well bounded
as ‖A(k) ‖2 ≤ δk ≤ cε−1k as expected by Corollary 3.1.4 (we have normalized
µ1 = ‖L−1‖2 to 1). And the sparsities of A(k) and M (k) are of the same order as the
sparsity of A(0) = L, i.e. nnz(A(k)), nnz(M (k)) = O(nnz(A(0))) as ensured by our
choice of parameters discussed in Section 4.5.

Data K ε1 η c Bound on κ(M (k )) Bound on κ(B(k ))

Bunny 2 10−3 0.1 20 20 200

Brain 4 10−4 0.2 20 20 100

SwissRoll 3 10−5 0.1 20 20 200

SwissRoll 4 10−5 0.2 20 20 100

Table 4.2: Decomposition parameters different datasets.

4.6.3 The Coarse Level Eigenpair Approximation
We first use the decompositions given above to compute the first few eigenpairs
of graph Laplacians with relatively low accuracies. Numerical results reveal that
even on the coarse levels, the compressed (low dimensional) operators show good
spectral approximation properties with regard to the smallest eigenvalues of L (or
the largest eigenvalues of L−1). Here we take the bunny data and the brain data
as examples. For the bunny data, we use the lowest level k = 2 with compression
error ε2 = 0.01; for the brain data, we use level k = 3 with compression error
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Level k εk dim(A(k ) ) nnz (A(k ) ) ‖A(k ) ‖2 nnz (M (k ) ) κ (M (k ) ) κ (B(k ) )

The 2-level decomposition of Bunny data.

0 - 35947 714k = m 1.86 × 104 - - -

1 10−3 2641 613k ≈ 0.86m 1.05 × 104 203k ≈ 0.28m 1.45 5.58

2 10−2 198 27k ≈ 0.04m 1.37 × 103 10k ≈ 0.02m 2.05 45.03

The 4-level decomposition of Brain data.

0 - 48463 1038k = m 1.14 × 105 - - -

1 10−4 11622 2546k ≈ 2.45m 7.82 × 104 725k ≈ 0.70m 1.29 5.80

2 5 × 10−4 1713 431k ≈ 0.42m 2.01 × 104 189k ≈ 0.18m 1.84 18.34

3 2.5 × 10−3 252 37k ≈ 0.04m 3.33 × 103 20k ≈ 0.02m 2.19 28.23

4 1.25 × 10−2 35 1k < 0.01m 4.53 × 102 1k < 0.01m 2.02 35.08

The 3-level decomposition of SwissRoll data.

0 - 20000 248k = m 1.15 × 106 - - -

1 10−5 5528 689k ≈ 2.78m 4.31 × 105 197k ≈ 0.79m 1.45 10.06

2 10−4 723 108k ≈ 0.44m 7.44 × 104 35k ≈ 0.14m 2.30 67.47

3 10−3 55 2k < 0.01m 5.45 × 103 1k < 0.01m 3.92 185.93

The 4-level decomposition of SwissRoll data.

0 - 20000 248k = m 1.15 × 106 - - -

1 10−5 5528 689k ≈ 2.78m 4.31 × 105 197k ≈ 0.79m 1.45 10.06

2 5 × 10−5 1347 215k ≈ 0.87m 9.36 × 104 65k ≈ 0.26m 1.90 26.52

3 2.5 × 10−4 203 18k ≈ 0.08m 1.89 × 104 9k ≈ 0.04m 3.06 98.87

4 1.25 × 10−3 53 2k < 0.01m 3.72 × 103 1k < 0.01m 3.36 51.14

Table 4.3: Decomposition information of (i) Bunny (2-level) (ii) Brain (4-level) and
(iii) SwissRoll (3, 4-level) data. m , nnz(A(0)). 1k = 1000.

ε3 = 0.0025. We compute the first 50 eigenpairs {ṽi, λ̃i} of the compressed operator
by directly solving the general eigen problem (Lemma 4.2.2)

A(k) zi = λ̃i M (k) zi, ṽi = Ψ
(k) zi, i = 1, · · · , 50.

The computation of the coarse level eigenproblem is much more efficient due to
the compressed dimension. To show the error of the approximate eigenvalues, the
ground truth is obtained by using the Eigen C++ Library 3. Figure 4.3 shows the
absolute and relative errors of these eigenvalues. In both cases µi is the ith largest
eigenvalue of L−1 and λi = 1/µi; µ̃i is the ith largest eigenvalue of the compressed
problem Θ(k) and λ̃i = 1/µ̃i. By Lemma 4.2.3, |µi − µ̃i | is bounded by εk and
‖L−1ṽi − µi ṽi‖2 is bounded 2εk . We can see in Figure 4.3 that both estimates are
well satisfied. In particular, the error of the first eigenvalue is close to the bound of
εk . However, the first eigenpair is already known. Therefore, we are only interested
in the 2nd up to 50th eigenvalues and we embed the sub-plot of these eigenvalue
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errors as shown in Figure 4.3a and Figure 4.3c respectively.

(a) error µi− µ̃i and residual ‖L−1ṽi−µi ṽi ‖2 (b) relative error of µi and λi

(c) error µi− µ̃i and residual ‖L−1ṽi−µi ṽi ‖2 (d) relative error of µi and λi

Figure 4.3: The error, the residual and the relative error. Top: Bunny data; bottom:
Brain data

Next, we qualitatively examine the accuracy of the approximate eigenvectors of
the compressed operators by comparing their behaviors in image segmentation to
those of the true eigenvectors of the original Laplacian operators. In the image
segmentation, the eigenvectors of graph Laplacian provide a solution to graph
partitioning problem. Namely, for a partition (A, B) that satisfies A ∪ B = V and
A ∩ B = ∅, a measure of their disassociation called the normalized cut (Ncut) is
defined as [107]

Ncut(A, B) =
cut(A, B)

assoc(A,V )
+

cut(A, B)
assoc(B,V )

, (4.15)

where

cut(A, B) =
∑

u∈A,v∈B

w(u, v), assoc(A,V ) =
∑

u∈A,t∈V

w(u, t).

3Eigen C++ Library is available at http://eigen.tuxfamily.org/index.php?title=
Main_Page

http://eigen.tuxfamily.org/index.php?title=Main_Page
http://eigen.tuxfamily.org/index.php?title=Main_Page
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Shi and Malik [107] showed that, for a connected graph, minimizing Ncut can
be rephrased as finding the eigenvector v2 that corresponds to the second smallest
eigenvalue λ2 of the graph Laplacian (since we always have λ1 = 0 and v1 a
uniform vector). Taking sign(v2) transforms it into a binary vector which gives a
satisfactory cut. Moreover, the next few eigenvectors provide further cuts of the
previously partitioned fractions. Therefore, our eigensolver may serve as a powerful
tool for graph partitioning, as well as its applications including image segmentation
and manifold learning.

We test graph partitioning on bunny and brain datasets using the eigenvectors of
both original and compressed operators. Figures 4.4 and 4.5 shows the colormap
and the partition generated by some selected eigenvectors. From the pictures we can
see that the original and the compressed operators give very similar results when it
comes to graph partitioning. The compressed operator is not only easier to compute,
but also gives a satisfactory partition in practical settings.

Figure 4.4: Colormap (left) and partition (right) using the 2nd, 4th and 6th eigenvec-
tors of the original/compressed operator.

Figure 4.6 gives an example of refining the partition with more eigenvectors. In the
brain data, a fraction that is left intact in the first 5 eigenvectors (the light green part
on the left) is divided into a lot more fractions when eigenvectors pile up to 15.

4.6.4 The Multi-level Eigenpair Computation
To test the efficacy of the hierarchical structure in our approach, we use our main
Algorithm 13 to compute a relatively large number of eigenpairs of Laplacian ma-
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Figure 4.5: Colormap (left) and partition (right) using the 2nd, 4th and 6th eigenvec-
tors of the original/compressed operator.

Figure 4.6: Heaping up more eigenvectors leads to finer partition. Left: partition
using the first 5 eigenvectors. Middle: a uniform fraction from the previous partition.
Right: further partition using the next 10 eigenvectors.

trices subject to the prescribed accuracy. In particular, for both the Brian data
and the SwissRoll data, we compute the first 500 eigenpairs of the graph Lapla-
cian subject to prescribed accuracy |λ−1i − λ̃

−1
i | = |µi − µ̃i | ≤ ε = ε1. The three

decompositions of these two datasets are used in this experiment; for each decom-
position, we apply Algorithm 13 with two sets of parameters, (α, β) = (5, 2) and
(α, β) = (3, 1). The details of the results obtained by Algorithm 13 are summarized
in Table 4.4-Table 4.7. In Table 4.4, parameters α, β, κ, γ are defined in Section 4.5.
In Table 4.5-Table 4.7, we collect numerical results that reflect the efficiency of each
single process (refinement or extension). Here we give a detailed description of the
notations we use in these tables:

• #I and #O denote the numbers of input and output eigenpairs. To be consistent
with the notations defined in Section 4.5, we use (#I,#O)= (mk+1, m̂k ) for
refinement process on level k, and (#I,#O)= (m̂k,mk ) for extension process
on level k.
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• #Iter denotes the number of orthogonal iterations in the refinement process.
Note that this number is controlled by the ratio γ.

• #cg(B(k)) denotes number of CG calls concerning B(k) in the refinement
process; #pcg(A(k)) denotes the number of PCG calls concerning A(k) in the
refinement process and the extension process. #(B(k)) and #(A(k)) denote
the average numbers of matrix-vector multiplications concerning B(k) and
A(k) respectively, namely the average numbers of iterations, in one single
call of CG or PCG. Note that #(B(k)) is controlled by log(1/ε (k))κ(B(k)) ≤
log(1/ε (k))c/η, and #(A(k)) by log(1/ε (k))κ(A(k)

Ψ
, Z (k)

m̂+
k

) ≤ log(1/ε (k))αc/η.

• As the extension process proceeds, the target spectrum to be computed on
this level shrinks even more, and so does the restricted condition number
of the operator. Thus the numbers of iterations in each PCG call get much
smaller than its expected control log(1/ε (k))αc/η, which is a good thing in
practice. So to study how the theoretical bound log(1/ε (k))αc/η really affects
the efficiency of PCG calls, it is more reasonable to investigate the maximal
number of iterations in one PCG call on each level. We use #̂(A(k)) to denote
the largest number of iterations in one single PCG call on level k.

• #(M (k)) denotes the average number of matrix-vector multiplications con-
cerning M (k) in one single CG call. Such CG calls occur in the PCG calls
concerning A(k) where M (k) acts as the preconditioner. Note that #(M (k)) is
controlled by log(1/ε (k))κ(M (k)) ≤ log(1/ε (k))(1 + c).

• “Main Cost” denotes the main computational cost contributed by matrix-
vector multiplication flops. In the refinement process we have

Main Cost =#cg(B(k+1)) · #(B(k+1)) · nnz(A(k))

+ #pcg(A(k)) · #(A(k)) ·
(
nnz(A(k)) + #(M (k)) · nnz(M (k))

)
,

while in the extension process we have

Main Cost = #pcg(A(k)) · #(A(k)) ·
(
nnz(A(k)) + #(M (k)) · nnz(M (k))

)
.

Table 4.5-Table 4.7 show the efficiency of our algorithm. We can see that #(B(k)) and
#(M (k)) arewell bounded as expected, due to the artificial imposition of the condition
bound c. #̂(A(k)) and the numerical condition number #̂(A(k))/ log(1/ε (k)) are also
well controlled by choosing α properly to bound κ = αc/η. It is worth mentioning
that #̂(A(k))/ log(1/ε (k)) appears to be uniformly bounded for all levels, actually



124

Data MMD (α, β) (η, c) κ γ Total #Iter Total Main Cost

Brain 4-level (5, 2) (0.2, 20) 500 3/5 12 4.37 × 105 · m

4-level (3, 1) (0.2, 20) 300 2/3 15 4.13 × 105 · m

SwissRoll 3-level (5, 2) (0.1, 20) 1000 3/5 13 7.56 × 105 · m

3-level (3, 1) (0.1, 20) 600 2/3 16 7.17 × 105 · m

SwissRoll 4-level (5, 2) (0.2, 20) 500 3/5 19 7.00 × 105 · m

4-level (3, 1) (0.2, 20) 300 2/3 28 5.86 × 105 · m

Table 4.4: Eigenpair computation information. m , nnz(A(0)).

much smaller than κ, which reflects our uniform control on efficiency. #Iter is well
bounded due to the proper choice of β for bounding γ = (1 + β)/α.

We may also compare the results for the same decomposition but from two different
sets of parameters (α, β). For all three decompositions, the experiments with
(α, β) = (5, 2) have a smaller γ = 3

5 , and thus is more efficient in the refinement
process (less #Iter and less refinement main cost). While the experiments with
(α, β) = (3, 1) have a smaller κ that leads to better efficiency in the extension
process (smaller #̂(A(k))/ log(1/ε (k)) and less extension main cost). But since the
dominant cost of the whole process comes from the extension process, thus the
experiments with (α, β) = (3, 1) have a smaller total main cost.

We remark that the choice of (α, β) not only determines (κ, γ) that will affect the
algorithm efficiency, but also determines the segmentation of the target spectrum and
its allocation towards different levels of the decomposition. Smaller values of α and
βmeansmore eigenpairs being computed on coarser levels (larger k), which relieves
the burden of the extension process for finer levels, but also increases the load of
the refinement process. There could be an optimal choice of (α, β) that minimizes
the total main cost, balancing between the refinement and the extension processes.
However, without a priori knowledge of the distribution of the eigenvalues, which
is the case in practice, a safe choice of (α, β) would be α, β = O(1).

To further investigate the behavior of our algorithm, we focus on numerical exper-
iments carried out on the 4-level decomposition of the SwissRoll data. Figure 4.7
shows the convergence of the computed spectrum in different errors. Figure 4.8
shows the completion and the convergence process of the target spectrum in the
case of (α, β) = (3, 1) (corresponding to Table 4.7). We use a log-scale plot to
illustrate the error |µi − µ̃(k) | after we complete the refinement process and the
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(α, β) = (5, 2)

Re
fin

em
en
t

Lvl k (#I,#O) #Iter #cg (B) #(B) #pcg (A) #(A) #(M ) Main Cost

3 (7, 4) 4 7 24.43 28 10.97 6.10 5.66 × 101 · m

2 (41, 17) 4 41 25.90 164 16.26 6.12 4.50 × 103 · m

1 (207, 84) 4 207 23.44 828 19.17 4.64 1.02 × 105 · m

Ex
te
ns
io
n

Lvl k (#I,#O) #̂(A) ε #̂(A)
log (1/ε) #pcg (A) #(A) #(M ) Main Cost

3 (4, 41) 43 2.5 × 10−4 5.18 175 16.93 5.39 4.37 × 102 · m

2 (17, 207) 75 5.0 × 10−5 7.57 500 32.27 5.47 2.27 × 104 · m

1 (84, 500) 82 10−5 7.12 1248 44.23 4.45 3.07 × 105 · m

(α, β) = (3, 1)

Re
fin

em
en
t

Lvl k (#I,#O) #Iter #cg (B) #(B) #pcg (A) #(A) #(M ) Main Cost

3 (15, 6) 5 15 24.54 75 7.74 6.07 1.08 × 102 · m

2 (78, 28) 5 78 25.85 390 11.17 6.01 7.39 × 103 · m

1 (276, 140) 5 276 23.43 1380 14.28 4.67 1.29 × 105 · m

Ex
te
ns
io
n

Lvl k (#I,#O) #̂(A) ε #̂(A)
log (1/ε) #pcg (A) #(A) #(M ) Main Cost

3 (6, 78) 37 2.5 × 10−4 4.46 225 14.12 5.41 4.70 × 102 · m

2 (28, 276) 57 5.0 × 10−5 5.75 600 27.91 5.43 2.34 × 104 · m

1 (140, 500) 63 10−5 5.47 1080 42.09 4.46 2.53 × 105 · m

Table 4.5: 4-level eigenpairs computation of Brain data with (η, c) = (0.2, 20).

extension process respectively on each level k. As we can see, each application of
the refinement process improves the accuracy of the first m̂k eigenvalues at least by
a factor of η = εk

εk+1
, but at the price of discarding the last mk+1 − m̂k computed

eigenvalues. So the computation of the last mk+1 − m̂k computed eigenvalues on the
coarser level k + 1 actually serves as preconditioning to ensure the efficiency of the
refinement process on level k. Then the extension process extends the spectrum to
mk that is determined by the threshold µ(k)

ex . The whole computation is an iterative
process that improves the accuracy of the eigenvalues by applying the hierarchical
Lanczos method to each eigenvalue at most twice.

We also further verify our critical control of the restricted condition number
κ(A(k)

Ψ
, Z (k)

m̂+
k

) by the parameter κ = αc/η, by showing the dependence of #̂(A(k)) (or

#̂(A(k))/ log(1/ε (k))) on κ. Recall that #̂(A(k)) denotes the largest number of itera-
tions in one single PCG call concerning A(k) on level k. Using the 4-level decompo-
sition of the SwissRoll data with (η, c) = (0.2, 20), we perform Algorithm 13 with
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(α, β) = (5, 2)

Re
fin

em
en
t Lvl k (#I,#O) #Iter #cg (B) #(B) #pcg (A) #(A) #(M ) Main Cost

2 (21, 12) 7 21 52.14 147 17.61 6.33 3.91 × 103 · m

1 (232, 100) 6 232 47.23 1392 16.08 5.29 1.86 × 105 · m
Ex

te
ns
io
n Lvl k (#I,#O) #̂(A) ε #̂(A)

log (1/ε) #pcg (A) #(A) #(M ) Main Cost

2 (12, 232) 94 10−5 8.16 650 28.20 7.25 2.67 × 104 · m

1 (100, 500) 101 10−6 7.31 1200 59.44 6.10 5.42 × 105 · m

(α, β) = (3, 1)

Re
fin

em
en
t Lvl k (#I,#O) #Iter #cg (B) #(B) #pcg (A) #(A) #(M ) Main Cost

2 (35, 19) 8 35 51.89 280 13.13 6.45 5.74 × 103 · m

1 (315, 165) 8 315 46.85 2520 12.73 5.37 2.66 × 105 · m

Ex
te
ns
io
n Lvl k (#I,#O) #̂(A) ε #̂(A)

log (1/ε) #pcg (A) #(A) #(M ) Main Cost

2 (19, 315) 69 10−5 5.99 700 25.10 7.29 2.57 × 104 · m

1 (165, 500) 78 10−6 5.65 1005 54.91 6.11 4.20 × 105 · m

Table 4.6: 3-level eigenpairs computation of SwissRoll data with (η, c) = (0.1, 20).

fixed β = 1 but different α ∈ [3, 5]. Figure 4.9 shows #̂(A(k)) versus α for all three
levels. By Theorem 4.3.8, we expect that #̂(A(k)) ∝ κ · log(1/ε (k)) ∝ α · log(1/ε (k)).
This linear dependence is confirmed in Figure 4.9. It is also important to note that
the curve(green) corresponding to level 1 is below the curve (blue) corresponding
to level 2 in Figure 4.9b, which again implies that #̂(A(k))/ log(1/ε (k)) is uniformly
bounded for all levels.

4.7 Comparison with the IRLM
Owning to the observation in [76] that IRLM is still one of the most performing
and well-known algorithms for finding a large portion of smallest eigenpairs, in this
section, we compare the computation complexity of our proposed algorithm with
the IRLM.

To quantitatively compare the two methods, we record the computation time and
the number of CG iterations as the benchmarks. The reasons for doing this are as
follows:

• In large-scale setting, direct method for solving sparse matrix A−1 is gen-
eral, not practical since large memory storage is required. Instead, iterative
methods, especially the CG method (as A is PD in our case) is employed.
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(α, β) = (5, 2)

Re
fin

em
en
t

Lvl k (#I,#O) #Iter #cg (B) #(B) #pcg (A) #(A) #(M ) Main Cost

3 (18, 10) 6 18 22.61 108 7.19 7.87 3.39 × 102 · m

2 (84, 44) 8 84 43.45 672 10.42 6.49 2.11 × 104 · m

1 (390, 195) 5 390 28.85 1950 11.68 5.42 1.92 × 105 · m

Ex
te
ns
io
n

Lvl k (#I,#O) #̂(A) ε #̂(A)
log (1/ε) #pcg (A) #(A) #(M ) Main Cost

3 (10, 84) 42 2.5 × 10−5 3.96 200 18.32 8.43 1.53 × 103 · m

2 (44, 390) 63 5 × 10−6 5.16 1050 29.30 7.24 8.47 × 104 · m

1 (195, 50) 71 10−6 5.13 915 57.47 6.10 4.00 × 105 · m

(α, β) = (3, 1)

Re
fin

em
en
t

Lvl k (#I,#O) #Iter #cg (B) #(B) #pcg (A) #(A) #(M ) Main Cost

3 (31, 16) 7 31 22.45 217 6.09 8.09 5.89 × 102 · m

2 (95, 67) 12 95 43.44 1140 7.66 6.66 2.63 × 104 · m

1 (459, 314) 7 459 28.75 3656 8.71 5.56 2.65 × 105 · m

Ex
te
ns
io
n

Lvl k (#I,#O) #̂(A) ε #̂(A)
log (1/ε) #pcg (A) #(A) #(M ) Main Cost

3 (16, 95) 31 2.5 × 10−5 2.92 200 16.61 8.48 1.39 × 103 · m

2 (67, 459) 49 5 × 10−6 4.01 1100 25.66 7.27 7.79 × 104 · m

1 (314, 500) 55 10−6 3.98 558 50.61 6.12 2.15 × 105 · m

Table 4.7: 4-level eigenpairs computation of SwissRoll data: (η, c) = (0.2, 20).

• In both the IRLM and our proposed algorithm, the dominating complexity
comes from the operator of computing A−1b for some b.

Remark 4.7.1. For small-scale problems, a direct solver (such as sparse Cholesky
factorization) for A−1 is preferred in the IRLM. In this way, only one factorization
step for A is required prior to the IRLM. Moreover, solving for A−1 in each iteration
is replaced by solving two lower triangular matrix systems. This will bring a signif-
icant speedup for the IRLM. However, recall that we are aiming at understanding
the asymptotic behavior and performance of these methods. Therefore, the IRLM
discussed in this section employs the iterative solver instead of a direct solver.

To be consistent, all the experiments are performed on a single machine equipped
with Intel(R) Core(TM) i5-4460 CPU with 3.2GHz and 8GB DDR3 1600MHz
RAM. Both the proposed algorithm and the IRLM are implemented using C++ with
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(a) log10(µi − µ̃
(k )
i ), i = 1, · · · ,mk

(b) log10(‖L−1ṽ (k )
i − µi ṽ

(k )
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(c) log10
(
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(d) log10
(
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)
, i =

1, · · · ,mk

Figure 4.7: Convergence of computed spectrum in different errors.

the Eigen Library for fairness. In particular, the built-in (preconditioned) CG solvers
are used in the IRLM implementation, instead of implementing on our own.

Table 4.8 shows the overall computation time for computing the leftmost (i) 300;
(ii) 200 and (iii) 100 eigenpairs using (i) our proposed algorithm, (ii) the IRLM
with incomplete Cholesky PCG method (IRLM-ICCG); and (iii) the IRLM with
classical CG method (IRLM-CG). In this numerical example, the error tolerance of
the eigenvalues in all three cases is set to 10−5. Since the error for IRLM cannot be
obtained a priori, we fine-tune the relative error tolerance for the (preconditioned)
CG solver such that eigenvalues errors are of order O(10−6). For the proposed
algorithm, the time required for level-wise eigenpair computation is recorded. In the
bottom level (level-4 or level-3 in these cases), we have used the built-in eigensolver
function in the Eigen Library to obtain the full eigenpairs (corresponding to Line 1
in Algorithm 6). As the problem size is small, the time complexity is insignificant
for all three examples.

The total runtime of our proposed algorithm in each example is computed by sum-
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(a) after level 3 refinement (b) after level 3 extension (c) after level 2 refinement

(d) after level 2 extension (e) after level 1 refinement (f) after level 1 extension

Figure 4.8: The completion and convergence process of the target spectrum. The re-
finement process retains part of the spectrum subject to threshold µ(k)

re with improved
accuracy, and the extension process extends the spectrum subject to threshold µ(k)

ex .
The whole process is an iterative procedure that aims at improving the accuracy of
the eigenvalue solver.

(a) #̂A(k ) versus α (b) #̂A(k )/ log(ε−1pcg ) versus α

Figure 4.9: #̂A(k) versus α in the 4-level SwissRoll example.

ming up all levels’ computation time, plus the MMD time (which is the second
row in Table 4.8). For all these examples, our proposed algorithm outperforms the
IRLM. Although both the size of the matrices and their corresponding condition
numbers are not extremely large, the numerical experiments already show a observ-
able improvement. From the theoretical analysis discussed in the previous sections,
this improvement will even be magnified if the PD matrices are of larger scales and
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# Eigenpairs Methods 4-level Brain 4-level SwissRoll 3-level SwissRoll
Decomposition∗ 34.589 8.124 9.430

300
Proposed∗∗

Level-4 0.010 0.011 -
Level-3 0.841 0.560 0.083
Level-2 29.122 40.796 18.729
Level-1 61.286 18.846 22.440

Total ( ∗ + ∗∗ ) 125.848 68.337 50.682
IRLM-CG 174.028 81.005
IRLM-ICCG 525.73 289.385

200
Proposed∗∗

Level-4 0.010 0.011 -
Level-3 0.826 0.526 0.083
Level-2 25.560 28.094 11.517
Level-1 54.951 12.107 18.378

Total ( ∗ + ∗∗ ) 115.936 48.862 39.408
IRLM-CG 124.871 61.479
IRLM-ICCG 417.632 196.217

100
Proposed∗∗

Level-4 0.010 0.011 -
Level-3 0.831 0.531 0.083
Level-2 25.056 22.062 9.883
Level-1 31.882 8.066 12.029

Total ( ∗ + ∗∗ ) 92.368 38.794 31.425
IRLM-CG 115.676 48.713
IRLM-ICCG 324.648 90.175

Table 4.8: Computation time (in seconds) for the 4-level Brain, 3-level SwissRoll
and the 4-level SwissRoll examples using the proposed Hierarchical multi-level
eigensolver; the IRLM with CG solver and the IRLM with incomplete Cholesky
PCG solver.

more ill conditioned. Indeed, we assert that our proposed algorithm cannot be fully
utilized in these illustrations. Therefore, one of the main future works is to perform
detailed numerical experiments in these cases. For instance, by considering the
3-level and 4-level SwissRoll examples, we observe that a 3-level decomposition is
indeed sufficient for SwissRoll graph Laplacian, where we recall the corresponding
condition number is ‖A‖2 = 1.15 × 106. Therefore, using a 3-level decomposition,
the overall runtime reduction goes up to approximately 37% when 300 eigenpairs
are required.

Notice that the time required for the IRLM-ICCG is notably much more than that of
the IRLM-CG, which contradicts to our usual experience regarding precondition-
ing. In fact, such phenomenon can be explained as follows: In the early stage of the
IRLM, preconditioning with incomplete Cholesky factorization helps reducing the
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iteration number of the CG. However, when the eigen-subspace is gradually pro-
jected away throughout the IRLM process, the spectrum of the remaining subspace
reduces and therefore CG iteration numbers also drops significantly. On the con-
trary, preconditioning with incomplete Cholesky ignores such update in spectrum
and therefore the CG iteration number is uniform throughout the whole Lanczos
iteration. Hence, the classical CG method is preferred if a large number of leftmost
eigenpairs are required. Figure 4.10a shows the CG iteration numbers in the IRLM-
ICCG, IRLM-CG and respectively, our proposed hierarchical eigensolver versus the
Lanczos iteration. More precisely, if we call Vk in (4.1) to be the Lanczos vector, the
x-axis in the figure then corresponds to the first time we generate the i-th column of
the Lanczos vector. For IRLM methods, it is equivalent to the extension procedure
for the i-th column of the Lanczos vector, which corresponds to Line 6 – 8 in Algo-
rithm 8. In particular, the CG iteration number recorded in this figure corresponds
to the operation op in Line 8 of Algorithm 8. For our proposed algorithm, there
are three separate sections, each section’s CG iteration numbers correspond to the
formation of Lanczos vectors in the 3rd-, 2nd- and the 1st-level respectively. Since
we may also update some of these Lanczos vector during the refinement process,
therefore some overlaps in the recording of CG iteration numbers corresponding to
those Lanczos vector are observed. With the spectrum-preserving hierarchical pre-
conditioner M introduced in our algorithm, the CG iteration number for computing
A−1b for some b is tremendously reduced. In contrast, the CG iteration number for
IRLM-CG is the largest at the beginning but decreases exponentially and asymptot-
ically converges to our proposed result. For IRLM-ICCG, the incomplete Cholesky
factorization does not capture the spectrum update and therefore the iteration num-
bers is uniform throughout the computation. This observation is also consistent to
the time complexity as shown in Table 4.8. Figure 4.10b shows the corresponding
normalized plot, where the iteration number is normalized by log( 1ε ).

Similar results can also be plotted for the 4-level Brain and the 3-level SwissRoll
examples. We therefore skip those plots to avoid repetition.

4.8 On Compressed Eigenproblems
In this section, we compare the our method for compressed eigenproblem and
the method proposed by Ozoliņš et al. [90]. We start with the straightforward
compression directly using the eigenvectors corresponding to smallest eigenvalues,
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(a) (b)

Figure 4.10: (a) The PCG iteration number in the 4-level SwissRoll example. The
IRLM-ICCG methods exhibits a uniform iteration number, while the IRLM-ID has
an exponential decaying iteration number. For our proposed algorithm, since the
spectrum-preserving hierarchical preconditioner M is employed, the CG iteration
number is minimum. This is also consistent to the time complexity shown in
Table 4.8. (b) The corresponding normalized plot, where the iteration number is
normalized by log(ε ).

which can be obtained by solving the following optimization problem:

Ψ = argmin
Ψ̂

∑N
i=1 ψ̂

T
i Aψ̂i,

s.t. ψ̂T
i ψ̂ j = δi j, i, j = 1, 2, · · · , N .

(4.16)

The compression via eigenvectors is well known as the PCA method is optimal
in 2-norm sense for fixed compressed dimension N . However, computing a large
number of eigenvectors is a hard problem itself, not to mention that we actually
intend to approximate eigenpairs using the compressed operator. Also the spatially
extended profiles of exact eigenvectors make them less favorable in many fields of
researches. Then as modification, Ozoliņš et al. [90] added a L1 regularization term
to impose the desired locality on Ψ. They modified the optimization problem (4.16)
as

Ψ = argmin
Ψ̂

∑N
i=1

(
ψ̂T

i Aψ̂i +
1
µ ‖ψ̂i‖1

)
,

s.t. ψ̂T
i ψ̂ j = δi j, i, j = 1, 2, · · · , N .

(4.17)

The L1 regularization, as widely used in many optimization problems for sparsity
pursuit, effectively ensures each output ψi to have spatially compact support, at the
cost of compromising the approximation accuracy compared to PCA. The factor µ
controls the locality of Ψ. A smaller µ gives more localized profiles of Ψ, which,
however, results in larger compression error for a fixed N . The loss of approximation
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accuracy can be compensated by increasing, yet not significantly, the basis number
N . An algorithm based on the split Bregman iteration was also proposed in [90] to
effectively solve the problem (4.17). In summary, their work provides an effective
method to find a bunch of localized basis functions that can approximately span the
eigenspace of smallest eigenvalues of A.

Although our approach to operator compression is originally developed from a
different perspective based on FEM, it can be reformulated as an optimization
problem similar to (4.16). In fact, to obtain the basis Ψ used in our method, we can
simply replace the nonlinear constraints ψT

i ψ j = δi j, i, j = 1, 2, · · · , N, by linear
constraints ψT

i φ j = δi j, i, j = 1, 2, · · · , N, to get

Ψ = argmin
Ψ̂

∑N
i=1 ψ̂

T
i Aψ̂i,

s.t. ψ̂T
i φ j = δi j, i, j = 1, 2, · · · , N .

(4.18)

Here Φ = [φ1, φ2, · · · , φN ] is a dual basis that we construct ahead of Ψ to provide
a priori compression error estimate as stated in Theorem 2.2.1. As the constraints
become linear, problem (4.18) can be solved explicitly by Ψ = A−1Φ(ΦT A−1Φ)−1

as mentioned in (2.24). Instead of imposing locality by adding L1 regularization
as in (4.17), we obtain the exponential decaying feature of Ψ by constructing each
dual basis function φi locally. That is the locality of Φ and the strong correlation
ΨTΦ = I automatically give us the locality of Ψ under energy minimizing property.
The optimization form (4.18) was derived by Owhadi in [88] where Ψ was used as
the FEM basis to solve second-order elliptic equations with rough coefficients. This
methodology was then generalized to problems on higher-order elliptic equations
[53], general Banach space [89] and general sparse PD matrix [52]. In all previous
works the nice spectral property of Ψ has been observed and in particular the
eigenspace corresponding to the smallest M eigenvalues of A can be approximately
well spanned by Ψ of a relative larger dimension N = O(M).

To further compare the problems (4.17) and (4.18), we test both of them on the one-
dimensional Kronig–Penney (KP) model studied in [90] with rectangular potential
wells replaced by inverted Gaussian potentials. In this example, the matrix A

comes from discretization of the PDE operator −1
2∆ + V (x) defined on the domain

Ω with periodic boundary condition. In particular, Ω = [0, 50], and V (x) =
−V0

∑Nel

j=1 exp
(
−

(x−x j )2

2δ2
)
. As in [90], we discretize Ω with 512 equally spaced

nodes, and we choose Nel = 5, V0 = 1, δ = 3, and x j = 10 j − 5(instead of x j = 10 j

in [90], which essentially changes nothing).
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For problem (4.18), we divide Ω into N equal-length intervals {Ωi}
N
i=1, and choose

the dual basis Φ = [φ1, φ2, · · · , φN ] such that φi is the discretization of the indicator
function 1(Ωi)(1(Ωi)(x) = 1 for x ∈ Ωi, otherwise 1(Ωi)(x) = 0). We use Ψo to
denote the exact result of problem (4.18), namely Ψo = A−1Φ(ΦT A−1Φ)−1. Since
Ψo is not orthogonal, we should compute the eigenvalues from the general eigenvalue
problem ΨT

o AΨov = λΨ
T
oΨov(Lemma 4.2.2) as approximations of the eigenvalues

of A. We use λo to denote these approximate eigenvalues.

For problem (4.17), we use Algorithm 1 and exactly the same parameters provided
in [90], which means we are simply reproducing their results, except that we use
a finer discretization (512 rather than 128) and we shift the potential V (x). We
have used normalized Φ as the initial guess for Algorithm 1 in [90], and choose
µ = 10. We use Ψcm to denote the result of problem (4.17). We use λcm to denote
the eigenvalues of ΨT

cm AΨcm.

N = 50 N = 75 N = 100

Figure 4.11: Results of problems (4.17) and (4.18) for N = 50(first column),
N = 75(second column) and N = 100(third column). First row: the first 50
eigenvalues of A and those of the compressed problems. Second row: examples of
local basis functions. Third row: examples of local basis functions in log scale.
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We compare the approximate eigenvalues to the first 50 eigenvalues of A. The
first row of Figure 4.11 shows that both methods give very good approximations of
λ(A). And when N increases, the approximations become better. But relatively,
the results λcm from Figure 4.11 is closer to the ground truth than our results
λo from (4.18). To improve our results, we simply solve problem (4.18) again,
but this time using previous result Ψo as the dual basis. That is we compute
Ψo2 = A−1Ψo(ΨT

o A−1Ψo), and compute eigenvalues λo2 from the general eigenvalue
problem ΨT

o2AΨo2v = λΨ
T
o2Ψo2v. We can see that the approximate eigenvalues λo2

are even closer to the ground truth. An interpretation of this improvement is that
if we see Ψo = A−1Φ(ΦT A−1Φ)−1 as a transformation from Φ to Ψo, then the part
A−1Φ is equivalent to applying inverse power method to make Ψo more aligned to
the eigenspace of the smallest eigenvalues, while the part (ΦT A−1Φ)−1 is to force
ΨT

oΦ = I so Ψo inherits some weakened locality from Φ. So if we apply this
transformation to Ψo again to obtain Ψo2, Ψo2 will approximate the eigenspace of
the smallest eigenvalues better, but with more loss of locality.

In the second row and third row of Figure 4.11, we show some examples of the
local basis functions ψcm, ψo and ψo2 (all are normalized to have unit l2 norm).
Interestingly, these basis functions are not just localized as expected, but indeed
they have very similar profiles. One can see that for N = 75, the basis functions
ψcm and ψo are almost identical. So it seems that in spite of how we impose locality
(either the L1 minimization approach, or the construction of the dual basis Φ), the
local behaviors of the basis functions are determined by the operator A itself. We
believe that this “coincidence” is governed by some intrinsic property of A, which
may be worth further exploring and studying. If we can understand a higher level,
unified mechanism that results in the locality of the basis, we may be able to extend
these methods to a more general class of operators. We also observed that as N

goes large, ψo and ψo2 become more and more localized since the support of the
dual basis functions are smaller and smaller. However the locality of ψcm doesn’t
change much as N increases, since we use the same penalty parameter µ = 10 for
(4.17) in this experiment.

We would like to remark that, though these two problems result in local basis
functions with similar profiles, problem (4.17) requires to use the split Bregman
iteration to obtain the N basis functions simultaneously. In our problem (4.18),
since the constraints are linear and separable, the basis functions can be obtained
separately and directly without iteration. Furthermore, thanks to the exponential
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decay of the basis functions, each subproblem for obtaining one basis function can
be restricted to a local domain without significant loss of accuracy, and the resulting
local problem can be solved very efficiently. For definitions and detailed properties
of these local problems for obtaining localized basis, recall Section 2.2.2. Therefore
the algorithm for solving problem (4.18) can be implemented locally and in parallel.
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C h a p t e r 5

CONCENTRATION OF EIGENVALUE SUMS AND
GENERALIZED LIEB’S CONCAVITY THEOREM

We introduce in this chapter our concentration inequalities on partial sums of eigen-
values of randomHermitian matrices. They are extensions of the existing analogous
concentration results on extreme eigenvalues. The establishment of our new concen-
tration results is an immediate application of a generalize Lieb’s concavity theorem
which is also one of our main contributions.

In Section 5.1, we present our main concentration results after briefly reviewing the
corresponding existing results established by Tropp. The important concept of the
k-trace functions and its properties are introduced in Section 5.2. Our generalized
Lieb’s concavity results are displayed and discussed in Section 5.3, followed by their
proofs in Section 5.4. Section 5.5 is dedicated to the proofs of our concentration
inequalities. We provide in Section 5.6 some fundamental supporting materials and
in Section 5.7 some other interesting theoretical results on the k-trace.

Notation
Throughout this chapter, we will use some notations independent of the previous
chapters, as we are focusing more on theoretical derivations.

For any positive integers n,m, we write Cn for the n-dimensional complex vector
spaces equipped with the standard l2 inner products, and Cn×m for the space of all
complex matrices of size n×m. LetHn be the space of all n×n Hermitian matrices,
H+n be the convex cone of all n × n Hermitian, positive semidefinite matrices, and
H++n be the convex cone of all n × n Hermitian, positive definite matrices. For any
matrix A ∈ Hn, we denote by λi (A) the ith largest eigenvalue of A. We denote the
Loewner partial orders on Hn: for any A, B ∈ Hn, we write A � B or B � A if
A− B ∈ H+n , and write A � B or B ≺ A if A− B ∈ H++n . We write 0 for square zero
matrices of suitable size according to the context, and In for the identity matrix of
size n × n.

For any function f : R→ R, the extension of f to a function fromHn toHn is given
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by

f (A) =
n∑

i=1
f (λi)uiu∗i , A ∈ Hn,

where λ1, λ2, · · · , λn are the eigenvalues of A, and u1, u2, · · · , un ∈ C
n are the cor-

responding normalized eigenvectors. A function f is said to be operator monotone
increasing (or decreasing) if A � B implies f (A) � f (B) (or f (A) � f (B)); f is
said to be operator convex (or concave) on some convex set S, if

τ f (A) + (1 − τ) f (B) � f (τA + (1 − τ)B) (or � f (τA + (1 − τ)B)),

for any A, B ∈ S and any τ ∈ [0, 1]. For example, the function A 7→ Ar is
both operator monotone increasing and operator concave on H+n for r ∈ [0, 1] (the
Loewner-Heinz theorem [72], [46], [60], see also [24]). One can find more details
and properties of matrix functions in [24, 126]. For any A ∈ Cn×m, we denote by
‖A‖p the standard Schatten p-norm,

‖A‖p = Tr[|A|p]
1
p , (5.1)

where |A| = (A∗A)
1
2 . In particular, we write ‖A‖ = ‖A‖∞ = the largest singular

value of A.

5.1 Concentration of Eigenvalue Sums
In many problems, the assemble of a large complicated matrix is by sampling
independent random matrices with simpler structures. To study the spectrum of the
expected matrix by only evaluating the spectrum of the sample mean, we need to
know how the latter deviates from the former. Therefore, we often need to estimate
the spectrum of random matrices of the form Y =

∑m
i=1 X (i), where {X (i)}1≤i≤m is

a finite sequence of independent, random matrices of the same size. In particular,
we consider the Hermitian case where X (i) ∈ Hn. An important tool to study the
extreme eigenvalues of a sum of random matrices is the following master bounds by
Tropp ([122, Theorem 3.6.1]).

Proposition 5.1.1. For any finite sequence of independent, randommatrices {X (i)}mi=1 ⊂

Hn,

Eλmax
( m∑

i=1
X (i)

)
≤ inf

θ>0

1
θ
log Tr

[
exp

( m∑
i=1

logE exp(θX (i))
)]
, (5.2a)

Eλmin
( m∑

i=1
X (i)

)
≥ sup

θ<0

1
θ
log Tr

[
exp

( m∑
i=1

logE exp(θX (i))
)]
. (5.2b)
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Furthermore, for all t ∈ R,

P


λmax

( m∑
i=1

X (i)
)
≥ t



≤ inf

θ>0
e−θtTr

[
exp

( m∑
i=1

logE exp(θX (i))
)]
, (5.3a)

P


λmin

( m∑
i=1

X (i)
)
≤ t



≤ inf

θ<0
e−θtTr

[
exp

( m∑
i=1

logE exp(θX (i))
)]
. (5.3b)

Tropp’s proof of Proposition 5.1.1 is based on the method of matrix transform and
a theorem of Lieb (the concavity of function (1.2)). The essential use of the Lieb’s
theorem in Tropp’s argument is to establish the Jensen’s inequality

ETr
[
exp(H + log A)

]
≤ Tr

[
exp(H + logEA)

]
,

for any random matrix A ∈ H++n and any fixed H ∈ Hn. Using a generalized Lieb’s
theorem (Theorem 5.3.4), we will extend the above inequality to

E
(
Trk

[
exp(H + log A)

] ) 1
k ≤

(
Trk

[
exp(H + logEA)

] ) 1
k

and
E log Trk

[
exp(H + log A)

]
≤ log Trk

[
exp(H + logEA)

]
for any 1 ≤ k ≤ n. The k-trace function will be introduced in detail in the
next section. These more general inequalities, along with the k-trace inequality
(5.15), will help us extend Tropp’s matrix master bounds on the largest (or smallest)
eigenvalue to their counterparts on the sum of the k largest (or smallest) eigenvalues
as follows. Recall that we denote by λi (A) the ith largest eigenvalue of any matrix
A ∈ Hn.

Theorem5.1.2. Given any finite sequence of independent, randommatrices {X (i)}mi=1 ⊂

Hn, let Y =
∑m

i=1 X (i). Then for any 1 ≤ k ≤ n,

k∑
i=1

λi (EY ) ≤ E
k∑

i=1
λi (Y ) ≤ inf

θ>0

1
θ
log Trk

[
exp

( m∑
i=1

logE exp(θX (i))
)]
, (5.4a)

k∑
i=1

λn−i+1(EY ) ≥ E
k∑

i=1
λn−i+1(Y ) ≥ sup

θ<0

1
θ
log Trk

[
exp

( m∑
i=1

logE exp(θX (i))
)]
.

(5.4b)
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Furthermore, for all t ∈ R,

P



k∑
i=1

λi (Y ) ≥ t


≤ inf

θ>0
e−

θt
k

(
Trk

[
exp

( m∑
i=1

logE exp(θX (i))
)] ) 1

k , (5.5a)

P



k∑
i=1

λn−i+1(Y ) ≤ t


≤ inf

θ<0
e−

θt
k

(
Trk

[
exp

( m∑
i=1

logE exp(θX (i))
)] ) 1

k . (5.5b)

The generic estimates in Theorem 5.1.2 are not user-friendly in practice, as the
k-trace is hardly computable in general. However, we can further establish more
concrete estimates for particular random matrices in this class. For example, we
consider the scenario where each X (i) in the sum Y =

∑m
i=1 X (i) also satisfies

0 ≤ λn(X (i)) ≤ λ1(X (i)) ≤ c for some uniform constant c > 0. One of the most
studied scenarios in this setting arises with an undirected, no-selfloop, randomly
weighted graph G = (V, E,W ) of n vertices. The weights wi j for all edges ei j, i < j

are uniformly bounded and follow independent distributions. Then the Laplacian of
such random graph is given by L =

∑
1≤i< j≤n wi j L(i, j), where

L(i, j) =

i j

i

j



1 −1

−1 1



, i < j,

is the sub-Laplacian corresponding to the edge ei j with unit weight. In particular,
if each weight follows a Bernoulli distribution B(1, p) for some uniform constant
p ∈ [0, 1], the random graph is known as the famous Erdős-Rényi model.

For these kind of problems, one may want to study the extreme eigenvalues of EY

but can only afford to compute the eigenvalues of random samples of Y , as samples
of Y are much sparser than EY in general. Then it is crucial to know how the
eigenvalues of Y =

∑m
i=1 X (i) deviate from the corresponding eigenvalues of EY .

For such purposes, Tropp used the master bounds in Proposition 5.1.1 and delicate
bounds for the matrix moment generating function ([122, Lemma 5.4.1]) to prove
the following Chernoff-type inequalities ([122, Theorem 5.1.1]).

Proposition 5.1.3. Given any finite sequence of independent, random matrices
{X (i)}mi=1 ⊂ Hn, let Y =

∑m
i=1 X (i). Assume that for each i, 0 ≤ λn(X (i)) ≤
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λ1(X (i)) ≤ c for some uniform constant c ≥ 0. Then

Eλmax(Y ) ≤ inf
θ>0

eθ − 1
θ

λmax(EY ) +
c
θ
log n, (5.6a)

Eλmin(Y ) ≥ sup
θ>0

1 − e−θ

θ
λmin(EY ) −

c
θ
log n. (5.6b)

Furthermore, for any t ≥ 0,

P {λmax(Y ) ≥ (1 + ε)λmax(EY )} ≤ n
(

eε

(1 + ε)1+ε

)λmax(EY )/c

, ε ≥ 0, (5.7a)

P {λmin(Y ) ≤ (1 − ε)λmin(EY )} ≤ n
(

e−ε

(1 − ε)1−ε

)λmin(EY )/c

, ε ∈ [0, 1), (5.7b)

In this positive semidefinite case, we can again extend the above results of Tropp
to their analogs on partial sums of eigenvalues. In particular, we will use Theo-
rem 5.1.2, the second inequality in (5.15) and bounds on matrix moment generating
functions ([122, Lemma 5.4.1]) to prove the following Chernoff-type bounds.

Theorem5.1.4. Given any finite sequence of independent, randommatrices {X (i)}mi=1 ⊂

Hn, letY =
∑m

i=1 X (i). Assume that for each i, 0 ≤ λn(X (i)) ≤ λ1(X (i)) ≤ c for some
uniform constant c ≥ 0. Then for any 1 ≤ k ≤ n, we have expectation estimates

E
k∑

i=1
λi (Y ) ≤ inf

θ>0

eθ − 1
θ

k∑
i=1

λi (EY ) +
c
θ
log

(
n
k

)
, (5.8a)

E
k∑

i=1
λn−i+1(Y ) ≥ sup

θ>0

1 − e−θ

θ

k∑
i=1

λn−i+1(EY ) −
c
θ
log

(
n
k

)
, (5.8b)

and tail bounds

P



k∑
i=1

λi (Y ) ≥ (1 + ε)
k∑

i=1
λi (EY )




(5.9a)

≤

(
n
k

) 1
k
(

eε

(1 + ε)1+ε

) 1
ck

∑k
i=1 λi (EY )

, ε ≥ 0,

P



k∑
i=1

λn−i+1(Y ) ≤ (1 − ε)
k∑

i=1
λn−i+1(EY )




(5.9b)

≤

(
n
k

) 1
k
(

e−ε

(1 − ε)1−ε

) 1
ck

∑k
i=1 λn−i+1(EY )

, ε ∈ [0, 1).
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In Tropp’s results (5.6), namely the case k = 1, the cost of “switching” λ and E
is of scale log n. In our estimates (5.8), the gap factor becomes log

(
n
k

)
≤ k log n

that grows only sub-linearly in k, which is reasonable as we are estimating the sum
of the k largest (or smallest) eigenvalues. We shall further compare our estimates
to another related work. Tropp et al. [40] introduced a subspace argument based
on Courant–Fischer characterization of eigenvalues to prove tail bounds for all
eigenvalues of Y =

∑m
i=1 X (i). Though not stated in [40], the following expectation

estimates for all eigenvalues can also be established using the subspace argument.
Give any finite sequence of independent, random matrices {X (i)}mi=1 under the same
assumption as in Theorem 5.1.4, and Y =

∑m
i=1 X (i), we have for any 1 ≤ k ≤ n,

Eλk (Y ) ≤ inf
θ>0

eθ − 1
θ

λk (EY ) +
c
θ
log(n − k + 1), (5.10a)

Eλk (Y ) ≥ sup
θ>0

1 − e−θ

θ
λk (EY ) −

c
θ
log k . (5.10b)

Summing (5.10a) (or (5.10b)) for the k largest (or smallest) eigenvalues, we imme-
diately obtain

E
k∑

i=1
λi (Y ) ≤ inf

θ>0

eθ − 1
θ

k∑
i=1

λi (EY ) +
c
θ
log

k∏
i=1

(n − i + 1), (5.11a)

E
k∑

i=1
λn−i+1(Y ) ≥ sup

θ>0

1 − e−θ

θ

k∑
i=1

λn−i+1(EY ) −
c
θ
log

k∏
i=1

(n − i + 1). (5.11b)

Therefore, our expectation estimates (5.8a) and (5.8b) are sharper for partial sums of
eigenvalues, as log

(
n
k

)
< log

∏k
i=1(n − i + 1) for k > 1. In particular, if one choose

k to be a fixed proportion of n, then log
(

n
k

)
= O(k), while log

∏k
i=1(n − i + 1) =

O(k log n). Our results are then better by a factor log n.

At last, we remark that if we combine Theorem 5.3.1 and the subspace argument
in [40], we shall be able to derive similar expectation estimates and tail bounds for
the sum of arbitrary successive eigenvalues of Y =

∑m
i=1 X (i). We will leave this

potential extension to future works.

5.2 K-trace
For any matrix A ∈ Cn×n with eigenvalues λ1, λ2, · · · , λn, we define the k-trace of
A to be

Trk[A] =
∑

1≤i1<i2<···<ik≤n

λi1λi2 · · · λik , 1 ≤ k ≤ n. (5.12)
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In particular, Tr1[A] = Tr[A] is the normal trace of A, and Trn[A] = det[A] is the
determinant of A. If we write A(i1···ik,i1···ik ) for the k × k principal submatrix of A

corresponding to the indices i1, i2, · · · , ik , then an equivalent definition of the k-trace
of A is given by

Trk[A] =
∑

1≤i1<i2<···<ik≤n

det[A(i1···ik,i1···ik )], 1 ≤ k ≤ n. (5.13)

Using the second definition (5.13), one can check that for any 1 ≤ k ≤ n, the k-trace
enjoys the cyclic invariance property like the normal trace and the determinant. That
is for any A, B ∈ Cn, Trk[AB] = Trk[BA].

The motivation of studying the k-trace is to provide effective estimates on the sum of
the k largest (or smallest) eigenvalues of, in particular, random Hermitian matrices.
As we know, the sum of the k largest eigenvalues of a Hermitian matrix A (as a
variable) is a convex function in A. So if A is random, we have, for example, the
expectation estimate

E
k∑

i=1
λi (A) ≥

k∑
i=1

λi (EA)

by Jensen’s inequality. Recall that λi (A) denotes the ith largest eigenvalue of A. This
provides a lower bound for the left hand side if we know EA; or a way to bound the
right hand side from above if we can sample A. However, an estimate between these
two quantities in an inverse fashion is more interesting and challenging. For the
k = 1 case, Tropp [122] related the largest eigenvalue to the trace of the exponential
using the observation

λ1(A) ≤ log Tr
[
exp(A)

]
≤ λ1(A) + log n, A ∈ Hn, (5.14)

which only introduced a gap of log scale in dimension. In particular, the first
inequality in (5.14) was applied to the random matrix A, and the second was
applied to EA. Tropp then applied the Lieb’s theorem to the intermediate quantity
Tr

[
exp(A)

]
(more precisely, with A = H + logY for some fixed matrix H and some

random matrices Y ) to derive inverse expectation estimates and a series of matrix
concentration inequalities. Inspired by Tropp’s work, we will develop expectation
estimates and tail bounds on the sum of the k largest eigenvalues based on an analog
of (5.14) that

k∑
i=1

λi (A) ≤ log Trk
[
exp(A)

]
≤

k∑
i=1

λi (A) + log
(
n
k

)
, A ∈ Hn, (5.15)
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This is actually the starting point of this paper. Naturally, manipulating the interme-
diate quantity Trk

[
exp(A)

]
in our estimates requires extending the Lieb’s theorem

to a general k-trace version. Note that the sum of the k smallest eigenvalues can be
handled in a similar spirit.

Apart from its particular use discussed above, the k-trace is of theoretical interest
by itself, as it has many interpretations corresponding to different aspects of matrix
theories. Writing D(A(1), A(2), · · · , A(n)) the mixed discriminant of any n matrices
A(1), A(2), · · · , A(n) ∈ Cn×n, we have the identity

Trk[A] =
(
n
k

)
· D(A, · · · , A︸    ︷︷    ︸

k

, In, · · · , In︸     ︷︷     ︸
n−k

).

Also, if we consider the kth exterior algebra∧k (Cn), we can then interpret the k-trace
of A as

Trk[A] = TrL(∧k (Cn ))
[
M (k)

0 (A)
]
,

where TrL(∧k (Cn )) is the normal trace on the operator space L(∧k (Cn)), and
M (k)

0 (A) ∈ L(∧k (Cn)) is defined as M (k)
0 (A)(v1 ∧ v2 ∧ · · · ∧ vk ) = Av1 ∧ Av2 ∧

· · · ∧ Avk , for any v1 ∧ v2 ∧ · · · ∧ vk ∈ ∧
k (Cn). These two interpretations, in fact,

will provide us important tools for studying the k-trace and proving our general-
ized Lieb’s concavity theorems. We will discuss more on this in Section 5.6.1 and
Section 5.6.2.

Throughout this work, we will be using the following nice properties of the k-trace.

Proposition 5.2.1. For any positive integers n, k, 1 ≤ k ≤ n, the k-trace function
Trk[·] satisfies the following:

(i) Cyclicity: Trk[AB] = Trk[BA], A, B ∈ Cn×n.

(ii) Homogeneity: Trk[αA] = αkTrk[A], A ∈ Cn×n, α ∈ C.

(iii) Monotonicity: For any A, B ∈ H+n , Trk[A] ≥ Trk[B], if A � B; Trk[A] >
Trk[B], if A � B. In particular, Trk[A] ≥ 0, A ∈ H+n .

(iv) Concavity: The function A 7→ (Trk[A])
1
k is concave on H+n .

(v) Hölder’s Inequality: Trk[|AB |r] 1r ≤ Trk[|A|p]
1
pTrk[|B |q]

1
q , for any r, p, q ∈

(0,+∞], 1p +
1
q =

1
r , and any A, B ∈ Cn×n.
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(vi) Consistency: For any ñ, k ≤ ñ ≤ n, and any A ∈ Cñ×ñ, Trk


*
,

A 0

0 0
+
-n×n


=

Trk[A].

Proof. (i), (ii), (iii) and (vi) can be easily verified by the definitions (5.12) and (5.13).
(iv) is a consequence of the general Brunn–Minkowski theorem (Corollary 5.6.3)
introduced in Section 5.6.1. (v) is a direct result of expression (5.51) in Section 5.6.2.
In fact, since the normal trace enjoys the Hölder’s inequality, we have

Trk[|AB |r]
1
r = Tr[��M (k)

0 (A)M (k)
0 (B)��r]

1
r

≤ Tr[|M (k)
0 (A) |p]

1
pTr[|M (k)

0 (B) |q]
1
q

= Trk[|A|p]
1
pTrk[|B |q]

1
q .

We have used multiple properties of the operator M (k)
0 (A) introduced in Sec-

tion 5.6.2. �

A Simplified Notation
As we will be working with the general setting of k-trace, there is no need to specify
a particular value of k. Therefore, we will sometimes write

φ(A) = (Trk[A])
1
k

for notational simplicity. Note that the function φ also satisfies (i) cyclicity, (iii)
monotonicity, (v) Hölder’s inequality and (vi) consistency as in Proposition 5.2.1.
But now the map A 7→ φ(A) is homogeneous of order 1 and is concave on H+n .
Abusing notation, we will also refer the function φ as the k-trace.

5.3 Generalized Lieb’s Concavity Theorems
We present in this section the main theoretical results of this part of work.

Theorem 5.3.1 (Generalized Lieb’s Theorem). For any 1 ≤ k ≤ n and any H ∈ Hn,
the function

A 7−→
(
Trk[exp(H + log A)]

) 1
k (5.16)

is concave on H++n . Equivalently, for any 1 ≤ k ≤ n, the function

A 7−→ log Trk[exp(H + log A)] (5.17)

is concave on H++n .



146

This theorem extends the Lieb’s theorem ([67, Theorem 6]) from the normal trace
to the k-traces, and hence connects it to theories of multilinear, symmetric forms
of matrices. We will give a proof of this theorem in Section 5.4.1. As we will see
in the proof, Theorem 5.3.1 is a joint result of the original Lieb’s theorem and the
Alexandrov–Fenchel inequality for mixed discriminants (Theorem 5.6.1). One can
get some first ideas by looking at three extreme cases that relate to some well-known
results.

• k = 1: The concavity of A 7−→ Tr[exp(H + log A)] is the original Lieb’s
theorem.

• k = n: We have
(
Trn[exp(H + log A)]

) 1
n = det[A] 1

n · exp( 1nTr[H]) and
log Trn[exp(H + log A)] = log det[A] + Tr[H]. The concavity of det[A] 1

n

or log det[A] is known as the Brunn–Minkowski theorem [105].

• H = 0: The concavity of Trk[A]
1
k , also known as the general Brunn–

Minkowski theorem, is a consequence of the Alexandrov–Fenchel inequality
for mixed discriminants. We will review this in Section 5.6.1.

Theorem 5.3.4 is already sufficient to yield our concentration results in Section 5.1.
However, with more advanced techniques of matrix analysis, we can actually prove
stronger results in the k-trace setting, completing the whole story of generalizing
Lieb’s concavity theorem.

Lemma 5.3.2. For any r ∈ [0, 1], s ∈ [0, 1r ] and any K ∈ Cn×n, the function

A 7−→ Trk
[
(K∗Ar K )s] 1

k (5.18)

is concave on H+n .

Theorem 5.3.3 (Generalized Lieb’s Concavity Theorem). For any p, q ∈ [0, 1], s ∈
[0, 1

p+q ] and any K ∈ Cn×m, the function

(A, B) 7−→ Trk
[
(B

q
2 K∗ApK B

q
2 )s

] 1
k (5.19)

is jointly concave on H+n ×H+m.

Theorem 5.3.4 (Generalized Lieb’s Theorem). For any H ∈ Hn and any {p j }
m
j=1 ⊂

[0, 1] such that
∑m

j=1 p j ≤ 1, the function

(A(1), A(2), . . . , A(m)) 7−→ Trk
[
exp

(
H +

m∑
j=1

p j log A( j))] 1
k (5.20)
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is jointly concave on (H++n )×m.

Lemma 5.3.2 is a k-trace extension of the concave part of Lemma 2.8 in [27] (see
also [47, Theorem 4.1]). The latter is a consequence of Lieb’s original concavity
theorem. However, we will first apply the technique of operator interpolation to
prove Lemma 5.3.2 independently, and then use it to derive Theorem 5.3.3 and the
other results. In fact, the convexity/concavity of function (5.18) in the trace case with
different ranges of p, s has been used as the first step towards many consequential
results on more complicated trace functions. Theorem 5.3.3 is our generalized
Lieb’s concavity theorem, which extends Hiai’s Theorem 2.1 in [48] (see also [25,
Theorem 4.4]) from trace to k-trace. Note that, as stated in Hiai’s theorem, the
concavity also holds for −1 ≤ p, q ≤ 0, 1

p+q ≤ s ≤ 0. In fact, by consistency
and continuity of φ, it suffices to consider the case when n = m and A, B, K are
invertible. Then, following the discussions in [26], we have that

Trk
[
(B

q
2 K∗ApK B

q
2 )s

] 1
k
= Trk

[
(B−

q
2 K−1A−p(K−1)∗B−

q
2 )−s

] 1
k ,

which concludes the concavity for the mirrored range of p, q, s. Our derivation from
Lemma 5.3.2 to Theorem 5.3.3 will be a counterpart of Zhang’s simple and useful
variational argument in [136] for the trace case.

Theorem 5.3.4 is a generalization of Corollary 6.1 in [67] (from trace to k-trace).
Lieb [67] proved the original trace version by checking the non-positiveness of the
second-order directional derivatives (orHessians). Wewill first proveTheorem5.3.4
for m = 1 by applying the Lie product formula to Lemma 5.3.2 (taking p, q → 0, s →
+∞), hence providing an alternative proof of Theorem 5.3.4. We then improve the
result from m = 1 to m ≥ 1 using a k-trace version of the Araki–Lieb–Thirring
inequality (Lemma 5.4.3).

The proofs of Lemma 5.3.2, Theorem 5.3.3 and Theorem 5.3.1 will be given in
Section 5.4.2.

5.4 Proof of Concavity Theorems
We provide in this section detailed proofs of our main results in Section 5.3. We
will be heavily relying on a variety of supporting materials that are presented in
Section 5.6.
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5.4.1 A First Proof by Matrix Derivative
As Theorem 5.3.4 is sufficient to lead to our concentration results, we provide in this
subsection an independent proof of it. As mentioned before, this generalized Lieb’s
theorem is a joint result of the original Lieb’s theorem and the Alexandrov–Fenchel
inequality. But we will not use the Lieb’s theorem directly. Instead, we will be
using the following lemma, also due to Lieb [67], which is an equivalence of the
Lieb’s theorem. We provide the proof here only to show its connection to the Lieb’s
theorem.

Lemma 5.4.1. Given any A ∈ H++n , C ∈ Hn, define

T =
∫ ∞

0
(A + τI)−1C(A + τI)−1dτ,

R = 2
∫ ∞

0
(A + τI)−1C(A + τI)−1C(A + τI)−1dτ,

then for any B ∈ H+n , we have∫ 1

0
dsTr

[
T BsT B1−s] − Tr[RB

]
≤ 0. (5.21)

Proof. By Lieb’s theorem (Theorem 6 [67]), for any H ∈ Hn, the function g(t) =
Tr

[
exp(H + log(A + tC))

]
is concave. Also this function is smooth in t for t small

enough such that A + tC ∈ H++n . Thus we have ∂2

∂t2g(t) |t=0 = g′′(0) ≤ 0. Write
B(t) = exp(H + log(A + tC)), and

T (t) =
∫ ∞

0
(A + tC + τI)−1C(A + tC + τI)−1dτ,

R(t) = 2
∫ ∞

0
(A + tC + τI)−1C(A + tC + τI)−1C(A + tC + τI)−1dτ.

It is easy to check that ∂
∂t log(A+ tC) = T (t), T ′(t) = −R(t) by formulas (5.58) and

(5.59). Then using the derivative formulas (5.57), (5.58) and (5.59), we have

g′(t) =
∫ 1

0
dsTr

[
(B(t))sT (t)(B(t))1−s] = Tr

[
T (t)B(t)

]
,

and

g′′(t) = Tr
[
T ′(t)B(t)

]
+

∫ 1

0
dsTr

[
T (t)(B(t))sT (t)(B(t))1−s] .

For any B ∈ H++n , wemay choose H = log B−log A, so that B(0) = exp(H+log A) =
B. And notice that T (0) = T, R(0) = R, we thus have

−Tr
[
RB

]
+

∫ 1

0
dsTr

[
T BsT B1−s] = g′′(0) ≤ 0.

The extension to B ∈ H+n can be done by continuity. �
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We use this variant of the Lieb’s theorem since it is more convenient for us to choose
arbitrary B ∈ H++n in inequality (5.21). In particular, if we choose B to be diagonal
with diagonal entries b1, b2, · · · , bn, then Lemma 5.4.1 implies that

n∑
i=1

Riibi ≥

∫ 1

0
ds

n∑
i=1

n∑
j=1

Ti j bs
jTjib1−s

i , (5.22)

which is a critical estimate that we will be using.

We now prove a trace inequalities using Lemma 5.4.1 and the Alexandrov–Fenchel
inequality Theorem 5.6.1. This inequality can be seen as a generalization of
Lemma 5.4.1 from k = 1 to all 1 ≤ k ≤ n.

Lemma 5.4.2. For arbitrary A ∈ H++n , B ∈ H+n,C ∈ Hn, let

T =
∫ ∞

0
(A + τI)−1C(A + τI)−1dτ,

R = 2
∫ ∞

0
(A + τI)−1C(A + τI)−1C(A + τI)−1dτ,

then we have, for all 1 ≤ k ≤ n,∫ 1

0
Tr

[
M

(k)
1 (T Bs; Bs)M (k)

1 (T B1−s; B1−s)
]
ds − Tr

[
M

(k)
1 (RB; B)

]
≤ Tr

[
M

(k)
2 (T B,T B, B)

]
.

(5.23)

Proof. We first claim that we only need to consider the case when B = Λ is a
diagonal matrix with all diagonal entries λ1, λ2, · · · , λn ≥ 0. Indeed, if B is not
diagonal, we consider its eigenvalue decomposition B = UΛUT , where U ∈ Cn×n

is unitary, and Λ is a diagonal matrix whose diagonal entries λ1, λ2, · · · , λn are
the eigenvalues of B. Since B ∈ H+n , λ1, λ2, · · · , λn ≥ 0. If we introduce Ã =

UT AU, C̃ = UTCU, T̃ = UTTU, R̃ = UT RU, we have

T̃ =
∫ ∞

0
( Ã + τI)−1C̃( Ã + τI)−1dτ,

R̃ = 2
∫ ∞

0
( Ã + τI)−1C̃( Ã + τI)−1C̃( Ã + τI)−1dτ.
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Then using the cyclic invariance of trace and the product properties (5.47), we have,
for example,

Tr
[
M

(k)
1 (T Bs; Bs)M (k)

1 (T B1−s; B1−s)
]

= Tr
[
M

(k)
1 (UUTTUΛsUT ;UΛsUT )M (k)

1 (UUTTUΛ1−sUT ;UΛ1−sUT )
]

= Tr
[
M

(k)
0 (U)M (k)

1 (T̃Λs;Λs)M (k)
0 (UT )M (k)

0 (U)M (k)
1 (T̃Λ1−s;Λ1−s)M (k)

0 (UT )
]

= Tr
[
M

(k)
1 (T̃Λs;Λs)M (k)

0 (UT )M (k)
0 (U)M (k)

1 (T̃Λ1−s;Λ1−s)M (k)
0 (UT )M (k)

0 (U)
]

= Tr
[
M

(k)
1 (T̃Λs;Λs)M (k)

1 (T̃Λ1−s;Λ1−s)
]
.

Using the same trick to the other terms in the inequalities (5.23), one can show that
(5.23) is equivalent to∫ 1

0
Tr

[
M

(k)
1 (T̃Λs;Λs)M (k)

1 (T̃Λ1−s;Λ1−s)
]
ds − Tr

[
M

(k)
1 (R̃Λ;Λ)

]
≤ Tr

[
M

(k)
2 (T̃Λ, T̃Λ,Λ)

]
.

which justifies our claim. In what follows, we will still use A,C,T, R for Ã, C̃, T̃, R̃.

We now prove (5.23) with B = Λ being diagonal whose diagonal entries are
λ1, λ2, · · · , λn ≥ 0. Using product properties (5.47) and identities in Lemma 5.6.4,
we rewrite the quantity

I ,

∫ 1

0
dsTr

[
M

(k)
1 (TΛs;Λs)M (k)

1 (TΛ1−s;Λ1−s)
]
− Tr

[
M

(k)
1 (RΛ;Λ)

]
=

∫ 1

0
ds

{
Tr

[
M

(k)
1 (TΛsTΛ1−s;Λ)

]
+ Tr

[
M

(k)
2 (TΛs

Λ
1−s,ΛsTΛ1−s;Λ)

]}

− Tr
[
M

(k)
1 (RΛ;Λ)

]
=

∫ 1

0
ds




n∑
i=1

( n∑
j=1

Ti jλ
s
jTjiλ

1−s
i

)
d (n,k)

i

+
∑

1≤i, j≤n

(Tiiλiλ
s
jTj jλ

1−s
j − Tjiλiλ

s
i Ti jλ

1−s
j )g(n,k)

i j




−

n∑
i=1

Riiλid
(n,k)
i .

Then replacing bi by λid
(n,k)
i in (5.22), we have by Lemma 5.4.1

n∑
i=1

Riiλid
(n,k)
i ≥

∫ 1

0
ds

n∑
i=1

n∑
j=1

Ti j (λ j d
(n,k)
j )sTji (λid

(n,k)
i )1−s .
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Therefore we have

I ≤

∫ 1

0
ds

{ ∑
1≤i, j≤n

Ti jTjiλ
s
jλ

1−s
i d (n,k)

i +
∑

1≤i, j≤n

(TiiTj jλiλ j − TjiTi jλ
1+s
i λ1−s

j )g(n,k)
i j

−
∑

1≤i, j≤n

Ti jTji (λ j d
(n,k)
j )s (λid

(n,k)
i )1−s

}
.

We now investigate the integrand for any s ∈ [0, 1]. We have∑
1≤i, j≤n

Ti jTjiλ
s
jλ

1−s
i d (n,k)

i +
∑

1≤i, j≤n

(TiiTj jλiλ j − TjiTi jλ
1+s
i λ1−s

j )g(n,k)
i j

−
∑

1≤i, j≤n

Ti jTji (λ j d
(n,k)
j )s (λid

(n,k)
i )1−s

=

n∑
i=1

T2
ii λid

(n,k)
i +

∑
1≤i< j≤n

|Ti j |
2(λs

jλ
1−s
i d (n,k)

i + λs
i λ

1−s
j d (n,k)

j )

+
∑

1≤i, j≤n

TiiTj jλiλ jg
(n,k)
i j −

∑
1≤i< j≤n

|Ti j |
2(λ1+s

i λ1−s
j + λ1+s

j λ1−s
i )g(n,k)

i j

−

n∑
i=1

T2
ii λid

(n,k)
i

−
∑

1≤i< j≤n

|Ti j |
2(λs

jλ
1−s
i (d (n,k)

j )s (d (n,k)
i )1−s + λs

i λ
1−s
j (d (n,k)

i )s (d (n,k)
j )1−s)

=
∑

1≤i, j≤n

TiiTj jλiλ jg
(n,k)
i j

+
∑

1≤i< j≤n

|Ti j |
2

{
λs

jλ
1−s
i d (n,k)

i + λs
i λ

1−s
j d (n,k)

j − (λ1+s
i λ1−s

j + λ1+s
j λ1−s

i )g(n,k)
i j

− λs
jλ

1−s
i (d (n,k)

j )s (d (n,k)
i )1−s − λs

i λ
1−s
j (d (n,k)

i )s (d (n,k)
j )1−s

}

≤
∑

1≤i, j≤n

TiiTj jλiλ jg
(n,k)
i j − 2

∑
1≤i< j≤n

|Ti j |
2λiλ jg

(n,k)
i j

=
∑

1≤i, j≤n

(TiiTj jλiλ j − Ti jTjiλiλ j )g
(n,k)
i j .

We have used g(n,k)
i j = g(n,k)

ji and g(n,k)
ii = 0. The proof of the last inequality above is

as follows. For any s ∈ [0, 1], we have a Hölder-type inequality for scalars:

(a + b)s (c + d)1−s ≥ asc1−s + bsd1−s, a, b, c, d ≥ 0.

Then using the expansion relations (5.53),

d (n,k)
i = λ jg

(n,k)
i j + g(n,k+1)

i j , d (n,k)
j = λig

(n,k)
i j + g(n,k+1)

i j ,
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we have

λs
jλ

1−s
i d (n,k)

i + λs
i λ

1−s
j d (n,k)

j − (λ1+s
i λ1−s

j + λ1+s
j λ1−s

i )g(n,k)
i j

− λs
jλ

1−s
i (d (n,k)

j )s (d (n,k)
i )1−s − λs

i λ
1−s
j (d (n,k)

i )s (d (n,k)
j )1−s

≤ λs
jλ

1−s
i (λ jg

(n,k)
i j + g(n,k+1)

i j ) + λs
i λ

1−s
j (λig

(n,k)
i j + g(n,k+1)

i j )

− (λ1+s
i λ1−s

j + λ1+s
j λ1−s

i )g(n,k)
i j

− λs
jλ

1−s
i (λs

i λ
1−s
j g(n,k)

i j + g(n,k+1)
i j ) − λs

i λ
1−s
j (λs

jλ
1−s
i g(n,k)

i j + g(n,k+1)
i j )

= − 2λiλ jg
(n,k)
i j .

Finally using Lemma 5.6.4 again, we have

I ≤

∫ 1

0
ds




∑
1≤i, j≤n

(TiiTj jλiλ j − Ti jTjiλiλ j )g
(n,k)
i j




= Tr
[
M

(k)
2 (TΛ,TΛ,Λ)

]
.

This completes the proof of Lemma 5.4.2. �

We are now ready to prove Theorem 5.3.1 with all established results.

Proof of Theorem 5.3.1. We first prove the concavity of the function

fH,k (A) =
(
Trk

[
exp

(
H + log A

)] ) 1
k .

Notice that given any A ∈ H++n and any C ∈ Hn, there exist some ε such that
A + tC ∈ H++n for t ∈ (−ε, ε ), and fH,k (A + tC) is continuously differentiable with
respect to t on (−ε, ε ). In what follows, any function of t is always assumed to be
defined on a reasonable neighborhood of 0 (so that A + tC ∈ H++n ).

Then the concavity of fH,k (A) onH++n is equivalently to the statement that ∂2
∂t2 fH,k (A+

tC) ≤ 0|t=0 for all choices of A ∈ H++n ,C ∈ Hn. Now fix a pair A,C, define
B(t) = exp

(
H + log(A + tC)

)
∈ H++n and g(t) = Trk

[
exp

(
H + log(A + tC)

)]
=

Tr
[
M

(k)
0 (B(t))

]
> 0. Since fH,k (A + tC) = g(t)

1
k , and

∂2

∂t2
fH,k (A + tC) =

1
k
g(t)

1
k −2

(
g′′(t)g(t) −

k − 1
k

(g′(t))2
)
,

we then need to show that g(0)g′′(0) ≤ k−1
k (g′(0))2. Using the derivative formulas

(5.58) and (5.59), we have

∂

∂t
log(A + tC) =

∫ ∞

0
(A + tC + xIn)−1C(A + tC + xIn)−1 , T (t),



153
∂

∂t
T (t) = −2

∫ ∞

0
(A + tC + xIn)−1C(A + tC + xIn)−1C(A + tC + xIn)−1 , −R(t).

Then using formula (5.57), we can compute the first derivative

g′(t) =
∂

∂t
Tr

[
M

(k)
0 (B(t))

]
= Tr

[
M

(k)
1 (B′(t); B(t))

]
= Tr

[
M

(k)
1

( ∫ 1

0
dsB(t)sT (t)B(t)1−s; B(t)

)]
=

∫ 1

0
dsTr

[
M

(k)
1

(
B(t)sT (t)B(t)1−s; B(t)s B(t)1−s)]

=

∫ 1

0
dsTr

[
M

(k)
0 (B(t)s)M (k)

1 (T (t); In)M (k)
0 (B(t)1−s)

]
=

∫ 1

0
dsTr

[
M

(k)
1 (T (t); In)M (k)

0 (B(t)1−s)M (k)
0 (B(t)s)

]
= Tr

[
M

(k)
1 (T (t); In)M (k)

0 (B(t))
]
.

We have used the fact thatM (k)
1 (X ;Y ) is linear in X , and so we can pull out the

integral symbol. Then the second derivative is

g′′(t) =
∂

∂t
Tr

[
M

(k)
1 (T (t); In)M (k)

0 (B(t))
]

= Tr
[
M

(k)
1 (T (t); In)M (k)

1 (B′(t); B(t))
]
+ Tr

[
M

(k)
1 (T ′(t); In)M (k)

0 (B(t))
]

=

∫ 1

0
dsTr

[
M

(k)
1 (T (t); In)M (k)

0 (B(t)s)M (k)
1 (T (t); In)M (k)

0 (B(t)1−s)
]

− Tr
[
M

(k)
1 (R(t); In)M (k)

0 (B(t))
]
.

Write T = T (0), R = R(0) and B = B(0). We then apply Lemma 5.4.2 to reach

g(0)g′′(0)

= Tr
[
M

(k)
0 (B)

] { ∫ 1

0
dsTr

[
M

(k)
1 (T ; In)M (k)

0 (Bs)M (k)
1 (T ; In)M (k)

0 (B1−s)
]

− Tr
[
M

(k)
1 (R; In)M (k)

0 (B)
]}

= Tr
[
M

(k)
0 (B)

] { ∫ 1

0
dsTr

[
M

(k)
1 (T Bs; Bs)M (k)

1 (T B1−s; B1−s)
]

− Tr
[
M

(k)
1 (RB; B)

]}

≤ Tr
[
M

(k)
0 (B)

]
Tr

[
M

(k)
2 (T B,T B, B)].
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To continue, we use definitions (5.46), identity (5.50) and the Alexandrov–Fenchel
inequality (Theorem 5.6.1) to obtain

Tr
[
M

(k)
0 (B)

]
Tr

[
M

(k)
2 (T B,T B, B)]

=
n!

k!(n − k)!
D(B, · · · , B︸    ︷︷    ︸

k

, In, · · · , In︸     ︷︷     ︸
n−k

)

×
n!

(k − 2)!(n − k)!
D(T B,T B, B · · · , B︸   ︷︷   ︸

k−2

, In, · · · , In︸     ︷︷     ︸
n−k

)

≤
k − 1

k

( n!
(k − 1)!(n − k)!

D(T B, B · · · , B︸   ︷︷   ︸
k−1

, In, · · · , In︸     ︷︷     ︸
n−k

)
)2

=
k − 1

k
Tr

[
M

(k)
1 (T B, B)

]2
=

k − 1
k

(g′(0))2.

We therefore have proved that

g(0)g′′(0) ≤
k − 1

k
(g′(0))2.

The concavity of fH,k (A) on H++n then follows.

Next we prove the equivalence of (i) the concavity of the functions fH,k (A) on H++n

and (ii) the concavity of the functions f̃H,k = log Trk
[
exp

(
H + log A

)]
onH++n . (i)

⇒ (ii) is trivial. To prove (ii)⇒ (i), we need the following lemma.

Let x = (x1, x2) ∈ (0,+∞)2. Define f (x) = Trk
[
exp

(
H + log(x1A1 + x2A2)

)]
.

One can easily verify that fH,k (A) being concave on H++n is equivalent to f (x)
1
k

being concave on (0,+∞)2 for arbitrary but fixed choice of A1, A2 ∈ H++n , H ∈ Hn.
Similarly, f̃H,k (A) being concave on H++n is equivalent to log f (x) being concave
on (0,+∞)2 for arbitrary but fixed choice of A1, A2 ∈ H++n , H ∈ Hn. Using the
definition of the k-trace Trk , it is easy to check that f (x) is homogeneous of order
k. By Lemma 5.6.9, we know f (x)

1
k is concave if and only if log f (x) is concave.

Therefore we have (i)⇔ (ii). �

5.4.2 Proofs of Stronger Results
We provide in this subsection the proofs of our stronger results, Theorem 5.3.3 and
Theorem5.3.1. The first step is to prove Lemma 5.3.2 using the technique of operator
interpolation as in Lemma 5.6.8. The key of applying Lemma 5.6.8 is to choose
some proper holomorphic function G(z) and then interpolating on some power in
[0, 1]. In particular, we will perform interpolation on w = 1

s to prove Lemma 5.3.2.
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Our choice of the holomorphic functions G(z) in the following proof is inspired by
Lieb’s constructions in [67] for the use of maximum modulus principle. Recall that
we will write φ(·) = Trk[]

1
k for notational simplicity.

Proof of Lemma 5.3.2. Note that for s ∈ [0, 1], the concavity of (5.18) is a direct
consequence of the facts that (i) φ is monotone increasing and concave on H+n , and
(ii) X 7→ X r and X 7→ X s are operator monotone increasing and operator concave
on H+n . So in what follows we may assume that 1 ≤ s ≤ 1

r . We need to show that,
for any A, B ∈ H+n and any τ ∈ [0, 1],

τφ
(
(K∗Ar K )s) + (1 − τ)φ

(
(K∗Br K )s) ≤ φ(

(K∗Cr K )s),
where C = τA + (1 − τ)B. We may assume that A, B ∈ H++n and K is invertible.
Once this is done, the general result for A, B ∈ H+n and K ∈ Cn×n can be obtained by
continuity. Let w = 1

s ∈ [r, 1] and r̂ = rs ∈ [0, 1], so r = r̂w. Let M = C
r
2 K , and

let M = Q |M | be the polar decomposition of M for some unitary matrix Q. Since
C, K are both invertible, |M | ∈ H++n . We then define two functions from S to Cn×n:

GA(z) = A
r̂ z
2 C−

r̂ z
2 Q |M |

z
w , GB (z) = B

r̂ z
2 C−

r̂ z
2 Q |M |

z
w , z ∈ S,

where S is given by (5.61). In what follows we will use X for A or B. We then have

φ
(
(K∗X r K )s) = φ(

(M∗C−
r
2 X rC−

r
2 M)s)

= φ
(
(|M |Q∗C−

r̂w
2 X

r̂w
2 X

r̂w
2 C−

r̂w
2 Q |M |)

1
w
)

= φ
(
|GX (w) |

2
w
)
.

Since A, B,C, M are now fixed matrices in H++n , GA(z) and GB (z) are apparently
holomorphic in the interior of S and continuous on the boundary. Also, it is easy to
check that ‖GA(z)‖ and ‖GB (z)‖ are uniformly bounded on S, since Re(z) ∈ [0, 1].
Therefore we can use inequality (5.65) with θ = w, pθ = 2

w to obtain

φ(|GX (w) |
2
w )

≤

∫ +∞

−∞

dt
(2(1 − w)

wp0
β1−w (t)φ

(
|GX (it) |p0

)
+

2
p1
βw (t)φ

(
|GX (1 + it) |p1

))
.

We still need to choose some p0, p1 ≥ 1 satisfying 1−w
p0
+ w

p1
= 1

pw
= w

2 to proceed.
Note that GX (it) = X

ir̂ t
2 C−

ir̂ t
2 Q |M |

it
w are now unitary matrices for all t ∈ R since

X,C, |M | ∈ H++n , and thus |GX (it) |p0 = In for all p0. Therefore we can take
p0 → +∞, p1 = 2 to obtain

φ( |GX (w) |
2
w ) ≤

∫ +∞

−∞

dt βw (t)φ
(
|GX (1 + it) |2

)
.
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Further, for each t ∈ R, we have

φ
(
|GX (1 + it) |2

)
= φ

(
GX (1 + it)∗GX (1 + it)

)
= φ

(
|M |

(1−it )
w Q∗C−

r̂ (1−it )
2 X r̂C−

r̂ (1+it )
2 Q |M |

(1+it )
w

)
= φ

(
|M |

1
w Q∗C−

r̂ (1−it )
2 X r̂C−

r̂ (1+it )
2 Q |M |

1
w
)
,

where we have used the cyclicity of φ (|M | itw is unitary) for the last equality.
Therefore we have

τφ
(
|GA(1 + it) |2

)
+ (1 − τ)φ

(
|GB (1 + it) |2

)
= τφ

(
|M |

1
w Q∗C−

r̂ (1−it )
2 Ar̂C−

r̂ (1+it )
2 Q |M |

1
w
)

+ (1 − τ)φ
(
|M |

1
w Q∗C−

r̂ (1−it )
2 Br̂C−

r̂ (1+it )
2 Q |M |

1
w
)

≤ φ
(
|M |

1
w Q∗C−

r̂ (1−it )
2 (τAr̂ + (1 − τ)Br̂ )C−

r̂ (1+it )
2 Q |M |

1
w
)

≤ φ
(
|M |

1
w Q∗C−

r̂ (1−it )
2 Cr̂C−

r̂ (1+it )
2 Q |M |

1
w
)

= φ
(
|M |

2
w
)

= φ
(
(M∗M)

1
w
)
.

The first inequality above is due to the concavity of φ, the second inequality is due
to (i) that φ is monotone increasing onH+n and (ii) that X 7→ X r̂ is operator concave
on H+n for r̂ ∈ (0, 1]. Finally, since φ

(
(M∗M)

1
w
)
is independent of t, and βw (t) is a

density on R, we obtain that

τφ
(
(K∗Ar K )s) + (1 − τ)φ

(
(K∗Br K )s)

= τφ
(
|GA(w) |

2
w
)
+ (1 − τ)φ

(
|GB (w) |

2
w
)

≤ φ
(
(M∗M)

1
w
)

= φ
(
(K∗Cr K )s) .

So we have proved the concavity of (5.18) on H+n . �

Our next proof, using essentially Hölder’s inequalities for the k-trace, is adapted
from Zhang’s proofs of Theorem 1.1 and Theorem 3.3 in [136].

Proof of Theorem 5.3.3. Without loss of generality, we may assume that m = n.

Otherwise we can replace A by *
,

A 0
0 0

+
-
and K by *

,

K

0
+
-
if n < m; or replace B
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by *
,

B 0
0 0

+
-
and K by

(
K 0

)
is n > m. By the consistency of φ, these changes

of variables will not affect whether the function (5.19) is jointly concave in (A, B)
or not. We write X = A

p
2 and Y = K B

q
2 . Let s1 =

p+q
p s, s2 =

p+q
q s, so 1

s =
1
s1
+ 1

s2
.

Then for any Z ∈ Cn×n that is invertible, we have by Hölder’s inequality ((v) in
Proposition 5.2.1) that

φ
(
(B

q
2 K∗ApK B

q
2 )s) = φ(

|X Z Z−1Y |2s)
≤ φ

(
|X Z |2s1 ) s

s1 φ
(
|Z−1Y |2s2 ) s

s2

≤
s
s1
φ
(
(Z∗X∗X Z )s1 ) + s

s2
φ
(
(Y ∗(Z−1)∗Z−1Y )s2 )

=
s
s1
φ
(
(Z∗X∗X Z )s1 ) + s

s2
φ
(
(Z−1YY ∗(Z−1)∗)s2 ) .

We have used the fact that φ
(

f (|M |)
)
= φ

(
f ( |M∗ |)

)
for any matrix M ∈ Cn×n and

any function f , since φ is only a function of eigenvalues and the spectrums of f (|M |)
and f (|M∗ |) are the same. Let (XY )∗ = Q |(XY )∗ | be the polar decomposition of
(XY )∗, where Q ∈ Cn×n is unitary. So we have XYQ = |(XY )∗ |. If X and Y are
invertible, we can particularly choose Z = YQ |(XY )∗ |−

s1
s1+s2 to have

X Z = XYQ |(XY )∗ |−
s1

s1+s2 = |(XY )∗ |
s2

s1+s2 ,

and Z−1Y = |(XY )∗ |
s1

s1+s2 Q∗,

which yields the equality

s
s1
φ
(
(Z∗X∗X Z )s1 ) + s

s2
φ
(
(Z−1YY ∗(Z−1)∗)s2 ) = φ(

|(XY )∗ |
2s1s2
s1+s2

)
= φ

(
|XY |2s) .

Now for general X,Y that are not necessarily invertible, we can always find two
sequences of invertible matrices {X j }

+∞
j=1, {Yj }

+∞
j=1 such that (i) X j → X , Yj → Y

and (ii) X∗j X j � X∗X , YjY ∗j � YY ∗. Such sequences can be easily obtained by
perturbing the singular values of X and Y . For each pair of (X j,Yj ), we can find
some invertible Z j so that the above equality holds. Also, for any invertible Z , we
have Z∗X∗j X j Z � Z∗X∗X Z , Z−1YjY ∗j (Z−1)∗ � Z−1YY ∗(Z−1)∗, and thus

φ
(
(Z∗X∗X Z )s1 ) ≤ φ(

(Z∗X∗j X j Z )s1 ),
φ
(
(Z−1YY ∗(Z−1)∗)s2 ) ≤ φ(

(Z−1YjY ∗j (Z−1)∗)s2 )
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by Theorem 5.7.6, which we will prove in Section 5.7. Then we obtain a sequence
of inequalities,

φ(|XY |2s) ≤ inf{
s
s1
φ
(
(Z∗X∗X Z )s1 ) + s

s2
φ
(
(Z−1YY ∗(Z−1)∗)s2 ) : Z invertible}

≤
s
s1
φ
(
(Z∗j X∗X Z j )s1 ) + s

s2
φ
(
(Z−1j YY ∗(Z−1j )∗)s2 )

≤
s
s1
φ
(
(Z∗j X∗j X j Z j )s1 ) + s

s2
φ
(
(Z−1j YjY ∗j (Z−1j )∗)s2 )

= φ(|X jYj |
2s).

But since φ( |XY |2s) = lim j→+∞ φ( |X jYj |
2s) by continuity, the first inequality above

must be an equality. Therefore, by substituting X = A
p
2 ,Y = K B

q
2 , we obtain that

φ
(
(B

q
2 K∗ApK B

q
2 )s)

= inf{
s
s1
φ
(
(Z∗ApZ )s1 ) + s

s2
φ
(
(Z−1K BqK∗(Z−1)∗)s2 ) : Z invertible}.

Note that s ∈ [0, 1
p+q ] implies s1 ∈ [0, 1p ], s2 ∈ [0,

1
q ]. By Lemma 5.3.2, the map

(A, B) 7−→
s
s1
φ
(
(Z∗ApZ )s1 ) + s

s2
φ
(
(Z−1K BqK∗(Z−1)∗)s2 )

is jointly concave in (A, B) for every invertible Z , which then implies the joint
concavity of the infimum over all invertible Z . �

Proof of Theorem 5.3.4 (Part I). We first prove the theorem for m = 1. Let r =

p1 ∈ [0, 1], and K (N ) = (K (N ))∗ = exp
( 1
2N H

)
, N ≥ 1. Then using the Lie product

formula

lim
N→+∞

(
exp

( 1
2N

Y
)
exp

( 1
N

X
)
exp

( 1
2N

Y
))N

= exp(X + Y ), X,Y ∈ Hn,

we have

lim
N→+∞

φ
((

(K (N ))∗A
r
N K (N ))N

)
= lim

N→+∞
φ

((
exp

( 1
2N

H
)
exp

( r
N

log A
)
exp

( 1
2N

H
))N

)
= φ

(
exp(H + r log A)

)
.

By Theorem 5.3.3, for each N ≥ 1, φ
((

(K (N ))∗A
r
N K (N ))N

)
is concave in A, thus

the limit function φ
(
exp(H + r log A)

)
is also concave in A. �
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To go from m = 1 to m > 1 in Theorem 5.3.4, we need to use the convexity of
the map A 7→ φ(exp(A)), which we will prove via the following lemmas. They
are the k-trace extensions of the Araki–Lieb–Thirring inequality [4], the Golden–
Thompson inequality and a variant of the Peierls–Bogoliubov inequality (see, e.g.,
[24, Theorem 2.12]).

Lemma 5.4.3 (k-trace Araki–Lieb–Thirring Inequality). For any A, B ∈ H+n , the
function

t 7→ Trk
[
(B

t
2 At B

t
2 )

1
t
]

is monotone increasing on (0,+∞), that is

Trk
[
(B

t
2 At B

t
2 )

1
t
]
≤ Trk

[
(B

s
2 As B

s
2 )

1
s
]
, 0 < t ≤ s. (5.24)

Proof. Using the definition and properties of the operator M (k)
0 in Section 5.6.2,

we have that

Trk
[
(B

t
2 At B

t
2 )

1
t
]
= Tr

[
M

(k)
0

(
(B

t
2 At B

t
2 )

1
t
)]

= Tr
[(

(M (k)
0 (B))

t
2 (M (k)

0 (A))t (M (k)
0 (B))

t
2
) 1

t
]
.

Since A, B ∈ H+n ,M
(k)
0 (A) andM (k)

0 (B) are both Hermitian and positive semidef-
inite. Then inequality (5.24) follows immediately from the original Araki–Lieb–
Thirring inequality [4] for normal trace. �

Lemma 5.4.4 (k-trace Golden–Thompson Inequality). For any A, B ∈ Hn,

Trk
[
exp(A + B)

]
≤ Trk

[
exp(A) exp(B)

]
, (5.25)

with equality holds if and only if AB = BA.

Proof. We here only prove the inequality. The condition for equality will be justified
in an alternative proof of this lemma in Section 5.6.2. For any A, B ∈ Hn, we have

Trk
[
exp(A + B)

]
= lim

m→+∞
Trk

[(
exp

( 1
2m

B
)
exp

( 1
m

A
)
exp

( 1
2m

B
))m]

≤ Trk
[
exp

(1
2

B
)
exp

(
A
)
exp

(1
2

B
)]

= Trk
[
exp

(
A
)
exp

(
B
)]
.

The first equality above is the Lie product formula, and the inequality is due to
Lemma 5.4.3. �
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Lemma 5.4.5 (k-trace Peierls–Bogoliubov Inequality). The function

A 7−→ log Trk
[
exp(A)

]
(5.26)

is convex on Hn.

Proof. For any A, B ∈ Hn, τ ∈ (0, 1), by Lemma 5.4.4 we have

Trk
[
exp(τA + (1 − τ)B)

]
≤ Trk

[
exp

(
τA

)
exp

(
(1 − τ)B

)]
≤ Trk

[
exp(A)

] τTrk
[
exp(B)

]1−τ .
The second inequality above is Hölder’s. Therefore

log Trk
[
exp(τA + (1 − τ)B)

]
≤ τ log Trk

[
exp(A)

]
+ (1 − τ) log Trk

[
exp(B)

]
.

�

We remark that Lemma 5.4.5 can also be proved using the operator interpolation
in Lemma 5.6.8. Lemma 5.4.5 immediately implies that A 7→ log φ

(
exp(A)

)
=

1
k log Trk

[
exp(A)

]
is convex, and thus A 7→ φ

(
exp(A)

)
is convex. This will help

us prove improve from m = 1 to m ≥ 1 in Theorem 5.3.4.

Proof of Theorem 5.3.4 (Part II). Given any {A( j)}mj=1, {B
( j)}mj=1 ⊂ H++n , and any

τ ∈ [0, 1], letC ( j) = τA( j)+ (1−τ)B( j), 1 ≤ j ≤ m. Since the map X 7→ φ(exp(X ))
is convex on Hn, the map X 7→ φ(exp(L + X )) is also convex on Hn for arbitrary
L ∈ Hn. Now define

L = H +
m∑

j=1
p j logC ( j), r =

m∑
j=1

p j ≤ 1.

If r = 0, the result is trivial; so we may assume that r > 0. We then have that

φ
(
exp(H +

m∑
j=1

p j log X ( j))
)

= φ
(
exp

(
H + r

m∑
j=1

p j

r
(log X ( j) − logC ( j)) +

m∑
j=1

p j logC ( j)))
= φ

(
exp

(
L + r

m∑
j=1

p j

r
(log X ( j) − logC ( j))

))
≤

m∑
j=1

p j

r
φ
(
exp(L + r log X ( j) − r logC ( j))

)
, X ( j) = A( j), B( j) .
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For each j, by the concavity of (5.20) for m = 1, we have

τφ
(
exp(L + r log A( j) − r logC ( j))

)
+ (1 − τ)φ

(
exp(L + r log B( j) − r logC ( j))

)
≤ φ

(
exp(L + r log(τA( j) + (1 − τ)B( j)) − r logC ( j))

)
= φ

(
exp(L)

)
.

Therefore we obtain that

τφ
(
exp(H +

m∑
j=1

p j log A( j))
)
+ (1 − τ)φ

(
exp(H +

m∑
j=1

p j log B( j))
)

≤

m∑
j=1

p j

r
φ
(
exp(L)

)
= φ

(
exp(H +

m∑
j=1

p j logC ( j))
)
,

that is, (5.20) is jointly concave on (H++n )×m for all m ≥ 1. �

5.4.3 Revisiting Previous Proofs in the Trace Case
In this section, we will review some previous works on concavity results of trace
functions. The purpose is to compare by example the spirits of methods from dif-
ferent perspectives, so as to explain why we have chosen the interpolation technique
by Stein and the variational method by Zhang to prove our main results. For a
whole story of known results on both convexity and concavity, one may refer to
[3, 24, 26, 67, 136]. As mentioned in the introduction, many alternative proofs of
Lieb’s concavity theorem (the concavity of function (1.3)) have been found since
its original establishment by Lieb in 1973. A proof using matrix tensors was given
by Ando [3] in 1979 (see also Carlen [24]). Ando interpreted Tr[K∗ApK Bq] as
an inner product on the tensor space Cn ⊗ Cm and translated the Lieb’s concavity
theorem to the statement that the map (A, B) 7→ Ap ⊗ Bq is operator concave. Ando
then proved the latter using the integral representation of Ap (see below). Here ⊗
is the Kronecker product. Later, Nikoufar et al. [85] provided a simpler proof for
the concavity of (A, B) 7→ Ap ⊗ Bq using the concept of matrix perspectives (see,
e.g., [36]). We summarize the ideas of their proofs as follows. For simplicity, we
assume that p + q = 1. The result for p + q = r < 1 can be further obtained by
using the fact that A 7→ Ar is operator monotone increasing and operator concave
for r ∈ [0, 1]. For p ∈ [0, 1], the map A 7→ (A ⊗ Im)p = Ap ⊗ Im from H+n to H+nm is



162

operator concave, and thus its perspective from H+n ×H+m to H+nm,

(A, B) 7→ (In ⊗ B)
1
2
(
(In ⊗ B)−

1
2 (A ⊗ Im)(In ⊗ B)−

1
2
) p(In ⊗ B)

1
2 = Ap ⊗ B1−p,

is jointly operator concave in (A, B). The simplified expression above results from
the fact that A ⊗ Im commutes with In ⊗ B. For any K ∈ Cn×m, we have the identity
(a variant of Ando’s interpretation)

Tr[K∗ApK B1−p] =
〈 m∑

j=1
(Ke(m)

j ) ⊗ e(m)
j , Ap ⊗ (BT )1−p

m∑
j=1

(Ke(m)
j ) ⊗ e(m)

j

〉
Cn⊗Cm

,

(5.27)

where BT is the transpose of B, and e(m)
j = (0, . . . ,

jth
1, . . . , 0) ∈ Cm. Note that since

B ∈ H+n , BT is also in H+n . Since B 7→ BT is linear, the joint operator concavity of
(A, B) 7→ Ap ⊗ B1−p then implies the joint concavity of (A, B) 7→ Tr[K∗ApK B1−p].

As an application, Carlen and Lieb [27] applied the Lieb’s concavity theorem to
prove the concavity of A 7→ Tr[(K∗Ar K )s] for r ∈ [0, 1], s ∈ [1, 1r ] (they used a
slightly different but equivalent expression) based on a variational characterization
of this function (the supremum part of [27, Lemma 2.2]). We here provide a
simplified proof that captures the main spirit. For any A, B ∈ H+n , K ∈ Cn×n, let

X = (K∗Ar K )s, Y = (K∗Br K )s .

Then for any τ ∈ [0, 1], note that 1
s ≤ 1, r + (1 − 1

s ) ≤ 1, we have

τTr[X] + (1 − τ)Tr[Y ]

= τTr
[
K∗Ar K X1− 1

s
]
+ (1 − τ)Tr

[
K∗Br KY 1− 1

s
]

≤ Tr
[
K∗(τA + (1 − τ)B)r K (τX + (1 − τ)Y )1−

1
s
]

≤ Tr
[(

K∗(τA + (1 − τ)B)r K
) s] 1

sTr
[
τX + (1 − τ)Y

]1− 1
s

= Tr
[(

K∗(τA + (1 − τ)B)r K
) s] 1

s
(
τTr[X] + (1 − τ)Tr[Y ]

)1− 1
s ,

(5.28)

where the first inequality is due to Lieb’s concavity theorem with p = r, q =

1 − 1
s , p + q = r + 1 − 1

s ≤ 1, and the second inequality is Hölder’s. The above then
simplifies to

τTr
[
(K∗Ar K )s] + (1 − τ)Tr[(K∗Br K )s] ≤ Tr

[(
K∗(τA + (1 − τ)B)r K

) s],
which concludes the concavity of A 7→ Tr[(K∗Ar K )s].
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The variational characterizations of Tr[(K∗Ar K )s] in [27] can be abstracted to the
following two formulas ([26, Lemma 12]): for any X ∈ H+n ,

Tr[X s] = sup
{
sTr[XY ] − (s − 1)Tr[Y

s
s−1 ] : Y ∈ H+n

}
, if s > 1 or s < 0, (5.29)

Tr[X s] = inf
{
sTr[XY ] + (1 − s)Tr[Y−

s
1−s ] : Y ∈ H++n

}
, if 0 < s < 1. (5.30)

Further, these variational formulas were used to derive the convexity/concavity of
the function (A, B) 7→ Tr[(B

q
2 K∗ApK B

q
2 )s] for a partial range of p, q, s (partial

to the necessary conditions on p, q, s for the corresponding convexity/concavity to
hold). For example, formula (5.30) was used by Carlen et al. to prove the concavity
for 0 ≤ p, q ≤ 1, 0 < s ≤ 1

1+q [25, Theorem 4.4]. Recently, the above formulas were
modified by Zhang to the following [136, Theorem 3.3]: for any X,Y ∈ Cn×n and
any r0, r1, r2 > 0 such that 1

r0
= 1

r1
+ 1

r2
,

Tr[|XY |r1] = sup
{

r1
r0
Tr[|X Z |r0] −

r1
r2
Tr[|Y−1Z |r2] : Z ∈ Cn×n

}
, (5.31)

Tr[|XY |r0] = inf
{

r0
r1
Tr[|X Z |r1] +

r0
r2
Tr[|Z−1Y |r2] : Z ∈ Cn×n invertible

}
. (5.32)

Zhang then used them to provide a unified variational proof of the joint convex-
ity/concavity of (A, B) 7→ Tr[(B

q
2 K∗ApK B

q
2 )s] for the full range of p, q, s, finally

confirming that the sufficient conditions on p, q, s coincide with the necessary con-
ditions.

These arguments using matrix tensors and variational forms were also adopted by
Tropp [122] to provide an alternative proof of the concavity of A 7→ Tr[exp(H +

log A)]. Tropp’s proof is based on his variational formula for trace,

Tr[M] = sup
T∈H++n

Tr
[
T log M − T logT + T

]
, M ∈ H++n , (5.33)

which relies on the non-negativeness of the matrix relative entropy

D(T ; M) = Tr
[
T (logT − log M) − (T − M)

]
, T, M ∈ H++n .

The non-negativeness of D(T ; M) is a classical result of Klein’s inequality (see Petz
[93, Proposition 3], Carlen [24, Theorem 2.11] or Tropp [122, Proposition 8.3.5]).
Tropp substituted M = exp(H + log A) in (5.33) to obtain

Tr[exp(H + log A)] = sup
T∈H++n

(
Tr[T H] + Tr[A] − D(T ; A)

)
.

The concavity of A 7→ Tr[exp(H + log A)] then follows from this variational expres-
sion, the joint convexity of D(T ; A) in (T, A), and the fact that g(x) = supy∈Ω f (x, y)
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is concave in x if f (x, y) is jointly concave in (x, y) and Ω is convex (see, e.g., [27,
Lemma 2.3]). The joint convexity of the relative entropy D(T ; A) was first due
to Lindblad [70]. One can also see Ando [3], Carlen [24] and Tropp [122] for
alternative proofs.

A Methodology of another flavor arose from the use of complex analysis. In the
same year of Lieb’s original paper on his concavity theorem, Epstein [37] provided
a unified way of proving the concavity of A 7→ Tr[K∗ApK Aq], A 7→ Tr[(K∗AsK )

1
s ]

and A 7→ Tr[exp(H + log A)], using a derivative argument based on the theory of
Herglotz functions (functions that are analytic in the open upper half plane C+ and
have a positive imaginary part). Epstein’s method relies on integral representations
of matrix powers, which has a deep connection to a profound theorem of Loewner’s
: a real-valued function f on (0,+∞) is operator monotone if and only if it admits
an analytic continuation to a Herglotz function. Loewner’s theorem provides a
convenient tool for understanding trace functions by passing the study of a desired
property from the integral to the integrand that has a relatively simpler form. One
may see the book of Donoghue [35] for a full account of this theory. Epstein’s
approach was further developed by Hiai [47, 48] and, for example, adopted in his
first proof of the concavity of (A, B) 7→ Tr[(B

q
2 K∗ApK B

q
2 )s] for the full range

0 ≤ p, q ≤ 1, 0 ≤ s ≤ 1
p+q [48, Theorem 2.1]. Specifically, by substituting

σ = s(p + q) < 1, X = (B
q
2 K∗ApK B

q
2 )

1
p+q in the integral formula,

Xσ =
sin(πσ)

π

∫ ∞

0
t−1+σ (In + tX−1)−1dt, 0 < σ < 1, X ∈ H++n , (5.34)

Hiai passed the joint concavity of (A, B) 7→ Tr[(B
q
2 K∗ApK B

q
2 )s] to the joint con-

cavity of (A, B) 7→ Tr
[
1 + t(B

q
2 K∗ApK B

q
2 )−

1
p+q

]−1
(the case s(p + q) = 1 was

handled differently by directly taking t → +∞). He then proved the latter using the
derivative argument introduced by Epstein.

The introduction of complex analysis into the field has also led to another branch
of methods based on interpolation theories. In his original proof of the concavity
of (A, B) 7→ Tr[K∗ApK Bq] for 0 ≤ p, q ≤ 1, p + q ≤ 1 [67, Theorem 1], Lieb
made use of the maximum modulus principle to concentrate the powers of Ap, Bq

to the only power p + q on A or B, and then proceeded with the operator concavity
of X 7→ X p+q. This technique, relying on the holomorphicity of X z (X ∈ H+n ) as
a function of z, already shed some light on the use of complex interpolation theo-
ries. Later, Uhlmann [124] applied interpolation theories explicitly to again prove
Lieb’s concavity theorem, by interpreting Tr[K∗ApK B1−p] as an interpolation be-
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tween Tr[K∗AK] and Tr[K∗K B]. Uhlmann’s quadratic interpolation of seminorms
extended the relevant works of Lieb to positive linear forms of arbitrary *-algebras.
Kosaki [58] further explored the idea of quadratic interpolation of seminorms and
captured Lieb’s concavity theorem in the frame of general interpolation theories.

The abovemethodologies all have a unique perspective in understanding complicated
trace functions. However, some of them are found hardly generalizable to k-trace,
as they more or less rely on the linearity of the normal trace. For example, Ando’s
identity (5.27) and Tropp’s variational formula (5.33). Our k-trace function φ for
k > 1 is at best sub-additive since it is concave and homogeneous of order 1. Hiai’s
use of the integral formula also lives on linearity in that the trace operation can
be pulled into the integral. Though we can interpret the k-trace as the trace of
an anti-symmetric tensor, the power of 1

k will have to stay out of the integral, and
the anti-symmetric tensor in the integrand will also bring huge difficulties to the
derivative argument that comes after.

The variational method introduced by Carlen and Lieb needs the linearity of trace
as well in proving the concavity of A 7→ Tr[(K∗Ar K )s]. One can see this in the last
equality of (5.28), which will become an inequality in the undesirable direction if
Tr[·] is replaced by Trk[·]

1
k , since Trk[X] 1k is concave in X . In fact, the argument

in (5.28) that reduces the concavity of A 7→ Tr[(K∗Ar K )s] for r ∈ [0, 1], s ∈ [1, 1r ]
to the joint concavity of (A, B) 7→ Tr[K∗ApK Bq] for p, q ∈ [0, 1], p + q ≤ 1 was
performed in a variational manner in [27] based on the following formula (which is
equivalent to the expression of the supremum case in [27, Lemma 2.2]):

Tr[(K∗Ar K )s] = sup
X∈H++n

{
sTr[K∗Ar K X1− 1

s ] − (s − 1)Tr[X]
}
= sup

X∈H++n
Ψ(A, X ),

(5.35)
which can be derived using Hölder’s inequality for trace. Recall that g(x) =
supy∈Ω f (x, y) is concave in x if f (x, y) is jointly concave in (x, y) andΩ is convex.
Since Tr[K∗Ar K X1− 1

s ] is jointly concave in (A, X ) (as r + (1 − 1
s ) ≤ 1) and Tr[X]

is linear in X , the function Ψ(A, X ) is jointly concave in (A, X ). The concavity of
A 7→ Tr[(K∗Ar K )s] then follows from (5.35). It is then natural to consider a similar
variational formula for the k-trace that can also be shown by Hölder’s inequality:

Trk[(K∗Ar K )s]
1
k = sup

X∈H++n

{
sTrk[K∗Ar K X1− 1

s ]
1
k − (s − 1)Trk[X]

1
k

}
= sup

X∈H++n
Ψk (A, X ).

(5.36)
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Note that for s > 1, we have −(s − 1) < 0 and thus −(s − 1)Trk[X] 1k is convex
in X since Trk[·]

1
k is concave (this sign of −(s − 1) does not give trouble in the

trace case due to the linearity of trace). Therefore, even provided that (A, X ) 7→
Trk[K∗Ar K X1− 1

s ] 1k is jointly concave, the function Ψk (A, X ) is not guaranteed to be
jointly concave in (A, X ), and the variational formula in (5.36) fails to conclude the
concavity of A 7→ Trk[(K∗Ar K )s] 1k . As a consequence, we have not found a way to
adapt this particular argument into a proof of Lemma 5.3.2.

However, these variational approaches, especially Zhang’s variational characteriza-
tions, are conveniently applicable to the derivation of the more general cases given
Lemma 5.3.2, as we have seen in the proof of Theorem 5.3.3. One can see that
the k-trace version of Hölder’s inequality plays an essential role in the process,
which has suggested us to employ complex interpolation theories in the first place as
interpolation of operators is based essentially on Hölder’s inequality. In particular,
we found the operator interpolation technique (Theorem 5.6.7) developed by Stein
[116](1956) nicely compatible to our problem. One can derive a variety of interpola-
tion inequalities systematically by choosing G(z) properly in inequality (5.62). The
choice of G(z) we make, inspired by Lieb’s original construction, gives the proof
of our Lemma 5.3.2. We remark that, Lemma 5.6.8 does not only apply to trace or
k-trace, but also to any continuous matrix function φ : H+n → [0,+∞) that satisfies
Hölder’s inequality and is unitary invariant in the sense that φ(U∗XU) = φ(X ) for
arbitrary X ∈ H+n and U ∈ Cn×n unitary. In fact, these two properties suffice to
imply that log ◦φ ◦ exp is convex onHn, which, along with a canonical majorization
argument, will yield the inequality (5.63) (see, e.g., [50]).

5.5 From Lieb’s Theorem to Concentration
Tropp’s proof of the master bounds relies on a critical use of the Lieb’s theorem.
To be specific, Tropp used the concavity of A 7→ Tr

[
exp(H + log A)

]
to prove the

subadditivity of matrix cumulant generating function. For the sequence {X (i)}mi=1 ⊂

Hn under the same setting,

ETr
[
exp

( m∑
i=1

X (i))] ≤ Tr
[
exp

( m∑
i=1

logE exp X (i))] . (5.37)

Similarly, to prove Theorem 5.1.2, we need to extend (5.37) to the following lemma
using our generalized Lieb’s theorem.

Lemma 5.5.1. Let A(1), A(2), · · · , A(m) ∈ H++n be m independent, random, positive
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definite matrices. Then we have for any 1 ≤ k ≤ n,

E
(
Trk

[
exp(

m∑
i=1

log A(i))
] ) 1

k ≤
(
Trk

[
exp(

m∑
i=1

logEA(i))
] ) 1

k , (5.38a)

E log Trk
[
exp(

m∑
i=1

log A(i))
]
≤ log Trk

[
exp(

m∑
i=1

logEA(i))
]
. (5.38b)

Proof. We here only prove (5.38a). The proof for (5.38b) is similar. Since each
randommatrix A(i) always lies inH++n , wemay apply Theorem 5.3.1 to get a Jensen’s
inequality

E
(
Trk

[
exp(H + log A(i))

] ) 1
k ≤

(
Trk

[
exp(H + logEA(i))

] ) 1
k ,

for arbitrary H ∈ Hn. And since A(1), A(2), · · · , A(m) are independent, we can split
the expectation E into E1E2 · · ·Em, where Ei is the expectation operator with respect
to the random matrix A(i). So then we may apply Theorem 5.3.1 repeatedly to get

E
(
Trk

[
exp(

m∑
i=1

log A(i))
] ) 1

k

= E1 · · ·Em
(
Trk

[
exp(

m−1∑
i=1

log A(i) + log A(m))
] ) 1

k

≤ E1 · · ·Em−1
(
Trk

[
exp(

m−1∑
i=1

log A(i) + logEm A(m))
] ) 1

k

· · ·

≤
(
Trk

[
exp(

m∑
i=1

logEA(i))
] ) 1

k .

�

Our proof of Theorem 5.1.2 will basically follow Tropp’s proof of Theorem 3.6.1 in
[122], but with the normal trace Tr replaced by the general k-trace Trk for 1 ≤ k ≤ n.

Proof of Theorem 5.1.2. We first prove (5.4a) and (5.5a). The first inequality in
(5.4a) is trivial, because the sum of a Hermitian matrix’s k largest eigenvalues is a
convex function of the matrix itself. Indeed we have

E
k∑

i=1
λi (Y ) = E sup

Q∈Cn×k
Q∗Q=Ik

Tr[Q∗YQ] ≥ sup
Q∈Cn×k
Q∗Q=Ik

Tr[Q∗(EY )Q] =
k∑

i=1
λi (EY ).
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For the second inequality in (5.4a), we apply a similar technique, the matrix Laplace
transform, as in [122]. The difference is that in the first step, we do not switch the
expectation operator and the logarithm. For any θ > 0, we have

E
k∑

i=1
λi (Y ) =

1
θ
E log exp

( k∑
i=1

λi (θY )
)

=
1
θ
E log

( k∏
i=1

λi
(
exp(θY )

))
≤

1
θ
E log Trk

[
exp(θY )

]
.

We have used the fact that
∏k

i=1 λi (A) ≤ Trk
[
A
]
for any A ∈ H+n . Next we define

the random matrices A(i) = exp(θX (i)) ∈ H++n , 1 ≤ i ≤ m. Since X (i), 1 ≤ i ≤ m,
are independent, A(i), 1 ≤ i ≤ m, are also independent. Therefore we may apply
inequality (5.38b) in Lemma 5.5.1 to get

E log Trk
[
exp(θY )

]
= E log Trk

[
exp

( m∑
i=1

θX (i))]
= E log Trk

[
exp

( m∑
i=1

log A(i))]
≤ log Trk

[
exp

( m∑
i=1

logEA(i))]
= log Trk

[
exp

( m∑
i=1

logE exp(θX (i))
)]
.

Since θ > 0 is arbitrary, we thus have

E
k∑

i=1
λi (Y ) ≤ inf

θ>0

1
θ
log Trk

[
exp

( m∑
i=1

logE exp(θX (i))
)]
.

The proof of (5.5a) shares a similar spirit, except that we use (5.38a) instead of
(5.38b). For any t ∈ R, θ > 0, we use the Markov’s inequality to obtain

P



k∑
i=1

λi (Y ) ≥ t


= P



exp

( θ
k

k∑
i=1

λi (Y )
)
≥ e

θt
k




≤ e−
θt
k E exp

(1
k

k∑
i=1

λi (θY )
)
≤ e−

θt
k E

[(
Trk exp(θY )

) 1
k

]
.

Then again by defining A(i) = exp(θX (i)) ∈ H++n , 1 ≤ i ≤ m, we may apply
inequality (5.38a) in Lemma 5.5.1 to obtain

E
[(
Trk exp(θY )

) 1
k

]
≤

(
Trk exp

( m∑
i=1

logE exp(θX (i))
)) 1

k
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Since θ > 0 is arbitrary, we thus have

P



k∑
i=1

λi (Y ) ≥ t


≤ inf

θ>0
e−

θt
k

(
Trk exp

( m∑
i=1

logE exp(θX (i))
)) 1

k .

We proceed to (5.4b) and (5.5b). The first inequality (5.4b) can be similarly verified
by noticing that the sum of a Hermitian matrix’s k smallest eigenvalues is a concave
function of thematrix itself. For the second inequality in (5.4b) and inequality (5.5b),
we only need to consider arbitrary θ < 0, and use the fact that θλn−i+1(A) = λi (θA)
for any A ∈ Hn. Then repeating the arguments for (5.4a) and (5.5a), we can similarly
show that

E
k∑

i=1
λn−i+1(Y ) ≥ sup

θ<0

1
θ
log Trk

[
exp

( m∑
i=1

logE exp(θX (i))
)]
,

and

P



k∑
i=1

λn−i+1(Y ) ≤ t


≤ inf

θ<0
e−

θt
k

(
Trk exp

( m∑
i=1

logE exp(θX (i))
)) 1

k .

�

With all the preceding results, we are now ready to prove our Chernoff-type bounds
on the sum of the k largest (or smallest) eigenvalues. The following proof is an
imitation of Tropp’s proof of Theorem 5.1.1 in [122].

Proof of Theorem 5.1.4. Since 0 ≤ λn(X (i)) ≤ λ1(X (i)) ≤ c, we can use lemma
5.4.1 in [122] to obtain the estimate

logE exp(θX (i)) ≤
eθc − 1

c
EX (i) = g(θ)EX (i), θ ∈ R,

where g(θ) = eθc−1
c . So we have the following

Trk
[
exp

( m∑
i=1

logE exp(θX (i))
)]
≤ Trk

[
exp

(
g(θ)

m∑
i=1
EX (i))]

= Trk
[
exp

(
g(θ)EY

)]
≤

(
n
k

) k∏
i=1

λi
(
exp

(
g(θ)EY

))
=

(
n
k

)
exp

( k∑
i=1

λi
(
g(θ)EY

))
.

(5.39)
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The second inequality above is due to the fact that Trk
[
A
]
≤

(
n
k

) ∏k
i=1 λi (A) for any

A ∈ H+n . Notice that for θ > 0, g(θ) = eθc−1
c > 0. We then apply (5.39) to (5.4a) in

Theorem 5.1.2 to get

E
k∑

i=1
λi (Y ) ≤ inf

θ>0

1
θ
log *

,

(
n
k

)
exp

( k∑
i=1

λi
(
g(θ)EY

))+
-

= inf
θ>0

g(θ)
θ

k∑
i=1

λi (EY ) +
1
θ
log

(
n
k

)
.

As mentioned in [122], this infimum does not admit a closed form. By making
change of variable θ → θ/c, we obtain (5.8a)

E
k∑

i=1
λi (Y ) ≤ inf

θ>0

eθ − 1
θ

k∑
i=1

λi (EY ) +
c
θ
log

(
n
k

)
.

Similarly, we apply (5.39) to (5.5a) in Theorem 5.1.2 to get

P



k∑
i=1

λi (Y ) ≥ t


≤ inf

θ>0
e−

θt
k *

,

(
n
k

)
exp

( k∑
i=1

λi
(
g(θ)EY

))+
-

1
k

= inf
θ>0

e−
θt
k

(
n
k

) 1
k

exp
(g(θ)

k

k∑
i=1

λi (EY )
)
.

If we choose t = (1 + ε)
∑k

i=1 λi (EY ) for ε ≥ 0, we have

P



k∑
i=1

λi (Y ) ≥ (1 + ε)
k∑

i=1
λi (EY )




≤ inf
θ>0

(
n
k

) 1
k

exp
((
g(θ) − (1 + ε)θ

) 1
k

k∑
i=1

λi (EY )
)
.

Minimizing the right hand side with θ = log(1+ε)
c gives (5.9a).

Now consider θ < 0, we have g(θ) = eθc−1
c < 0. We then apply (5.39) to (5.4b) in

Theorem 5.1.2 to get

E
k∑

i=1
λn−i+1(Y ) ≥ sup

θ<0

1
θ
log *

,

(
n
k

)
exp

( k∑
i=1

λi
(
g(θ)EY

))+
-

= sup
θ<0

g(θ)
θ

k∑
i=1

λn−i+1(EY ) +
1
θ
log

(
n
k

)
.
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We have used λi (g(θ)EY ) = g(θ)λn−i+1(EY ) when g(θ) < 0. By making change
of variable θ → −θ/c, we obtain (5.8b)

E
k∑

i=1
λn−i+1(Y ) ≥ sup

θ>0

1 − e−θ

θ

k∑
i=1

λn−i+1(EY ) −
c
θ
log

(
n
k

)
.

Again, we apply (5.39) to (5.5b) in Theorem 5.1.2 to get

P



k∑
i=1

λn−i+1(Y ) ≤ t


≤ inf

θ<0
e−

θt
k *

,

(
n
k

)
exp

( k∑
i=1

λi
(
g(θ)EY

))+
-

1
k

= inf
θ<0

e−
θt
k

(
n
k

) 1
k

exp
(g(θ)

k

k∑
i=1

λn−i+1(EY )
)
.

If we choose t = (1 − ε)
∑k

i=1 λn−i+1(EY ) for ε ∈ [0, 1), we have

P



k∑
i=1

λn−i+1(Y ) ≤ (1 − ε)
k∑

i=1
λn−i+1(EY )




≤ inf
θ<0

(
n
k

) 1
k

exp
((
g(θ) − (1 − ε)θ

) 1
k

k∑
i=1

λn−i+1(EY )
)
.

Minimizing the right hand sides with θ = log(1−ε)
c gives (5.9b). �

5.6 Supporting Materials
5.6.1 Mixed Discriminant
The mixed discriminant D(A(1), A(2), · · · , A(n)) of n matrices A(1), A(2), · · · , A(n) ∈

Cn×n is defined as

D(A(1), A(2), · · · , A(n)) =
1
n!

∑
σ∈Sn

det



A(σ(1))
11 A(σ(2))

12 · · · A(σ(n))
1n

A(σ(1))
21 A(σ(2))

22 · · · A(σ(n))
1n

...
...

. . .
...

A(σ(1))
n1 A(σ(2))

n2 · · · A(σ(n))
nn



, (5.40)

where Sn denotes the symmetric group of order n. We here list some basic facts
about mixed discriminants. For more properties of mixed discriminants, one may
refer to [6, 91].

• Symmetry: D(A(1), A(2), · · · , A(n)) is symmetric in A(1), A(2), · · · , A(n), i.e.

D(A(1), A(2), · · · , A(n)) = D(Aσ(1), Aσ(2), · · · , Aσ(n)), σ ∈ Sn.
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• Multilinearity: for any α, β ∈ R,

D(αA+βB, A(2), · · · , A(n)) = αD(A, A(2), · · · , A(n))+βD(B, A(2), · · · , A(n)).

• Positiveness [6]: If A(1), A(2), · · · , A(n) ∈ H+n , then D(A(1), A(2), · · · , A(n)) ≥
0; if A(1), A(2), · · · , A(n) ∈ H++n , then D(A(1), A(2), · · · , A(n)) > 0.

The relation between the mixed discriminant and Trk is obvious. If we calculate the
mixed discriminant for k copies of A ∈ Cn×n and n− k copies of In, we can find that

D(A, · · · , A︸    ︷︷    ︸
k

, In, · · · , In︸     ︷︷     ︸
n−k

) =
(
n
k

)−1 ∑
1≤i1<i2<···<ik≤n

det[A(i1···ik,i1···ik )] =
(
n
k

)−1
Trk[A].

(5.41)

This is why the mixed discriminant plays an important role in the proof of our main
theorem. In particular, we will need the following inequality on mixed discriminant
by Alexandrov [2].

Theorem 5.6.1 (Alexandrov–Fenchel Inequality for Mixed Discriminants). For any
B ∈ Hn and any A, A(3), · · · , A(n)︸           ︷︷           ︸

n−2

∈ H++n , we have

D(A, B, A(3), · · · , A(n))2 ≥ D(A, A, A(3), · · · , A(n))D(B, B, A(3), · · · , A(n)), (5.42)

with equality if and only if B = λA for some λ ∈ R.

This theorem originally applied to real symmetric matrices when established. A
proof of its extension to Hermitian matrices can be found in [66]. By continuity,
inequality (5.42) can extend to the case that A, A(3), · · · , A(n) ∈ H+n , but the necessity
of the condition for equality is no longer valid.

Repeatedly applying the Alexandrov–Fenchel inequality (5.42) grants us the follow-
ing corollary.

Corollary 5.6.2. For any 0 ≤ l ≤ k ≤ n, and any A, B, A(k+1), · · · , A(n)︸              ︷︷              ︸
n−k

∈ H+n , we

have

D(A, · · · , A︸    ︷︷    ︸
l

, B, · · · , B︸    ︷︷    ︸
k−l

, A(k+1), · · · , A(n)︸              ︷︷              ︸
n−k

)k (5.43)

≥ D(A, · · · , A︸    ︷︷    ︸
k

, A(k+1), · · · , A(n)︸              ︷︷              ︸
n−k

)l · D(B, · · · , B︸    ︷︷    ︸
k

, A(k+1), · · · , A(n)︸              ︷︷              ︸
n−k

)k−l .
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A direct result of Corollary 5.6.2 is the following general Brunn–Minkowski theorem
for mixed discriminants.

Corollary 5.6.3. (General Brunn–Minkowski Theorem for Mixed Discriminants)
For any 1 ≤ k ≤ n, and any fixed A(k+1), · · · , A(n)︸              ︷︷              ︸

n−k

∈ H+n , the function

H+n −→ R

A 7−→ D(A, · · · , A︸    ︷︷    ︸
k

, A(k+1), · · · , A(n)︸              ︷︷              ︸
n−k

)
1
k (5.44)

is concave.

Proof. Fixing A(k+1), · · · , A(n), we will use D(A[k]) and D(A[l], B[k− l]) to denote

D(A, · · · , A︸    ︷︷    ︸
k

, A(k+1), · · · , A(n)︸              ︷︷              ︸
n−k

)
1
k and D(A, · · · , A︸    ︷︷    ︸

l

, B, · · · , B︸    ︷︷    ︸
k−l

, A(k+1), · · · , A(n)︸              ︷︷              ︸
n−k

)

respectively. For any A, B ∈ H+n , and any τ ∈ [0, 1], using the multilinearity of
mixed discriminants and Corollary 5.6.2, we have

D((τA + (1 − τ)B)[k]) =
k∑

l=0

(
k
l

)
τl (1 − τ)k−l D(A[l], B[k − l])

≥

k∑
l=0

(
k
l

)
τl (1 − τ)k−l D(A[k])

l
k D(B[k])

k−l
k

=
(
τD(A[k])

1
k + (1 − τ)D(B[k])

1
k
) k,

that is D((τA + (1 − τ)B)[k]) 1
k ≥ τD(A[k]) 1

k + (1 − τ)D(B[k]) 1
k . �

If we choose A(k+1), · · · , A(n) to be n − k copies of In, Corollary 5.6.3 immediately
implies that the function A 7→

(
Trk

[
A
] ) 1

k is concave on H+n , which is a special case
of Theorem 5.3.1 with H = 0. So we see the connection between the Alexandrov–
Fenchel inequality and our generalized Lieb’s theorem. However, the arguments in
the proof of Corollary 5.6.3 do not seem to work with H , 0. We hence need more
tools to handle the more general case.

5.6.2 Exterior Algebra
Here we give a brief review of exterior algebras on the vector space Cn. For more
details, one may refer to [14, 100]. For the convenience of our use, the notations in
our paper might be different from those in other materials. For any 1 ≤ k ≤ n, let
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∧k (Cn) denote the vector space of the kth exterior algebra of Cn, equipped with the
inner product

〈·, ·〉∧k : ∧k (Cn) × ∧k (Cn) −→ C

〈u1 ∧ · · · ∧ uk, v1 ∧ · · · ∧ vk〉∧k = det



〈u1, v1〉 〈u1, v2〉 · · · 〈u1, vk〉

〈u2, v1〉 〈u2, v2〉 · · · 〈u2, vk〉
...

...
. . .

...

〈uk, v1〉 〈uk, v2〉 · · · 〈uk, vk〉



,

where 〈u, v〉 = u∗v is the standard l2 inner product on Cn.

Let L(∧k (Cn)) denote the space of all linear operators from ∧k (Cn) to itself. For
any matrices A(1), A(2), · · · , A(k) ∈ Cn×n, we can define an element in L(∧k (Cn)):

M (k) (A(1), A(2), · · · , A(k)) :

∧k (Cn) −→ ∧k (Cn)

v1 ∧ v2 ∧ · · · ∧ vk 7−→
∑
σ∈Sk

A(σ(1))v1 ∧ A(σ(2))v2 ∧ · · · ∧ A(σ(k))vk,

(5.45)

where Sk is the symmetric group of order k. Apparently, the map

(A(1), A(2), · · · , A(k)) 7−→ M (k) (A(1), A(2), · · · , A(k))

is symmetric in A(1), A(2), · · · , A(k) and is linear in each single A(i). For simplicity,
we will use the following notations for any matrices A, B,C ∈ Cn×n:

M
(k)
0 (A) =

1
k!
M (k) (A, · · · , A), (5.46a)

M
(k)
1 (A; B) =

1
(k − 1)!

M (k) (A, B, · · · , B), (5.46b)

M
(k)
2 (A, B;C) =

1
(k − 2)!

M (k) (A, B,C, · · · ,C). (5.46c)

To avoid confusion, we define M (1)
1 (A; B) = M1

0 (A), M (1)
2 (A, B;C) = 0, and

M
(2)
2 (A, B;C) = M (2)

1 (A; B). Obviously the identity operator in L(∧k (Cn)) is
M0(In). We will be using the following properties:

• Invertibility: if A ∈ Cn×n is invertible, then (M (k)
0 (A))−1 =M (k)

0 (A−1).

• Adjoint: for any A ∈ Cn×n, (M (k)
0 (A))∗ =M (k)

0 (A∗), with respect to the inner
product 〈·, ·〉∧k .
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• Positiveness: If A ∈ Hn, then M (k)
0 (A) is Hermitian; if A ∈ H+n , then

M
(k)
0 (A) � 0; if A ∈ H++n , thenM (k)

0 (A) � 0.

• Product properties: for any A, B,C, D ∈ Cn×n, we have

M
(k)
0 (AB) =M (k)

0 (A)M (k)
0 (B), (5.47a)

M
(k)
1 (A; B)M (k)

0 (C) =M (k)
1 (AC; BC), (5.47b)

M
(k)
0 (C)M (k)

1 (A; B) =M (k)
1 (C A;CB), (5.47c)

M
(k)
1 (A;C)M (k)

1 (B; D) =M (k)
2 (AD,CB;CD) +M (k)

1 (AB;CD). (5.47d)

• Derivative properties: for any differentiable functions A(t), B(t) : R −→
Cn×n, we have

∂

∂t
M

(k)
0 (A(t)) =M (k)

1 (A′(t); A(t)) (5.48a)

∂

∂t
M

(k)
1 (A(t); B(t)) =M (k)

1 (A′(t); B(t)) +M (k)
2 (A(t), B′(t); B(t)).

(5.48b)

Next we consider the natural basis of ∧k (Cn),

{ei1 ∧ ei2 ∧ · · · ∧ eik }1≤i1<i2<···<ik≤n,

which is orthogonal under the inner product 〈·, ·〉∧k . Then the trace function on
L(∧k (Cn)) is defined as

Tr : L(∧k (Cn)) −→ C

Tr
[
F

]
=

∑
1≤i1<i2<···<ik≤n

〈ei1 ∧ ei2 ∧ · · · ∧ eik , F (ei1 ∧ ei2 ∧ · · · ∧ eik )〉∧k .

(5.49)

It is not hard to check that this trace function is also invariant under cyclic per-
mutation, i.e. Tr

[
F G

]
= Tr

[
GF

]
for any F ,G ∈ L(∧k (Cn)). Then for any

A(1), · · · , A(k) ∈ Cn×n, the trace Tr[M (k) (A(1), · · · , A(k))] coincides with the defini-
tion of the mixed discriminant, as one can check that

Tr
[
M (k) (A(1), · · · , A(k))

]
=

∑
σ∈Sk

∑
1≤i1<···<ik≤n

〈ei1 ∧ · · · ∧ eik , A(σ(1))ei1 ∧ · · · ∧ A(σ(k))eik 〉∧k

=
n!

(n − k)!
D(A(1), · · · , A(k), In, · · · , In︸     ︷︷     ︸

n−k

).

(5.50)



176

From this observation, we can now express the k-trace of a matrix A ∈ Cn×n as

Trk[A] = Tr
[
M

(k)
0 (A)

]
. (5.51)

For those who are familiar with exterior algebra, it is clear that the spectrum
of M (k)

0 is just {λi1λi2 · · · λik }1≤i1<i2<···<ik≤n, where λ1, λ2, · · · , λn are the eigen-
values of A. So in this way it is more convenient to see that Tr

[
M

(k)
0 (A)

]
=

sum(spectrum ofM (k)
0 (A)) =

∑
1≤i1<···<ik≤n λi1λi2 · · · λik = Trk[A]. Our proof of

Theorem 5.3.1 will base on the expression (5.51).

In fact, our proof the main theorem can be done without introducing the exterior
algebra. We can instead go through the whole proof only using notations of mixed
discriminant. The advantage of using exterior algebra is that it interprets the k-trace
as the normal trace of operators in a space of higher dimension, so our k-trace
functions have a nicer form that imitates the trace function in the original Lieb’s
theorem. Also for the same reason, we are able to construct our proof by following
the arguments of Lieb’s original proof in [67].

We next introduce some notations to simplify the expressions in what follows. For
any n real numbers λ1, λ2, · · · , λn ∈ R, we define the three symmetric forms

p(n,k) =
∑

1≤i1<i2<···<ik≤n

λi1λi2 · · · λik , 1 ≤ k ≤ n, (5.52a)

d (n,k)
i =

∑
1≤ j1< j2<···< jk−1≤n

i<{ j1, j2,··· , jk−1}

λ j1λ j2 · · · λ jk−1, 2 ≤ k ≤ n, 1 ≤ i ≤ n, (5.52b)

g(n,k)
i j =

∑
1≤l1<l2<···<lk−2≤n

i, j<{l1,l2,··· ,lk−2}

λl1λl2 · · · λlk−2, 3 ≤ k ≤ n, 1 ≤ i, j ≤ n, i , j . (5.52c)

For consistency, we define d (n,k)
i = 1 if k = 1; g(n,k)

i j = 1 if k = 2 and i , j; g(n,k)
i j = 0

if k = 1 or i = j. Also we define p(n,k) = d (n,k)
i = g(n,k)

i j = 0 if k > n. Throughout
this paper, whenever we are given some real numbers λ1, λ2, · · · , λn, the quantities
p(n,k), d (n,k)

i , g(n,k)
i j are always defined correspondingly with respect to {λi}1≤i≤n. The

following relations are easy to verify with the definitions above, and will be useful
in our proofs of lemmas and theorems. For any n, k, and any 1 ≤ i, j ≤ n such that
i , j, we have the expansion relations

p(n,k) = λid
(n,k)
i + d (n,k+1)

i , d (n,k)
i = λ jg

(n,k)
i j + g(n,k+1)

i j . (5.53)

With the notations defined above, we give the following lemma. The proof is
straightforward by definition, so we omit it here.
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Lemma 5.6.4. For any A, B ∈ Cn×n, and any diagonal matrix Λ ∈ Cn×n with
diagonal entries λ1, λ2, · · · , λn, we have the following identities

Tr
[
M

(k)
0 (Λ)

]
= p(n,k), (5.54a)

Tr
[
M

(k)
1 (A;Λ)

]
=

n∑
i=1

Aiid
(n,k)
i , (5.54b)

Tr
[
M

(k)
2 (A, B;Λ)

]
=

∑
1≤i, j≤n

(Aii B j j − A ji Bi j )g
(n,k)
i j , (5.54c)

for all 1 ≤ k ≤ n, where p(n,k), d (n,k)
i , g(n,k)

i j are definedwith respect to λ1, λ2, · · · , λn.

We here provide an alternative of Lemma 5.4.4 using the following lemma.

Lemma 5.6.5. For any A ∈ Hn, we have

M
(k)
0

(
exp(A)

)
= exp

(
M

(k)
1 (A; In)

)
.

Proof. We need to show that for any v1 ∧ v2 ∧ · · · ∧ vk ∈ ∧
k (Cn),

M
(k)
0

(
exp(A)

)
(v1∧ v2∧ · · · ∧ vk ) = exp

(
M

(k)
1 (A; In)

)
(v1∧ v2∧ · · · ∧ vk ). (5.55)

We use Taylor expansion of ex to expand

M
(k)
0

(
exp(A)

)
=M

(k)
0

( +∞∑
j=0

1
j!

A j
)
, exp

(
M

(k)
1 (A; In)

)
=

+∞∑
j=0

1
j!

(
M

(k)
1 (A; In)

) j .

Then for any integers j1, j2, . . . , jk ≥ 0, the coefficient of the term A j1v1 ∧ A j2v2 ∧

· · · ∧ A jk vk in the left hand side of (5.55) is

1
j1! j2! · · · jk!

,

and the coefficient of the same term in the right hand side of (5.55) is also

1
J!

(
J
j1

) (
J − j1

j2

)
· · ·

(
J − j1 − j2 − · · · − jk−1

jk

)
=

1
j1! j2! · · · jk!

,

where (J = j1 + j2 + · · · + jk ). �
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An alternative proof of Lemma 5.4.4. Using Lemma 5.6.5 and the original GT in-
equality for normal trace, we have

Trk[exp(A + B)] = Tr
[
M

(k)
0

(
exp(A + B)

)]
= Tr

[
exp

(
M

(k)
1 (A + B; In)

)]
= Tr

[
exp

(
M

(k)
1 (A; In) +M (k)

1 (B; In)
)]

≤ Tr
[
exp

(
M

(k)
1 (A; In)

)
exp

(
M

(k)
1 (B; In)

)]
= Tr

[
M

(k)
0

(
exp(A)

)
M

(k)
0

(
exp(B)

)]
= Trk

[
exp(A) exp(B)

]
,

where we have used thatM (k)
1 (X ; In) is linear in X . As shown by Petz [93], in the

original GT inequality, the equality Tr[exp(A + B)] = Tr[exp(A) exp(B)] holds for
A, B ∈ Hn if and only if AB = BA. Therefore, according to our calculation above,
the equality Trk[exp(A + B)] = Trk[exp(A) exp(B)] holds if and only if

M
(k)
1 (A; In)M (k)

1 (B; In) =M (k)
1 (B; In)M (k)

1 (A; In). (5.56)

However, one can check by definition that (5.56) is true if and only if AB = BA. �

5.6.3 Derivatives of Some Matrix Functions
Let us remind ourselves that a basic but important way to prove concavity of a
differentiable function f (t) is by showing that f ′′(t) ≤ 0. Similarly, one way to
prove concavity of a differentiable multivariate function f (x) is by showing that the
second directional derivative ∂2

∂t2 f (x + ty) |t=0 ≤ 0 for all allowed direction y. We
will use this idea to prove the concavity of the k-trace functions (5.18) and (5.19).
For this purpose, we would need the following matrix derivative formulas.

• Consider a function A(t) : (a, b) −→ Hn, such that A(t) is differentiable on
(a, b), then we have[132]

∂

∂t
exp

(
A(t)

)
=

∫ 1

0
exp

(
sA(t)

)
A′(t) exp

(
(1 − s)A(t)

)
ds. (5.57)

A′(t) denotes the derivative of A(t) with respect to t.

• Consider a function A(t) : (a, b) −→ H++n , such that A(t) is differentiable on
(a, b), then we have[67]

∂

∂t
(
A(t)

)−1
= −

(
A(t)

)−1A′(t)
(
A(t)

)−1, (5.58)

and
∂

∂t
log

(
A(t)

)
=

∫ ∞

0

(
A(t) + τIn

)−1A′(t)
(
A(t) + τIn

)−1dτ. (5.59)
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5.6.4 Operator Interpolation
One of our main tools is Stein’s interpolation of linear operators [116], that was
developed from Hirschman’s stronger version of the Hadamard three-line theorem
[51]. This technique was recently adopted by Sutter et al. [119] to establish a
multivariate extension of the Golden–Thompson inequality, which inspired our use
of interpolation in proving the generalized Lieb’s concavity theorem. Wewill follow
the notations in [119]. For any θ ∈ (0, 1), we define a density βθ (t) on R by

βθ (t) =
sin(πθ)

2θ
(
cosh(πt) + cos(πθ)

) , t ∈ R. (5.60)

Specially, we define

β0(t) = lim
θ↘0

βθ (t) =
π

2(cosh(πt) + 1)
, and β1(t) = lim

θ↗1
βθ (t) = δ(t).

βθ (t) is a density since βθ (t) ≥ 0, t ∈ R and
∫ +∞
−∞

βθ (t)dt = 1. We will always use
S to denote a vertical strip on the complex plane C:

S = {z ∈ C : 0 ≤ Re(z) ≤ 1}. (5.61)

The idea of complex interpolation originates from an important result in harmonic
analysis, the Hadamard three-lines theorem [45], that if f (z) is uniformly bounded
on S = {z ∈ C : 0 ≤ Re(z) ≤ 1}, holomorphic in the interior and continuous on the
boundary, then g(x) = log supy | f (x+iy) | is a convex function on [0, 1]. Hirschman
[51] improved this theorem to the following.

Theorem 5.6.6 (Hirschman). Let f (z) be uniformly bounded on S, holomorphic in
the interior and continuous on the boundary. Then for θ ∈ (0, 1), we have

log | f (θ) | ≤
∫ +∞

−∞

dt
(
β1−θ (t) log | f (it) |1−θ + βθ (t) log | f (1 + it) |θ

)
.

Moreover, the assumption that f (z) is uniformly bounded can be relaxed to

log | f (z) | ≤ CeaIm(z), ∀z ∈ S, for some constants C < +∞, a < π.

Stein [116] further generalized this complex interpolation theory to interpolation of
linear operators.

Theorem 5.6.7 (Stein-Hirschman). Let G(z) be a map from S to bounded linear
operators on a separable Hilbert space that is holomorphic in the interior of S and
continuous on the boundary. Let p0, p1 ∈ [1,+∞], θ ∈ [0, 1], and define pθ by

1
pθ
=

1 − θ
p0
+
θ

p1
.
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Then if ‖G(z)‖pRe(z) is uniformly bounded on S, the following inequality holds:

log ‖G(θ)‖pθ ≤
∫ +∞

−∞

dt
(
β1−θ (t) log ‖G(it)‖1−θp0 + βθ (t) log ‖G(1+it)‖θp1

)
. (5.62)

A k-trace analog of the above theorem, that is used in the proof of Lemma 5.3.2, is
as follows (recall that we write φ(·) = Trk[·]

1
k ):

Lemma 5.6.8. Let G(z) : S → Cn×n be holomorphic in the interior of S and
continuous on the boundary. Let p0, p1 ∈ [1,+∞], θ ∈ [0, 1], and define pθ by

1
pθ
=

1 − θ
p0
+
θ

p1
.

Then if ‖G(z)‖ is uniformly bounded on S, the following inequality holds:

log
[
φ( |G(θ) |pθ )

1
pθ

]
≤

∫ +∞

−∞

dt
(
β1−θ (t) log

[
φ
(
|G(it) |p0

) 1−θ
p0

]
+ βθ (t) log

[
φ
(
|G(1 + it) |p1

) θ
p1

] )
.

(5.63)

Proof. For any X ∈ Cn×n and p ∈ [1,+∞), we have that

M
(k)
0

(
|X |p

)
=M

(k)
0

(
(X∗X )

p
2
)
=

(
M

(k)
0 (X∗X )

) p
2

=
(
(M (k)

0 (X ))∗M (k)
0 (X )

) p
2 = ��M (k)

0 (X )��p,

and thus

Trk
[
|X |p

] 1
p = Tr

[
M

(k)
0

(
|X |p

)] 1
p = Tr

[��M (k)
0 (X )��p

] 1
p = M (k)

0 (X )p.

The above equality also holds for p → +∞ since we are dealing with finite-
dimensional operators. If G(z) is holomorphic in the interior of S and continuous
on the boundary, then so isM (k)

0
(
G(z)

)
. And if ‖G(z)‖ is uniformly bounded on

S, then ‖M (k)
0

(
G(z)

)
‖pRe(z) is also uniformly bounded on S, since all norms are

equivalent for finite-dimensional operators. Therefore we can use Theorem 5.6.7
with G(z) replaced byM (k)

0
(
G(z)

)
to get

log
(
Trk

[
|G(θ) |pθ

] 1
pθ

)
≤

∫ +∞

−∞

dt
(
β1−θ (t) log

(
Trk

[
|G(it) |p0

] 1−θ
p0

)
+ βθ (t) log

(
Trk

[
|G(1 + it) |p1

] θ
p1

))
.

We then multiply both sides by 1
k to obtain (5.63). �
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For p0, p1 ∈ [1,+∞), we can rewrite inequality (5.63) as

log φ(|G(θ) |pθ )

≤

∫ +∞

−∞

dt
( (1 − θ)pθ

p0
β1−θ (t) log φ

(
|G(it) |p0

)
+
θpθ
p1

βθ (t) log φ
(
|G(1 + it) |p1

))
(5.64)

Notice that ∫ +∞

−∞

( (1 − θ)pθ
p0

β1−θ (t) +
θpθ
p1

βθ (t)
)
dt = 1.

Then using Jensen’s inequality on the concavity of logarithm, we can immediately
conclude from (5.64) that for p0, p1 ∈ [1,+∞),

φ(|G(θ) |pθ ) ≤
∫ +∞

−∞

dt
( (1 − θ)pθ

p0
β1−θ (t)φ

(
|G(it) |p0

)
+
θpθ
p1

βθ (t)φ
(
|G(1+it) |p1

))
,

(5.65)
under the same setting as in Lemma 5.6.8.

We remark that the operator interpolation inequality in Theorem5.6.7 is interestingly
powerful and user-friendly for proving matrix inequalities, as we have seen in the
proofs of Lemma 5.3.2 and Theorem 5.3.3. In fact this technique can also prove
many fundamental results in matrix theories. We here show one more example to
see how we can use the trick of interpolation to prove that the map A 7→ Ar is
operator concave on H+n for r ∈ (0, 1]. Note that, in general, this result is proved by
using an integral expression for Ar (e.g. see [24]).

We need to show that for any A, B ∈ H+n , τ ∈ [0, 1],

τAr + (1 − τ)Br ≤ Cr, (5.66)

where C = τA + (1 − τ)B. We may assume that C is invertible. The case when
C is not invertible can be handled by continuity. Notice that X � In if and only if
Tr[K∗X K] ≤ Tr[K∗K] for all K ∈ Cn×n. (5.66) is then equivalent to the statement
that

τTr[K∗C−
r
2 ArC−

r
2 K] + (1 − τ)Tr[K∗C−

r
2 BrC−

r
2 K] ≤ Tr[K∗K], ∀K ∈ Cn×n.

Now we fix K and define

GX (z) = X
z
2 C−

z
2 K, X = A, B,

so we have
Tr[K∗C−

r
2 X rC−

r
2 K] = ‖GX (r)‖22 .
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GX (z) is holomorphic in the interior of S and continuous on the boundary, and
‖GX (z)‖ is uniformly bounded onS. We then use inequality (5.62) in Theorem5.6.7
with θ = r, pθ = p0 = p1 = 2 to obtain

‖GX (r)‖22 ≤
∫ +∞

−∞

dt
(
(1 − r) β1−r (t)‖GX (it)‖22 + r βr (t)‖GX (1 + it)‖22

)
.

We have again used Jensen’s inequality to get rid of the logarithms. For each t ∈ R,
we have that

‖GX (it)‖22 = Tr[K∗C
it
2 X−

it
2 X

it
2 C−

it
2 K] = Tr[K∗K],

and

‖GX (1 + it)‖22 = Tr[K∗C−
1−it
2 X

1−it
2 X

1+it
2 C−

1+it
2 K] = Tr[K∗C−

1−it
2 XC−

1+it
2 K].

We then have

τ‖GA(1+it)‖22+(1−τ)‖GB (1+it)‖22 = Tr[K∗C−
1−it
2 (τA+(1−τ)B)C−

1+it
2 K] = Tr[K∗K].

Finally we obtain

τ‖GA(r)‖22 + (1 − τ)‖GB (r)‖22 ≤ Tr[K∗K].

5.6.5 Homogeneous Convex/Concave Functions
Lemma 5.6.9. Let C be a convex cone in some linear space, i.e., C = conv(C) and
C = λC for any λ > 0. Let function f : C → [0,+∞) be positively homogeneous
of order 1, i.e., f (λx) = λ f (x), for any x ∈ C and λ > 0. Then for any s ∈ (0, 1),
f (x) is concave if and only if f (x)s is concave; for any s ∈ (1,+∞), f (x) is convex
if and only if f (x)s is convex.

In general this lemma is proved via an argument of level sets. Here we provide a
more direct proof.

Proof. One direction is trivial. If f (x) is concave, then f (x)s is concave for
s ∈ (0, 1), since (·)s is concave and monotone increasing. Conversely, if f (x)s is
concave for some s ∈ (0, 1), then f (τx + (1 − τ)y)s ≥ τ f (x)s + (1 − τ) f (y)s, for
any x, y ∈ C, τ ∈ [0, 1]. Now given any fixed x, y ∈ C, τ ∈ [0, 1], we need to show
that τ f (x)+ (1−τ) f (y) ≤ f (τx+ (1−τ)y). If f (x) = f (y) = 0, then we are done.
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Otherwise, wemay assume that f (x) > 0, and define M = τ f (x)+ (1−τ)( f (y)+ε )
for some ε > 0(this ε is not necessary if f (y) > 0). We then have

f (τx + (1 − τ)y) = f
(
τ f (x)

M
M x
f (x)

+
(1 − τ)( f (y) + ε )

M
My

f (y) + ε

) s· 1s

≥

(
τ f (x)

M
f
(

M x
f (x)

) s

+
(1 − τ)( f (y) + ε )

M
f
(

My

f (y) + ε

) s) 1
s

=

(
τ f (x)

M
M s +

(1 − τ)( f (y) + ε )1−s f (y)s

M
M s

) 1
s

= M
(
τ f (x) + (1 − τ)( f (y) + ε )1−s f (y)s

τ f (x) + (1 − τ)( f (y) + ε )

) 1
s

.

We then take ε → 0 to obtain f (τx + (1 − τ)y) ≥ τ f (x) + (1 − τ) f (y). Therefore
f (x) is concave. The convexity part can be proved similarly. �

Lemma 5.6.10. Let C be a convex cone in some linear space, i.e., C = conv(C) and
C = λC for any λ > 0. Let function f : C → [0,+∞) be positively homogeneous of
order 1, i.e., f (λx) = λ f (x), for any x ∈ C and λ > 0. Then f (x)

1
s is concave if

and only if log f (x) is concave.

Proof. One direction is trivial. If f (x)
1
s is concave, then log f (x) = s log( f (x)

1
s ) is

concave since log(·) is monotone and concave on (0,+∞). Conversely, if log f (x)
is concave, then f (τx + (1 − τ)y) ≥ f (x)τ f (y)1−τ, for any x, y ∈ C, τ ∈ [0, 1].
Now for any fixed x, y ∈ C, τ ∈ [0, 1], we define M = τ f (x)

1
s + (1 − τ) f (y)

1
s . We

then have

f (τx + (1 − τ)y)
1
s = f *

,

τ f (x)
1
s

M
M x

f (x)
1
s

+
(1 − τ) f (y)

1
s

M
My

f (y)
1
s

+
-

1
s

≥ f *
,

M x

f (x)
1
s

+
-

τ f (x)
1
s

M · 1s

f *
,

My

f (y)
1
s

+
-

(1−τ) f (y)
1
s

M · 1s

= (M s)
τ f (x)

1
s

M · 1s+
(1−τ) f (y)

1
s

M · 1s

= M .

Therefore f (x)
1
s is concave. �
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5.7 Other Results on K-trace
5.7.1 Some Corollaries
The following corollary follows from standard arguments on homogeneous, concave
functions.

Corollary 5.7.1. For any p, q ∈ [0, 1], p + q > 0, s ∈ (0, 1
p+q ], and any K ∈ Cn×m,

the function
(A, B) 7−→ φ

(
(B

q
2 K∗ApK B

q
2 )s) 1

s(p+q) (5.67)

is jointly concave on H+n ×H+m. For any H ∈ Hn and any {p j }
m
j=1 ⊂ [0, 1] such that

0 <
∑m

j=1 p j ≤ 1, the function

(A(1), A(2), . . . , A(m)) 7−→ φ
(
exp

(
H +

m∑
j=1

p j log A( j))) 1∑m
j=1 p j , (5.68)

is jointly concave on (H++n )×m.

Proof. Consider any matrix function F : H+n → [0,+∞)(or H++n → [0,+∞)) that is
positively homogeneous of order 1, i.e. F (λA) = λF (A),∀λ ≥ 0. By Lemma 5.6.9,
we have that F is concave⇐⇒ Fr is concave for some r ∈ (0, 1].

One can easily check that the functions (5.67) and (5.68) are positively homogeneous
of order 1. Then this corollary follows from Theorem 5.3.3, Theorem 5.3.4 and
Lemma 5.6.9. �

The following corollary is an analog of the concave part of Lemma 3.1 in [27].

Corollary 5.7.2. For any r ∈ [0, 1], s ∈ [0, 1r ] and any {K ( j)}mj=1 ⊂ C
n×n, the

function

(A(1), A(2), . . . , A(m)) 7−→ φ
(( m∑

j=1
(K ( j))∗(A( j))r K ( j)

) s)
(5.69)

is jointly concave on (H+n )×m.

Proof. Define

Â =

*.......
,

A(1) 0 . . . 0

0 A(1) . . . 0
...

...
. . .

...

0 0 . . . A(m)

+///////
-

∈ H+mn, K̂ =

*.......
,

K (1) 0 . . . 0

K (2) 0 . . . 0
...

...
. . .

...

K (m) 0 . . . 0

+///////
-

∈ Cmn×mn.
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Then we have

(K̂∗ Âr K̂ )s =

*....
,

( ∑m
j=1(K ( j))∗(A( j))r K ( j)

) s
. . . 0

...
. . .

...

0 . . . 0

+////
-

,

and thus

φ
(
(K̂∗ Âr K̂ )s) = φ(( m∑

j=1
(K ( j))∗(A( j))r K ( j)

) s)
.

By Lemma 5.3.2, the left hand side above is concave in Â, therefore the right hand
side is jointly concave in (A(1), A(2), . . . , A(m)). �

5.7.2 Multivariate Golden–Thompson Inequality
Sutter et al. [119] recently applied the operator interpolation in Theorem 5.6.7 to
derive a multivariate extension of the Golden–Thompson (GT) inequality, which
covers the original GT inequality and its three-matrix extension by Lieb [67].

Following the ideas in [119], we may also use Lemma 5.6.8 to further extend the
multivariate GT inequality to a k-trace form. In what follows, we write

∏m
j=1 X ( j)

for the matrix multiplication in the index order, i.e.
∏m

j=1 X ( j) = X (1) X (2) · · · X (m).
We first present an analog of Theorem 3.2 in [119].

Lemma 5.7.3. For any A(1), A(2), . . . , A(m) ∈ H+n , p ∈ [1,+∞), r ∈ (0, 1], the
following inequality holds:

log φ
(���

m∏
j=1

(A( j))r ���
p
r
)
≤

∫ +∞

−∞

dt βr (t) log φ
(���

m∏
j=1

(A( j))1+it ���
p)
. (5.70)

Proof. Define

G(z) =
m∏

j=1
(A( j))z, z ∈ S,

where S is defined as in Lemma 5.6.8. One can check that G(z) is holomorphic in
the interior of S and continuous on the boundary, and ‖G(z)‖ is uniformly bounded
on S. We may first assume that each A( j) ∈ H++n so that (A( j))it, t ∈ R is unitary.
The result for A( j) ∈ H+n can be obtained by continuity. Thus G(it) is unitary for
all t ∈ R, and |G(it) |p0 = In for all p0. Thus we can apply inequality (5.64) with
θ = r, p0 → +∞, p1 = p, pθ =

p
r to obtain

log φ
(
|G(r) |

p
r
)
≤

∫ +∞

−∞

dt βr (t) log φ
(
|G(1 + it) |p

)
,

which is exactly (5.70). �
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Using a multivariate version of the Lie product formula, we immediately obtain the
following from Lemma 5.7.3.

Theorem 5.7.4 (Multivariate Golden–Thompson Inequality for k-trace). For any
A(1), A(2), . . . , A(m) ∈ Hn, the following inequality holds:

log φ
((
exp

( m∑
j=1

A( j))) p)
≤

∫ +∞

−∞

dt β0(t) log φ
(���

m∏
j=1

exp
(
(1+it)A( j)) ���

p)
. (5.71)

Proof. We only need to replace A( j) in inequality (5.70) by exp(A( j)), and take
r → 0. Since each ‖ exp((1 + it)A( j))‖ = ‖ exp(A( j)) exp(it A( j))‖ = ‖ exp(A( j))‖
is uniformly bounded for all t ∈ R, the right hand side of (5.70) then becomes the
right hand side of (5.71). By a multivariate Lie product formula (see, e.g., [119])

lim
r↘0

(
exp(r X (1)) exp(r X (2)) · · · exp(r X (m))

) 1
r
= exp

( m∑
i=1

X ( j)),
the left hand side of (5.70) then becomes

lim
r↘0

log φ
(���

m∏
j=1

exp
(
r A( j)) ���

p
r
)

= lim
r↘0

log φ
(( m∏

j=1
exp

(
r A(m− j+1)) m∏

j=1
exp

(
r A( j))) p

2r
)

= log φ
((
exp

( m∑
j=1

2A( j))) p
2
)

= log φ
((
exp

( m∑
j=1

A( j))) p)
.

�

If we choose m = 2, p = 2 in Theorem 5.7.4 and replace A( j) by 1
2 A( j), the right

hand side of inequality (5.71) is independent of t due to the cyclicity of φ. We then
recover the k-trace GT inequality

φ
(
exp(A(1) + A(2))

)
≤ φ

(
exp(A(1)) exp(A(2))

)
,
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that we have obtained in Lemma 5.4.4. If we choose m = 3, p = 2 in Theorem 5.7.4
and again replace A( j) by 1

2 A( j), we have

log φ
(
exp(A(1) + A(2) + A(3))

)
≤

∫ +∞

−∞

dt β0(t) log φ
(
exp(A(1)) exp

(1 + it
2

A(2)) exp(A(3)) exp
(1 − it

2
A(2)))

≤ log φ
(∫ +∞

−∞

dt β0(t) exp(A(1)) exp
(1 + it

2
A(2)) exp(A(3)) exp

(1 − it
2

A(2)))
The second inequality above is due to concavity of logarithm and φ. If we define

TA[B] =
∫ +∞

0
dt(A + t In)−1B(A + t In)−1, A, B ∈ H++n ,

and use Lemma 3.4 in [119] that∫ +∞

0
dt(A−1 + t In)−1B(A−1 + t In)−1 =

∫ +∞

−∞

dt β0(t) A
1+it
2 BA

1−it
2 , A, B ∈ H++n ,

we then further obtain

φ
(
exp(A(1) + A(2) + A(3))

)
≤ φ

(
exp(A(1))Texp(−A(2) )[exp(A(3))]

)
.

This can be seen as a k-trace generalization of Lieb’s [67] three-matrix extension of
the GT inequality that Tr[exp(A + B + C)] ≤ Tr[exp(A)Texp(−B)[exp(C)]].

5.7.3 Monotonicity Preserving and Concavity Preserving
As mentioned in Section 5.4.3, Loewner’s theorem says that a real-valued function
f on (0,+∞) is operator monotone if and only if it admits an analytic continuation
to a Herglotz function. Therefore, the extension of a monotone scalar function
to Hermitian matrices is not necessarily operator monotone. For instance, let
f (x) = x3, and

A = *
,

1 0
0 0

+
-
, B = *

,

2 −1
−1 1

+
-
,

then f is monotone increasing, and A � B. But neither A3 � B3 nor A3 � B3

is true. However, a composition with trace will preserve the monotonicity. That
is, Tr[ f (A)] is monotone increasing (or decreasing) in A with respect to Loewner
partial order, if f is monotone increasing (or decreasing). Likewise, if f is concave
(or convex), its extension to Hermitian matrices is not necessarily operator concave
(or convex), but A 7→ Tr[ f (A)] is still concave (or convex). One can see Theorem
2.10 in [24]. This means that, some partial information like trace may preserve
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monotonicity and concavity. In fact, we will show that for any integer k the partial
information φ(·) = Trk[·]

1
k also preserves monotonicity and concavity of scalar

functions. But we need to restrict to f that only takes values in [0,+∞). We need
the following lemma for proving concavity preserving.

Lemma 5.7.5. For any A ∈ H+n , let diag(A) denote the diagonal part of A, then

φ(A) ≤ φ(diag(A)).

Proof. Let D be a n×n diagonal matrix, whose diagonal entries follow independent
Rademacher distributions, i.e.

Dii =



1, with prob. 0.5,
−1, with prob. 0.5.

Since D2 ≡ In, we have φ(A) = φ(DAD). Also notice that E[DAD] = diag(A),
since E[Dii D j j] = δi j . Then by concavity of φ, we have

φ(A) = Eφ(DAD) ≤ φ(E[DAD]) = φ(diag(A)).

�

Lemma 5.7.5 can be proved, instead, using the concept of Majorization. Let a =
{ai}

n
i and b = {bi}

n
i be two sequences, both in descending order, i.e. a1 ≥ a2 ≥

· · · ≥ an, b1 ≥ b2 ≥ · · · ≥ bn. We say b majorizes a, denoted by b � a, if

k∑
i=1

bi ≥

k∑
i=1

ai, 1 ≤ k ≤ n,

and the equality holds for k = n. It is not hard to show that, if b � a, and
a, b ⊂ [0,+∞), then

∏d
i=1 bi ≤

∏d
i=1 ai. Now for any A ∈ H+n , let λ = {λi}

n
i=1

and a = {ai}
n
i be the eigenvalues and the diagonal entries of A respectively, both in

descending order. Then since

k∑
i=1

λi = max
{vi }

k
i=1⊂C

n

v∗i v j=δi j

k∑
i=1

v∗i Avi ≥

k∑
i=1

e∗i Aei =

k∑
i=1

ai, 1 ≤ k < n

and
∑n

i=1 λi = Tr[A] =
∑n

i=1 ai, we have λ � a. Therefore we know that

det[A] =
n∏

i=1
λi ≤

n∏
i=1

ai = det[diag(A)].
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Then using the equivalent definition (5.13) of k-trace, we have that, for any 1 ≤ k ≤

n,

Trk[A] =
∑

1≤i1<i2<···<ik≤n

det[A(i1···ik,i1···ik )]

≤
∑

1≤i1<i2<···<ik≤n

Ai1i1 Ai2i2 · · · Aik ik ,

= Trk[diag(A)].

Theorem 5.7.6. Given a function f : [0,+∞) → [0,+∞), if f is monotone increas-
ing (or decreasing) as a scalar function, then φ( f (·)) is monotone increasing (or
decreasing) on H+n , in the sense that φ( f (A)) ≥ φ( f (B))(or φ( f (A)) ≤ φ( f (B)))
if A, B ∈ H+n, A � B; if f is concave as a scalar function, then φ( f (·)) is concave
on H+n .

Proof. We first prove the monotonicity preserving property of φ. For any matrix
A ∈ Hn, we denote by λi (A) the ith largest eigenvalue of A. For any A, B ∈ H+n , if
A � B, then λi (A) ≥ λi (B), 1 ≤ i ≤ n. Therefore if f is monotone increasing, we
immediately have

λi ( f (A)) = f (λi (A)) ≥ f (λi (B)) = λi ( f (B)), 1 ≤ i ≤ n,

and thus φ( f (A)) ≥ φ( f (B)) by definition φ. Similarly, if f ismonotone decreasing,
we have

λi ( f (A)) = f (λn−i+1(A)) ≤ f (λn−i+1(B)) = λi ( f (B)), 1 ≤ i ≤ n,

and thus φ( f (A)) ≤ φ( f (B)).

Next we prove the concavity preserving property of φ. Given any A, B ∈ H+n , and
any τ ∈ [0, 1], we define C = τA + (1 − τ)B. Let U = [u1, u2, · · · , un] be a unitary
matrix such that the columns are all eigenvectors of C, then

U∗ f (C)U = f (U∗CU) = f (diag(U∗CU)).

If f is concave, then

f (u∗i Cui) = f (τu∗i Aui+ (1−τ)u∗i Bui) ≥ τ f (u∗i Aui)+ (1−τ) f (u∗i Bui), 1 ≤ i ≤ n,
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and thus f (diag(U∗CU)) � τ f (diag(U∗AU)) + (1 − τ) f (diag(U∗BU)). Further,
for any unit vector u ∈ Cn, we have

f (u∗Au) = f
( n∑

i=1
λi (A)u∗viv

∗
i u

)
= f

( n∑
i=1

λ j (A) |v∗i u|2
)

≥

n∑
i=1
|v∗i u|2 f

(
λi (A)

)
= u∗

( n∑
i=1

f
(
λi (A)

)
viv
∗
i

)
u = u∗ f (A)u,

where v1, v2, · · · , vn are all eigenvectors of A, and we have used that
∑n

i=1 |v
∗
i u|2 =

‖u‖22 = 1. Then we have f (diag(U∗AU)) � diag(U∗ f (A)U). Similar, we have
f (diag(U∗BU)) � diag(U∗ f (B)U). Finally, we can compute

φ
(

f (C)
)
= φ

(
U∗ f (C)U

)
= φ

(
f (diag(U∗CU))

)
≥ φ

(
τ f (diag(U∗AU)) + (1 − τ) f (diag(U∗BU))

)
≥ τφ

(
f (diag(U∗AU))

)
+ (1 − τ)φ

(
f (diag(U∗BU))

)
≥ τφ

(
diag( f (U∗AU))

)
+ (1 − τ)φ

(
diag( f (U∗BU))

)
≥ τφ

(
f (U∗AU)

)
+ (1 − τ)φ

(
f (U∗BU)

)
= τφ

(
U∗ f (A)U

)
+ (1 − τ)φ

(
U∗ f (B)U

)
= τφ

(
f (A)

)
+ (1 − τ)φ

(
f (B)

)
.

We have used Lemma 5.7.5 for the last inequality above. Therefore φ( f (·)) is
concave on H+n . �
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C h a p t e r 6

CONCLUDING DISCUSSIONS

Problems related to PDmatrices have aroused great interest inmany fields of science.
In this thesis, we developed and discussed theories and algorithms for a general class
of PD matrices on three main problems: solving a PD linear system, computing the
eigenpairs of a PDmatrices, and studying the concentration of random PDmatrices.
Our methods integrate the ideas of a variety of existing methodologies and show to
be superior in many particular examples.

The problem of approximating the inverse of a PD operator with localized basis
functions is important in both the physical and data sciences. To pursue this matter,
we propose in the first part of the thesis an operator compression framework based
on the notion of energy decomposition. The energy decomposition A =

∑m
k=1 Ek

extracts the hidden topological and geometric information of a PD matrix A, which
serves the purpose of finding an adaptive partitioning P of the finest underlying
structure. Specifically, we introduce two important local measurements, the error
factor ε(P) and the condition factor δ(P), to provide rigorous a priori estimate esti-
mates for our partitioning technique. These two factors can be calculated efficiently
by solving local and partial eigen problems and therefore are practically useful in
designing our algorithms. Upon the establishment of an appropriate partitioning,
we follow the ideas of the modified coarse space byMålqvist and Peterseim [75] and
the gamblet transform by Owhadi [88] to construct an effective coarse level basis Ψ
consisting of basis functions with exponentially decaying profiles. The exponential
decay property of Ψ enables us to replace it with a localized basis Ψ̃ without com-
promising the expected compression accuracy; and because of this the compressed
operator preserves the intrinsic sparsity of the original operator A, ensuring the
low complexity of our approach in practice. With all the preceding ingredients, we
propose a nearly-linear time algorithm to obtain an appropriate partitioning and a
localized basis for compressing the operator with prescribed accuracy and bounded
condition number.

Having a generic operator compression framework, we follow the idea in [88] to
extend the compression scheme hierarchically to form aMMD algorithm. The main
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idea is to decompose the operator into multiple scales of resolution,

A−1 =
K∑

k=1
U (k) ((U (k))T AU (k))−1(U (k))T + Ψ(K ) ((Ψ(K ))T AΨ(K ))−1(Ψ(K ))T,

such that the relative condition number in each scale can be bounded. By passing
the energy decomposition from the finest level to the coarsest level, we perform our
partitioning and basis construction techniques level-by-level in a recursive manner.
This provides flexibility and convenience to deal with various, and even unknown
multiresolution behavior appearing in the matrix. Our MMD method further leads
us to develop a nearly-linear time solver for large and sparse PD systems up to an
error ε with time complexity

O(m log n ·
(
log ε−1 + log n

)c
log ε−1),

where m is the number of nonzero entries of A and c is some absolute constant
depending only on the geometric property of A.

Our groundwork introduces the idea of energy decomposition and its applications
in operator compression and solving PD linear systems. We believe that the energy
framework may prompt further research. Particularly, we discover further possible
improvement of our algorithms during the development stage. For instance, due to
the pairing characteristic of Algorithm 4, we are quite affirmative that our partition-
ing algorithm is not optimal. Instead, the clustering problem could be reformulated
into some local optimization problem such that the construction of the partition
P can be more robust. Second, our current implementation is a combination of
MATLAB and C++ coding and no parallel computing is included. Therefore, one
of our future works is to develop an optimal coding such that more comparison
experiments with state-of-the-art algorithms can be conducted.

In application-wise planning, we believe that our energy decomposition framework
can be specifically modified to suit the purpose of solving elliptic PDEs with high
contrast coefficients, as demonstrated in the high-contrast problem in Section 2.4.2.
Based on our energy decomposition, more in-depth analysis and improvement could
be made to show that such framework is one of the possible candidates to solve
the elliptic type problem with highly varying coefficients. Moreover, regarding the
partitioning procedure and the locality of the basis in our algorithms, the localized
MMD solver can be further improved to fit into the needs of frequent updating of the
solver. For example, in graph Laplacian system, our MMD solver can be updated



193

dynamically if new vertices/new edges are added to the given graphs. This dynamic
update greatly reduces the time for the regeneration of the solver, especially when
the updates size is small.

Following the preceding MMD framework, we propose a hierarchically precondi-
tioned eigensolver to compute a relatively large number of leftmost eigenpairs of a
sparse PDmatrix. This eigensolver exploits the well-conditioned property of the de-
composition components obtained through the MMD, the nice converging property
of the IRLM [64], and also the preconditioning characteristics of the CGmethod. In
particular, we develop an extension-refinement iterative scheme, in which eigenpairs
are hierarchically extended and refined from the ones obtained from the previous
level up to a desired amount and a prescribed accuracy. To find new eigenvector
candidate in the complement space, we need to solve linear systems with respect to
a compressed operator Ast in each level. For this purpose, we introduce a specially
designed spectrum-preserving preconditioner M that corrects the orthogonality of
the eigenvectors of the compressed operator, yielding a small restricted condition
number for using the PCG method. Based on the design of our method, we present
theoretical analysis on its runtime complexity and asymptotic behavior. We have
also conducted quantitative numerical experiments and performance comparison
with the IRLM, which demonstrated the efficiency and effectiveness of our pro-
posed algorithm. The results show that our preconditioning technique remarkably
reduces the number of iteration in each call of the PCG method.

We remark that the proposed algorithm and its implementation are still in the early
stage as the main purpose of this work is to explore the possibility of integrating
the multiresolution operator compression framework with the Krylov-type iterative
eigensolver. Therefore, one of the future topics is to conduct a comprehensive
numerical studies of our algorithm to various large-scale, real data such as graph
Laplacians of real network data, or stiffness matrices stemmed from the discretiza-
tion of high-contrasted elliptic PDEs. These studies will help numerically confirm
the asymptotic behavior of the relative condition numbers of M and Ast , especially
when we need to compute a large number of leftmost eigenpairs from large-scale
operators.

Another possible research direction is to investigate the parallelization of our algo-
rithm. This is important when we solve a large-scale eigenvalue problem. One way
to implement parallelization is by modifying the underlying Lanczos method into
a block version. Based on the conventional Lanczos iteration, many researchers
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have proposed block Lanczos algorithms [33, 42] for computing the leading eigen-
pairs of symmetric matrices. Instead of computing only one candidate vector, a
Lanczos method applies the target operator to a bunch of vectors in each iteration
and hence expands the Krylov subspace much faster. We may also incorporate this
block technique into our eigensolver and hence reduce its time complexity if parallel
computation is available.

In the last part of the thesis, we turn to a more theoretical project on developing
concentration inequalities on eigenvalue sums. To obtain bounds on partial sums of
eigenvalues, we introduce the notion of k-trace and discuss its properties. With the
help of the k-trace, we show that the sum of the k largest (or smallest) eigenvalues
of a general class of random PD matrices also obeys a Chernoff-type tail bound,
generalizing the existing estimates on the largest (or smallest) eigenvalue [122].
These new estimates provides theoretical guarantees for randomized algorithms
in eigenvalue-related problems, in particular for random spectral sparsification of
PD matrices. Our concentration results are consequences of a generalized Lieb’s
concavity theorem that the map

(A, B) 7−→ Trk
[
(B

q
2 K∗ApK B

q
2 )s

] 1
k

is jointly concave on H+n ×H+m for any p, q ∈ [0, 1], s ∈ [0, 1
p+q ] and any K ∈ Cn×m,

which extends the classic Lieb’s concavity theorem [67] form the normal trace to
k-trace functions. Our proof of the generalized Lieb’s concavity theorem relies on
the properties of k-trace functions and the use of an operator interpolation technique
due to Stein [116].

We would like to remark that our generalized Lieb’s concavity theorem (Theo-
rem 5.3.3) can be further extended to a more general class of functions. We say a
function φ : H+n → R is a monotone concave symmetric form, if

(i) φ(U∗AU) = φ(A) for any A ∈ H+n and unitary matrix U ∈ Cn×n,

(ii) A � B implies φ(A) ≤ φ(B) for any A, B ∈ H+n , and

(iii) φ(τA+ (1−τ)B) ≥ τφ(A)+ (1−τ)φ(B) for any A, B ∈ H+n and any τ ∈ [0, 1].

It has been proved by the author of this thesis [54] that for any monotone concave
symmetric form φ : H+n → R, the map

(A, B) 7−→ φ
(
(B

q
2 K∗ApK B

q
2 )s

)
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is jointly concave on H+n × H+m for all p, q ∈ [0, 1], s ∈ [0, 1
p+q ] and all K ∈ Cn×m.

Notice that the k-trace function Trk[·]
1
k is a monotone concave symmetric form for

all 1 ≤ k ≤ n. Therefore the more general result in [54] covers our Theorem 5.3.3.

As we have mentioned earlier, it is possible to extend our concentration inequalities
on the sum of the largest (or smallest) eigenvalues to analogous results on the sum
of arbitrary successive eigenvalues. In fact, Tropp and Gittens [40] have established
concentration inequalities on arbitrary single eigenvalue by projecting the random
matrix onto a subspace. We may therefore combine our k-trace methods and their
subspace argument to obtain concentration results on the sum of arbitrary successive
eigenvalues.

Apart from its particular use in proving our concentration inequalities, the k-trace is
also of theoretical interest by itself, as it has many interpretations corresponding to
different aspects of matrix theories. For instance, the k-trace has a direct connection
to theories of mixed discriminants and anti-symmetric matrix tensors. However, so
far we have not found another specific example in which an explicit use of the k-trace
is crucial. As for future projects, we want to explore more theoretical applications of
the k-trace, which may extend the corresponding theories on matrix trace functions
to an even broader scope.
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