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Abstract

A common task in knowledge discovery is finding a few features correlated with an

outcome in a sea of mostly irrelevant data. This task is particularly formidable in

genetic datasets containing thousands to millions of Single Nucleotide Polymorphisms

(SNPs) for each individual; the goal here is to find a small subset of SNPs correlated

with whether an individual is sick or healthy(labeled data). Although determining

a correlation between any given SNP (genotype) and a disease label (phenotype) is

relatively straightforward, detecting subsets of SNPs such that the correlation is only

apparent when the whole subset is considered seems to be much harder. In this thesis,

we study the computational hardness of this problem, in particular for a widely used

method of generating synthetic SNP datasets.

More specifically, we consider the feature selection problem in datasets generated

by ”pure and strict” models, such as ones produced by the popular GAMETES soft-

ware. In these datasets, there is a high correlation between a predefined target set of

features (SNPs) and a label; however, any subset of the target set appears uncorrelated

with the outcome.

Our main result is a (linear-time, parameter-preserving) reduction from the well-

known Learning Parity with Noise (LPN) problem to feature selection in such pure

and strict datasets. This gives us a host of consequences for the complexity of feature

selection in this setting. First, not only it is NP-hard (to even approximate), it
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is computationally hard on average under a standard cryptographic assumption on

hardness on learning parity with noise; moreover, in general it is as hard for the

uniform distribution as for arbitrary distributions, and as hard for random noise as

for adversarial noise. For the worst case complexity, we get a tighter parameterized

lower bound: even in the non-noisy case, finding a parity of Hamming weight at most

k is W[1]-hard when the number of samples is relatively small (logarithmic in the

number of features).

Finally, most relevant to the development of feature selection heuristics, by the

unconditional hardness of LPN in Kearns’ statistical query model, no heuristic that

only computes statistics about the samples rather than considering samples them-

selves, can successfully perform feature selection in such pure and strict datasets.

This eliminates a large class of common approaches to feature selection.
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Chapter 1

Introduction

Genetic datasets which are produced in health care system play an important role in

human lives. These datasets with huge amounts of people’s information are employed

in detecting genetic reasons of various diseases. One of the main parts of research

areas which work on genetic data is the genetic analysis of complex traits. Com-

plex traits result from gene-gene and gene-environment interaction [HY08]. Complex

traits show the important function of epistasis or gene-gene interaction in genetics

research [CW97,SAK05]. The study of genetic data has gradually shifted to genome-

wide association studies, which are the case–control studies for considering single

nucleotide polymorphisms (SNPs) in detecting genetic factors associated with com-

plex diseases. In such studies of SNP data of complex diseases, the problem arises

when each individual SNP has no significant effect on the phenotype/disease, however

the combination of SNPs has a strong effect [LGW+14]. This specific aspect makes

the key task of feature selection in the SNP datasets more difficult.

There are many methods and algorithms developed for feature selection in SNP

datasets [Cor09,MS16,YLCC13,İT13b,SI07,YWCY17,UGEFC12,CLCY12], with the

goal to help detect relevant SNPs associated with disease. Due to the high compu-
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tational complexity of solving this specific feature selection, heuristic methods are

employed. Based on the nature of heuristics, they are not guaranteed to provide a

solution for the problem.

The starting point of this thesis is understanding the complexity of feature se-

lection in SNP datasets with the focus on complex traits. Specifically, we analysed

the complexity of feature selection in pure and strict datasets generated by popular

software which is called GAMETES [UKSA+12]. The pure-strict data models, which

are produced by the GAMETES, include the hardest case of SNP epistasis in terms

of detecting the associated SNPs with disease [UKSA+12].

In this thesis, regarding studying the computational complexity of feature selection

in the pure and strict GAMETES datasets (we call it GAMETES problem), a known

problem in learning theory area is considered. Learning parity with noise (LPN)

is a hard problem under the standard cryptographic assumption [Pie12] and has a

number of conditional and unconditional lower bounds. In this problem, given a

list of labeled binary strings (samples), where the label is the parity of a specific

subset of bits (however, the label may be wrong with small probability), the goal is

to find the bits parity of which determines the label [BKW03,KMV08,Reg09,Pie12,

KMV08]. Here, we show that the GAMETES problem is as hard as LPN by reducing

LPN to the GAMETES problem. This lets us get unconditional hardness results

for the statistical query model (and some models of differential privacy), as well as

parameterized complexity worst-case lower bounds for the GAMETES problem. We

also present experimental evidence that even for the state-of-the-art feature selection

heuristic ReliefF accuracy on GAMETES datasets decreases dramatically with the

increase in the number of features.

This thesis is organized as follows. Chapter 1 introduces the general aspects of the

study. In chapter 2, the completed previous work of the feature selection studies is
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shown. Moreover, the feature selection in genetic datasets is specifically represented

based on heuristic methods and the procedure of generating GAMETES models is

presented in this chapter. Chapter 3, demonstrates the background of learning theory

and complexity which is needed for better understanding the results. The main results

of this thesis is provided in chapter 4 including defining GAMETES problem in theory

mode, and reductions from LPN to GAMETES problem. Finally, conclusions and

future work are covered in chapter 5.
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Chapter 2

Feature selection in genetic

datasets

In this chapter, we survey feature selection in genetic datasets, particularly in Single

Nucleotide Polymorphism(SNP) datasets. First, genetic datasets and their aspects are

introduced. Then the consequences of employing prevailing feature selection methods

on genetic datasets are discussed. Accordingly, heuristic feature selection methods,

which are related to our thesis, are considered and analyzed in general. Finally, in

this chapter, the specific synthetic SNP data, which served our study, is introduced.

The genetic data that are studied in this work include the health and non-health-

related information of individuals. The data are prepared and processed for study

or clinical purposes [SB18]. Improvements in bioinformatics and genetics result in

generating huge amounts of genetic data in clinical and research environments [SB18].

In order to learn genetic data and detect potential interactions between diseases and

hidden genetic factors, studying the genetic data is essential [SB18,Kno14,CH13]. For

example, employing data mining and machine learning methods is extremely valuable

for classification, prediction, diagnosis, and other purposes. Despite this value, data
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scientists face high dimensional data which cause many problems. These problems,

which arise from irrelevant features of datasets, include high computational complexity

that results in wasting time and resources. Thus, feature selection is highly essential

in machine learning and data mining of genetic data.

In this thesis, we worked on SNP datasets that have their specific characteristics

such as interactions between SNPs. One of the most important tasks in studying

SNPs is detecting SNP interactions that are correlated with common diseases. This

performs an important and enhancing duty in explaining the genetic foundation of

disease susceptibility as well as provides support to invent new diagnostic tests and

treatments [LGW+14]. To remove irrelevant SNPs (features), which are plentiful, and

identify relevant features (SNPs which are associated with disease together), feature

selection in SNP datasets becomes crucial. Thus, feature selection is inevitably needed

in SNP datasets for doing any data mining process.∗

2.1 Previous work

Feature selection is an important tool for data scientists since it can help to extract

hidden knowledge from an enormous amount of data particularly in health and genetic

datasets. A lot of work have focused on improving the performance of data mining

in this area. The previous related work on genetic data feature selection can be

categorized into two general groups: first, studies which mention and evaluate various

feature selection methods, however main focus is working on classifications to predict

and diagnose a disease, and second, studies which mainly concentrate only on different

feature selection methods used for genetic datasets of a particular disease.

With regard to the first part, studies which evaluate various classification methods
∗a comprehensive interpretation of SNP datasets will be presented in ’Synthetic datasets’ section.
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to predict and diagnosis of a disease, the elements of the interaction of Multi-SNPs is

found in [MM09] by discussing the potential of applying the Apriori-Gen algorithm to

the association study for the type 2 diabetes. General reviews are done in [KTS+17]

to show the systematic efforts of identifying and reviewing machine learning and data

mining approaches which are applied on diabetes mellitus work. This global review

addresses a wide range of related methods and techniques of data mining and machine

learning. Karegowda, V, Jayaram, and Manjunath [KPJM12] used K-means cluster-

ing to identify and prevent incorrectly classified instances. The correctly classified

instance by K-means is used as input to decision tree after conversion of continuous

data to categorical data. The proposed cascaded shows improved classification for

PIMA diabetic dataset. In [PSGK16] the authors used a decision tree method and

proposed models with higher performance to classify diabetic patients, across three

age groups in the Canadian population. Zheng et al. [ZXX+17] proposed an accurate

and well-organized framework to identify subjects with and without type 2 diabetes

mellitus from electronic health records. This study forces machine learning to auto-

matically extract patterns of type two diabetes mellitus. In addition, they boost the

predictive power by overcoming the extensive separation rage of cases and controls

in professional algorithms. Another study is done in this field about using machine

learning approaches in prediction and diagnosis of diabetes mellitus [VA15b]; they

proposed decision support system for prediction which utilizes decision stump as the

base classifier in the AdaBoost algorithm. Barakat, Bradley, and Nabil. H [BBB10]

improved a hybrid method for medical diagnosis. Surprisingly, they employed Support

Vector Machines (SVMs) for the diagnosis and prediction of diabetes, where an extra

rule-based explanation element is employed to provide comprehensibility. Vijayan and

Anjali [VA15a] showed that decision support systems are helping specialists in ana-

lyzing different patterns of a disease. They also proposed a computerized information
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system to predict diabetes after conducting a detailed study of techniques like individ-

ual classification, AdaBoost and Stacking. Cheruku, Edla, and Kuppili [CEK17] also

used a spider monkey-based rule miner for classification of diabetes datasets; the pro-

posed algorithm reached to the best ranking in average sensitivity and the second-best

ranking in average classification accuracy in comparison with several standard meta-

heuristic-based rule mining algorithms. SVMs are also employed as a beneficial tool

for classification in bioinformatics [BHOP10, SCY+16,KC13]. Shen et al. [SCY+16]

employed SVM for classification of some well-known medical datasets. A machine

learning classification approach is proposed in studying differences in hand movement

and muscle coordination between healthy subjects and Parkinson’s disease patients

in [KKHVA17]; as the authors mentioned, the feature selection process is essential in

this article. In the statistical genetic filed, a classification of two-locus models with

continuous penetrance values is done in [HY08]. The authors provided a complete

classification of biallelic two-locus models. In addition, they solved the classification

problem for dichotomous trait disease models and provided a complete framework for

studying epistasis in Quantitative Trait Locus (QTL) data. QTL is a genomic region

(section of DNA) responsible for the variation of a quantitative trait [MRRR+16].

The authors [HY08] discussed the connection between their classification and stan-

dard epistatic models.

Regarding to the second part which is related to studies which principally focus on

the feature selection methods on particular disease datasets, Wang et al. [WWC16]

surveyed feature selection methods for big data in bioinformatics. The authors de-

scribed the common categorizations for feature selection methods, then formulated

these methods in a new categorization based on a search problem viewpoint. Exhaus-

tive search, heuristic search, and hybrid methods are three new classes for the feature

selection in big data based on this new point of view; sub-categories are introduced for
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some of the main categories. The authors referred to many different methods which

worked on genetic datasets with their advantages and disadvantages. In another work,

a hybrid algorithm used to select tag SNPs in [İT13a]. These tag SNPs are the best

selected SNPs or features which increase the prediction accuracy. By their results,

they proved that the proposed method has higher performance in selecting tag SNPs

than other mentioned methods in the article. Hira and Gillies [HG15] provided a

notable review of performing the dimensionality reduction on high-dimensional micro

array data with biological platform. The authors focused on summarizing different

feature selection methods with their advantages and disadvantages of each method to

save the computational time and resources for one who decides to employ the method.

In [GPDHGPR13], the researchers proposed an evolutionary simultaneous instance

and feature selection algorithm, that is scalable to high amounts of instances and

features. This algorithm is based on the divide-and-conquer principle combined with

bookkeeping. Also, this study claimed that the implementation of the proposed algo-

rithm is easy and can be used in a parallel environment. In another work [LPH+13],

Liu et al. investigated four feature selection methods on different disease datasets;

in this study, t-test, significance analysis of microarrays (SAM), rank products (RP),

and random forest (RF) are tested on four different disease datasets. Each disease

contains three cross-lab datasets and the authors ranked these mentioned methods

based on their performance at the end of the study. Hybrid methods and evolu-

tionary based methods are also used for feature selection in genetic datasets. For

instance, Boutorh and Guessoum [BG16] proposed a hybrid method including Asso-

ciation Rule Mining (ARM), Neural Network (NN), Grammatical Evolution (GE),

and Genetic Algorithm (GA) to remove irrelevant features in SNP datasets. They

applied the proposed method on complex disease SNP dataset and compared it with

different combined methods which failed versus the high performance of the pro-
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posed method. In [MG13], Maji and Garai presented a feature selection method

based on fuzzy-rough sets by maximizing both relevance and significance of the se-

lected features. In this work, the proposed method is compared to different existing

feature selection methods on different genetic datasets; this method showed better rel-

evant features with lower cost. Ban et al. [BHOP10] gained benefit from SVM-based

feature selection method to identify type 2 diabetes associated SNPs. Mostofi and

Sadikoglu [MS16] also compared different evolutionary algorithms in detecting the

associated SNPs (detecting relevant features) to breast cancer; this paper evaluated

various methods with different configurations and demonstrated that Gauss particle

swarm optimization (GPSO) achieved higher accuracy compare to other evolutionary

method. The article of Li et al. [LGW+14], showed an overview of SNP study in

recent years in genome-wide association study; the authors discussed principles and

efficiency and compared different methods in this area. In this study [LGW+14], it is

concluded that new computational methods based on attribute selection address the

regulation of computational cost and effects to increase SNP interaction detection.

In another work [Cor09], the author provided a survey of machine learning methods

which is used to detect interactions between genetic loci that correlated with human

genetic disease. The computational time and implementation analysis, of which sev-

eral popular machine learning methods to find the associated SNPs to a particular

disease, is discussed in this review. Yang et al. [YLCC13] also remarked Improved

Genetic Algorithms (IGA) to generate genotype SNP barcodes for assessing of breast

cancer susceptibility. The authors further pointed out that the results proved the

ability of the IGA in identifying the best fitness of cases and controls; this method, in

the condition of huge number of SNPs, can possibly be employed to detect complex

gene-gene SNP interactions involved in genome-wide association studies. In [İT13b],

the authors proposed a method to select the tag SNPs and predict the rest of SNPs in
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genes; additionally, the method advocated in the study is referred to as CLONTagger

method with parameter optimization, which uses the SVM and Clonal Selection Al-

gorithm (CLONALG) to predict the rest of SNPs and select tag SNPs, respectively.

This study used Particle Swarm Optimization (PSO) to optimize SVM parameters

and it is concluded that this method, based on the experimental results, reached to

higher accuracy than other tested methods mentioned in this article. In the same

paper [SI07] in terms of identification of associated SNPs, a logic regression method

(based on a combination of bootstrap and logic regression) is proposed to identify SNP

interactions explanatory for the disease status in a case–control study; this method is

applied on both simulated and real SNP datasets. In another study [YWCY17], Yang

et al. introduced a hybrid method called Dynamic Center Particle Swarm Optimiza-

tion K-Nearest Neighbors (DCPSO-KNN), to detect SNP-SNP interactions which are

related to chronic dialysis. Their experimental results indicated that the proposed

method improved searching efficiency for SNP-SNP interactions associated with the

potential risk of chronic dialysis. Yang et al. [YMLC16] addressed a type of Genetic

Algorithm (GA), based on local search method, to detect significant genetic associa-

tion models between large numbers of SNP combinations. This algorithm called lsGA

which employed two disease models to simulate the large data sets considering the

minor allele frequency (MAF), number of SNPs, and number of samples; the study

showed that the proposed method can detect more relevant SNPs to disease than GA.

Chuang et al. [CLCY12] also introduced an Odds ratio-based Genetic Algorithm to

predict SNP-SNP interactions in breast cancer data. The authors worked on sim-

ulated dataset and concluded that this method can apply on other SNP datasets

as well; based on statistical and computational analysis, it is also mentioned that

the proposed algorithm can efficiently perform on other association studies. An ad-

equate review is done by Upstill-Goddard, Eccles, Fliege, and Collins [UGEFC12]
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on machine learning approaches for identifying gene-gene interactions. In this study,

popular machine learning methods, which used for reducing irrelevant features, are

studied; for instance, Multifactor-Dimensionality Reduction (MDR), Neural Networks

(NN), Random Forest, and Support Vector Machines (SVM) are evaluated and their

strengths and limitations are presented. Furthermore, in the same study, McKinney,

Reif, Ritchie, and Moore [MRRM06] surveyed machine learning methods employed

for detecting gene-gene interactions. In this work, not only the popular machine

learning methods, which studied in the prior survey, are evaluated, also Cellular Au-

tomata (CA) is studied; the authors analyzed and assessed the various machine learn-

ing methods in detecting gene-gene interactions and provided proper interpretations

about them.

There are a lot of related studies which have considered various feature selection

methods on genetic datasets. Some of them concentrate on the classification and

diagnosis of a disease, while using feature selection methods. The others focus on

studying different feature selection methods directly in this area. Generally, different

feature selection approaches addressed in this section show that how important is

extracting useful knowledge from genetic data,so clearly excellent feature selection

process is needed to this end. However, in all the mentioned studies, the feature

selection methods do not choose all the relevant features to phenotype/disease.

In this thesis, we show that under complexity assumptions (and in some models

unconditionally) it is not possible to solve feature selection problem in SNP genetic

datasets in polynomial time. Thus, any heuristic can be expected to lose accuracy as

the number of relevant features grows.
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2.2 Feature selection heuristics

In this section, we offer a general introduction to the current popular heuristic feature

selection methods which are mostly used for genetic data. Besides this, we will analyze

these heuristic methods based on their results, mechanisms, popularity, and other

exclusive aspects.

Data scientists apply different popular and beneficial feature selection methods on

genetic datasets. This variety of methods is based on the type of data and different

researchers’ viewpoints. Different methods are used in this area, such as Support Vec-

tor Machines (SVMs), Evolutionary Algorithms, Neural Networks, logistic regression,

odds-ratio, relief algorithms etc. In addition, multi-stage and hybrid methods, which

are basically a combination of different methods, are employed to reduce the size of

genetic datasets. Although researchers mostly address the common categorizations

(filter, wrapper, and embedded) of feature selection methods, certain researchers clas-

sify different classes for feature selection methods. For example, exhaustive search,

heuristic search, and hybrid methods are used to classify different classes for feature

selection methods [WWC16]. Indeed, these heuristic feature selection methods do

not solve the problem, they only alternatively give a proper solution, which is the

nature of heuristics. This happens because most of the genetic datasets include a

small number of samples or individuals with numerous features, which makes the fea-

ture selection problem hard to solve. In this study, feature selection methods, which

apply to genetic data, are studied. These feature selection methods are categorized

to mainly three issues of [LPH+13]:

1. Identification of relevant features for determined diseases.

2. Classification based on samples with recognized disease class labels.

3. Classification of the unknown samples into known disease classes.

This thesis is concentrated on the first category, which can be called case-control
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studies or even XOR problems if we specifically work on SNP data [MW07,Hua15].

Finding a proper feature selection with the purpose of increasing accuracy and

reducing complexity, is not an easy task [BCSMAB13]. In most cases, the authors

of prior work introduce one or more feature selection methods in their works with

particular dataset, then demonstrate that their feature selection method is beneficial

compared to the other methods which are mentioned in their articles. In [HG15], the

authors reviewed different feature selection methods on micro-array data. In this work,

the most popular and significant feature selection methods are compared to each other.

These methods include t-test feature selection [JA06], Correlation-based feature se-

lection (CFS) [Hal99], Bayesian networks [HHE04, RJFD10],Information gain (IG)

[YZZZ10],Genetic algorithms (GA) [JUA05,OT03],Sequential search, SVM method of

recursive feature elimination (RFE) [GWBV02], Random forests [DUDA06,JDC+04],

and Least absolute shrinkage with selection operator (LASSO) [MSH07]. The fea-

ture selection methods are compared based on their types, being supervised or un-

supervised, being linear or nonlinear, and their mechanisms [HG15]. Also, the au-

thors [HG15] discussed that using prior knowledge of different biological sources in-

creases the accuracy and decreases the cost of computational complexity of feature

selection methods. In comparison with four feature selection methods, which are t-

test, significance analysis of micro-arrays (SAM), rank products (RP), and random

forest, SAM gained the best performance [LPH+13]. Also, Relief family algorithms

are extremely suitable in feature selection problems’ particularly for XOR problem

types, such as identifying interacting SNPs or features [Hua15]. These algorithms are

classified as pair-wise feature ranking methods [Hua15]. The Relief family with their

low computational cost are the proper methods for SNP datasets with a huge num-

ber of features. Furthermore, Relief algorithms are popular for use in noisy datasets

with a huge number of features [MW07]. Due to the power of Relief family methods
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(low complexity and robust against noise), these methods are a great choice for hy-

brid methods [İT13b, SI07, YWCY17,CLCY12,YMLC16, LGR+07]. These methods

are used for those hybrid feature selection methods which generally remove irrelevant

features in different steps. Suitable algorithms for XOR problems, such as relief algo-

rithms which have low computational complexity, frequently perform solidly [Hua15]

as the first step of hybrid methods which reduce most parts of irrelevant features.

These heuristic feature selection methods are employed to work on different real

and synthetic datasets. In this study, we study synthetic datasets produced by a

software called GAMETES which will be described in detail in the following section.

2.3 Synthetic datasets

In the case of synthetic data, the performance of the feature selection methods clearly

depends on the learning method operation which is subsequently employed , and it

can clearly differ for every method. Additionally, the evaluation of feature selection

achievement can be gained by various metrics like computer resources(memory and

time), accuracy, ratio of features selected, etc. Also, data scientists may face several

challenges such as multiple class output, noisy data, a huge number of irrelevant fea-

tures, redundant or repeated features, etc. [BCSMAB13].

To obtain synthetic datasets which are very similar to real ones, we employed GA-

METES datasets with high dimensional features (low dimensional samples), and noisy

data models. These are the problems which data scientists consider when they work

on genetic data. In the following, the GAMETES software will be introduced and all

necessary information to accurately understand the software is presented.
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2.3.1 GAMETES

Genetic Architecture Model Emulator for Testing and Evaluating Software (GA-

METES) is a software package to generate complex biallelic Single Nucleotide Poly-

morphism (SNP) disease models for simulation studies [UKSA+12]. This software

produces strict and pure n-locus models which are provided under certain significant

factors in genetics. In GAMETES, it is possible to create models by defining its Minor

Allele Frequency (MAF), heritability of SNPs, and population prevalence [UKSA+12].

In this section, first we describe the information needed to understand the genetic

terms and concepts used in GAMETES models, then the mechanism of GAMETES

is introduced. Finally the feature selection problem, which we concentrate on, will be

discussed at the end of the section.

Single nucleotide polymorphisms (SNPs") are single loci in the DNA sequence

and frequently found in the DNA between genes; SNPs can interchange nucleotides

(i.e. alleles). Nearly all identified SNPs are biallelic which includes just two alleles

of minor(a) or major(A) in a population. Also SNPs can assist scientists in locating

genes that are associated with a specific disease because they play a part as biological

markers. Three genotypes, AA, Aa, aa, are the possible possessions that a biallelic

SNP can take one of them [UKSA+12]. One more concept which exists in this area

is epistasis. In general, epistasis, which can influence phenotype, is the interaction

between different genes; in the case that we studied, it is quite important for studying

complex traits such as diabetes, asthma, and hypertension. The existence of epistasis

is a special cause for attention, considering that if the effect of one locus is changed

or masked by effects at another locus, then detecting the first locus becomes more

complicated and explanation of the combined effects at two loci will be more prob-

lematic by their interaction. Subsequently, interactions of more than two loci make

the situation more difficult [Cor02]. In the GAMETES study, the authors consider
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statistical epistasis, which is the basic description of being a deviation from additivity

in a mathematical model, to explain the relationship between multi-locus genotypes

and phenotypic variation in a population [Fis19,UKSA+12]. Furthermore, the main

focus in GAMETES study is on statistical epistasis which is both strict and pure.

If all n loci, but not less than n loci, are predictive of disease status in an n-locus

model, it is a pure and strict epistatic model. It should be mentioned that the loci

in these models are “fully masked”, which means that no predictive information is

obtained up to all n loci bring together [UKSA+12]. the GAMETES generates deter-

ministic n-locus models based on a set of random parameters and indicated values of

heritability, and minor allele frequencies (MAFs); the GAMETES tries to produce a

population based on the restrictions of models. The GAMETES’ authors showed that

the method they presented, which generates complex genetic models, is fast, reliable,

and flexible. [UKSA+12]. Also the method that is employed by the GAMETES ben-

efits the Hardy-Weinberg Law [UKSA+12, HC97] in the role of simulation strategy.

Hardy-Weinberg Law states that, if the allele frequencies in a population with two

alleles at a locus are p = f(A) (major allele frequency) and q = f(a) (minor allele

frequency), then the expected genotype frequencies for AA, Aa, and aa are p2, 2pq,

and q2, respectively, where p+q = 1 . This distribution does not change during differ-

ent generations until population is in Hardy-Weinberg equilibrium [GT92,UKSA+12].

Another important factor which is used in GAMETES, is penetrance. Penetrance is

probability of disease based on special genotype or multi-locus genotype (MLG). Pen-

etrance functions or penetrance tables are used in showing the relationship of genetic

variation and risk of disease. A simple example of penetrance function of genotypes

of one SNP is provided in table 2.1 as follows:

Table 2.1 shows the fully penetrance function that means the phenotype status

fully depends on genotypes. In this example, genotype aa with probability 1 shows
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SNP1
AA(0.25) Aa (0.5) aa(0.25)

0 0 1

Table 2.1: Penetrance table(function), showing genotypes of one SNP while p = q =
0.5

its main effect on disease (phenotype). In the situation of coping n-locus interactions

between n loci, penetrance function provides 3n penetrance values based on every 3n

multi-locus genotypes such as table 2.2. This table shows the penetrance function of

two SNPs which are related to risk of disease with all nine of their possible genotypes.

For instance, in Table 2.2, the multi-locus genotype of (AA−Bb) with probability of

100% is predictive to disease, while (aa-bb) has 0% chance to have a disease.

SNP2

SNP1

Genotype BB(0.25) Bb (0.5) bb(0.25)

AA(0.25) 0 1 0

Aa(0.5 ) 1 0 1

aa(0.25) 0 1 0

Table 2.2: Fully penetrance table(function) for interactions between two SNPs with
the genotype frequencies p1 = p2 = q1 = q2 = 0.5

2.3.1.1 Statistical epistasis viewpoint in Pure-Strict models

GAMETES produces pure and strict genetic models for showing the interactions be-

tween SNPs. These classification concepts are defined based on statistical viewpoint.

Pure epistasis means that no one of the interacting loci (individually) have the main

effect on disease status; however, there exist one or more multi-locus subsets of them

which have main effect on disease. Strict epistasis happens when n loci have an effect

on disease (phenotype); however, there is no "multi − locus" subset of them which

is predictive of disease [UKSA+12]. Thus, a strict-pure model is a type of epistasis
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model in which all n locus together have the main effect on phenotype; in contrast,

no subset of them or none of them individually is predictive of phenotype. This is the

worst case model to distinguish, and is a reasonably realistic model which is generated

by the GAMETES. If marginal penetrances are added to table 2.2, then it is possible

to find a simple statistical strict-pure model. Table 2.3 shows a simple example of

fully penetrant function of a pure and strict model. The fully penetrant function ex-

SNP2

SNP1

Genotype BB(0.25) Bb (0.5) bb(0.25) Marginal penetrance
AA(0.25) 0 1 0 0.5
Aa(0.5 ) 1 0 1 0.5
aa(0.25) 0 1 0 0.5

Marginal penetrance 0.5 0.5 0.5 K =0.5(prevalence)

Table 2.3: Pure-Strict fully penetrant table (function) for interactions between two
SNPs with their marginal penetrances

amples such as tables 2.1, 2.2, and 2.3 do not illustrate the realistic epistasis as they

are quite easy to detect and can show the genotypes which are completely predictive

or non-predictive (0 and 1) to disease; however, they are only proper instances to

understand the strict-pure models employed in GAMETES. Regarding marginal pen-

etrance, which are significant factors in the process of generating pure-strict models,

they are the reasons for creating strict-pure models. For example, in Table 2.3, if a

person gains genotype Aa and the genotype of SNP2 is disregarded, the probability

of having a disease for this person, under this condition, is calculated below:

(1× 0.25) + (0× 0.5) + (1× 0.25) = 0.5

Based on this calculation, the marginal penetrance associated with genotype Aa is

0.5. According to table 2.3, when SNP2 is ignored, the probability of having disease

for both genotypes AA and aa are 0.5. Therefore, SNP1’s genotype separately is

not predictive of disease. The same situation happens for SNP2; all the marginals

are the same amounts (0.5), and there are different probabilities for its genotypes.

18



In this way, SNP2’ genotype is not solely predictive of disease either. This is the

mathematical definition of strict-pure model, in which all the marginal penetrances

are the same while there exist different probabilities for genotypes alone. This similar

typical value for all the marginals causes the population prevalence of disease(K)

[UKSA+12]. Realistic models, such as the models that are generated by GAMETES,

obtain continuous probabilities between 0 and 1; although table 2.3 presents a pure

and strict model, it is hardly a realistic model. In this way, table 2.4 shows an example

of pure-strict model which is generally produced by GAMETES.

SNP2

SNP1

Genotype BB(0.5) Bb (0.41) bb(0.085) Marginal penetrance

AA(0.5) 0.6417 0.2014 0.5585 0.45

Aa(0.41) 0.2269 0.7571 0.3236 0.45

aa(0.09) 0.4851 0.4078 0.4866 0.45

Marginal penetrance 0.45 0.45 0.45 K = 0.45(prevalence)

Table 2.4: Pure-Strict penetrance function for interactions between 2 SNPs (q1 =
0.3, q2 = 0.29)

Table 2.4 is an excellent instance of GAMETES model because the entire proba-

bilities of genotypes are not certain (0 or 1), thus it is not easy to detect; moreover, all

the marginal probabilities (penetrances) are equal based on the pure-strict definition.

The following calculations show the process of calculating the marginal penetrances

for table 2.4:

(0.6417 ∗ 0.5)+(0.2014 ∗ 0.41)+(0.5585 ∗ 0.085)=0.45

(0.2269 ∗ 0.5)+(0.7571 ∗ 0.41)+(0.3236 ∗ 0.085)=0.45

(0.4851 ∗ 0.5)+(0.4078 ∗ 0.41)+(0.4866 ∗ 0.085)=0.45

(0.6417 ∗ 0.5)+(0.2269 ∗ 0.41)+(0.4851 ∗ 0.09)=0.45

(0.2014 ∗ 0.5)+(0.7571 ∗ 0.41)+(0.4078 ∗ 0.09)=0.45
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(0.5585 ∗ 0.5)+(0.3236 ∗ 0.41)+(0.4866 ∗ 0.09)=0.45

At this point, the general idea of creating pure-strict models, which are generated

by the GAMETES software, is introduced. In addition, the detail of methods which

GAMETES employs to produce random pure-strict models, such as filling parameters

of models, solving penetrance functions based on random initialized parameters, etc.

exist in the official GAMETES paper [UKSA+12]. In our study, the most important

point of the GAMETES is understanding the main idea of strict-pure models, which

leads to a hard problem to solve in the feature selection of the GAMETES datasets.

In the following chapters, the relation of pure-strict models and feature selection in

datasets which are produced by the GAMETES software is described.
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Chapter 3

Learning Theory and Complexity

Background

Learning theory is one of the theoretical areas of computer science that studies the

methods of designing programs which can learn and identify the computational limits

of learning by machines. In this area, researchers attempt to evaluate the learning

algorithms based on their performance on different problems; however, providing a

significant comparison between learning algorithms is not straightforward. In this

way, learning theory presents a formal structure of particular defining and focusing

on challenges which are related to the performance of various learning algorithms.

By employing learning theory, it is also possible to examine the predictive capability

and computational performance of learning algorithms. Moreover, learning theory

models are the reflection of real problems in life. Therefore, this close relation can be

supportive in explaining practical performance which is noticeably a close link to the

machine learning research area.

In regard to the cryptography’s role in learning theory, it could be mentioned

that machine learning and cryptanalysis can be considered as deeply related study
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areas because they share a great portion of identical approaches and subjects [Riv91].

During a regular process of cryptanalysis, a cryptanalyst attempts to identify the

secret key used by the users of a cryptosystem, where the general system is already

known. In other words, the cryptanalyst tries to break the cryptosystem. Known

functions, those are indexed by the key, generate the decryption function, and the

cryptanalyst’s job is to find the accurate function which is being used. This is the

problem of "learning an unknown function" (the decryption function) from instances

of its input behavior [Riv91].

Prior to this, in the Boolean domain there are important problems in learning

theory such as learning disjunctions of terms over {0, 1}-valued variables. [Kat07,

FGKP06,O’D14]

In the following sections, we will define some of the core concepts of computational

learning theory that we use in this thesis such as PAC learning model, learning parity

with and without noise, k-juntas, and statistical queries.

3.1 PAC learning model

The fountainhead of computational learning theory was Leslie Valiant’s 1984 paper

[Val84] in which he defined a learning model which became known as PAC learning.

In the PAC (probably approximately correct) model, the learner is presented with

labeled examples of the output of an unknown function f from some concept class C,

where the examples are generated according to some distribution D. In this model,

we have two other inputs: ε and δ; ε is the error and δ is a probability value in

achieving an accuracy. The goal of the learner is producing a hypothesis (h) for that

function (f) which, with probability δ, will be correct with probability at least 1− ε

on samples drawn from D. A concept class C is (ε, δ)-PAC-learnable if there is a
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learner which can learn every function from C in this sense, for any distribution D.

In this model, the hypothesis h is a function which is close to an unknown function

f . More formally, the following is the definition of PAC learning:

Definition 3.1.1. Let C be a concept class of Boolean functions, and ε, δ constants,

0 < ε, δ ≤ 1. Then C is (ε, δ)-PAC learnable if there is an algorithm A which for

every f ∈ C, given as inputs ε, δ, and a set of random examples selected from any

probability distribution D, outputs h (hypothesis) such that with probability at least δ,

Prx∼D(h(x) 6= f(x)) ≤ ε.

For example, in [Val84] Valiant presented a polynomial-time algorithm that learns

k-CNF formulas in this sense; there, he also pointed out that coping with irrelevant

attributes is important. In later work, algorithms are provided for monotone DNF

formulas. Moreover, Valiant presented cryptographic evidence that Boolean circuits

are not learnable [Ang92].

3.1.1 Noise models

In the real world of machine learning, data scientists regularly cope with noisy data.

It is not surprising, then, that there has been a lot of work on learning in the presence

of noise, and on developing noise-tolerant algorithms [BKW03,O’D14,Riv91,KMV08,

SB13]. In the basic PAC learning, it is assumed that the examples fromD are correctly

labeled by a specific function from the concept class that we are trying to learn; how-

ever, in practical work, the training data is noisy, and the labels may not always be cor-

rect. To address that, several generalizations of the PAC learning model to the noisy

scenarios have been developed, with different noise distributions including Random

Classification Noise, Malicious Classification Noise, Uniform Random Attribute Noise,

Product Random Attribute Noise, and Malicious Noise [AL88,Slo88,GS95,Val85].
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3.2 Statistical Query Model

In the PAC learning model, the learner has access to random labeled examples. There

has been a flurry of papers after PAC learning was defined that presented variants

of PAC learning with different types of access to the data. For example, rather than

accessing a random example, a learner could ask for a label on a specific string: this

gave the stronger membership query model. Alternatively, instead of being able to

access examples with their labels, the learner might be able to gain just some statistics

about the data. Moreover, this statistics may be imprecise, and modeling even more

closely to the noisy real life applications.

To formalize learning in this latter setting, Kearns [Kea98] introduced the statis-

tical query model (SQ). In this case, the learner asks queries of the form "what is

the probability (with respect to D) of examples having the property φ(x, l), where

l = f(x) is the label. Moreover, the answer to the query is imprecise, with an allowed

additive error α. In other words, SQ is a restricted version of PAC learning model, in

which a learning algorithm can acquire estimates of statistical traits of the examples,

however, there is no access to the examples themselves [Fel12]. More formally, the

definition of SQ is as follows:

Definition 3.2.1. Fix an input space X, a function f and a probability distribution

D. A statistical query with tolerance τ for given (f,D) takes as an input (φ, τ), where

φ : X × {0, 1} → {0, 1}, and returns a value v such that

Prx∼D(φ(x, f(x)) = 1)− τ ≤ v ≤ Prx∼D(φ(x, f(x)) = 1) + τ.

Let C be a concept class of Boolean functions. Then an algorithm A learns C in

the statistical query model if, for every f ∈ C, distribution D, A outputs a hypothesis

h which, with probability δ agrees with f with probability at least 1 − ε, where A
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learns about f by asking a sequence of statistical queries, with no access to individual

samples.

3.3 Learning Parity with Noise (LPN)

The core of our hardness result is a reduction from the Learning Parity with Noise

(LPN) problem. In this section we define LPN and survey relevant results about it.

Learning Parity is a well-studied problem in computational learning theory, com-

plexity theory and machine learning. There, the input to the algorithm is a list of

m labeled samples {(x1, y1), . . . , (xm, ym) from some distribution D, where for all i

xi ∈ {0, 1}n and yi ∈ {0, 1}. The learning algorithm has to determine the labeling

function f : {0, 1}n → {0, 1} under the promise that ∀i, yi = f(xi) = 〈xi, s〉, where

s ∈ {0, 1}n is a fixed "secret key" (that is, f(xi) is the parity of bits of xi in locations

where s has a 1; for each instance of the learning parity problem, the answer is fully

determined by s). A parity is k-sparse when s contains at most k 1s.

The Learning Parity problem does have a polynomial-time algorithm: it can be

solved by Gaussian elimination. However, it is a classic example of a function that is

very far from being linearly separable and thus is not learnable by a perceptron even

for k = 2. [MP69]

A harder version of this problem is Learning Parity with Noise (LPN), in which

samples may contain some noise [BKW03,KMV08,Reg09,Pie12,KMV08]. Here, we

follow the definition from [Reg09,LF06,GJL14,FMI+06]:

Definition 3.3.1 (Learning Parity with Noise (LPN)). An instance of Learning Par-

ity with Noise (LPN) is a list of m samples x ∈ {0, 1}n, chosen uniformly at random,

and each sample is labeled with y ∈ {0, 1}, where y is the inner product of x and

secret key (s) which is a fixed vector s ∈ {0, 1}n; now, y = 〈x, s〉 with probability
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of 1 − ε (noise), otherwise y = 1 − 〈x, s〉, for the secret key s. The instance is k-

sparse if s has at most k 1s. An algorithm solves this problem if given as an input

(x1, y1) . . . (xm, ym) produced as described it returns s with probability at least θ for

some constant θ [GJL14,Pie12].

It has been conjectured that LPN is hard on average. Based on this assumption,

Pietrzak [Pie12] introduced a number of cryptographic primitives using simple LPN

based schemes, in particular pseudorandom generators and symmetric key encryption

over secret-key authentication protocols, as well as public key identification, commit-

ments, and zero-knowledge proofs. A more general version of the problem where the

domain is not Boolean, called learning with errors [Reg10], has been used as a basis

for even more powerful cryptography. The best algorithm for LPN to date based

on Gregory Valiant’s [Val12], is achieving complexity of O(nω+ε
3 k), where ω is the

complexity of matrix multiplication.

While cryptographic results are based on the assumption of average-case hard-

ness of LPN, Kearns [Kea98] has shown unconditionally that noisy parity cannot

be learned with polynomially many queries in the Statistical Query model. In that

model, an algorithm can only ask queries of the form "what fraction of strings satis-

fying such-and-such condition have a label y?" and, moreover, the answer it receives

can have an additive error up to a tolerance bound. As the Statistical Query model

is equivalent to some differential privacy frameworks, this makes LPN not learnable

in the corresponding differentially private frameworks.

In the PAC model, Blum, Kalai, and Wasserman [BKW03] presented a slightly

sub-exponential time algorithm for learning parity functions in the presence of ran-

dom noise. This article [BKW03], is started with a key question in machine learning:

“What kinds of functions can be learned efficiently from noisy, imperfect data?” Feld-

man, Gopalan, Khot, and Ponnuswami [FGKP06] presented well-studied problems
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concerning the learnability of parities and half-spaces in the presence of classification

noise. This study illustrated that, under the uniform distribution, learning parities

with adversarial classification noise reduces to learning parities with random classi-

fication noise. The authors presented two different reductions to LPN under uni-

form distribution; this article supports the belief that learning noisy parity under

the uniform distribution, is a hard problem. Moreover, the authors, based on [BB02],

proved an essential optimal hardness factor for half-space of which majorities are hard

to PAC-learn (Probably Approximately Correct) using any representation, based on

the cryptographic assumption underlying the Ajtai-Dwork cryptosystem [FGKP06].

In [KMV08], with a suitable definition of the agnostic weak learner, it is demon-

strated that the boosting by branching programs algorithm can be analyzed in the

agnostic setting; also, the authors showed the utility of this fact in the first nontriv-

ial algorithm. Lyubashevsky [Lyu05] proved that there is an algorithm which solves

the parity problem in the presence of noise in time 2O(n/loglogn). This work is a re-

sponse to a key question of Blum’s, Kalai’s, and Wasserman’s [BKW03] key question

which was “is there any 2o(n) algorithm for the length-n parity problem that uses only

poly(n) labeled examples?” This paper [Lyu05] also presented a sub-exponential algo-

rithm for decoding random linear codes, and extended the same techniques to support

sub-exponential algorithm for dense instances of the random subset sum problem.

Katz [Kat07] discussed re-casting LPN as the problem of decoding a random linear

code, as a possible tool for developing highly-efficient cryptographic primitives. This

study reviewed recent work with the goal of creating efficient authentication protocols

based on the conjectured hardness of LPN. There, Katz also considered an efficient

protocol based on the LPN problem that is provably resistant to man-in-the-middle

attacks with an open question that whether the LPN problem can be employed to

construct efficient cryptographic protocols for other tasks. The author cited Regev’s
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result [Reg09] to show that public-key encryption can be based on a generalization of

the LPN problem.

Learning parity is a special case of learning k-juntas, where the labeling function,

while still dependent on k bits of its input, is not necessarily a parity function. There,

the learning algorithm has to determine both the relevant k bits and which function

f of those k bits is being computed [DMN18,ABR16].

Bhattacharyya, Gadekar, Ghoshal, and Saket [BGGS15] proved that the learning

sparse parities is hard as the W[1]-hardness holds for learning a k-parity using a

k-junta. The following is their theorem [BGGS15]:

Theorem 3.3.1. [BGGS15] The following is W[1]-hard: for any constant δ > 0,

given m = O(k · 23k · (log n)/δ3) point-value pairs {(zi, bi)}m
i=1 ⊆ Fn

2 × F2, decide

whether:

YES Case: There exists a k-parity which satisfies all the point-value pairs.

NO Case. Any function f : Fn
2 7→ F2 depending on at most k variables satisfies at

most 1
2 + δ fraction of the point value pairs.

That is, unless W -hierarchy collapses, learning k-juntas even approximately re-

quires time O(nΩ(f(k) for some f(k). Note that learning k-juntas exactly is W [2]-

hard [AKL09].

If membership queries are available, Aliakbarpour, Blais, and Rubinfeld [ABR16]

illustrated that it is possible to learn k-juntas with respect to the uniform distribution

over the Boolean hypercube. The authors obtained the results by a new Fourier-based

learning algorithm inspired by the Low-Degree Algorithm of Linial, Mansour, and

Nisan [LMN93]. This study also provided a nearly-optimal algorithm for verifying

that an unknown distribution is a k-junta distribution with respect to the uniform

distribution. Subsequently, they determined the connections of k-junta distributions

and testing uniformity of weighted collections of distributions. In another study,
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Blais [Bla10] has shown that it is possible to test whether a given distribution comes

from a k-junta when membership queries are available.
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Chapter 4

Our results

In this chapter, we present the results of our research based on studies we have

completed on the feature selection of pure and strict datasets, which are produced by

GAMETES software [UKSA+12]. We will show that solving the GAMETES problem

is computationally hard under the variant of a cryptographic assumption. Namely,

GAMETES can produce models in such a way that solving feature selection in datasets

generated from these models is at least as hard as solving the k-sparse LPN problem

defined in the previous chapter.

4.1 The GAMETES problem

Let us first formally define the problem of feature selection in GAMETES datasets.

We will define the notion of a "GAMETES model" used to generate a dataset. The

GAMETES problem itself will then be solving feature selection on a dataset produced

by a GAMETES model.

Let X = {x1, . . . , xm} be a set of strings of length n (here, the strings are over the

alphabet {0, 1, 2}). Let J = {j1, . . . , jk} be a set of indices in the range of [1, . . . , n].

Now, for a given string x, denote by x[J ] its restriction to the indices in J , that is,
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the k-array string x[j1] . . . xi[jk]. Finally, let X ↓x[J ]=s denote the set of all strings in

the database such that x[J ] = s.

A GAMETES model is defined by the following list of parameters. The de-

scriptions of the parameters below are mostly from the supplementary materials

to [UKSA+12], with some simplifications.

• k: The number of relevant SNPs (that is, SNPs which together are correlated

with the outcome).

• q: Minor allele frequency. Each SNP can have three values: 0 (both alleles

are dominant) which occurs with probability (1 − q)2; 1 (one dominant, one

recessive) which occurs with probability 2q(1 − q); and 2 (both are recessive)

which occurs with probability q2. Given q, let D`
q be the distribution of ternary

strings w of length ` where each index in w is sampled independently according

to probabilities above.

In general, GAMETES can produce models with separate minor allele frequen-

cies q1, . . . , qk for every relevant SNP, plus qr for every non-relevant SNP. As it

is easy to determine (by counting) which features are irrelevant if qr is different

from q1, . . . , qk, we will focus on the case when all qi are the same.

• K: prevalence, or population (marginal) penetrance, defined as the expecta-

tion of a positive outcome over all possible gene sequences (weighted by their

frequencies according to q). That is, if G is a set of all possible 3k strings in

{0, 1, 2}k, p(x) is a probability of a string x, and f(x) is the probability of a

positive outcome given string x, then K = Ex∈Gp(x)f(x).

• h: heritability. This is essentially a normalized standard deviation of the out-
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come. More specifically, [UKSA+12] defines heritability by the following

h2 = 1
K(1−K)Σx∈Gp(x)(f(x)−K)2 (4.1)

Note that if the outcome is chosen uniformly at random with probability K,

then h = 0, because in this case f(x) = K for all x. If the outcome is fully

determined (that is, f(x) = 1 or f(x) = 0 for all x), h = 1. Therefore, for

feature selection to make sense, h should be significantly greater than 0, while

still at most 1.

Definition 4.1.1 (A GAMETES model). Let k be the number of relevant features, q

the minor allele frequency, K the prevalence, and h heritability. A GAMETES model

with parameters k, q,K, h, also called a penetrance function, is a k-dimensional array

M(w[1], . . . , w[k]), where each dimension has 3 possible values (3k values total, indexed

by strings over {0, 1, 2}k), with 0, 1, 2 encoding the number of recessive alleles in a

SNP). For all w ∈ {0, 1, 2}k, 0 ≤ M(w) ≤ 1 denotes the probability of the positive

outcome (phenotype) given a genotype with relevant SNPs denoted by w. Note that

in [UKSA+12], M(w) is denoted by fi1...ik , where i1 . . . ik = w.

A model is pure and strict if for every j, 1 ≤ j ≤ k, and every combination of

values of SNPs other than the j’th SNP, the following equation is satisfied

(1− q)2 ·M(ww[j]←0) + 2q(1− q) ·M(ww[j]←1) + q2 ·M(ww[j]←2) = K.

Here, the notation ww[j]←b denotes w with jth bit set to b. That is, unless the val-

ues of all k-relevant SNPs are known, the probability of any outcome is its marginal

probability, K (penetrance). Finally, heritability of the model is h as computed from

equation 4.1, with probabilities of strings according to Dk
q .
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There is a long discussion in [UKSA+12] about different ways of generating such

penetrance functions. What is important to us is that they seem to be able to produce

any model which satisfies the conditions of being pure and strict, with penetrance

and heritability within their respective bounds as a function of q. In particular, for

q = 1− 1/
√

2 they can generate models with any heritability up to 1. Therefore, for

the rest of the discussion, we will equate the set of penetrance functions (models) M

as described above with the set of models that GAMETES software can produce.

Given GAMETES model, the GAMETES problem can be defined as identifying

k features generated by a GAMETES model in a given dataset of m labeled samples

on n features, where the rest of the features are generated randomly with frequencies

of 0, 1, or 2 according to q.

Definition 4.1.2 (The GAMETES Problem). Let n be the total number of features,

andm the number of samples. Denote a positive outcome (i.e. a case) by +, and a neg-

ative outcome (control) by −. The GAMETES problem, with parameters k, q,K, h, n,

denoted by GAMETES(k, q,K, h, n,m) is defined as follows:

Input: A pair (X, Y ) where X consists of m strings x1, . . . , xm, where for every i,

xi ∈ {0, 1, 2}n, and Y consists of y1, . . . , ym corresponding labels, yi ∈ {−,+}.

Promise: Strings in X are generated uniformly at random with frequencies of 0, 1, 2

according to (1− q)2, 2q(1− q), and q2 respectively (that is, sampled from Dn
q ). There

is a set J containing k indices and a GAMETES model M with parameters k, q,K, h

generating Y from X so that for each i, Pr(yi = +) = M(xi[J ]).

Output: J = {j1, . . . , jk} such that X[J ] is strongly correlated with the outcome.

In particular, when m >> k, then based on heritability 4.1, the following relationship
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occurs:

∑
w∈{0,1,2}k

|X ↓x[J ]=w |
m

(Pr(yi = + | x[J ] = w)−K)2 ≈ h2 ·K · (1−K)

4.2 Reducing k-sparse LPN to the GAMETES prob-

lem.

The central technical result of this section is the reduction from k-sparse LPN to the

problem of feature selection in a dataset generated from a pure strict model with k

relevant features out of n total features (the GAMETES problem).

First, let us consider a toy example, to illustrate the connection between LPN

and the GAMETES problem. Imagine a binary version of the GAMETES problem:

that is, a version generating datasets with "binary genotypes", which are strings over

{0, 1} as opposed to {0, 1, 2}. In this case, the parity function can be encoded by the

model M(b1, . . . , bk) = b1⊕· · ·⊕ bk. Here, there is no analogue to q, and probabilities

of all entries of M are the same. Now, finding the k relevant features on a dataset

produced by this model M is exactly the same as determining the parity of which k

bits of input strings gives the output.

4.2.1 The reduction.

Let {(x1, y1), (x2, y2), . . . , (xm, ym)} be an instance of learning k-sparse parity function

(with or without noise). The xi are binary strings of length n chosen uniformly at

random, and yi are bits. If this is a noiseless scenario, then there exists a string s of
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length n with exactly k 1s such that for every i,

yi = 〈s, xi〉 = (
n∑

j=1
s[j] · xi[j]) mod 2.

Otherwise, if there is ε-noise, Pr[yi = 1− 〈s, xi〉] = ε, and Pr[yi = 〈s, xi〉] = 1− ε.

We will construct the corresponding dataset (Z, Y ) = {(z1, y1) . . . , (zm, ym)} with

zi ∈ {0, 1, 2}n for all i as follows. Let q = 1−1/
√

2. For every bit xi[j], set zi[j] = xi[j],

except if xi[j] = 1, then set zi[j] = 2 with a probability of q2 = (1.5−
√

2) ≈ 0.085786.

Note that with this choice of q, the probability of zi[j] being 0 is 1/2, being 1 is

2(1/
√

2)(1 − 1/
√

2)), and being 2 is (1 − 1/
√

2)2. This completes the reduction,

with (Z, Y ) = {(z1, y1) . . . , (zm, ym)} being the resulting instance of the GAMETES

problem.

For the case of learning parity without noise, (Z, Y ) can be produced by GA-

METES with the minor allele frequency q and a model M with M(w) = b1⊕· · ·⊕ bk,

where bj = 0 if w[j] = 0, otherwise (when w[j] = 1 or w[j] = 2) bj = 1. For example,

for k = 2 the model will look as follows:

SNP2

SNP1

Genotype BB(1/2) Bb (2(1/
√

2)(1− 1/
√

2)) bb((1− 1/
√

2)2) Marginal penetrance
AA(1/2 ) 0 1 1 1/2

Aa(2(1/
√

2)(1− 1/
√

2)) 1 0 0 1/2
aa((1− 1/

√
2)2) 1 0 0 1/2

Marginal penetrance 1/2 1/2 1/2 K =1/2(prevalence)

Table 4.1: The model M for k=2 without noise generating the GAMETES dataset
produced as the result of the reduction

In the presence of ε-noise, that is, when yi = b1⊕· · ·⊕bk with probability 1−ε for bj

as above, and yi = 1−b1⊕· · ·⊕bk with probability ε, let us defineM(w) = Pr[yi = 1],

so M(w) = |b1 ⊕ · · · ⊕ bk − ε|. For example, for k = 2, the model M is a 2-locus

strict-pure penetrance function, as shown below.
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SNP2

SNP1

Genotype BB(1/2) Bb (2(1/
√

2)(1− 1/
√

2)) bb((1− 1/
√

2)2) Marginal penetrance
AA(1/2) ε 1− ε 1− ε 1/2

Aa(2(1/
√

2)(1− 1/
√

2)) 1− ε ε ε 1/2
aa((1− 1/

√
2)2) 1− ε ε ε 1/2

Marginal penetrance 1/2 1/2 1/2 K = 1/2(prevalence)

Table 4.2: The model M for k=2 generating the GAMETES dataset produced as the
result of the reduction

4.2.2 Correctness of the reduction

The following lemma states the reduction more formally, spelling out the parameters.

Lemma 4.2.1. For every instance of k-LPN there exists a GAMETES model which

can generate an instance of the GAMETES problem produced by the reduction above.

The parameters of this models are k, minor allele frequency q = 1−1/
√

2, penetrance

K = 0.5 and heritability h = 1− 2ε.

Proof. Let I = {(x1, y1), (x2, y2), . . . , (xm, ym)} be an instance of k-sparse LPN with

noise parameter ε. That is, for all i, xi ∈ {0, 1}n, yi ∈ {0, 1}, and there exists a secret

string s ∈ {0, 1}n with exactly k 1s, and for every i, yi = x̄i⊕ s⊕ ei where ei = 1 with

probability= ε. Solving this instance of k-sparse LPN is finding s, that is, finding the

k positions at which s equals 1. Now let I ′ = (Z, Y ) be constructed as described in

the previous subsection; that is, for all i, j, if xi[j] = 0 then zi[j] = 0, and if xi[j] = 1,

then zi[j] = 2 with probability q2 = 1.5−
√

2, and zi[j] = 1 otherwise.

Let J be the set of indices such that s[j] = 1. For a string w ∈ {0, 1, 2}k, let

b1 . . . bk ∈ {0, 1}k be the corresponding binary string (that is, bj = 0 when w[j] = 0,

and bj = 1 otherwise). Now, define a GAMETES model M by M(w) = 1 − ε when

b1 ⊕ · · · ⊕ bk = 1, and M(w) = ε otherwise, with q = 1− 1/
√

2.

The instance I ′ from the reduction is a possible instance of the GAMETES problem

generated by this model with parameters n and m. GAMETES first chooses positions

of k out of n relevant features randomly; thus, for any secret key s from k-LPN
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instance, it can choose k positions J to be exactly where s is 1. Then, it generates

(Z, Y ), where each zi[j] = 0 with probability 1/2 (same as probability of xi[j] =

0. Finally, by construction of M , for each zi yi = + with probability 1 − ε when

b1 ⊕ · · · ⊕ bk = 1, and yi = + with probability ε when b1 ⊕ · · · ⊕ bk = 0.

Since probability of a parity of k bits being 1 over uniformly random strings is

1/2, probability of yi = + is 1/2, as probability of + changed to − is the same (ε) as

probability of − changed to +. Therefore, the expected value of yi is +, thus K = 0.5.

Respectively, summing over any index j of M , if k is even we get

(1− q)2 · ε+ 2q(1− q) · (1− ε) + q2 · (1− ε) = 1/2 · ε+ 1/2 · (1− ε) = 1/2

If k is odd, we get the same expression with the roles of ε and 1 − ε reversed, which

also sums to 1/2. Thus, the model is strict and pure: indeed, no subset of parity

correlates with the output of a parity, with or without noise.

Now, to obtain heritability h = 1 − 2ε, note that when w is sampled from the

distribution Dk
q , the probability ofM(w) = 1−ε is the same as probability ofM(w) =

ε, and equal to 1/2. Thus, with this and K = 0.5, the expression for heritability from

4.1 simplifies to

h2 = 1
K(1−K)

∑
x∈{0,1,2}k

p(x)(M(x)−K)2 = 1
0.25(1

2(ε−0.5)2+1
2(1−ε−0.5)2) = (0.5− ε)2

0.25

So h =
√

(0.5− ε)2/0.25 = 1 − 2ε. Thus for any value of ε ∈ [0, 0.5), heritability

is within the bounds which GAMETES can handle (see pages 8-9 in [UKSA+12] for

details).

The lemma above gives the bulk of the correctness of the reduction proof, by
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showing how the reduction produces an instance of the GAMETES problem. Now, it

remains to argue that solving the resulting GAMETES problem gives an answer to

the original instance of k-LPN.

As information-theoretic limit on the number of samples necessary to recover the

parity is O(k log n) [BGGS15], we can assume that m ≥ k log n in the following

theorem.

Theorem 4.2.1. Suppose that there is a feature selection algorithm, A, that cor-

rectly determines k relevant features in every instance of GAMETES problem in time

t(n, k,m, h). Then k-LPN is solvable in time t(n, k,m, (1− 2ε)) +O(n,m).

Proof. By Lemma 4.2.1, the reduction from section 4.2.1 produces an instance I ′ of

the GAMETES Problem from any instance I of k-LPN, with h = 1 − 2ε. Note

that this reduction makes a single pass over the instance of k-LPN, thus producing

I ′ in time O(n,m). Moreover, number of samples and number of bits (features) are

preserved by the reduction.

Now, suppose that the algorithm A returns the set J of k relevant features in I ′.

As by construction the relevant k features of the instance of the GAMETES problem

are precisely the indices where the secret key s is 1, recovering these features gives us

full information about s used to generate I, thus solving k-LPN.

This theorem now allows us to transfer hardness results and assumptions about

k-LPN to the GAMETES Problem.

4.3 Hardness of the GAMETES problem

First, note that as LPN is an NP-hard problem, so is the GAMETES problem, as

our reduction is a polynomial-time many-one reduction. In addition to that, we can
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get several other hardness results for the GAMETES problem based on hardness of

k-LPN.

4.3.1 Unconditional hardness results from Statistical Query

model

Recall that k-LPN is unconditionally hard for the Kearn’s Statistical Query model

[Kea98]. Thus,

Corollary 4.3.1. No heuristic which only relies on approximate statistics about the

genetic dataset (as opposed to access to individual samples) can solve the GAMETES

problem in polynomial time.

An important practical application of the statistical query model is in differential

privacy: the class of problems learnable with local differentially private algorithms

is exactly the class of problems learnable in the statistical query model [KLN+11,

BDMN05].

Corollary 4.3.2. The GAMETES problem is not solvable by local differentially pri-

vate algorithms.

4.3.2 Parameterized complexity

Theorem of Bhattacharyya, Gadekar, Ghoshal, and Saket [BGGS15] stated on page 28

shows that learning a k-parities even approximately is W[1]-hard; moreover, learning

k-juntas exactly is W [2]-hard [AKL09]. As the reduction preserves the dependence

on k, and learning k-juntas reduces to learning parities,

Corollary 4.3.3. Unless W -hierarchy collapses, GAMETES problem is not in FPT

with respect to parameter k.
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In [BGGS15], it is shown that learning a k-sparse solution to a system of linear

equations is fixed parameter intractable. The researchers mentioned that this hap-

pened even when three conditions exist:

1- There are only logarithmic number of equations in the number of variables

2- The learning is permitted to be approximate

3- The learning is permitted to produce as hypothesis any function (junta) supported

on at most k variables.

4.4 Experimental results

4.4.1 Performance of ReliefF

ReliefF is a state-of-the-art heuristic commonly used for feature selection in genetic

datasets. Its running time is O(mna) (a is the number of training instances which

is the Relief algorithm’s configuration input) [UMLC+18], which is polynomial in n

and m, and does not take k into account. Though for very small k ReliefF performed

excellent, its accuracy quickly decreased with increasing k. See Figure 4.1 for graphs

of the accuracy and performance of ReliefF on GAMETES datasets.

4.4.2 An early proposed heuristic

Before we discovered the connection between the GAMETES problem and LPN, we

proposed the following heuristic, and evaluated it on the GAMETES datasets. How-

ever, as could be predicted from the statistical query lower bounds results, this heuris-

tic does not scale with k.

First, the dataset, which is produced by GAMETES, must be split into two cat-

egories, case and control, based on the phenotype situation of the dataset. As the
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Run-time Accuracy

Figure 4.1: ReliefF run-time and accuracy with fixed k,m and growing n

existing values (genotypes) in SNP datasets are 0s, 1s, and 2s, so in each category,

the number of each value for every SNP/feature is counted. Then, the percentage

(frequency) of each value for every SNP in both the case and control categories are

calculated. In the next step, these percentages are ranked. Now, by defining a func-

tion, we measure the significance of each SNP based on the statistics that which is

generated. The function is defined below:

f(x) = (α× V ) + (β × P )

In this definition, f is the function which calculates the rank of importance of each

SNP/feature, x is each SNP/feature, α and β are constant numbers which we set

them to α = 50 and β = 25; V is a real variable which can be set only to 0 or 1, and

P is an important variable in this function which is calculated below:

if V = 0, P = −10
3 ((PT opRankCase + PT opRankControl)− 2), otherwise

P = PT opRankCase + PT opRankControl

PT opRankCase and PT opRankCase are the highest frequency or percentage in the case cate-

gory and control category respectively. If both of the highest frequencies (PT opRankCase

and PT opRankControl) have the highest frequencies with the same values(genotypes),
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then V set to 0, and when they belong to different values(genotypes), then V set to

1. In this procedure, the higher rank obtained for each feature, the more relevant is

that feature to the phenotype occurrence. Figure 4.2 is the result of the analysis

on one of the pure-strict models of GAMETES which is performed by our statistical

method. In this analysis, it is clear that when the total number of features are low,

this ranking method returns higher ranks to the relevant features, however by adding

just some features, this method is not capable of distinguishing relevant SNPs.

25 SNPs, the last two are correlated 50 SNPs, the last two are correlated

Figure 4.2: Statistical analysis on GAMETES
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Chapter 5

Conclusions

In this thesis, we worked on the computational hardness of feature selection in strict

and pure synthetic genetic datasets. The main contribution of this study is the reduc-

tion from the sparse version of Learning Parity with Noise to the GAMETES problem

and shows that solving the feature selection in pure-strict datasets, which produced by

GAMETES, is computationally hard. In other words, our results proved that solving

the feature selection of GAMETES problem is as hard as solving the k-sparse LPN.

Due to the vital role of feature selection in SNP datasets, and importance of LPN

in learning theory and cryptography, finding the hardness relation between these two

essential problems is valuable.

Going forward, we are working on extending our results to show that the GA-

METES problem, and, moreover, solving feature selection in GAMETES-produced

datasets, is hard on average assuming LPN conjecture (that LPN is hard on average

for constant noise). It is easy to show that our reduction can work with other values

of K, by increasing or decreasing probabilities in all cells ofM respectively. We would

like to show that solving the GAMETES problem for arbitrary feasible GAMETES

models is as hard on average as it is to solve it for GAMETES that correspond to
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instances from our reduction (that is, models with values other than ε, 1− ε and with

different values of the minor allele frequency q). This is a work in progress; we think

that we can model general feasible GAMETES models as a "extra-noisy" versions of

models that correspond to the reduction from k-LPN, and handle different values of

q by subsampling from instances produced by the reduction (at some loss of param-

eters). Ideally, we would like to show that the hardness of the GAMETES problem

can be used as a cryptographic assumption on its own. And in addition to that, to

make a claim about hardness of feature selection in GAMETES-produced datasets on

average we need to verify that the distribution of instances of the GAMETES problem

generated by the GAMETES software is close enough to random (ie, that different

instances of the GAMETES Problem with the same parameters have a similar chance

of being generated).

Another future direction concerns upper bounds. It would be interesting to imple-

ment state-of-the-art algorithms for k-LPN such as Valiant’s algorithm from [Val12],

and evaluate its performance on the GAMETES datasets as well as real data.

Finally, this connection between LPN and the GAMETES problem gives an even

stronger incentive to study the complexity of k-LPN, to give better algorithms for

k-LPN (and, hopefully, for GAMETES), or prove a nΩ(k) lower bound.
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