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Abstract: 

This article demonstrates the power and flexibility of linear mixed-effects models (LMEM) to 
investigate high-density surface electromyography (HD-sEMG) signals. The potentiality of the model 
is illustrated by investigating the root mean squared value of HD-sEMG signals in the tibialis anterior 
muscle of healthy (n = 11) and individuals with diabetic peripheral neuropathy (n = 12). We started 
by presenting the limitations of traditional approaches by building a linear model with only fixed-
effects. Then, we showed how the model adequacy could be increased by including random-effects, 
as well as by adding alternative correlation structures. The models were compared with the Akaike 
information criterion and the Bayesian information criterion, as well as the likelihood ratio test. The 
results showed that the inclusion of the random-effects of intercept and slope, along with an 
autoregressive moving average correlation structure is the one that best describes the data (p < .01). 
Furthermore, we demonstrate how the inclusion of additional variance structures can accommodate 
heterogeneity in the residual analysis and therefore increase model adequacy (p < .01). Thus, in 
conclusion, we suggest that adopting LMEM to repeated measures such as electromyography can 
provide additional information from the data (e.g., test for alternative correlation structures of the 
RMS value), and hence provide new insights into HD-sEMG related work. 

Keywords: Linear mixed-effects models; High-density surface electromyography; Diabetic 
peripheral neuropathy. 
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1 Introduction 

Diabetic peripheral neuropathy (DPN) is the most common type of neuropathic syndrome associated 
with diabetes mellitus. DPN results from a combination of various metabolic and vascular factors, and 
it is associated with several complications, such as distal weakness, premature fatigue, reduced 
muscle strength, foot ulcers and in severe cases lower limb amputation [1, 2]. DPN is a distal, length-
dependent condition, affecting mainly muscles with a higher proportion of type I fibres, such as the 
tibialis anterior [3, 4]. 

The high-density surface electromyography (HD-sEMG) technique is a useful tool to provide 
information of an individual neuromuscular system, with the main advantages of being non-invasive 
and having a high spatial resolution due to a large number of closely spaced electrodes. The HD-
sEMG reflects important physiological mechanisms such as the number of active motor units and 
their firing rate, as well as muscle fibre conduction velocity [5]. The technique has recently 
demonstrated to be a promising tool to assess diabetes mellitus and its complications [6–8]. 

The relationship between EMG variables and muscle fibre conduction velocity is well 
established during an isometric voluntary contraction. A reduction in the muscle fibre conduction 
velocity results in a positive linear trend in the amplitude variables (e.g., the root mean square), and a 
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negative trend in the spectral variables (e.g., median frequency), reflecting a phenomena termed 
myoelectric manifestations of muscle fatigue [9]. Therefore, this relationship may be an important 
biomarker for assessing DPN individuals considering that premature muscle fatigue is strongly 
associated with a decrease in the muscle fibre conduction velocity. Therefore, DPN individuals may 
present the effects of myoelectric manifestations of muscle fatigue sooner than healthy individuals 
[10].   

In high-density surface electromyography (HD-sEMG) experiments, the signal is recorded 
when an individual performs a specific task for a period that varies from a few seconds up until a few 
minutes [11]. This signal can be considered as a case of repeated measures data, where multiple 
observations are collected in each research unit (i.e., subject). Therefore, such research design 
imposes a hierarchical or multilevel structure in the data, where multiple measurements are nested 
within each subject [12, 13]. 

Observations from the same individual tend to be “more alike” than observations from 
different subjects, which naturally induces a correlation between measures within the same individual. 
Consequently, all observations within a subject do not contribute to completely independent 
information. This fact results in the violation of independence assumption inherent in traditional 
statistical methods such as analysis of variance (ANOVA) and standard regression analysis. If the 
observations are incorrectly treated as independent, it may result in underestimated standard errors 
and inflation of the type I error rate (i.e., false positives) [14–16].  

A common approach to handle such data structure is to use summary statistics to condense 
the repeated measured information into a single measurement, eliminating the within-subject 
correlation and allowing for a comparison of the summary statistics between groups using standard 
statistical techniques. A classic example of this approach is to perform a regression analysis on each 
individual and then perform standard statistical techniques to compare the mean intercept or slope of 
subjects within different groups. Although this approach is statistically valid, it does not take full 
advantage of the data, resulting in a significant loss of information and statistical power, given that the 
variability of the single-subject regression is not taken into account for further analysis [15, 17].  

Another common approach is to analyse HD-sEMG data through repeated-measures 
ANOVA. Besides the normality of the residuals, repeated-measures ANOVA poses restrictive 
assumptions about the correlation patterns (i.e., sphericity), since it requires equal variances at each 
time point (homoscedasticity) and an equal correlation between measurements at different times (e.g., 
the correlation between measurements at time t1 and t2 is assumed to be the same as the correlation 
between measurements at time t1 and tn). This correlation structure is commonly not the case in 
repeated measures experiments since measures that are taken close together in time are usually more 
highly correlated than measurements taken far apart in time. If these assumptions are violated, it may 
lead to incorrect decisions. To be correctly applied, repeated-measures ANOVA also requires 
balanced data (i.e., it does not allow unequally spaced time intervals) and complete observations on 
every subject. Hence, if a single observation is missing, the individual must be excluded from the 
analysis [18, 19].  

To deal with the limitations of the previously described methods, Laird and Ware [20] 
introduced the linear mixed-effects models (LMEMs), also known as multilevel models, hierarchical 
linear models, variance component models, among others. This class of model provides a flexible and 
powerful tool for the analysis of grouped data, which includes a range class of data structures such as 
longitudinal data, repeated measures, blocked designs and hierarchical data [20–22]. The basic 
principle of LMEM is that individuals in the population are assumed to have their specific trajectories 
over time (i.e., individuals within a population are heterogeneous). Therefore, it combines individual 
growth curves and a sample average curve into a single model. Besides that, LMEM permits several 
ways to deal with heteroscedastic data and also provides many alternative correlation structures, 
enabling the researcher to investigate with much more detail possible patterns of the observed data, 
also allowing to model unbalanced and missing data. Finally, using LMEMs result in higher statistical 
power to detect group-level differences as well as narrower confidence intervals in the parameter 
estimates [18, 19, 22].  

A drawback of LMEM is that setting up the models is not as straightforward as traditional 
methods. LMEM requires not only the specification of main effects (i.e., fixed effects) and their 
interactions but also the random-effects as well as the additional correlation structures, therefore the 
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name mixed-effects [23, 24]. Fixed effects represent the expected (or mean) values of the 
observations, shared by all observations in the sample. On the contrary, random-effects define 
individual departures from the intercept and slope of the average model. The random-effects result 
from the deviation between subjects and within-subjects, which is a natural way to account for the 
biological variability in the parameters across subjects [13].  

In typical repeated measures experiments, changes are related to covariates, such as subjects 
assigned to active drug and placebo, and multiple observations are performed on each subject. This 
specific case results in two fixed effects, treatment and time. The LMEM allows the inclusion of time-
varying or time-invariant covariates in the same way as conventional regression; examples of 
potential covariates are gender or age. Despite the complexity of such models, recently developed 
statistical software [25] makes such models accessible to researchers, and they are being used in a 
wide range of problems, including medicine [26], athletic training [27] and education [28]. That said, 
the LMEM can also be a useful tool to investigate HD-sEMG signals, given that it consists of 
repeated measures, where multiple measurements are nested within each subject. 

The objective of this work was to outline the LMEM approach to analyse the root mean 
square (RMS) value of HD-sEMG signals in an application regarding healthy and subjects with DPN. 
The data consist of two groups of subjects: (i) healthy subjects (control) and (ii) subjects with DPN. 
Due to physiological alterations occasioned by the DPN like premature fatigue, the RMS value is 
expected to reflect such differences between healthy and DPN individuals. Thus, the research 
questions we ask are: (i) Do RMS values change over time? (ii) Do RMS values vary between the two 
groups? (iii) Do RMS values differ in the rate of change between the two groups? (iv) Is it necessary 
to account for random-effects to model such data? (v) Does the inclusion of alternative correlation 
structures increase the model adequacy? Furthermore, (vi) Is it necessary to adopt complex variance 
structures? 
 
2 Methods 
 
2.1 Subjects and Experimental Protocol 
 
Data were collected from adults of both genders, 12 healthy subjects (Control) and 11 subjects with 
DPN. The mean age was 49.8 years (SD 5.11) for the healthy subjects and 55.7 for the DPN group 
(SD 7.01). Participants were instructed to be seated, with the hip and knee flexed at 90° angle and the 
ankle in a neutral position at a 90° angle to the leg. The participants performed three maximum 
voluntary isometric contractions of ankle dorsiflexion with a 5-s duration, with a 2-minute rest 
interval between the tests. The highest value of the three contractions was used as a reference for a 
submaximal voluntary isometric contraction of ankle dorsiflexion in 50% of the maximum value. The 
contractions were maintained for 30-s. 
 The HD-sEMG signals were recorded in the tibialis anterior muscle. Before attaching the 
electrode array, the skin was cleaned with alcohol and gauze. It was used a two-dimensional array of 
64 electrodes (ELSCH064NM4, OT Bioelettronica, Turin, Italy) with 13 rows and 5 columns with 1-
mm diameter and inter-electrode distance of 4 mm. Of those, it was used a subset of 9 rows and 4 
columns in a differential lead, resulting in 32 signals (Fig. 1). The signals were sampled at 2 kHz. The 
electrode array was fixed using fixation adhesive, and the cavities of the electrode were filled with 
conductive cream (CC1, OT Bioelettronica, Turin, Italy). The reference electrode was placed on the 
tuberosity of the tibia. The details of the experimental setup and the acquisition system have been 
previously reported in [29, 30].  
 
Fig. 1 Sampling in a differential configuration column-wise. There are nine rows (R) and four columns (C) 
resulting in 32 signals [(R-1) x C] 
 
 

The signals were digitally filtered in MATLAB 2018 (MathWorks, MA, USA) by an eight 
order Butterworth bandpass filter with a frequency range of 10-400 Hz. A second-order notch filter 
was also used, with frequency of 60 Hz and the next five harmonics. The window size for signal 
processing was 0.5-s without overlap. The individuals were sampled for 30 s, and the first 2-s and the 
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 5 

last 3-s of the signal were discarded, resulting in a signal with 25-s duration. Thus, we have 50-time 
points for each subject. This study was approved by the Human Research Ethics committee of the 
Federal University of Santa Catarina (Protocol Number: 2.390.994), and all participants signed the 
informed consent before participation. 
  
2.2 Model Specification and Analysis 
 
Initially, we examined which was the kind of relationship (i.e., linear, quadratic, cubic) between the 
response variable and subjects. Fig. 2 reproduces the plots for all 23 individuals in the study, which 
indicates that a linear pattern is applicable to model how RMS value varies over time. 
 
Fig. 2 Individual trajectories with fitted regression lines for the root mean square variable (F = Female, M = 
Male) 
 
 
From Fig. 2, there is evidence of heterogeneity in the intercepts and slopes between the individuals, 
since the response variable starts at different values for different subjects and it appears to have 
different rates of change as well. Therefore, we tested the inclusion of a random intercept and a 
random slope for the subjects. After deciding for a linear trajectory, we followed the top-down 
strategy [31–33]. The first step of this approach is to model a saturated parameter specification for the 
fixed effects; in this case including time, group and group-by-time interaction (i.e., whether the 
groups follow the same trend over time), resulting in Model A, as follows  
 

Model A 
  

, 
 
where  denotes the value of outcome measure at time j for individual i;  is a binary variable 
taking the value 1 if the ith subject belongs to the DPN group;  is the average intercept and  is the 
average slope for subjects in the control group;  is the average difference in the intercept between 
subjects in the DPN group compared to subjects in the control group, and  is the average difference 
in slope between subjects in the DPN group when compared to subjects in the control group. Finally, 
 denotes the residual errors. 

 Following the top-down strategy for model selection, the next step is to model between 
subjects’ variation, as well as the correlation between measures at different times on the same subject. 
Therefore, we started by including a random intercept ( ) to Model A, resulting in Model B, given 
by 
 

Model B 
  

, , 
 

where  accounts for the random intercept (i.e., mean differences across subjects). By adding the 
random intercept, each person gets his or her deviation from the fixed intercept. With this model, the 
outcome variance, or error, is partitioned in two: the between-person mean differences ( ) and the 
within-person deviation ( ).  
 The intraclass correlation coefficient (ICC) is often used to assess the necessity of including a 
random intercept. The ICC is an indicator of the amount of correlation in the data, the proportion of 
between-person variance to the sum of the between and within-subject variances, calculated as 
 

, 
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 6 

and it ranges from zero to one, where zero represents no correlation between subjects and one 
represents a perfect correlation between subjects. 

Adding only a random intercept implies that the residuals from the same person would have a 
constant correlation over time. This assumption may not be the case for repeated measures data, given 
that some individuals may change the RMS values at a higher or lower rate over time. Hence, the 
model can be further improved by adding a random effect of time in the model ( . In this case, 
each individual is allowed to have his or her time slope deviation, resulting in Model C, that can be 
written as 
 

 
 

 

, ,  

 
where  is the vector of random-effects, assumed independent for different i;  is the within-group 
error, assumed independent for different i, j and independent of the random-effects. Residuals from 

 and  are assumed to be normally distributed with variances  and , respectively. The 
random intercept and random slope are often correlated; therefore, the model also estimates one more 
parameter, the correlation between and , denoted by . 

After the inclusion of the random-effects, the assumptions of homoscedastic within-group 
errors have to be verified. If such an assumption does not hold, the LMEM can be extended by fitting 
models with different variance structures, such as different variances for each level of a stratification 
variable [22]. Furthermore, under the appropriate model, residuals must behave like uncorrelated 
noise. If the residuals do not follow this requirement, model predictions may be incorrect [22]. In this 
case, after fitting the models with random-effects, some degree of correlation among the residuals 
may remain, suggesting that the model did not fully account for the within-individual dependencies in 
the data. To solve this, LMEM can be extended by combining random-effects with time-specific 
patterns of correlations.  

In the model selection process, we observed the empirical autocorrelation function for the 
residuals. If in the autocorrelation function, the residuals were significantly different from zero, 
additional correlation structures were taken into account to model the within-individual correlation 
and thus ensure accurate tests of the fixed effects [31]. 

In this work, we tested the models for three of the most commonly used alternative 
correlation structures for repeated measures and longitudinal studies, which are: unstructured (UN), 
first-order autoregressive (AR1) and first-order autoregressive-moving average (ARMA (1,1)). The 
UN makes no assumptions about the residual covariance, estimating the covariance directly from the 
data. Therefore, it is the most complex covariance structure and can be used as a baseline to compare 
to other simpler covariance structures. The AR1 is used for stronger correlation among adjacent 
measurements and can be extended to the ARMA structure model by including one more parameter. 
In the ARMA model, the correlation between observations declines at different rates compared to the 
AR structure. An example of UN, AR1 and ARMA (1,1) with four repeated measures is shown 
below. 
 

AR1 =   

 

ARMA (1,1) =  
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UN = 

where 𝜌𝜌 is the autoregressive parameter, 𝜆𝜆 is the moving average component and  the residual 
variance. A glossary of the terms used in all models presented is listed in Table 1. 

Table 1 Glossary of symbols for the LMEMs 
Symbol Definition 

Value of outcome measures at time j for subject i. 
Average intercept across all subjects from the control group. 
Average slope across all subjects from the control group. 
Average difference in the intercept between subjects in the DPN group compared to subjects 
in the control group. 
Binary variable taking the value 1 if the ith subject belongs to the DPN group. 
Average difference in slope between subjects in the DPN group when compared to subjects 
in the control group. 
Timing of the outcome measure on the ith subject at the jth measurement. 
Difference between the population-averaged intercept and the intercept for individual i. 
Difference between the population-averaged slope and the slope for individual i. 
Residual error in outcome measures at time j for subject i. 
Variance of residuals . 
Variance of the random intercept. 
Variance of the random slope. 
Correlation between the random intercept and the random slope. 

𝜌𝜌 Autoregressive parameter. 
𝜆𝜆 Moving average component. 

In the model selection process, we compared the models through the Akaike’s information criterion 
(AIC) [34] and the Bayesian information criterion (BIC) [35]. Both AIC and BIC decrease with the 
goodness of fit.  

As models were nested, we used a likelihood ratio test (LRT), where a reduced model is 
nested within a larger model. The two models differ only by the removal of variables from the more 
complex model. Using the p-value resulted from the LRT we decide if the inclusion of a specific term 
is reasonable (i.e., if the p-value is significant, the variable in question improves the model fit and 
must be accounted for in the model). The LRT takes -2 times the difference in log-likelihoods which 
follows a chi-squared distribution with degrees of freedom equal to the difference in the number of 
estimated parameters between the models [22].  

We considered here the restricted maximum likelihood (REML) method to estimate the 
model parameters, which was achieved through the nlme package [36] in the R software [37]. The 
considered significance level was 0.05. The validity of the models was examined using visual 
inspection of the model residuals.  

3 Results 

To answer whether it was necessary to account for the random-effects to model the data, we initially 
compared a random intercept model (Model B) and random intercept and slope model (Model C) to 
the model considering only fixed effects (Model A). Model C was further tested with Model C1, which 
considers random effects in intercept and slope; however, without the intercept and slope correlation. 
The results are listed in Table 2. 

Table 2  Evaluation indices of each LMEM for the RMS value 
Model AIC BIC Test LRT p-value 
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A 9840 9866 – – – 
B 7244 7274 A vs B 2598 < .01 
C 7050 7091 B vs C 197 < .01 

C1 7051 7087 C vs C1 3.12 0.07 
 
To assess the necessity of a random intercept, Model A was compared to Model B. The ICC of 0.91 
indicates that the between-subjects’ variability in the intercept needs to be accounted for in the model; 
thus, Model B was selected. This result is confirmed by the lower AIC and BIC for Model B when 
compared to Model A. As Model A is nested within Model B, this result was further confirmed by the 
result of the LRT, 𝜒𝜒2 (1) = 2598 (p < .01). 

The necessity of including a random slope was performed by the comparison of Model B with 
Model C. Model C was preferred, due to the lower AIC and BIC values. As model B is nested within 
Model C, the LRT was also applied, resulting in a significant p-value, 𝜒𝜒2 (2) = 197 (p < .01). Thus, 
there is evidence for significant between-subjects’ variability in the intercept. Also, in the rate of 
change of RMS value over time, as represented by Model C. Therefore, it was necessary to include 
random-effects to model such data, as hypothesized by item (iv) of the introduction section.  

In Model C, the correlation between the random intercept and random slope was positive 
( = 0.39), indicating that individuals with higher levels of intercept also have higher rates of 
change. We tested the necessity of adding a parameter to control this feature by fitting a model that 
constrained the correlation between the random effects ( ) to zero (named Model C1). Thus, 
Model C1 is nested within Model C (corresponding to  = 0). Table 2 shows that both AIC and BIC 
values disagree in their results because AIC is smaller for Model C whereas BIC is smaller for Model 
C1. The LRT favours the simpler model, Model C1, 𝜒𝜒2 (1) = 3.12 (p = 0.07). Therefore, we chose the 
most parsimonious model (Model C1) to our subsequent analysis.  

We assessed the empirical autocorrelations to investigate the within-group correlation. We 
observed significant empirical autocorrelation in the first few lags, suggesting that a correlation 
structure must be accounted to model time-series dependence [38]. Therefore, we compared three 
standard options of alternative correlation structures. The results are presented in Table 3. 
 
Table 3  Evaluation indices of alternative correlation structures for the RMS value models 

Model AIC BIC Test LRT p-value 
C1 7051 7087 – – – 

AR1 6889 6929 C1 vs AR1 164 < .01 
ARMA (1,1) 6881 6927 AR1 vs ARMA (1,1) 9.23 < .01 

ARMAH (1,1) 6440 6495 ARMA (1,1) vs ARMAH 
(1,1) 

445 < .01 

 
The unstructured (UN) model was not estimated due to a large number of parameters which caused 
convergence problems. Thus, we have assessed the correlation structures in ascending order (i.e., 
from the least complex to the most complex model). The first comparison is between Model C1 with a 
first-order autoregressive correlation structure (Model AR1). Model AR1 estimates the random-effects 
of intercept and slope, as well as an autoregressive parameter (𝜌𝜌), estimated as 0.38. The smaller 
values of AIC and BIC confirm that Model AR1 is a substantially better fit of the data than the 
independent errors model. Since Model C1 is nested within Model AR1 (corresponding to 𝜌𝜌 = 0), the 
LRT was also used, corroborating this result, 𝜒𝜒2 (1) = 164 (p < .01).  

The comparison of Model AR1 with Model ARMA (1,1) was then performed. There were 
smaller AIC and BIC values for the ARMA (1,1). Model AR1 is nested within Model ARMA (1,1) 
(corresponding to 𝜆𝜆 = 0), so the LRT was performed and confirmed this result, 𝜒𝜒2 (1) = 9.23 (p < .01). 
Hence, we shall select the ARMA (1,1) model over the AR1 model, confirming that the inclusion of 
alternative correlation structures increases the model adequacy, as hypothesized by item (v). 

To assess the model adequacy, we checked Model ARMA (1,1) residuals and found that the 
variability presented a reasonably homogeneous pattern through time, indicating that there was no 
need to include more complex variance structures for the covariate time. However, we observed two 
problems: (i) the variability of the residuals was higher among the DPN group than among the control 
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group and (ii) a pattern of increasing variability for the within-group errors. Therefore, we used a 
more general model to account different variances for within-group errors [22].  

We specified a heteroscedastic model (Model ARMAH (1,1)) corresponding to a variance 
covariate given by the fitted values and the group variable, simultaneously. Such variance model is 
represented by 

 

 
 
where  is a vector of fitted values,  is a vector of variance parameters and  is the group variable. 
Thus, the variance changes with a power of the absolute fitted values, but at different rates for each 
group. 

Model ARMAH (1,1) showed better model adequacy, according to the AIC and BIC, as well 
as the LRT, 𝜒𝜒2 (2) = 445 (p < .01). The residuals analysis also indicates a better fit, with similar 
variances for each group and with a homogeneous pattern of variability for the standardised residuals, 
demonstrating that the chosen variance model successfully described the within-group variance. 
Therefore, showing that it is necessary to adopt complex variance structures for the data, answering 
question (vi). The parameters of the final RMS value model are presented in Table 4. 
 
Table 4  Parameter estimates for the Model ARMAH (1,1) for the RMS value 
Model Parameter Estimate (95% CI) p-value 

Fixed Effects 
Intercept RMS value for the Control 
group ( ) 

43.88 (34.89 – 52.88) <.01 

Change in RMS value for a unit 
increase in time ( ) 

0.07 (-0.08 – 0.24) 0.33 

Difference in the intercept for the 
DPN group ( ) 

-11.06 (-24.87 – 2.75) 0.11 

Difference in change in the RMS 
value for a unit increase in time ( ) 

0.24 (0.04 – 0.48) 0.04 

Random Effects 
SD of between subjects’ intercept 
( ) 

15.82 (11.64 – 21.51) 

SD of between subjects’ slope ( ) 0.27 (0.17 – 0.41) 
Autoregressive parameter (𝜌𝜌) 0.25 (0.09 – 0.41) 
Moving average component (𝜆𝜆) 0.11 (-0.04 – 0.27) 
SD of residual errors ( ) 0.23 (0.16 – 0.32) 
Variance function Control (  0.71 (0.61 – 0.80) 
Variance function DPN (  0.86 (0.77 – 0.96) 
 
From the final model (ARMAH (1,1)), we observed that there is a non-significant increase in the 
RMS values for the control group (p = 0.33). As our research question involves investigating different 
rates of change for the RMS value among the two groups, the model included an interaction term 
( ). The interaction term is marginally significant (p = 0.04). The interaction term indicates that the 
RMS values for the DPN group increase at a rate of 0.24 units higher than the control group [95 % 
confidence interval (CI) 0.04 – 0.48], thereby answering question (i), (ii) and (iii) from introduction; 
showing that (i) the RMS values change over time, but only for the DPN group (ii), therefore having a 
different rate of change across the two groups (iii).  

The estimated population mean RMS value at baseline for the control group is 43.88 (95% 
CI: 34.89 – 52.88) and the estimated population mean for the DPN group is 11.06 (95% CI: -24.87 – 
2.75) lower for the DPN group compared to the control group. This result is non-significant (p = 
0.11). As for the random-effects, there was significant individual heterogeneity in initial levels (i.e., 
intercepts) and slopes. The estimated standard deviation of the random intercept is 15.82, and the 
estimated standard deviation of the random slope is 0.27.  
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Fig. 3 shows the final model, with the observed values (dots), the estimated curves for each 
subject (grey line) and the estimated overall mean for the two groups (red line). 

Fig. 3 Observed RMS values (dots), individual predictions (black line) and predictions for the group value (red) 
over the observed range of time (0 – 25 s) for the two groups. Healthy (Con) and diabetic peripheral neuropathy 
(DPN) 

The adequacy of Model ARMAH (1,1) was verified through residuals analysis. The residuals did not 
reveal any systematic pattern for the covariate time. Furthermore, the normal probability plot of the 
residuals (Fig. 4) suggests that the residuals follow a normal distribution, except for a long tail at the 
upper end. As the residuals are symmetrically distributed around zero, and the errors present heavier 
tails than expected under normality, a possible solution is to model the errors with a heavier-tailed 
distribution e.g., a Student’s t distribution. However, this will not lead to inflated type I error rates, 
given that under normality assumptions, the heavier tails lead to more conservative tests for the fixed 
effects [22].  

Fig. 4 A normal plot of the residuals for the ARMAH (1,1) model 

4 Discussion 

This paper was aimed to provide a description of LMEM and its use in a real-world 
application of HD-sEMG data analysis. The results showed a significant increase in the RMS value 
during the isometric contraction for the DPN group. This positive trend in the RMS value in EMG 
research has been named myoelectric manifestation of muscle fatigue because the trend occurs before 
the subjects can sustain the desired force [9]. Thus, as subjects with DPN are known to experience 
complications such as muscle weakness and higher fatigability [39], the positive linear trend in the 
RMS value observed only for the DPN group may be associated with a display of premature fatigue 
for these subjects. However, as the HD-sEMG indicate a global measure of the motor unit activity, 
confounding factors such as volume conductor properties may affect the interpretation of the results. 
Consequently, the change in the amplitude variables cannot be solely attributed to the changes in the 
muscle fibre conduction velocity, as they are also related to recruitment and firing rate properties of a 
motor unit. Therefore, more HD-sEMG parameters can be used to improve the characterisation of 
muscle fatigue [40]. 

LMEM provides several advantages over traditional methods for the analysis of repeated 
measures. One of the most important is the use of all available data. Often, some of the HD-sEMG 
recordings are too noisy, requiring the subject to be excluded for the analysis if using traditional 
repeated-measures ANOVA. On the contrary, LMEM can use all available data, also treating time as 
a continuous variable instead of a discrete variable, resulting in increased statistical power to detect 
growth effects [41]. 

Like any statistical analysis, the LMEM depends on the fulfilment of certain assumptions. 
Contrary to standard approaches, where the assumptions are too strong to hold in realistic 
applications, LMEM allows the use of realistic yet parsimonious assumptions for repeated measures 
experiments. More specifically, it provides the researcher with a wide range of correlation and 
variance structures to choose the best-fitting one and then obtain additional information regarding the 
observed data. It is also straightforward to include time-dependent or time-independent covariates in 
the LMEM, as long as the sample size is large enough, which could be used to investigate important 
research questions, such as the influence of age, gender, among other factors [22].  

In this work, we fitted several models to the observed data in ascending order (i.e., from the 
least complex to the most complex model), getting the optimal yet parsimonious model to describe the 
data. We observed that including the random-effects of intercept and slope increased the model 
adequacy significantly. However, even after specifying the random-effects, there was still a within-
group serial correlation present in our data. Therefore, we considered in the model some commonly 
used correlation structures available in the nlme package [36].  
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We adopted a model with ARMA (1,1) correlation structure to our data, which resulted in 
non-significant autocorrelations in the residual analysis, as expected under the proper correlation 
model. Moreover, we had to include a more complex variance structure (i.e., a larger variance for the 
DPN group), resulting in Model ARMAH (1,1). We used a linear function to describe the data; 
however, if necessary, it would be straightforward to include quadratic, cubic, or higher-order 
polynomials to model the HD-sEMG variables. These steps elucidate the flexibility of working with 
LMEM. Such a detailed description of the data would be impossible when working with traditional 
repeated-measures ANOVA. Moreover, by using all available data, we did not have to use an 
averaging procedure to reduce the data to a single measurement, which would undoubtedly result in 
loss of information.  

Our interest in the optimal random-effects and correlation structure is not only to obtain a 
reasonable model to the data. The estimates of the random-effects itself are of interest, given that they 
provide estimates of heterogeneity that might be useful for several purposes, such as reliability 
analysis [42] and also to provide insights into physiological phenomena. For instance, in this work, 
we had a larger variance for the DPN group, which might be a result of people within different stages 
of the DPN condition. Using standard statistical analysis, it would not be possible to quantify a 
different pattern of variance for the DPN group. 

The high flexibility offered by the LMEM comes at a cost. While widely-used statistical 
software packages such as SAS (SAS Institute, Cary, NC, USA), SPSS (SPSS Inc., Chicago, IL, 
USA) and R (R Core Team, Vienna, AT) have LMEM readily available to applied researchers, there 
is no standard approach to the LMEM construction. Thus, several decision-making steps must be 
made by the investigator regarding model development and specification, requiring a deeper 
understanding of the data and the experimental design. In this case, researchers can look for recent 
recommendations for model building strategies [24]. Besides, LMEM has more computational 
complexity relative to standard techniques, which can result in convergence problems, such as the one 
we encountered when trying to fit an unstructured correlation matrix to our data, which occurred 
because the unstructured model requires the estimation of a large number of parameters. 

The model adequacy was verified through residual analysis. We observed that there were no 
substantial problems with the assumptions of normality and homoscedasticity of the residuals. 
However, the residuals showed slightly heavier tails. Although not approached in this work, LMEM 
can be easily extended to generalised linear mixed models to use in the case of non-Gaussian error 
distributions [22]. In our case, the heavy tails could be fixed by adopting another distribution of the 
within-group errors, such as the Students t or generalized t distributions. 

 
5 Conclusion 
 
In this paper, we outlined the power and flexibility of using LMEM to analyse HD-sEMG signals. We 
observed that for the RMS value, it was necessary to include not only the random intercept but also a 
random effect in the slope. Moreover, we investigated several alternative correlation structures as well 
as more complex variance models. The best fit was found when adopting an ARMA (1,1) correlation 
matrix together with a heteroscedastic model for the variance, with an increasing variance for the 
fitted values, more accentuated for the DPN group. Such detailed results would not be possible to 
obtain by the usual repeated-measures ANOVA. Thus, in conclusion, we believe that adopting 
LMEM to repeated measures such as electromyography can provide additional information from the 
data, such as the possibility to investigate alternative correlation structures, and therefore provide new 
insights into HD-sEMG signals at group and individual levels. 
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