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The Relation between Soil Water Repellency and Water 
Content Can Be Predicted by Vis-NIR Spectroscopy

Soil Physics & Hydrology

The severity of soil water repellency (SWR) varies nonlinearly with water 
content (w), and it is extremely laborious to obtain complete SWR-w 
curves, which are needed to predict the occurrence of SWR. In this study, 
we combined a three-parameter moisture-dependent SWR (MD-SWR) 
model with visible near-infrared spectroscopy (vis-NIRS) as a fast and novel 
method to estimate the SWR-w curve. The method was applied to a data 
set of SWR-w curves determined for 71 soil samples (organic carbon [OC] 
content: 0.021–0.147 kg kg-1, clay: 0.000–0.520 kg kg-1). The degree of SWR 
was measured on air-dried soil samples (SWRAD) and on soil samples with 
increasing water contents until the water content at which the soils became 
wettable (wNON) was reached. The three-parameter MD-SWR model was 
fitted to the measured SWR-w curves between the water content at air-
dry conditions (wAD) and wNON. The total SWR was then calculated as the 
trapezoidal integrated area underneath the SWR-w curves (SWRAREA). Air-
dried soil samples were scanned with a vis-NIR spectrometer. Each of the 
three MD-SWR model parameters was correlated to vis-NIRS spectra using 
partial least squares regression. The SWRAREA was predicted using two 
approaches. For Approach I, the SWRAREA calculated from the MD-SWR 
model was predicted with a single vis-NIRS model. Approach II utilized 
predicted MD-SWR model parameter values to obtain vis-NIRS-predicted 
SWR-w curves between wAD and wNON, and the SWRAREA was calculated 
from these curves. Results show that vis-NIRS can predict the shape of the 
SWR-w curves as well as the SWRAREA (R2 = 0.58 and 0.56 for Approach I 
and II, respectively) across a highly variable dataset from a single vis-NIRS 
scanning and one SWR measurement at air-dried conditions.

Abbreviations: iPLSR, interval partial least squares regression; OC, organic carbon; PLSR, 
partial least squares regression; PSD, particle-size distribution; RMSEC, root mean square 
error of calibration; RMSECV, root mean square error of cross-validation; RPIQ, ratio 
of performance to interquartile range; SNV, standard normal variate; SWR, soil water 
repellency; vis-NIRS, visible near-infrared spectroscopy.

Soil water repellency (SWR) is a soil property that degrades soil functions 
(de Jonge et al., 2009) and reduces agricultural production (Franco et al., 
1995; Müller et al., 2010). The degradation of soil functions includes re-

duced infiltration (Leighton-Boyce et al., 2007; Müller et al., 2010), altered filter-
ing capacity of pesticides and nutrients (Dekker and Ritsema, 1995; de Jonge et 
al., 2009; Müller et al., 2010; Müller et al., 2014), increased overland flow and 
erosion (Osborn et al., 1964; Leighton-Boyce et al., 2007), and increased finger 
flow (Dekker and Ritsema, 1995; de Jonge et al., 2009).

Soils in New Zealand have a high propensity to develop water-repellent con-
ditions. Two surveys under pastoral land use across the North Island and South 
Island found that 98% (Deurer et al., 2011) and 92% (Hermansen et al., 2019) 
of the collected soil samples exhibited the potential to develop water repellency. 
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•	SWR-w relations were highly variable 
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•	A three-parameter SWR-w model 
described well the measured SWR-w 
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under the SWR-w curve by vis-NIRS 
are presented.

Soil Sci. Soc. Am. J. 83:1616–1627 
doi:10.2136/sssaj2019.03.0092 
Received 30 Mar. 2019.  
Accepted 14 Aug. 2019.  
*Corresponding author (cecilie.hermansen@agro.au.dk). 
© Soil Science Society of America. This is an open access article distributed under the CC BY-NC-ND 
license (http://creativecommons.org/licenses/by-nc-nd/4.0/)



www.soils.org/publications/sssaj 1617

Soil Physics & Hydrology

However, soils are not always water-repellent, and the severity 
of SWR varies as a nonlinear function of soil-water content (w). 
Soils can become hydrophobic within a confined range of w, 
delimited by an upper critical w (wNON), above which the soil 
again becomes hydrophilic (de Jonge et al., 2007; Kawamoto et 
al., 2007; Regalado et al., 2008). Soil organic matter covering 
mineral particles and aggregates can reorient and expose either 
hydrophilic or hydrophobic ends depending on the w, which 
changes the surface tension of the soil and causes shifts between 
hydrophobic and hydrophilic conditions (de Jonge et al., 1999; 
Doerr et al., 2000; Roy and McGill, 2000; Graber et al., 2009). 
Soil organic matter content might be the one soil property that 
has the greatest impact on the SWR of New Zealand pastoral 
soil, and a linear relation between wNON and organic carbon 
(OC) has been suggested as a guide for irrigation practices and 
to prevent the occurrence of SWR and associated degradation of 
soil functions (Hermansen et al., 2019).

The severity of SWR can be described by a SWR character-
istic curve, with SWR as a function of gravimetric (de Jonge et al., 
2007; Regalado et al., 2008; Regalado and Ritter, 2009b) or volu-
metric w (Regalado and Ritter, 2009a; Karunarathna et al., 2010a), 
or in terms of pF values (de Jonge et al., 2007; Karunarathna et al., 
2010b). The area underneath the SWR-w curve represents the to-
tal SWR of a soil (SWRAREA). The molarity of an ethanol droplet 
(MED) test assesses the degree of SWR as the liquid surface ten-
sion of an ethanol droplet, which infiltrates into a soil in 5 s (King, 
1981; de Jonge et al., 1999; Kawamoto et al., 2007). The SWR-w 
curve may start from 0 kg kg-1 w in the oven-dry (de Jonge et al., 
1999; de Jonge et al., 2007) or air-dry state (wAD) (Karunarathna 
et al., 2010a; Karunarathna et al., 2010b) and continue until the 
soil becomes hydrophilic at wNON. The dry end of the SWR-w 
curve obtained from oven-drying can indicate whether the sever-
ity of SWR might be affected by heating depending on the OC 
quality (de Jonge et al., 1999).

The shape of the curve for hydrophobic soils is nonlinear, 
and the SWR-w curve is either unimodal or bimodal (de Jonge 
et al., 1999; Regalado et al., 2008). Bimodal SWR-w curves are 
hydrophobic at oven-dry conditions, but with increasing w the 
severity of SWR decreases to a local minimum at which the soil 
maintains some hydrophobicity or becomes temporarily hydro-
philic (de Jonge et al., 1999; de Jonge et al., 2007). After the first 
peak, the severity of SWR increases once more until it reaches 
a local maximum after which it decreases toward wNON. The 
global maximum might be located in either of the two peaks 
(Regalado et al., 2008), but most soils exhibit the highest sever-
ity within the second peak, thus associated with the higher w. 
Soils with a unimodal SWR-w curve are either hydrophobic in 
oven-dry conditions or hydrophilic, after which they become hy-
drophobic as w increases before or after wAD.

The conventional laboratory method for obtaining SWR-w 
curves is extremely time-consuming, but might nevertheless con-
tain implicit errors in wNON and the estimation of SWRAREA 
because the severity of SWR is measured in discrete w steps 
(Regalado et al., 2008). Different mathematical models have 

been proposed to provide a continuous fit to the SWR-w curve 
(Bachmann et al., 2007; Regalado and Ritter, 2009b; Regalado 
and Ritter, 2009a; Karunarathna et al., 2010a; Karunarathna et 
al., 2010b). Karunarathna et al. (2010a) developed a model for 
predicting the SWR-w curves for 19 Japanese and Danish soil 
samples with OC contents ranging from 0.011 to 0.141 kg kg-1. 
This model has three fitting parameters, including the maximum 
degree of SWR (SWRMAX), the w at SWRMAX (wMAX), and 
the wNON. Within that study, all three fitting parameters could 
be described by the OC content through a logarithmic func-
tion. Some other studies have found that wMAX, and wNON can 
be described by a linear correlation to OC content (de Jonge et 
al., 2007; Kawamoto et al., 2007; Regalado et al., 2008). The 
Karunarathna et al. (2010a) model has furthermore two fixed pa-
rameters, including the SWR at air-dried conditions (SWRAD) 
and the corresponding w (wAD), which are both directly related 
to the shape of the SWR-w curve. Another study suggested a two-
region model to describe the SWR-w curve shape on Japanese soil 
samples with OC contents between 0.006 and 0.141 kg kg-1 and 
clay contents between 0.130 and 0.233 kg kg-1 (Karunarathna et 
al., 2010b). By plotting the severity of SWR as a function of soil 
matric potential, they observed a linear increase in SWR between 
wAD and wMAX (defined as region 1) following a linear decrease 
in SWR from wMAX to wNON (defined as region 2). Thus, for 
each region they correlated the slope and intercept of the SWR-w 
curve to OC content, making it possible to obtain the SWR-w 
curve by estimating these four parameters.

Visible near-infrared spectroscopy (vis-NIRS) is a fast 
method used to predict a wide range of basic and functional soil 
properties (Stenberg et al., 2010; Katuwal et al., 2018; Knadel et 
al., 2018). Throughout the visible range (400–700 nm) the spec-
trum is affected by overlapping absorptions from iron oxides and 
organic matter, whereas the near-infrared range (700–2500 nm) 
is dominated by overtones and combinations of OH, CH, CO, 
NH, and Al-OH originating from fundamental vibrations in the 
mid-infrared range (Hunt, 1977; Clark, 1999; Chang et al., 2001). 
Thus, vis-NIRS spectra contain direct spectral responses from soil 
moisture, clay and OC contents and quality. It is well document-
ed that vis-NIRS can predict the OC content of soils (Chang et al., 
2001; Stenberg et al., 2010; Knadel et al., 2012; Peng et al., 2014; 
Hermansen et al., 2016). However, soil properties that do not give 
a direct spectral response have also been successfully predicted us-
ing vis-NIRS. For example, Kim et al. (2014) predicted the degree 
of SWR and water drop penetration time on New Zealand soil 
samples from the North Island dried at 65°C. Further, Knadel et 
al. (2016) predicted the degree of SWR for Danish soil samples 
collected across a homogeneous agricultural field at air-dry condi-
tions and after drying at 60 and 105°C, respectively. However, it 
would be advantageous, if the entire SWR-w curve could be ob-
tained from vis-NIRS spectra. Hermansen et al. (2017) predicted 
the continuous particle-size distribution (PSD) curve by fitting 
two PSD functions to measured data after which the fitting pa-
rameters of each PSD function were predicted with vis-NIRS for 
431 Danish soil samples covering USDA textural classes between 
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sand and silty clay. The two PSD functions had two and three 
fitting parameters, respectively, and both functions performed 
well in combination with vis-NIRS. A similar approach has 
been applied in other studies to predict the soil-water retention 
curve (Babaeian et al., 2015; Pittaki-Chrysodonta et al., 2018). 
However, no studies have yet examined the possibility of adopt-
ing this approach to obtain the SWR-w curve function.

Since the vis-NIRS spectral range contains responses from 
various soil components, a variable selection method can be ap-
plied to leave out less relevant variables from the spectrum. This 
can reduce model complexity (Zou et al., 2010) and indicate 
which spectral regions are most important for predicting the dif-
ferent soil properties. The variable selection method of interval 
partial least squares regression (iPLSR) has previously been ap-
plied successfully for the selection of important spectral regions 
for some soil parameters related to the PSD curve (Hermansen 
et al., 2017) and soil specific surface area (Knadel et al., 2018).

For this study, we examined the ability of vis-NIRS to 
predict the three fitting parameters of the Karunarathna et al. 
(2010a) function (SWRMAX, wMAX, and wNON) to yield a vis-
NIRS prediction of the continuous SWR-w curve between wAD 
and wNON. We chose the Karunarathna et al. (2010a) function, 
since the number of fitting parameters for vis-NIRS prediction 
should be limited to avoid error propagation (Hermansen et al., 
2017). Also, a successful vis-NIRS prediction requires a direct or 
indirect response in the spectrum, and each fitting parameter in 
this function has previously been related to spectrally active OC.

Thus, the objectives were to obtain the SWR-w curve from 
one SWR measurement and one vis-NIRS scanning at air-dry 
conditions, by (i) fitting the Karunarathna et al. (2010a) func-
tion to SWR-w curves for New Zealand soil samples between 
wAD and wNON, (ii) utilizing the variable selection method of 
interval partial least squares (iPLSR) to find important spectral 
regions for the severity of SWR throughout the vis-NIRS spec-
tral range, (iii) predicting the three fitting parameters (SWRMAX, 
wMAX, and wNON) of the Karunarathna et al. (2010a) function 
with vis-NIRS, (iv) applying the vis-NIRS-predicted fitting 
parameters and measured SWR at air-dried conditions to yield 
SWR-w curves, and (v) predicting the SWRAREA with vis-NIRS.

MATERIALS AND METHODS
Sites and Soil Sampling

Between 5 and 17 Jan. 2012, 78 soil samples were collected 
from 26 permanent pastures, which were spread across the domi-
nant soil orders under pasture in New Zealand’s South Island: 
Brown (B), Pallic (P), Podzol (Z) and Recent (R) soils (Hewitt, 
2010) plus the soil order Semiarid (S), which is prevalent in 
the Otago region (Fig. 1). These soil orders, classified accord-
ing to New Zealand’s soil classification system, correspond to 
Cambisols, Luvisols, Podzols, Fluvisols and Arenosols in the clas-
sification of the World Reference Base for Soil Resources (IUSS 
Working Group WRB, 2006), respectively. Site selection was 
stratified within each of the soil orders using three vectorized 
summer rainfall classes: L ≤ 150 mm (low), M = 150 to 350 mm 

(medium), and H ≥ 350 mm (high) based on rainfall data for the 
30-yr period 1971 to 2000, assuming that summer rainfall influ-
ences the occurrence of SWR. Details of the site selection can be 
found in Hermansen et al. (2019). At each site, three bulk soil 
samples from the top 0- to 5-cm mineral soil were taken along 
a transect with samples approximately 10 m apart. The soil was 
sieved to <2 mm, air-dried, and subsamples were analyzed for 
texture on a Malvern laser sizer and OC content using a Leco 
Truspec instrument (Blakemore et al., 1987).

Six samples of the 78 samples were hydrophilic (three 
Semiarid soil samples and three Recent soil samples from two lo-
cations) (Hermansen et al., 2019). Further, one Podzol soil sample 
was extreme in OC content at 0.217 kg kg-1 and was regarded as 
an outlier as it would otherwise highly influence vis-NIRS predic-
tions. Thus, 71 samples from 24 locations were used in this study.

Soil Water Repellency Measurements
Prior to SWR measurements, tap water was pipetted onto air-

dried soil samples to reach specific soil water contents in the w inter-
val from wAD to wNON. After addition of water, the soil was gently 
mixed and left in sealed plastic bags for at least 2 wk to equilibrate 
in the dark in a temperature controlled laboratory (20°C). The 

Fig. 1. Twenty-six sampling sites across the South Island of New Zea-
land. The sampling sites represent five soil orders: Brown (B), Pallic 
(P), Podzol (Z), Recent (R), and Semiarid (S) and were partitioned into 
three summer rainfall classes: L ≤ 150 mm (low), M = 150 to 350 mm 
(medium), H ≥ 350 mm (high). SHW, state highway networks.
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SWR was measured following the protocol for the MED test (de 
Jonge et al., 1999; Roy and McGill, 2002; Kawamoto et al., 2007; 
Hermansen et al., 2019). We prepared ethanol and deionized water 
solutions, with the concentration of ethanol ranging from 0.01 to 
0.80 m3 m-3 in steps of 0.01 m3 m-3. We pipetted 60 mL of etha-
nol solution onto a plain soil surface, and the degree of SWR was 
determined as the highest ethanol concentration that did not infil-
trate within 5 s, after which this concentration was translated to the 
liquid surface tension of ethanol (g) following the equation of Roy 
and McGill (2002): g = 61.05 − 14.75 ln(M + 0.5), where M is the 
molarity of ethanol. After each SWR measurement, we determined 
gravimetric w by oven-drying the samples at 105°C.

Fitting the Karunarathna Function
The Karunarathna et al. (2010a) function is a curvilinear, sim-

plified b function, which gives a unimodal shape of the SWR-w 
curve between wAD and wNON. This function was originally devel-
oped to represent the contact angle as a function of volumetric w. 
We modified the function to represent surface tension as a function 
of gravimetric w. We accounted for the fact that the aqueous con-
centration of ethanol increases as the liquid surface tension decreases, 
by calculating SWR input values as the difference of “71.27 – SWR”, 
with 71.27 mN m-1 being the surface tension of water. As a result, 
relatively low and high severities of SWR were characterized by rela-
tively low and high numerical values.

The function was fitted onto each SWR-w curve between 
wAD and wNON for 71 soil samples using the Microsoft Excel 
Solver function (Generalized Reduced Gradient). The function 
has five input parameters:

( ) ( )
( ) ( ){

NON AD

NON MAX MAX AD

MAX AD

NON MAX

AD

MAX AD

71.27 SWR 71.27 SWR

71.27 SWR 71.27 SWR
w w

w ww w w w

w w w w

w

−
−− −

− −

− = −

+ − − −  
   ×      

 [1]

The SWRAD is the degree of SWR at air-dried conditions, 
and the wAD is the water content at SWRAD. These two input 
parameters are assumed to be measured (Fig. 2). The three fit-
ting parameters are SWRMAX, which is the maximum level of 
SWR; wMAX, the water content at SWRMAX; and wNON, the 
critical water content (Fig. 2). A good correlation between the 
fitted and measured values for these three parameters has previ-
ously been shown (R2 between 0.90 and 0.99) (Karunarathna 
et al., 2010a). If w ≥ wNON, the degree of SWR, expressed as 
71.27 – SWR, was 0 mN m-1. It should be noted that for many 
soil samples, there was a local decrease in the degree of SWR just 
after air-dried conditions, which might have affected the fit of 
the function. The reference SWRAREA was obtained as the in-
tegrated trapezoidal area underneath the fit of Eq. [1] (Fig. 2).

Visible Near-Infrared Spectroscopy Measurements
We used a bench-top vis-NIRS spectrometer (DS2500, FOSS, 

Denmark) to measure the diffuse reflectance (R) between 400 and 
2500 nm, with a spectral sampling interval of 0.5 nm. Using a white 
FOSS check sample (FOSS Denmark), the stability of the instru-
ment was checked prior to spectral measurements of the soil sam-
ples. The soil samples (air-dried and 2-mm sieved) were placed in a 
sample cup with a quartz window. The spectrometer automatically 
rotated the cup while measuring to obtain scans at seven positions 

on the sample surface, which were 
subsequently averaged to one spec-
trum and converted to absorbance 
(A); A = log(1/R).

Multivariate Data Analysis
The multivariate analyses were 

performed in PLS Toolbox ver-
sion 8.6.2 (Eigenvector Research 
Inc.), and multivariate calibration 
models were established with par-
tial least squares regression (PLSR) 
using the SIMPLS algorithm (de 
Jong, 1993). The SWRAREA was 
vis-NIRS-predicted following two 
approaches. For Approach I, the 
SWRAREA was calculated from Eq. 
[1] and vis-NIRS-predicted with 
PLSR using vis-NIRS spectra, with 
the SWRAREA being the dependent 
y-variable. For Approach II, the 
three fitting parameters of Eq. [1] 
(71.27 − SWRMAX, wMAX, and 
wNON) were predicted using three 
vis-NIRS models and then used as 

Fig. 2. Soil water repellency versus water content. The Karunarathna et al. (2010a) model has five input 
parameters, which include measurements of the SWR at air-dried conditions (SWRAD) and the water content 
at SWRAD (wAD). The model includes three fitting parameters which are the maximum level of SWR (71.27 − 
SWRMAX), the water content at 71.27 − SWRMAX (wMAX) and the critical soil water content (wNON).
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inputs to Eq. [1] to obtain vis-NIRS-predicted SWR-w curves, 
from which we obtained the SWRAREA.

Thus, a vis-NIRS PLSR model was established for each of 
the three fitting parameters of Eq. [1] (71.27 − SWRMAX, wMAX, 
and wNON), SWRAREA (Approach I) and OC. An identical pro-
cedure for establishing the PLSR models was followed for all pa-
rameters to be predicted. First, different spectral standard pretreat-
ment methods were tested to optimize the correlation between 
spectra and each of the five parameters. The tested pretreatments 
were detrending (third polynomial), standard normal variate 
(SNV) (Barnes et al., 1989) and Savitzky-Golay first and second 
derivatives (Savitzky and Golay, 1964). Then we applied the vari-
able selection method forward iPLSR on pretreated spectra, to 
remove less important spectral information. The iPLSR method 
is an automated function in PLS Toolbox 8.6.2, which while run-
ning forward divides the spectrum into n equally sized intervals 
and then builds PLSR models on each consecutive spectral inter-
val. The spectral interval that obtains the lowest prediction error is 
retained. This interval is then tested together with the remaining 
intervals, and the two intervals that in combination result in the 
lowest prediction error are retained. This loop is continued until 
the prediction error no longer decreases, although more intervals 
are included (Nørgaard et al., 2000; Zou et al., 2010). Since iPLSR 
is sensitive to the spectral interval sizes (Andersen and Bro, 2010), 
we tested interval sizes between 40 and 80 nm for each of the five 
soil parameters. The spectral intervals found by iPLSR were sub-
sequently applied to predict each soil parameter with PLSR and 
ten-fold cross-validation. For cross-validation, the soil samples 
were grouped according to soil order, and every 10th sample was 
systematically included in the same cross-validation set.

The vis-NIRS-predicted values of 71 soil samples for the 
three fitting parameters of Eq. [1] and laboratory-measured val-
ues of SWRAD and wAD were used as input values to obtain the 
vis-NIRS-predicted SWR-w curves. If the vis-NIRS-prediction of 
wMAX was less than wAD or above wNON, the vis-NIRS-predic-
tion of that specific SWR-w curve was classified as unsuccessful. 
This resulted in four predictions being classified as unsuccessful 
(one Pallic soil sample, two Recent soil samples and one Semiarid 
soil sample). These unsuccessful visN-IRS-predictions were ex-
cluded prior to the SWRAREA predictions, and we therefore used 
67 soil samples to obtain the SWRAREA in Approach I and II.

The model accuracy was evaluated in terms of the root 
mean square error of calibration (RMSEC) and cross-validation 
(RMSECV), coefficient of determination (R2), and ratio of perfor-
mance to interquartile range (RPIQ).

The RPIQ can be applied as a model accuracy index for 
datasets that do not follow a normal distribution (Bellon-
Maurel et al., 2010), which was appropriate for this dataset, 
since all soil properties except the SWRAREA and wNON 
were not normally distributed. The RPIQ is calculated as 
RPIQ = (Q3 − Q1)/RMSE, where Q1 and Q3 are the first and 
third quartiles of the dataset. A relatively higher RPIQ value 
indicates a better model performance.

RESULTS AND DISCUSSION
Soil Properties

The soil samples represented five soil orders collected across 
the South Island of New Zealand (Fig. 1). The OC content ranged 
from 0.021 to 0.147 kg kg-1, and the Podzols were highest in OC 
content (Table 1). The clay content ranged from 0 to 0.52 kg kg-1, 

Table 1. Statistics for 71 New Zealand soil samples repre-
senting five soil orders (Brown, Pallic, Podzol, Recent, and 
Semiarid). Organic carbon; three fitting parameters for the 
Karunarathna et al. (2010a) model: maximum level of SWR 
(71.27 – SWRMAX), water content at SWRMAX (wMAX), critical 
soil water content (wNON). The trapezoidal integrated area 
(SWRAREA) underneath the SWR-w curve was obtained from 
the continuous Karunarathna et al. (2010a) model fit.

Statistic

Brown Pallic Podzol Recent Semiarid All

n = 21 n = 12 n = 11 n = 18 n = 9 n = 71

Organic carbon

——————— kg kg-1 ———————

Min. 0.037 0.024 0.048 0.021 0.025 0.021

Max. 0.096 0.055 0.147 0.068 0.061 0.147

S.d. 0.019 0.007 0.029 0.012 0.013 0.024

Median 0.061 0.037 0.074 0.041 0.039 0.047

Q1 † 0.045 0.035 0.069 0.035 0.031 0.038

Q3 ‡ 0.078 0.039 0.096 0.048 0.045 0.066

71.26 − SWRMAX

——————— mN m-1 ———————

Min. 35.66 27.69 34.78 18.00 12.00 12.00

Max. 46.72 41.51 45.48 46.31 44.29 46.72

S.d. 3.10 4.38 3.67 7.28 10.94 6.90

Median 40.64 35.02 41.53 42.43 30.07 39.58

Q1 39.08 32.19 38.34 37.59 26.39 36.08

Q3 42.43 38.87 43.27 45.03 39.04 42.81

wMAX

——————— kg kg-1 ———————

Min. 0.042 0.051 0.148 0.022 0.082 0.022

Max. 0.320 0.118 0.222 0.179 0.214 0.320

S.d. 0.076 0.020 0.019 0.051 0.041 0.061

Median 0.139 0.092 0.195 0.119 0.096 0.120

Q1 0.092 0.085 0.186 0.064 0.090 0.090

Q3 0.206 0.097 0.205 0.157 0.127 0.178

wNON

——————— kg kg-1 ———————

Min. 0.119 0.071 0.220 0.050 0.094 0.050

Max. 0.438 0.206 0.309 0.263 0.293 0.438

S.d. 0.092 0.049 0.027 0.068 0.064 0.082

Median 0.224 0.140 0.274 0.173 0.136 0.195

Q1 0.165 0.109 0.267 0.148 0.100 0.140

Q3 0.287 0.184 0.284 0.240 0.178 0.261

SWRAREA

——————— mN m-1 kg kg-1 ———————

Min. 3.37 0.79 6.22 1.14 0.12 0.12

Max. 11.57 6.32 8.85 8.32 8.84 11.57

S.d. 2.21 1.92 0.94 2.24 2.81 2.54

Median 5.51 2.75 6.84 4.58 1.74 5.31

Q1 3.87 1.34 6.56 3.01 0.62 3.20

Q3 7.22 4.12 7.67 6.67 4.24 6.73
† Q1, first quartile of the data set.
‡ Q3, third quartile of the data set.
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and the soil samples covered eight textural 
classes from sand to silty clay across the 
USDA textural triangle (Fig. 3). The Brown 
soils had the widest distribution in texture, 
and represented seven of the eight classes. In 
comparison, the Podzols had a narrow distri-
bution and represented only the silty loam 
and silty clay loam classes.

Soil Water Repellency vs. Water 
Content Curves

The measured SWR-w curves exhib-
ited a wide or narrow variation in curve 
shape and extent depending on the soil 
order. The Brown soils exhibited the larg-
est range in SWRAREA (3.37–11.57 mN 
m-1 kg kg-1) and wNON (0.119–0.438 
kg kg-1) (Table 1), and apparently the 
highest variability in SWR-w curve shapes 
(Fig. 4a). Conversely, the Podzols repre-
sented the narrowest range in SWRAREA 
(6.22–8.85 mN m-1 kg kg-1) and wNON 
(0.220–0.309 kg kg-1) and the least appar-
ent dispersion in SWR-w curve shapes (Fig. 
4c). This reflects the fact that the Brown 
soils covered the widest range in soil tex-
tural classes and that the Podzols covered 
the smallest textural range. The Pallic, 
Recent and Semiarid soils also exhibited a 
large variation in curve shapes. Each individual SWR-w curve is 
illustrated in Hermansen et al. (2019).

Altogether, this dataset represented a wide variation in 
SWR-w curves, with 71.27 − SWRMAX ranging from 12.00 
to 46.72 mN m-1, wMAX from 0.022 to 0.320 kg kg-1, wNON 
from 0.050 to 0.438 kg kg-1, and the SWRAREA obtained 
from Eq. [1] ranging from 0.12 to 11.57 mN m-1 kg kg-1. The 
Karunarathna et al. (2010a) function described the variation in 
SWR-w curve shapes well (Fig. 4), since there was a good cor-
relation between SWRAREA calculated from the measured and 
fitted curves (R2 = 0.98) (results not shown). The measured 
SWR-w curves were either hydrophobic or hydrophilic at air-
dried conditions. However, some soil samples exhibited lower 
SWR just after air-dried conditions, which reduced the accuracy 
of the model fit for some soils, although the fit still followed the 
overall curve shape (e.g., Fig. 4a and 4e). Further, Eq. [1] did not 
fit well to the soil sample with the smallest SWRAREA within 
the Recent soil order (Fig. 4d), which could be caused by a nar-
row range in w at which the soil was hydrophobic combined 
with a decrease in SWR just after air-dried conditions.

The SWRAREA obtained from Eq. [1] correlated with OC 
with an R2 value of 0.46 and RMSE of 1.83 mN m-1 kg kg-1 
(Fig. 4f ). The linear regression was performed with 67 samples, 
for which we had successful vis-NIRS predictions of SWR-w 
curves. Previous studies found that OC or soil organic matter 

content can describe 60% to 82% of the variation in SWRAREA 
(de Jonge et al., 1999; Regalado and Ritter, 2005; Regalado et 
al., 2008; Hermansen et al., 2019). Knowing that SWR depends 
on both OC content and quality (de Jonge et al., 1999), the 
lower correlation between SWRAREA and OC than in the lit-
erature might be caused by varying quality of OC in this data 
set representing five soil orders. Although all soils were collected 
under pasture for this study, we did not attempt to differentiate 
between pasture types or stock classes. Further, the samples rep-
resented areas of varying summer rainfall and soil development. 
For example, the Brown, Pallic, Podzol, and Semiarid soils are 
mature soils, whereas the Recent soils are young soils (Hewitt, 
2010; Hewitt, 2013). All these factors could potentially have af-
fected the quality of organic matter.

Qualitative Analysis of Vis-NIR Spectra
We found that detrending followed by SNV performed best 

for all PLSR models. In combination, detrending and SNV re-
duced multivariate effects, baseline shifts and nonlinearity from 
the spectra. For the qualitative analysis of vis-NIRS spectra, the 
pretreated spectra were averaged within each soil order (Fig. 5). 
Within the visible range, the spectra exhibited a peak in absor-
bance between 487 and 502 nm. These peaks are located in a 
spectral range with absorbance originating from different iron 
oxide species such as hematite and goethite (Scheinost et al., 
1998). Further, the Podzols had a plateau in absorbance between 

Fig. 3. USDA soil texture triangle of 71 water-repellent soil samples from the South Island of New 
Zealand. The soil samples were sampled across five soil orders (Brown, Pallic, Podzol, Recent, 
and Semiarid).
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584 and 602 nm. Knowing that organic matter absorbs light 
within this interval (Ben-Dor et al., 1997), this plateau might 
be caused by the comparably high organic matter content of 
the Podzols. Within the near-infrared range, all soil orders had 
peaks at 1415 nm and around 1922 to 1927 nm, which could 
be attributed to the OH stretch and HOH bend (Hunt, 1977; 
Knadel et al., 2014). Between these two peaks, the Podzols had a 
relatively small peak at 1726 nm, which has been associated with 
the aliphatic C–H stretch in soil organic matter. There was a 
common peak for all soil orders around 2208 to 2214 nm, which 
is associated with an Al–OH bend and OH stretch combination 
(Viscarra Rossel et al., 2006). Finally, there was a peak at 2352 
nm, which could be related to the C–H bond in soil organic 
matter (Ben-Dor et al., 1997).

iPLSR Intervals
The variable selection method iPLSR was used for identi-

fying important spectral intervals in the vis-NIRS prediction of 
each of the parameters: the Karunarathna et al. (2010a) func-
tion (71.27 − SWRMAX, wMAX, and wNON), the SWRAREA 
(Approach I) and OC content. In our study, we obtained the 
highest prediction accuracy for each of these when using interval 
sizes of, respectively, 60, 45, 55, 65, and 70 nm. Since the spectral 
sampling interval was 0.5 nm, these interval sizes corresponded 
to intervals of 120, 90, 110, 130, and 140 variables. The optimal 
iPLSR interval size depends on both the spectral pretreatment 
procedure and the soil property to be predicted. A previous study, 
which applied Savitzky Golay first- or second-derivative spectral 
pretreatment and iPLSR to predict fitting parameters of a par-

Fig. 4. (a–e) Soil water repellency (SWR) versus water content (w) curves for each soil order, with the minimum and maximum trapezoidal 
integrated area underneath the soil water repellency versus water content curve (SWRAREA) highlighted. The fit of the Karunarathna et al. (2010a) 
function is illustrated for the minimum and maximum SWRAREA. (f) The SWRAREA obtained from the Karunarathna et al. (2010a) function fit as a 
function of organic carbon (OC) content. R2, coefficient of determination; RMSE, root mean square error.
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ticle-size distribution function using vis-NIRS reported optimal 
interval sizes between 40 and 50 nm (Hermansen et al., 2017), 
which is comparable to the interval sizes applied in this study.

We included three spectral intervals to predict 71.27 − 
SWRMAX (460–520, 1360–1480, and 1780–1840 nm), two spec-
tral intervals for wMAX (625–715 and 1300–1480 nm), three spec-
tral intervals for wNON (1445–1500, 1885–1995, and 2050–2105 
nm), two spectral intervals for SWRAREA (Approach I) (1440–
1505 and 1765–1830 nm), and two spectral intervals for OC 
(1380–1450 and 1590–1660 nm) (Fig. 5b). Throughout the visible 
range, the vis-NIRS model for 71.27 − SWRMAX in the selected 
spectral interval might be utilizing information from the electronic 
transition of iron oxides within the range 460 to 520 nm (Hunt, 
1977; Scheinost et al., 1998; Stenberg et al., 2010). Further, the vis-
NIRS model for wMAX might be utilizing information from iron 
oxides or organic matter in the interval 625 to 715 nm (Ben-Dor 
et al., 1997; Scheinost et al., 1998). This is in accordance with the 
study of Kim et al. (2014) who found that bands around 457, 622, 
and 670 nm positively influenced the vis-NIRS prediction of SWR 
after oven-drying at 65°C. Further, Knadel et al. (2016) found the 
620 nm band to be important for predicting SWR after oven-drying 
at 60 and 105°C. In the near-infrared range, all models included a 
spectral interval that either overlapped (71.27 − SWRMAX: 1360–
1480 nm, wMAX: 1300–1480 nm, OC: 1380–1450 nm) or ap-
peared just after (wNON: 1445–1500 nm, SWRAREA: 1440–1505 
nm) the characteristic absorption band for OH stretching around 
1400 nm (Hunt, 1977). Thus, based on the overlapping intervals, 
the spectral region around 1300 to 1500 nm appears to be impor-
tant for SWR prediction (Fig. 5b). This spectral region contains 
absorption features from OH in clay minerals (e.g., around 1415 
nm) (Viscarra Rossel et al., 2006), OH in organic components such 
as cellulose, lignin or starch around 1358 nm (Ben-Dor et al., 1997) 
and carboxylic acids around 1449 nm (Viscarra Rossel et al., 2006). 
Although OC is considered as the main soil property controlling 

the severity of SWR (Hermansen et al., 2019), it has been shown 
that the correlation between SWRAREA and OC can be slightly 
improved when omitting the amount of OC complexed by clay (de 
Jonge et al., 2009). In that sense, the vis-NIRS spectral information 
about clay minerals might be relevant to predict SWR. Previous 
studies also suggested that spectral information of clay minerals 
assist SWR prediction with vis-NIRS (Kim et al., 2014; Knadel 
et al., 2016). Knadel et al. (2016) identified a wide band from 
1000–1490 nm in a regression coefficient SWR determination, 
which further supports the view that this wide absorption region 
carries important SWR information. The iPLSR intervals for 71.27 

− SWRMAX and SWRAREA furthermore had some overlap (71.27 − 
SWRMAX: 1780–1840 nm, SWRAREA: 1765–1830 nm), indicat-
ing that this spectral region also carries important information for 
SWR prediction, characterized especially by absorptions from the 
C–H stretch in organic matter (Viscarra Rossel and Behrens, 2010). 
When comparing to Kim et al. (2014) study, Knadel et al. (2016) 
also found the band around 1765 nm to positively assist in SWR 
prediction. The iPLSR interval for wNON from 1885 to 1995 nm 
overlaps the characteristic absorption band from the OH stretch 
and HOH bend (Hunt, 1977). This interval also contains informa-
tion from carboxylic acids (Ben-Dor et al., 1997). Finally, for wNON 
the iPLSR interval from 2050 to 2105 nm is located in the spectral 
range that includes absorptions from amines or amides (Viscarra 
Rossel and Behrens, 2010).

Vis-NIRS Predictions of Soil Water Repellency vs. 
Water Content Curves

In this study, cross-validation was used as validation meth-
od, although cross-validation might overestimate the accuracy of 
the model as compared to an independent validation. However, 
cross-validation was considered to be a sufficient validation 
method to investigate the predictive ability for the SWR-w 

Fig. 5. (a) Visible near-infrared spectroscopy (vis-NIRS) spectra pretreated by detrending (third order) and standard normal variate (SNV). The spectra 
presented are averages for each soil order. (b) Spectral intervals used for the vis-NIRS cross-validation models obtained by interval partial least squares 
regression. Horizontal lines denote the spectral intervals used for the maximum level of SWR (SWRMAX), the water content at SWRMAX (wMAX), the 
critical soil water content (wNON) and the integrated area underneath the soil water repellency versus water content curve (SWRAREA).
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curve, since the dataset covered many soil types and a wide spa-
tial distribution across New Zealand’s South Island.

We tested the ability of the vis-NIRS spectra to predict OC 
content to see whether we could expect a reasonable result for 
SWR parameters, which are related to OC content. The OC con-
tent was successfully predicted with an R2 of 0.75 and RMSECV 
of 0.012 kg kg-1 using 11 factors. Further, we could predict the 
fitting parameters of Eq. [1] using vis-NIRS (Fig. 6). The cross-

validation model for 71.27 − SWRMAX gave values for R2 of 0.56 
and RMSECV of 4.61 mN m-1, for wMAX corresponding values 
were, respectively, 0.71 and 0.033 kg kg-1, and for the wNON 
model they were 0.66 and 0.048 kg kg-1 (Table 2). The vis-NIRS 
prediction of SWRMAX exhibited increasing scatter around the 
1:1 line with decreasing SWRMAX, which might be caused by the 
low density of soils within the low SWRMAX range. Based on 
RPIQ values, SWRMAX was predicted with the lowest accuracy 
(RPIQ = 1.46, Fig. 6a), whereas the accuracies for wMAX (RPIQ = 
2.70, Fig. 6b) and wNON (RPIQ = 2.54, Fig. 6c) were comparable.

The vis-NIRS-predicted values for 71.27 − SWRMAX, wMAX, 
and wNON and the measured SWRAD and wAD were used as input 
parameters to Eq. [1] to yield vis-NIRS-predicted SWR-w curves 
(Fig. 7). As can be seen from Fig. 6b and 6c, there was some scat-
ter around the 1:1 line, which caused some of the predictions for 
wMAX and wNON to overlap for the four unsuccessfully predicted 
SWR-w curves. Especially the shape of the SWR-w curves for soils 
within the Brown, Recent and Podzol soil orders were success-
fully predicted with few exceptions (e.g., Fig. 7a, 7l, and 7x). The 
SWR-w curves for the soils within the Semiarid soil order were not 
as accurately vis-NIRS-predicted. The Semiarid soils caused some 
scattering in the SWRMAX prediction, and therefore the less ac-
curate prediction of this fitting parameter also affected the overall 
shape of the vis-NIRS-predicted SWR-w curves. But in general, 
we succeeded in predicting the extent and shape of SWR-w curves 
across a dataset with a wide distribution in texture and OC.

The SWRAREA was vis-NIRS-predicted using two ap-
proaches. The accuracy for the SWRAREA Approach II can be 
seen as verification of how well the vis-NIRS-predicted SWR-w 
curves fitted onto the reference Karunarathna et al. (2010a) 
function (Fig. 8b). Approach I resulted in an R2 of 0.58 and 
RMSECV of 1.62 mN m-1 kg kg-1, and Approach II resulted 
in an R2 of 0.56 and RMSECV of 1.70 mN m-1 kg kg-1 (Fig. 8). 
Since the vis-NIRS-prediction for SWRAREA in Approach I ob-

Table 2. Visible near-infrared spectroscopy (vis-NIRS) models for 
the three fitting parameters for the Karunarathna et al. (2010a) 
model: maximum level of SWR (71.27 – SWRMAX), water con-
tent at 71.27 – SWRMAX (wMAX), critical soil water content 
(wNON). The statistics of the vis-NIRS model for the trapezoi-
dal integrated area underneath the soil water repellency versus 
water content curve (SWRAREA) is given for Approach I.

Statistic 71.27 – SWRMAX wMAX wNON SWRAREA
mN m-1 kg kg-1 kg kg-1 mN m-1 kg kg-1

Calibration

Mean 38.42 0.133 0.201 4.95

RMSEC † 3.72 0.028 0.041 1.44

R2 ‡ 0.71 0.79 0.75 0.66

Factors 11 10 8 5

Cross-validation

RMSECV § 4.61 0.033 0.048 1.62

R2 0.56 0.71 0.66 0.58

RPIQ ¶ 1.46 2.70 2.54 1.98
† RMSEC, root mean square error of calibration.
‡ R2, coefficient of determination.
§ RMSECV, root mean square error of cross-validation.
¶ RPIQ, ratio of performance to interquartile range.

Fig. 6. Visible near-infrared spectroscopy (vis-NIRS) cross-validation 
models (n = 71) for the three fitting parameters of the Karunarathna 
et al. (2010a) model: (a) maximum level of SWR (SWRMAX), (b) 
water content at SWRMAX (wMAX), and (c) critical soil water content 
(wNON). R2, coefficient of determination; RMSE, root mean square 
error; RPIQ, ratio of performance to interquartile range.
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tained a slightly higher accuracy and simultaneously was based 
on less parameters, Approach I is recommended to obtain the 
SWRAREA from vis-NIRS. Compared to the correlation be-
tween SWRAREA and OC (Fig. 4f ), vis-NIRS performed better 
than OC in describing the variation in SWRAREA for this data-
set. The higher accuracy of vis-NIRS for the SWRAREA might be 
caused by the additional information about OC quality embed-
ded in the vis-NIRS spectra compared to the SWRAREA vs. OC 
regression which only takes into account the total amount of OC.

One of the main reasons for the successful application of 
vis-NIRS to predict SWR parameters is the correlation between 
SWRAREA and OC content with the latter being spectrally active. 
All soil samples in this study were collected from areas under pas-

ture. Earlier studies, found that perennial grass can result in higher 
severities in SWR as compared to the severity found in similar 
soils under barley and wheat (de Jonge et al., 2007; de Jonge et 
al., 2009). Future studies should investigate whether the vis-NIR 
models are applicable across geographical regions and land uses.

CONCLUSION
In this study, we predicted SWR-w curves for soil samples cov-

ering a wide range in OC and texture, by combining vis-NIR spec-
troscopy and the Karunarathna et al. (2010a) empirical b function, 
which was fitted to the SWR-w curve between wAD and wNON.

With acceptable accuracy, we could predict the three fit-
ting parameters of the Karunarathna et al. (2010a) function (R2 

Fig. 7. Soil water repellency (SWR) versus water content curves. Each box represents one of three replicates from the 24 locations (two locations 
were excluded because they were hydrophilic). For each soil sample, the discrete SWR measurements are shown together with the continuous 
curve fit using the Karunarathna et al. (2010a) model and the curve obtained by predicting the three Karunarathna et al. (2010a) model fitting 
parameters with visible near-infrared spectroscopy (vis-NIRS).
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from 0.56 to 0.71), namely the highest severity in SWR a soil 
can exhibit (71.27 − SWRMAX), the w at which the soil is most 
water repellent (wMAX), and the w above which the soil becomes 
hydrophilic (wNON).

The vis-NIRS predictions of 71.27 − SWRMAX, wMAX, 
and wNON served then as input values to the Karunarathna et al. 
(2010a) function together with measured values of air-dry water 
content (wAD) and the severity in SWR at air-dried conditions 
(SWRAD) to yield vis-NIRS-predicted SWR-w curves. The 
curves obtained from vis-NIRS represented the reference fit of 
the Karunarathna et al. (2010a) function well. The SWRAREA 
obtained from the Karunarathna et al. (2010a) reference fit 
could further be vis-NIRS-predicted with an R2 of 0.58 and 
RMSECV of 1.62 mN m-1 kg kg-1.

In conclusion, one vis-NIRS scan and one SWR measure-
ment at air-dried conditions is sufficient to predict the shape of 
the SWR-w curve and SWRAREA for these soils. Further stud-
ies will test whether a similar approach can be applied to obtain 
SWR-w curves from vis-NIRS on soil samples from different 
geographic regions and land uses.
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