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Abstract
The soil specific surface area (SSA) is a fundamental property governing a range

of soil processes relevant to engineering, environmental, and agricultural applica-

tions. A method for SSA determination based on a combination of visible near-

infrared spectroscopy (vis-NIRS) and vapor sorption isotherm measurements was

proposed. Two models for water vapor sorption isotherms (WSIs) were used: the

Tuller–Or (TO) and the Guggenheim–Anderson–de Boer (GAB) model. They were

parameterized with sorption isotherm measurements and applied for SSA estima-

tion for a wide range of soils (N = 270) from 27 countries. The generated vis-NIRS

models were compared with models where the SSA was determined with the ethy-

lene glycol monoethyl ether (EGME) method. Different regression techniques were

tested and included partial least squares (PLS), support vector machines (SVM),

and artificial neural networks (ANN). The effect of dataset subdivision based on

EGME values on model performance was also tested. Successful calibration mod-

els for SSATO and SSAGAB were generated and were nearly identical to that of

SSAEGME. The performance of models was dependent on the range and variation in

SSA values. However, the comparison using selected validation samples indicated

no significant differences in the estimated SSATO, SSAGAB, and SSAEGME, with

an average standardized RMSE (SRMSE = RMSE/range) of 0.07, 0.06 and 0.07,

respectively. Small differences among the regression techniques were found, yet SVM

performed best. The results of this study indicate that the combination of vis-NIRS

with the WSI as a reference technique for vis-NIRS models provides SSA estimations

akin to the EGME method.

Abbreviations: ANN, artificial neural network(s); BET,

Brunauer–Emmet–Teller; EGME, ethylene glycol monoethyl ether; GAB,

Guggenheim–Anderson–de Boer; PLS, partial least square(s); SOC, soil

organic carbon; SRMSE, standardized root mean square error; SSA, soil

specific surface area; SVM, support vector machine(s); TO, Tuller–Or;

vis-NIRS, visible near-infrared spectroscopy; VSA, vapor sorption analyzer;

WSI, water vapor sorption isotherm.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original

work is properly cited.
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1 INTRODUCTION

The soil specific surface area (SSA) plays a crucial role

for a wide range of soil processes, including the movement

and retention of water, nutrient, and contaminant dynam-

ics, ion exchange reactions, microbial activity, heat transport,

development of soil structure, and geotechnical soil behavior

(Pennell, 2002; Petersen, Moldrup, Jacobsen, & Rolston,
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1996). The SSA is expressed as surface area per unit mass

of soil (m2 g−1). Depending on the organic and mineral com-

position and particle size distribution of the soil, the values

of SSA can differ greatly (Pennell, 2002). In general, soils

with elevated clay contents exhibit large SSA, whereas sandy

soils have much smaller SSA (Petersen et al., 1996). More-

over, for a given sample, the measurement technique itself can

affect the estimates of SSA. The techniques to measure SSA

include both direct and indirect methods. Direct estimations

are performed by measuring the size and shape of soil par-

ticles (Borkovec, Wu, Degovics, Laggner, & Sticher, 1993).

Indirect techniques comprise gas-phase adsorption (N2, CO2,

C2H6, C2H4, and C2H2) (de Jonge & Mittelmeijer-Hazeleger,

1996; de Jonge, de Jonge, & Mittelmeijer-Hazeleger, 2000;

Kim, Yoon, & Bae, 2016) and retention of polar liquids such

as water (Amali, Petersen, & Rolston, 1994; Arthur et al.,

2018; Tuller & Or, 2005), ethylene glycol, ethylene gly-

col monoethyl ether (EGME) (Cerato & Lutenegger, 2002;

Knadel et al., 2018; Petersen et al., 1996), and methylene

blue (Hang & Brindley, 1970), with the EGME method being

the most common (Pennell, 2002). Apart from water, the use

of other polar liquid-based methods has some weaknesses

like the complicated measurement protocols, long measure-

ment time, and environmental problems with chemical dis-

posal (Heister, 2014). Considering these limitations, the use

of water to estimate SSA is a better alternative and has been

previously applied (Newman, 1983; Puri & Murari, 1964).

Estimation of SSA from water sorption or retention is often

achieved by combing water vapor sorption isotherm (WSI)

measurements with physically based (e.g., Tuller & Or, 2005)

or empirical (e.g., Resurreccion et al., 2011) models. The

isotherms represent the relationship between relative humid-

ity (water activity) and the equilibrium soil–water content at

a given temperature, obtained along an adsorption (wetting)

or desorption (drying) path. Recent technological advances

have led to faster, more detailed, and reliable measurements

of the WSI. Arthur, Tuller, Moldrup, and de Jonge (2014)

reported the great potential of an automated vapor sorption

analyzer (VSA) for soil exploration, including estimations of

clay content and SSA, as well as solute percolation threshold

and cation exchange capacity. To estimate SSA, WSIs were

often used in conjunction with different modeling approaches.

The Brunauer–Emmet–Teller (BET) model is a monolayer

approach to estimate SSA, usually applied in conjunction with

gas (N2 or other gases) (Brunauer, Emmett, & Teller, 1938)

and works well but only for nonswelling soils (Khorshidi, Lu,

Akin, & Likos, 2017). The Guggenheim–Anderson–de Boer

(GAB) model is similar to the BET equation but accounts for

multilayer molecules relative to the bulk liquid. It presents

a good alternative to the BET model and was reported to

be accurate for both natural and swelling soils (Akin &

Likos, 2017; Arthur, Tuller, Moldrup, & de Jonge, 2016).

The Tuller–Or (TO) model is a physically based water film

Core Ideas
• A new method to estimate SSA by combining vis-

NIRS and two WSI models is proposed.

• The vis-NIRS models are also compared with

models where the SSA is determined with the

EGME method.

• Three types of regression techniques including

PLS, SVM, and ANN are tested.

• The combination of vis-NIRS with the WSI as a

reference provides SSA estimates similar to the

EGME method.

adsorption model parameterized with adsorption WSIs. The

TO model is reported to be most suitable for soils exhibit-

ing SSA values in the range of 5–200 m2 g−1 (Akin & Likos,

2014; Arthur et al., 2013; Khorshidi et al., 2017; Leão &

Tuller, 2014; Tuller & Or, 2005). However, it fails to accu-

rately describe the drier parts of the adsorption isotherms

(Resurreccion et al., 2011).

Visible near-infrared spectroscopy (vis-NIRS) is another

promising alternative technique for SSA estimation. It is a

versatile and robust analytical technique with a high repeata-

bility and a demonstrated record of successful application to

soil analysis. The vis-NIRS is based on the interaction of

light with the soil sample under investigation. The output is

a vis-NIR reflectance spectrum (400–2500 nm), represented

as measured vis-NIR intensities vs. wavelength of electro-

magnetic radiation. The vis-NIR spectrum reflects the pres-

ence of chemical functional groups related to the mineral and

organic composition of the sample, thus being relevant for

the estimation of physical and chemical soil properties. It is

a very efficient method (short measurement time and mini-

mal sample preparation) that does not require chemicals and

does not destroy the sample. With only one obtained spec-

trum, multiple soil properties can be determined (Pasquini,

2003). The vibrational modes in the vis-NIR region are, how-

ever, weak and typically cause broad and overlapping absorp-

tion features. In order to assign specific features to spe-

cific chemical components, multivariate calibrations are used

(Martens & Næs, 1989). Different methods can be applied

to correlate soil spectra with the soil constituents of interest.

The most common include linear models such as principal

component regression, partial least square (PLS) regression,

multiple linear regression, and stepwise multiple linear

regression (Soriano-Disla, Janik, Rossel, Macdonald, &

McLaughlin, 2014). Nonlinear models include machine-

learning techniques such as multivariate adaptive regression

splines, artificial neural networks (ANN), regression trees, or
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support vector machines (SVM) (Viscarra Rossel & Behrens,

2010). Although the application of PLS in soil spectroscopy is

most prevalent in the literature, machine-learning algorithms

have been reported to provide higher estimation accuracy for

a range of soil properties (Viscarra Rossel & Behrens, 2010).

Extensive research efforts have been devoted in the last

decade to using vis-NIRS in combination with multivari-

ate techniques as a powerful means to overcome the time-

consuming and often complicated classical analysis of both

fundamental and functional soil properties (Hermansen et al.,

2017; Katuwal et al., 2017; Knadel et al., 2016; Nocita et al.,

2012; Paradelo et al., 2016; Pittaki et al., 2018, 2019; Viscarra

Rossel et al., 2016). However, the application of vis-NIRS to

SSA determination is still relatively rare. The few successful

attempts to determine the SSA from vis-NIR spectra included

the predictions of SSA obtained from the EGME method only

(Ben-Dor & Banin, 1995; Ben-Dor, Heller, & Chudnovsky,

2008; Knadel et al., 2018).

To further investigate the applicability of vis-NIRS for SSA

estimation, the objectives of this study are

(i) to test the feasibility of vis-NIRS for SSA estimation,

where the SSA is determined with the TO (SSATO) and

GAB (SSAGAB) models parameterized with WSIs mea-

sured with a VSA, and using three types of regression

techniques (PLS, ANN, and SVM),

(ii) to compare the generated vis-NIRS models for SSA with

SSA models where SSA was estimated with the EGME

method (SSAEGME),

(iii) to investigate the effect of dataset subdivision accord-

ing to EGME values on the performance of the vis-NIRS

models.

2 MATERIALS AND METHODS

2.1 Investigated soil samples

A total of 270 soil samples (220 topsoils and 50 subsoils)

were investigated in this study. The samples represent a wide

range of soil types, mineralogies, and geographic origins that

include Europe (Denmark, Germany, Spain, Norway, and Bel-

gium; N = 116), North America (the United States; N = 57),

South and Central Americas (Brazil, Colombia, Ecuador,

Peru, Venezuela, Uruguay, Cuba, and Nicaragua; N = 42),

Africa (Ghana, Nigeria, Mozambique, Zimbabwe, Cameroon,

Ethiopia, South Africa, Kenya, and Côte d’Ivoire; N = 38),

and Asia (India, Sri Lanka, Malaysia, and China; N = 17). In

brief, the samples have been obtained from different locations

in various countries. Some of the samples were extracted from

agricultural fields with gradients in clay and/or organic C con-

tents (Supplemental Table S1), others from different agroeco-

logical regions within a country, and some from the large soil

database of the International Soil Reference and Information

Centre (Wageningen). Further descriptions of individual sam-

ples and their properties, soil type and sampling locations are

provided in Supplemental Table S1.

2.2 Reference soil measurements

All soil samples were air dried and sieved to 2 mm prior to

the analyses described below. After removal of organic mat-

ter and carbonates, particle size fractions were determined

with a combination of wet sieving and pipette or hydrome-

ter methods (Gee & Or, 2002). The soil organic C (SOC) was

either determined based on the principle of C oxidation at

1800 ◦C using an elemental analyzer with a thermal conduc-

tivity detector (Thermo Fisher Scientific) or by wet combus-

tion using the Walkley–Black method (Nelson & Sommers,

1982). The SSA was determined in the laboratory via reten-

tion of EGME at monolayer coverage (Pennell, 2002) without

organic C removal or ion saturation.

2.3 Water vapor sorption measurements

Soil WSIs were obtained with a fully automated VSA

(METER Group). The VSA system dries and wets the air-dry

sample (∼3.5 g soil) and measures the water potential using

a chilled-mirror dewpoint method. The sample mass is auto-

matically recorded during the drying and wetting process with

a high-precision magnetic force balance (Arthur et al., 2013;

Likos, Lu, & Wenszel, 2011).

The isotherms were measured in dynamic dewpoint mode

for adsorption and desorption for a water activity range from

0.03 to 0.93 and a temperature of 25 ◦C. The reference water

content for all samples was calculated after oven drying at

105 ◦C for 48 h. For a detailed description of the VSA, inter-

ested readers are referred to Arthur et al. (2014).

2.3.1 Tuller–Or model

The physically based TO model Equation 1 was parameterized

with water adsorption data for the matric potential (ψ) range

from −470 to −10 MPa (corresponding to the water activity

range from 0.03 to 0.93). The TO model relates the equilib-

rium water content, M (kg kg−1), to ψ (cm H2O) and the SSA

(m2 kg−1) as

𝑀 = 3

√
𝐴svl

6πρw𝑔ψ
SSATO (1)

where Asvl (J) is the Hamaker constant for solid–vapor interac-

tions through the intervening liquid, ρw is the density of water

(kg m−3), and g is acceleration due to gravity (m s−2). The
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value of Asvl was set to −6 × 10−20 J, as suggested in Tuller

and Or (2005) and Maček, Mauko, Mladenovič, Majes, and

Petkovšek (2013).

2.3.2 Guggenheim–Anderson–de Boer model

The GAB model relates the water activities to the equilibrium

water contents (M, kg kg−1) via three model parameters (M0,

C, and K):

𝑀 =
𝑀0G𝐶GKaw[

(1 − Kaw)(1 − Kaw + 𝐶GKaw)
] (2)

where M0 (kg kg−1) is the monolayer water content, CG

is an energy constant, and Kaw represents the difference

of free enthalpy of the water molecules in the pure liquid

and the layers above the monolayer Equation 2. Since the

GAB model can be parameterized with both adsorption and

desorption data, here we applied desorption data. This was

because the adsorption data are not always reproducible due

to their sensitivity to initial water content, hydrophobicity, and

stronger intermolecular forces than experienced for desorp-

tion (Johansen & Dunning, 1957; Lu & Khorshidi, 2015).

The SSAGAB was calculated with Equation 3 (Newman,

1983; Quirk & Murray, 1999):

SSA =
𝑀0𝑁𝐴

𝑤M
(3)

where M0 is the monolayer water content (kg kg−1) from the

GAB equation, N is Avogadro’s number (6.02 × 1023 mol−1),

A is the area covered by one water molecule (10.8 × 10−20

m2), and wM is the molecular weight of water (0.018 kg

mol−1).

2.4 Vis-NIRS measurements

Spectral measurements were performed in the visible and

near-infrared range (400–2500 nm) with a NIRS DS2500

spectrophotometer (FOSS) in a temperature- and humidity-

controlled room (temperature of 23 ◦C, humidity of 48%).

Air-dried and 2-mm-sieved soil samples (∼50 g) were

scanned in seven spots each through a quartz window of the

sample holder. An average of the seven scans (absorbance

spectrum (Abs)= [log(1/R)], where R is reflectance) was used

further in the modeling phase.

2.5 Datasets

Calibration models were generated to demonstrate the poten-

tial of vis-NIRS for SSA estimation for this diverse dataset and

were based on the full dataset, as well as on datasets obtained

after subsetting, where the distribution of SSA values was

considered. Due to skewness in the SSAEGME values (almost

70% of the samples exhibited SSAEGME values <100 m2 g−1),

the data were divided into two subsets, with SSAEGME <

100 m2 g−1 (N = 180) and SSAEGME > 100 m2 g−1 (N = 90).

To ensure a representative selection of calibration sets for

vis-NIRS modeling, a principal component analysis (PCA)

was performed (Webster & Oliver, 2001) for spectral data of

each dataset considered above, and the Kennard–Stone algo-

rithm (Kennard & Stone, 1969) was applied to the scores of

the first three principal components. The algorithm was set to

select 80% of the samples for calibration, with the remaining

20% assigned to a validation dataset. This resulted in a cal-

ibration and a validation set for the entire dataset including

216 and 54 samples (validation samples were marked in gray

in Supplemental Table S1), respectively, and four subsets con-

sidering the SSA distribution: calibration (N = 144) and val-

idation (N = 36) subsets for the set with SSAEGME < 100 m2

g−1, and calibration (N = 70) and validation subsets (N = 20)

for the set with SSAEGME > 100 m2 g−1. To avoid an issue

with pseudoreplicates in the calibration and validation sub-

sets (as in few cases that the samples with a gradient in SSA

were obtained from one field), all field samples were kept in

the calibration datasets.

2.6 Multivariate data analysis

In order to derive information on soil constituents from the

weak and broad absorptions in vis-NIR spectra, three types of

regression techniques were used: PLS, ANN, and SVM. All

of them were using calibration samples to generate models

for SSA determined by the TO and GAB methods, and by the

EGME method. Moreover, models for texture (clay, silt, and

sand) and SOC were also generated (but only for the first cal-

ibration and validation approach on the entire dataset). The

training of all calibration models was performed with a sin-

gle 10-fold venetian blinds cross-validation. In this calibration

method, 10% of the data were withheld and used to validate

the calibration model built on the data of the remaining sam-

ples. This was repeated until all samples were left out once.

All calibration models were further validated with the inde-

pendent validation sets. Modeling was performed with the

Matlab PLS Toolbox 8.7 (Eigenvector Research).

2.7 Partial least squares regression

Partial least squares regression is one of the most commonly

used regression methods that produced satisfactory calibra-

tion results for a variety of soil constituents. It models both

the X (spectra) and Y (soil constituent of interest) matrices
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simultaneously by compressing and regressing the data to find

the latent variables (factors) in X that best predict the latent

variables in Y. This regression technique reduces data dimen-

sionality and noise and is computationally faster. It is used for

highly collinear predictor variables. Here, PLS with a nonit-

erative partial least square algorithm was applied (Martens &

Næs, 1989; Wold, Sjöström, & Eriksson, 2001).

2.8 Artificial neural networks

An ANN is a framework for a range of machine-learning algo-

rithms designed to imitate the way a brain performs differ-

ent tasks. It is a group of three layers of interconnected nodes

(artificial neurons). The three layers include input (here, vis-

NIR spectra), hidden (a layer between the input and output),

and output (the property to be predicted). The nodes from one

layer are connected with the nodes from the adjacent layer

with a strength referred to as a weight. Each input within one

layer is multiplied by a corresponding weight and is handled

by an activation function, in the hidden layer, to produce an

output. This is further used as an input in the next layer. The

weights optimization is accomplished through a training pro-

cedure performed on a calibration set (Goldshleger, Chud-

novsky, & Ben Dor, 2012). A feedforward ANN with a back-

propagation neural network, which aims at minimizing the

network error, was used. It finds the optimal number of itera-

tion cycles by choosing the lowest RMSE of cross-validation

based on the training data set and iteration values (here,

1–20) (Rumelhart, Hinton, & Williams, 1986). To shorten the

computation time, the vis-NIR spectra were compressed using

PLS regression and three principal components. Then ANN

with two nodes in the first layer on the principal component

scores was performed.

2.9 Support vector machines

Support vector machines are nonlinear kernel-based learn-

ing methods. Here, the Gaussian radial basis function ker-

nel type was used. Support vector machine regression trains

nonlinear data by mapping them into a multidimensional ker-

nel space and derives optimal bounds for regression (Vapnik,

1995). It defines the loss function, which ignores errors sit-

uated within a given distance of the true value. Models are

built with a smaller set of representative observations close to

the regression boundary (support vectors) (Suykens & Van-

dewalle, 1999). This algorithm requires model optimization

by adjusting two parameters: ε (used values: 1.0, 0.1, 0.01),

which is the upper tolerance on prediction errors, and C (11

values from 10−3 to 100, spaced uniformly on the log scale

used), which determines the tradeoff between the model com-

plexity and the degree to which deviations larger than ε are

F I G U R E 1 Distribution of investigated soil samples (N = 270)

within the USDA soil textural triangle

tolerated. Additional details about the regression techniques

can be found in Hastie, Tibshirani, and Friedman (2009).

The performance of the regression models was evaluated

using the RMSE of cross-validation, the RMSE of prediction,

and the R2. Due to differences in the SSA range resulting from

the use of different determination methods (TO or GAB model

and the EGME method), the standardized RMSE was addi-

tionally calculated as SRMSE = RMSE/range, to enable the

comparison between the performance of different models.

3 RESULTS AND DISCUSSION

3.1 Soils

The investigated samples represent a wide range of soil types

(Figure 1), with clay contents ranging from 1 to 95% and sand

contents ranging from 0 to 96%. The samples covered both

mineral and more organic soils, with some containing >8%

organic C (Table 1). Because of the diverse geographic origin

of the considered soils, distinct differences in mineralogy are

also expected. This high variability in soil properties of the

investigated soil resulted in a wide range of SSAEGME values

(6–445 m2 g−1) (Table 1).

3.2 Water vapor sorption isotherms

Figure 2a presents three soils with different composition and

thus varying SSA values. The WSIs (adsorption and desorp-

tion loops) follow a clear pattern, where the sample with large
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T A B L E 1 General statistics of the investigated soil properties

Propertya

SSATO SSAGAB SSAEGME Clay Silt Sand SOC

Gen.stat b m2 g−1 %
Mean 97 (97, 96) 107 (106,

112)

103 (101, 108) 32 (32, 31) 29 (27, 37) 39 (41, 33) 1.57 (1.66, 1.2)

Max. 374 (374,

370)

428 (417,

428)

444 (444, 400) 95 (95, 79) 68 (68, 62) 96 (96, 82) 8.42 (8.42, 3.5)

Min. 8 (8, 23) 7 (7, 24) 6 (6, 10) 1 (1, 5) 2 (2, 10) 0 (0, 3) 0 (0, 0.07)

SD 82 (81, 84) 99 (98, 107) 104 (103, 109) 21 (22, 18) 15 (15, 14) 26 (26, 24) 1.39 (1.49, 0.76)

Variance 6,673 (6,617,

7,024)

9,875 (9,537,

11,402)

10,906 (10,681,

11,989)

445 (475,

327)

239 (229,

208)

676 (690,

569)

1.92 (2.22,

0.58)

Skewness 2 (2,1) 2 (2, 1) 2 (2, 1) 1 (1, 1) 1 (1,0) 0 (0, 0) 1.80 (1.66, 0.74)

Q1 41 (42, 38) 37 (38, 35) 33 (32, 34) 15 (14, 17) 16 (15, 26) 14 (16, 11) 0.69 (0.7, 0.66)

Q3 126 (124,

130)

140 (135,

184)

132 (130, 160) 43 (44, 42) 40 (37, 48) 61 (62, 53) 1.97 (2.09, 1.51)

Note. The first value is for the entire dataset (N = 270), the first value in brackets is for the calibration dataset (N = 216), and the second value in the brackets is for the

validation dataset (N = 54).
aSSATO, soil specific surface area (SSA) determined from vapor sorption isotherms using the Tuller–Or model; SSAGAB, SSA determined from vapor sorption isotherms

using a Guggenheim–Anderson–Boer model; SSAEGME, SSA determined using ethylene glycol monoethyl ether method; SOC, soil organic C.
bGen.stat, general statistics; Q1, the first quartile, Q3, the third quartile.

F I G U R E 2 (a) Example of measured water vapor sorption isotherms for three samples with different soil specific surface areas (SSAs), (b) fit

of Tuller and Or (2005) model to the adsorption isotherms, and (c) fit of the Guggenheim–Andersen–de Boer (GAB) model to the desorption

isotherms. The ethylene glycol monoethyl ether estimates of SSA for the high-, medium-, and low-SSA samples were 307, 111, and 45 m2 g−1,

respectively. The numbers in the legend of Panels b and c are the SSA estimates in m2 g−1 from the two models

SSA had higher soil water sorption for any given water activ-

ity value. The fits of the TO model (fitted to the adsorp-

tion isotherms) and the GAB model (fitted to the desorp-

tion isotherms) reflect the same behavior for the three soils

(Figures 2b and 2c). The GAB model predicted water con-

tent well, regardless of the soil type and water activity value

(Figure 2c), whereas the TO model (Figure 2b) described

the adsorption isotherms well only up to −200 MPa for the

soil with the medium (SSAEGME = 111 m2 g−1) and low

(SSAEGME = 45 m2 g−1) SSA values, and up to −120 MPa

for the soil with the highest SSA value (SSAEGME = 307 m2

g−1). Above these thresholds, a clear overprediction can be

observed. This is in line with the previous findings, where

the TO-predicted water contents were up to 50% higher than

foreseen and were attributed to higher errors for the finer-

textured soils (Arthur et al., 2013; Resurreccion et al., 2011).

This is perhaps the reason why the SSATO estimated for

large-surface-area samples was less than the SSAGAB and
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F I G U R E 3 Relationships between soil specific surface areas

(SSAs) determined with the ethylene glycol monoethyl ether (EGME)

method, with SSA derived with the Tuller–Or (TO) and

Guggenheim–Anderson–de Boer (GAB) models, for (a) the entire

dataset (N = 270), (b) the subset with SSAEGME < 100 m2 g−1

(N = 180), and (c) the subset with SSAEGME > 100 m2 g−1 (N = 90).

For all sets, p < .001 was reported for the regression analyses

SSAEGME, with the maximum SSA values obtained being

374, 428, and 445 m2 g−1, respectively.

The correlations between the SSATO and SSAGAB with the

SSAEGME values were very high (R2 = .95 and .96, respec-

tively) (Figure 3a). As discussed above, the TO model does

not work optimally for soils with high SSA values and thus

started deviating from the SSAEGME values at ∼150 m2 g−1

(Figure 3a).

Due to skewed SSAEGME values, the dataset was further

divided into two subsets: SSAEGME < 100 m2 g−1 (N = 180)

and SSAEGME > 100 m2 g−1 (N = 90) (Supplemental Tables

S2 and S3). In general, lower correlations between the SSATO

and SSAGAB values with the SSAEGME values were observed

after subsetting, when compared with application of the full

dataset (Figures 3b and 3c). The SSA values estimated with

both the TO and GAB models were larger for the subset with

SSAEGME values < 100 m2 g−1 than the values obtained with

the EGME method. In turn, lower values for the TO model

for the set with values > 100 m2 g−1 than the values obtained

by the EGME method were obtained. Moreover, for the sub-

set with the SSAEGME values > 100 m2 g−1, higher corre-

lations with SSAEGME (R2 of .88 and .92, for SSATO and

SSAGAB, respectively) than for the subset with the SSAEGME

values < 100 m2 g−1 (R2 of .73 and .60, for SSATO and

SSAGAB, respectively) were reported (Figures 3b and 3c).

3.3 Vis-NIRS models

3.3.1 Full dataset

For the full dataset, the best vis-NIRS calibration models for

SSATO and SSAGAB exhibited identical estimation accuracy

to the SSAEGME model (SRMSE = 0.10) (Figure 4). The best

texture and SOC models obtained here had lower precision for

calibration (average SRMSE of 0.18 for texture and 0.13 for

SOC estimations) than those for the SSA models (Supplemen-

tal Table S4). Among the three regression techniques, SVM

was the most accurate for estimating SSATO, clay, silt, sand,

and SOC, and PLS generated the best results for SSAGAB

and SSAEGME, whereas ANN showed the lowest estimation

accuracy of the calibration models (Figure 4, Supplemental

Table S4).

The independent validation of the developed calibration

models for the three SSA estimates reflected the accuracy

of the calibration models (Figure 5). The validation results

from the best calibration model for SSATO slightly outper-

formed (SRMSE = 0.08) that of SSAGAB (SRMSE = 0.10)

but was similar to the SSAEGME model (SRMSE = 0.09).

High R2 values (>.89) were obtained for all SSA estimations.

The SSAEGME validation results exhibit higher accuracy than

obtained in Knadel et al., 2018 (SRMSE = 0.13), who val-

idated with a set representing a smaller range of SSAEGME

values (4–116 m2 g−1), but also lower SD values (SD = 27)

than the validation set used in this study (range: 10–392 m2

g−1, SD = 94) (Table 1).

When comparing the performance of these models with the

best texture and SOC validation results (Supplemental Table

S4), the SSA models showed better estimation accuracy than

the texture and SOC models, which had average SRMSEs of

prediction of 0.49 and 0.66, respectively.

3.3.2 Subsets according to SSAEGME values

To test how the range of the SSA affects the performance

of SSA models, the same modeling analysis on the sets with

SSAEGME < 100 m2 g−1 (N = 180) and SSAEGME > 100 m2
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F I G U R E 4 Visible–near-infrared spectroscopy calibration results (N = 216) for the soil specific surface area (SSA) presented as predicted

(cross-validation [cv]) vs. measured for the Tuller–Or (TO) and Guggenheim–Anderson–de Boer (GAB) models, and the ethylene glycol monoethyl

ether (EGME) method generated using partial least squares (PLS), artificial neural networks (ANN), and support vector machine (SVM) regression

techniques. SRMSE = RMSE/range

g−1 (N = 90) was performed (Supplemental Tables S2 and

S3). Detailed results of calibration and validation for both

subsets are presented in Supplemental Figures S1–S4. Both

calibration and validation results for the best SSA models

of the subset with SSAEGME values < 100 m2 g−1 exhib-

ited much lower estimation accuracy with higher SRMSE

(0.18 on average) and lower R2 values (.22–.45) than for

the set with SSAEGME values > 100 m2 g−1 (on average,

SRMSE of 0.14 and R2 values between .63 and .78). The dis-

crepancies in model performance for the two subsets can be

related to the effects of variation in SSA values themselves,

the organo-mineral composition, and their interactions. The

subset with SSAEGME values > 100 m2 g−1 presents higher

standard deviations (Supplemental Table S3), and this was

previously related to elevated R2 values (Stenberg, 2010).

Additionally, this subset includes samples with the highest

clay contents (on average, 51%), whereas the subset with

the SSAEGME values < 100 m2 g−1 includes soils with an

average clay content of 21%. Higher clay content results in

more pronounced absorptions from molecular bonds related

to clay minerals, but also to SOC (Stevens, Nocita, Tóth, Mon-

tanarella, & Van Wesemael, 2013), the two soil properties

greatly affecting SSA (Knadel et al., 2018). Thus, we found

improved SSA model performance for the set with SSAEGME

values > 100 m2 g−1, which was also characterized by a higher

clay content. In contrary, the subset with SSAEGME values

< 100 m2 g−1 represented mostly sandy soils (average sand

content of 49%). Therefore, weak signals from clay minerals

in the vis-NIR range were present. Moreover, high sand con-

tent increases light scattering and was reported to have a neg-

ative effect on model performance of SOC (Stenberg, 2010;

Stevens et al., 2013).

Knadel et al. (2018) showed that, aside from the differ-

ences in texture and SOC content, the complexation status of

SOC also affects the vis-NIRS estimation of SSA. The subset

with SSAEGME values > 100 m2 g−1 represents soils with the

capacity of clay to complex SOC (clay/SOC ratio, defined by

Dexter et al., 2008, as n = 10) with n values > 10 (Supple-

mental Figure S5), meaning that soils unsaturated with SOC

are present and all SOC is in complexed form. The subset
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F I G U R E 5 Visible–near-infrared spectroscopy validation results (N = 54) for the soil specific surface area (SSA) presented as predicted

versus measured for the Tuller–Or (TO) and Guggenheim–Anderson–de Boer (GAB) models and the ethylene glycol monoethyl ether (EGME)

method generated using partial least squares (PLS), artificial neural networks (ANN), and support vector machine (SVM) regression techniques.

SRMSE = RMSE/range. RMSEP, RMSE of prediction

with the SSAEGME values < 100 m2 g−1, in turn, represents

soils with both noncomplexed and complexed forms of SOC

(10 < n > 10) (Supplemental Figure S5). Therefore, the min-

eral surfaces of the samples with noncomplexed SOC have the

potential to be coated with SOC (Knadel et al., 2018), which

can potentially mask a portion of the SSA. This, together

with the fact that both complexation forms were present, as

well as the above-listed confounding effects of other soil con-

stituents (like different clay mineralogy and negative effect of

sand fractions) and the range of SSA values, potentially led

to degraded SSA models for the subset with SSAEGME val-

ues < 100 m2 g−1.

The SRMSE values obtained from the calibration mod-

els for each regression technique (PLS, ANN, SVM) for the

full dataset and SSA subsets, and for each measure of SSA,

are presented in Figure 6. For the models based on the full

dataset, PLS resulted in the lowest errors for SSAGAB and

SSAEGME estimation, whereas SVM provided best estimates

for SSATO. After subsetting the data according to SSAEGME

values, SVM performed better than the two remaining tech-

niques for all three SSA estimates. Thus, on average, SVM

resulted in higher accuracy. This points to an advantage of

using machine-learning techniques over PLS and is in line

with other studies where the application of machine-learning

algorithms such as SVM outperformed PLS regression for

soil property determination (Goldshleger et al., 2012; Kuang,

Tekin, & Mouazen, 2015; Morellos et al., 2016; Tekin, Zey-

nal, & Mouazen, 2011; Viscarra Rossel & Behrens, 2010).

However, the differences in the values of SRMSE among the

different techniques were small and dependent on the dataset.

The comparison of results based on different validation

datasets is somewhat problematic. Each of these sets consisted

of different samples, a different total number of samples, and

samples covering different ranges of SSA values. Therefore,

even when using a standardized error, the comparison is not

optimal. Thus, in order to perform a fair comparison, com-

mon validation samples existing in the validation set for a full

dataset (N= 54), as well as in one of the validation sets for the
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F I G U R E 6 Comparison of the SRMSE (RMSE/ range) for the

(a) Tuller–Or (TO), (b) Guggenheim–Anderson–de Boer (GAB), and

(c) ethylene glycol monoethyl ether (EGME) estimates of soil specific

surface area (SSA) based on visible–near-infrared spectroscopy

modeling results using calibration datasets for all samples (N = 54),

samples with SSAEGME < 100 m2 g−1 (N = 36), and samples with

SSAEGME > 100 m2 g−1 (N = 20), generated with partial least squares

(PLS), artificial neural networks (ANN), and support vector machine

(SVM) regression techniques

subsets with the SSAEGME < 100 m2 g−1 (N= 36) and the sub-

set with the SSAEGME > 100 m2 g−1 (N= 20), were extracted.

In total 28 common samples were found, and their estima-

tions from the three calibration approaches were compared

(Figure 7). In general, higher estimation accuracy was

obtained after subsetting the data, with the greatest improve-

ment seen for SSAGAB (SRMSE of 0.07 and R2 of .92

before subsetting, and SRMSE of 0.04 and R2 of .95 after

F I G U R E 7 Comparison of model performance (standardized

room mean square error [SRMSE] = RMSEP/range and R2) for the

(a) Tuller–Or (TO), (b) Guggenheim–Anderson–de Boer (GAB), and

(c) ethylene glycol monoethyl ether (EGME) estimates of soil specific

surface area (SSA) based on visible–near-infrared spectroscopy

calibration models for common validation samples (N = 25) occurring

in the full dataset (full, black circle) and subsets according to EGME

values (sub, open triangle)

subsetting). Nevertheless, there were no significant differ-

ences between the subsetting methods when the differences

between the reference values and the predicted SSA values

were compared for each SSA estimate (Mann–Whitney rank

sum test, P = .617 for SSATO, P = .7 for SSAGAB, and

P = .8 for SSAEGME). Moreover, the estimation accuracy of

vis-NIRS models for the SSA obtained by the two WSIs mod-

els (TO and GAB with an average SRMSE of 0.07 and 0.06,
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respectively) and for the 28 common samples was nearly

identical to that of vis-NIRS models for SSAEGME (average

SRMSE of 0.06).

4 CONCLUSIONS

In this study, vis-NIRS combined with different modeling

techniques (PLS, ANN, and SVM) was applied to estimate

SSA determined with two WSI-based models (SSATO and

SSAGAB) for a heterogeneous soil sample set. The vis-NIRS

SSA estimates were successful and indicated a similar esti-

mation ability to a vis-NIRS model of SSA determined with

the often-used EGME method. Furthermore, the performance

of the models was mainly dependent on the range and varia-

tion in SSA values, as well as the organo-mineral composi-

tion and its interactions. However, no significant differences

among the performance of calibration models, based on the

entire dataset and the subsets in regards to SSAEGME val-

ues, were found for common validation samples. Moreover, in

most cases, the application of SVM technique in the vis-NIRS

modeling resulted in the best performance, yet the differences

among the three types of regression techniques tested were

small.

The elevated interest in SSA, which governs numerous soil

processes and behaviors, calls for rapid, more accurate, and

repeatable alternative methods for its determination. Given

the results from this study, we suggest a combination of vis-

NIRS, known for its reliable results, and the WSI as a ref-

erence technique for training vis-NIRS models, which does

not involve the use of chemicals and provides SSA estima-

tions similar to the EGME method. Although no significant

differences in the estimation of SSA from vis-NIRS based on

TO and GAB models have been observed, we recommend the

use of the latter, as it is known to predict water contents well

regardless of the soil type and water activity value. The per-

formance of regression techniques applied, as well as spectral

preprocessing methods, is usually dataset dependent, and we

suggest testing different methods including both linear and

nonlinear techniques to find the best option for the dataset

under consideration.
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