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A Digital Signal Recovery Technique Using
DNNs for LEO Satellite Communication Systems
Yufeng Zhang, Zhugang Wang, Yonghui Huang, Wei Wei, Gert Frølund Pedersen, Senior Member, IEEE,

and Ming Shen, Member, IEEE

Abstract—This paper proposes a new digital signal re-
covery (DSR) technique for next-generation power effi-
cient low Earth orbit (LEO) satellite-to-ground communica-
tion systems, which feature additive white Gaussian noise
(AWGN) channel and significant power variation. This tech-
nique utilizes the prior knowledge (i.e., nonlinearities of
radio frequency power amplifiers (RF-PAs)) of space-borne
transmitters to improve the quality of the signal received
at ground stations by modeling and mitigating the im-
perfection using deep neural networks (DNNs). Benefiting
from its robustness against noise and power variation,
the proposed DNN based DSR technique (DNN-DSR), can
correct high signal distortions caused by the nonlinearities
and hence allows RF-PAs to work close to their satura-
tion region, leading to a high power efficiency of the LEO
satellites. This work has been validated by both simula-
tions and experiments, in comparison with the power back-
off technique as well as memory polynomial based DSR
solutions. Experimental results show that the DNN-DSR
technique can increase the drain efficiency of the space-
borne RF-PA from 32.6% to 45% while maintaining the same
error vector magnitude as the power back-off technique. It
has also been demonstrated that the proposed DNN-DSR
technique can handle a signal power variation of 12 dB,
which is challenging for conventional solutions.

Index Terms—deep learning, deep neural network, digital
signal recovery, linearization, power amplifier, radio fre-
quency, low Earth orbit, satellite-to-ground communication.

I. INTRODUCTION

NOWADAYS, satellite communication has drawn great

attention in the space industry due to the rapid techno-

logical advancement of low Earth orbit (LEO) satellites. LEO

satellites are deployed at the altitude of 500–1500 km with an

orbital period of shorter than two hours [1]. The fast movement

of the LEO satellites leads to a very limited transmission
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Fig. 1. System structure comparison between the linearization tech-
niques. (a) Power back-off technique, (b) digital pre-distortion technique,
(c) memory polynomial based digital signal recovery technique, (d) the
proposed DNN based digital signal recovery technique.

window with ground stations, approximately 10 minutes per

pass. As the amount of data grows, transmitting as much data

as possible is an increasing demand for LEO communication

systems within the limited transmission window.

Orthogonal frequency division multiplexing (OFDM) tech-

niques have been investigated for satellite communication

to achieve a high transmission data rate [2]. However, the

OFDM signal features a high peak-to-average power ratio

(PAPR). This makes it very sensitive to system nonlineari-

ties, which in most of the cases are mainly contributed by

radio frequency power amplifiers (RF-PAs). Normally, the RF-

PA works in saturated or near-saturated mode to achieve a

high power efficiency, resulting in a high nonlinearity. The

nonlinear distortion severely damages the signal quality (i.e.,

in-band distortion and out-of-band spectral regrowth), and

hence degrades the transmission rate. Therefore, handling the

nonlinearity of the RF-PA has been an indispensable part of

LEO satellite-to-ground communication systems.

Power back-off techniques, which are illustrated in Fig. 1(a),
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Fig. 2. Time-varying transmission distance of LEO satellite-to-ground communication systems.

are commonly used in LEO satellite-to-ground communication

systems. The power back-off technique reduces the input

power of the RF-PA to mitigate the nonlinear distortion

of transmitted signals. Without consuming extra hardware

resources and performing extra signal processing, space-borne

transmitters become simple, reliable, and stable. However,

the main drawback of the power back-off technique is the

low power efficiency of the RF-PA. To improve the power

efficiency of the RF-PA, different digital pre-distortion (DPD)

techniques have been reported, such as lookup tables [3] and

memory polynomial (MP) [4]. Also, deep neural networks

(DNNs) based DPD techniques [5], [6] have been investigated

due to their great linearization performance and attractive

properties (e.g., robustness to dynamic nonlinearities of RF-

PAs). As illustrated in Fig. 1(b) DPD techniques pre-distort the

input of RF-PAs to compensate the nonlinearity, and as a result

the output of the RF-PAs appears to be linearly amplified. DPD

techniques could obtain both the superior signal quality and

the high power efficiency. However, applying the DPD tech-

niques into satellite communication is a great challenge due

to the stringent limitation of power and computing resources

available on satellites.

In this paper, we propose a new digital signal recovery

(DSR) technique based on DNNs for next-generation power

efficient LEO communication systems without using space-

borne computing resources. The system block diagram is

shown in Fig. 1(d). The novelty of this technique is the concept

of capturing the nonlinearity of the space-borne RF-PA for

recovering the received signal at the ground station. Very few

work focusing on the DSR technique [7] has been reported

previously. It is also possible to implement the proposed

concept using the MP technique, as shown in Fig. 1(c).

However, since the MP technique is power dependent, it only

works under ideal channel conditions with a steady signal

power. As illustrated in the results in the validation section,

the MP-DSR technique does not work for satellite-to-ground

communications which features time-varying channel effects,

especially the time-varying signal power.

Driven by the more and more powerful computing resources

and available data, DNNs have shown attractive potential in

many different fields [8], [9]. Recently, a few DNN based

techniques for boosting the performance of communication

systems, such as autoencoders [10]–[12] have been reported.

The proposed DNN-DSR concept is in line with this direction

of the technology development. Benefiting from the robustness

to noise provided by the DNN itself [8]–[10] and the power

independence contributed by batch normalization layers, the

proposed concept is becoming possible. This enables the

Ground
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Fig. 3. Geometry change of the transmission distance.

space-borne RF-PA to work close to its saturation region, and

hence achieves higher power efficiency.

The experimental validation compares the DNN-DSR tech-

nique with the power back off technique (Fig.1(a)) and the

MP-DSR technique(Fig.1(c)). The comparison with the power

back-off technique is with the focus on the drain efficiency of

the space-borne RF-PA. And the comparison with the MP-

DSR technique is focusing on the adjacent channel power

rate (ACPR), AM-AM distortion, and error vector magnitude

(EVM). The rest of this paper is organized as follows. Section

II investigates the dynamic transmission condition. Section

III shows the DNN theory, and section IV introduces the

DNN-DSR technique. Validation of the proposed DNN-DSR

technique is given in section V. Section VI presents the

conclusion of this paper.

II. DYNAMIC TRANSMISSION CONDITION

A. Time-varying signal power

Generally, when the elevation angle of a LEO satellite is

greater than 5◦, the transmission link is established [13], as

shown in Fig. 2. At time t1, the transmission link is set up with

the longest transmission distance denoted as d1. Meanwhile,

the satellite is moving towards the ground station with a

velocity of v′1. At time t2, the transmission distance is the

shortest, and the relative velocity v′2 is equal to zero. Finally,

the satellite departs from the ground station with a relative

velocity of v′3.

The geometry relation between the elevation angle and the

transmission distance can be built up in Fig. 3, where Re

represents the radius of Earth which is 6371 km, h0 denotes

the orbital altitude of the satellite, the elevation angle is

represented as ε, and the transmission distance is denoted as

d. Hence, the geometry relation between the elevation angle

and the transmission distance is written as

Re + h0

sin
(
π
2 + ε

) =
Re

sinσ
=

d

sin
(
π
2 − ε− σ

) . (1)
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Fig. 4. LEO transmission distance versus the elevation angle.

Referring to (1), the transmission distance d is obtained by

d =
Re + h0

cos ε
· cos

(
ε+ sin−1

(
Re cos ε

Re + h0

))
. (2)

As an example, the transmission distance varying with the

elevation angle, assuming a satellite orbit of 600 km, is shown

in Fig. 4. On the other hand, the LEO satellite-to-ground

transmission link is simply modeled as a point-to-point AWGN

channel due to the negligible multi-path fading [13]. Hence,

free-space path loss (FSPL) is the main contribution to the

transmission loss in LEO satellite-to-ground communication.

The FSPL is the attenuation of the radio energy, which depends

on the signal wavelength and the transmission distance, and is

defined as [13]

FSPL(dB) = 10 log10

((
4πdf

c

)2
)

= 20 log10(d) + 20 log10(f)− 147.56,

(3)

where f is the operating frequency in Hz, d is in m, and c
is the light speed. When the orbital altitude of the satellite is

600 km, the longest transmission distance is 3.88 times longer

than the shortest transmission distance. Therefore, the power

of the received signal would have a variation of 11.8 dB.

Apart form the FSPL, there are also other factors, such as

atmosphere absorption loss and antenna misalignment loss,

which can also affect the received signal power. However,

these effects are much smaller than the impact caused by time-

varying FSPL, and therefore are not discussed in this paper.

B. Time-varying Doppler frequency

Because of the orbital motion, the Doppler frequency shift

varies following an S-curve [14]. According to CCSDS stan-

dard 401.0-B-29 [15], the maximum rate of change of distance

and velocity between the satellite and the ground station are

10 km/s and 380 m/s2 respectively. Therefore, the Doppler

frequency shift varies in the range of −270 kHz to 270 kHz

with a maximum rate of change of 10 kHz/s for 8 GHz carrier

frequency and −870 kHz to 870 kHz with a maximum rate

of change of 34 kHz/s for 26 GHz carrier frequency.

The Doppler frequency shift can be compensated by both

analog and digital methods [13], [16], [17]. In this paper, we

assume an ideal compensation of the Doppler frequency shift

before the DSR model.

DNN

RF-PA

Training data setLabels

tG h t

1
ru t G h t

i t o t

DNN

RF-PA

Training data setLabels

tG h t

1
ru t G h t

i t o t

(a) Offline training.

On-broad RF-PA 
(Transmitter) DNN 

(Receiver)

(T
On-broad RF-PA 

(Transmitter) DNN 
(Receiver)

(b) Online applying.

Fig. 5. Procedure of the DNN-DSR technique. (a) Offline training, (b)
Online applying.

III. THE DNN THEORY

DNNs are composed of fully connected (FC) layers, batch

normalization (BN) layers, and active function layers. Also,

each hidden layer consists of one FC layer, one BN layer, and

one active function layer.

In the FC layer, weights and biases are expressed by W i

and Bi respectively, where i denotes the i-th FC layer. Then,

the output of the i-th FC layer yi is defined as

yi = W ixi +Bi, (4)

where xi is the input of the i-th FC layer. The number of

neurons in each FC layer is determined by iterative tests to

achieve the best performance.

Then, the output of the FC layer is sent into the BN layer.

The BN layer normalizes the mean and variance of the input

data to 0 and 1 respectively, and then gives the input data

a new mean and variance. In this way, the time cost of the

training step can be significantly reduced [18]. The output of

the BN layer can be written as

ŷi = γ
yi − E[yi]√
Var[yi] + ε

+ β, (5)

where ŷi is the output of the BN layer. Also, γ and β, which

represent the new mean and variance of the input data, are the

scaling and shifting parameters respectively. Note that, γ and

β are learnable parameters. Besides, ε is a constant parameter

that prevents the denominator from being zero. Generally, ε is

set to 0.001.

Finally, the output of the BN layer is sent into the active

function layer, which is expressed by F (·). F (·) is a nonlinear

function such that the DNN becomes nonlinear. Owing to the

nonlinearity, the DNN can fit arbitrary curves. The rectified

linear units (ReLU) active function is used in the DNN-

DSR technique for accelerating convergence [19]. The ReLU

function is defined as

FReLU (u) = max(u, 0), (6)

where u denotes the input of the ReLU function. Then, the

output of one hidden layer can be expressed by

xi+1 = max(ŷi, 0), (7)

where xi+1 is the input of the next FC layer. This procedure

that transfers the raw data from the first layer to the last layer

is called the forward propagation. Useful features are extracted

from the raw data layer by layer.
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Fig. 6. Structure of the exploited DNN.

In this paper, the Smooth L1 loss function is utilized for

regression due to its robustness to outliers [20]. Outliers

represent the abnormal I/Q values that are extremely far from

the true values in this work. The Smooth L1 loss function is

represented by

Loss(O, T ) =
1

N

N∑
n=1

Ei, (8)

where O and T are the predicted values and true values

respectively, and

Ei =

{
0.5 (Oi − Ti)

2
, if |Oi − Ti| < 1

|Oi − Ti| − 0.5, otherwise
. (9)

Besides, the adaptive moment estimation (Adam) algorithm

is used for updating the weights of the DNN due to its

computational efficiency [21]. The procedure that transfers

the loss from the last layer to the first layer for updating the

weights of the DNN is called backward propagation.

IV. PROPOSED DNN-DSR TECHNIQUE

A. Procedure of the DNN-DSR technique

The procedure of the DNN-DSR technique includes two

steps (i.e., offline training and online applying), as shown

in Fig. 5. In the offline training step, the DNN is trained

to capture the nonlinearity of the RF-PA. The output and

input of the RF-PA are set to the training data and true

values, respectively, as shown in Fig. 5(a). Then, the DNN

gradually learns the nonlinearity of the RF-PA during the

training procedure. When the loss is under the preset threshold

or no longer converged, the training step is finished. After

training, the functionality of the DNN, denoted as u(t), is an

optimal estimation of Gr · h−1(t), where Gt · Gr ≈ 1, and

Gt is the gain of the RF-PA. In the online applying step, the

trained DNN is placed at the ground station operating in the

digital baseband. Meanwhile, the RF-PA that is learned by the

DNN is assembled on the LEO satellite, as shown in Fig. 5(b).

Furthermore, considering extending the lifetime of satellites,

the DNN-DSR technique needs to work with different or aging

RF-PAs. In the first case, several backup RF-PAs will be

assembled on the space-borne transmitter before the satellite

is launched. Therefore, it provides enough time for the DNN-

DSR technique to learn the nonlinearity of each RF-PA. In the
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Fig. 7. Power variation of received signals. (a) Input of the two DSR
models, (b) Input of the first batch normalization layer, (c) Output of the
first batch normalization layer, (d) Output of the proposed DNN-DSR
model, (e) Output of the MP-DSR model.

second case, the nonlinearity of the space-borne RF-PA varies

with the temperature, voltage supply, and time. The DNN-

DSR technique has the potential to update the DNN model

online via transmitting training sequences from the satellite to

the ground station without a feedback loop. However, online
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updating of the DNN model is not the main focus of this paper,

and it will be included in future work.

B. Principle analysis
The DSR technique typically encounters two critical chal-

lenges, which are the time-varying signal power and the

AWGN. The DNN-DSR technique has two important features

which well copes with these two challenges.
Firstly, the DNN-DSR technique is inherently robust to

noise. In [8]–[10], DNNs appear robustness to noise if the

training data are intentionally and randomly corrupted by

noise. In other words, DNNs can learn the characteristics of the

noise from the corrupted training data, and use the knowledge

for improving the extraction of the data features. In this work,

the captured output and input signals of RF-PAs are polluted

by the thermal noise, which is a kind of AWGN. On the other

hand, the principle of the MP-DSR technique is that different

amplitudes of the output signal of the RF-PA are multiplied

by different gains. Then, the output of the MP-DSR model

appears to be linearly amplified. Therefore, the DNN-DSR

technique appears more robust to the AWGN than the MP-

DSR technique.
Another important feature of DNN-DSR is the power in-

dependence, which is achieved by including BN layers. The

structure of the exploited DNN is shown in Fig. 6, where rI [n]
and rQ [n] are Cartesian I/Q components of received signals.

r̂I [n] and r̂Q [n] are the I/Q components of recovered signals.

NMD is the number of past samples that corresponds to the

memory depth of MP techniques. (a), (b), (c), and (d) are the

input of the DNN, the input of the first BN layer, the output

of the first BN layer, and the output of DNN, respectively.

The time-domain signals of (a), (b), (c), and (d) are shown

in Fig. 7. It can be observed that the input power variation of

the DNN has insignificant effect on the output of the DNN,

and the first BN layer can keep the output power at a constant

level. However, the MP-DSR model severely suffers from the

time-varying signal power (Fig. 7(e)).
The mathematical model of the BN layer is shown in Fig. 6,

corresponding to Eq. (5). The mean and the variance of the

training data are both normalized by BN layers. In this paper,

the mean and variance of the training data indicate the mean

power and power variation of the input signal, respectively.

Therefore, the BN layers can remove the characteristic of the

time-varying signal power from the signal received at ground

stations. Because of this advantage, the BN layer is inserted in

every hidden layer, such that the time-varying signal power no

longer affects the output of the DNN-DSR model. Therefore,

the DNN-DSR technique is power independent by using the

DNN with BN layers. However, referring to the principle

of the MP-DSR technique, if the entire power level of the

received signal changed, the MP coefficients would become

completely incorrect. Therefore, the MP-DSR technique is a

power dependent model and unsuited for the target application.

V. VALIDATION

A. Experimental setups
The radio frequency signal is generated by the signal gen-

erator and captured by the signal analyzer with MATLAB, as

RF-PA
(GaN HEMT)

MATLAB R&S FSQ26 
Signal Analyzer

Output I/Q Signal

Input I/Q Signal

R&S SMBV 
100A Vector 

Signal Generator

Attenuators

Linear Power 
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Input I/Q Signal

R&S SMBV 
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Signal Generator

Attenuators

Linear Power 
RF Amplifier

Fig. 8. Schematic diagram of the data collection system.

Fig. 9. Entire experimental environment.

shown in Fig. 8. The signal generator and the signal analyzer

are R&S SMBV100A [22] and R&S FSQ26 [23] respectively.

A CGH40006P RF-PA [24], which is a gallium nitride high

electron mobility transistor, is used for testing the recovery

performance. Furthermore, to have enough power to drive the

RF-PA, the output of the signal generator is pre-amplified by

a linear power RF amplifier [25]. The gain of the linear power

RF amplifier can be approximately regarded as a constant

number as the output power of the signal generator varies.

The experimental environment is shown in Fig. 9.

In order to completely learn the nonlinearity of the RF-PA,

the signal that is sensitive to the nonlinear distortion should

be chosen in the experiments. In other words, it is necessary

to find a signal with a high PAPR. In this experiment, we

generate an OFDM signal with a PAPR of 10.06 dB directly

from the signal generator. On the other hand, the frequency

band and the carrier frequency of the signal are not the major

concerns in this work. As C-band communication systems

have already been deployed in satellites [26], the frequency

band and the frequency point are set to 10 MHz and 3.5 GHz,

respectively. Moreover, different input power levels of the RF-

PA are taken into account for deriving the relation between the

power efficiency of the RF-PA and the recovery performance,

and different attenuators are inserted between the RF-PA and
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TABLE I
RECOVERY PERFORMANCE VERSUS THE SIZE OF DNNS

Number of hidden layers and neurons EVM1 ACPR1, 2

1-10 2.55% -40.19 dBc

1-100 2.38% -40.65 dBc

1-300 1.83% -43.01 dBc

1-500 1.59% -43.91 dBc

1-10, 2-10 2.16% -41.82 dBc

1-50, 2-50 1.51% -44.63 dBc

1-100, 2-100 1.37% -45.95 dBc

1-300, 2-150 1.33% -46.74 dBc

1-500, 2-500 1.27% -46.73 dBc

1 The EVM and ACPR of the output signal of the RF-PA without
DSR techniques are 8.06% and -32.06 dBc respectively.

2 The ACPR of the input signal of the RF-PA is -50.03 dBc.

TABLE II
MODULATION FORMAT-DEPENDENT FACTOR

Modulation PSK 16QAM 32QAM 64QAM

k2 1 9/5 17/10 7/3

the signal analyzer to simulate the varying signal power.

On the other hand, the number of neurons and layers

should be set appropriately. If the number of hidden layers

and neurons is too small, the DNN cannot extract sufficient

features from training data for linearizing the RF-PA (i.e.,

underfitting). In contrast, if the number of hidden layers and

neurons is too large, the DNN will fit training data too

closely (i.e., overfitting) and time will be wasted on training

without any performance improvement or even have the risk

of poor application performance. After testing the recovery

performance versus different numbers of the neurons and

layers, two hidden layers employed with 300 and 150 neurons

respectively, are shown in Table. I. It can be clearly seen

that if the size of the DNN is large enough (i.e., two hidden

layers with 300 and 150 neurons respectively in this work),

the recovery performance will not increase as the size of the

DNN increases. Considering the memory effect of the RF-PA,

the memory depth is set to 7. Since the training data and the

true values are two complex-valued sets (I and Q), the number

of neurons of the input layer and output layer is set to 14 and 2

respectively. In order to make the comparison fair, the memory

depth of the MP-DSR technique is also set to 7. The DNN is

trained using Python 3.7.0.

B. Computing resources analysis
The nonlinearity order of the MP model is set to 4. Then,

the MP model used in the experiment can be represented as

rMP [n] =
3∑

l=0

6∑
m=0

al,ms[n−m] |s[n−m]|2l . (10)

Where a are the coefficients of the MP model. Then, it costs

189 real multiplications and 133 real additions.

Considering the number of neurons in each layer is 14, 300,

150, 2 respectively, there are at least 49500 real multiplications

and 49964 real additions. However, the computing and power

resources are not an issue at ground stations as non-space level

yet relatively low cost and significantly powerful computing

resources, such as GPUs, are available. Therefore, although the

DNN-DSR technique needs more computing resources than

the MP-DSR technique, it would not limit the development of

the deep learning technology in the space industry.

C. Relation between EVM, BER and SNR

The EVM is used to evaluate the performance of transmit-

ters and receivers. In [27] and [28], the EVM-BER relation

with different digital modulations is written as

BER =
1−M−1/2

0.5 log2 M
erfc

[√
1.5

(M − 1)k2EVM2
max

]
, (11)

where EVMmax is measured when the maximum power of the

ideal constellation vector is normalized to 1. The values of k2

with different digital modulations are shown in Table. II.

Referring to (11), the EVM-BER relation is described in

Fig. 10(a). As shown in the figure, when the EVM is lower

than 10%, decreasing the EVM can dramatically improve the

BER performance by several orders of magnitude. Then, from

Fig. 10(b) that depicts different digital modulations with their

theoretical BER curves, the EVM performance has a close

connection with the output power of the transmitter.

D. Efficiency analysis

As mentioned in section I, there is a trade-off between the

nonlinearity and power efficiency of the RF-PA. That trade-

off can be clearly observed in Table. III, where the output of

the RF-PA is analyzed in terms of the ACPR and EVM with

different input powers of the RF-PA.

Fig. 11 specifies the measured recovery performance of the

DNN-DSR and MP-DSR technique in terms of the EVM and

ACPR, where the drain efficiency differences corresponding

to the same distance on the abscissa are not equal. This is

because the drain efficiency is measured after adjusting the

output power of the signal generator with the same power step.

The output power of the signal generator varies equidistantly;

however, the drain efficiency varies not strictly equidistantly.

Since the DSR technique is operated at the receiver side, we

should pay more attention on the EVM rather than the ACPR

to verify the DSR technique.

When the drain efficiency is about 45%, the DNN-DSR

technique performs approximately 1% better than the MP-DSR

technique in EVM. It is clearly observed in Fig. 10(a) that if

the EVM is improved from 8% to 7% for the OFDM-16QAM

modulation, the BER will drop from 1 × 10−5 to 8 × 10−7.

Consequently, we can change to a higher-order modulation to

transmit more data using the DNN-DSR technique instead of

the MP-DSR technique, while maintaining the same output

power of the RF-PA.

More importantly, compared with the power back-off tech-

nique, the DNN-DSR technique can significantly improve

the drain efficiency, while keeping the same EVM level. As

depicted in Fig. 10(a), if the BER is required under 10−5,

the EVM will be restricted under 8% for the OFDM-16QAM
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Fig. 10. Inter-dependencies between (a) BER and EVM, and (b) the theoretical BER curves for different digital modulations.

TABLE III
MEASURED EVM AND ACPR OF THE OUTPUT OF THE RF-PA WITHOUT USING ANY LINEARIZATION TECHNIQUES

Input power 33.85 dBm 33.35 dBm 32.85 dBm 32.5 dBm 32 dBm 30.95 dBm 30.05 dBm 29.45 dBm 28.95 dBm 28.5 dBm 27.6 dBm 26.45 dBm 26 dBm

Output power 38.6 dBm 38.4 dBm 38.15 dBm 37.9 dBm 37.7 dBm 37.3 dBm 36.7 dBm 36.45 dBm 36.15 dBm 35.75 dBm 35.1 dBm 34.35 dBm 33.98 dBm

Drain efficiency 46.2% 45.0% 43.6% 42.3% 41.7% 40.9% 38.3% 37.7% 36.6% 34.8% 32.6% 29.8% 28.4%

EVM 24.6% 23.0% 21.2% 19.5% 18.0% 14.8% 12.2% 11.1% 10.1% 9.4% 8.1% 7.4% 7.3%

ACPR -20.9 dBc -21.6 dBc -22.4 dBc -23.2 dBc -24.0 dBc -25.9 dBc -27.8 dBc -28.8 dBc -29.8 dBc -30.6 dBc -32.1 dBc -33.0 dBc -33.3 dBc
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Fig. 11. Measured recovery performance comparison of the DNN-DSR technique and the MP-DSR technique in terms of the ACPR and the EVM
alone with the drain efficiency of the RF-PA. (a) Measured relation between the drain efficiency and the EVM, (b) Measured relation between the
drain efficiency and the ACPR.
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Fig. 12. Simulation results about the AWGN robustness comparison between the DNN-DSR technique and the MP-DSR technique in terms of the
EVM and the ACPR. (a) EVM performance under the AWGN channel, (b) ACPR performance under the AWGN channel.

modulation. Fig. 11(a) specifies that the DNN-DSR technique

can achieve almost 45% of the drain efficiency when an EVM

of 8% is achieved, while the drain efficiency is only 32.6% by

using power back off to obtain the same EVM level. In other

words, the drain efficiency of the RF-PA can be increased from

32.6% to 45% using the DNN-DSR technique.

E. Noise robustness analysis
With a small input power of the RF-PA, it appears a slight

nonlinearity, resulting in a low EVM level. It is clear to see

Authorized licensed use limited to: Aalborg Universitetsbibliotek. Downloaded on May 28,2020 at 08:01:02 UTC from IEEE Xplore.  Restrictions apply. 



0278-0046 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIE.2020.2994873, IEEE
Transactions on Industrial Electronics

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS

how the EVM changes under the AWGN channel. In this

work, we utilize a small input power to analyze the recovery

performance, which corresponds to the input power of 26 dBm

in Table. III.

Fig. 12 describes the recovery performance of the two DSR

techniques under the AWGN channel, in terms of the EVM

and the ACPR. As can be seen, the recovery performance

of the DNN-DSR technique is always better than that of the

MP-DSR technique. Similarly, the ACPR is not important to

qualify the performance of the DSR technique.

When the SNR is higher than 24 dB, the DNN-DSR

technique outperforms the MP-DSR technique in SNR with

3 dB improvement under the same level of the EVM. In

other words, the transmitted power can be reduced by up

to 3 dB while maintaining the same EVM (i.e., the BER)

by using the DNN-DSR technique instead of the MP-DSR

technique. Particularly, when the SNR is 27 dB, the DNN-DSR

technique can obtain approximately 2% improvement of the

EVM, compared with the MP-DSR technique. Then, as shown

in Fig. 10(a), above three orders of magnitude improvement of

the BER can be achieved for the OFDM-32QAM modulation.

When the SNR is lower than 24 dB, the MP-DSR technique

is not working at all. Compared with the communication

system without using any linearization techniques (i.e., the

gray line), if the EVM is required to be 9%, the DNN-DSR

technique can achieve approximately 4 dB improvement of the

SNR. Equivalently, the transmitted power can be reduced by

4 dB exploiting the DNN-DSR technique while maintaining

the same BER. Furthermore, when the SNR is around 23 dB,

above 2.5% improvement of the EVM can be obtained by

using the DNN-DSR technique, compared with the communi-

cation system without linearization techniques. Then, for the

OFDM signal with 16QAM modulation, from Fig. 10(a), about

two orders of magnitude improvement of the BER can be

obtained.

F. Power independence analysis

Since the input power of the RF-PA can affect the nonlin-

earity of the RF-PA, the input power should be kept constant

in the power independence experiment. As an experiment,

we also select a signal with a small input power but still

contains sufficient nonlinear distortion, corresponding to the

input power of 27.6 dBm in Table. III. Then, three groups

of the output signals of the RF-PA, denoted as S1, S2, and

S3 respectively, are captured using different attenuators. The

only difference between them is the power level, where the

attenuation of the signal S2 is regarded as 0 dB. Then, the

attenuation coefficients of the signal S1 and S3 are relatively

6 dB and −6 dB, respectively, such that the signal power

variation of the whole satellite communication window can

be completely covered. To validate the power independence,

signal S2 is chosen to train the DNN and the MP model. The

trained DNN and MP are both called M2. Then, the signals

S1 and S3 are used to finish the recovery.

Fig. 13 specifies the recovery performance comparison

between the DNN-DSR technique and the MP-DSR technique

with different signal powers, in terms of the power density

TABLE IV
MEASURED EVM AND ACPR OF THE OUTPUT OF THESE TWO DSR

TECHNIQUES WITH THE DIFFERENT RECEIVED SIGNAL POWERS

DSR Model M2 M2 M2

Signal S1 (41.1 dBm) S2 (35.1 dBm) S3 (29.1 dBm)

EVM(DNN) 1.88% 1.86% 1.92%

EVM(MP) 1765.2% 1.61% 2.51%

ACPR(DNN) -47.32 dBc -46.71 dBc -46.72 dBc

ACPR(MP) -11.22 dBc -47.48 dBc -35.51 dBc

spectrum (PSD) and AM-AM curve. The gains, shown in

Fig. 13(b) and Fig. 13(d), are measured with the effect of

attenuators.

In contrast to the DNN-DSR technique, the MP-DSR tech-

nique is not working at all when the received signal power

changes. Besides, it can be clearly observed in Fig.13(b) and

Fig. 13(d) that the output power of the DNN always remains

constant regardless of the change in the input power of the

DNN. However, the output power of the MP-DSR technique

varies with the input power.

The measured EVM and ACPR are given in Table. IV,

where superior recovery performance of the DNN-DSR tech-

nique can be seen over the MP-DSR technique (Fig. 13(a)).

The benefits of the DNN-DSR technique are further concluded

as follows:

1) The DNN-DSR technique corrects the signal distortion

caused by space-borne RF-PAs at the ground station,

eliminating the need of DPD at the satellite, and hence

saves space-borne computing resources.

2) The drain efficiency of the RF-PA can be increased to

above 45% by using the DNN-DSR technique. Com-

pared with the power back-off technique, the DNN-DSR

technique can obtain up to 13% increase of the drain

efficiency while maintaining the same EVM performance.

3) The MP-DSR technique cannot tolerate time-varying re-

ceived signal power caused by time varying communi-

cation distances. However, this is not an issue for the

DNN-DSR technique due to the BN layer.

4) The DNN-DSR technique is more robust to the AWGN

than the MP-DSR technique.

VI. CONCLUSION

In this paper, we introduced a new DSR technique based

on DNNs (DNN-DSR) for LEO satellite-to-ground commu-

nications. The DNN-DSR technique allows the space-borne

RF-PA to work close to its saturation region, and hence has

the ability to significantly increase the power efficiency of

the satellites. The DNN-DSR technique features robustness

against the noise and power variation, which makes it suitable

to handle the additive white Gaussian noise (AWGN) channel

and drastic power variation featured in LEO satellite-to-ground

communications, while it is very challenging for conventional

approaches. Seen from the experiment validation results, the

DNN-DSR approach can increase the drain efficiency of a GaN

RF-PA from 32.6% to 45% compared with the power back-off

linearization technique. The results also show that the DNN-

DSR approach relaxes the required transmitted power from the
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(b) AM-AM curve of the output signal of the MP-DSR technique.
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(c) PSD of the output signal of the DNN-DSR technique.
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Fig. 13. Measured PSD and the AM-AM for comparison of the DNN-DSR technique and the MP-DSR technique with the different received signal
power. (a) PSD of the output signal of the MP-DSR technique, (b) AM-AM curve of the output signal of the MP-DSR technique, (c) PSD of the
output signal of the DNN-DSR technique, (d) AM-AM curve of the output signal of the DNN-DSR technique.

satellite by up to 3 dB compared with the memory polynomial

based digital signal recovery (MP-DSR). With such advantages

and satisfactory performance, the DNN-DSR technique pro-

vides a promising solution to improve the transmission quality

for LEO satellite-to-ground communication systems.

REFERENCES

[1] J. Wang, L. Li, and M. Zhou, “Topological dynamics characterization
for LEO satellite networks,” Comput. Netw., vol. 51, no. 1, pp. 43–53,
2007.

[2] G. Araniti, I. Bisio, M. De Sanctis, A. Orsino, and J. Cosmas, “Multime-
dia content delivery for emerging 5G-satellite networks,” IEEE Trans.
Broadcast., vol. 62, no. 1, pp. 10–23, Mar. 2016.

[3] A. Molina, K. Rajamani, and K. Azadet, “Digital predistortion using
lookup tables with linear interpolation and extrapolation: Direct least
squares coefficient adaptation,” IEEE Trans. Microw. Theory Tech.,
vol. 65, no. 3, pp. 980–987, Mar. 2017.

[4] D. R. Morgan, Z. Ma, J. Kim, M. G. Zierdt, and J. Pastalan, “A
generalized memory polynomial model for digital predistortion of RF
power amplifiers,” IEEE Trans. Signal Process., vol. 54, no. 10, pp.
3852–3860, Oct. 2006.

[5] Z. Su, J. Kolbusz, and B. M. Wilamowski, “Linearization of bipolar
amplifiers based on neural-network training algorithm,” IEEE Trans. Ind.
Electron., vol. 63, no. 6, pp. 3737–3744, Jun. 2016.
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