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Abstract—Phase-locked loop (PLL) is commonly used to syn-
chronize the phase angle of the injected current of voltage
source grid-connected inverters (GCIs) with that of the voltage
at point of common coupling. However, the quadrature-axis
component of the dq impedance model of the GCIs presents
negative resistance characteristics in low-frequency range due to
the usage of the PLL, which may lead to low-frequency instability
phenomena if the GCIs work under weak grid condition. This
paper presents a dq impedance reshaping method of power-
controlled GCIs to eliminate the negative effect of PLL on low-
frequency stability. The dq impedance models of the GCIs under
current and power control modes are first established using
complex vector and complex transfer function theory. On its
basis, the negative effects of PLL on current control loop and
power control loop are theoretically derived. A grid voltage feed-
forward loop is then designed in the control system of the power-
controlled GCIs, where the parameters of the feed-forward loop
are calculated. The effectiveness of the proposed dq impedance
reshaping method is validated by frequency scanning results and
time-domain simulation results.

Index Terms—Grid-connected inverter, impedance reshaping,
low-frequency stability, negative resistance, phase-locked loop,
power control loop.

I. INTRODUCTION

Renewable energies, such as wind power and solar power,
have been increasingly penetrating into utility grid in recent
years. Power electronic devices are commonly used as the
grid interface to transmit the generated electricity into the
utility grid, due to their superior controllability and high
efficiency [1]. However, the interactions between multiple-
timescale control loops of the grid-connected inverters (GCIs)
with time-varying grid impedance tend to cause instability
phenomena in wide frequency ranges [2], [3]. Specifically,
phase-locked loop (PLL) is commonly used to synchronize the
phase angle of the injected grid current with that of the voltage
at point of common coupling (PCC) [4]. In addition, outer
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power control loop is used to regulate the injected active and
reactive power. It has widely been reported that low-frequency
instability phenomena may occur, if the parameters of the PLL
or outer power control loop are not properly designed under
weak grid conditions [5]–[11].

The dq impedance model has been reshaped in many works
to eliminate the negative resistance characteristics of PLL
[7], [9], [12]–[23]. In [7], [9], [12], [13], PLL bandwidth
is decreased to narrow the non-passive low-frequency range,
which is actually a trade-off between low-frequency stability
and system dynamic performance. A robust vector control
strategy of the GCI is developed in [14] to eliminate the
negative effect of PLL on low-frequency stability under op-
erating point and grid impedance variation, which need not
to change the structure and parameters of the standard vector
controllers, e.g., power controller, dc-link voltage controller,
current controller and PLL. In [15], an improved design of
current controller parameters and capacitor-current-feedback
coefficient to reduce the negative effect of PLL on current
control loop under weak grid condition without additional
control strategy is presented. In [16], a symmetric PLL struc-
ture is proposed to mitigate the frequency coupling between
directional-axis and quadrature-axis impedance components,
which can be depicted as a single-input-single-output (SISO)
impedance model. The SISO impedance reshaping technique
can then be applied for stability enhancement. However, the
well-known synchronous reference frame (SRF)-PLL which
has an asymmetrical structure is still widely used [7]–[9].

In addition, filter-based impedance reshaping method is
presented in [17]–[19]. In [17], notch filter is inserted into
PLL control loop to reshape the quadrature-axis impedance,
resulting in an enlarged positive resistance region. However,
the PLL dynamics tend to be weakened. In [18], band-pass
filter is applied to reshape the output impedance of a nearby
power converter. However, the impedance is only reshaped
at the predetermined frequency points. In [19], the typical
delay-based PLL has been improved by adding a second-order
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Fig. 1. Control structure of the three-phase GCI with outer power control
loop, inner current control loop and PLL.

low-pass filter and a phase correction angle for alleviating the
adverse impact of PLLs. It is found in [20], [21] that the
phase angle of the q-axis component of the dq impedance
model can be boosted by injecting negative reactive power,
thus avoiding the low-frequency instability phenomena under
weak grid conditions. However, a huge amount of negative
reactive power injection may be needed under severely weak
grid conditions, which may challenge the maximum capacity
of the GCI. In [16], [22]–[24], grid voltage feed-forward
control loop is used to reshape the quadrature-axis impedance
component. However, only inner current control loop and PLL
are investigated in [16], [22], [23], and dc-link voltage control
loop is further considered in [24]. Whether the presented
dq impedance reshaping method is still effective for power-
controlled GCI should further be investigated.

This paper presents a dq impedance reshaping method of
power-controlled GCI to mitigate the negative effects of PLL
and outer power control loop on low-frequency stability. The
dq impedance model of a power-controlled GCI with outer
power control loop, inner current control loop and PLL is first
established based on complex vectors and complex transfer
functions. On its basis, the effects of PLL and outer power
control loop on low-frequency impedance characteristics are
investigated. A feed-forward control loop is then designed to
cancel out the negative effects of PLL and outer power control
loop, where the feed-forward coefficient is calculated.

II. COMPLEX TRANSFER FUNCTION-BASED DQ
IMPEDANCE MODELING OF PLL

In this section, the typical control structure of the three-
phase voltage source GCI is first depicted. On its basis, the
dq impedance models considering different control loops are
established.

Fig. 1(a) shows the one-line diagram of the three-phase
power-controlled GCI. L-type filter Lf is used to attenuate
the high-frequency switching harmonics. The grid impedance
is emulate as a series inductor Lg and resistor Rg in parallel
with a shunt capacitor Cg . SRF-PLL is used to synchronize the
phase angle of the PCC voltage with that of the injected grid
current. In addition, outer power controller and inner current
controller are realized by PI controller in dq reference frame.
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Fig. 2. Block diagram of Fig. 1(a). (a) Based on real space vectors and
transfer matrices [9]. (b) Based on complex space vectors and complex transfer
functions.

A. Block Diagram Representation Based on Complex Space
Vectors and Complex Transfer Functions

The definition of complex space vectors and complex trans-
fer functions can be found in [21], [25], [26]. In addition, how
to transfer the real space vectors into complex space vectors
and transfer 2 × 2 transfer matrices into complex transfer
functions are also explained in [21], [25], [26]. The block
diagram of Fig. 1(a) based on real space vectors and 2 × 2
transfer matrices has been established in [9], which is shown as
the blue part in Fig. 2(a) as a basis to derive the dq impedance
model represented in the form of complex space vectors and
complex transfer functions. The parameters of current control
loop and PLL in Fig. 2(a) can be reformulated as

Irefg,dq → Iref
g,dq Isg,dq → Isg,dq Icg,dq → Icg,dq V s

PCC,dq → Vs
PCC,dq

Vm,dq → Vm,dq V c
c,dq → Vc

c,dq V s
c,dq → Vs

c,dq (1)

Gm
ci =

[
kpi + kii

s 0

0 kpi + kii

s

]
→ Gci = kpi +

kii
s

Gm
del =

[
e−1.5sTs 0

0 e−1.5sTs

]
→ Gdel = e−1.5sTs (2)

Y m
L =

1

Lf (s2 + ω2
1)

[
s ω1

−ω1 s

]
→ YL =

1

Lf (s + jω1)

Gm
PLL i =

[
0 −Isg,qGPLL

0 Isg,dGPLL

]
→

G+,PLL i = −G−,PLL i =
Is
g,dqGPLL

2
(3)

Gm
PLL d =

[
0 −V s

c,qGPLL

0 V s
c,dGPLL

]
→

G+,PLL d = −G−,PLL d =
Vs

c,dqGPLL

2



GPLL =
tfPLL

s + tfPLLV s
PCC,d

tfPLL = kppll +
kipll
s

(4)

where tfPLL is the PI transfer function of PLL controller.
Based on (1)-(3), block diagrams of the GCI considering

inner current control loop and PLL are represented using
complex space vectors and complex transfer functions, shown
as the blue part in Fig. 2(b). The red part for outer power
control loop will be investigated in Section III.

B. DQ Impedance Modeling Considering only Current Con-
trol Loop

The closed-loop response of ∆Isg,dq when considering only
current control lolop can be derived from Fig. 2(b), shown as

∆Is
g,dq= GCCL

cl,dq∆Iref
g,dq−YCCL

cl,dq∆Vs
PCC,dq (5)

where GCCL
cl,dq and YCCL

cl,dq are the closed-loop gain and output
admittance, respectively, shown as

GCCL
cl,dq = Tcl,dq/(1 + Tcl,dq) YCCL

cl,dq = YL/(1 + Tcl,dq) (6)

where Tcl,dq = GciGdelVdcYL is the open-loop gain.
The dq admittance matrix Y CCL,m

dq can be obtained by
substituting (2) into (6), shown as

YCCL
cl,dq =

1

Lf (s + jω1) + GciGdelVdc
→

Y CCL,m
dq =

[
Y CCL
dd Y CCL

dq

Y CCL
qd Y CCL

qq

]
(7)

=
1

Λ1

[
Lfs + GciGdelVdc ω1Lf

−ω1Lf Lfs + GciGdelVdc

]
where

Λ1 = (Lfs + GciGdelVdc)
2 + ω2

1L
2
f (8)

On the other hand, when ∆Iref
g,dq = 0, the following

equation can be obtained based on (6).

−
[

∆Is
g,dq

∆Is∗
g,dq

]
=

[
YCCL

cl,dq 0

0 YCCL∗
cl,dq

] [
∆Vs

PCC,dq

∆Vs∗
PCC,dq

]
= YCCL,m

±,dq

[
∆Vs

PCC,dq

∆Vs∗
PCC,dq

]
(9)

Then, the dq impedance matrix ZCCL,m
dq can be obtained

as [26], [27]

ZCCL,m
dq = A−1Z ZCCL,m

±,dq AZ

=

[
Lfs + GciGdelVdc −ω1Lf

ω1Lf Lfs + GciGdelVdc

]
(10)

where AZ = 1√
2
[1, j; 1,−j].

It can be seen from (7) and (10) that the dq impedance
models obtained by the two methods are the same.

C. DQ Impedance Modeling Further Considering PLL

When further considering PLL, two more feed-forward
paths which consist of G+,PLL d and G+,PLL d, respectively,
should be considered. The closed-loop response of ∆Isg,dq can
then be derived as

∆Is
g,dq = GCCL

cl,dq∆Iref
g,dq −YCCL

cl,dq∆Vs
PCC,dq...

+YPLL
cl,dq∆Vs

PCC,dq −YPLL
cl,dq∆Vs∗

PCC,dq︸ ︷︷ ︸
Effects of PLL dynamics

(11)

where the detailed expression of YPLL
cl,dq is shown as

YPLL
cl,dq = (

G+,PLL d

Gci
+ G+,PLL i)G

CCL
cl,dq (12)

When ∆Iref
g,dq = 0, the following equation can be obtained

based on (11).

−
[

∆Is
g,dq

∆Is∗
g,dq

]
=

[
YCCL

cl,dq −YPLL
cl,dq YPLL

cl,dq

YPLL∗
cl,dq YCCL∗

cl,dq −YPLL∗
cl,dq

]
...[

∆Vs
PCC,dq

∆Vs∗
PCC,dq

]
= YPLL,m

±,dq

[
∆Vs

PCC,dq

∆Vs∗
PCC,dq

]
(13)

Similar with (10), the dq admittance model further consid-
ering PLL dynamics can be derived as

Y PLL,m
dq =

[
Y PLL
dd Y PLL

dq

Y PLL
qd Y PLL

qq

]
= A−1Z YPLL,m

±,dq AZ (14)

where

Y PLL
qq =

YCCL
cl,dq + YCCL∗

cl,dq

2
−YPLL

cl,dq −YPLL∗
cl,dq = ...

Y CCL
qq − [(V s

c,d + Isg,dGci)(Lfs + GciGdelVdc)...

−jω1Lf (V s
c,q + Isg,qGci)]GPLLGdelVdc/Λ1 (15)

It can be seen from (7) and (15) that Y PLL
qq are affected by

PLL dynamics.
On the other hand, the q-axis impedance component further

considering PLL dynamics can be derived as

ZPLL
qq = ZCCL

qq /(1− (V s
c,d + Isg,dGci)GPLLGdelVdc) (16)

It can be seen from (10) and (16) that, the q-axis impedance
component is affected by PLL dynamics.

III. COMPLEX TRANSFER FUNCTION-BASED DQ
IMPEDANCE MODELING OF POWER CONTROL LOOP

In this section, the outer power control loop, i.e., the red part
of Fig. 2(a), is further modeled using complex space vectors
and complex transfer functions.



A. Reformulation of Control Block Diagram of Fig. 2(a) Using
Complex Space Vectors and Complex Transfer Functions

The parameters related with the outer power control loop
can be reformulated as

P ref
PQ =

[
P ref

Qref

]
→ Pref

PQ = P ref + jQref

P ref
PQ PLL =

[
P ref
PLL

Qref
PLL

]
→ Pref

PQ PLL = P ref
PLL + jQref

PLL

Gm
cPQ =

[
kpPQ +

kiPQ

s 0

0 kpPQ +
kiPQ

s

]
→

GcPQ = kpPQ +
kiPQ

s

Gm
PQ i =

[
V s
PCC,d V s

PCC,q

−V s
PCC,q V s

PCC,d

]
→ GPQ i = Vs∗

PCC,dq (17)

and

Gm
PQ v =

[
−Isg,d −Isg,q
−Isg,q Isg,d

]
→

G+,PQ v = 0 G−,PQ v = −Is
g,dq (18)

Gm
PLL v =

[
1 V s

PCC,qGPLL

0 1− V s
PCC,dGPLL

]
→

G+,PLL v = 1−Vs
PCC,dqGPLL/2 (19)

G−,PLL v = Vs
PCC,dqGPLL/2

Note that Gm
PQ v and Gm

PLL v are cascaded in Fig. 2(a).
Therefore,

Gm
PQ PLL v = Gm

PQ vG
m
PLL v =[

−Isg,d −Isg,q − Isg,dV
s
PCC,qGPLL + Isg,qV

s
PCC,dGPLL

−Isg,q Isg,d − Isg,qV
s
PCC,qGPLL − Isg,dV

s
PCC,dGPLL

]
→

G+,PQ PLL v = −
Is
g,dqVs∗

PCC,dq

2
GPLL

G−,PQ PLL v = −Is
g,dq +

Is
g,dqVs∗

PCC,dqGPLL

2
(20)

By combining (3) and (20), the following equation can be
obtained.

G+,PQ PLL v = −G+,PLL iV
s∗
PCC,dq

G−,PQ PLL v = −Is
g,dq + G+,PLL iV

s∗
PCC,dq (21)

The following equation can then be obtained from Fig. 2(a).

∆Pref
PQ PLL = G+,PQ PLL v∆Vs

PCC,dq+G−,PQ PLL v...

∆Vs∗
PCC,dq = −Is

g,dq∆Vs∗
PCC,dq −G+,PLL iV

s∗
PCC,dq...

(∆Vs
PCC,dq −∆Vs∗

PCC,dq) (22)

Based on (22), the small-signal model of the outer power
control loop can be represented as the red part in Fig. 2(b),
which is further simplified as Fig. 3 to facilitate the analysis
of dynamics of outer power control loop [21].
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Fig. 3. Simplified complex space vector and complex transfer function-based
block diagram of Fig. 1(a) further considering outer power control loop.

Similar with (11), the closed-loop response of ∆Isg,dq with
further considering outer power control loop can be derived
as

∆Is
g,dq = GPCL

cl,dq∆Pref
PQ−YCCL1

cl,dq ∆Vs
PCC,dq︸ ︷︷ ︸

CCL−related

...

+YPLL1
cl,dq ∆Vs

PCC,dq −YPLL1
cl,dq ∆Vs∗

PCC,dq︸ ︷︷ ︸
PLL−related

...

+YPCL1
cl,dq ∆Vs

PCC,dq + YPCL2
cl,dq ∆Vs∗

PCC,dq︸ ︷︷ ︸
PCL−related

(23)

where GPCL
cl,dq and YCCL1

cl,dq are the closed-loop gain and cur-
rent control loop-related output admittance when considering
outer power control loop, respectively. In addition, YPLL1

cl,dq

is the PLL-related output admittance. YPCL1
cl,dq and YPCL2

cl,dq

are power control loop-related output admittance. The detailed
expressions are shown as

GPCL
cl,dq =

GcPQTcl,dq

1 + TPCL
cl,dq

YCCL1
cl,dq =

1 + Tcl,dq

1 + TPCL
cl,dq

YCCL
cl,dq

YPLL1
cl,dq =

1 + Tcl,dq

1 + TPCL
cl,dq

YPLL
cl,dq (24)

YPCL1
cl,dq =

2Tcl,dq

1 + TPCL
cl,dq

G+,PLL iV
s∗
PCC,dqGcPQ

YPCL2
cl,dq =

Tcl,dq

1 + TPCL
cl,dq

(Is
g,dq − 2G+,PLL iV

s∗
PCC,dq)GcPQ

where TPCL
cl,dq

= (1 + GcPQVs∗
PCC,dq)Tcl,dq.

Similar with (13), when ∆Pref
PQ = 0, the following equation

can be obtained based on (23).

−
[

∆Is
g,dq

∆Is∗
g,dq

]
= YPCL,m

±,dq

[
∆Vs

PCC,dq

∆Vs∗
PCC,dq

]
=[

YCCL1
cl,dq −YPLL1

cl,dq −YPCL1
cl,dq YPLL1

cl,dq −YPCL2
cl,dq

YPLL1∗
cl,dq −YPCL2∗

cl,dq YCCL1∗
cl,dq −YPLL1∗

cl,dq −YPCL1∗
cl,dq

]
[

∆Vs
PCC,dq

∆Vs∗
PCC,dq

]
(25)

Similar with (10) and (14), the dq admittance model further
considering power control loop can be derived as

Y PCL,m
dq =

[
Y PCL
dd Y PCL

dq

Y PCL
qd Y PCL

qq

]
= A−1Z YPCL,m

±,dq AZ (26)



where

Y PCL
qq =

YCCL1
cl,dq + YCCL1∗

cl,dq

2
−YPLL1

cl,dq −YPLL1∗
cl,dq ...

−
YPCL1

cl,dq + YPCL1∗
cl,dq −YPCL2

cl,dq −YPCL2∗
cl,dq

2
(27)

By combining (7), (15), (24) and (27), it can be seen that all
of the four elements of Y PCL,m

dq are affected by power control
loop dynamics. By substituting (15) and (24) into (27), the
detailed expressions are shown as follows.

Y PCL
qq =

1 + Tcl,dq

1 + TPCL
cl,dq

Y PLL
qq +

Tcl,dqGcPQ

1 + TPCL
cl,dq

P ref

V s
PCC,d

...

(1− 2GPLLV
s
PCC,d) (28)

Similar with (16), the q-axis component of the dq
impedance model when further considering outer power con-
trol loop can be calculated as

ZPCL
qq = −

GcPQGciGdelI
ref
g,q C + BD

A
(29)

where the detailed expressions of A,B,C and D are shown
as

A =
GcPQG

2
ciG

2
del(GcPQ + GPLL)[(P ref )

2
+ (Qref )

2
]

(V s
PCC,d)

2 + ...

GPLLGdel[
0.5VdcGciP

ref + (V s
PCC,d)

2 − ω1LfQ
ref

0.5VdcV s
PCC,d

] + ...

GPLLGcPQGciG
2
delP

ref

0.5Vdc
− 1

B = Lfs +
GdelVdcGci(1 + GcPQV

s
PCC,d)

2

C=ω1Lf D = 1 +
GciGcPQGdelP

ref

V s
PCC,d

(30)

IV. PROPOSED DQ IMPEDANCE RESHAPING METHOD FOR
LOW-FREQUENCY STABILITY IMPROVEMENT

In this section, the existing feed-forward control loop-based
dq impedance reshaping method for current-controlled GCI
is first explained, where the selection of the feed-forward
coefficient is also introduced. On its basis, the feed-forward
control loop-based dq impedance reshaping method is further
extended for power-controlled GCI.

A. Low-Frequency Impedance Characteristics of Inner Cur-
rent Control Loop and PLL

Based on (10), low-frequency impedance model of ZCCL
qq

can be approximated as

ZCCL
qq = kpiVdc cos(1.5ωTs) + j(Lfω − kpiVdc sin(1.5ωTs))

≈ kpiVdc + jLfω (31)

Then, the magnitude and phase angle of ZCCL
qq in low-

frequency range can be calculated based on (31), shown as∣∣ZCCL
qq

∣∣ =

√
(kpiVdc)

2
+ (Lfω)

2

∠ZCCL
qq = arctan

Lfω

kpiVdc
∈ (0, 90o) (32)

It can be seen that ∠ZCCL
qq belongs to (0o, 90o) in low-

frequency range, i.e., low-frequency instability phenomena
will not happen if only inner current control loop is considered.

Then, GPLL
qq is defined as

GPLL
qq = 1− (V s

c,d + Isg,dGci)GPLLGdelVdc

= real(GPLL
qq ) + imag(GPLL

qq ) (33)

where real(GPLL
qq ) < 0 and imag(GPLL

qq ) ≈ 0+, since
GPLL ≈ 1/V s

PCC,d and Gdel ≈ 1 in low-frequency range.
Therefore,∣∣ZPLL

qq

∣∣ =
∣∣ZCCL

qq

∣∣ / ∣∣GPLL
qq

∣∣ < ∣∣ZCCL
qq

∣∣
∠ZPLL

qq = ∠ZCCL
qq − ∠GPLL

qq ≈ arctan
Lfω

kpiVdc
...

−180o ∈ (−180o,−90o) (34)

It can be seen from (32) and (34) that, the PLL tends
to decrease the magnitude of q-axis impedance component
in low-frequency range, and decrease the phase angle into
(−180o,−90o), which may lead to low-frequency instability
phenomena.

B. Existing Q-Axis Impedance Reshaping Method for Current-
Controlled GCI

The feed-forward control loop-based q-axis impedance re-
shaping method for current-controlled GCI has been well
documented in [16], [22], [23]. The core idea is explained
here based on the derived complex transfer function-based dq
impedance models in Sections II and III.

The feed-forward control loop is implemented as the dashed
brown line in Fig. 2(a) (The red part for outer power con-
trol loop is not considered here.). The effect of Km

ff =

[Kff , 0; 0,Kff ] on Y PLL
qq is defined as Y PLL

qqff which can be
calculated as

Y PLL
qqff =

KffGciGdelVdc

Lfs + GciGdelVdc
(35)

In addition, the effect of PLL dynamics on Y PLL
qq has been

derived in (15). For simplification, the coupling effect between
d-axis and q-axis is ignored, which can be satisfied when
Isg,q = 0 [23]. Therefore,

Y PLL
qqPLL = −YPLL

cl,dq −YPLL∗
cl,dq

≈ −
(V s

c,d + Isg,dGci)GPLLGdelVdc

Lfs + GciGdelVdc
(36)

To eliminate the negative effect of PLL dynamics on low-
frequency stability, Y PLL

qqff and Y PLL
qqPLL should be canceled out,

i.e. [23],

Y PLL
qqff + Y PLL

qqPLL = 0 (37)

Kff can be calculated from (35)-(37), shown as

Kff = GPLL(
V s
c,d

Gci
+ Isg,d) ≈ 1

V s
PCC,d

(
V s
c,d

kpi
+ Isg,d) (38)



C. Proposed Q-Axis Impedance Reshaping Method for Power-
Controlled GCI

When Qref = 0, the phase angle of ZPCL
qq can be calculated

as [21]

∠ZPCL
qq = arctan

(Γ1 + Γ3P
ref )ω

Γ2 + Γ4P ref
− 180o (39)

where Γ1, Γ2, Γ3 and Γ4 are shown as

Γ1 = Lf Γ2 =
GdelVdcGci(1 + GcPQV

s
PCC,d)

2

Γ3 =
GciGcPQGdelLf

V s
PCC,d

Γ4 =
G2

ciGcPQG
2
delVdc(1 + GcPQV

s
PCC,d)

2V s
PCC,d

(40)

If kpPQ > 1
V s
PCC,d

, which is commonly satisfied, (41) holds.

Lfω

kpiVdc
/

(Γ1 + Γ3P
ref )ω

Γ2 + Γ4P ref
≈ 1

2
(1 + kpPQV

s
PCC,d) > 1 (41)

It can be seen from (34) and (39) that,

arctan
Lfω

kpiVdc
> arctan

(Γ1 + Γ3P
ref )ω

Γ2 + Γ4P ref
⇒ ∠ZPLL

qq > ∠ZPCL
qq

(42)

(42) shows that when further considering outer power con-
trol loop, the phase angle of the q-axis impedance component
is further decreased, which indicates that the designed Kff

for the current-controlled GCI should be adjusted.
By substituting (15) into (28), and assuming Tcl,dq

1+Tcl,dq
= 1

in low-frequency range, (28) can be reformulated as

Y PCL
qq =

1

1 + GcPQVs∗
PCC,dq

(
YCCL

cl,dq + YCCL∗
cl,dq

2
−YPLL

cl,dq−

...YPLL∗
cl,dq +

GcPQP ref

V s
PCC,d

(1− 2GPLLV
s
PCC,d)) (43)

Similar with (36), the effects of PLL dynamics and outer
power control loop on Y PCL

qq can be defined based on (37)
and (43), shown as

Y PCL
qqPLL PCL =

1

1 + GcPQVs∗
PCC,dq

(−YPLL
cl,dq −YPLL∗

cl,dq ...

+
GcPQP ref

V s
PCC,d

(1− 2GPLLV
s
PCC,d)) =

1

1 + kpPQV s
PCC,d

...

(−Y PLL
qqff +

kpPQP
ref

V s
PCC,d

(1− 2GPLLV
s
PCC,d)) (44)

On the other hand, the effect of the feed-forward control
loop with coefficient Km

ff1 = [Kff1, 0; 0,Kff1] in Fig. 2(a)
on q-axis impedance component can be de calculated as (The
red part for outer power control loop is considered here.)

Y PLL
qqff1 =

Kff1GciGdelVdc

(1 + kpPQV s
PCC,d)(Lfs + GciGdelVdc)

(45)

Similar with (37), to eliminate the negative effects of both
PLL dynamics and outer power control loop on low-frequency
stability, Y PLL

qqff1 and Y PCL
qqPLL PCL should be canceled out, i.e.,

Y PLL
qqff1 + Y PCL

qqPLL PCL = 0 (46)

Kff1 can be calculated from (44)-(46), shown as

Kff1 = Kff −
kpPQP

ref (1− 2GPLLV
s
PCC,d)(1 +

Lfs
GciVdc

)

V s
PCC,d

≈ Kff +
kpPQP

ref

V s
PCC,d

= Kff + kpPQI
s
g,d (47)

It can be seen from (47) that, the coefficient of the designed
feed-forward control loop Kff1 when further considering
outer power control loop is larger than the coefficient of the
designed feed-forward control loop Kff when only consider-
ing inner current control loop and PLL.

V. SIMULATION VERIFICATION

In this section, the effectiveness of the proposed q-axis
impedance component reshaping method for low-frequency
stability improvement of power-controlled GCI is verified
by frequency scanning and time-domain simulation in Mat-
lab/Simulink environment.

A. Frequency Scanning Results of the Q-Axis Impedance Com-
ponent

The circuit and controller parameters of the GCI in Fig. 1(a)
are shown in Table I. Fig. 4(a) shows the Bode diagrams of
ZPLL
qq with different Kff when the outer power control loop

is not considered. In addition, Irefg,d = 2.0 kA and Irefg,q = 0.
It can be seen that, by increasing Kff , the phase angle in
low-frequency range is boosted, and the non-passive region
is narrowed. Specifically, the non-passive frequency range is
narrowed to (0, 4.5 Hz) when Kff = 1.7391. When Kff is 0
or 0.0435, the phase angle difference at the magnitude inter-
action point A (14.8 Hz) of the q-axis impedance components
of GCI and the weak grid is 84.25 − (−96.36) = 180.61o

and 84.25− (−96.00) = 180.25o, respectively. Therefore, the
system is unstable, and will oscillate at 14.8 Hz. In addition,
when Kff is 0.1739 or 0.4348, the phase angle difference
at the magnitude interaction point A (14.8 Hz) of the q-
axis impedance components of GCI and the weak grid is
84.25−(−89.55) = 173.80o and 84.25−(−79.77) = 164.02o,
respectively. Therefore, the system becomes stable at the two
cases. When Kff is further increased to 0.6957 or 1.7391,
the phase angle difference at the magnitude interaction point
B (14.3 Hz) or C (14 Hz) of the q-axis impedance components
of GCI and the weak grid is 85.75− (−71.91) = 157.66o and
86.65 − (−50.04) = 136.69o, respectively, which indicates
that the system is stable under the two cases, and the phase
margin is increased with a large Kff .

On the other hand, Fig. 4(b) shows the Bode diagrams of
ZPCL
qq with different Kff1 when the outer power control loop

is considered. In addition, P ref = 2.0 MW and Qref = 0.
It can be seen that, by increasing Kff1, the phase angle in



TABLE I
CIRCUIT AND CONTROLLER PARAMETERS OF THE GCI

Parameter Value

DC-link voltage Vdc 1150 V
Grid fundamental frequency f1 50 Hz
Inverter side filter inductance Lf1 263 µH
Grid side filter inductance Lf2 200 µH
Filter capacitance Cf 40 µF
Switching frequency fswit 2.5 kHz
Sampling frequency fsamp 2.5 kHz
Grid Vrms (phase-to-phase) Vg 575 V
Proportional gain of power controller kpPQ 2.7454e-05
Integral gain of power controller kiPQ 0.0165
Proportional gain of current controller kpi 5.4908e-04
Integral gain of current controller kii 0.3295
Proportional gain of PLL kppll 20
Integral gain of PLL kipll 200

(a)

(b)

Fig. 4. Bode diagrams of q-axis impedance component. (a) Bode diagrams
of ZPLL

qq with different Kff . (b) Bode diagrams of ZPCL
qq with different

Kff1

low-frequency range is boosted, and the non-passive region
is narrowed. Specifically, the non-passive frequency range is
narrowed to (0, 8.5 Hz) when Kff1 = 1.7391. By comparing
the two yellow lines in Figs. 4(a) and (b), it can be seen that,
with the same coefficient of the feed-forward control loop,
the non-passive region of the power-controlled GCI is wider
than that of the current-controlled GCI, which verifies the
correctness of the theoretical analysis in (42).

When Kff1 is 0, 0.0435, 0.1739 or 0.4348, the phase angle
difference at the magnitude interaction point A (13 Hz) of the
q-axis impedance components of GCI and the weak grid is
87.83− (−102.90) = 190.73o, 87.83− (−102.20) = 190.03o,
87.83−(−100.10) = 187.93o or 87.83−(−96.05) = 183.88o,
respectively. Therefore, the system is unstable under the four

(a) (b)

Fig. 5. Time-domain simulation results of current-controlled GCI with dif-
ferent Kff . (a) Three-phase voltages and currents. (b) FFT of three-phase
currents between 3 s and 4 s.

cases, and will oscillate at 13 Hz. In addition, when Kff

is further increased to 0.6957 or 1.7391, the phase angle
difference at the magnitude interaction point A (13 Hz) or
B (12.2 Hz) of the q-axis impedance components of GCI
and the weak grid is 87.83 − (−92.10) = 179.93o and
87.83 − (−79.91) = 167.74o, respectively, which indicates
that the system is stable under the two cases, and the phase
margin is increased with a large Kff1.

It can be seen from Figs. 4(a) and (b) that, the minimum
coefficient of the feed-forward control loop of the current-
controlled GCI for enforcing low-frequency stability is 0.1739,
whereas the minimum coefficient of the feed-forward control
loop of the power-controlled GCI for enforcing low-frequency
stability is increased to 0.6957, which indicates the required
minimum coefficient of the power-controlled GCI is higher
than that of the current-controlled GCI. The correctness of the
theoretical analysis in (47) is thus validated.

Fig. 5(a) shows the time-domain simulation results of three-
phase voltages and currents of the current-controller GCI with
different Kff . It can be seen that, the system is stable before
3 s when Kff = 0.1739. In addition, the system becomes
unstable between 3 s and 4 s when kff = 0. When Kff is
increased to 0.6957 at 4 s, the system becomes stable again.
Furthermore, the system becomes unstable again when Kff is
decreased to 0.0435 at 5 s. In addition, the frequency spectrum
of the three-phase currents between 3 s and 4 s is shown in
Fig. 5(b), where the oscillation mainly occurs at 64 Hz and
36 Hz. The time-domain simulation results and FFT analysis
agree with the theoretical analysis results in Fig. 4(a).

Fig. 6(a) shows the time-domain simulation results of three-
phase voltages and currents of the power-controller GCI with
different Kff1. It can be seen that, the system is stable before
2 s when Kff1 = 0.6957. In addition, the system becomes
unstable between 2 s and 2.4 s when kff1 = 0. When Kff1

is increased to 1.7391 at 2.4 s, the system becomes stable
again. Furthermore, the system becomes unstable again when
Kff1 is decreased to 0.1739 at 3.4 s. In addition, the frequency
spectrum of the three-phase currents between 5 s and 6 s is
shown in Fig. 6(b), where the oscillation mainly occurs at 65
Hz and 35 Hz. The time-domain simulation results and FFT
analysis agree with the theoretical analysis results in Fig. 4(b).



(a) (b)

Fig. 6. Time-domain simulation results of power-controlled GCI with different
Kff1. (a) Three-phase voltages and currents. (b) FFT of three-phase currents
between 5 s and 6 s.

VI. CONCLUSION

The passivity of the GCI in low-frequency range can be
forced based on feed-forward control loop. The theoretical
analysis results in this paper show that the conventional feed-
forward control loop designed for the current-controlled GCI
cannot guarantee the passivity of the power-controlled GCI
in low-frequency range anymore. Based on the conventional
q-axis impedance component reshaping method, this paper
presents a modified feed-forward control loop design method
of power-controlled GCI, where the coefficient is adjusted
based on the power controller parameters. Both frequency
scanning results and time-domain simulation results verify
the effectiveness of the modified q-axis impedance component
reshaping method for low-frequency stability improvement.
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