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A Gray-Box Hierarchical Oscillatory Instability
Source Identification Method of

Multiple-Inverter-Fed Power Systems
Weihua Zhou, Student Member, IEEE, Raymundo E. Torres-Olguin, Yanbo Wang, Senior Member, IEEE, and Zhe

Chen, Fellow, IEEE

Abstract—This paper presents a gray-box hierarchical in-
stability source identification method of multiple-inverter-fed
power systems, which enables stability analysis at system, com-
ponent, and parameter levels sequentially. Impedance frequency
responses of all components are first obtained using frequency
scanning method. System impedance network model is then
established by connecting these individual components based on
system topology, which is further lumped into a loop impedance
model (LIM). The vector fitting (VF) algorithm is then used to
generate system state-space model from the impedance frequency
responses of the LIM for eigenvalues-based stability analysis. If
the system is assessed to be unstable, problematic components
are further identified by performing impedance-based stability
criterion at terminals of all components, where the numbers of
right-half-plane poles are obtained by the VF algorithm. Finally,
circuit and controller parameters of the identified problematic
components are further identified using the VF algorithm, which
are re-tuned to improve system stability. The proposed hierar-
chical instability source identification method is implemented in
a multiple-paralleled grid-connected inverter system. Simulation
results obtained in Matlab/Simulink platform and real-time
simulation verification results obtained in OPAL-RT platform
are given to validate the correctness of the theoretical analysis
results.

Index Terms—Eigenvalues analysis, frequency scanning, grid-
connected inverter, impedance-based stability criterion, instabil-
ity, loop impedance model, vector fitting algorithm.

NOMENCLATURE

Abbreviations
GCI Grid-connected inverter.
IBSC Impedance-based stability criterion.
INM Impedance network model.
LIM Loop impedance model.
NAM Nodal admittance matrix.
NC Nyquist criterion.
NPR Non-passivity region.
P.u.l. Per-unit-length.
PCC Point of common coupling.
PF Participation factor.
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PI Proportional integral.
PLL Phase-locked loop.
RHP Right-half-plane.
SSM State-space model.
VF, MF Vector fitting and matrix fitting.
Symbols
ω1 Grid fundamental angular frequency.
Θ, ⊕ Parallel and series connection opera-

tors.
AiL, BiL, CiL, DiL State matrices of load part divided at

node #i.
AiS , BiS , CiS , DiS State matrices of source part divided

at node #i.
Asys, Xsys Transition matrix and state-variable

vector of the whole system.
Cf Filter capcitance.
fsw, fs, Ts Switching frequency, sampling fre-

quency, and sampling time.
Irefg,d , Irefg,q The d-axis and q-axis grid current

references in the dq-frame.
Iis, IiL Currents flowing into source and load

parts at node #i.
Ip, Iq , Ip+q p, q, and p + q-dimensional identity

matrices.
Kcp Capacitor-current-feedback

coefficient.
Kppll, Kipll Proportional and integral gains of the

PLL regulator.
Kp, Ki Proportional and integral gains of the

current regulator.
Lf1, Lf2 Inverter-side and grid-side filter in-

ductances.
s Laplace operator.
Vdc DC-link voltage.
Vg Grid voltage (phase-to-phase RMS).
vinj , iinj Small-signal voltage and current per-

tubations.
Vi Voltage of node #i.
XiS , XiL State-variable vectors of source and

load parts divided at node #i.
YiS , YiL Source and load admittances at node

#i.
Z(•), P (•) Number of RHP zeros and RHP poles.
ZfitiS , ZfitiL Fitted source and load impedances at



node #i.
ZA, ZB , ZC , ZD Impedances of sub-modules A, B, C,

and D.
ZiLIM Discrete frequency responses of the

LIM derived at node i.
ZfitiLIM Fitted frequency responses of the LIM

derived at node i.
ZiS , ZiL Source and load impedances at node

#i.
Kcpi ith collection of capacitor-current-

feedback coefficients of the three
GCIs.

λiSx, λiLy xth eigenvalue of AiS and yth eigen-
value of AiL.

θg Detected grid phase angle by PLL.
A11
sys, A

12
sys, A

21
sys, A

22
sys Four submatrices of Asys.

g1,2...,6 Six switching signals.
Gdel, Gdel1, Gdel2 Digital time delay e−1.5Tss.
Gi Current controller.
Irefg,dq Grid current reference in the dq-

frame.
ICf ,abc, ICf ,dq Capacitor currents in the abc-frame

and dq-frame.
Ig,abc, Ig,dq Grid currents in the abc-frame and dq-

frame.
IiS N Current source of the Norton equiva-

lent circuit of source part at node #i.
N(−1,j0)(•) Counterclockwise encirclement num-

ber of the Nyquist plot around −1+j0
in complex plane.

Vc,abc, Vc,dq Modulation voltages in the abc-frame
and dq-frame.

ViL T Voltage source of the Thevenin equiv-
alent circuit of load part at node #i.

VPCC,abc PCC voltages in the abc-frame.
ZGCI , Zg Impedances of the GCI and the grid.

I. INTRODUCTION

Recently, the penetration level of renewable energies, such
as wind power and photovoltaic power, in power systems
has been continuously increasing [2], [3]. For example, the
global cumulative installed renewable power capacity in-
creased significantly from about 1050 GW in 2008 to about
2450 GW in 2018, accounting for more than 33% of the
global total installed power generation capacity in 2018 [4],
[5]. Specifically, 51% of the electric power generation in
Denmark in 2018 was covered by wind power and solar
power. Denmark aims to achieve 100% nonfossil-based power
generation by 2050. Power electronic converters are widely
adopted as an efficient interface between the dispersed gener-
ation units and the main grid, due to their superior efficiency,
sustainability, and control flexibility [6]. However, impedance
interactions between control loops of voltage source grid-
connected inverters (GCIs) and weak grids may result in
instability phenomena in wide frequency ranges [7], e.g., low-
frequency instability phenomena related to outer power control
loop [8]–[10], dc-link voltage control loop [11], and phase-
locked loop (PLL) [12], high-frequency harmonic instability

phenomena related to inner current control loop [13], [14],
and sideband oscillation of the switching frequency related to
coupling dynamics of PWM and sampling process [15]. It is
of importance to identify the instability phenomena and locate
corresponding instability sources at the system design stage,
which enables system stabilization by re-tuning the critical
controller parameters [16].

Two main breeds of instability analysis approaches have
been developed recently, i.e., state-space model (SSM)-based
eigenvalues analysis [17]–[21] and impedance-based stability
criterion (IBSC) [22]–[42]. In the SSM-based eigenvalues
analysis method, eigenvalues of system state matrix are calcu-
lated, based on which system stability is assessed by checking
whether real parts of any eigenvalues are positive [17]–[21].
Participation factors (PFs) of all state variables on unstable
eigenvalues can further be computed, which enables the iden-
tification of critical controller parameters. However, the order
of the system state matrix could be very high, if there exists a
huge number of GCIs in the power systems, which will bring
heavy computational burdens. Furthermore, internal structures
and parameters of components are sometimes unknown for
the system planner, due to industrial secrecy and intellectual
property rights, which obstacles derivation of the system state
matrix [16]. On the other hand, the whole power system is
partitioned into load and source subsystems at a specific point
by the IBSC, and the Nyquist criterion (NC) is applied on
impedance ratio of the two subsystems to assess the stability at
the selected point, where both encirclement number of Nyquist
plot of the impedance ratio around −1 + j0 in complex plane
and number of right-half-plane (RHP) poles of the impedance
ratio are calculated [22]. Since terminal impedance character-
istics of GCIs can be obtained without knowing information
about internal structure and parameters [34], the IBSC has
widely been applied in inverter-fed power systems based on
single GCI [8], [11], [12], [22], multi-paralleled GCIs [10],
[13], [23]–[25], [29]–[31], and network-connected GCIs [27],
[28], [32], [35]–[39]. The relation between the characteristics
equation in the SSM-based eigenvalues analysis and poles
and zeros of the impedance ratio in the IBSC is theoretically
investigated in [43], which indicates that both methods can
effectively assess the system stability. However, a two-terminal
VSC-based HVdc system, as an example, is used to observe
the differences between the two methods, which cannot reveal
the generalized discrepancy in other power electronics-based
power systems.

Avoidance of calculation of the number of RHP poles of
impedance ratio and identification of instability sources are
two main research interests of the IBSC. For single-GCI-based
power systems, calculation of RHP poles is naturally avoided,
since both the source and load subsystems are inherently
stable, and no RHP poles exist [8], [11], [12], [22]. However,
the number of RHP poles should be calculated for multi-
paralleled and network-connected GCI systems, since RHP
poles may emerge when component impedances are aggre-
gated [25], [27], [28], [44]. In addition, instability sources
cannot be identified if the IBSC is only performed one time
at a specific point, e.g., point of common coupling (PCC),
since components dynamics are missing in the aggregated



source and load impedance models [10], [23], [24]. In [27],
[37]–[39], calculation of the number of RHP poles is avoided
by calculating the encirclement numbers of Nyquist plots of
impedance ratios at all nodes around −1 + j0 sequentially
from the farthest node to PCC, and the nodes where the
encirclement numbers are not zero are identified as instability
sources. However, heavy computational burdens can be in-
volved if a large number of nodes exist. In [28], [35], [36],
components dq-frame impedance models are connected based
on system topology, based on which the loop impedance model
(LIM) is derived. Determinant of the LIM is then calculated
to assess system stability. Calculation of the number of RHP
poles is, thus, avoided. Instability sources, however, cannot be
identified, since information of system structure is missing in
the LIM [33]. In [29]–[32], information about system structure
is maintained by the nodal admittance matrix (NAM). System
stability can then be assessed by determinant of the NAM, and
contributions of all components on modes of interest can be
calculated by the PF analysis. However, when there exists a
huge number of nodes, the order of the NAM is very high,
and heavy computational burdens will be involved. In addition,
instability sources can only be identified at component level
instead of controller parameter level. Comparative analysis of
the three stability criteria, e.g., the NC-based, the LIM-based,
and the NAM-based methods, can be found in [33].

A set of discrete frequency responses are able to be fitted
as either a continuous transfer function or an SSM by the
vector fitting (VF) algorithm [45], [46]. Recently, the VF
algorithm has initially been used to assess harmonic stability
of inverter-fed power systems, where either calculation of RHP
poles number is avoided or instability sources can be identified
[44], [47], [48]. In [47], frequency scanning is performed at
a specific node to obtain system apparent impedance which
is actually the impedance frequency responses of the whole
system at this node. System eigenvalues are then obtained by
approximating the system apparent impedance into an SSM
using the VF algorithm. However, problematic subsystems
and components cannot further be identified, since the whole
power system is regarded as a black box. In addition, the
apparent impedance method is not applicable for an unstable
system due to the prerequisite of frequency scanning. In [48],
the SSMs of all components are first fitted from terminal
impedance characteristics using the VF algorithm, based on
which system SSM is obtained by combining these compo-
nent SSMs according to their connection relationship [21].
Problematic components can be identified, and the method is
applicable for an unstable system. However, the connection
matrix of large-scale power systems is difficult to derive. In
addition, the fitting errors of all components may be accumu-
lated in the final system SSM, thus affecting stability analysis
results [44]. In [47], [48], impedance frequency responses are
actually translated into SSM for eigenvalues-based stability
analysis. On the other hand, in [44], the number of RHP
poles of impedance ratio is calculated by applying the VF
algorithm directly on source and load impedance frequency
responses, which actually facilitates the IBSC with the help
of the VF algorithm. Problematic subsystems and components
can be identified in [44] and [48], respectively. However,

problematic controller parameters cannot be further located,
since the components are treated as black boxes. Recently,
internal circuit and controller parameters of the GCI are
identified from terminal impedance frequency responses using
system identification technology with internal structure known,
which enables further instability source location at controller
parameter level [1], [16].

To further explore the capability of the VF algorithm in
stability analysis and corresponding instability sources identi-
fication, which has initially been investigated in [44], [47],
[48]. This paper presents a gray-box hierarchical instabil-
ity source identification method of the multiple-inverter-fed
power systems, which enables stability analysis at system,
component, and parameter levels sequentially. At system level,
terminal impedance frequency responses of all components,
e.g., GCIs, transmission lines, and transformers, are first
measured using frequency scanning method. The impedance
network model (INM) is then established by connecting these
individual components based on system topology, which is
further lumped into the LIM. System SSM is then generated
from impedance frequency responses of the LIM using the
VF algorithm for eigenvalues analysis. At component level, if
the system is assessed to be unstable, problematic components
are further identified by performing the NC at terminals of all
components, where the numbers of RHP poles are obtained
by the VF algorithm. Finally, at parameter level, circuit and
controller parameters of the identified problematic components
are further identified using the VF algorithm, so that critical
controller parameters can be re-tuned to improve system
stability. It can be seen that the VF algorithm is applied in all
three steps. Compared with the aforementioned existing works,
the contributions of this paper are fourfold. 1) Referring to
[43], the commonalities and discrepancies between the SSM-
based eigenvalues analysis and the IBSC are theoretically
derived, based on which feasibility and limitation of the LIM
for system stability analysis are analyzed. 2) Referring to
[28], [33], [35], [36], a non-parametric LIM-based eigenvalues
identification method using the VF algorithm is proposed,
which enables global stability analysis with only components
impedance frequency responses known. 3) Referring to [44],
[47], [48], a problematic components identification method by
using the NC at terminals of all components is shown, where
calculation of the number of RHP poles is facilitated by the
VF algorithm. 4) Referring to [16], a VF algorithm-based
parameters identification method of GCI based on terminal
impedance characteristics is presented, where only information
about internal structure is necessary.

The rest of this paper is organized as follows. In Section
II, theoretical basis of the proposed method is explained.
The principle of the proposed gray-box hierarchical instability
source identification method is explained in Section III. In
Section IV, the proposed stability analysis method is imple-
mented in a multiple-paralleled GCI system. Simulation results
obtained in Matlab/Simulink platform and real-time verifica-
tion results obtained in OPAL-RT platform are provided in
Section V to validate the effectiveness of the proposed stability
analysis method. Finally, conclusions are drawn in Section VI.
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Fig. 1. Conceptual diagram of a power plant which consists of multiple GCIs
coupled via a complicated transmission network [49].

II. THEORETICAL BASIS

In this section, the NC-based, the eigenvalues-based, and
the LIM-based stability analysis methods are first introduced,
where the commonalities and discrepancies among them are
also discussed. In addition, the principle of the VF algorithm
is explained. Next, the pole-zero cancellation issue during
the impedance aggregation procedure is shown, where the
method to identify the pole-zero cancellation phenomena and
corresponding countermeasure to avoid this issue are also
discussed.

A. Relation of Three Stability Analysis Methods

Fig. 1 shows the conceptual diagram of a multiple-inverter-
fed power system, where the inverters are coupled via a
complicated transmission network [49]. n GCIs exist in the
power system, and their terminal nodes are labeled as #1,
#2,..., #n, respectively. Other m−n nodes located inside the
red dashed circle are labeled as #(n+ 1), #(n+ 2),..., #m,
respectively. In addition, PCC is labeled as node #(m+ 1).

1) NC-Based Stability Analysis Method: The whole power
system in Fig. 1 is partitioned into two subsystems, i.e., source
part and load part, at a specific node #i (i ∈ [1,m + 1]), as
shown in Fig. 2(a). The SSMs of source and load parts can
be represented as

d∆XiS

dt
= AiS∆XiS +BiS∆Vi

∆IiS = CiS∆XiS +DiS∆Vi (1)
d∆XiL

dt
= AiL∆XiL +BiL∆IiL

∆Vi = CiL∆XiL +DiL∆IiL (2)

where XiS and XiL are (p × 1)-dimensional and (q × 1)-
dimensional state-variable vectors of source and load parts,
respectively. AiS , BiS , CiS , and DiS are p× p, p× 1, 1× p,
and 1× 1 matrices, respectively. In addition, AiL, BiL, CiL,
and DiL are q×q, q×1, 1×q, and 1×1 matrices, respectively.
YiS and ZiL can be derived from (1) and (2), shown as

YiS =
∆IiS
∆Vi

= CiS(sIp −AiS)−1BiS +DiS (3)

ZiL =
∆Vi
∆IiL

= CiL(sIq −AiL)−1BiL +DiL (4)
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Fig. 2. Derivation of the NC-based and the LIM-based stability analysis
methods from the SSM-based eigenvalues analysis method. (a) Partition of
Fig. 1 into source part and load part at node #i. (b) Equivalent circuit
representation of source part and load part.
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Fig. 3. Aggregation rules of two sub-modules. (a) Parallel connection. (b)
Series connection.

where Ip and Iq are the p-dimensional and q-dimensional
identity matrices, respectively. The source and load parts can
then be modeled as the Norton and the Thevenin equivalent
circuits, respectively, shown as Fig. 2(b).

In detail, the principle of physical separation of the whole
power plant in Fig. 1 into source and load parts in Fig. 2 is
explained here. The aggregation rules of two sub-modules are
defined as

1) The GCIs are regarded as Y-type sub-modules. In addi-
tion, the grid is regarded as a Z-type sub-module [22].

2) The transmission lines can be regarded as either Y-type
or Z-type sub-modules. In detail, the transmission line is
regarded as a Y-type sub-module in parallel connection
case and a Z-type sub-module in series connection case,
respectively.

3) The type of the aggregated sub-module C can be identi-
fied based on the types of sub-modules A and B, shown
as [27], [50]

AZΘBZ = AZ ⊕BZ = CZ

AY ΘBY = AY ⊕BZ = CY

AZΘBY = AY ΘBZ = CZ (5)

where Θ and ⊕ are parallel and series connection oper-
ators, respectively. The subscripts Z and Y indicate that
the sub-module is Z-type and Y-type, respectively. The
aggregation rules in (5) are summarized in Fig. 3.

4) Y-type and Z-type sub-modules should be modeled as the
Norton and Thevenin equivalent circuits, respectively.

It can be concluded from 1)- 4) that by dividing the whole
power plant in Fig. 1 into two parts at an arbitrary node, e.g.,
the n terminal nodes of the n GCIs, the m− n nodes located
inside the red dashed circle, or the PCC node, the part which
consists of the grid is physically identified as the load part,
and modeled as the Thevenin equivalent circuit. In addition,
the other part is physically identified as the source part, and
modeled as the Norton equivalent circuit.



According to the basic circuit principle, current flowing
through the checking node #i in Fig. 2(b) can be calculated
as [22]

IiL =
IiS N − ViL TYiS

1 + ZiLYiS
(6)

Since both the source and load parts cannot be guaranteed to
be inherently stable, the RHP poles of IiL should be assessed
by checking whether 1 + ZiLYiS has any RHP zeros and
IiS N − ViL TYiS has any RHP poles, i.e., [50]

P (IiL) = Z(1 + ZiLYiS) + P (IiS N − ViL TYiS)

= P (ZiLYiS)−N(−1,j0)(ZiLYiS)...

+P (IiS N − ViL TYiS) (7)

where Z(•) and P (•) indicate the numbers of RHP zeros
and RHP poles, respectively. N(−1,j0)(•) indicates the coun-
terclockwise encirclement number of the Nyquist plot around
−1 + j0 in complex plane.

Since YiS and IiS N share the same poles, and ZiL and
ViL T share the same poles [14], (7) can be reformulated as

P (IiL) = P (ZiL) + P (YiS)︸ ︷︷ ︸
Internal stability

− N(−1,j0)(ZiLYiS)︸ ︷︷ ︸
Interactive stability

(8)

It can be seen from (8) that the stability of IiL is dependent
on two parts, i.e., the internal stability which is determined
by the aggregated models of source and load parts, and the
interactive stability which is determined by the impedance
interactions between the source and load parts.

2) Eigenvalues-Based Stability Analysis Method: The
power system in Fig. 1, as a whole, can be represented as
a linearized SSM, shown as

d∆Xsys

dt
= Asys∆Xsys (9)

where Xsys = [XiS , XiL]T . Xsys and Asys are (p + q) ×
1-dimensional state-variables vector and (p + q) × (p + q)-
dimensional system state matrix, respectively. System stability
can be checked based on the eigenvalues of Asys which can
be obtained by combing the two small SSMs in (1) and (2),
show as [21]

d∆Xsys

dt
=

[
d∆XiS

dt
d∆XiL

dt

]
= Asys∆Xsys

=

[
A11
sys A12

sys

A21
sys A22

sys

] [
∆xiS
∆xiL

]
(10)

where A11
sys, A

12
sys, A

21
sys, and A22

sys are

A11
sys = AiS −BiS(1 +DiLDiS)−1DiLCiS

A12
sys = BiS(1 +DiLDiS)−1CiL

A21
sys = −BiL(1 +DiLDiS)−1CiS

A22
sys = AiL −BiL(1 +DiLDiS)−1DiSCiL (11)

The characteristics equation can then be calculated as∣∣∣∣sIp+q − [ A11
sys A12

sys

A21
sys A22

sys

]∣∣∣∣ = 0 (12)

where Ip+q is the (p+q)-dimensional identity matrix. Accord-
ing to the detailed derivation process in Appendix A, (12) can
be reformulated as

p∏
x=1

(s− λiSx)

q∏
y=1

(s− λiLy)︸ ︷︷ ︸
Internal stability

(1 +DiLYiS)
p−q

(1 +DiLDiS)
p (1 + ZiLYiS)q︸ ︷︷ ︸

Interactive stability

= 0 (13)

where λiSx(x ∈ [1, p]) and λiLy(y ∈ [1, q]) are the p and q
eigenvalues of AiS and AiL, respectively.

It can be intuitively seen from (8) and (13) that the iden-
tified RHP solutions of the NC-based and eigenvalues-based
stability analysis methods are the same, which indicates that
the two methods can achieve the same global stability analysis
conclusions. However, the discrepancy of the RHP solutions of
(8) and (13) will exist if at least one subsystem of source and
load parts has RHP poles, i.e., ∃x ∈ [1, p], real(λiSx) > 0
or ∃y ∈ [1, q], real(λiLy) > 0, and the RHP poles are
canceled out in the formulation of ZiL and YiS . In this
case, only local stability analysis results can be obtained by
the NC-based analysis method. To obtain the global stability
analysis result, the NC should be performed at another node,
or another impedance aggregation path should be selected, as
explained in Section II-C. Therefore, only one node needs to
be considered for stability study using the NC, if there is no
pole-zero cancellation happens. Otherwise, additional nodes
should further be considered. As for the eigenvalues-based
stability study, all nodes should be considered to structurally
build the SSM of the whole system [48].

3) LIM-Based Stability Analysis Method: LIM can be ob-
tained by injecting a small current disturbance iinj into a
specific node and observing voltage response vinj at this node
(The LIM is also called as the apparent impedance in [47]).
The schematic diagram is shown as Fig. 2(b). The LIM of the
whole system can be calculated as

ZiLIM =
vinj
iinj

=
vinj

iinj1 + iinj2
=

ZiL
1 + ZiLYiS

(14)

Similar with (7), the number of the RHP poles of ZiLIM
can be calculated as

P (ZiLIM ) = Z(1 + ZiLYiS) + P (ZiL)

= P (ZiL) + P (YiS)︸ ︷︷ ︸
Internal stability

− N(−1,j0)(ZiLYiS)︸ ︷︷ ︸
Interactive stability

(15)

Similar with the NC-based stability analysis method, if no
pole-zero cancellation happens, the poles of ZiLIM are equal
to the eigenvalues of Asys, which indicates the feasibility of
the LIM for stability analysis.

B. VF Algorithm

A set of discrete impedance frequency responses can be
fitted as a continuous transfer function in form of partial



fraction expansion representation or polynomial representation
using the VF algorithm, shown as [45], [46]

f(s) =

M∑
i=0

Ri
s− λi

+D + Es (16)

f(s) = (

M∑
i=0

Bis
i)/(

M∑
i=0

Ais
i) + Es (17)

where λi and Ri are the ith pole and residue, respectively.
M is the order of the fitted transfer function, which can be
determined in a trial-and-error way. The fitted transfer function
in form of (16) will be used to identify RHP poles for system-
level and component-level stability analysis. In addition, the
fitted transfer function in form of (17) will be used to identify
the circuit and controller parameters of the GCI for parameter-
level stability analysis.

C. Pole-Zero Cancellation Phenomena During Impedance Ag-
gregation Procedure

Controllability and observability are two major features of
a linear control system [51]. Controllability is the ability to
manipulate the vector of state variables from an initial state
to any arbitrary value in finite time by setting a suitable
input variable. In addition, observability defines the ability to
determine the initial state of a system from finite observation
of the output. The following theorems are satisfied for a linear
system [52].

Theorem 1: A linear system is controllable and observable
if and only if there is no pole-zero cancellation in the transfer
function representation.

Theorem 2: The series and parallel connections of two
linear systems are controllable and observable if and only if
transfer function representations of the two systems have no
pole-zero cancellation.

The individual component, e.g., GCI, transmission line,
and transformer, is controllable and observable. According to
theorem 1, there is, therefore, no pole-zero cancellation in
terminal impedance transfer function. In addition, the actual
power system is almost always controllable and observable
[36]. According to theorem 2, there is, therefore, no pole-
zero cancellation of aggregated terminal impedance transfer
functions. Therefore, system modes can be preserved in the
established LIM. For the rarely-existed uncontrollable or unob-
servable power systems, if pole-zero cancellation phenomena
are identified when component impedances are aggregated,
another aggregation path should be selected [33]. In detail, the
method to identify the pole-zero cancellation phenomena and
corresponding countermeasure to avoid this issue are discussed
as follows.

1) Identification of the Pole-Zero Cancellation Phenomena:
As shown in Fig. 3, there are two basic connection relations
between two sub-modules, i.e., parallel connection and series

connection. The impedance representations of sub-modules A
and B can be generally formulated as

ZA =
NA
DA

=

m1∏
i=1

(s− γ1i)(s− γ∗1i)
n1∏
j=1

(s− γ1j)

sk1
p1∏
r=1

(s− λ1r)(s− λ∗1r)
q1∏
t=1

(s− λ1t)

ZB =
NB
DB

=

m2∏
i=1

(s− γ2i)(s− γ∗2i)
n2∏
j=1

(s− γ2j)

sk2
p2∏
r=1

(s− λ2r)(s− λ∗2r)
q2∏
t=1

(s− λ2t)

(18)

where γ1i and γ∗1i, γ2i and γ∗2i are conjugate zeros of ZA
and ZB , respectively. γ1j and γ2j are real zeros of ZA and
ZB , respectively. In addition, λ1r and λ∗1r, λ2r and λ∗2r are
conjugate poles of ZA and ZB , respectively. λ1t and λ2t are
real poles of ZA and ZB , respectively.

Assume that A and B are connected in parallel. The
impedance of the aggregated sub-module C can be derived
as

ZC =
NC
DC

=
ZAZB
ZA + ZB

=
NANB

NADB +NBDA
(19)

If ZA and ZB have the same RHP zero, e.g., ∃j ∈
min(n1, n2), γ1j = γ2j = γ0, and real(γ0) > 0, ZC can
be reformulated as

ZC =
NC
DC

=
(s− γ0)2N ′AN

′
B

(s− γ0)N ′ADB + (s− γ0)N ′BDA
(20)

Where N ′A = NA/(s−γ0) and N ′B = NB/(s−γ0). The pole-
zero cancellation happens in (20). Therefore, ZC can further
be simplified as

ZC =
N ′C
D′C

=
(s− γ0)N ′AN

′
B

N ′ADB +N ′BDA
(21)

It can be seen from (20) and (21) that DC = (s− γ0)D′C ,
i.e., the RHP pole γ0 of ZC is lost due to the pole-zero
cancellation.

On the other hand, assume that A and B are connected in
series. The impedance of the aggregated sub-module D can be
derived as

ZD =
ND
DD

= ZA + ZB =
NADB +NBDA

DADB
(22)

If ZA and ZB have the same RHP pole, e.g., ∃t ∈
min(q1, q2), λ1t = λ2t = λ0, and real(λ0) > 0, ZC can
be reformulated as

ZD =
ND
DD

=
NA(s− λ0)D′B +NB(s− λ0)D′A

(s− λ0)2D′AD
′
B

(23)

where D′A = DA/(s − λ0) and D′B = DB/(s − λ0).
Similar with (20), the pole-zero cancellation happens in (23).
Therefore, ZD can further be simplified as

ZD =
N ′D
D′D

=
NAD

′
B +NBD

′
A

(s− λ0)D′AD
′
B

(24)

Slightly different from (21), the RHP pole λ0 is preserved
in D′D. However, compared with DD, the order of D′D is
reduced due to the pole-zero cancellation.
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Fig. 4. Flowchart of the proposed gray-box hierarchical instability source
identification method.

Since each pair of conjugate complex poles of ZA and ZB
in (18) corresponds to a peak in the magnitude-frequency
response curve, and each pair of conjugate complex zeros
corresponds to a valley [53], the practical method to identify
the pole-zero cancellation phenomena can be explained as fol-
lows. For the parallel connection, if the magnitude-frequency
response curves of ZA and ZB have the valleys at the same
frequency, and the aggregated magnitude-frequency response
curve does not have the peak at the frequency, the pole-
zero cancellation happens. For the series connection, if the
magnitude-frequency response curves of ZA and ZB have the
peaks at the same frequency, and the aggregated magnitude-
frequency response curve does not have the valley at the
frequency, the pole-zero cancellation happens.

2) Avoidance of the Pole-Zero Cancellation Phenomena:
According to the aforementioned analysis of the pole-zero can-
cellation, corresponding countermeasure to avoid these phe-
nomena during the impedance aggregation can be presented,
i.e., avoid aggregating two parallel-connected subsystems
which have the same valleys of magnitude-frequency response
curves, and avoid aggregating two series-connected subsys-
tems which have the same peaks of magnitude-frequency
response curves. Specifically, they can be achieved by selecting
another impedance aggregation path and another checking
node, respectively.

III. PROPOSED HIERARCHICAL INSTABILITY SOURCE
IDENTIFICATION METHOD

In this section, flowchart of the proposed gray-box hierar-
chical instability source identification method is first given,
followed by explanation of each step in detail.

Fig. 4 shows the flowchart of the proposed instability source
identification method which consists of three main steps, i.e.,
stability analysis at system level (Step 1), component level
(Step 2), and parameter level (Step 3).

A. Step 1: System-Level Stability Analysis

Terminal impedance frequency responses of all GCIs are
first measured using the frequency scanning method or ob-
tained from manufacturers. Frequency responses of system
LIM at a specific node are then calculated based on a selected
impedance aggregation path. If pole-zero cancellation happens
during the impedance aggregation process, another impedance
aggregation path is selected, and frequency responses of the
system LIM are re-calculated. System transfer function in form
of (17) is then generated from the frequency responses of
the system LIM using the VF algorithm. If the fitted transfer
function does not have any RHP poles, the system is assessed
as stable, and no further steps will be performed. Otherwise,
the system is assessed as unstable, and steps 2 and 3 will be
performed.

B. Step 2: Component-Level Stability Analysis

The NC is performed at all nodes to identify the prob-
lematic components. For example, frequency responses of the
aggregated load impedance models at terminals of all GCIs
are calculated based on the terminal impedance frequency
responses measured in step 1. Transfer function in form of
(16) is then fitted using the VF algorithm, and the RHP poles
of the fitted transfer function are then identified. Finally, NC is
applied at terminals of all GCIs, where the number of unstable
modes is calculated based on NC in (7). The GCIs where NC
is not satisfied are identified as problematic components.

C. Step 3: Parameter-Level Stability Analysis

Terminal impedance frequency responses of the identified
problematic GCIs are fitted as transfer functions in form of
(17) using the VF algorithm. Then, circuit and controller pa-
rameters of the problematic GCIs are identified by comparing
the fitted and theoretical impedance transfer functions. On the
basis of it, the identified critical controller parameters are re-
tuned to improve system stability.

A GCI with capacitor-current-feedback active damping is
taken as an example to illustrate the principle of the pro-
posed gray-box circuit and controller parameters identification
method. The control diagram is shown in Fig. 5(a), where
LCL filter is used to attenuate the high-frequency switching
harmonics. PLL is used to synchronize the phase angle of
injected current with PCC voltage. The capacitor-current pro-
portional feedback active damping Kcp is used to suppress
the LCL filter resonance peak [54]. Gi = Kp + Ki

s is the
PI controller of current control loop in dq reference frame.
Gdel = e−1.5Tss represents time delay including 1.0 Ts digital
computation delay and 0.5 Ts PWM delay (Ts is the sampling
period). When PLL bandwidth is low enough, influence of
PLL dynamics on output impedance can be ignored [8]. The
d-axis control and q-axis control are decoupled and identical.
Fig. 5(b) shows the d-axis control block diagram, based on
which output impedance can be derived as [1], [54]

ZGCI(s) =
Lf1s+GiGdel1

Lf1Cfs2 +KcpCfGdel2s+ 1
+ Lf2s (25)

where Gdel1 = Gdel2 = e−1.5Tss.
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Fig. 5. Topology and control block diagram of the LCL-filtered GCI with
capacitor-current-feedback active damping. (a) System topology. (b) The d-
axis control block diagram [54].

To identify the circuit and controller parameters of the GCI
from its terminal impedance formula, e−1.5Tss in (25) should
be represented by Pade approximation with appropriate order,
so that (25) can be in the same form of (17), and the parameters
can be identified by equalizing their coefficients. For example,
Gdel1 can be approximated as [20]

Gdel1 ≈
b0 + ...+ bis

i + ...+ bv1s
v1

a0 + ...+ ajsj + ...+ au1
su1

(26)

where aj = (v1+u1−j)!u1!
j!(u1−j)! (1.5Ts)

j(j ∈ [0, u1]) and bi =

(−1)i (v1+u1−i)!v1!
i!(v1−i)! (1.5Ts)

i(i ∈ [0, v1]).
Similarly, Gdel2 can be approximated as

Gdel2 ≈
d0 + ...+ dis

i + ...+ dv2s
v2

c0 + ...+ cjsj + ...+ cu2
su2

(27)

where cj = (v2+u2−j)!u2!
j!(u2−j)! (1.5Ts)

j(j ∈ [0, u2]) and di =

(−1)i (v2+u2−i2)!v2!
i!(v2−i)! (1.5Ts)

i(i ∈ [0, v2]).
(25) can be reformulated in form of (17) by substituting

(26) and (27), shown as

ZGCI(s) ≈
...+ F1s+ F0

...+ E1s+ E0
+ Lf2s (28)

where only several low-order components are shown for
simplification. The detailed formulas are shown as

F1 =
L2
f1

KcpCf
a0c0 +

KpLf1

KcpCf
b0c1 +

KpLf1

KcpCf
b1c0

E1 = Lf1a0d0 +
Lf1

KcpCf
a0c1 +

Lf1

KcpCf
a1c0

F0 =
KpLf1

KcpCf
b0c0 E0 =

Lf1

KcpCf
a0c0 (29)

It can be calculated from (17), (25), and (29) that,

Lf2 = E Kp =
F0

E0
=
B0

A0
(30)

F1

E0
=
B1

A0
= Lf1 +Kp(

c1
c0

+
b1
a0

)

E1

E0
=
A1

A0
= KcpCf +

c1
c0

+
a1

a0
(31)

On the other hand, it can be seen from (26) that,

a1

a0
=

1.5u1

u1 + v1
Ts

b1
a0

= − 1.5v1

u1 + v1
Ts (32)

By substituting b1/a0 = −v1a1/u1a0 into (31), a1/a0 can
also be expressed as

a1

a0
=

u1

u1 + v1
(
A1

A0
+
Lf1

Kp
− B1

A0Kp
−KcpCf ) (33)

By combining (32) and (33), we have

Lf1

Kp
−KcpCf − 1.5Ts =

B1

KpA0
− A1

A0
(34)

It can be seen from (34) that the identified circuit and
controller parameters are independent on the selected orders
of the Pade approximations, i.e., u1 and v1 in (26), u2 and v2

in (27).
In addition, the output impedance formula can be expressed

in frequency-domain by substituting s = jω into (25), shown
as (59) in Appendix B. (59) can be reformulated as

ZGCI(ω) =
B(ω) + jC(ω)

A(ω)
(35)

where

A(ω) = (1− Lf1Cfω
2 +KcpCfωsin(1.5ωTs))

2...

+(KcpCfω cos(1.5ωTs))
2

B(ω) = ((Kcp −Kp)CfLf1ω
2 +Kp) cos(1.5ωTs)

C(ω) = L2
f1Lf2C

2
fω

5 + ((KcpCf )2Lf2 − 2Lf1Lf2Cf ...

−L2
f1Cf )ω3 + (Lf1 + Lf2 −KcpKpCf )ω + ...

(−2KcpLf1Lf2Cf
2ω4 + ((Kcp +Kp)CfLf1 + ....

2KcpCfLf2)ω2 −Kp)sin(1.5ωTs) (36)

Since A(ω) > 0, the derivative of ∠ZGCI(ω) is calculated
as

d∠ZGCI(ω)

dω
= (arctan(

C(ω)

B(ω)
))′ =

(C(ω)
B(ω) )

′

1 + (C(ω)
B(ω) )

2 (37)

If the derivative of ∠ZGCI(ω) is zero at ωc, which can be
observed from the phase diagram of the fitted transfer function
f(s) in (17), another constraint can be obtained with Kp and
Lf2 identified by (30), shown as

(
C(ω)

B(ω)
)
′∣∣∣∣
ω=ωc

= 0 (38)

By combining (34) and (38), the three unknown parameters
(Lf1, Cf , and Kcp) can be identified using a trial-and-
error method. Based on the identified circuit and controller
parameters, system stability can be improved by re-tuning
critical controller parameters.



D. Practical Implementation of the Proposed Gray-Box Hier-
archical Instability Source Identification Method in Real-World
Scenarios

In practice, the system planner such as the power grid
company commonly installs an interconnected system which
consists of various components provided by different vendors
or manufacturers, e.g., GCIs, transmission lines/cables, and
transformers. Although individual component is inherently
stable, the interconnected system may become unstable due
to undesired impedance interactions among these components.
Therefore, the system planner hopes to identify the potential
instability phenomena at the initial system design stage, and
locate corresponding instability sources. However, detailed
circuit and controller parameters of these components cannot
normally be accessed by the system designer in the real
world, due to the intellectual property right and industrial
competence. Instead, these vendors and manufacturers proba-
bly only provide terminal impedance frequency responses or
gray-box models of these components. In this case, theoretical
derivation of the system SSM cannot be performed, so that the
eigenvalues-based stability analysis method is not possible. For
the stability analysis of single-GCI-based power systems, the
provided discrete terminal impedance frequency responses are
enough for the NC, since both source and load parts are inher-
ently stable, i.e., P (ZiL) = P (YiS) = 0 in (8) [22]. However,
for the stability analysis of multi-GCI-based power systems
in Fig. 1, the continuous transfer function representations of
the terminal impedance characteristics are needed to calculate
the RHP poles of both source and load parts, since RHP poles
may emerge when component impedances are aggregated [33].
Therefore, a practical issue arises in real-word scenarios, i.e.,
how to perform stability analysis and locate corresponding
instability sources in multi-GCI-based power systems based
on only the discrete impedance frequency responses of various
components provided by different vendors and manufacturers?

To better share the gray-box models among the system
planner and vendors, and extract the stability characteristics of
the interconnected power system from these gray-box models,
this paper presents a gray-box hierarchical instability source
identification method of multi-GCI-based power systems, as
shown in Sections III-A, III-B, and III-C. In detail, the VF
algorithm, as a powerful curve fitting tool, is used to fit
the discrete impedance frequency responses into continuous
transfer functions in all of the three steps, i.e., system-level,
component-level, and parameter-level stability analysis. One
real-world scenario where the gray-box method proposed in
this paper can be applied is replicated here. Multiple vendors
or manufacturers deliver the gray-box models to the power
grid company at the initial design stage. Based on the ter-
minal impedance frequency responses of all components, the
power grid company can perform stability analysis at system
and component levels with the help of the VF algorithm.
Therefore, the problematic components which result in the
instability phenomena can be located. In addition, the power
grid company can further identify the circuit and controller
parameters of the problematic components by equaling the
fitted impedance transfer function using the VF algorithm
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Fig. 6. Circuit configuration of the studied multi-paralleled GCI system.

with the analytical terminal impedance formulas. In Section
III-C, the circuit and controller parameters of the GCI with
capacitor-current-feedback active damping are identified using
the proposed method. Similar parameters extraction procedure
can be performed for the GCIs under other control strategies,
except that the analytical impedance model in (25) should be
updated [16], [55]. With the instability source identification
results, the power grid company can provide detailed feedback
to the vendors or manufacturers, so that the problematic
controller parameters can be re-tuned to improve stability of
the interconnected power system. In fact, the presented method
in this paper facilitates the cooperation between the power
grid company as the system integrator and the vendors as the
equipment suppliers to avoid potential instability phenomena
by only sharing the gray-box models.

IV. IMPLEMENTATION OF THE PROPOSED INSTABILITY
SOURCE IDENTIFICATION METHOD

In this section, the proposed hierarchical instability source
identification method is implemented in a simplified but repre-
sentative multi-paralleled GCI system shown in Fig. 6, where
the three GCIs are regarded as gray boxes. The inner cur-
rent control loop-induced high-frequency harmonic instability
phenomena are investigated first. Then, the further application
of the proposed method for low-frequency instability source
identification is discussed.

The per-unit-length (p.u.l.) resistance and inductance of the
transmission lines in Fig. 6 are 10 µΩ/km and 10 µH/km,
respectively. In addition, the lengths of the three transmission
lines are l(Z1) = 1 km, l(Z2) = 2 km, and l(Z3) = 3 km,
respectively.

Bode diagrams of the output impedance frequency re-
sponses of the three GCIs obtained by frequency scanning
method are shown as the black dashed line labeled by ‘Original
FR’ in Fig. 7(a). In addition, the Bode diagrams of the fitted
transfer functions using VF algorithm with the order chosen
as 1, 2, 3, 4, and 5 are also plotted. It can be seen that the
fitting accuracy increases as the fitting order increases. The
Bode diagrams in the non-passive frequency range (1423 Hz,
1667 Hz) are further plotted in Fig. 7(b), since the harmonic
instability phenomena tend to occur in this frequency range
[23]. It can be seen that the Bode diagrams of the original



(a)

(b)

Fig. 7. Bode diagrams of the terminal impedance frequency responses of the
three GCIs in Fig. 6 and the fitted transfer functions using the VF algorithm
with different orders. (a) Full view. (b) Zoomed view.

frequency responses and the fitted 5-order transfer function
are highly overlapped, which indicates that the fitted 5-order
transfer function is capable.

As defined in (14), the system LIM can be established at the
four nodes in Fig. 6. For example, the system LIMs established
at nodes #1, #2, and #3 can be derived as

ZiLIM = (ZiLIM 1//ZiLIM 2 + Zi)//ZiS (39)

where ZiLIM 1 = Zg//(ZjS + Zj), ZiLIM 2 = ZkS + Zk,
i, j, k ∈ {1, 2, 3} and i 6= j 6= k.

In addition, the system LIM established at node #4 can be
derived as

Z4LIM = Z4LIM 1//Z4LIM 2 (40)

where Z4LIM 1 = Zg//(Z3S + Z3) and Z4LIM 2 = (Z1S +
Z1)//(Z2S + Z2).

A. Stable Cases

Based on the measured impedance frequency responses of
the three GCIs in Fig. 7, the Bode diagram of Z4LIM when
l(Zg) are 1 km and 13 km are calculated using (40), and
plotted in Figs. 8(a) and 8(b), respectively. The fitted transfer
functions of Z4LIM using the VF algorithm with 16 order are
shown as Zfit4LIM . It can be seen that the system LIM frequency
responses can be accurately reproduced by the fitted 16-order
transfer functions. In addition, both Z4LIM and Zfit4LIM predict
that the system has stable resonance frequencies 1702 Hz and
1368 Hz when l(Zg) are 1 km and 13 km, respectively, since
the phase angles at the two resonance frequencies are within
[−90o, 90o] under the two cases.

The zeros of Zfit4LIM when l(Zg) are 1 km and 13 km
are plotted in Fig. 9, which are −8.985 ± j10690 and

(a)

(b)

Fig. 8. Bode diagrams of ZiLIM (i ∈ [1, 4]) and the fitted transfer functions
using the VF algorithm. (a) l(Zg) = 1 km. (b) l(Zg) = 13 km.

−21.72 ± j8596, respectively. It indicates that the system
is stable at 10690

2π = 1701 Hz and 8596
2π = 1368 Hz under

the two cases, respectively, since the real parts of the zeros
are negative. The identified zeros and corresponding stability
analysis results highly agree with the Bode diagrams in Fig.
8, which validates the effectiveness of VF algorithm to extract
the zeros information from LIM frequency responses. Since
the system is assessed as stable under the two cases, no fur-
ther component-level and parameter-level harmonic stability
analysis are needed.

The Bode diagrams of the system LIMs calculated at nodes
#1, #2, and #3 using (39) when l(Zg) are 1 km and 13 km are
also plotted in Fig. 8. It can be seen from the four magnitude-
frequency diagrams that the system LIMs calculated at the
four nodes have the same resonance peak. Furthermore, the
identified zeros of ZfitiLIM (i ∈ [1, 3]) using the VF algorithm
are plotted in Fig. 9 (The fitting results of ZiLIM (i ∈ [1, 3])
are not plotted in Fig. 8 for simplicity). It can be seen that
the zeros of the four fitted transfer functions, i.e., ZfitiLIM (i ∈
[1, 4]), are the same, which indicates that the LIM derived at a
certain node is able to obtain global stability analysis results.
The correctness of the theoretical analysis in Section II-A is
thus validated.

B. Unstable Cases

1) Step 1. System-Level Harmonic Stability Analysis: Based
on the measured impedance frequency responses of the three
GCIs in Fig. 7, the Bode diagrams of Z4LIM when l(Zg)
are 6 km and 8 km are calculated using (40), and plotted in
Figs. 10(a) and 10(b), respectively. The fitted transfer functions
of Z4LIM using the VF algorithm with 16 order are shown
as Zfit4LIM . It can be seen that the system LIM frequency



(a)

(b)

Fig. 9. Zeros trajectories of Zfit
iLIM (i ∈ [1, 4]) when 1 km< l(Zg) < 13

km (Step size:1 km). (a) Full view. (b) Zoomed view.

(a)

(b)

Fig. 10. Bode diagrams of ZiLIM (i ∈ [1, 4]) and the fitted transfer functions
using the VF algorithm. (a) l(Zg) = 6 km. (b) l(Zg) = 8 km.

responses can be accurately reproduced by the fitted 16-order
transfer functions. In addition, both Z4LIM and Zfit4LIM predict
that the system has unstable resonance frequencies 1498 Hz
and 1450 Hz when l(Zg) are 6 km and 8 km, respectively,
since the phase angles at the two resonance frequencies are
outside [−90o, 90o] under the two cases.

The zeros of Zfit4LIM when l(Zg) are 6 km and 8 km are
plotted in Fig. 9. It can be seen that the critical zeros of
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Fig. 11. Bode diagrams of the measured Z1L, Z2L, Z3L, and Z4S in Fig. 6
and the fitted results using the VF algorithm. (a) l(Zg) = 6 km. (b) l(Zg) = 8
km.

Zfit4LIM when l(Zg) are 6 km and 8 km are 13.98±j9409 and
6.572 ± j9107, respectively, which indicates that the system
is unstable at 9409

2π = 1498 Hz and 9107
2π = 1449 Hz under

the two cases, respectively, since the real parts of the zeros
are positive. The identified zeros and corresponding stability
analysis results highly agree with the Bode diagrams in Fig.
10, which again validates the effectiveness of the VF algorithm
to extract the zeros information from the LIM frequency
responses. Since the system is assessed as unstable under the
two cases, it’s necessary to perform further component-level
and parameter-level harmonic stability analysis.

The Bode diagrams of the system LIMs calculated at nodes
#1, #2, and #3 using (39) and the identified zeros when
l(Zg) are 6 km and 8 km are also plotted in Figs. 10 and
9, respectively (The fitted results of ZiLIM (i ∈ [1, 3]) are not
plotted in Fig. 10 for simplicity). It can be seen that the system
is assessed as unstable regardless which node is selected to
calculate the system LIM.

Besides the aforementioned four cases, i.e., l(Zg) are 1 km,
6 km, 8 km, and 13 km, the zeros trajectories of ZfitiLim(i ∈
[1, 4]) when l(Zg) increases from 1 km to 13 km with step size
1 km are also plotted in Fig. 9. It can be seen that the zeros
of the four LIMs are the same, and the system is assessed as
globally stable when l(Zg) ∈ {1 km, 10 km, 11 km, 12 km,
13 km} and globally unstable when l(Zg) ∈ {2 km, 3 km, 4
km, 5 km, 6 km, 7 km, 8 km, 9 km}.

2) Step 2. Component-Level Harmonic Stability Analysis:
The NC can be performed at nodes #1, #2, #3, and #4 in
Fig. 6. According to the components aggregation principles
shown in Section II-A1, when the NC is performed at node #i
(i = 1, 2, 3), the #i GCI is physically identified as the source
part, and the rest of Fig. 6 is physically identified as the load



(a)

(b)

Fig. 12. Zeros trajectories of 1/Zfit
1L , 1/Zfit

2L , 1/Zfit
3L and Zfit

4S when 1
km< l(Zg) < 13 km (Step size:1 km). (a) Full view. (b) Zoomed view.

part. In addition, when the NC is performed at node #4, the
grid is physically identified as the load part, and the rest of
Fig. 6 is physically identified as the source part. The frequency
responses of Z1L, Z2L, Z3L, and Z4S are calculated based on
the impedance characteristics of the GCIs shown in Fig. 7.
The derived Bode diagrams and corresponding fitted curves
when l(Zg) are 6 km and 8 km are plotted in Fig. 11 (The
fitted results of ZiL(i ∈ [1, 3]) are not plotted in Fig. 11 for
simplicity). On its basis, the zeros of 1/Zfit1L , 1/Zfit2L , 1/Zfit3L ,
and Zfit4S are plotted in Fig. 12. It can be seen that Zfit4S does
not have RHP zeros, whereas 1/Zfit1L , 1/Zfit2L , and 1/Zfit3L have
RHP zeros, i.e., Zfit1L , Zfit2L , and Zfit3L have RHP poles, when
3 km≤ l(Zg) ≤13 km. In addition, the Nyquist plots of the
impedance ratios ZiL

ZiS
(i ∈ [1, 4]) when l(Zg) are 6 km and 8

km are plotted in Figs. 13(a) and 13(b), respectively. It can be
seen that, under both cases, the Nyquist plots of Z4L

Z4S
encircle

−1 + j0 in counterclockwise direction, whereas the Nyquist
plots of ZiL

ZiS
(i ∈ [1, 3]) do not encircle −1 + j0. In addition,

the Nyquist plots of the four impedance ratios when l(Zg)
are 1 km and 13 km are plotted in Figs. 13(c) and 13(d),
respectively. For clarity, the information is collected in Fig.
14. According to (8), the NC at all of the four nodes assesses
that IiL has two RHP poles when l(Zg) are 6 km and 8 km. In
addition, the NC at all of the four nodes assesses that IiL does
not have any RHP poles when l(Zg) are 1 km and 13 km. The
NC-based stability analysis results agree with the LIM-based
stability analysis results in Fig. 9.

Since the Nyquist plot of Z3L

Z3S
is closest to −1 + j0 among

ZiL

ZiS
(i ∈ [1, 3]) when l(Zg) are 6 km and 8 km, node #3 is

identified as the weakest point among nods #1, #2, and #3.
The output impedance of the #3GCI should be reshaped to
improve the stability at node #3.

(a)

(b)

(c)

(d)

Fig. 13. Nyquist plots of the impedance ratios ZiL
ZiS

(i ∈ [1, 4]). (a) l(Zg) = 6

km. (b) l(Zg) = 8 km. (c) l(Zg) = 1 km. (d) l(Zg) = 13 km.

3) Step 3. Parameter-Level Harmonic Stability Analysis:
Coefficients of the fitted 5-order transfer function in form of
(17) of the impedance frequency responses of #3GCI in Fig. 7
are shown in Table I. According to (30), parameters of #3GCI
can be identified as

Lf2 = E = 0.2 mH Kp =
B0

A0
= 1.2 Ω (41)

By substituting Ts = 10−4 s, ωc = 2π1546 rad/s, and (41)
into (34) and (38), two equations which constraint Lf1, Cf ,
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Fig. 14. Summary of the NC-based stability analysis results in Figs. 12 and
13. (a) l(Zg) = 1 km. (b) l(Zg)=6 km and 8 km. (c) l(Zg) = 13 km.

TABLE I
COEFFICIENTS OF THE FITTED 5-ORDER TRANSFER FUNCTION IN FORM

OF (17)

A5 A4 A3 A2 A1 A0

1 7.4861e4 4.2703e9 6.6168e13 2.4013e17 2.8359e21

B5 B4 B3 B2 B1 B0

-0.0578 2.2403e4 1.2844e9 9.1900e13 1.0928e18 3.4030e21

E
2.0025e-4

and Kcp can be obtained, which can further be simplified as

f(Cf ,Kcp) = 0
(42)

where the detailed expression is omitted for simplicity. Since
the solution space has one freedom, the accurate solution can
be found in a trial-and-error way. For example, different values
of Cf can be first assumed, and the value of Cf which makes
the calculated Bode diagram agree with the measured terminal
impedance frequency responses is then selected, as shown in
Fig. 15. Fig. 16 shows frequency responses of the calculated
terminal impedance formulas with different Cf . It can be seen
that the calculated frequency response agrees with the original
terminal impedance frequency response when Cf = 50 µF and
Kcp = 0.6 Ω. The identified circuit and controller parameters
of the #3GCI are listed as follows. Lf1 = 0.5 mH, Lf2 = 0.2
mH, Cf = 50 µF, Kp = 1.2 Ω, and Kcp = 0.6 Ω.

System stability can then be improved by re-tuning
the identified controller parameters. Zeros of Z4LIM by
re-tuning the capacitor-current proportional feedback active
damping coefficient Kcp of #1GCI or #3GCI under the
two unstable cases are summarized in Table II, where
Kcpi (i ∈ [1, 5]) are the collections of Kcp of the
three GCIs. In detail, Kcp1 = {0.60Ω, 0.60Ω, 0.60Ω},
Kcp2 = {0.60Ω, 0.60Ω, 0.85Ω}, Kcp3 =
{0.85Ω, 0.60Ω, 0.60Ω}, Kcp4 = {0.60Ω, 0.60Ω, 0.68Ω},
and Kcp5 = {0.68Ω, 0.60Ω, 0.60Ω}. When l(Zg) is 6 km,

Fig. 15. Waveforms of f(Cf ,Kcp) with different values Cf .
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Fig. 16. Bode diagrams of the impedance frequency responses calculated by
(25) with different Cf .

if Kcp of #3GCI is increased from 0.60 Ω to 0.85 Ω, the
critical zeros of Z4LIM are changed from 13.98 ± j9409
to −1.643 ± j9505, which indicates that the system is
stabilized. However, if Kcp of #1GCI is increased from 0.60
Ω to 0.85 Ω, the critical zeros of Z4LIM are changed from
13.98 ± j9409 to 1.222 ± j9486, which indicates that the
system is still unstable.

TABLE II
ZEROS OF Z4LIM BY RE-TUNING Kcp OF #1GCI OR #3GCI

l(Zg) = 6 km l(Zg) = 8 km

Kcp1 13.98± j9409 -1720 Kcp1 6.572± j9107 -1583
Kcp2 -1.643± j9505 -1730 Kcp4 -0.7802± j9139 -1586
Kcp3 1.222± j9486 -1728 Kcp5 0.3261± j9134 -1585

Similarly, when l(Zg) is 8 km, if Kcp of #3GCI is increased
from 0.60 Ω to 0.68 Ω, the critical zeros of Z4LIM are changed
from 6.572± j9107 to −0.7802± j9139, which indicates that
the system is stabilized. However, if Kcp of #1GCI is increased
from 0.60 Ω to 0.68 Ω, the critical zeros of Z4LIM are changed
from 6.572±j9107 to 0.3261±j9134, which indicates that the
system is still unstable. The zeros analysis results of Z4LIM
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Fig. 17. The signs of B1(ω), B2(ω), and B(ω) up to the Nyquist frequency.
(a) ft < fs/6. (b) ft > fs/6.

validate the correctness of the weakest point identifications in
step 2.

On the other hand, the frequency-domain passivity theory
offers another solution to enforce the system stability [40],
[41], [56]. The core idea is to make the output impedances
of all GCIs have non-negative real parts up to the Nyquist
frequency, i.e., ∀ω ∈ [0, fs2 ], real{ZGCI(ω)} ≥ 0. Therefore,
the phase angle of ZGCI(ω) can be limited within [−90o, 90o]
[40]. Taking the real part of (35) yields

real{ZGCI(ω)} =
B(ω)

A(ω)
(43)

Since A(ω) > 0, the sign of real{ZGCI(ω)} is dependent
on B(ω), which can be reformulated as

B(ω) = B1(ω)B2(ω) (44)

where

B1(ω) = (Kcp −Kp)CfLf1ω
2 +Kp

B2(ω) = cos(1.5ωTs) (45)

B2(ω) changes the sign from positive to negative at fs/6.
Assume that ft is the frequency point where B1(ω) changes
the sign from positive to negative, which can be calculated as

ft =

√
Kp

4π2(Kp −Kcp)CfLf1
(46)

Then, the signs of B1(ω), B2(ω), and B(ω) up to the
Nyquist frequency can be summarized in Fig. 17. It can be
seen that when ft < fs/6, (ft, fs/6) is the non-passivity
region (NPR) of B(ω). In addition, when ft > fs/6, (fs/6, ft)
is the NPR of B(ω). Therefore, in order to eliminate the NPR
of B(ω), ft should be equal to fs/6, i.e.,

ft =
fs
6

⇒ Kcp = Kp −
9Kp

π2fs
2CfLf1

(47)

By substituting the identified circuit and controller param-
eters of the GCIs into (47), Kcp is calculated as 0.76. The
phase angle of the terminal impedance frequency responses of
the three GCIs after passivity enforcement is shown in Fig.
18. It can be seen that, the NPR (1423 Hz, 1667 Hz) in Fig.
7 disappears by increasing Kcp from 0.60 to 0.76.

Obviously, the frequency-domain passivity enforcement so-
lution is more robust than the aforementioned capacitor-current

Fig. 18. Phase angle of the terminal impedance frequency responses of the
three GCIs in Fig. 6 after passivity enforcement.

feedback coefficient re-tuning method, since the intercon-
nected passive system can be guaranteed to be stable when
arbitrary system changes happen [41]. In fact, the passivity the-
ory provides a sufficient yet not necessary stability condition
for the interconnected system, i.e., it is a little conservative.
For example, as shown in Table II, the unstable system when
l(Zg) is 8 km can be stabilized by only increasing Kcp of
#3GCI from 0.60 Ω to 0.68 Ω, instead of enforcing system
passivity by increasing Kcp of all of the three GCIs from 0.60
to 0.76. Besides, re-tuning Kcp of only one GCI in step 3 has
an additional purpose, i.e., to validate the correctness of the
weakest point identification results in step 2.

C. Extension of the Proposed Method for Low-Frequency
Instability Source Identification

In addition to the inner current control loop-induced high-
frequency harmonic instability phenomena shown in Sections
IV-B, low-frequency instability phenomena may also happen,
which commonly result from slower outer control loops, e.g.,
PLL [8], outer power control loop [9], and dc-link voltage
control loop [11]. Different from only considering the inner
current control loop which can be depicted by the phasor-
domain impedance model in (25), 2 × 2 impedance matrices
should be established to reveal asymmetric characteristics of
d-axis and q-axis control of these outer control loops [8], [9],
[11], [57]. To cope with the two-dimensional impedance mod-
els, the gray-box hierarchical instability source identification
method presented in Section III should be slightly modified.
In step 1, since the LIM derived at a specific node using the
basic circuit laws is now a two-dimensional matrix, the system
stability should be assessed by the zeros of the determinant of
the LIM [36]. If the real parts of all zeros are negative, the
system is globally stable. Otherwise, it is unstable. In step 2,
the generalized NC should be used to the ratio of the two-
dimensional impedance matrices of the source and load parts
[8].

In step 3, the circuit and controller parameters of the
GCI under other control strategies, e.g., converter-side cur-
rent control and capacitor-voltage derivative feedback active
damping, can also be identified. The circuit and controller
parameters of the GCI under converter-side current control or
grid-side current control without active damping are identified
in [55]. In addition, the capacitor-voltage derivative feedback



active damping is equivalent to the capacitor-current propor-
tional feedback active damping from the perspective of output
impedance model [54], i.e., the identification algorithm is the
same as the method presented in this paper. Furthermore, when
the outer control loops are further considered, only a few
modifications should be made. Similar with (25), the two-
dimensional impedance matrices are first theoretically derived.
Then, a two-dimensional transfer function matrix is fitted from
the measured two-dimensional impedance frequency responses
using the enhanced version of the VF algorithm, i.e., the matrix
fitting (MF) algorithm, and is equalized with the theoretically-
derived one. On its basis, the controller parameters of outer
control loops can further be identified. For example, the
parameters of current controller, dc voltage controller, and the
PLL are identified in [16].

V. REAL-TIME SIMULATION VERIFICATION

In this section, the correctness of the harmonic stability
analysis results in Section IV obtained by the proposed gray-
box hierarchical instability source identification method is val-
idated by both simulation results in Matlab/Simulink platform
and real-time verification results in OPAL-RT digital simulator
platform.

A. Simulation Verification Based on Matlab/Simulink Platform

System parameters of the three GCIs in Fig. 6 are shown in
Table III. It can be seen that the identified circuit and controller
parameters of the GCI in Section IV-B3 highly agree with
actual circuit and controller parameters.

TABLE III
SYSTEM PARAMETERS OF THE THREE GCIS IN FIG. 6

Parameter Value

DC-link voltage Vdc 1150 V
Grid fundamental angular frequency ω1 50 Hz
Inverter-side filter inductance Lf1 0.5 mH
Grid-side filter inductance Lf2 0.2 mH
Filter capacitance Cf 50 µF
Capacitor-current-feedback coefficient Kcp 0.6 Ω
Switching frequency fsw 2.5 kHz
Sampling frequency fs 10 kHz
Grid voltage (phase-to-phase RMS ) Vg 575 V
Proportional gain of current controller Kp 1.2 Ω
Integral gain of current controller Ki 65 Ω/s
Proportional gain of PLL Kppll 0.7 rad/(Vs)
Integral gain of PLL Kipll 3.2 rad/(Vs2)
Current reference value Irefg,d 1.0 kA

Current reference value Irefg,q 0 A

1) Stable Cases: Time-domain simulation results of grid
current Ig when l(Zg) = 1 km and l(Zg) = 13 km are shown
in Fig. 19(a) before 0.5 s and in Fig. 20(a) before 0.5 s,
respectively. It can be seen that the grid currents under the
two cases are stable, which agree with the stability analysis
results in Section IV-A.

2) Unstable Cases: Time-domain simulation results of grid
current Ig when l(Zg) = 6 km and l(Zg) = 8 km are shown in
Fig. 19(a) from 0.5 s to 1.5 s and in Fig. 20(a) from 0.5 s to 1.5
s, respectively. It can be seen that the grid currents under the

(a) (b)

Fig. 19. Simulation results of grid current Ig when l(Zg) increases from 1
km to 6 km at 0.5 s. (a) Time-domain waveform of Ig . (b) FFT of Ig after
0.5 s.

(a) (b)

Fig. 20. Simulation results of grid current Ig when l(Zg) decreases from 13
km to 8 km at 0.5 s. (a) Time-domain waveform of Ig . (b) FFT of Ig after
0.5 s.

two cases are unstable, which agree with the stability analysis
results in Section IV-B. In addition, the frequency spectrums
of Ig under the two unstable cases are shown in Figs. 19(b)
and 20(b), respectively. It can be seen that harmonic instability
occurring at 1500 Hz when l(Zg) = 6 km oscillates faster
than that occurring at 1450 Hz when l(Zg) = 8 km, which
agree with the identified RHP zeros 13.98 ± j2π1497.5 and
6.572± j2π1449.4 in Fig. 9. The correctness of the harmonic
stability analysis results in Section IV-B is thus validated.

Furthermore, the system becomes stable by increasing Kcp

of the #3GCI from 0.6 Ω to 0.85 Ω at 1.2 s when l(Zg) = 6
km, and from 0.6 Ω to 0.68 Ω at 1.2 s when l(Zg) = 8
km, respectively, as shown in Fig. 21, which agree with the
theoretical analysis results in Section IV-B.

B. Real-Time Verification Based on OPAL-RT Digital Simula-
tor Platform

Real-time simulation verification based on OPAL-RT digital
simulator platform is performed to further validate the correct-
ness of the theoretical analysis results in Section IV and the
time-domain simulation results obtained in Matlab/Simulink

(a) (b)

Fig. 21. Simulation results of grid current Ig with re-tuning Kcp at 1.2 s. (a)
Kcp re-tuned from 0.6 Ω to 0.85 Ω when l(Zg) = 6 km. (b) Kcp re-tuned
from 0.6 Ω to 0.68 Ω when l(Zg) = 8 km.



Fig. 22. Configuration of the OPAL-RT digital simulator setup.

(a) (b)

Fig. 23. Real-time verification of the Matlab/Simulink-based simulation results
in Fig. 19. (a) Time-domain waveform of Ig . (b) FFT of Ig after 0.5 s.

platform. Fig. 22 shows configuration of the OPAL-RT digital
simulator platform. The OP5600 combines the power and
reliability of Intel Xeon E5 processing cores with the high-
performance latest generation Xilinx Virtex-6 FPGA to address
a wide range of rapid control prototyping applications with
OPAL-RT′s RT-LAB or HYPERSIM software platforms. The
Simulink-based model is established in the RT-LAB software,
based on which code is generated and downloaded into the
OP5600 hardware. Both software and hardware platforms
allow high-speed and real-time simulation. The real-time
simulation results obtained by OPAL-RT platform are then
processed in Matlab.

1) Stable Cases: The OPAL-RT-based real-time verification
of the Matlab/Simulink-based simulation results when l(Zg) =
1 km and l(Zg) = 13 km are shown in Fig. 23 before 0.5 s
and in Fig. 24 before 0.5 s, respectively. It can be seen that
the real-time simulation results before 0.5 s are stable, which
agree with the theoretical analysis results in Section IV-A and
the Matlab/Simulink-based simulation results in Figs. 19 and
20 before 0.5 s.

2) Unstable Cases: The OPAL-RT-based real-time verifi-
cation of the Matlab/Simulink-based simulation results when
l(Zg) = 6 km and l(Zg) = 8 km are shown in Fig. 23(a)
after 0.5 s and in Fig. 24(a) after 0.5 s, respectively. It can be
seen that, under the two cases, the real-time simulation results
are unstable, which agree with the theoretical analysis results
in Section IV-A and the Matlab/Simulink-based simulation
results in Figs. 19(a) and 20(a) from 0.5 s to 1.5 s. In addition,
the frequency spectrums of Ig under the two unstable cases are
shown in Figs. 23(b) and 24(b), respectively. It can be seen that
harmonic instability occurring at 1504 Hz when l(Zg) = 6 km
oscillates faster than that occurring at 1451 Hz when l(Zg) = 8
km, which highly agree with the FFT analysis results in Figs.
19(b) and 20(b).

Fig. 25 shows the real-time simulation results when Kcp

is changed. It can be seen that the system becomes stable by

(a) (b)

Fig. 24. Real-time verification of the Matlab/Simulink-based simulation results
in Fig. 20. (a) Time-domain waveform of Ig . (b) FFT of Ig after 0.5 s.

(a) (b)

Fig. 25. Real-time verification of the Matlab/Simulink-based simulation results
in Fig. 21. (a) Kcp re-tuned from 0.60 Ω to 0.85 Ω when l(Zg) = 6 km.
(b) Kcp re-tuned from 0.60 Ω to 0.68 Ω when l(Zg) = 8 km.

increasing Kcp from 0.60 Ω to 0.85 Ω when l(Zg) = 6 km,
and becomes stable by increasing Kcp from 0.60 Ω to 0.68 Ω
when l(Zg) = 8 km, which agree with the Matblab/Simulink-
based simulation results in Fig. 21.

VI. CONCLUSION

This paper presents a gray-box hierarchical instability
source identification method for multi-inverter-fed power sys-
tems, which is able to perform stability assessment at sys-
tem, component, and parameter levels sequentially based on
measured output impedance frequency responses of the GCIs.
The proposed method improves the conventional eigenvalues-
based and impedance-based stability analysis methods by
extracting eigenvalues information from the impedance fre-
quency responses. On system level, the system eigenvalues are
identified from the system LIM which is derived by applying
the basic circuit principles to the component impedances. On
component level, RHP poles of impedance ratio calculated
for the NC are identified with the help of the VF algorithm.
On parameter level, critical circuit and controller parameters
of the problematic GCIs are identified from the fitted output
impedance transfer functions. Theoretical analysis, simulation,
and real-time verification results show that the proposed
method can identify the instability phenomena and correspond-
ing oscillation frequency, based on which the problematic
components and controller parameters can further be located.
The proposed method is able to perform up-down stability
analysis and controller re-tuning for stability improvement
even if no internal parameters are provided. Low-frequency
instability phenomena induced by other control loops, e.g.,
PLL, dc-link voltage control loop, and outer power control
loop, will be investigated using the proposed method in future
works.



APPENDIX A
PROOF OF RELATION AMONG EIGENVALUES-BASED,
NC-BASED, AND LIM-BASED STABILITY ANALYSIS

METHODS

(12) can be reformulated as∣∣∣∣ sIp −A11
sys −A12

sys

−A21
sys sIq −A22

sys

∣∣∣∣ = 0→ ∆1∆2∆3 = 0 (48)

where

∆1 =
∣∣sIp −A11

sys

∣∣
∆2 =

∣∣sIq −A22
sys

∣∣
∆3 =

∣∣∣Iq − (sIq −A22
sys)

−1
A21
sys(sIp −A11

sys)
−1
A12
sys

∣∣∣ (49)

Based on (11), ∆1 can be reformulated as

∆1 = |sIp −AiS | |Λ1| (50)

where

|sIp −AiS | =
p∏

m=1

(s− λiSx)

Λ1 = Ip + (sIp −AiS)−1BiS(1 +DiLDiS)−1DiLCiS (51)

Furthermore, |Λ1| can be reformulated as

|Λ1| =
∣∣∣Ip + C−1

iS CiS(sIp −AiS)
−1
BiS(1 +DiLDiS)

−1
DiLCiS

∣∣∣
(52)

According to (3), CiS(sIp −AiS)−1BiS = YiS − DiS .
Therefore, (52) can be reformulated as

|Λ1| = (
1 +DiLYiS
1 +DiLDiS

)p (53)

Similarly, based on (11), ∆2 can be reformulated as

∆2 = |sIq −AiL| |Λ2| (54)

where

|sIq −AiL| =
q∏
y=1

(s− λiLy)

Λ2 = Iq + (sIq −AiL)−1BiL(1 +DiLDiS)−1DiSCiL

|Λ2| = (
1 +DiSZiL
1 +DiLDiS

)q (55)

In addition, based on (11), ∆3 can be reformulated as

∆3 = (1 + (ZiL −DiL)(YiS −DiS)(1 +DiLDiS)−2|Λ1|−
1
p

...|Λ2|−
1
q )q (56)

By substituting (53) and (55) into (56), (56) can be simpli-
fied as

∆3 = (
(1 +DiLDiS)(1 + ZiLYiS)

(1 +DiLYiS)(1 +DiSZiL)
)q (57)

Therefore, by substituting (49)-(57) into (48), (48) can be
reformulated as

∆1∆2∆3 =

p∏
x=1

(s− λiSx)

q∏
y=1

(s− λiLy)
(1 +DiLYiS)

p−q

(1 +DiLDiS)
p ...

(1 + ZiLYiS)q = 0 (58)

APPENDIX B
DETAILED EXPRESSION OF ZGCI(ω)

ZGCI(ω) = ((Kp −KcpLf2Cfω
2) cos(1.5ωTs)− j(Lf1...

Lf2Cfω
3 − (Lf1 + Lf2)ω + (Kp −KcpCfLf2ω

2)...

sin(1.5ωTs)))/(1− Lf1Cfω
2 +KcpCfω sin(1.5ωTs)...

+jKcpCfω cos(1.5ωTs)) (59)
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