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Abstract

A biofeedback system may objectively identify fatigue and provide an individualized timing

plan for micro-breaks. We developed and implemented a biofeedback system based on

oculometrics using continuous recordings of eye movements and pupil dilations to moderate

fatigue development in its early stages. Twenty healthy young participants (10 males and 10

females) performed a cyclic computer task for 31–35 min over two sessions: 1) self-trig-

gered micro-breaks (manual sessions), and 2) biofeedback-triggered micro-breaks (auto-

matic sessions). The sessions were held with one-week inter-session interval and in a

counterbalanced order across participants. Each session involved 180 cycles of the com-

puter task and after each 20 cycles (a segment), the task paused for 5-s to acquire per-

ceived fatigue using Karolinska Sleepiness Scale (KSS). Following the pause, a 25-s micro-

break involving seated exercises was carried out whether it was triggered by the biofeed-

back system following the detection of fatigue (KSS�5) in the automatic sessions or by the

participants in the manual sessions. National Aeronautics and Space Administration Task

Load Index (NASA-TLX) was administered after sessions. The functioning core of the bio-

feedback system was based on a Decision Tree Ensemble model for fatigue classification,

which was developed using an oculometrics dataset previously collected during the same

computer task. The biofeedback system identified fatigue with a mean accuracy of approx.

70%. Perceived workload obtained from NASA-TLX was significantly lower in the automatic

sessions compared with the manual sessions, p = 0.01 Cohen’s dz = 0.89. The results give

support to the effectiveness of integrating oculometrics-based biofeedback in timing plan of

micro-breaks to impede fatigue development during computer work.

Introduction

Fatigue is often reported by computer users [1,2] and associated with the development of mus-

culoskeletal and psychological disorders [2,3] and compromised performance resulting in
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accidents [4]. However, fatigue development is sometimes inevitable due to inflexible work

regulations and schedules [2]. Two important issues among all should be addressed in work-

related fatigue [2]. First, the regular work-rest schedules may ignore inter-individual differ-

ences in the manifestation of fatigue patterns [5,6]. Second, fatigue progression in its early

stages may not necessarily lead to a significant loss of performance and thus not easily detect-

able from performance measures [7,8].

The development of fatigue during computer work in response to a mentally demanding

task is aimed to be investigated in the proposed study, which may deal more with mental

rather than physical demands of computer work. However, it has been recommended not to

use adjectives (e.g. mental, cognitive) describing the locus of “fatigue” to acknowledge different

underlying factors of fatigability [9]. In addition, this form of fatigue may also be referred to as

acute fatigue as provoked by fast-paced or tight-scheduled work, but the manifestation of

fatigue may be beyond task demands [9]. Sleep-deprived and chronic forms of fatigue should

be discriminated from acute fatigue as the latter could be regulated by micro-breaks whereas

the former is unlikely to be respondent to such interventions [10].

Implementing micro-breaks, i.e. short pauses without major interruption, at work is sug-

gested to mitigate fatigue and preserve the performance in a safe level [11,12]. In addition,

micro-breaks have been reported to improve mental focus [13]. It is plausible that micro-

breaks can reduce discomfort especially during computer work (e.g. [14]), however, the cogni-

tive impacts of micro-breaks require further investigations [15]. Optimal design of micro-

breaks for an individual requires monitoring fatigue status and acquisition of objective infor-

mation associated with fatigue [16–19]. The objective information should be provided in an

unobtrusive manner to avoid any disturbance to work [16–19].

Fatigue detection has been approached by different techniques and modalities including

electroencephalography [20–22], surface electromyography [23,24], mechanomyography

[25,26], functional near infra-red spectroscopy [27,28], cardiac dynamics [29,30], functional

magnetic resonance imaging [31,32], and eye tracking [33,34], or combinations of different

modalities [35,36]. Although the findings are promising and competitive with each other in

experimental situations for precise detection of fatigue, they are subject to technical limitations

to apply in real-life settings. This study is focused on eye tracking, as it is technically progress-

ing and can provide less obtrusiveness compared with the mentioned psychophysiological

measurements, which is suitable for real-life settings [37].

Oculometrics are believed to be an enriched source of cognitive information and can be

achieved by eye tracking [38–42]. The oculometrics may represent the underlying neural

mechanism in the control and regulation of the eye movements during fatigue development

[43]. Recent findings have shown that the development of fatigue may manifest earlier in the

oculometrics than in physical and cognitive performance in various tasks including computer

work [38,44]. Thus, oculometrics are promising biomarkers for early detection of fatigue.

An effective design of micro-breaks requires appropriate choices for the period, frequency,

and the activity during the micro-breaks [45,46]. These parameters are dependent on the tasks

and individuals [47]. Specifically, the frequency of micro-breaks may be determined individu-

ally based on oculometrics as sensitive metrics to fatigue development. Thus, this study aimed

at the development of a biofeedback system based on oculometrics to provide personalized

information on when to apply micro-breaks.

A biofeedback system is commonly comprised of an acquisition system to record physio-

logical data from an individual, a processing unit to interpret the data, and an interface, e.g. a

computer screen, to deliver information in real-time according to the processed data to the

individual. The underlying idea of biofeedback is to provide cognitive interventions to

enhance self-awareness to improve health and performance [48,49]. There are different
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applications for biofeedback [48,49], e.g. decrease of the muscular load during computer work

[16,17], adjustment of the mental load of computer games using physiological signals includ-

ing pupil diameter changes [50], mental training in competitive sports [51], and counteracting

stress and anxiety [52–54].

The proposed biofeedback system in this study was designed to alert participants to take

micro-breaks during computer work based on oculometrics in a statistical model describing

fatigue states. Of note, counteracting fatigue within this framework of cognitive intervention is

favorable from the consumption of psychoactive drugs, e.g. caffeine in association with health

risks [55]. We hypothesized that the oculometrics-based biofeedback system would impede

fatigue development without compromising the performance of computer work.

Methods and materials

Participants

Twenty participants, 10 females and 10 males, aged 26 (SD 3) years old with the height of 1.72

(SD.10) m, and the body mass of 69 (SD 15) kg were recruited. All participants had normal or

corrected-to-normal vision (self-reported and examined by Snellen chart). The participants

were familiar with computer work and used their right hand as their dominant side for com-

puter mouse. Participants were asked to abstain from alcohol for 24 h, and caffeine, smoking

and drugs for 12 h prior to experimental sessions. The participants reported at least 6 h (mean

7.6 ± 0.8 h) of night sleep before the experimental session. The Fatigue Assessment Scale (FAS)

[56] and the Visual Fatigue Scale (VFS) [57] were administered respectively to exclude partici-

pants suffering from chronic fatigue and eye strain. No participant was found with chronic

fatigue and eye strain. Written informed consent was obtained from each participant. The

experiment was approved by The North Denmark Region Committee on Health Research Eth-

ics, project number N-20160023 and conducted in accordance with the Declaration of

Helsinki.

Experimental approach

A counterbalanced-measures design was employed to investigate the effectiveness of biofeed-

back-triggered micro-breaks in comparison with self-triggered micro-breaks. To do this, two

experimental sessions were conducted in two counterbalanced sessions (days) with one-week

inter-session interval.

Computer task. In both experimental sessions, participants were asked to perform a cyclic

computer task [38] for approx. 31–35 min (Fig 1). The task [58] developed on MATLAB

R2018a (The MathWorks, Natick, MA) was displayed on a 19-in screen (1280×1024 pixels,

refresh rate: 120Hz) located approx. 58 cm in front of a sitting participant subtending 27˚×22˚

of visual angle. The task involved 180 cycles each taking approx. 10 s (corresponding to meth-

ods times measurement (MTM-100) [59,60]). Each cycle began by memorizing a random pat-

tern of connected points with different shapes presented on a computer screen. The order of

connecting points was determined by a textual cue displayed under the pattern, indicating the

starting point. It was followed by a washout period, where no pattern was displayed, and the

participants were instructed to keep their gaze on a cross in the center of the screen. The cycle

continued by the presentation of the doubled-size replica of the pattern without connecting

lines. To redraw the lines and replicate the presented pattern, participants were required to

click on a sequence of the pattern points as targets. Once the allocated time to replicate the pat-

tern passed, a new cycle with a different pattern was presented. In this design, the perceived

level of fatigue based on Karolinska Sleepiness Scale (KSS) [61], was indicated by the
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participants after each 20 cycles, i.e. segment, in five seconds (KSS pause). The KSS can be

rated from one (extremely alert) to 10 (extremely sleepy, can’t wait to sleep).

Micro-breaks. Each experimental session involved either self-triggered or the biofeed-

back-triggered micro-breaks, respectively termed as manual and automatic sessions. In the

manual sessions, the participants were instructed to press the right click button asking for a

micro-break, whenever through the task they felt fatigued equivalent to KSS�5. When a

micro-break was triggered by a right click (or more), the task execution was interrupted after

the earliest upcoming KSS pause (Fig 1). In the automatic sessions, the biofeedback system

triggered the micro-break based on its prediction of KSS (explained further in the subsequent

section) being�5 [62,63]. In this study, the micro-break consisted of a 25-s interruption of the

task, while the participant took an active pause. During the micro-break, a down counter of

the seconds from 25 to zero was displayed on the computer screen (Fig 1). The green color has

been shown to have restorative effects on attention and cognition [64,65]. The micro-breaks

involved four repetitions of seated bilateral shoulder rotations with an elastic band where the

shoulders were abducted horizontally up to 45˚ while keeping the elbows fixed around 90˚.

During the micro-break, the participants were also instructed to perform mindful breathing

based on [66,67] where the participants were guided to become aware of their breathing.

Besides the benefits of active pauses [68] especially during computer work [69], mindful

breathing is associated with oxygenation and reduced mental load and stress to counteract sus-

tained attention [70,71]. The breathing rate was at the participants discretion, due to the diver-

sity and individuality in breathing patterns [72].

Familiarization and task engagement. The participants were instructed to perform the

computer task and micro-breaks in four days prior to the first session. In addition, anthropo-

metric measures, visual acuity, and general health and fatigue questionnaires were collected.

Afterwards, the participants performed the computer task for 10-min. The participants

received a brief overview of the experimental procedure also in the beginning of both sessions

and performed the computer task for 5-min as an additional training before commencing the

Fig 1. The task timeline in the manual and automatic sessions (see micro-breaks). A schematic view of the exercise and

screen information during a micro-break, and the experiment set-up. [The individual in this manuscript has given written

informed consent (as outlined in PLOS consent form) to publish these case details].

https://doi.org/10.1371/journal.pone.0213704.g001
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experimental protocol to reduce the learning effect. The participants were not informed about

the principle of functioning of the biofeedback system. It was further explained that their

choices of KSS had no effect on their performance or the biofeedback system. To evaluate the

perceived workload from the tasks, the questionnaire of National Aeronautics and Space

Administration Task Load Index (NASA-TLX) [73] was administered after the task termina-

tion, as it provides information on different dimensions of workload of a task [74,75]. The par-

ticipants were informed that their performance was measured and compared with other

participants to maintain motivation, and achieving high performance makes them candidates

to win a monetary reward (100 Danish Kroner).

The development of a statistical model for fatigue detection

To implement the biofeedback system, a statistical model of fatigue was developed based on

previously collected oculometrics dataset (OLDSET) during an identical computer task [38].

The OLDSET consisted of the oculometrics extracted from gaze positions and pupil dilations,

and KSS ratings from 38 participants in 40-min samples of an identical computer task without

micro-breaks as described in [38]. The state of fatigue for each segment was assigned based on

the KSS scores obtained after each segment. The KSS scores were dichotomized based on a

threshold value of five, corresponding to being “neither alert nor sleepy”, as a transition point

between alertness and fatigue. Thus, the segments with the KSS value of�5 were assigned to

the class of fatigued and the KSS scores of<5 were assigned to the class of alert. This dichoto-

mization criterion has been used in previous studies, e.g. [62]. It is suggested as a critical value

in the association between ocular metrics and sleepiness [63]. With this dichotomization crite-

rion, 45% of the collected segments (205 out of 456) across the entire subject pool in the OLD-

SET were labeled as fatigued.

Thirty-four features including oculometrics, sex, and age were used in setting up the classi-

fier (Table 1). A series of viable classification models were examined as outlined in Table 2. A

feature subset consisting of five features, i.e. Blink Frequency (BF), Percentage of the duration

of closed eyes to opened eyes (PERCLOS), Saccade Frequency (SF), Saccade Peak Velocity

Amplitude Relationship (SVA), and Pupil Diameter Interquartile Range (PDIR), was chosen

using sequential floating forward feature selection [76]. The feature selection helps to choose a

combination of features that best explain the separability of the two classes [76]. The classifica-

tion criterion was the Youden’s J statistic or Youden’s index TP
P þ

TN
N � 1

� �
[77], where P and N

are the number of instances (segments) with respectively positive (fatigued) and negative

(alert) labels, and TP, TN are respectively the number of true positive (correctly detected

fatigue) and true negative (correctly detected alert) instances. Here, TP
P and TN

N are respectively

True Positive Rate (TPR), and True Negative Rate (TNR). The Youden’s index was computed

using leave-one-person-out (LOPO) approach on a random forest model (Table 2) [78]. Dif-

ferent classifiers as outlined in Table 2 were examined using the selected feature subset as

input and the class labels of fatigued or alert as output. In the LOPO approach, the classifier

was trained using the data from all the participants except one, and it was tested using the

excluded participant. This approach was performed for all the 38 participants to compute the

average of classification performance across the entire participant pool. Finally, the ensemble

of Decision Trees (DT Ensemble) was chosen based on its superior classification performance

in terms of accuracy ACC = (TP + TN)/(P + N) (66±21%), TPR (61±29%), and TNR (70±22%)

in comparison with the classifiers listed in Table 3, i.e. linear discriminant analysis, decision

tree, k-nearest neighbors, support vector machines, Naïve Bayes, feed-forward neural net-

works, subtractive clustering-based Fuzzy classifier, Fuzzy c-means classifier, logistic regres-

sion classifier, and random forest.
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The classification model with the best performance (DT Ensemble) was picked to form the

core of the biofeedback system. The DT Ensemble with the configuration outlined in Table 2

was trained with the whole dataset consisting of 456 samples (38 participants × 12 segments)

to make a statistical model to predict the class label of each segment of the biofeedback system.

The permutation test [96] was conducted on the OLDSET to further examine the classifica-

tion accuracy of the DT Ensemble against the chance level accuracy obtained from 100 ran-

domly permuted class labels. The sensitivity to the dichotomization criterion for the KSS was

also performed on the OLDSET. The classification performance of the DT ensemble was sig-

nificantly higher than chance level as assessed by the permutation test for the OLDSET (α =

0.01). Changing the dichotomization criterion of KSS scores to�6 as fatigued for the DT

Ensemble model did not lead to better classification performances than the criterion of five in

the OLDSET. The receiver operating characteristics (ROC) of the training and test sets, and

the confusion matrix for the DT Ensemble model are depicted in Fig 2, where the area under

the ROC curves for the training (0.89) and test (0.64) sets as well as the results from the confu-

sion matrix supported the usability of the model in the biofeedback system.

During the computer task in the current study, the feature set was obtained across 20 conse-

cutive cycles within a segment and the core of the biofeedback system classified the segment

into either the fatigued or the alert class. The section titled “Oculometrics” outlines the

Table 1. The feature set.

Feature Description Feature Description

Blink-related Oculometrics Fixation-related Oculometrics
BF� [Hz] Blink Frequency FFdisp/dist

[a.u.]

The ratio of the displacement to the distance between two successive fixations

BD [s] Blink Duration FD [s] Fixation Duration

BGF [Hz] The Frequency of Blinks accompanied by Gaze shifts

[79]

FF [Hz] Fixation Frequency

IBI [s] Inter-Blink Interval (excluding IBI>20 s) FFdisp [cm] Displacement between two successive fixations

LBF [Hz] The frequency of long blinks (>200 ms) [80] FFdist [cm] Euclidean distance between two successive fixation centers

LBR [a.u.] The ratio of long blinks (>200 ms) [80] to all blinks OD [cm] Overall Dispersion; the averaged Euclidean distance between fixation centers

and center of fixations

DBF [Hz] Double Blink Frequency (excluding IBI>700 ms)

[81,82]

LFR [%] The Rate of Long Fixation (>0.9 s) [34] to all fixations

BGR [a.u.] The ratio of blinks accompanied by gaze shifts to all

blinks [79]

Saccade-related oculometrics

TBS [s] Time interval of <700 ms between a blink and its

successive saccade

SVA� [s-1] Saccade Peak Velocity Amplitude Relationship

PERCLOS�

[%]

Percentage of the duration of closed eyes to opened

eyes

SCD [s] Saccade Duration

Pupil-related oculometrics SF� [Hz] Saccade Frequency

PD [mm] Pupil Diameter SPV [˚/s] Saccade Peak Velocity

PDIR� [mm] Pupil Diameter Interquartile Range SDA [s/˚] Saccade Duration Amplitude Relationship

PCV [a.u.] Coefficient of Variation of Pupil diameter SCR [˚] Saccade Curvature [59]

PH [a.u.] Instantaneous phase of the pupil dynamics [83] SA [˚] Saccade Amplitude

Demographics SPD [˚/s2] Saccade Peak Deceleration

Age (continuous scale) SPA [˚/s2] Saccade Peak Acceleration

Sex ISI [s] Short Inter-Saccade Intervals in <250 ms [84]

KPA [a.u.] Kappa Coefficient of Ambient/Focal attention [85]

� The selected features for the classification model

https://doi.org/10.1371/journal.pone.0213704.t001
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performed analysis to obtain the oculometrics as features. If the segment was classified as

fatigued, the biofeedback system triggered the micro-break command following the KSS pause

after that specific segment. If the segment was classified into the alert class, no feedback was

given. The architecture of the biofeedback system is depicted in Fig 3. The approaches from

feature selection to model evaluation in the development of the statistical model to predict

fatigue is summarized in Fig 3, and thereby the two mechanisms to trigger the micro-breaks in

the automatic and manual sessions are illustrated. All aspects of the biofeedback system were

implemented in MATLAB R2018a (The Mathworks, Natick, MA).

Data acquisition and processing

A video-based monocular eye-tracker (Eye-Trac 7, Applied Science Laboratories, Bedford,

MA, USA) coupled with a head tracker (Visualeyez II system set up with two VZ4000 trackers,

Table 2. The details of the classification models.

Model Description Configuration Further considerations

LDA Linear discriminant

analysis

Discriminant type: pseudolinear Suitable to encounter singularity problems due to missing

values [86]

DT Decision Tree Max number of splits: 7, Maximum number of categories:

10, Min parent size: 10, Prediction selection criteria:

Curvature test, Pruning criterion: error, Min leaf size: 1,

Split criterion: Gini’s diversity index (GDI)

Choices for hyperparameters were based on the recommended

constraints [87]

KNN k-Nearest Neighbors 11-nearest neighbors classifier using the Euclidean

distance metric and an exhaustive searcher

k = 11 was chosen based on the highest classification

performance in a grid search of k in [1 21], where the upper

limit came from
ffiffiffi
n
p

, where n is the number of the training

samples [88], Standardized feature set [89]

SVM Support Vector Machines 2 types of SVM each using 4 different kernels.

1) c-SVM (c = 10).

2) ν-SVM (ν = 0.7).

Kernel functions:

Gaussian exp(γ|u − v|2), Polynomial (γu0v + σ)3, Sigmoid

tanh(γu0v + σ), and linear u0v, where: γ = 0.2, σ = 0.1.

The feature set was normalized using Min-Max feature scaling.

Solver: Sequential Minimal Optimization (SMO) [90,91]. The

SVM classifiers implemented using LIBSVM Toolbox [91].

Choices for the hyperparameters were based on grid search

over c = 1, 10, and 100, ν = [0.1 0.9] with the step size of 0.1.

NB Naive Bayes Predictor Distribution: Normal Different kernels (Box, Traingular, and Epanechnikov) were

also tested.

NN Feedforward Neural

Network

One hidden layer including five neurons in the hidden

layer with scaled conjugate gradient backpropagation

function.

The number of neurons was chosen in [1 10] (with the step size

of 1). 50 random initial conditions and shuffled sequences of

data presentation were applied with standardized feature set

[92]

FIS-SC Fuzzy Inference System

structure using subtractive

clustering

Cluster center’s range of influence: 0.6, Input membership

function: Gaussian, Output membership function: Linear

Cluster center’s range was chosen in grid search between [0 1]

with the steps of 0.1. Different membership functions were

tested

FIS-FCM Fuzzy Inference System

structure using Fuzzy

C-Means clustering

FIS type: Sugeno, number of clusters: 2, input

membership function: Gaussian, Output membership

function: Linear

Different membership functions were also tested, and the best

was chosen (Gaussian) [93].

Fusion Major voting scheme The same parameter settings for the single classifiers

(LDA, DT, KNN, c-SVM with Gaussian kernel, NB, NN,

FIS-SC and FIS-FCM) used.

The class (CFusion) was determined based on the average of the

posterior probability (PPi) of the single classifiers,

CFusion ¼
1

8

P8

i¼1
PPi

� �� �
, where CFusion = 1 indicated the class of

fatigued (KSS�5) [94]

LR Logistic Regression

Classifier

Using binomial logistic regression for the two classes of

fatigued and alert

No additional option for the model.

DT

Ensemble

Ensemble of Decision Tree

classifiers

Max number of splits: 5, Ensemble method: RobustBoost,

Number of learning cycles: 50, Robust Error Goal: 0.25,

Robust Max Margin: 1

Robustness against noisy samples [95] due to the subjectivity of

class labels. Choices for hyperparameters were based on the

recommended constraints [87]

Random

Forest

Ensemble of Decision Tree

classifiers

Max number of splits: 5, Number of trees:51, The

function to measure the quality of a split was GDI

Suitable for categorical variables (e.g. sex). Choices for

hyperparameters were based on the recommended constraints

[87]

https://doi.org/10.1371/journal.pone.0213704.t002
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Table 3. The performance of the models to classify the state of fatigued (KSS�5) (Positive class) from alert (Negative class).

Model Sensitivity

(TPR%)

Specificity

(TNR%)

Accuracy

(ACC%)

DT Ensemble 61 70 66

c-SVM (Gaussian kernel) 62 67 65

c-SVM (Polynomial kernel) 54 67 61

c-SVM (Sigmoid kernel) 44 78 63

c-SVM (linear kernel) 58 67 63

ν-SVM (Gaussian kernel) 61 68 64

ν-SVM (Polynomial kernel) 48 73 62

ν-SVM (Sigmoid kernel) 43 66 56

ν-SVM (linear kernel) 58 69 64

NB 61 68 65

LR 57 70 64

Fusion 57 69 63

Random Forest 54 68 62

LDA 54 67 61

NN 53 67 61

FIS-FCM 54 67 61

FIS-SC 61 56 59

KNN 57 60 59

DT 56 52 54

https://doi.org/10.1371/journal.pone.0213704.t003

Fig 2. The receiver operating characteristics (ROC) curve with the False Positive Rate (FPR) on the x-axis and the

True Positive Rate (TPR) on the y-axis, depicted for the training and test sets, as well as the confusion matrix for

the DT Ensemble model. The ROC curve is illustrated by computing the TPR and FPR averaged across the

participants for varying values of the posterior probability threshold in [0 1] for the training and test sets. The

confusion matrix was computed for the chosen KSS threshold of 5.

https://doi.org/10.1371/journal.pone.0213704.g002
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Phoenix Technologies Inc., Canada) was utilized to measure the eye movements, pupil diame-

ter, and point of gaze at a sampling frequency of 360 Hz. The coupling of the eye-tracker and

the head-tracker was done using built-in software to integrate eye and head positioning data

and to compensate for head movements allowing free head movements during the experiment.

As reported by the manufacturer, spatial precision of the eye-tracker is lower than 0.5˚ of

visual angle. The spatial accuracy is less than 2˚ in the periphery of the visual field. The calibra-

tion of the eye-tracker was performed before starting the task with 9-point calibration protocol

and examined before the task execution and after the task termination on the calibration

points. The measured accuracy was on average 0.7 ± 0.4˚ across participants and did not sig-

nificantly change across time (p> 0.6). The experiments were conducted in a noise- and illu-

mination- and temperature- controlled indoor room to rule out environmental confounding

factors.

Oculometrics. Among all the features outlined in Table 1, the oculometrics were

extracted from each segment. Saccades, blinks, and fixations were first identified for each

segment using the algorithm of [97] as applied in [38]. Briefly, the algorithm initiated by the

computation of visual angle between consecutive samples of point-of-gaze, followed by its

derivatives to the angular velocity and acceleration using a 19-samples-length second-order

Savitsky-Golay filter [97]. It applied data-driven thresholds on the angular velocity to detect

saccadic samples. Zero-valued samples of pupil diameter, corresponding to closed eyes or

missing pupil image provided by the built-in software of the eye-tracker, constituted blink

samples, and the rest of the samples were assigned to fixations. Pupil diameter (including

Fig 3. The architecture of the biofeedback system including the approaches to develop the statistical model to detect fatigue, and to trigger the

micro-breaks. This architecture provides the flowchart of the main steps to develop the fatigue detection model, from the feature selection to the model

evaluation and the deployment of the DT-Ensemble model in the biofeedback framework wherein the data were streaming from the eye tracker in real-

time and the selected features were extracted in the end of each task segment and were fed into the deployed DT-Ensemble model to trigger the micro-

break if fatigue was detected in the automatic sessions (light blue path), whereas the triggering of the micro-break was only based on the decision of the

participant in the manual sessions (red path).

https://doi.org/10.1371/journal.pone.0213704.g003
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linearly interpolated zero-valued samples) were filtered using a zero-phase low-pass third-

order Butterworth to remove noise and artefacts [98]. Additional constraints were imposed to

exclude invalid ocular events [38]. The data during the micro-breaks and KSS pauses were not

included in the computation of oculometrics.

The frequency of blinks (BF), saccades (SF), and fixations (FF) were computed respectively

as the number of blinks, saccades, and fixations during each segment divided by the duration

of the segment. The mean duration of blinks (BD), fixations (FD), and saccades (SCD) were

computed across each segment. Pupillary responses were characterized using the mean, coeffi-

cient of variation, interquartile range, instantaneous phase [83] of pupil diameter, respectively

indicated by PD, PCV, PDIR, and PH. The number of closed-eyes samples (zero-valued pupil

diameter) to opened-eyes samples was computed as PERCLOS. Blinks were further character-

ized by the frequency of blinks coincided by gaze shifts >2˚ (BGF) [79,99] and their ratio to

the number of all blinks (BGR). The mean of inter-blink interval (IBI), the frequency of blinks

occurring with IBI<700 ms (DBF), the number of long blinks >200 ms [80] to the segment

duration (LBF), and the ratio of long blinks to all blinks (LBR). Saccades were further quanti-

fied in terms of the mean value of their peak velocity (SPV), amplitude (SA), curvature [59]

(SCR), peak amplitude of saccadic acceleration (SPA) and deceleration (SPD) profiles, inter-

saccadic intervals (ISI) excluding ISI>250 ms, and the slope of the line regressing peak velocity

of saccades to their amplitude (SVA) and duration (SDA). Similarly, fixations were further

characterized as the ratio of long fixations (>0.9 s) [34] to all fixations (LFR).

Gaze dispersion was characterized using the mean value of gaze-point displacements and

distances between two successive fixations respectively computed as Euclidean distance

between the center of gaze points of two successive fixations (FFdisp), the summation of Euclid-

ean distances between successive gaze-points from the onset to offset of saccades connecting

the two successive fixations (FFdist), and the ratio of the FFdisp to FFdist for the same two succes-

sive fixations (FFdisp/dist). The successive fixations exceeding over feasible saccade duration of

>100 ms in this study were excluded [100]. In addition, overall dispersion (OD) was quanti-

fied as the averaged Euclidean distance between fixation centers and center of fixations. The

center of fixations, gaze points and fixation centers were obtained using the mean value of

their corresponding coordinates. The dynamics of visual perception were also quantified using

the kappa coefficient of ambient and focal attention (KPA) as defined in [85]. The mean of

time intervals (<700 ms) between a blink and its successive saccade was also extracted as a fea-

ture in association with blink perturbation effects on saccades [101].

The selected features of SF, SVA, BF, PDIR and PERCLOS were computed in the biofeed-

back system in the same way as they were computed from the OLDSET. To inspect the effect

of the biofeedback system, the mean of the overall performance (OP) [38] across segments was

computed. It represents how accurate and fast the pattern replication was done. Theoretically,

the OP is a positive value with zero for the lowest performance (no click on the targets).

Statistical analysis

The statistical analysis was performed in SPSS 25. The classification performance of the

deployed model (DT Ensemble) in the biofeedback system was reported in terms of the ACC,

Sensitivity (TPR), and Specificity (TNR). The classification performance (ACC) was compared

between the manual and automatic sessions using repeated measures analysis of variance

(RM-ANOVA) and the interaction effect of the time of the day (morning or afternoon) on

ACC was also considered. RM-ANOVA was also performed on the outcome variables (OP,

KSS and oculometrics) with the time spent doing the task, Time-on-Task (TOT) (nine seg-

ments), and the automatic and the manual modes as within-subject factors (significance level
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p = 0.05). Post-hoc comparisons between the segments were included in pairs indicated by

Bonferroni correction. The Huynh-Feldt correction was applied if the assumption of sphericity

was not met. The measure of effect size, partial eta-squared, Z2
p, was also reported. The per-

ceived workload (NASA-TLX scores) and the number of micro-breaks was compared between

the automatic and manual sessions using paired t-test with the effect size in terms of Cohen’s

dz [102], to further evaluate the effectiveness of the biofeedback system. The normality of the

variables was assessed using Shapiro–Wilk test. The KSS scores were transformed to normal

distribution using square root transformation. Due to the counter-balanced order of the ses-

sions, half of the first sessions were conducted in the manual mode (without biofeedback) and

the rest half were conducted in the automatic mode (with biofeedback). The learning effect

was analysed using RM-ANOVA to compare the OP across the first and second sessions. Sex-

related differences in the OP, and the NASA-TLX scores, and the ACC were also reported. The

Spearman’s rank-order correlation was computed between every pair of the following variables

in the manual and automatic sessions. The variables were the mean and standard deviation of

the OP, the relative change of the KSS scores as (KSSlast segment − KSSfirst segment)/KSSfirst segment,

the number of micro-breaks, and the total and the weighted subscale scores of the NASA-TLX.

Results

In the automatic sessions, the model (DT Ensemble) predicted fatigue with the following clas-

sification performance (Mean ± SD): ACC (69±16%), Sensitivity (59±35%), and Specificity

(74±22%). The segments with fatigue label constituted 55 segments in total of 180 segments.

Fig 4 demonstrated the classification performance (ACC) of the model in both sessions for

each participant. There was neither a significant difference in the classification performance

between the automatic and manual sessions, nor an interaction of the time of the day on the

ACC. The ACC was approx. 10% higher on average in the male participants than in the female

participants.

The OP in the presence of the biofeedback did not significantly change, F(1,18) = 1.3, p =

.262, Z2
p ¼ :1, (Fig 5a). The OP increased significantly as TOT increased, F(8,152) = 4.7, p<

.001, Z2
p ¼ :2. Pairwise comparisons revealed that the OP was significantly higher in segments

Fig 4. (a) Classification performance (ACC) of the DT Ensemble model for the male and female participants in the

manual (without BF) and automatic (with BF) sessions, where BF stands for Biofeedback, (b) The ACC, Mean ± SD, in

different time of the day (Morning and Afternoon).

https://doi.org/10.1371/journal.pone.0213704.g004
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eight and nine compared with two, five, and six, Fig 5a. In addition, there was no learning

effect on the OP across the first and second sessions (Fig 5b).

The participants reported significantly lower workload in the automatic (55±11) than the

manual sessions (65±8) in terms of the total NASA-TLX scores, t(19) = 3.86, p = 0.01, with the

Cohen’s dz = 0.89 corresponding to a large effect size according to [103]. This improvement

was more pronounced in mental and temporal subscales than the other workload subscales as

demonstrated in Fig 6.

To have an insight on the individual and sex-related differences in the perceived workload,

the total NASA-TLX scores as well as the scores for all NASA-TLX subscales were depicted for

each participant in Fig 7. In 60% of female and 70% of male participants, the total scores of

Fig 5. Comparison of the overall performance (OP) across the automatic (with biofeedback) and manual (without

biofeedback) sessions to assess the effect of micro-breaks, with the indicated segments with significant difference

in the OP (p< 0.05) (a), and across the first and second sessions to inspect whether there is a learning effect (b).

The points and error bars respectively represent the mean and standard deviation values across the participants for

each segment.

https://doi.org/10.1371/journal.pone.0213704.g005

Fig 6. The weighted scores of the NASA-TLX subscales in the automatic sessions (with biofeedback) and manual

sessions (without biofeedback), where the subscales range from 0 to 33 indicating low to high levels. The subscales

are Mental Demand (MD), Temporal Demand (TD), Performance (PF), Effort (EF), Frustration (FR), and Physical

Demand (PD).

https://doi.org/10.1371/journal.pone.0213704.g006
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NASA-TLX were lower in the automatic sessions than in the manual sessions. The total scores

were almost equal for the manual and automatic sessions for the participants number 11 and

15 (both females). In 70% of female and 60% of male participants, the mental demand was

lower in the automatic sessions than in the manual sessions. 60% of female and 70% of male

participants found the task less temporally demanding in the automatic sessions.

The KSS scores significantly increased in both of the manual and automatic sessions as the

segments increased F(5.8,109.6) = 15.6, p< .001, Z2
p ¼ :4, Fig 8. No significant change in the

KSS scores was found between the automatic and manual sessions. However, a tendency of

Fig 7. The obtained ratings of total task load index (TLX) and NASA-TLX subscales, i.e. Mental Demand (MD), Physical Demand (PD), Temporal Demand

(TD), Performance (PF), Effort (EF), and Frustration (FR). The participants are separated by their sex on the x-axis to males (1–10) and females (11–20). The

NASA-TLX scores are depicted separately for the automatic and manual sessions.

https://doi.org/10.1371/journal.pone.0213704.g007

Fig 8. Subjective ratings of fatigue (KSS scores) in the automatic (with biofeedback) and manual (without

biofeedback) tasks. The segments with significantly different KSS scores are indicated by the red color for the manual

sessions and black color for the automatic sessions (p< 0.05). The points and error bars respectively represent the

mean and standard deviation values across the participants for each segment.

https://doi.org/10.1371/journal.pone.0213704.g008

An oculometrics-based biofeedback system to impede fatigue development during computer work

PLOS ONE | https://doi.org/10.1371/journal.pone.0213704 May 31, 2019 13 / 24

https://doi.org/10.1371/journal.pone.0213704.g007
https://doi.org/10.1371/journal.pone.0213704.g008
https://doi.org/10.1371/journal.pone.0213704


biofeedback×TOT interaction was found, F(5.9,113.6) = 1.7, p = .129, Z2
p ¼ :1. Pairwise com-

parisons showed that in the manual sessions, the KSS was lower in the first segment than in

the segments 5–9, similarly between the segments 2–3 and 7–9, but in the automatic sessions,

the significant difference was between the segments 1 and 2 being lower than both segments of

8 and 9.

The OP in automatic and manual sessions for each participant is illustrated in Fig 9. The

participants are separated by their sex in Fig 9 to represent sex-related differences on the indi-

vidual level. The occurrences of micro-breaks at the end of each segment is also indicated by

“1” (and “0” for no micro-break) in Fig 9. More variations within the female participants can

be observed in the OP than the male participants in both sessions. The standard deviation of

the OP across segments averaged across the females were 0.061 whereas it was 0.056 for the

males. In addition, the OP was higher in the 58% and 48% of the first segment following the

micro-breaks compared with the segment prior to the micro-breaks, respectively for the male

and female participants. There was no significant difference between the number of micro-

breaks in the automatic sessions (2.9±1.9) from the number of micro-breaks in the manual ses-

sions (2.5±2.3), p = .55.

The correlation analysis revealed that there are statistically significant relationships between

a number of outcome variables in the manual sessions. The relative change of the KSS scores

were positively correlated with the number of micro-breaks, rs = .47, p = .039. The mean and

the standard deviation of the OP tended to be negatively correlated, rs = −.43, p = .060.

In the automatic sessions, there was a marginal correlation between the standard deviation

of the OP and the number of micro-breaks, rs = .42, p = .068. The number of the micro-breaks

tended to positively correlate with the relative change of the KSS scores, rs = .058, p = .043.

Similar to the manual sessions, the mean and the standard deviation of the OP were negatively

correlated, rs = −.47, p = .037. No significant correlation was found between the total and

weighted subscale scores of the NASA-TLX in the manual and automatic session with any of

the mean and standard deviation of the OP and the range of the KSS scores.

Fig 10 is illustrated to show the changes in the recruited oculometrics in the model to pre-

dict fatigue. The BF tended to increase with TOT, F(5.0,95.1) = 2.2, p = .058, Z2
p ¼ :1. The

PERCLOS increased significantly as TOT increased, F(8,152) = 2.3, p = .022, Z2
p ¼ :1. The SF

Fig 9. A representation of the overall performance (OP) of each participant (Y-axis) in the manual and automatic sessions. The presence

and absence of micro-breaks are indicated respectively by “1” and “0” at the end of each segment (X-axis). The OP is color coded with the color

bar indicated on the right side of the graph with blue for lower and green for higher task performance.

https://doi.org/10.1371/journal.pone.0213704.g009
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decreased significantly as TOT increased, F(4.9,94.6) = 3.4, p = .007, Z2
p ¼ :1. Pairwise com-

parisons revealed that the SF decreased significantly from segment 5 to 9. The SVA fluctuated

significantly through TOT, F(8,152) = 2.2, p = .027, Z2
p ¼ :1. The change between segments 1

and 2 was significant in SVA. No significant effect of TOT on PDIR was observed. Neither any

significant effect of biofeedback nor biofeedback×TOT interaction was found in any of the

oculometrics.

Discussion

This study provided a novel framework to investigate the application of a biofeedback system

to reduce fatigue development in its early stages during computer work. The proposed bio-

feedback system deployed a statistical model of fatigue, which used quantitative features

extracted from eye movements and pupillary responses, i.e. SF, PERCLOS, PDIR, BF, and

SVA. The accuracy of the statistical model was promising considering the subjectivity of KSS

scores. As hypothesized, the biofeedback system with the embedded micro-breaks, effectively

counteracted fatigue development reflected in delayed trending towards fatigue (Fig 8) and

decreased perceived workload (Figs 6 and 7).

The involved oculometrics (SF, PERCLOS, PDIR, BF, and SVA) have been previously

reported to be reliable and sensitive to fatigue progression as well as mental load

[33,34,38,59,104,105]. The PERCLOS and BF are reported to increase with fatigue [34,106],

which is in line with the current results. The decrease in SF and increase in BF along-side with

TOT were also in agreement with previous findings [107]. Saccadic main sequence and the

range of pupil diameter decreases and increased, respectively with TOT [38,108], but the SVA

and PDIR did not change monotonically with TOT, most likely because of the presence of

micro-breaks.

To the best of our knowledge, this was the first study to deploy a statistical model of fatigue

in a biofeedback system to trigger objective micro-breaks, and thereby to elaborate self-aware-

ness of fatigue. A few studies have contributed in noninvasive fatigue detection. In [109],

Fig 10. The changes through TOT in the oculometrics, i.e. Blink Frequency (BF), Percentage of the duration of

closed eyes to opened eyes (PERCLOS), Saccade Peak Velocity Amplitude Relationship (SVA), Saccade Frequency

(SF), Pupil Diameter Interquartile Range (PDIR) used in the deployed model in the automatic (with biofeedback)

sessions and manual (without biofeedback) sessions. The points and error bars respectively represent the mean and

standard deviation values across the participants for each segment. The segments with significant differences according

to the pairwise comparisons are marked by “�”, (p< 0.05).

https://doi.org/10.1371/journal.pone.0213704.g010
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mental fatigue was detected offline using 31 statistical features from saccades, fixations, blinks,

and pupillary responses exhibiting 77.1% accuracy with 10-fold cross validation via an SVM

classifier. Our biofeedback system reached approx. 70% of accuracy (with an estimated mis-

classification rate of 0.30 in 10-fold cross-validation of the model) using the five features (ver-

sus 31 in [109]), which may facilitate real-time applications. Nine 30-s data samples collected

from each participant before and after two 17-min cognitive tasks, were used to detect mental

fatigue in [109]. A numerical rating scale has been used as a subjective rating of fatigue in

[109], however, the samples recorded before and after the cognitive tasks have been respec-

tively labeled as non-fatigued and fatigued, regardless of individual differences in fatigue per-

ception as opposed to the current study. A recent study using wearable

electroencephalography has classified fatigue from alertness using an SVM classifier, based on

KSS threshold of five, with the accuracy of about 65% in a 10-fold cross validation [110]. In

[111], fatigue, subjectively labeled using a different rating scale, has been classified via a feed-

forward neural network using nine features extracted from computer user interactions with

mouse and keyboard achieving an accuracy of 81% in a hold-out cross validation. The classifi-

cation model proposed in [111], has been validated using the same group of individuals as

opposed to the present study. Moreover, the features have been extracted over the period of

one hour [111], which is much longer than a segment (�200 s) to trigger micro-breaks ques-

tioning the practical use of such approach.

A general limitation in the study of fatigue is the inaccuracies of subjective ratings (KSS

scores). Although it is still one of the most commonly used methods to acquire fatigue level

[112], it could be affected by factors such as experimental design [113] and individual’s emo-

tional state [114,115]. One may suggest the OP as an alternative to the KSS. However, the OP

cannot necessarily be translated into fatigue levels in early detection of fatigue, Fig 5a. Addi-

tionally, the task performance may consistently change with TOT [7]. This is the main point of

the studies investigating the maintenance of homeostasis in response to perceived fatigue via

psychophysiological measures, e.g. heart rate variability [116].

Another important issue to consider is the effect of circadian rhythms on the accuracy of

the fatigue state estimation [117]. Circadian rhythm is a source of variability in oculometrics

[118,119] and cognition [120], which makes the prediction of fatigue quite challenging. The

non-significant difference between the classification accuracy of the DT Ensemble model for

the half of the participants who did the tasks in the morning (9:00–12:00) and the rest of the

participants who did the tasks in the afternoon (13:00–15:00) gave support to the robustness of

the model against circadian variations, (cf. Fig 4b).

An efficient and effective design for micro-breaks is quite challenging especially due to the

complex interferences between physical and mental demands of a task [121,122]. Interestingly,

reduced perceived workload was observed in the sessions where the micro-breaks were trig-

gered by the biofeedback system compared with the manual sessions. More specifically, mental

and temporal demands contributed more than the other subscales to the perceived workload

in both manual and automatic sessions. The slight improvements of the OP, Fig 5a, and

delayed inclination to fatigue, Fig 8, were observed through using the biofeedback system.

Even though the improvement in the performance was statistically insignificant, one may con-

ceive that in a long run the improvement may be of importance for the prevention of musculo-

skeletal disorders [16,17,123].

The relationships between the OP, perceived fatigue, and the number of micro-breaks in

the manual and automatic sessions revealed some aspects of the two approaches to take micro-

breaks. The positive correlation of the number of the micro-breaks with the relative change of

the KSS scores, and the standard deviation of the OP, may imply that the frequency of the

micro-breaks was reflected in the variations in the performance and the perceived fatigue in
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the automatic session. The correlation of the number of micro-breaks and the relative change

of the KSS scores were stronger in the manual sessions than the tendency in the automatic ses-

sions, which may imply that the relative change in the perception of fatigue was less dependent

to the number of micro-breaks in the automatic session. The negative correlation between the

mean and standard deviation of the OP implies that as performance increases its variation is

restrained. The lack of correlation of the number of the micro-breaks, the mean and standard

deviation of the OP, and the range of the KSS scores the NASA-TLX scores suggests that none

of these variables had any significant impact on the perceived workload of the participants.

This finding indicates that the perceived workload cannot be reduced by just increasing the

number of micro-breaks, giving support to the necessity of an intelligent approach to imple-

ment the micro-breaks [17].

The difference between the male and female participants were assessed on individual level

in terms of their perceived workload (Fig 7), the accuracy of the model (Fig 4), and the effect

of occurrences of micro-breaks on the OP (Fig 9). As mentioned in the results, the females on

average exhibited similar OP to males, but at the individual level, the OP fluctuated more

among females. The females perceived the task more demanding than the males in line with

the higher prevalence of neck-shoulder complaints reported in females [124,125]. The perfor-

mance of the statistical model to predict fatigue was higher for the males than females. Differ-

ent factors may contribute to the sex-related differences, e.g. hormonal variations due to the

menstrual cycle of the females [126]. Of note, the stages of the menstrual cycle were not

assessed in the present study. Even though menstrual cycle may contribute to differences in

fatigability among females, It is noteworthy however that this has not yet well established and

contradicting results can be found in the literature regarding the menstrual cycle, e.g.

[126,127]. The population size and design of the current study do not allow a thorough sub-

stantiation of the matter.

Some issues have important impacts on the design and assessment of the micro-breaks.

The activities during micro-breaks should not demand for the same mental resources that a

task might require [128]. Considering the multiple resource model [129], targeting the same

mental resources may decline performance. Accordingly, in comparison with the task

demands, the micro-breaks intuitively required little physical and mental demands as well as

low vigilance to attend to down-counter displayed on the screen. The measurement of respi-

ration rate to assess the breathings [71] was avoided to approach ecological validity for com-

puter work as a limitation of this study. The quality of the mindful breathing could be

assessed based on unobtrusive measurement of the respiration rate [130] or self-assessments

of mindfulness [131]. In practice, to avoid too frequent and invalid micro-breaks, interactive

micro-breaks [47] and model adaptation is suggested to study through the presented frame-

work. In comparison with [132], the simplicity and effectiveness of the proposed micro-

break as well as the unconstrained technique of eye tracking potentially meet constraints of

out-of-lab settings.

Conclusion

In line with our hypothesis, this study shows for the first time that the integration of oculo-

metrics-based biofeedback in the design of micro-breaks is effective in fatigue mitigation dur-

ing computer work. The effectiveness of the oculometrics-based biofeedback was evidenced by

the decreased perception of workload and further by the postponed inclination to fatigue

using the biofeedback system compared with self-triggered micro-breaks. In sum, the use of

oculometrics as objective indices of fatigue in a biofeedback system may be a viable approach

to impede fatigue development.
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93. Evers FT, Höppner F, Klawonn F, Kruse R, Runkler T. Fuzzy cluster analysis: methods for classifica-

tion, data analysis and image recognition. John Wiley & Sons; 1999.

94. James G. Majority vote classifiers: theory and applications. Stanford University. 1998.

95. Freund Y. A more robust boosting algorithm. arXiv Prepr arXiv09052138. 2009;

96. Combrisson E, Jerbi K. Exceeding chance level by chance: The caveat of theoretical chance

levels in brain signal classification and statistical assessment of decoding accuracy. J

Neurosci Methods. 2015; 250: 126–136. https://doi.org/10.1016/j.jneumeth.2015.01.010 PMID:

25596422

An oculometrics-based biofeedback system to impede fatigue development during computer work

PLOS ONE | https://doi.org/10.1371/journal.pone.0213704 May 31, 2019 22 / 24

https://doi.org/10.1016/S0034-5687(00)00154-7
http://www.ncbi.nlm.nih.gov/pubmed/10967339
https://doi.org/10.3758/BRM.41.1.113
http://www.ncbi.nlm.nih.gov/pubmed/19182130
https://doi.org/10.1080/00140139.2012.662526
http://www.ncbi.nlm.nih.gov/pubmed/22506483
https://doi.org/10.1016/0167-8655(94)90127-9
https://doi.org/10.1038/srep32471
http://www.ncbi.nlm.nih.gov/pubmed/27572457
https://doi.org/10.1007/s10209-011-0256-6
https://doi.org/10.1016/j.cviu.2016.03.011
https://doi.org/10.1145/2896452
https://doi.org/10.1016/S0167-8655(98)00016-6
https://doi.org/10.1016/S0167-8655(98)00016-6
https://doi.org/10.1007/BF01237942
https://doi.org/10.1145/1961189.1961199
https://doi.org/10.1016/S0065-2458(08)60404-0
https://doi.org/10.1016/S0065-2458(08)60404-0
https://doi.org/10.1016/j.jneumeth.2015.01.010
http://www.ncbi.nlm.nih.gov/pubmed/25596422
https://doi.org/10.1371/journal.pone.0213704


97. Nyström M, Holmqvist K. An adaptive algorithm for fixation, saccade, and glissade detection in eye-

tracking data. Behav Res Methods. 2010; 42: 188–204. https://doi.org/10.3758/BRM.42.1.188 PMID:

20160299

98. Caffier PP, Erdmann U, Ullsperger P. Experimental evaluation of eye-blink parameters as a drowsi-

ness measure. Eur J Appl Physiol. 2003; 89: 319–325. https://doi.org/10.1007/s00421-003-0807-5

PMID: 12736840

99. Riggs LA, Kelly JP, Manning KA, Moore RK. Blink-related eye movements. Investig Ophthalmol Vis

Sci. 1987; 28: 334–3452.

100. Harris CM, Wolpert DM. The main sequence of saccades optimizes speed-accuracy trade-off. Biol

Cybern. 2006; 95: 21–29. https://doi.org/10.1007/s00422-006-0064-x PMID: 16555070

101. Katnani HA, van Opstal AJ, Gandhi NJ. Blink perturbation effects on saccades evoked by microstimu-

lation of the superior colliculus. PLoS One. 2012; 7: e51843. https://doi.org/10.1371/journal.pone.

0051843 PMID: 23251639

102. Cohen J. Statistical power analysis for the behavioural science. Statistical Power Anaylsis for the

Behavioural Science. 2nd ed. 1988.

103. Sawilowsky SS. New effect size rules of thumb. J Mod Appl Stat Methods. 2009; 8: 597–599. https://

doi.org/10.22237/jmasm/1257035100
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117. Liu CC, Hosking SG, Lenné MG. Predicting driver drowsiness using vehicle measures: Recent insights

and future challenges. J Safety Res. 2009; 40: 239–245. https://doi.org/10.1016/j.jsr.2009.04.005

PMID: 19778647
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