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Abstract 

EPIGENETIC REGULATION OF DRUG METABOLIZING ENZYMES IN 

NORMAL AGING 

By Mohamad Maher Kronfol, B. Pharm 

A dissertation submitted in partial fulfilment of the requirements for the degree of Doctor of 

Philosophy at Virginia Commonwealth University. 

 

Virginia Commonwealth University, 2020. 

 Major Advisor: Joseph L. McClay, Ph.D.  

Assistant Professor, Department of Pharmacotherapy and Outcomes Science 

 

Geriatric populations are at a higher risk for adverse drug reactions (ADRs). This may be 

partly due to changes in drug metabolism in old age, but the underlying mechanisms are poorly 

understood. Prior research in humans and mice has shown age-associated changes to the 

expression of several genes involved in drug metabolism. Furthermore, studies of human blood 

showed that epigenetic regulation of genes encoding drug metabolizing enzymes change with 

age. However, it is unknown if genes in the liver are similarly affected. Therefore, we 

hypothesize that genes encoding drug metabolizing enzymes may show differential epigenetic 

regulation in the liver with age, and that this will affect rates of drug metabolism. 

We selected genes encoding phase I and II drug metabolizing enzymes showing the 

strongest evidence of age-related epigenetic changes in prior genome-wide studies of human 

blood DNA. We mapped the homologues of these genes in mice and analyzed DNA methylation 

and histone acetylation levels in liver samples from aged mice (4, 18, 24 and 32 months) coupled 

with functional investigations at those genes. We successfully demonstrated a strong relationship 

between DNA methylation and histone acetylation (H3K9ac) levels at cytochrome P450 2E1 



xiii 
 

(Cyp2e1) and sulfotransferase family 1A member 1 (Sult1a1) and their expression levels in liver. 

Moreover, intrinsic clearance of the CYP2E1 probe drug chlorzoxazone was strongly associated 

with DNA methylation and histone acetylation at two regulatory regions of Cyp2e1. Next, we 

investigated DNA methylation levels at these genes in peripheral blood and organs like the liver 

and the brain. We show that DNA methylation levels of Cyp2e1 and Sult1a1 are substantially 

different between blood, liver, and the brain and are correlated to various extents and directions 

of effects. Finally, we report an optimized method for genome-wide investigation, Reduced 

Representation Bisulfite Sequencing (RRBS), of methylation levels using the innovative 

Adaptase technology for utilization in larger aging studies of epigenetics and drug metabolism 

by our group in the future. Our successful demonstration of epigenetic control of drug 

metabolism in an aged mouse model could pave the way for future clinical studies to develop 

epigenetic biomarkers of pharmacokinetic pathways in geriatric patients. 
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Chapter 1: The role of epigenomics in personalized medicine: a literature review 

The majority of this chapter was published in 

Kronfol MM, Dozmorov MG, Huang R, Slattum PW, McClay JL. The role of epigenomics in personalized 

medicine. Expert Rev Precis Med Drug Dev. 2017;2(1):33–45. doi:10.1080/23808993.2017.1284557 

Additional excerpts taken from 

Kronfol MM, McClay JL (2019) Chapter 14 - Epigenetic biomarkers in personalized medicine. In: Sharma S (ed) 

Prognostic Epigenetics. Academic Press, pp 375–395 

 

1.1. Introduction 

Personalized medicine is founded upon the concept that individual differences in therapeutic 

success are the norm among patients that require pharmacological treatment. This concept is not 

new. Hippocrates writing in the 5th century BCE is known to have commented, “give different 

ones [drugs] to different patients, for the sweet ones do not benefit everyone, nor do the 

astringent ones, nor are all the patients able to drink the same things.” (see Sykiotis et al. 2005). 

Thus, the concept of variable response to drugs has been discussed for at least two and a half 

millennia. However, being able to predict who will respond to a given drug has proven an 

enduring challenge. With the advent of modern genomic technologies, which enable us to read 

each patient’s genetic make-up, the idea of personalized medicine is becoming a reality. 

Pharmacogenetics, the core discipline of personalized medicine, has already delivered some 

profound and meaningful successes. The effectiveness of Cytochrome P450 (CYP450) 

genotypes in predicting an individual’s drug metabolizing phenotype is a notable example 

(Ingelman-Sundberg 2004a). This has led to several of these biomarkers being approved for 

clinical use by regulatory bodies such as the US Food and Drug Administration (FDA) 

(www.fda.gov/Drugs/ScienceResearch/ResearchAreas/Pharmacogenetics/ucm083378.htm). 

Beyond drug metabolism, genetic variants at numerous other loci have shown robust associations 

https://doi.org/10.1080/23808993.2017.1284557
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indicative of clinical relevance, with commercial kits and services now available to deliver this 

information to health providers and consumers (McCarthy et al. 2013). 

In the last decade, pharmacogenetics has harnessed the power of genome-wide association 

studies (GWAS). This has enabled the field to move beyond the study of candidate genes to 

scanning hundreds of thousands of genetic markers for each subject. Several promising new 

leads have been discovered. Arguably, however, the success of GWAS in pharmacogenomics 

has not mirrored that of complex disease studies. Primarily this may be an issue of statistical 

power, whereby the clinical trials necessary to measure drug response are costly and so sample 

sizes currently tend to be small. As studies grow in size and number and meta-analyses are 

conducted across samples, we can expect GWAS to yield additional insight over time (Ritchie 

2012). However, GWAS will not yield all the answers for any given drug response phenotype. 

Beyond the limitation where GWAS focuses on common polymorphisms, even if all the relevant 

variants for response to a given drug were mapped, we would still be unable to explain all the 

phenotypic variation in drug response (Manolio et al. 2009). Drug response is complex and, like 

other complex traits, it likely arises from the interplay of multiple genetic and environmental 

factors over the life course (Cardon and Harris 2016). DNA sequence is just one component of 

this complexity. 

Most genotype associations in complex traits such as drug response are probabilistic 

indicators of phenotype, which typically say little of certainty about the state of the organism at 

the time of sampling. When treating an individual patient with a specific drug, substantial 

supporting information in addition to genotype information may be required before making a 

clinical decision. Even phenotypes that are strongly influenced by genetics, such as the CYP450 

drug metabolism phenotypes, will be modified by the effects of concurrent medications or 
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alcohol and tobacco use that may inhibit or interfere with CYP enzyme activity (He et al. 2015; 

Tracy et al. 2016). This further illustrates the need to consider information beyond genotype 

alone. 

There are two broad complexities to living organisms that are not addressed by genotype 

information. These are 1) spatial and 2) temporal variation in biological function or phenotypic 

expression within the same organism. Consider that humans are composed of multiple cell types 

with a diverse array of functions (spatial, or cell-specific variation) and that we take on very 

different macroscopic forms in early versus later life (temporal, or developmental variation). Yet 

essentially the same genome is present in all nucleated cells at all-time points. In this chapter, we 

will show how the processes that lead to cellular diversity and organismal development, i.e. 

epigenetics, can be harnessed to provide more nuanced DNA-based biomarkers and novel 

treatment strategies (Bock 2009). Indeed, epigenetics may also yield an environmental exposure 

record of the patient that we are just beginning to comprehend (Ladd-Acosta 2015). Epigenetic 

biomarkers are therefore fundamentally different to studies of gene expression, proteins or 

metabolites, which provide snapshots of functional state at a single time point. Epigenetics 

provides layers of regulatory and environmental exposure information on top of each 

individual’s unique genome (Feinberg 2007). Thus, it indicates what happened to you and you 

alone, and from this we may be able to determine your truly personal drug regimen design and 

success, disease susceptibility and cure. 

1.2. Epigenetics Overview 

The term “epigenetics” was first described by the British developmental biologist Conrad 

Waddington in the 1940s as “the branch of biology which studies the causal interactions between 

genes and their products, which bring the phenotype into being” (Goldberg et al. 2007; Noble 
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2015). Waddington’s definition therefore predates the discovery of DNA and so the term 

“epigenetics” has developed over time. Waddington was focused on organismal development, 

whereby cells starting with the fertilized egg follow trajectories of increasing specialization until 

terminal differentiation, which cannot be reversed. One of Waddington’s visual metaphors for 

this process, where the cell is conceptualized as a marble rolling down a rolling hillside with 

ravines and valleys, has an enduring intuitive appeal and is explained in Figure 1.1. 

 

 

 

Figure 1.1. Waddington represented the developmental process as a series of “decisions” made 

by differentiating cells that could be represented as forks in the valleys of the “developmental 

landscape”. Panels A and B represent the alternate fates of the cell, or ball by analogy. As the 

pluripotent stem cell of the egg (ball at the top), begins to specialize, the differentiation 

“decisions” made are irreversible. Its pattern of epigenetic regulation is established by the point 

of terminal differentiation at the bottom of the landscape. With epigenetic drugs and therapies, 

the aim is to artificially reverse maladaptive epigenetic states and essentially “push the ball back 

up the hill”. Figure from Noble (2015) (Noble 2015) reproduced with permission. 

  



5 
 

Today, backed by knowledge of the genome and some core molecular processes, epigenetics 

can be defined as the study of mitotically stable changes in genetic regulation that do not involve 

changes to nucleotide sequence (Russo et al. 1996). Mitotic stability, in this sense, means that the 

epigenetic state of the parent cell is written to the daughter cell after mitosis, thereby continuing 

the developmental trajectory of the parent. This regulation is enacted via epigenetic marks, 

which are reversible regulatory modifications to chromatin. 

1.2.1. Epigenetic modifications to chromatin 

The most intensively studied epigenetic mark is the methylation of DNA cytosine 

residues at the carbon 5 position (5mC). This mark is made via the DNA N-methyl transferase 

(DNMT) enzymes and is most often found in the sequence context CpG (Irizarry et al. 2009). 

DNA methylation is one of the core epigenetic marks essential for regulating gene expression in 

normal cell development and differentiation (Reik et al. 2001). While 5mC is the most well-

characterized, other cytosine modifications have now been discovered, such as 5-

hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC) (Ito et 

al. 2011; Bachman et al. 2015). The functions of these exotic marks are still being elucidated, but 

5hmC may play an important role in the central nervous system, where it is prevalent, and in the 

regulation of pluripotency in stem cells (Kriaucionis and Heintz 2009; Pastor et al. 2011). 

Another major class of epigenetic mark involves the post-translational modification of 

histones, the proteins that package DNA into nucleosomes (Jenuwein and Allis 2001). Histones 

are the chief protein components of chromatin, whereby 146 bp of DNA is wound around each 

histone octamer (Luger et al. 1997). There are five major classes of canonical histones, where 

each octamer is typically formed of two H2A-H2B dimers and a H3-H4 tetramer while H1 

serves as a linker protein between nucleosomes. H3 and H4 have long tails that protrude from the 
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nucleosome that can be covalently modified in several places, while other histones can also be 

modified to a lesser degree. The best characterized modifications include mono-, di- and tri-

methylation, acetylation and phosphorylation, although a growing number continue to be 

reported (Bannister and Kouzarides 2011). Standard nomenclature abbreviates the histone, the 

modified residue and the type of modification, such that histone 3 lysine 27 acetylation is written 

as “H3K27Ac”. These modifications are written and erased by specific enzyme families, such as 

histone acetyltransferases (HATs) and histone deacetylases (HDACs) in the case of acetylation 

marks, or histone methyl transferases (HMTs) and demethylases (HDMs) in the case of 

methylation marks (Bannister and Kouzarides 2011). 

In addition to histone modifications, histone variants can have significant transcriptional 

regulatory roles. Histone variants replace canonical histones to alter nucleosome structure and 

ultimately DNA accessibility (Weber and Henikoff 2014). An example histone variant is H2A.Z, 

which replaces nucleosomal H2A to perform several complex regulatory roles in gene expression 

and development (Marques et al. 2010). Finally, for the purposes of this chapter, we also 

mention polycomb epigenetic repressors and bromodomain-containing proteins. Polycomb 

proteins can remodel chromatin and typically function as epigenetic gene silencers (Entrevan et 

al. 2016), while bromodomain proteins are transducers of the acetylation signal on histones 

(Filippakopoulos and Knapp 2014). These chromatin-interacting proteins are relevant for 

epigenetic personalized medicine because they are targets for epigenetic drugs that we mention 

below in Section 1.3.2. Other putatively epigenetic regulatory mechanisms exist, most notably 

the non-coding RNAs (ncRNAs). NcRNAs primarily function as post-transcriptional regulators 

of gene expression, but also play roles in regulating chromatin accessibility. They have been 

extensively reviewed elsewhere (http://www.cell.com/cell/collections/noncoding-rna). 

http://www.cell.com/cell/collections/noncoding-rna
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1.2.2. Epigenetic effects on gene expression and regulation 

The “textbook”, or classic, view of epigenetic regulation is focused on DNA methylation 

at gene promoters. In this view, hypomethylated CpGs are typically associated with active, 

expressed genes, while hypermethylated CpGs are typically associated with silenced genes. This 

effect arises because methylation of cytosine inhibits transcription factor binding (Jaenisch and 

Bird 2003). Subsequent research has indicated that methylated cytosine, in addition to 

methylated histone H3K9, and deacetylated H3 combine to form a repressive epigenetic 

signature, while unmethylated DNA, methylated H3K4, and acetylated H3 combine to form an 

activating epigenetic signature (Ivanov et al. 2014), although not all histone modifications are 

coupled with DNA methylation (Hansen and Helin 2009). An overview is provided in Figure 

1.2. During development, epigenetic patterns change and differentiated cells develop a stable and 

unique epigenetic pattern that regulates tissue-specific gene transcription. While this view is 

broadly consistent with current findings, waves of new genomic data have yielded a more 

nuanced view. 

Massive studies such as ENCODE (ENCODE Project Consortium 2012) and Roadmap 

Epigenomics (Roadmap Epigenomics Consortium et al. 2015) have significantly advanced our 

understanding of genetic and epigenetic regulation. The ENCODE project aims to identify all 

functional elements in the genome, while RoadMap Epigenomics aims to elucidate epigenetic 

processes that contribute to human biology and disease. Both projects make extensive use of 

next-generation sequencing (NGS) to profile reference epigenomes and genome-wide protein-

DNA binding patterns, including binding patterns for specific modified histones. The most recent 

culmination of these efforts was the publication of 111 reference epigenomes by RoadMap 

Epigenomics (Roadmap Epigenomics Consortium et al. 2015). This study revealed epigenetic 



8 
 

regulatory modules of coordinated activity, which are specific combinations of DNA 

methylation, histone modifications and other proteins that shape chromatin structure, which in 

turn determine transcriptional activity. These multi-layer data were used to classify genomic 

regions according to functional state (Ernst et al. 2011). The working models produced by 

RoadMap Epigenomics include a core 15 chromatin state model (Roadmap Epigenomics 

Consortium et al. 2015) and an expanded 18 chromatin state model 

(http://egg2.wustl.edu/roadmap/web_portal/chr_state_learning.html), the latter including twelve 

active and six inactive states. Active states include transcribed regions, active transcription start 

sites and their flanking regions, active enhancers and zinc finger protein binding sites. Inactive 

states include heterochromatin and repressed polycomb regions. This model, although complex, 

has already proven powerful for understanding regulation of gene expression.(Consortium 2015; 

Aguet et al. 2017) 

1.2.3. Individual differences in epigenetic states and developmental plasticity 

Epigenetic modifications to chromatin are affected by exposure to environmental factors, 

and any changes so induced are inherited mitotically in somatic cells (Feinberg 2007). Studies in 

human twins have shown that, while their epigenomes are very similar in early life, they diverge 

as the twins become older as a result of differing environmental exposures across the life course, 

in addition to stochastic effects (Fraga et al. 2005). Epigenetic changes in response to 

environmental factors may have evolved to provide plasticity in adaptation to environmental 

cues (Feinberg 2007). Through the phenomena of de novo epigenetic writing and mitotic 

stability, the effects of environmental factors can become embedded in the genome and persist to 

produce long-term phenotypic changes (Feil and Fraga 2012). Example environmental factors 

with demonstrated developmental consequences include diet, toxins and stress. There is 
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increasing recognition of the importance of this phenomenon for epigenetic translational 

research, because it provides concrete biological pathways that are involved in the persistence of 

environmental effects (Rutter 2016). 
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Figure 1.2. Epigenetic regulation of gene expression via chromatin remodeling. The diagram 

shows two generic chromatin activity states. At the top, active chromatin is open and accessible 

to transcription factors and polymerases, with nucleosomes spread apart, DNA typically in an 

unmethylated state and acetylation marks on histones. HAT is histone acetyltransferase, 

SWI/SNF is a nucleosome remodeling complex, RNA Pol II is RNA polymerase II. The lower 

panel shows the opposite inactive chromatin scenario, where the nucleosomes are tightly packed, 

the DNA is methylated and inaccessible to transcription factors, while histones have their 

acetylation marks removed. HDAC is histone deacetylase, HMT is histone methyltransferase. 

Figure is adapted from Luong, P. Basic Principles of Genetics, Connexions Web site. 

[http://cnx.org/content/m26565/1.1/] (2009) under a Creative Commons Attribution License 

([http://creativecommons.org/licenses/by/3.0/CC-BY 3.0]). 
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Epigenetic states can also vary between individuals because of genetic differences. In the 

case of methylation, one of the simplest examples involves polymorphic CpG sites (Zhi et al. 

2013). If a nucleotide substitution ablates a CpG in some individuals, those individuals cannot be 

methylated at that locus. There are several examples of disease-associated polymorphic CpGs, 

suggesting that this is a significant contributor to individual differences in disease risk (Cazaly et 

al. 2015; Zhou et al. 2015). In addition to polymorphic CpGs, DNA sequence variation may also 

affect the binding of chromatin-interacting proteins and thus influence epigenetic states (McClay 

et al. 2015). Thus, individual differences in epigenetic states, whether arising via genotype or 

maladaptive responses to environmental factors, can lead to disease. 

1.3. Epigenetic Applications in Personalized Medicine 

Epigenetic disease associations provide not only mechanistic clues to disease etiology but 

can also function as diagnostic biomarkers. The developmental stage- and tissue-specificity of 

epigenetic marks has led to considerable interest in developing biomarkers that capitalize on 

these unique properties (García-Giménez 2015). Furthermore, the fact that epigenetic marks are 

reversible has led to significant interest in the development of drugs with epigenetic modes of 

action (Szyf 2009; Hunter 2015). 

1.3.1. Epigenetic biomarkers of disease 

The largest body of work in disease epigenetics to date is on cancer. Since the first links 

between DNA methylation and cancer were established in the early 1980s, a number of 

epigenetic findings have been described, implicating several aspects of the epigenetic machinery. 

Some excellent reviews of cancer epigenetics have been published recently (Suvà et al. 2013; 
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Feinberg et al. 2016), so here we limit ourselves to epigenetic marks in cancer showing evidence 

or potential as diagnostic or prognostic biomarkers. 

Current epigenetic biomarker applications predominantly involve DNA methylation 

(Amacher 2016). In the United States, nucleic acid-based tests intended for general clinical use 

are regulated by the Food and Drug Administration (FDA) as medical devices. Currently there 

are no FDA-approved tests that rely exclusively on epigenetic biomarkers. However, one 

commercially available test with an epigenetic component has received full FDA approval. This 

is ColoGuard®, a screening test for colorectal cancer in adults over 50. The test uses DNA 

methylation levels at BMP3 and NDRG4, in combination of mutated KRAS and an 

immunochemical assay for hemoglobin (Table 1.1). This test was reported to have superior 

sensitivity but slightly lower specificity for colorectal cancer compared to the traditional 

screening method, fecal immunochemical testing (FIT) (Imperiale et al. 2014). However, more 

recent results suggest FIT may be more effective and less costly than ColoGuard®, the latter 

necessitating either very high patient uptake or a 60% reduction in cost per test to become the 

preferred testing method (Ladabaum and Mannalithara 2016). This illustrates the economic 

barriers that diagnostic tests must overcome, beyond the demonstration of efficacy and 

reproducibility, in order to become widespread. 

Two other epigenetic tests are currently available in the US, classified as Laboratory 

Developed Tests (LDTs) and regulated under the Clinical Laboratory Improvement Amendments 

(CLIA) program. This means that the test may only be conducted “in house” in the laboratory 

where it was developed, once the lab meets CLIA performance standards. The two tests are 

ConfirmMDx and AssureMDx, for prostate cancer and bladder cancer respectively. 

Hypermethylation of the glutathione S-transferase gene (GSTP1) promoter in prostate cancer 
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was first shown in the 1990s (Lee et al. 1994). This marker, plus APC and RASSF1, are now 

components of the ConfirmMDx test (Table 1.1), which is used to address false-negative 

prostate biopsy concerns (Partin et al. 2014). The AssureMDx test for bladder cancer involves 

the analysis of DNA methylation levels of three genes (TWIST1, ONECUT2 and OTX1) in 

combination with mutation analysis of three others (van Kessel et al. 2016). 

In lung cancer, the DNA methylation of the SHOX2 gene was reported to be an accurate 

marker for identifying lung cancer based on analysis of bronchial aspirates (Schmidt et al. 2010). 

In Europe, this biomarker is now commercially available as the Epi proLungVR BL Reflex 

Assay (Dietrich et al. 2012). However, this test has not yet received regulatory approval for use 

in the USA. 

Product 
Proprietor/ 

Launch year 
Disease Specimen Epigenetic Targets Regulation 

Cologuard 
Exact 

sciences/2014 

Colorectal 

cancer 
Stool 

DNA methylation 

of NDRG4 and 

BMP3 (plus other 

genetic markers) 

FDA 

ConfirmMDx MDxHealth/2012 
Prostate 

cancer 
Tissue 

DNA 

methylation of 

GSTP1, RASSF1 

and APC. 

LDT/CLIA 

AssureMDx MDxHealth/2016 
Bladder 

cancer 
Urine 

DNA methylation 

of TWIST, 

ONECUT2 and 

OTX1 (plus other 

genetic markers) 

LDT/CLIA 

 

Table 1.1. Commercially available epigenetic diagnostic tests in the United States. 
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In breast and ovarian cancer, hypermethylation of the BRCA1 promoter region has been 

observed repeatedly (Cancer Genome Atlas Research Network 2011; Stefansson and Esteller 

2013). BRCA1 is also thought to epigenetically repress expression of the oncogenic microRNA 

miR-155 via a mechanism involving histone deacetylase 2 (HDAC2) (Chang et al. 2011). A 

recent study by Anjum et al. (2014) identified a blood cell DNA methylation signature at BRCA1 

that was able to predict breast cancer risk several years prior to diagnosis (Anjum et al. 2014). 

However, this biomarker is not yet available in a commercial kit or test. 

The biomarker potential of circulating cell-free DNA (cfDNA) has been investigated in 

breast cancer and other cancers. Circulating cfDNA is extracted from plasma or serum and is 

derived from dying tumor cells that release their DNA into the bloodstream. Kloten et al (2013) 

used a panel of three genes (ITIH5, DKK3 and RASSF1A) that showed hypermethylation in 

serum cfDNA from breast cancer patients and found these could discriminate between patients 

and controls with a sensitivity of 67% and specificity of 69% (Kloten et al. 2013). Fackler et al. 

(2014) followed this with a panel of 10 genes and cancer-specific DNA was detected in sera with 

a sensitivity of 91% and specificity of 96% in the test samples (Fackler et al. 2014). The 

researchers of the latter study are reportedly working with the diagnostics company Cepheid to 

bring this test to market (Butkus). 

While epigenetic studies of cancer are arguably the most advanced relative to other areas, 

several diseases have shown promising findings, particularly with respect to DNA methylation. 

These include neurological disorders such as Alzheimer’s Disease (De Jager et al. 2014; Lunnon 

et al. 2014) and Parkinson’s Disease (Jowaed et al. 2010), autoimmune disorders such as 

systemic lupus erythematosus (Absher et al. 2013), and psychiatric disorders such as 

schizophrenia (Pidsley et al. 2014; Aberg et al. 2014) and autism (Ladd-Acosta 2015). Despite 
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these advances, there are no currently available diagnostic kits for these diseases that employ 

epigenetic markers. Nevertheless, it is hoped that the clinical value of epigenomics already seen 

in oncology will be replicated in these areas (Heyn and Esteller 2012). 

1.3.2. Epigenetic drugs 

The dynamic and reversible nature of epigenetic modifications is of particular relevance 

to drug development, as it implies that specific disease-associated epigenetic states may be 

reversible with pharmacological treatment (DeWoskin and Million 2013). This segment will 

summarize current and potential “epidrugs”, or drugs with epigenetic modes of action. Epidrugs 

are classified according to their respective target enzymes, and include the following: DNA N-

methyl transferase inhibitors (DNMTi), histone acetyltransferase inhibitors (HATi/KATi), 

histone methyltransferase inhibitors (HMTi/KMTi), histone N-methyl lysine demethylase 

inhibitors (HDMi/KDMi), histone deacetylase inhibitors (HDACi/KDACi), and bromodomain 

inhibitors. As of 2019, there are two classes of epigenetic drugs that have been approved by FDA 

for clinical use in the United States: DNMTi and HDACi (see Table 1.2). 

The first approved epidrug in the US was azacitidine (Vidaza, Azadine), a DNMTi 

indicated to treat chronic myelomonocytic leukemia and myelodysplastic syndrome. Azacitidine 

was approved in 2004 and quickly followed by decitabine (Dacogen) with same indication two 

years later. Both drugs cause broad hypomethylation that leads to cellular dysregulation that 

most seriously affects rapidly dividing cells. It is important to note that these drugs are not highly 

locus-specific and these agents can cause hypomethylation at many genomic sites. Even though 

current drugs are designed to favorably induce genes that have been silenced in cancer (Liang et 

al. 2002), they may also activate the expression of prometastatic genes as well as oncogenes 
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(Cheishvili et al. 2015). There remains a need to develop more selective DNMTi to improve the 

efficacy and reduce side effects for this class of drug. 

The potential application of DNMTi to other diseases is also under investigation and 

examples include multiple sclerosis (Peedicayil 2016), HIV (Abdel-Hameed et al. 2016), pain 

(Sun et al. 2015) and memory (Singh et al. 2015). For example, DNMT activity was observed in 

HIV-1 infection of CD4(+) T-cells in vitro and induced hypermethylation of distinct cellular 

promoters (Abdel-Hameed et al. 2016). Studies from Rajasethupathy et al. suggested that DNA 

methylation is necessary for serotonin-dependent long-term facilitation in memory formation 

(Rajasethupathy et al. 2012). For a curative therapy of AIDS patients, a combination of 

antiretroviral drugs and epidrugs has been suggested for the reactivation of latent HIV-1 

genomes. These epidrugs include DNMTi, HDACi, histone methyltransferase inhibitors (HMTi) 

and histone demethylase inhibitors (Abdel-Hameed et al. 2016). 

The HDAC inhibitors suberoylanilide hydroxamic acid (SAHA, vorinostat, in 2006) and 

romidepsin (depsipeptide, in 2009) have proven to be successful in cancer therapeutics (Lane and 

Chabner 2009). These agents cause the accumulation of acetylated histones and prevent 

progression of tumor cells. Vorinostat was the first HDACi to be approved by the FDA, 

indicated for cutaneous manifestations in patients with cutaneous T-cell lymphoma (CTCL). 

Panobinostat is the latest HDACi approved by the FDA in 2015 and is indicated for the treatment 

of multiple myeloma in combination with bortezomib and dexamethasone. Outside the US, 

HDACi approvals vary.  

 

 



17 
 

Mechanism of Action 

Active Ingredient 

(Trade name®, 

Proprietor) 

Date of 

Approval 
Indication(s) 

 

DNA N-Methyltransferase 

Inhibitor (DNMTi) 

Azacitidine 

(Vidaza®, Celgene) 

May 19, 

2004 

Chronic Myelomonocytic 

Leukemia. Myelodysplastic 

Syndrome i. 

Decitabine 

(Dacogen®, Otsuka) 
May 2, 2006 

Chronic Myelomonocytic 

Leukemia. Myelodysplastic 

Syndromes ii. 

 

Histone Deacetylase 

inhibitors (HDACi) 

Vorinostat 

(Zolinza®, Merck) 

October 6, 

2006 

Cutaneous manifestations 

in patients with cutaneous 

T-Cell Lymphoma (CTCL) 

who have progressive, 

persistent or recurrent 

disease on or following two 

systemic therapies. 

Romidepsin 

(Istodax®, Celgene) 

November 

5,2009 

Cutaneous T-cell 

Lymphoma (CTCL) iii, 

Peripheral T-cell 

Lymphoma (PTCL) iii 

Belinostat 

(Beleodaq®, Spectrum 

Pharmaceuticals) 

July 3, 2014 

Relapsed or Refractory 

Peripheral T-cell 

Lymphoma (PTCL) 

 

Panobinostat 

(Farydak®, Novartis) 

 

February 23, 

2015 

Multiple Myeloma after 

receiving at least 2 prior 

regimens, including 

bortezomib and an 

immunomodulatory agent iv 

 

Table 1.2. Classification of US FDA-approved epigenetic drug classes according to mechanism of action. 

i Subtypes: refractory anemia or refractory anemia with ringed sideroblasts (if accompanied by 

neutropenia or thrombocytopenia or requiring transfusions), refractory anemia with excess blasts, 

refractory anemia with excess blasts in transformation. ii Including 90 previously treated and 

untreated, de novo and secondary MDS of all French-American-British subtypes 91 (refractory 

anemia, refractory anemia with ringed sideroblasts, refractory anemia with excess blasts, 92 

refractory anemia with excess blasts in transformation, and 93 intermediate-1, intermediate-2, and 

high-risk International Prognostic Scoring System groups).iii In patients who have received at least 

one prior systemic therapy.iv In combination with bortezomib and dexamethasone. 
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In Europe, for example, only panobinostat has been approved for general clinical use (to 

treat multiple myeloma), while belinostat received orphan designation for peripheral T-cell 

lymphoma (PTCL). In China, an additional HDACi known as chidamide (Epidaza®), was 

approved for treatment of PTCL by the Chinese FDA in 2015. Although most HDACi are 

approved for cancer type indications, studies have suggested potential roles in schizophrenia 

(Kurita et al. 2012) and Type2 diabetes (Sharma and Taliyan 2016). However, similar to the 

DNMTi drugs, current HDACi have broad effects across the genome and lack locus-specificity. 

These drugs can have serious side effects (Hunter 2015) and use of currently approved HDACi 

in cancer is often indicated only after other treatments have failed, or as combination therapies 

(Table 1.2). 

Besides these two approved epidrug classes, HMTi and bromodomain inhibitors are other 

emerging epidrug classes under development. Pinometostat is a small molecule inhibitor of the 

histone methyltransferase DOT1L for the treatment of MLL-r leukemia (Daigle et al. 2013). 

Tazemetostat is an orally administered, first-in-class small molecule HMTi that targets the EZH2 

transcriptional repressor to treat multiple types of hematological malignancies and genetically 

defined solid tumors (Kurmasheva et al. 2017). GSK3326595, an inhibitor of the transcriptional 

regulator protein arginine methyltransferase 5 (PRMT5), is also in phase 1 clinical trial. 

Bromodomain proteins are readers that recognize acetylated lysine and transduce the gene 

activation signal (Filippakopoulos and Knapp 2014). OTX-015 and CPI-0610 are bromodomain 

protein inhibitors both in phase I trials for cancers. These drugs target a specific family of 

bromodomain proteins, known as Bromodomain Extra-Terminal motif (BET) proteins (Chung et 

al. 2011). Another BET inhibitor, Apabetalone (RVX-208), is in Phase III clinical trials for 

cardiovascular events in Type 2 diabetes subjects with coronary artery disease. These example 
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epidrugs, and several more are advancing through the clinical trial pipeline, are summarized in 

Table 1.3. In this table, we focus only on epidrugs in active or planned clinical trials registered 

in the US (clinicaltrials.gov) and show the latest phase trial for each drug, plus any trials for 

indications outside oncology. We restrict our listing of early phase cancer indications because 

these are too numerous to list concisely.
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Mechanism of action Active ingredient (Proprietor) Indication 
Clinical 

Trial Phase 

Trial 

Ref ID 

BET Bromodomain Inhibitors 

Apabetalone/ 

RVX-208 

(Resverlogix) 

High-risk type 2 diabetes 

mellitus with coronary artery 

disease 

Phase III NCT02586155 

CPI-0610 (Constellation 

Pharmaceuticals) 

Malignant Peripheral Nerve 

Sheath Tumor 
Phase II 

NCT02986919 

 

INCB054329 (Incyte) Advanced malignancies Phase I/II NCT02431260 

GSK525762 

(GlaxoSmithKline) 

Carcinoma and hematological 

malignancies 
Phase I 

NCT01587703, 

NCT01943851 

GSK2820151 

(GlaxoSmithKline) 

Advanced or recurrent solid 

tumors 
Phase I NCT02630251 

ZEN-3694 

(Zenith Epigenetics) 

Metastatic castration-resistant 

prostate cancer (mCRPC) i 
Phase I 

NCT02711956i, 

NCT02705469 

OTX015/MK-8628 (Merck) Selected advanced solid 

tumors 
Phase I NCT02698176 

TEN-010/ RO6870810 

(Hoffmann-La Roche) 

Advanced Solid Tumors; 

Acute Myeloid Leukemia 
Phase I 

NCT01987362, 

NCT02308761 

FT-1101 

(Forma therapeutics) 

Relapsed/Refractory Acute 

Leukemia 
Phase I NCT02543879 

BMS-986158 (Bristol-Myers 

Squibb) 
Advanced Solid Tumors Phase I NCT02419417 

Mivebresib/ABBV-075 

(AbbVie) 
Advanced cancers Phase I NCT02391480 
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DNA N-Methyltransferase Inhibitor 

(DNMTi) 

Guadecitabine (Astex) Acute Myeloid Leukemia Phase III NCT02920008 

TdCyd 

(NCI) 
Advanced Solid Tumors Phase I NCT02423057 

Histone Deacetylase 

inhibitors (HDACi) 

Non-Selective 

Entinostat 

(Syndax) 

Advanced Hormone Receptor 

positive (HR+) Breast Cancer 
ii 

Phase III NCT02115282 

Givinostat/ITF2357 

(Italfarmaco) 

Chronic Myeloproliferative 

Neoplasms 
Phase II NCT01761968 

 
Resminostat 

(4SC AG) 

Advanced Stage Mycosis 

Fungoides or Sézary 

Syndrome 

Phase II NCT02953301 

 
Quisinostat/JNJ-26481585 

(Janssen) 
Ovarian cancer iii Phase II NCT02948075 

 
Pracinostat/SB939 (NCIC 

Clinical Trials Group) 

Acute Myeloid Leukemia iv, 

Myelofibrosis v 
Phase II 

NCT01912274iv 

NCT02267278v 

 
Tefinostat 

(Chroma) 
Hepatocellular Carcinoma Phase I/II NCT02759601 

 
AR-42 

(Celgene) 
Relapsed multiple myeloma vi Phase I NCT02569320 

 
CUDC-907 

(Curis) 
Multiple Myeloma Phase I NCT01742988 

HDAC 1&4 

Selective 

Mocetinostat 

(Mirati) 

Non-Small Cell Lung Cancer 
vii 

Phase II NCT02954991 

HDAC 6 

Selective 

ACY 241 

(Acetylon) 

Non-Small Cell Lung Cancer 
vii 

Phase I NCT02635061 
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KA2507 

(Karus) 
Solid tumor Phase I NCT03008018 

Histone Lysine De-

methylases 

(KDM/HDM) 

LSD1 

inhibitors 

GSK2879552 

(GlaxoSmithKline) 
Myelodysplastic Syndrome Phase II 

NCT02929498 

 

Tranylcypromine (Martin Luther 

Universität) 

Relapsed/Refractory Acute 

Myeloid Leukemia viii Phase I/II NCT02261779 

INCB059872 

(Incyte) 
Advanced Malignancies 

Phase 

I/II 
NCT02712905 

IMG-7289 

(Imago BioSciences) 
Acute Myeloid Leukemia Phase I NCT02842827 

Histone Lysine 

Methyl Transferase 

(KMT/HMT) 

DOT1L 

inhibitor 

Pinometostat/ 

EPZ-5676 

(Epizyme) 

Relapsed/Refractory 

Leukemias ix 
Phase I 

NCT01684150 

 

EZH1/2 

inhibitor 

DS-3201b 

(Daiichi Sankyo) 
Lymphomas Phase I NCT02732275 

EZH2 inhibitor 

Tazemetostat/ 

EPZ-6438 

(Epizyme) 

Advanced Solid Tumors or 

B-cell lymphomas 
Phase I/II NCT01897571 

  
MAK683 

(Novartis) 

Diffuse Large B-cell 

Lymphoma 
Phase I/II NCT02900651 

  
GSK2816126 

(GlaxoSmithKline) 

Lymphomas, Multiple 

Myeloma, Solid Tumors 
Phase I NCT02082977 

 
PRMT5 

inhibitor 

GSK3326595 

(GlaxoSmithKline) 

Solid Tumors and Non-

Hodgkin’s Lymphoma 
Phase I NCT02783300 

 

Table 1.3. Classification of epigenetic drug classes in active clinical trials registered in the US (clinicaltrials.gov) according to mechanism of action. 

i In combination with Enzalutamide.  
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ii   In combination with Aromasin (Exemestene).  

iii  In combination with Paclitaxel and Carboplatin chemotherapy.  
iv  In combination with Azacitidine.  
v   In combination with Ruxolitinib.  

vi  In combination with Pomalidomide.    
vii In Combination with Nivolumab.  

viii In combination with all-trans-retinoic acid (ATRA) chemotherapy.  
ix Only patients with rearrangements involving the MLL gene.    

 

LSD1: Lysine (K)-specific demethylase 1A, DOT1L: Disruptor of telomeric silencing 1-like, EZH1 or EZH2: Enhancer Of Zeste 

Homolog 1 or 2 Polycomb Respressive Complex 2 Subunit, PRMT5: Protein Arginine Methyl Transferase 5. 
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Finally, several HATi are in preclinical studies at time of writing. Aberrant function of 

HATs, also called lysine acetyltransferases (KATs), is correlated with cancer and other diseases 

(Khan and Khan 2010). HATi are great candidates with potential therapeutic utility, but current 

HATi only have moderate potency and specificity and none are in clinical trial at time of writing. 

Nevertheless, some HATi have shown efficacy in preclinical studies. Compound C646 is a 

pyrazolone-containing small molecule inhibitor of the p300/CBP HAT subfamily (Bowers et al. 

2010). It has been shown to cause growth arrest in melanoma cell lines and inhibit cancer cell 

growth in prostate and lung cancer cell lines. PU139 is a pyridoisothiazolone that inhibits several 

HAT subfamilies and was shown to block neuroblastoma xenograft growth in mice (Gajer et al. 

2015). These agents and others in development are indicative that HATi are still in infancy 

relative to other epigenetic drugs, but they show enormous promise and need further investment 

to reach their potential as therapeutic compounds. 

1.3.3. Epigenetic biomarkers of drug response 

As a natural extension of pharmacogenetics, it is possible to use epigenetic biomarkers to 

predict drug response. While none have yet achieved regulatory approval for clinical use, a small 

number of examples are established in the literature. Among the best known is DNA methylation 

of the MGMT promoter. This gene encodes a DNA repair enzyme (O6-alkylguanine DNA 

alkyltransferase). Methylation in the promoter region of MGMT is associated with better 

response to alkylating neoplastic agents like temozolomide, as first shown in glioblastoma by 

Esteller et al. (2000) (Esteller et al. 2000) and later by Hegi et al. (2005) (Hegi et al. 2005). The 

mechanism of effect is as follows. Temozolamide alkylates or methylates DNA at the N-7 or O-6 

positions of guanine residues and the resulting DNA damage triggers tumor cell death. 

Hypomethylation of MGMT leads to expression of O6-alkylguanine DNA alkyltransferase, 
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which can repair the DNA damage, whereas hypermethylation leads to silencing of the gene and 

thus greater susceptibility to the drug (Figure 1.3). In addition to glioma, a role for MGMT in 

predicting response to metastatic colorectal cancer (mCRC) treatment has also been suggested 

(Fornaro et al. 2016). 

 

Figure 1.3. MGMT: O-6-methylguanine-DNA methyltransferase. The MGMT enzyme repairs 

tumor DNA damage induced by the anticancer drug temozolomide. However, if the MGMT gene 

is methylated and not expressed, the DNA damage cannot be adequately repaired leading to 

greater tumor sensitivity to temozolomide and a better clinical response. Adapted from (Kronfol 

and McClay 2019).   

 

Other published epigenetic biomarker examples include GSTP1 and BRCA1. Methylation 

of the promoter of GSTP1 is correlated with survival in breast cancer patients and may be 
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predictive of treatment efficacy with doxorubicin (Chiam et al. 2011) or DNA methyltransferase 

(DNMT) inhibitors (Dejeux et al. 2010). The BRCA1 gene plays a role in DNA damage response 

and hypermethylation of the BRCA1 promoter region may be predictive of enhanced sensitivity 

to platinum-derived drugs in cancer cell lines and xenografted tumors; it also may be predictive 

of increased time to relapse and survival in ovarian cancer patients under cisplatin treatment 

(Stefansson et al. 2012). 

The impact of epigenetics in drug response has been investigated beyond oncology. For 

example, methylation of the P2 promoter of the IGF1 gene affects transcriptional response to 

growth hormone (GH) (Ouni et al. 2016). GH is mainly used to treat children with short stature 

due to growth hormone deficiency. Ouni et al. (Ouni et al. 2016) measured P2-driven and total 

IGF1 transcripts before and 12 h after the GH injection and found an increase in P2-driven 

transcripts with a very strong inverse correlation with CG-137 methylation. This correlation 

accounted for ~ 25% of the variability in the response to GH. 

1.3.4. Epigenetic modification of drug absorption, distribution, metabolism and excretion 

(ADME) genes 

ADME genes encode transporters, plasma proteins, and drug metabolizing enzymes that 

are responsible for absorption, distribution, metabolism and excretion of xenobiotics. Genetic 

variation at ADME genes has proven extremely successful in predicting individual differences in 

pharmacokinetics, particularly in the case of drug metabolizing phenotypes associated with the 

CYP450s, as mentioned above. However, there remain large individual differences in drug 

metabolism unexplained by genetic variation that have led to the suggestion that epigenetics may 

substantially influence these phenotypes (Ivanov et al. 2012). Unfortunately, research to date has 

not yet directly addressed this question, but individual variation in epigenetic states of ADME 
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genes has been correlated with a range of outcomes. For example, Parkinson’s disease has been 

associated with hypomethylation of the CYP2E1 gene promoter in the brain (Kaut et al. 2012). 

Methylation levels at CYP1B1 (Tokizane et al. 2005) and CYP1A1 (Okino et al. 2006) have been 

associated with prostate cancer, and CYP2W1 with colon cancer (Gomez et al. 2007). 

Methylation levels at the drug transporter genes OCT1 (Schaeffeler et al. 2011) and OCT2 (Liu 

et al. 2016), responsible for the renal excretion of drugs, have been associated with renal 

carcinoma. These findings demonstrate the existence of inter-patient variability in ADME gene 

epigenetic states, some of which have functional effects on gene expression. However, the extent 

of normal epigenetic variation at these loci in the population and the extent to which it will affect 

pharmacokinetic phenotypes remains to be determined. 

1.4. Aging 

1.4.1. Aging, drug response, and adverse drug reactions 

The elderly population in the U.S comprises 15% of the total population, which translates 

to 49 million Americans aged 65 or older in 2016. This number is projected to increase to 56 

million in 2020. The older adult population has a higher mean healthcare expenditure per annum 

($5,994) than that of the rest of the population ($4,612). It is estimated that 40% of persons 65 

years of age or older take five to nine medications concurrently, while almost one fifth (18%) 

take 10 or more. Ultimately, older adults are almost seven times as likely as younger persons to 

have adverse drug reactions (ADRs) that require hospitalization (Budnitz et al. 2006). The high 

level of drug intake associated with older age makes older adults particularly vulnerable to 

ADRs, but there is strong potential to improve this situation because 80 percent of ADRs in this 

population are dose-related and thus preventable (Routledge et al. 2004). Alleviation of dose 
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related ADRs for the aging population would be advantageous for managing this population’s 

pharmacological interventions and improve their health. 

1.4.2. Personalized dosing in the elderly population 

Age-related changes to drug response are multifactorial in origin (McLachlan et al. 2009). First, 

aging effects on renal and hepatic function alter drug pharmacokinetics (PK) and 

pharmacodynamics (PD), but these functions are considered too coarse to guide dosing because 

they do not capture specific changes to drug metabolizing enzymes (Butler and Begg 2008; 

McLachlan and Pont 2012; Tan et al. 2015). Second, despite significant successes in several 

areas, particularly in oncology, genetic tools are insufficient to bring about optimal drug therapy 

in all instances (Roses 2000). Genotype-based markers are of limited utility to explain intra-

individual changes in drug response with age because they are invariant across lifespan. 

Therefore, to enable personalization of dosing in older adults, new markers of determinants of 

drug metabolism are needed (McLachlan and Pont 2012) 

1.4.3. Epigenetics of Aging 

The most well studied epigenetic modification is the methylation of carbon 5 of cytosines 

at cytosine-guanine dinucleotide (CpG) positions, termed 5-methylcytosine (5mC). A haploid 

human genome has around 28 million CpGs, or 1% of total sequence (Jabbari and Bernardi 

2004; Babenko et al. 2017). Global 5mC, or the aggregate measure of all the 5mC in the 

genome, has been consistently reported to decrease with age in humans (Gonzalo 2010; 

Unnikrishnan et al. 2018). However, studies with the ability to measure site-specific methylation 

revealed hypermethylation at some gene promoters in older persons indicating that some loci 

gain methylation while others either lose methylation or remain unchanged with age 
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(Unnikrishnan et al.; Fraga and Esteller 2007; Fraga 2009). Those genomic regions displaying 

changes with age, regardless of the direction of effect, subsequently came to be known as age-

associated differentially methylated regions (a-DMRs) (Bjornsson et al. 2008; Christensen et al. 

2009; Teschendorff et al. 2010; Bocklandt et al. 2011). a-DMRs have implications for gene 

activity. Several large-scale studies of aging in humans examined gene expression, DNA 

methylation, or both (Table 2.1) and found that not only do DNA methylation marks correlate 

with age but are also predictive of gene expression levels (Steegenga et al. 2014). As we show in 

our preliminary data (Table 2.1), human genome-wide studies of blood DNA have shown that 

genes involved in the Absorption, Distribution, Metabolism, and Excretion (ADME) of drugs are 

differentially methylated with age. However, it has not yet been established if these changes also 

occur in the liver and affect expression levels of genes involved in drug metabolism. 

Furthermore, we do not know if these changes exert any functional effect on rates of drug 

clearance in vivo. Therefore, further studies are needed to determine if a-DMRs at ADME genes 

affect drug metabolism. 

1.5. Discussion and Conclusions 

Epigenomic medicine is already here, with numerous epigenetic disease associations 

reported, six epidrugs and a handful of epigenetic biomarker tests available the US, plus a small 

number of other products available worldwide. The largest number of findings and applications 

to date is in the field of oncology. However, the field of epigenetics is only a few decades old 

and epigenomic medicine is a very recent arrival, so we are still in early days. The perceived 

benefits that epigenomics will bring to healthcare are emphatically illustrated by the large 

number of epidrugs currently in development and the large sums of research dollars spent on 

large-scale discovery efforts such as RoadMap Epigenomics. To drive the field forward, 
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epigenomic medicine needs to expand beyond cancer. Also, while significant efforts are being 

devoted to bringing new epidrugs to market, more efforts must be devoted to developing new 

epigenetic biomarkers, of which there are few. 

Several factors are currently driving innovation in epigenomic medicine. First is the general 

level of interest in the field, which is high. Second is the ongoing characterization of reference 

epigenomes to enrich and accelerate research efforts. Third is the availability of powerful 

methods such as next-generation sequencing (NGS) to characterize epigenomes. Discussion of 

technical methods is largely outside the scope of this chapter and reviews have been published 

elsewhere (Laird 2010; Krueger et al. 2012). However, with NGS approaches already in use to 

characterize genome-wide DNA methylation and protein-DNA binding patterns, we would argue 

that technology is not a bottleneck for the advancement of epigenomic medicine. 

Considering epigenomic biomarker research, among the most significant difficulties are data 

complexity and the clean interpretation of findings (Ledford 2015). Unlike studies of genotype, 

epigenomics has a direction of causality problem. While epigenetic biomarkers may be 

predictive of disease state or drug response, epigenetic changes are also inducible by 

pharmacological treatments (Feinberg 2007; Wang et al. 2007). As a result, there is the risk that 

epigenetic differences between cases and controls in an epigenome-wide association study could 

be the result of drug treatment in cases, rather than causal variation. Furthermore, evidence from 

genome-wide studies suggests that not all epigenetic changes are functional or cause identifiable 

changes to gene expression (Stricker et al. 2017). Targeting specific populations, such as drug-

naïve patients, may go some way to solving issues related to the direction of causality, but it is 

certain that experimental model systems will be needed to adequately disentangle causality and 

establish functionality of epigenetic changes. 
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Another complexity is that epigenetic modifications are cell specific. While this is in 

many ways an advantage and can give precise insight into the workings of the cell of origin, it 

also leads to some challenges in sample collection, particularly with respect to clinical studies. 

Blood DNA is the most readily-accessible source from humans, but the extent to which blood 

DNA methylation is reflective of methylation changes in other tissues is debated and it seems 

there may not be a hard and fast rule with respect to which changes are reflected in blood as 

compared to which are not. Aging epigenetic signatures, also known as the “epigenetic clock”, 

appear to transcend tissue barriers (Horvath 2013), but the extent to which a blood DNA 

methylation mark is informative about a disease of, for example, the lung or heart remains an 

open question. Circulating cfDNA is an exception, since it is sourced from the diseased tissue of 

interest and is merely liberated into the bloodstream. 

While these considerations apply to the discovery of novel epigenetic biomarkers, a 

separate set of considerations apply to novel epigenetic drugs. Paramount among priorities for 

future epidrug development is improving target specificity. This can be viewed in two ways. 

First, as mentioned above, current drugs lack genomic locus specificity and affect DNA 

methylation or histone modifications somewhat indiscriminately. To truly enable precision 

correction of aberrant changes, some sort of nucleic acid targeting adjunct is likely to be 

required. While antisense RNA (MG98) has already been used to modulate DNMT activity with 

some success (Reid et al. 2002), it is difficult to speculate how this could be used to target 

epigenetic modifications at specific target loci. On the other hand, it may be possible to 

capitalize on the locus targeting abilities of CRISPR/Cas9 systems to deliver epigenetic 

modifying agents to specific loci. Indeed, epigenome editing has already been demonstrated 

using this broad approach (Thakore et al. 2016). A second consideration involves the specificity 
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of epidrugs to specific members of families of chromatin modifying enzymes. For example, there 

are numerous human DNMTs and HDAC enzymes with somewhat different functions and 

substrate specificities but currently available DNMTi and HDACi are non-selective and inhibit 

many isozymes. However, some drugs currently in clinical trials appear to be more selective, e.g. 

mocetinostat that inhibits only HDAC 1 and 4 (see Table 1.3). Thus, the problem of specificity 

does not appear to be insurmountable. To conclude, we mention two areas, one technological and 

one clinical, that we consider to be of significant interest going forward. 

In the clinical arena, aging is an area where epigenomic medicine may make an impact. 

Older adults are at increased risk for adverse drug events and this may be partly because aging is 

associated with changes in physiology that can affect drug pharmacokinetics and 

pharmacodynamics (Fillit et al. 2017). The clinical challenge is to identify those patients who are 

more likely to experience an adverse drug event or altered drug response among the older adult 

population when weighing the risk versus the benefit of a drug therapy. Chronologic age alone is 

insufficient as an indicator that dosage adjustment or avoidance of a particular therapeutic agent 

is warranted. Pharmacogenetic information alone is also insufficient, as altered drug response 

and risk of adverse drug events changes across the lifespan while genotype remains constant 

(Brunet and Berger 2014; Pal and Tyler 2016). Epigenetic alterations may be a better indicator 

than chronological age for personalizing drug therapy for the older population. For example, it 

has been proposed that epigenetic regulation of cytochrome P450 (CYP) enzymes responsible for 

drug metabolism through DNA methylation may result in altered drug exposure in geriatric 

patients (Seripa et al. 2015). More research is needed to elucidate the relationships between 

epigenetics and drug exposure and response during senescence but is a promising alternative to 

chronologic age for adjusting pharmacotherapy in older adults. 
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Chapter 2: DNA methylation and histone acetylation changes to cytochrome P450 2E1 

regulation in normal aging and impact on rates of drug metabolism in the liver. 
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2.1. Abstract 

Aging is associated with reduced liver function that may increase the risk for adverse 

drug reactions in older adults. We hypothesized that age-related changes to epigenetic regulation 

of genes involved in drug metabolism may contribute to this effect. We reviewed published 

epigenome-wide studies of human blood and identified the cytochrome P450 2E1 (CYP2E1) 

gene as a top locus exhibiting epigenetic changes with age. To investigate potential functional 

changes with age in the liver, the primary organ of drug metabolism, we obtained liver tissue 

from mice aged 4-32 months from the National Institute on Aging. We assayed global DNA 

methylation (5mC), hydroxymethylation (5hmC) and locus-specific 5mC and histone acetylation 

changes around mouse Cyp2e1. The mouse livers exhibit significant global decreases in 5mC 

and 5hmC with age. Furthermore, 5mC significantly increased with age at two regulatory regions 

of Cyp2e1 in tandem with decreases in its gene and protein expression. H3K9ac levels also 

changed with age at both regulatory regions of Cyp2e1 investigated, while H3K27ac did not. To 

test if these epigenetic changes are associated with varying rates of drug metabolism, we assayed 

clearance of the CYP2E1-specific probe drug chlorzoxazone in microsome extracts from the 

same livers. CYP2E1 intrinsic clearance is associated with DNA methylation and H3K9ac levels 

at the Cyp2e1 locus but not with chronological age. This suggests that age-related epigenetic 

changes may influence rates of hepatic drug metabolism. In the future, epigenetic biomarkers 

could prove useful to guide dosing regimens in older adults. 

 

 

 



35 
 

2.2. Introduction 

Adverse drug reactions (ADRs) are estimated to be between the fourth and sixth leading 

cause of death in the United States (Lazarou et al. 1998). The impact and management of ADRs 

are complex and has been estimated to cost up to $30.1 billion annually (Sultana et al. 2013). 

Previous research suggests that rates of ADRs increase as people age, have more chronic health 

conditions, and take more medications (McLean and Le Couteur 2004; ElDesoky 2007; Budnitz 

et al. 2011). Human life expectancy has more than doubled in the last two centuries, and while 

mortality has been delayed, aging is still accompanied by a significantly elevated risks for many 

diseases (Issa 2002; Duron and Hanon 2008; Barzilai et al. 2012). Comorbid chronic conditions 

in individuals older than 65 years cause high degree of polypharmacy in this population. 

According to a 2006 survey, 40% of persons 65 years of age or older were taking five to nine 

medications, while almost one fifth (18%) were taking 10 or more (Slone Epidemiology Center 

2006). Ultimately, older adults are almost seven times more likely than younger persons to have 

ADRs that require hospitalization (Budnitz et al. 2006). While ADRs are a serious problem in 

the aging population, up to 80% of ADRs in older patients are dose related and therefore, are 

potentially avoidable (Routledge et al. 2004). This implies that effective methods for predicting 

the correct dose for the individual patient could make a significant impact in geriatric healthcare.  

Age-associated changes to hepatic metabolism of drugs increase risk for ADRs in older 

adults (McLachlan et al. 2009; McLachlan and Pont 2012) but the determinants of these changes 

are not fully understood. One possible mechanism that may influence rates of drug metabolism 

in older adults is epigenetics (Seripa et al. 2015; Fisel et al. 2016; Kronfol et al. 2017). Aging is 

associated with substantial changes to the epigenome (Benayoun et al. 2015; Pal and Tyler 2016; 

Horvath and Raj 2018) and genes encoding drug metabolizing enzymes in human liver are under 
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epigenetic control (Bonder et al. 2014, Park et al. 2015). Furthermore, treatment with epigenetic 

drugs affects the metabolic capacity of cultured cells (Ruoß et al. 2019). These considerations led 

us to hypothesize that age-associated epigenetic changes at genes encoding drug metabolizing 

enzymes could affect rates of drug metabolism. Epigenome-wide association studies (EWAS) in 

human blood have found significant changes to DNA methylation at several genes encoding 

phase I (oxidative) drug metabolism enzymes with age (Heyn et al. 2012; Hannum et al. 2013; 

Horvath 2013; Steegenga et al. 2014; Reynolds et al. 2014; Marttila et al. 2015; Peters et al. 

2015). However, the extent to which these age-related changes are present and affect enzymatic 

activity in the liver, the primary site of drug metabolism, is unclear. Therefore, the goal of this 

study is to identify age-related epigenetic changes at phase I genes encoding drug metabolizing 

enzymes in the liver and test if these epigenetic changes are associated with rates of drug 

metabolism. Due to the experimental control afforded and availability of the relevant tissue, we 

chose to conduct the experiments in mice. 

To date, the number of published studies on epigenetics and drug metabolism in aging is 

limited. As a starting point to identify potential genes of interest, we reviewed published EWAS 

and genome-wide gene expression studies in human blood and chose the phase I drug 

metabolism genes showing the best empirical evidence of change with age. The rationale for 

using human blood studies to guide gene selection is because 1) the largest number of aging 

EWAS have been conducted in this tissue, 2) epigenetic aging effects are significantly correlated 

across tissues and species (Horvath 2013) and 3) consistent patterns of gene expression changes 

with age have been observed across several species (McCarroll et al. 2004). We identified two 

phase I drug metabolism genes, CYP2E1 and CYP1B1, showing strong evidence for age-

associated epigenetic changes in human blood. We mapped the associated regions in the human 
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genome to their homologous mouse regions and tested for epigenetic changes in mouse liver. 

Only Cyp2e1 showed differential methylation with age. Based on these results, we focused on 

Cyp2e1 and conducted a detailed analysis of regulation at this locus including assays for DNA 

methylation and histone post-translational modifications (PTMs) with reported associations with 

age (McClay et al. 2014; Dozmorov 2015). Finally, we investigated if these effects were 

associated with CYP2E1 metabolic function by isolating liver microsomes and applying 

Michaelis–Menten kinetics to determine the intrinsic clearance (CLint) of the probe drug 

chlorzoxazone (CZ), which is predominantly metabolized by CYP2E1 (Lucas et al. 1999).  
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2.3.  Methods 

2.3.1. Mice: Liver tissue samples from 20 male CB6F1 mice (5 subjects in each of four 

age groups 4, 18, 24, and 32 months) were obtained from the National Institute on Aging (NIA) 

tissue bank.  

2.3.2. DNA and RNA extraction: Genomic DNA was extracted using the AllPrep 

DNA/RNA kit (80204, Qiagen, Hilden, Germany) according to manufacturer’s protocol. DNA 

and RNA purity and quantity were measured using a Nanodrop spectrometer (ThermoFisher, 

Waltham, MA).  

2.3.3. Global 5-MethylCytosine (5mC) and 5-HydroxymethylCytosine (5hmC): Global 

5mC and 5hmC levels were measured using ELISA colorimetric assays by MethylFlash kits 

(1030-96, 1032-96, Epigentek, Farmingdale, NY). 5mC- or 5hmC-specific antibodies, provided 

in the kit, were incubated with 100ng genomic DNA. Optical density at 450 nm was measured on 

a Synergy HT plate reader (BioTek Instruments, Winooski, VT). Known standards provided in 

the kit consisting of 0.1, 0.2, 0.5, 1, 2, and 5% for 5mC and 0.02, 0.04, 0.1, 0.2, 0.4, and 1% for 

5hmC were also assayed. The optical density of liver samples was used to determine the 

percentage of 5mC and 5hmC of each sample by interpolation on respective standard curves. 

Each unknown and standard was run in duplicate. 

2.3.4. Selection of genomic regions of interest: Aging EWAS findings for human blood 

were obtained from published studies (see Dozmorov 2015) and genes encoding drug 

metabolizing enzymes were obtained from the ADME (absorption, distribution, metabolism, and 

excretion) gene list from the pharmaADME consortium (pharmaADME.org), see Table 2.1. 

Significant findings by ADME gene were summed across studies and the top two phase I drug 

metabolism genes showing the most significant findings were selected for study.   
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Reference  Longevity Map (Human 

Ageing Genomic Resources) 

 Peters et 

al. 2015 

Heyn et 

al. 2012 

Hannum et 

al. 2013 

Horvath 

2013 

Reynolds et 

al. 2014 

Marttila et 

al. 2015 

Steegenga et 

al. 2014 

 

 Exp Exp Meth Meth Meth Meth Both Both Total 

Phase I genes  

CYP2E1 X X   X   X 4 

CYP1B1 X X X    X  4 

CYP2J2  X  X     2 

CYP1A1 X       X 2 

ADHFE1  X   X    2 

PDE3B  X    X   2 

DHRS9  X     X  2 

CYP2D6 X        1 

CYP3A4         0 

 

Table 2.1. Summary of human EWAS findings for phase I drug metabolism genes. Human ADME genes list from pharmaADME 

(www.pharmaadme.org) was contrasted on the top findings from EWAS and gene expression studies of normal aging in human blood 

DNA. Genes encoding phase I drug metabolizing enzymes that showed significant association in the top findings of these studies is 

marked with an “X”. The total number of studies were a specific gene is a top association in the reported results is shown as a total in 

the last column of the table. Exp: Expression, Meth: Methylation. 
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Genomic location of human age-associated Cytosine-phosphate-Guanine (CpG) positions 

were used to extract the homologous regions in mouse using the “convert” function in the 

University of California Santa Cruz (UCSC) genome browser (Kent et al. 2002). A complete list 

of the genomic coordinates of all investigated regions in mouse can be found in Table 2.2. An 

additional regulatory region around human CYP2E1 was identified using the GeneHancer track 

(Fishilevich et al. 2017) on the UCSC genome browser (Figure 2.1). Data from the mouse 

Encyclopedia of DNA Elements (ENCODE) (Stamatoyannopoulos et al. 2012) and Ludwig 

Institute for Cancer Research (LICR) (Barrera et al. 2008) chromatin immunoprecipitation 

(ChIP) sequencing runs on young (8 weeks) male mouse liver tissue were used to identify two 

regions with high levels of histone 3 lysine 9 acetylation (H3K9ac) and histone 3 lysine 27 

acetylation (H3K27ac) PTMs (GSM1000153, GSM1000140). 
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Table 2.2. HRM and ChIP primers and qPCR product sequences. Primers used in the High-Resolution Melt and Chromatin 

Immunoprecipitation Quantitative Polymerase Chain Reaction assays with size of PCR product, genomic coordinates, and assembly 

with CpG count when appropriate. a blasted from Pace et al., 2018 to obtain coordinates

Gene 
Primers (5’→ 3’) 

Product size/coordinates/assembly  
Forward Primer Reverse Primer 

 High-Resolution Melt CpG count 

Cyp2e1 AATTAGTATTTTAGGTTAAGGGAGATGAGTGG TCCCTTACCTTAATTAAAAACTTAAAAATATCCTTC 319/chr7:147,949,616-147,949,934/mm9 7 

Cyp1b1 TGTTTTGTTGTATTAGGGTTTGGTGGATGG CCTTTATATCCCCAACATAACCACCAAC 350/chr17:80,113,318-80,113,667/mm9 21 

 Chromatin Immunoprecipitation Quantitative Polymerase Chain Reaction    

Cyp2e1  

Region 1 ATGCTGAGCCAGCTGTGA CCACATGCAAAGACAATCCT 145/ chr7:147,950,223-147,950,367/mm9  

Region 2 ATTTGCTGCCTAGCTGCTTC CAGCACTCTGAGACCCCAGT 119/ chr7:147,942,350-147,942,468/mm9  

Gapdh  

Positive 

control 
AGAGAGGGAGGAGGGGAAATG AACAGGGAGGAGCAGAGAGCAC 200/ chr6:125,115,604-125,115,803/mm9 a  

Negative 

control 
CTCCAGATGCTGAGAGAAAAAC AGGCATACCAAGCACAGAAA 100/ chr17:95,049,080-95,049,179/mm9  



42 
 

 

Figure 2.1 Illustration showing the transcription start site (TSS) and upstream regulatory regions of the human CYP2E1 and the 

homologous mouse Cyp2e1 gene. Upstream regulatory element positions were obtained from GeneHancer (Fishilevich et al. 2017) 

and ORegAnno (Lesurf et al. 2016). DNA methylation assays were conducted in the current study at both the TSS and upstream 

regulatory region in mouse at positions marked by the arrows. Reference histone 3 lysine 9 acetylation (H3K9ac) and histone 3 lysine 

27 acetylation (H3K27ac) in 8-week-old mouse livers are from the ENCODE/LICR track in UCSC Genome Browser. Two loci with 

high liver histone acetylation levels were chosen for analysis using ChIP-qPCR in the current study, at positions marked by the 

arrows. For exact assay coordinates see Table 2.2 and Table 2.3. 

 

 



43 
 

 

Region Cyp2e1 Region 1 Cyp2e1 Region 2 

Product size/coordinates/assembly 275/chr7:147,949,576-147,949,850/mm9 157/ chr7:147,942,437-147,942,593/mm9 

Forward primer 5’GGGGGTAGGTTTTAATTTTTATAGAT3’ 5’TTAGTATTTTTATTGGGGTTTTAGAGTG3’ 

Reverse primer 
5’CGCCAGGGTTTTCCCAGTCACGAC 

ATCAACCTTTAAAATAATAACCAACTACA3’ 

5’CGCCAGGGTTTTCCCAGTCACGAC 

ATAACCTCCAAATCTAAACTTCTATTTAAC3’ 

Sequencing primer 5’ATTTTTATAGATTTGTTTTTAGATG3’ 5’GTTGGAGTTTAATGGGA3’ 

M13 primer a 5’biotin-CGCCAGGGTTTTCCCAGTCACGAC3’ 

CpG count 7 1 

 

 

Table 2.3. Pyrosequencing primer sequences. Primers used in the Pyrosequencing assays of region 1 and 2 with size of pyrosequenced 

PCR product, coordinates, and assembly with CpG count. aM13 primer sequence published in Royo et al. 2007.
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2.3.5. Bisulfite conversion of genomic DNA and High-Resolution Melt (HRM) analysis: 

200ng of liver genomic DNA was treated with sodium bisulfite according to the EZ DNA 

Methylation kit protocol (D5002, Zymo Research, Irvine, CA). Mouse genomic DNA of 5 and 

85% methylation were used as standards (808063, 808064, EpigenDx, Hopkinton, MA). Ratios 

of the standard DNA were mixed at 5, 25, 45, 65, and 85% to create a standard curve. A negative 

(no template) control was also used per plate. High-Resolution Melt (HRM) assays using 

MeltDoctor HRM MasterMix (4409535, Applied Biosystems, Foster City, CA) on a Quantstudio 

3 instrument were used to measure 5mC levels at LINE1 elements using the method of Newman 

et al. (2012) with minor modifications and at a 319 base pair region on the 5’UTR of mouse 

Cyp2e1 (chr7:147,949,616-147,949,934, mouse genome assembly mm9 NCBI37/ build 9, July 

2007) encompassing 7 CpGs (Table 2.2). For Cyp2e1, samples were amplified by qPCR as 

follows 10min hold at 95ºC followed by 40 cycles of: 15sec at 95ºC, 30sec at 57ºC and 30 sec at 

72ºC, followed by a final extension at 72ºC for 7 min and a melt curve stage with temperature 

range of 57ºC to 95ºC with fluorescence capture at 0.025 degrees per second increment. Each 

reaction included 20ng bisulfite-converted DNA and final concentration of 1X MeltDoctor HRM 

MasterMix (Applied Biosystems), 0.2µM forward and 0.2µM reverse primer (Table 2.2).  

HRM LINE1 assay was performed as described previously (Newman et al. 2012) with 

slight adjustments. MeltDoctor HRM MasterMix (Applied Biosystems, Foster City, CA) on a 

Quantstudio 3 instrument was used to measure 5mC levels at the 193 base pair LINE1 region 

reported in Newman et al encompassing 11 CpGs. Samples were amplified by qPCR as follows 

10min hold at 95ºC followed by 45 cycles of: 15sec at 95ºC, 60sec at 60ºC, followed by a melt 

curve stage with temperature range of 60ºC to 95ºC. Each reaction included 20ng bisulfite-

converted DNA and 0.75µM each of unmethylated forward and reverse primer (Newman et al. 
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2012) in 1X MeltDoctor HRM MasterMix. Standards of 0, 25, 50, 75, 100% methylation 

(EpigenDx, Hopkinton, MA) were run in duplicate while the liver samples were run in triplicate. 

The NTS values (Newman et al. 2012) of the liver samples were interpolated on the standard 

curve to yield their 5mC percentage. 

 2.3.6. Gene expression analysis by reverse transcription – quantitative PCR (RT-qPCR): 

For each sample, 1µg of total liver mRNA was reverse transcribed to cDNA by iScript kit 

according to manufacturer’s protocol (1708891, Bio-Rad, Hercules, CA). Aliquots of cDNA 

were amplified in triplicate using final concentration of 1X TaqMan master mix (4369016, 

Applied Biosystems) and 1X TaqMan Cyp2e1 Mouse Gene Expression Assay 

(Mm00491127_m1, ThermoFisher) (Martinez et al. 2010; Koh et al. 2011). qPCR conditions 

were as follows 40 cycles of 15 sec at 95ºC and 60 sec at 60ºC. Mouse Gapdh endogenous 

control was also assayed in triplicate (Mm99999915_g1, ThermoFisher) (Scarzello et al. 2016; 

Wilhelm et al. 2016; Jia et al. 2018). A 1:2 serial dilution of control cDNA was used to generate 

a 5-point standard curve. Quantification cycles (Cq) were determined using the Relative 

Quantification application on the ThermoFisher Cloud. Normalized quantification cycles (ΔCq) 

were obtained by subtracting the mean Gapdh Cq from the mean Cyp2e1 Cq. ΔΔCq was 

calculated for each age group by subtracting the ΔCq of the 4 months (youngest age group as 

reference) from each of the other age group’s ΔCq to calculate fold differences. 

2.3.7. Western Blots: Cell protein lysates were created from homogenization of 20mg 

liver tissues in 200µL Pierce RIPA buffer (89900, Thermo Fisher, Waltham, MA) with final 

concentration of 1% v/v (2 µL) Halt Protease Inhibitor buffer (78430, Thermo Fisher, Waltham, 

MA). The Pierce BCA assay (23227, Thermo Fisher, Waltham, MA) was used to measure 

protein concentrations using manufacturer’s standard protocol. Absorbance at 562nm was 
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measured on a Synergy HT plate reader and the unknown protein concentration was determined 

by interpolating absorbance of unknown samples on an 8-point standard curve created from 

diluted albumin standards.  

10µg of total protein in 30µL β-Mercaptoethanol (βME)-Laemmli buffer (1610710, 

1610747, Bio-Rad) were separated on 10% Mini-PROTEAN precast SDS-PAGE gels (4568033, 

Bio-Rad) at constant 200V for 35min and transferred onto PVDF membrane using a TransBlot 

Turbo (1704150, Bio-Rad) at 1.3A for 5 min. Membranes were blocked for 30 min in 5% milk in 

1X TBST (Tris Buffered Saline, Tween20). Blots were probed using anti-CYP2E1 primary 

antibody (1:2500, ab28146, Abcam) in 10mL 5% Milk in 1X TBST at 4ºC overnight and washed 

three times with 1X TBST the next day. The blots were incubated with HRP-coupled rabbit IgG 

secondary antibody (1:10000, Cell Signaling, Danvers, MA) and 0.5µL Precision Protein 

StrepTactin-HRP conjugate (Bio-Rad) for 1hour at RT in 10mL 5% Milk in 1X TBST. 

Membranes were washed five times with 1X TBST. Blots were treated with 2mL Clarity 

Western ECL (1705060, Bio-Rad) at 1:1 clarity western luminol enhancer: peroxide solution 

ratio to start chemiluminescence and imaged 2min afterwards on the ChemiDoc Touch (Bio-

Rad). Blots were washed with 1X TBST and stripped for 30min using Restore stripping buffer 

(21059, Thermo Fisher). After stripping, the membrane was incubated with GAPDH primary 

antibody (1:5000, MA5-15738, Thermo Fisher) and then mouse IgG secondary antibody 

(1:20000, 7076S, Cell Signaling, Danvers, MA). The bands were visualized at 49 and 37 kDa for 

CYP2E1 and GAPDH respectively using Image Lab software v 6.0 (Bio-Rad, Hercules, CA). 

For each sample, CYP2E1 band intensity were normalized to GAPDH. 
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2.3.8. Chromatin Immunoprecipitation Quantitative Polymerase Chain Reaction (ChIP-

qPCR): 80 mg of mouse liver was minced into 1 mm3 fragments with -20 C precooled scalpel 

and transferred to 2mL Eppendorf tube. TruChIP tissue shearing kit (520237, Covaris, Woburn, 

MA) was used to prepare sheared chromatin. Centrifugations were at 200g for 5 min at 4ºC 

unless otherwise noted. The minced tissue was washed with 1 mL 1X cold PBS and centrifuged 

at 200g for 5min at 4ºC. The supernatant was discarded and 1mL of fixing buffer A was used to 

resuspend the pellet. 100µL of freshly prepared 11.1% methanol-free formaldehyde (1% final 

concentration) was added and the fixation was quenched after 2 min with 58µL quenching buffer 

E. The suspension was centrifuged, and the supernatant discarded. Pellet was washed twice with 

1mL 1X cold PBS and centrifuged. Pellet was transferred to tissueTUBE (TT05M XT) provided 

in the kit and flash frozen in liquid nitrogen for 45sec and pulverized into powder by a precooled 

pestle. Pulverized tissue was transferred by inverting to a screwed-on milliTUBE-2mL and 

stored at -80ºC until nuclei separation and shearing step the next day. Pulverized tissue was 

transferred to a 2mL Eppendorf tube using two successive transfers by 500µL lysis buffer B. The 

2mL tube was incubated on a rotor at 4ºC for 20min to complete lysis. Nuclei were pelleted by 

centrifugation at 1700g for 5min at 4ºC. Supernatant was discarded and pellet was resuspended 

in 1mL wash buffer C and incubated on a rocker for 10min at 4ºC. Nuclei were pelleted again at 

1700g for 5min at 4ºC and supernatant discarded. Pellet was resuspended with 1mL wash buffer 

C and centrifuged at 1700g for 5min at 4ºC. Pellet was resuspended with 1mL shearing buffer 

D2 and sheared on M220 (Covaris, Woburn, MA) for 8min at 75 PIP, 10% duty factor, 200CPB, 

7C set point temperature (4/10 Min/Max), and no degassing. Time course trials were conducted 

to determine optimal shearing (2-20 min) and fixation times (2 and 5 min) of 8 and 2 min 

respectively which yielded the highest percentage (>75%)  of fragment sizes between 150 and 
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700 bp and the lowest percentages (<25%) of fragment sizes less than 150 and higher than 701 

bp combined. Shearing and fixation time course trials were analyzed on the Agilent 2100 

Bioanalyzer using the Agilent DNA 12000 chip on Agilent 2100 expert software. 25µL of 

sheared chromatin was incubated with 1µL 10mg/ml RNAse (EN0531, Thermo Fisher, 

Waltham, MA) at 37ºC for 30min, then it was treated with 4µL 10mg/ml Proteinase K (17916, 

Thermo Fisher, Waltham, MA) at 65ºC overnight (16 hours). DNA was purified using QIAquick 

PCR purification Kit (Qiagen, Hilden, Germany). The concentration of eluted DNA was 

measured on Qubit 4.0 fluorometer and used to calculate the volume required to have 2µg 

sheared chromatin as starting material for the Chromatin immunoprecipitation (ChIP) step (1:1 

ratio of DNA to chromatin was used to calculate chromatin concentration). The sheared 

chromatin was diluted 1:2 with 3X Covaris IP dilution buffer in order to decrease final SDS 

concentration to 0.083% and prevent SDS interference with epitope and antibody binding.  

Each ChIP had 2µg of sheared chromatin. 2% of the volumes of sheared chromatin per IP 

was set aside at 4ºC as input control and was not processed through ChIP step. ChIP was carried 

out by incubating 5 µL of H3K9ac (39137, Active Motif, Carlsbad, CA), or 5µL of H3K27ac 

(39133, Active Motif, Carlsbad, CA), or 5µL of Rabbit IgG (ab171870, Abcam) with 2µg 

sheared chromatin from each sample overnight (16 hours) at 4ºC. Hence, three worth of ChIP 

volumes were used from each sample. The formed complex was incubated with 50 µL 

Dynabeads Protein G (10003D, Thermo Fisher, Waltham, MA) for 4 hours at 4ºC. The bead 

linked complex was inserted on the DynaMag (Thermo Fisher, Waltham, MA) magnet rack for 2 

min and the supernatant discarded. The bead coupled complex was removed from the magnet 

and washed 3 times with 500 µL with cold 0.05X Tween 20 in PBS PH7.4 (10010023, Thermo 

Fisher, Waltham, MA) for 3 min each at room temperature on HulaMixer (Thermo Fisher, 
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Waltham, MA). Finally, 50 µL of IP elution buffer (Aq. 1% SDS, 0.1 M NaHCO3, pH 9.0) was 

added to the bead coupled complex and incubated on a heat block for 1hour at 65ºC with 15sec 

vortexing every 15 min. The samples were then inserted back on the DynaMag for 2 min and 50 

µL of the supernatant was transferred to a 96 well PCR plate. The input control was diluted 1:2 

with 3X Covaris IP dilution buffer to mimic the dilution done to the samples and preserve its 

percentage (2%). The ChIP’ed samples and their input controls were incubated each with 2 µL 

RNAse for 30 min at 37C and then 8 µL of Proteinase K was added and incubated overnight (16 

hours) at 65ºC. The next day, DNA was purified using QIAquick PCR purification kit (Qiagen, 

Hilden, Germany) to final elution volume of 50 µL. 2 µL of each DNA elution (H3K9ac, 

H3K27ac, IgG, and input control) per sample was used per qPCR reaction.  

Each ChIP’ed DNA was amplified in triplicate using PowerUp SYBR Green (A25742, 

Applied Biosystems), with 0.2 µM of forward and reverse primers (Table 2.2) as follows: 2min 

at 50ºC, 2min at 95ºC followed by 40 cycles of: 15sec at 95ºC, 30sec at 59ºC and 1min at 72ºC, 

followed by melt curve stage. This stage is as follows: 15sec hold at 95ºC followed by 1min hold 

at 59ºC and then the continuous fluorescence acquisition starts while increasing the temp by 

0.15ºC/s to end at 95ºC followed by a 15sec hold at 95ºC. Primer specificity and efficiency were 

tested on 2% agarose gel and a 5-point 1:2 serial dilution standard curve respectively. No 

secondary amplification or primer dimers were detected indicating primer specificity. A singular 

melt peak was shown by the qPCR melt curves indicating formation of a single product. Primer 

efficiency outside of accepted ranges [90-110] were discarded until reaction conditions were 

optimized. Cq values for each plate were downloaded and the mean threshold cycle (Cq) 

obtained for each sample and normalized to the dilution factor (2%=1/50) corrected Cq value 

(Log2 (50) =5.6438) of the input control to obtain ΔCq. The percentage of input was calculated 
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by multiplying 100 with 2 raised to the exponent of Delta Cq. For each sample, three “percentage 

of input” values were obtained and are H3K9ac, H3K7ac, and IgG. 

2.3.9. Pyrosequencing:  Quantitative methylation measures of individual CpGs were 

assessed with Pyrosequencing of bisulfite converted DNA (Tost et al. 2003). Primers targeting 

the loci of interest were designed with PyroMark Assay Design version 2.0.1.15 (Qiagen) (see 

Table 2.3 for details). The first pyrosequencing assay amplified a 257 base pair product at 

Cyp2e1 5’UTR (chr7:147,949,576-147,949,850/mm9) that encompasses 7 CpGs (Position 2-8) 

chr7: 147,949,679 - 147,949,684 - 147,949,743 - 147,949,754 - 147,949,770 - 147,949-791 - 

147,949,806, mm9. The second assay amplified a 157 base pair product at Cyp2e1 promoter 

(chr7:147,942,437-147,942,593, mm9) that encompass 1 CpG (Position 1) chr7: 147,942,492, 

mm9. Amplification was performed using the PyroMark PCR Kit (978703, Qiagen) and the 

vendor specified program for bisulfite converted DNA. The final concentrations in the PCR 

reaction mixture as follows: 1x PyroMark PCR Master Mix, 1x CoralLoad Concentrate, 1.5mM 

MgCl2, 1x Q-Solution, 10 ng of bisulfite modified genomic DNA, and 0.2µM of Forward, 

0.2µM Reverse, and 0.2µM biotinylated M13 (Royo et al. 2007) primers (Table 2.3). 2µL of the 

PCR product was separated by 2% agarose gel electrophoresis to confirm correct product size 

and absence of primer dimers and secondary amplification. The 2% agarose gel was made with 

the following ratio to obtain 0.75mm thickness in the Owl EasyCast B2 Mini Gel Electrophoresis 

System cast (Thermo Fisher Scientific, Waltham, MA): 2.52 g of agarose powder (BP2410-100, 

Fisher Scientific, Hampton, NH) and 1.89 µL ethidium bromide (BP1302-10, Fisher Scientific, 

Hampton, NH) in 126 mL 0.5X Tris-Borate-EDTA (TBE) buffer (95:5, H2O:10XTBE (BP1333-

4, Fisher Scientific, Hampton, NH)) mixed until complete gelling of agarose. The gel was poured 

onto cast and let to solidify for 30 min at RT. The cast was filled with 400 µL 0.5X TBE buffer. 
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Each gel had 2µL of 100 bp DNA ladder in the first and last well of the gel. The gel was run on 

constant voltage of 100V for 1 hour. The gel was imaged on ChemiDoc Touch (Bio-Rad, 

Hercules, CA) using default settings of auto optimal exposure for ethidium bromide stained gels.  

Next, 5µL of PCR amplicon were bound with 2µL to Streptavidin Sepharose beads (45-

000-279, Fisher, Hampton, NH) by shaking for 5 min in 40 µL Binding buffer (979006, Qiagen, 

Hilden, Germany) and 33µL of molecular biology grade water. The complex was transferred to a 

96-well HS plate (979101, Qiagen, Hilden, Germany) containing 12µL per well of final 

concentration of 0.3µM of sequencing primer in Annealing buffer (979009, Qiagen, Hilden, 

Germany) on the PyroMark Q96 vacuum preparation station. The HS plate was inserted on the 

PyroMark Q96 MD and the PyroMark Gold Q96 reagents (972804, Qiagen, Hilden, Germany) 

were used for each assay to sequence the PCR product. Each pyrosequencing assay was run 

duplicate for each sample. A standard consisting of 0, 5, 10, 25, 50, 75, and 100% methylated 

mouse genomic DNA was included on each plate (808060M, EpigenDx, Hopkinton, MA). Both 

the standard and the liver test samples were pyrosequenced in duplicates. 

2.3.10. CYP2E1 intrinsic clearance: Mouse Liver Microsomes (MLM) were prepared as 

described previously (Knights et al. 2016). 500 mg of liver tissue was homogenized using the 

Fisher 150 homogenizer (15340167, Fisher Scientific) on high speed in cold 10 mL microsome 

preparation buffer (10 mM potassium phosphate, pH 7.4, 1.15% (w/v) potassium chloride) 5 

times for 30 sec each with 30 sec breaks in between on ice and centrifuged at 700g for 10 min 

and 10,000g for 10min at 4ºC on the Optima l-90K ultracentrifuge using the SW41 rotor. The 

supernatant was ultracentrifuged at 100,000g for 75min at 4ºC and the microsome pellet 

transferred to a precooled 5mL Potter-Elvehjem grinder, ground for 1 min at low speed with 10 

strokes, transferred back into microsome preparation buffer, and the ultracentrifugation and 
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grinding steps repeated. The suspension containing the microsomes was stored at -80ºC. 10µL of 

the microsome suspension was used to measure microsomal protein concertation by the 

microplate procedure of the BCA assay (23227, Thermo Fisher). 

Standards for CZ and 6-OH-CZ (18869, 10009029, Cayman Chemical, Ann Arbor, MI) 

were purchased. Chromatographic separation was achieved using an Agilent 1100 series HPLC 

(Agilent Technologies, Santa Clara, CA) system equipped with PerkinElmer series 200 degasser 

and auto injector (PerkinElmer, Waltham, MA) and C18 BDS hypersil 50 mm x 4.6 with 5µm 

particle size (28105-054630, ThermoFisher) column. Diode array detector was used to monitor 

the depletion of CZ and the formation of 6-OH-CZ at the wavelengths 280 and 299 nm for CZ 

and 6-OH-CZ respectively. Isocratic gradient elution was used with the initial mobile phase 

being 85% aqueous (2% acetic acid (BDH20108.292, VWR, Radnor, PA) and 1% triethylamine 

(A12646 Alfa Aesar, Tewksbury, MA), v/v) and 15% methanol (A452-4, Fisher Scientific) 

(Table 2.4).  

 

Table 2.4. HPLC parameters. Chromatography parameters of the isocratic gradient co-elution 

and detection method of Chlorzoxazone and 6-hydroxychlorzoxazone. A is the aqueous mobile 

phase (2% acetic acid and 1% trimethylamine v/v). B is organic mobile phase (HPLC grade 

methanol).  

Chromatographic conditions   

Column BDS Hypersil C18 (50 x 4.6 mm, 5µm)  

Column temperature 35 ºC  

Flow rate 1.0 mL/min  

Wavelength CZ at 280 nm, 6-OH-CZ at 299 nm  

Injection volume 80 µL  

Run time 6.5 min  

   

Time (minute) A (%) B (%) 

0 85 15 

1.5 85  15 

1.6 75 25 

5 75 25 

5.1 85 15 
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Total run time was 6.5 min with retention times of 1.86 and 5.17 min for 6-OH-CZ and 

CZ respectively. Linear standard curves with R2 ≥ 0.999 were obtained from 0.47-240 µM for 6-

OH-CZ and 2.34-1200 µM for CZ (Figure 2.2 and 2.3).  

 

Figure 2.2 Chlorzoxazone standard curve. High performance liquid chromatography coupled 

with Ultraviolet detection method linearity for parent probe drug Chlorzoxazone. Linear range 

established at 2.34-1200 µM. Scatter plot with linear regression line of peak area intensity 

(mAU.s) against chlorzoxazone concentration (µM).  

 

Figure 2.3 6-hydroxychlorzoxazone standard curve. High performance liquid chromatography 

coupled with Ultraviolet detection method linearity for metabolite 6-hydrozychlorzoxazone. 

Linear range established at 0.47-240 µM. Scatter plot with linear regression line of peak area 

intensity (mAU.s) against 6-hydroxychlorzoxazone concentration (µM). 
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Hydroxylation of chlorzoxazone (CZ) to 6-hydroxychlorzoxazone (6-OH-CZ) was 

measured to determine the catalytic activity of CYP2E1. Linearity of metabolite formation with 

time and MLM protein concentration established (Figure 2.4 and 2.5). The final concentrations 

in the metabolic reactions were 50 mM potassium phosphate buffer pH 7.4, 10 mM MgCl2, 1 

mg/ml MLM protein, 1 mM EDTA (E4884, Sigma, St. Louis, MO), 1mM NADPH (AK1395, 

AkronBiotech, Boca Raton, FL),  0.5% DMSO (16785, Acros Organics), with incubation time of 

25 min at 37 ºC. The final concentration of DMSO in each reaction was maintained at 0.5%. 

Each MLM sample was run in 8 MLM reactions that vary by the final concentration (10, 20, 40, 

80, 160, 320, 640, 1000 µM) of the parent probe drug (CZ) to determine Michaelis-Menten 

kinetic constants. The reaction was stopped with equal volume (150µL) of HPLC grade 

methanol (A452-4, Fisher Scientific, Hampton, NH) and centrifuged for 10 min at 20,000g at 

room temperature. The supernatant was transferred to 96-well plate and 80 µL was injected into 

the High-Performance Liquid Chromatography (HPLC) system.  

Reaction rates (pmol/min/mg protein) of 6-OH-CZ formation were plotted against CZ 

concentration (µM), and Km and Vmax values were estimated by GraphPad Prism using equation 

1 (Eq1), were Y is the reaction rate (pmol/min/mg protein), X is CZ concentration (µM), Vmax is 

the maximal reaction rate of 6-OH-CZ  formation (pmol/min/mg protein), and Km is CZ 

concentration at half maximal rate (µM).  Eq1. Y =  Vmax ∗ X ÷ (Km +  X) 

Intrinsic clearance (CLint) is the enzyme-mediated activity toward a drug that would 

occur at concentration below Km without physiological limitations such as hepatic blood flow 

(Houston 1994). CLint by CYP2E1 for the hydroxylation reaction was calculated according to 

equation 2 (Eq2). Eq2. CLint = Vmax ÷ Km   
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Figure 2.4 Metabolite formation against time plot. Line plot of 6-hydroxychlorzoxazone (6OH-

CZ) concentration (µM) against tested total microsome reaction time (min). n=3 for each time 

point. 

 

Figure 2.5 Metabolite formation against microsome protein plot. Line plot of 6-

hydroxychlorzoxazone (6OH-CZ) concentration (µM) against tested final Mouse Liver 

Microsome (MLM) total protein concentration (mg/mL). n=3 for each concentration. 
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2.3.11. Statistics: Linear regression and Pearson correlation tests were conducted in R 

version 3.6.1 (www.r-project.org) with α=0.05. Beta values (β) and Pearson correlation 

coefficients (r), are reported. β indicates the degree of change in the outcome variable for every 

unit change in the predictor variable, while r indicates the degree of association found in the 

correlation test.  Replicates beyond 2 standard deviations from the mean of any of the assays 

were discarded. 

 

 

 

 

  

http://www.r-project.org/
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2.4. Results 

 2.4.1. Global epigenetic effects in aged mouse liver 

DNA and RNA extractions from the mouse liver samples were successful with an 

average 260/280 value of 1.94 [1.8-2.1] for DNA and 2.05 [1.94-2.1] for RNA. Prior to locus-

specific analysis, we first assayed age-associated changes to the global abundance of epigenetic 

marks in mouse liver. Using ELISA assays, we observed a significant decrease in global 

abundance of 5mC (β=-0.011, SE=0.004, p=0.024) and 5hmC (β=-0.001, SE=0.0004, p=0.002) 

(Figure 2.6 a, b). This translates to approximately 50% reduction in the 32months age group 

compared to the 4 months group for both modifications (0.6% v 0.32% for 5mC and 0.1% v 

0.06% for 5hmC). We also measured 5mC at LINE1 elements using High-Resolution Melt 

(HRM) analysis of bisulfite converted DNA (Figure 2.7 and 2.8). We observed a significant 

decrease in abundance of 5mC at LINE1 elements with increasing age in our sample (β= -2.062, 

p= 1x10-8), with an average reduction of 2% methylation per month of age. These results 

demonstrated that, in a broad sense, epigenetic changes were occurring with age in this study’s 

liver samples.  
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Figure 2.6 Box plots with regression line (blue) of Age-Associated changes to global (a) 5-

MethylCytosine (n=20), (b) 5-HydroxymethylCytosine (n=20). Data represent median (middle 

hinge), 25% (lower hinge) and 75% (upper hinge) quantile. Data points beyond upper or lower 

1.5 * Inter Quantile Range are represented as individual black dots. (c) Scatter plot of 5-

MethylCytosine and 5-HydroxymethylCytosine with regression line (blue) (n=20) 
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Figure 2.7 LINE 1 methylation percentage per age. Box plots with regression line (blue) of age-

associated changes to LINE 1 methylation percentage (n=20). Data represent median (middle 

hinge), 25% (lower hinge) and 75% (upper hinge) quantile. Data points beyond upper or lower 

1.5 * Inter Quantile Range are represented as individual black dots. 
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Figure 2.8 Representative melt curves per age. Aligned melt curve from the LINE-1 High-

Resolution Melt assay showing representative curves for ages 4, 18, 24, and 32 months. Melt 

curves of the 0 and 100 % methylation standard are shown for reference.  
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2.4.2. Age-associated changes to Cyp2e1 5’UTR methylation and gene and protein 

expression 

 We reviewed published EWAS and genome-wide gene expression studies of aging in 

human blood (Table 2.1) and identified CYP2E1 and CYP1B1 as the phase I drug metabolism 

genes showing most evidence for age-associated changes. We mapped the human age-associated 

differentially methylated regions from EWAS to their homologous mouse regions and tested for 

epigenetic changes at these loci in our aged mouse liver samples. The human CYP2E1 region 

mapped to the mouse Cyp2e1 5’UTR (Figure 2.1) and HRM analysis revealed that methylation 

at this locus increased significantly with age in mouse liver DNA (β=1.3, SE=0.0038, p=0.002) 

(Figure 2.9 a). However, no changes to Cyp1b1 methylation were observed with age (Figure 

2.10) so we focused on Cyp2e1.  

The observed Cyp2e1 5’UTR methylation increase with age corresponds to a 1.3% 

increase in methylation per month of increased age. In tandem, Cyp2e1 gene expression 

decreased significantly with age in the same samples (β= -0.03, SE=0.011, p=0.01) (Figure 2.9 

b). Using the 4 months group as reference, we observed a 2.15% reduction in expression of 

Cyp2e1 per month of increased age. Furthermore, we observed a significant decrease of CYP2E1 

protein expression with age, as measured by change in chemiluminescence detected in Western 

blot (β=-4.0e+5, SE=0.01, p=0.02) (Figure 2.9 c).  
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Figure 2.9 Box plots with regression line (blue) of Age-Associated changes to Cyp2e1 (a) 5’UTR percent methylation (n=19), (b) 

gene expression (n=20). (c) Box plot of Age-Associated changes to Cyp2e1 protein expression with representative western blot 

(n=20). Data represent median (middle hinge), 25% (lower hinge) and 75% (upper hinge) quantile. Data points beyond upper or lower 

1.5 * Inter Quantile Range are represented as individual black dots 
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Figure 2.10 Cyp1b1 5mC with age. Boxplot showing no changes to methylation at Cyp1b1 as 

age increases from 4 to 32 months. 

2.4.3. Base-resolution 5mC analysis of Cyp2e1 5’UTR and upstream regulatory region  

 Having established that DNA methylation changes were occurring with age at the Cyp2e1 

5’UTR, we aimed to obtain a fuller picture of Cyp2e1 epigenetic regulation. Our first priority 

was to assay 5mC levels at each of the seven CpGs in the 5’UTR region individually, in contrast 

to the aggregate measure obtained via HRM. We also identified an upstream regulatory region in 

human CYP2E1 (Figure 2.1) that we used to obtain the homologous region in mouse that 

harbored a single CpG. Therefore, we subjected both regions to bisulfite pyrosequencing that 

allows highly quantitative methylation measurements at single-base resolution. This revealed 

that the single CpG in the upstream regulatory region (position 1, chr7: 147,942,492, mm9) was 

significantly hypermethylated with age (p=0.023, Figure 2.11 a & b, position 1). 

Pyrosequencing further confirmed the methylation increases at the 5’UTR with age observed via 

HRM (Table 2.5), with all individual CpGs showing significant increase in methylation with age 

(Figure 2.11 a & b, positions 2 through 8). The CpG at position 5 (chr7: 147,949,754, mm9) was 
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the most significantly hypermethylated (p=0.007) with the largest beta value of 0.84% increase 

per month of age (Figure 2.11 b).  

 

Figure 2.11 Pyrosequencing data for Cyp2e1. (a) Scatter plot of percent methylation of 

Cytosine-phosphate-Guanine (CpG) and all investigated CpG positions with superimposed line 

plot for each age group connecting the average methylation percentage at each CpG (n=20 per 

CpG, N=80 total). X-axis not drawn to scale. chr 7 = chromosome 7; mm9 = mouse genome 

assembly NCBI37/ build 9, July 2007. (b) Scatter plot of CpG methylation and age of individual 

CpG positions with regression line and statistics under each location. A simple linear regression 
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was performed on all 20 data points for each CpG (n=20) against each age 4, 18, 24, and 32 

months (N=80). Position 1-8: chr7: 147,942,492-147,949,679 - 147,949,684 - 147,949,743 - 

147,949,754 - 147,949,770 - 147,949-791 - 147,949,806, mm9. 

 

 
High Resolution Melt Methylation 

Pyrosequencing Methylation Pearson r p-value 

Pos1 0.5106 0.0013 

Pos2 0.4909 0.0003 

Pos3 0.5122 0.0015 

Pos4 0.4859 0.0002 

Pos5 0.5224 0.0007 

Pos6 0.5185 0.0011 

Pos7 0.3985 8.58E-08 

Pos8 0.4035 6.49E-06 

 

Table 2.5. Pyrosequencing and HRM 5mC correlation. Pearson correlation test result rho (r) and 

p-value of each CpG methylation values investigated by Pyrosequencing and the High-

Resolution Melt (HRM) methylation result of the 5’UTR region of Cyp2e1. The pyrosequencing 

assays confirmed the HRM data with all CpG positions positively correlated with HRM 

methylation. Pos 1-8: Position 1-8 chr7: 147,942,492-147,949,679 - 147,949,684 - 147,949,743 - 

147,949,754 - 147,949,770 - 147,949-791 - 147,949,806, mm9. 
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2.4.4. Histone acetylation analysis of Cyp2e1 5’UTR and upstream regulatory region 

We viewed publicly available mouse ChIP-Seq data (GSM1000153, GSM1000140) in 

UCSC genome browser to identify two regions neighboring and/or overlapping the 5’ UTR and 

the upstream regulatory region that showed high histone 3 lysine 9 acetylation (H3K9ac) and 

histone 3 lysine 27 acetylation (H3K27ac) occupancy rates in young mouse liver (Figure 2.1). 

To assay histone acetylation levels in these regions, we used chromatin immunoprecipitation 

coupled to quantitative PCR (ChIP-qPCR). We observed a significant increase in H3K9ac at 

Cyp2e1 intron 1, adjacent to the 5’UTR (Region 1, chr7:147,950,223-147,950,367, mm9) 

(β=0.133, SE=0.06, p=0.044) and at the upstream regulatory region (Region 2, 

chr7:147,942,350-147,942,468, mm9) (β= 0.194, SE=0.08, p=0.041) when regressing ChIP-

qPCR percentage of input on age (Figure 2.12). This corresponds to a 0.133% and 0.194% 

increase in H3K9ac per month of increased age at each site, respectively. However, H3K27ac 

levels were stable with age at both regions of Cyp2e1 in this sample. 
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Figure 2.12 Chromatin Immunoprecipitation quantitative polymerase chain reaction (ChIP-qPCR) data. Box plots with regression line 

(blue) of Age-Associated changes to percentage of input occupancy of Histone 3 Lysine 9 acetylation (H3K9ac) (n=20 per region), 

Histone 3 Lysine 27 acetylation (H3K27ac) (n=20 per region) at Cyp2e1 intron 1 (Region1, chr7:147,950,223-147,950,367, mm9) and 

promoter (Region 2, chr7:147,942,350-147,942,468, mm9). IgG percentage of input shows a low background noise signal for each of 

the sample’s age groups (n=20 per region). Data represent median (middle hinge), 25% (lower hinge) and 75% (upper hinge) quantile. 

Data points beyond upper or lower 1.5 * Inter Quantile Range are represented as individual black dots.
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 2.4.5. CYP2E1 pharmacokinetics, chronological age, and epigenetics 

As shown above, 5mC and H3K9ac levels at Cyp2e1 changed with age in tandem with 

reduced gene and protein expression in our sample. To determine if these effects impacted 

CYP2E1 metabolic activity, we assayed metabolism of the CYP2E1-specific probe drug 

chlorzoxazone (CZ) in microsome extracts from the same livers. The average microsome yield 

was 1.07% w/w [0.55-1.69], which was within expected range (Knights et al. 2016). Linearity of 

the HPLC assays of R2 ≥0.999 were established for 2.34-1200 µM CZ and 0.46-240 µM 6-OH-

CZ (Figure 2.2 and 2.3). Linearity of 6-OH-CZ formation with reaction time and MLM final 

concentration was established and the final reaction time and MLM concentration was 25 min 

and 1 mg/ml respectively (Figure 2.4 and 2.5). Vmax and Km values were estimated and used to 

calculate intrinsic clearance (CLint) according to Eq2. Initial analyses established that 

chronological age was not significantly associated with CLint of CYP2E1 despite a relatively 

large correlation coefficient (r=0.31, p=0.8). Average Michealis-Menten constants and CLint per 

age group are reported in Table 2.6. Representative Michaelis-Menten curves of each age group 

can be found in Figure 2.13. This result suggests that chronological age is not a robust 

independent predictor of CLint, corroborating prior research (Schmucker et al. 1990; Hunt et al. 

1990; Mach et al. 2016).  
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Age (months) 
Vmax (pmol/min/mg protein) 

Mean (+-SD) 

Km (uM) 

Mean (+-SD) 

CLint (uL/min/mg protein) 

Mean (+-SD) 

4 626.05 (297.1) 391.44 (196.7) 1.59 (1.51) 

18 602.96 (493.9) 1009.54 (1662.1) 0.59 (0.29) 

24 915.07 (774.7) 377.59 (405.2) 2.42 (1.91) 

32 604.8 (434.3) 732.24 (891.9) 0.82 (0.48) 

 

Table 2.6 Michaelis-Menten Constants per age group. Table reporting mean (+-SD) of the 

pharmacokinetics constants Vmax (pmol/min/mg protein), Km (uM), and CLint (uL/min/mg protein) 

per age group (months). 
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Figure 2.13 Representative Michaelis-Menten curves of each age group. Representative 

Michaelis-Menten curves for (a) 4 months, (b) 18 months, (c) 24 months, and (d) 32 months 

ages. X-axis is parent drug chlorzoxazone concentration (µM). Y-axis is reaction rate 

(pmol/min/mg protein). 

 

We then tested Cyp2e1 epigenetic measures for association with the pharmacokinetic 

variables. All CpGs were associated with CLint (Figure 2.14) and the most significant was with 

CpG at position 8 (chr7: 147,949,806, mm9) (r=-0.29, p=0.0008). Furthermore, H3K9ac levels at 

the upstream regulatory region, but not intron 1, of Cyp2e1 were positively correlated with CLint 

(r=0.49, p=0.005). All p-values are provided in Table 2.7. 
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Figure 2.14 Correlation matrix reporting Pearson correlation statistical test result (r). White 

blank cells indicate non-significant association (p>0.05). Refer to Table 2.7 for individual p-

values of each Pearson correlation test of a given pair. Color gradient indicates the direction of 

effect of the association with dark pink representing the strongest positive association of 1 while 

dark gray representing the strongest negative association of -1. Only lower half of the plot is 

shown to prevent redundancy in reporting the results. Age: chronological age, Pos 1-8: Position 

1-8 chr7: 147,942,492-147,949,679 - 147,949,684 - 147,949,743 - 147,949,754 - 147,949,770 - 

147,949-791 - 147,949,806, mm9. Vmax: maximal rate of hydroxylation reaction of 

chlorzoxazone by Cyp2e1, Km: chlorzoxazone concentration at half maximal rate, CL.Int: 

intrinsic clearance, K9: Histone 3 Lysine 9 acetylation in Cyp2e1 intron 1 (chr7:147,950,223-

147,950,367, mm9), R2K9 Histone 3 Lysine 9 acetylation in Cyp2e1 promoter 

(chr7:147,942,350-147942468, mm9). 
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Table 2.7. Pearson correlation tests p-values for epigenetic and drug metabolism variables. Table reporting Pearson correlation test p-

value for each pair of variables. Age: Chronological age, Pos1-8, Position 1-8: chr7: 147,942,492-147,949,679 - 147,949,684 - 

147,949,743 - 147,949,754 - 147,949,770 - 147,949-791 - 147,949,806, mm9. Vmax: maximal rate of 6-hydroxylation reaction of 

chlorzoxazone by CYP2E1, Km: chlorzoxazone concentration at half maximal rate, CL.Int: intrinsic clearance, K9: Histone 3 Lysine 

9 acetylation in Cyp2e1 intron 1 (chr7:147,950,223-147,950,367, mm9), R2K9 Histone 3 Lysine 9 acetylation in Cyp2e1 promoter 

(chr7:147,942,350-147942468, mm9). 

  Age Pos1 Pos2 Pos3 Pos4 Pos5 Pos6 Pos7 Pos8 K9 R2K9 Vmax Km CL.Int 

Age 0              

Pos1 0.0653 0             

Pos2 0.0818 7.70E-14 0            

Pos3 0.0716 3.97E-14 3.56E-15 0           

Pos4 0.0922 3.79E-12 1.55E-17 9.63E-15 0          

Pos5 0.0705 9.53E-14 2.54E-17 8.87E-19 1.48E-16 0         

Pos6 0.0820 5.76E-11 9.50E-15 1.47E-12 1.25E-15 1.01E-13 0        

Pos7 0.1827 6.65E-08 1.19E-09 1.08E-08 2.97E-10 3.22E-09 2.62E-10 0       

Pos8 0.1568 1.93E-09 5.77E-12 2.06E-10 4.16E-13 3.93E-11 1.94E-12 2.02E-13 0      

K9 0.0808 0.8220 0.9914 0.8680 0.9338 0.9260 0.8881 0.6116 0.6991 0     

R2K9 0.1326 0.3089 0.1978 0.2274 0.1581 0.2115 0.1536 0.0556 0.0843 0.0023 0    

Vmax 0.0315 0.3860 0.5458 0.5289 0.6336 0.5521 0.6367 0.9921 0.8266 0.0250 0.0007 0   

Km 0.3677 0.1023 0.0681 0.0670 0.0491 0.0668 0.0566 0.0255 0.0298 0.0629 5.46E-05 0.0214 0  

CL.Int 0.8085 0.0030 0.0020 0.0015 0.0012 0.0017 0.0020 0.0008 0.0008 0.5186 0.0050 0.2682 1.79E-05 0 
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2.5. Discussion 

In this study, we demonstrated that 5mC and H3K9ac levels change with age at Cyp2e1 

in mouse liver. Furthermore, we showed that these epigenetic changes were significantly 

associated with rates of CYP2E1-mediated drug metabolism in microsome extracts from the 

same livers, while chronological age was not. This finding suggests that epigenetic marks may be 

better predictors of drug metabolism in advanced age than chronological age itself.  

Considering our findings in the context of published work, we found that global 5mC 

levels diminished with increasing age and this effect has been shown before in studies of 

different tissues (Booth and Brunet 2016), including the liver (Wilson et al. 1987). Previous 

reports have also shown reduced global 5hmC in mouse liver with age, as we observed here 

(Tammen et al. 2014). However, recent genome-wide bisulfite sequencing studies in mouse liver 

have shown either a modest excess of hypermethylated sites (Hahn et al. 2017), or no overall 

excess in either direction with age (Gravina et al. 2016). One possible reason for this discrepancy 

is that “genome-wide” approaches such as next-generation sequencing (NGS) are not truly 

representative of the whole genome. For example, NGS approaches typically underrepresent 

repetitive elements because reads in these regions may not align unambiguously to the reference 

genome and so are discarded. This may diminish the influence of repeats on the cumulative 

abundance of methylation in bisulfite sequencing studies. Several classes of repetitive elements 

reportedly lose methylation with age (Cardelli 2018). Therefore, underrepresentation of these 

elements could lead to underestimation of age-related hypomethylation in genome wide NGS 

studies of aging. In our sample, we observed significant hypomethylation of LINE1 elements, 

with an average reduction of 2% per month of age. As LINE1 elements are the dominant repeat 

class in mouse and human, comprising almost 20% of the genome (Mouse Genome Sequencing 
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Consortium et al. 2002), this result could partly explain the discrepancy between global 5mC 

studies and genome-wide bisulfite sequencing studies of aging in liver DNA. 

Considering our locus-specific results, we found that DNA methylation of the Cyp2e1 

5’UTR and upstream regulatory region increased significantly with age, while its gene 

expression declined with age. This supports and extends prior observations in human blood 

studies. For example, Peters et al. (2015) reported a hypermethylated CpG at human CYP2E1 

and decreased gene expression with age. Reduced Cyp2e1 expression was also reported in mouse 

liver tissue aged 28 months compared to 4 months, as detected via RNA sequencing (White et al. 

2015). To date, prior studies of histone PTM changes in the context of aging are limited and we 

are not aware of available published data for the liver. Park et al. (2015) found that histone 

deacetylase inhibitors influenced transcription of cytochrome P450s in cultured hepatocytes, 

suggesting histone acetylation affects expression, but this study did not examine the effect of 

aging nor specific histone acetylation marks. Further work is needed in this area, in particular 

genome-wide analysis of H3K9ac with age, given our findings with respect to H3K9ac in this 

study. 

We observed a significant negative correlation between CLint and Cyp2e1 methylation 

and a significant positive correlation between CLint and Cyp2e1 histone acetylation. The effect 

sizes are substantial, with a maximum correlation of -0.31 for 5mC and 0.49 for H3K9ac, 

suggesting that epigenetics plays a significant role in regulating CYP2E1 hepatic activity. This 

finding may have clinical relevance because CYP2E1 is responsible for the metabolism of 

hepatotoxic substrates such as ethanol, acetaminophen, chlorzoxazone (CZ), pro-carcinogens 

(benzene, chloroform, and N-nitroso-nicotine), and endogenous compounds such as estrogen, 

acetone, and linoleic acid (Lieber 1997; Caro and Cederbaum 2004; Porubsky et al. 2008). 
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Unlike other cytochrome P450s, human CYP2E1 is not functionally polymorphic and its reported 

variants to date have no clinical or functional effects (Ingelman-Sundberg 2004b; Zanger and 

Schwab 2013). CYP2E1 comprises 5.5–16.5% of the hepatic P450 pool (Zanger and Schwab 

2013) and its substrate profile makes it relevant to older adults due to the detrimental and 

unpredictable ADRs of these substrates. For example, CYP2E1 is inducible at heavy ethanol 

intake which is responsible, along with Alcohol dehydrogenases (ADH), for the majority of 

alcohol-mediated liver toxicity hospitalizations (Caro and Cederbaum 2004). In addition, 

acetaminophen related liver injury is the primary over-the-counter drug-related hospitalization 

(Lee 2017). Acetaminophen hepatotoxicity is mediated by the excessive formation of the toxic 

byproduct N-acetyl-p-benzoquinone imine (NAPQI) and subsequent thiol residue depletion upon 

acetaminophen overdose. CYP2E1 is responsible for NAPQI formation at high acetaminophen 

doses, which highlights its importance in acetaminophen-induced liver damage (French 2013). 

Finally, CZ is a high-risk drug listed on the 2019 American Geriatrics Society Beers criteria for 

potentially inappropriate use in older adults. CZ is a centrally acting skeletal muscle relaxant that 

is strongly recommended to avoid in the elderly due to moderate evidence of poor toleration by 

this population according to these criteria. Taken together, these examples provide evidence for 

clinical significance of the metabolism of drugs that are CYP2E1 substrates.  

A limitation of the study as presented is that we could not manipulate epigenetic levels in 

our post-mortem samples, so the association between epigenetics and drug metabolism is 

correlational, rather than causal. Nevertheless, the use of the probe drug CZ renders the 

association highly specific to the action of CYP2E1. In addition, sex differences in drug 

metabolism have been described, however, our sample was comprised of only male mice. Hence, 

female-specific effects should be investigated in future studies. Age-related changes to 
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pharmacokinetic attributes such as plasma protein binding and hepatic blood flow should be the 

subject of future in vivo investigations that pertain to drugs that are highly protein bound or have 

high hepatic extraction ratio due to the possible changes to these attributes that affect the overall 

disposition of drugs with advanced age (McLachlan and Pont 2012). Looking to the future, this 

work may have clinical applications if extended to human populations. Age-related epigenetic 

changes at human CYP2E1 and other drug metabolizing genes should be studied, and if these 

changes are linked to altered clearance clinically, epigenetic biomarkers of altered drug 

metabolism could be potentially used to guide dosing decisions in older adults. One potential 

issue is that epigenetic modifications vary by cell and tissue type. Therefore, age-related effects 

mapped in the liver will need to be tested for equivalency in peripheral cells or tissues (e.g. 

blood) that are more readily accessible for the purposes of biomarker testing. However, prior 

work by Horvath (2013) and others (Spiers et al. 2016; Zhu et al. 2018) suggests that many age-

related epigenetic changes are consistent across tissues and indeed in this study we demonstrated 

continuity across mouse and human. Future work should investigate genome-wide epigenetic 

changes with age in the liver and blood concurrently, for the same organism.
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3.1. Abstract 

Phase II drug metabolism is poorly studied with advanced age and older adults may 

exhibit significant variability in their expression of phase II enzymes. We hypothesized that age-

related changes to epigenetic regulation of genes involved in phase II drug metabolism may 

contribute to these effects. We examined published epigenome-wide studies of human blood and 

identified the SULT1A1 and UGT1A6 genes as the top loci exhibiting epigenetic changes with 

age. To assess possible functional alterations with age in the liver, we assayed DNA methylation 

(5mC) and histone acetylation (HAc) changes around the mouse homologs Sult1a1 and Ugt1a6 

in liver tissue from mice aged 4-32 months obtained from the National Institute on Aging tissue 

bank. Our liver sample shows significant changes to 5mC and histone 3 lysine 9 acetylation 

(H3K9ac) around Sult1a1 but not at Ugt1a6 with age. Histone 3 lysine 27 acetylation (H3K27ac) 

did not change with age at either locus. Sult1a1 gene expression is positively associated with its 

H3K9ac levels but not with 5mC or chronological age. Our findings indicate that Sult1a1 

expression is under epigenetic influence in normal aging, and that this influence is more 

pronounced for histone acetylation than DNA methylation in this sample. In the future, 

epigenetic biomarkers could prove useful to inform dosing regimens in older adults. 
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3.2. Introduction 

Age-associated changes to hepatic phase II drug metabolism is poorly understood. 

Recently, it has been suggested that epigenetic mechanisms could regulate genes encoding drug 

metabolizing enzymes in older adults (Fisel et al. 2016). Aging is known to be associated with 

extensive changes to epigenetic marks such as 5-methylCytosine (5mC) (Horvath and Raj 2018) 

and, crucially, these changes are not purely stochastic. Several hundred loci in the genome 

exhibit consistent 5mC changes in normal aging and these are known as age-associated 

differentially methylated regions (a-DMRs). Many a-DMRs have functional consequences 

(McClay et al. 2014; Horvath and Raj 2018), leading us to seek out a-DMRs at genes encoding 

drug metabolizing enzymes to determine if they affect regulation of these genes. Previously, we 

showed that a-DMRs at the cytochrome P450 2E1 gene, which encodes a phase I drug 

metabolizing enzyme, showed significant changes with age that were associated with CYP2E1 

function (Kronfol et al. 2020). In the current study, we extend this work to consider genes 

encoding phase II (conjugation) drug metabolizing enzymes. 

Data from epigenome-wide association studies (EWAS) in human blood have shown 

significant changes to 5mC at several phase II genes with age (Heyn et al. 2012; Steegenga et al. 

2014; Reynolds et al. 2014; Peters et al. 2015). However, the degree to which these a-DMRs are 

present and affect gene expression in the liver, the primary site of drug metabolism, is unclear. 

Therefore, the aim of this study is to identify age-related changes to 5mC and histone acetylation 

at genes encoding phase II drug metabolizing enzymes in the liver and test if these epigenetic 

changes are associated with gene expression. This study used liver tissue from mice aged under 

controlled conditions, obtained from the National Institute on Aging tissue bank. 
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We identified two phase II drug metabolism genes, SULT1A1 and UGT1A6, showing 

strong evidence for a-DMRs in human blood studies (Table 3.1). We mapped the associated sites 

in the human genome to their homologous mouse regions and tested for epigenetic changes at 

these regions in mouse liver (Figure 3.1). High-Resolution Melt analysis of bisulfite-converted 

DNA and chromatin immunoprecipitation assays was used to measure 5mC and histone post-

translational modifications respectively (Dozmorov 2015). We observed significant age-related 

epigenetic change at the Sult1a1 gene and confirmed that this change was strongly associated 

with its gene expression. 
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Reference Longevity Map (Human 

Ageing Genomic Resources) 

 Peters et 

al. 2015 

Heyn et 

al. 2012 

Hannum et 

al. 2013 

Horvath 

2013 

Reynolds et 

al. 2014 

Marttila et 

al. 2015 

Steegenga et 

al. 2014 

 

 Exp Exp Meth Meth Meth Meth Both Both Total 

Phase II genes  

SULT1A1 X     X  X 3 

UGT1A6   X    X  2 

UGT2B15        X 1 

GSTT1 X        1 

SULT2B1        X 1 

UGT1A4       X  1 

UGT1A5       X  1 

UGT1A1         0 

SULT1A3         0 

 

Table 3.1. Summary of human EWAS findings for phase II drug metabolism genes. Human ADME genes list from pharmaADME 

(www.pharmaadme.org) was contrasted on the top findings from EWAS and gene expression studies of normal aging in human blood 

DNA. Genes encoding phase II drug metabolizing enzymes that showed significant association in the top findings of these studies is 

marked with an “X”. The total number of studies were a specific gene is a top association in the reported results is shown as a total in 

the last column of the table. Exp: Expression, Meth: Methylation.
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Figure 3.1 UCSC genome browser tracks showing (a) Mouse Sult1a1 gene location, H3K9ac, 

H3K27ac occupancy, and ORegAnno regulatory elements. ORegAnno track shows identification 

(ID) and transcription factor binding site (orange). Vertical bars highlighted in blue and green 

represent the investigated regions in the High Resolution Melting, and Chromatin 

Immunoprecipitation Quantitative Polymerase Chain Reaction assays respectively (full 

coordinates in Table 3.2), and (b) The homologous genomic region in human showing SULT1A1 

gene location, GeneHancer regulatory elements location and ID, and the identifier of the 

significant CpG found in humans (blue bar). 
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Table 3.2. HRM and ChIP primers and qPCR product sequences. Primers used in the High-Resolution Melt and Chromatin 

Immunoprecipitation Quantitative Polymerase Chain Reaction assays with size of PCR product, genomic coordinates, and assembly 

with CpG count when appropriate.  

Gene 
Primers (5’→ 3’) 

Product size/coordinates/assembly  
Forward Primer Reverse Primer 

 High-Resolution Melt CpG count 

Sult1a1 GGAAGGTGTTTTTGTTTTTATG CTAAAAATATATCTCTCCCAACT 134/chr7:133,820,382-133,820,515/mm9 1 

Ugt1a6 AGTATGAAGGAGATAGTAGAATAT AAAAAACCCATCAAAAAAACAC 206/chr1:90,035,169-90,035,374/mm9 4 

 Chromatin Immunoprecipitation Quantitative Polymerase Chain Reaction    

Sult1a1 GGGGAACTCAGACAAACCAC TCCTGCCCAGATACTGGTTC 154/ chr7:133,819,634-133,819,787/mm9  

Ugt1a6 GCCACTCAGGAAGGACAGAG GTGAGGCACTGGTCTGGTTT 153/ chr1:90,030,630- 90,030,782/mm9  
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3.3. Methods 

3.3.1. Mice: Liver tissue samples from 20 male CB6F1 mice (5 subjects in each of four 

age groups 4, 18, 24, and 32 months) were obtained from the National Institute on Aging (NIA) 

tissue bank.  

3.3.2. DNA and RNA extraction: Genomic DNA was extracted using the AllPrep 

DNA/RNA kit (80204, Qiagen, Hilden, Germany) according to manufacturer’s protocol. DNA 

and RNA purity and quantity were measured using a Nanodrop spectrometer (ThermoFisher, 

Waltham, MA).  

3.3.3. Selection of genomic regions of interest: Aging EWAS findings for human blood 

were obtained from published studies (see Dozmorov 2015) and genes encoding drug 

metabolizing enzymes were obtained from the ADME (absorption, distribution, metabolism, and 

excretion) gene list from the pharmaADME consortium (pharmaADME.org), see Table 3.1. A 

complete list of the genomic coordinates of all investigated regions in mouse can be found in 

Table 3.2. Publicly available data from the mouse Encyclopedia of DNA Elements (ENCODE) 

and Ludwig Institute for Cancer Research (LICR) chromatin immunoprecipitation (ChIP) 

sequencing runs on young (8 weeks) male mouse liver tissue were used to identify two regions 

with high levels of histone 3 lysine 9 acetylation (H3K9ac) and histone 3 lysine 27 acetylation 

(H3K27ac) PTMs (GSM1000153, GSM1000140) (Figure 3.1). 

3.3.4. Bisulfite conversion of genomic DNA and High-Resolution Melt (HRM) analysis: 

200ng of liver genomic DNA was treated with sodium bisulfite according to the EZ DNA 

Methylation kit protocol (Zymo Research, Irvine, CA). Mouse genomic DNA of 0, 5, 25, 50, 75, 

and 100% methylation were used as standards (808060M, EpigenDx, Hopkinton, MA). High-
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Resolution Melt (HRM) assays using MeltDoctor reagents (Applied Biosystems, Foster City, 

CA) on a Quantstudio 3 instrument were used to measure 5mC levels on the promoter and exon 

2 of Sult1a1 and Ugt1a6 (Table 3.2). Samples were amplified by qPCR as follows 10min hold at 

95ºC followed by 45 cycles of: 15sec at 95ºC, 60sec at 60ºC or 55ºC for Sult1a1 or Ugt1a6 

respectively, followed by a melt curve stage. Each reaction included 20ng bisulfite-converted 

DNA and final concentration of 1X MeltDoctor HRM MasterMix (Applied Biosystems), 0.2µM 

forward and 0.2µM reverse primer (Table 3.2). The liver samples and the standards were run in 

triplicate. The Net Temperature Shift values (Newman et al. 2012) of the liver samples were 

interpolated on the standard curve to yield their 5mC percentage. 

 3.3.5. Gene expression analysis by reverse transcription – quantitative PCR (RT-qPCR): 

Gene expression was measured for Sult1a1, Ugt1a6a and Ugt1a6b. We opted to measure the 

gene expression of both isoforms of Ugt1a6 present in mouse liver because they are both 

expressed from the same locus and the 5mC region investigated is shared among them. Hence, 

allowing us to test for whether either isoform is affected by epigenetic changes if present. For 

each sample, 1µg of total liver mRNA was reverse transcribed to cDNA by iScript kit according 

to manufacturer’s protocol (Bio-Rad, Hercules, CA). Aliquots of cDNA were amplified in 

triplicate using final concentration of 1X TaqMan master mix (Applied Biosystems) and 1X 

TaqMan Sult1a1 or Ugt1a6a/b Mouse Gene Expression Assay (Mm01132072_m1, 

Mm01967851_s1, Mm03032310_s1 ThermoFisher). qPCR conditions were as follows 2 min 

hold at 50 ºC then 10min at 95 ºC, followed by 40 cycles of 15 sec at 95ºC and 60 sec at 60ºC. 

Mouse Gapdh endogenous control was also assayed in triplicate (Mm99999915_g1, 

ThermoFisher). Quantification cycles (Cq) were determined using the Relative Quantification 
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application on the ThermoFisher Cloud. Normalized quantification cycles (ΔCq) were obtained 

by subtracting the mean Gapdh Cq from the mean Cq of any of the genes. 

3.3.6. Chromatin Immunoprecipitation Quantitative Polymerase Chain Reaction (ChIP-

qPCR): 80 mg of mouse liver per sample was processed using the TruChIP tissue shearing kit 

(520237, Covaris, Woburn, MA). Minced tissue was fixed in 1% formaldehyde for 2 min, 

washed, transferred to a tissueTUBE (Covaris), flash frozen in liquid N2 and pulverized. After 

cell lysis, chromatin was sheared on a Covaris M220 for 8min. 2% of sheared chromatin per IP 

was set aside as input control. ChIP used 5 µL of anti-H3K9ac (39137, Active Motif, Carlsbad, 

CA), or 5µg of anti-H3K27ac (39133, Active Motif), or 5µg of Rabbit IgG isotype control 

(ab171870, Abcam) incubated with 2µg sheared chromatin from each sample overnight (16 

hours) at 4ºC. This mixture was added to Dynabeads Protein G (10004D, ThermoFisher) for 4 

hours at 4ºC before washing and elution of ChIP DNA by heating to 65ºC for 1 hour. After 

elution, samples were treated with RNAse and Proteinase K and DNA was purified using 

QIAquick (28104, Qiagen). 

Each ChIP’ed DNA was amplified in triplicate using PowerUp SYBR Green (Applied 

Biosystems), with 0.2 µM of forward and reverse primers (Table 3.2) as follows: 2min at 50ºC, 

2min at 95ºC followed by 45 cycles of: 15sec at 95ºC, 30sec at 58 ºC or 60ºC for Sult1a1 or 

Ugt1a6 respectively and 1min at 72ºC, followed by melt curve stage. Cq values for each plate 

were downloaded and the mean threshold cycle (Cq) obtained for each sample and normalized to 

the dilution factor (2%=1/50) corrected Cq value (Log2 (50) =5.6438) of the input control to 

obtain ΔCq. The percentage of input was calculated by multiplying 100 by 2ΔCq. 

3.3.7. Statistics: Linear regression tests were conducted in R version 3.6.1 (www.r-

project.org) with α=0.05. 

http://www.r-project.org/
http://www.r-project.org/
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3.4. Results  

 3.4.1. Age-associated changes to Sult1a1 and Ugt1a6 methylation and gene expression 

DNA and RNA extractions from the mouse liver samples were successful with an 

average 260/280 value of 1.94 [1.8-2.1] for DNA and 2.05 [1.94-2.1] for RNA. We tested for 

epigenetic changes in mouse liver DNA using HRM. HRM analysis revealed that 5mC at 

Sult1a1 decreases significantly with age (β=-1.08, 95%CI [-1.8, -0.2], SE=0.38, p=0.011) 

(Figure 3.2 a) but did not change at Ugt1a6 (Figure 3.3 a).  

The observed Sult1a1 promoter 5mC decrease with age translates to a 24% decrease in 

the 32 months group versus 4 months groups. On the other hand, neither of Sult1a1 or Ugt1a6a/b 

gene expression changed in a consistent manner with chronological age in this sample (p>0.05) 

(Figure 3.2 b, Figure 3.3 c/d). 

3.4.2. Histone acetylation analysis of Sult1a1 regulatory region 

To assay histone acetylation levels in these regions, we used chromatin 

immunoprecipitation coupled to quantitative PCR (ChIP-qPCR). We observed a significant 

increase in H3K9ac at Sult1a1 (β= 0.11, 95%CI [0.002,0.22], SE=0.05, p=0.04) (Figure 3.2 c) 

but not at Ugt1a6 when regressing ChIP-qPCR percentage of input on age (Figure 3.3 b). This 

corresponds to a 0.11% increase in H3K9ac per month of increased age at Sult1a1. Furthermore, 

H3K27ac levels were stable with age at both genes in this sample (Figure 3.2 c, Figure 3.3 b) 
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Figure 3.2 Box plots with superimposed regression line (blue) of Age-Associated changes to 

Sult1a1 (a) methylation (n=20), (b) gene expression (n=20), and (c) Histone 3 Lysine 27 and 

Lysine 9 acetylation (H3K27ac and H3K9ac), chromatin Immunoprecipitation quantitative 

polymerase chain reaction (ChIP-qPCR) data (n=20 per target), IgG percentage of input shows a 

low background noise signal for each of the sample’s age groups. Data represent median (middle 
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hinge), 25% (lower hinge) and 75% (upper hinge) quantile. Data points beyond upper or lower 

1.5 * Inter Quantile Range are represented as individual black dots. (d) linear regression plot of 

percentage of input of H3K9ac and Sult1a1 gene expression.  (n=20 per locus) with reported 

Adjusted R2 and p-value.  
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Figure 3.3 (a) Box plot with superimposed regression line (blue) of age-associated changes to 

Ugt1a6 methylation (n=20) (p>0.05). (b) Histone 3 Lysine 27 and Lysine 9 acetylation 

(H3K27ac and H3K9ac), Chromatin Immunoprecipitation quantitative polymerase chain reaction 
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(ChIP-qPCR) data (n=20 per target) (p>0.05), IgG percentage of input shows a low background 

noise signal for each of the sample’s age groups. Data represent median (middle hinge), 25% 

(lower hinge) and 75% (upper hinge) quantile. Data points beyond upper or lower 1.5 * Inter 

Quantile Range are represented as individual black dots. Box plot with superimposed regression 

line (blue) of age-associated changes to gene expression of (c) Ugt1a6a isoform and (d) Ugt1a6b 

isoform (n=20 per locus) (p>0.05). 
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3.4.3. Sult1a1 epigenetics and expression 

As shown above, 5mC and H3K9ac levels at Sult1a1 changed with age. However, 

Sult1a1 gene expression was not associated with chronological age. To determine if epigenetic 

effects impacted Sult1a1 gene expression, we tested the degree of association between 5mC and 

H3K9ac on Sult1a1 with its gene expression. H3K9ac changes on Sult1a1 intron1 are associated 

with its gene expression (β=0.02, 95%CI [0.004,0.04], SE=0.008, p=0.018), explaining 23% of 

the variability of the latter (Adj.R2=0.23, p=0.018) (Figure 3.2 d). However, 5mC at the Sult1a1 

promoter did not associate with its gene expression (p>0.05, data not shown). This result 

suggests that H3K9ac is a more robust independent predictor of gene expression of Sult1a1 than 

5mC or chronological age.  
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3.5. Discussion 

This study demonstrates that 5mC and H3K9ac levels change with age at Sult1a1 in 

mouse liver. Furthermore, we showed that H3K9ac was significantly associated with Sult1a1 

gene expression, while chronological age was not. This finding suggests that histone acetylation 

levels may be a better predictor of drug sulfonation by Sult1a1 in advanced age than 

chronological age itself.  

Comparing our findings to published work, we found that Sult1a1 5mC levels diminished 

with increasing age and this direction of effect supports prior observations in human blood 

studies. For example, Reynolds et al. (2014) reported a hypomethylated CpG with age at human 

SULT1A1 (Reynolds et al. 2014) overlapping the homologous mouse region investigated in this 

study. Furthermore, Fu et al. (2012) reported increased Sult1a1 expression in mouse liver tissue 

aged 27 months compared to 3 months, as detected via RT-qPCR (Fu et al. 2012). This suggests 

that increases to Sult1a1 gene expression could occur with age but require more power through 

larger sample sizes to be reliably detectable. On the other hand, age-related changes to 5mC and 

H3K9ac were detectable at Sult1a1 in this study’s sample and H3K9ac is associated with its gene 

expression to a substantial degree of 23%. Prior studies of histone PTM changes in the context of 

aging are limited and we are not aware of existing data for Sult1a1 in the liver. Schroeder et al. 

(2013) found that histone deacetylase inhibitors influenced gene expression of Sult1a1 in specific 

brain regions, prefrontal cortex and nucleus accumbens, of mice suggesting that histone 

acetylation affects expression, but this study did not examine the effect of aging nor changes in 

the liver (Schroeder et al. 2013).  

This finding may have clinical relevance because the SULT1A1 enzyme is involved in 

the sulfonation of drugs including tamoxifen and estrogen replacement therapies (Glatt et al. 



94 
 

2001). SULT1A1 comprises the majority, 53%, of the total hepatic sulfotransferase (Riches et al. 

2009) and its substrate profile makes it relevant to older adults because these substrates are 

indicated for the treatment of age-related disease or have detrimental and unpredictable 

toxicities. For example, SULT1A1 activates the prodrug tamoxifen which is essential for its anti-

estrogen activity in the treatment of breast cancer (Brauch et al. 2009). In addition, prior studies 

have implicated genetic sequence variants at SULT1A1 in response to estrogen-replacement 

therapy (Rebbeck et al. 2006; Hildebrandt et al. 2009). Therefore, it is conceivable that age-

related functional epigenetic changes at SULT1A1, as shown here, may similarly affect response 

to estrogen-replacement therapy. This suggests an area of future clinical study in humans. 

A limitation of the study is that we could not directly manipulate epigenetic levels in our 

post-mortem samples, so the relationship between epigenetics and gene expression is 

correlational, not causal. Also, sex differences in metabolism have been reported, but our sample 

was comprised of only male mice. Hence, female-specific effects should be inspected in 

forthcoming studies. Age-related epigenetic changes at human SULT1A1 should be studied, and 

if these changes are connected to altered clearance clinically, epigenetic biomarkers of altered 

drug metabolism could be potentially used to guide dosing decisions in older adults. 
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3.6. Study Highlights 

What is the current knowledge on the topic?  

The determinants of age-related changes of drug response due to phase II metabolism is poorly 

understood. The study of epigenetic regulation of ADME genes is in its infancy and no reports 

correlate age-related changes to epigenetic regulation of genes controlling phase II metabolism. 

What question did this study address?  

What is the extent of age-related change of DNA methylation and histone acetylation at the 

Sult1a1 and Ugt1a6 genes? What is the extent of association of these epigenetic marks with gene 

expression? 

What does this study add to our knowledge?  

Determine the extent of change to DNA methylation and histone acetylation on sulfonation gene, 

Sult1a1, and its degree of association with its gene expression in advanced age. This study 

reports a lack of change to age-related epigenetic regulation on glucuronidation gene, Ugt1a6, in 

mouse liver. 

How might this change clinical pharmacology or translational science? 

This might stimulate clinical work that determines how we dose older patients based on 

epigenetic levels at genes controlling phase II metabolism to optimize drug response and 

decrease adverse events.  
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Chapter 4: Cross tissue correlation of Cyp2e1 and Sult1a1 methylation levels in mice 

 

4.1  Abstract 

Epigenetic levels vary by tissue type, yet the degree of variation shared between tissues is 

less established. The relationship between blood methylation and methylation in organs that 

express phase I and II metabolism genes is not well characterized. We hypothesized that blood 

DNA methylation (5mC) levels of genes involved in drug metabolism are correlated with those 

of the liver and the brain. We recently identified the cytochrome P450 2E1 (Cyp2e1) and 

sulfotransferase (Sult1a1) genes as top mouse ADME loci exhibiting epigenetic changes with 

age. To investigate the extent of association between methylation levels of Cyp2e1 and Sult1a1 

in blood and organs that express those genes, we obtained liver, blood, hippocampus, and cortex 

from mice aged 5 months from the Jackson Laboratory. We then assayed 5mC using High-

Resolution Melt assays, around mouse Cyp2e1 and Sult1a1 from these tissues. 5mC of mouse 

livers exhibit significant negative correlation with that of blood at both genes. However, blood 

5mC of neither gene was significantly associated with 5mC in the cortex nor hippocampus brain 

regions. This suggests that epigenetic levels in blood 5mC may inversely reflect those in the liver 

for Cyp2e1 and Sult1a1 genes. This study could serve as the starting point of future in depth 

studies that explicitly looks at blood based 5mC as a proxy to infer the status of methylation on 

Cyp2e1 and Sult1a1 in the liver. 
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4.2 Introduction 

 Tissue-specific patterns of DNA methylation are recognized to be highly discordant (Bird 

2002; Zhang et al. 2013; Dmitrijeva et al. 2018). Although significant differences in mean levels 

of 5mC between tissues exist, they should not be used to imply a lack of relationship between 

these marks. Studies have shown that cross-tissue patterns of 5mC can be used to predict a 

singular outcome such as mortality, disease risk, or longevity (Horvath and Raj 2018), indicating 

a mutual underlying process influencing 5mC levels across tissues, however with different 

nuances. We aimed to test this cross-tissue correlation around two genes encoding drug 

metabolizing phase I and II enzymes, Cyp2e1 and Sult1a1 respectively, which have been 

previously shown to be influenced by epigenetic regulation with age (see Chapters 2, 3 and 

Kronfol et al 2020).   

 Changes to hepatic 5mC at Cyp2e1 are associated with changes to gene expression levels 

(Kronfol et al 2020). Furthermore, the regions that we tested were known a-DMRs in human 

blood. However, the degree to which these changes, or lack thereof, in 5mC are present in other 

tissues is unknown. These considerations led us to hypothesize that the variability of hepatic 

5mC could be associated with that of 5mC from whole blood or other tissue that show high 

expression of these genes such as the brain, specifically the cortex and hippocampus. In this 

study, we aimed to test for the degree of association between 5mC levels in the liver, whole 

blood, hippocampus, cortex, and whole brain in young male C57BL6J mice. Through this 

investigation we set out to measure the extent and nature of association between 5mC levels on 

Cyp2e1 and Sult1a1 in organs that exhibit high expression of those genes and whole blood. 
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4.3.  Method 

4.3.1. Sample 

All procedures were conducted according to the Institutional Animal Care and Use 

Committee (IACUC) protocol (AD10002047) approved by Virginia Commonwealth University. 

8 male C57BL/6J were purchased from the Jackson Laboratory. Animals were housed in groups 

of 4 and maintained in controlled conditions of 21°C and a 12-h light/dark cycle in microbe free 

environment. Animals were fed standard chow as needed. Animals were healthy and showed no 

signs of aggression or harm. Blood samples were obtained from the submandibular vein prior to 

sacrifice. Animals were sacrificed by decapitation without anesthesia, because this could 

interfere with epigenetic marks. The age of the animals was 5 months at the day of sacrifice. The 

hippocampus and the cortex were dissected from the brain and the remainder was kept as a 

whole and analyzed as “rest of brain”. The hippocampus, cortex, rest of brain, liver, and 100µL 

whole blood mixed with 1% EDTA were collected from each animal and flash frozen in liquid 

N2 and stored in -80°C until day of analysis. 

4.3.2. DNA extraction and bisulfite conversion 

 Genomic DNA (gDNA) was extracted using DNeasy Blood and Tissue kit (69506, 

Qiagen) according to manufacturer’s recommendations. Bisulfite conversion was performed on 

250 ng of gDNA using the EZ DNA methylation kit (D5001, Zymo Research). Single stranded 

DNA quantity and quality were measured by Nanodrop spectrophotometer.   

4.3.3. High-Resolution Melt (HRM) assays 

 HRM assays were performed as previously described for Cyp2e1 and Sult1a1 (Kronfol et 

al). Briefly, 20 ng of bisulfite converted DNA was amplified on Quantstudio 3 using MeltDoctor 
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reagents (Applied Biosystems), 0.2µM forward and 0.2µM reverse primer. For primer and 

product sequence refer to Table 2.2 and Table 3.2. Samples were amplified by qPCR as follows 

10min hold at 95ºC followed by 45 cycles of: 15sec at 95ºC, 60sec at 60ºC or 57ºC for Sult1a1 

or Cyp2e1 respectively, followed by a melt curve stage. The High-Resolution Melt assays 

measured the methylation of 7 and 1 CpG levels for Cyp2e1 and Sult1a1 regions respectively. 

The Net Temperature Shift values (Newman et al. 2012) of the all samples were interpolated on 

the standard curve to yield their 5mC percentage. A standard consisting of 0, 5, 10, 25, 50, 75, 

and 100% methylated mouse genomic DNA was included on each plate (EpigenDx). Both the 

standard and the test samples were run in triplicates.  

4.3.4. Statistics  

Pearson correlation tests were conducted in R version 3.6.1 (www.r-project.org) with 

α=0.05. 

 

 

 

 

 

 

 

 

 

 

 

http://www.r-project.org/
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4.4. Results 

 4.4.1. Cyp2e1 tissue-specific methylation and cross-tissue correlation 

The mean 5-MethylCytosine (5mc) levels of Cyp2e1 in descending order were as follows 

whole blood (93.5%), rest of brain after hippocampus and cortex were removed (66.3%), cortex 

(53.7%), hippocampus (43.5%), and liver (9.3%) (Figure 4.1 a). 5mC typically exerts a 

repressive influence on gene expression; therefore, we should expect the inverse of this pattern 

of descending order for expression in these tissues. This is broadly the case, with Cyp2e1 tissue-

dependent gene expression being highest in liver and lowest in blood, with the brain as an 

intermediate (Figure 4.2 a). Cyp2e1 5mC levels derived from whole blood were negatively 

correlated with those from the liver (r= -0.35, p=0.03) but not with 5mC levels of any of other 

tissues (p>0.05) (Figure 4.1 a). This indicates that an inverse relationship exists between Cyp2e1 

5mC levels in the liver and those of whole blood.  

4.4.2. Sult1a1 tissue-specific methylation and cross-tissue correlation 

The mean 5mC levels of Sult1a1 in descending order were as follows whole blood 

(75%), rest of brain regions (50.3%), liver (39.6%), hippocampus (23.3%), and cortex (22.4%) 

(Figure 4.1 b). This pattern, however, does not resemble that of Sult1a1 tissue-dependent gene 

expression indicating that additional factors regulate tissue-specific gene expression of Sult1a1 

than 5mC alone (Figure 4.2 b). 5mC levels derived from liver Sult1a1 were positively correlated 

with those in the rest of brain (r=0.71, p= 0.03), negatively with blood (r= -0.16, p=0.04), but not 

with the 5mC levels of the other brain regions tested (p>0.05) (Figure 4.1 b). In addition, blood 

5mC levels were negatively correlated with the rest of brain  (r= -0.35, p= 0.02) (Figure 4.1 b). 

Overall, these results indicate an inverse relationship exists between 5mC levels in the liver and 

whole blood for Sult1a1. However, the relationship between blood and liver seems weaker than 
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that of blood and brain. Therefore, blood Sult1a1 5mC measurements are most accurate 

predictors of that of brain regions, excluding the cortex and hippocampus, followed by the liver. 

 

Figure 4.1. Boxplot of DNA methylation percent (DNAm) across the liver, rest of brain, cortex, 

hippocampus, and whole blood arranged in descending order and Correlation matrix reporting 

Pearson correlation statistical test result (r) for either (a) Cyp2e1 (N=40, n=8) or (b) Sult1a1 

(N=40, n=8). White blank cells indicate non-significant association (p>0.05). Refer to Table 4.1 

and 4.2 for individual p-values of each Pearson correlation test of a given pair. Color gradient 
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indicates the direction of effect of the association with dark red representing the strongest 

positive association of 1 while dark blue representing the strongest negative association of -1. 

Only lower half of the plot is shown to prevent redundancy in reporting the results. 

 

 

 

Figure 4.2. Violin plot showing average expression of either (a) CYP2E1 or (b) SULT1A1 

across liver, whole blood, hippocampus, and cortex. Data obtained and plotted from GTEx 

Analysis Release V8 (dbGaP Accession phs000424.v8. p2). TPM: Transcripts Per Million. 

 



103 
 

 

 Blood Rest of Brain Cortex Hippocampus Liver 

Blood 0     

Rest of Brain 0.1027 0    

Cortex 0.5319 0.9417 0   

Hippocampus 0.1405 0.2067 0.2323 0  

Liver 0.0301 0.1374 0.9634 0.4397 0 

 

Table 4.1 Cyp2e1 P-values for each pair of tissue types 

 

 

 Blood Liver Hippocampus Cortex Rest of Brain 

Blood 0     

Liver 0.0423 0    

Hippocampus 0.2947 0.1223 0   

Cortex 0.9754 0.7008 0.1884 0  

Rest of Brain 0.0258 0.0399 0.0899 0.5042 0 

 

Table 4.2 Sult1a1 P-values for each pair of tissue types 

Significant p-values (p<0.05) are highlighted in red
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4.5. Discussion 

We previously determined the extent and direction of effect of age-related changes to 

5mC levels at Cyp2e1 in the liver (Kronfol et al 2020). Here, we expanded our understanding of 

tissue-specific variation to 5mC in not only peripheral tissue (whole blood), but also the different 

regions of the brain that have significant expression of Cyp2e1 and Sult1a1. Furthermore, we 

showed that variation in 5mC levels of Cyp2e1 and Sult1a1 in the liver are inversely reflected in 

5mC levels at these genes in whole blood. The size of the inverse correlations was relatively 

large (approximately -0.3). This work confirms a relationship between 5mC levels at these two 

genes in different tissues of the same subject and could pave the way for similar studies in 

humans.   

Considering our findings in terms with previous work, we found equivalent levels of 

5mC as previously reported in mouse liver (Kronfol et al 2020) and blood (Peters et al 2015). In 

addition, for Cyp2e1, our data suggest that only 5mC levels in the liver are correlated with 5mC 

levels in blood. 5mC from other specimens (DNA from buccal or nasal swab, etc) should be 

investigated for correlation with that of different brain regions. For Sult1a1, the data suggest 

blood-derived 5mC is more correlated with 5mC of the brain, excluding the hippocampus and 

the cortex, than with the liver. In addition, tissue-specific gene expression of Sult1a1 might be 

influenced by other factors than 5mC alone. Histone post translational modifications could also 

play a role, but these do not function well as biomarkers because they must be assayed from 

fixed chromatin, not DNA that is more readily available. 

A limitation of our study, in the context of the broader substantive focus of this 

dissertation, is that we did not study how cross-tissue 5mC correlations change with age. Given 

the negative correlation between 5mC levels in blood and liver on Cyp2e1 in young age, we can 
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predict that any age-related change may also be negatively correlated. Such that if we see age-

related hypermethylation in the liver, we will see hypomethylation in blood. In addition, we 

typically see regions that are constitutively methylated at young age, like blood 5mC in this case, 

become hypomethylated due to epigenetic drift and attrition with age (Issa 2014; Jones et al. 

2015; Zhu et al. 2018). Nonetheless, this study explicitly looked at the lower end of the mouse 

adulthood of an age of 5 months and the data should serve as a reference for future investigations 

of the relative baseline levels of 5mC in the brain, liver, and blood at older ages. 

Limitations of this study include the exclusion of female mice. However, we anticipate 

that this should be included in future, larger studies. Studies intended to examine a wider range 

of the adult life of mice could be performed, or similar studies could be attempted for humans if 

DNA from multiple tissues (e.g. blood, liver) can be obtained from the same individuals. This 

may be possible from some biobanks. Finally, more work is needed to establish whether the 

extent of the relationship between 5mC on drug metabolism genes in blood and liver can be 

clinically useful as a proxy to guide drug dosing decisions. 
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Chapter 5: Method optimization of Reduced Representation Bisulfite Sequencing (RRBS) 

for genome-wide analysis of mouse liver DNA methylation 

 

5.1. Abstract 

 

DNA methylation is the most widely studied epigenetic mark to date. Several methods 

have been proposed to aid the accurate measurement of DNA methylation in the context of 

Cytosine-Phosphate-Guanine (CpG) positions in mammalian genomes. However, few have been 

adopted and implemented for different applications as much as reduced representation bisulfite 

sequencing (RRBS). RRBS has been widely used to optimize DNA methylation detection from 

tissues and cells, yet few methodologies expand the sequencing library preparation portion of 

RRBS. We proposed to augment the RRBS protocol using a commercially available Adaptase 

library technology to create optimized library complexity intended for the detection of CpG 

DNA methylation from mouse liver tissue belonging to young (4 months) and old ages (32 

months). We report that this optimization produced high yields of RRBS libraries with consistent 

DNA fragment distributions between both ages and high proportions of shared number and 

positions of Cytosines assayed per age. We first start with the same procedure of column-based 

DNA extraction that is then enzymatically cut by Msp I, a methylation indifferent restriction 

enzyme. However, we perform DNA fragment size-selection of 100-220 bp followed by bisulfite 

conversion to this cut DNA before initiating the Adaptase library preparation protocol.  
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5.2.  Introduction 

 

Reduced Representation Bisulfite Sequencing (RRBS) is a robust method for detecting 

methylation and has been carried out by researchers for more than a decade and cited over 800 

times (Meissner et al. 2005). We propose to optimize the current technique by coupling it with 

the Adaptase advanced library amplification technology for the detection of CpG DNA 

methylation obtained from mouse liver tissue. This method optimization effort will serve as the 

primary assay for a larger aging epigenome-wide association study by our group. We focus on 

DNA methylation because it is the best-characterized epigenetic mark, both overall and in the 

context of aging. 

Our method of choice, RRBS, is robust and cost-effective, providing good coverage of 

CpGs in genes and regulatory regions (Gu et al. 2011). RRBS is not new, however, its 

application to aging and drug metabolism is highly innovative, because future findings may shed 

light on mechanisms of aging and open new avenues of research into novel biomarker strategies. 

We propose to use RRBS specifically for several reasons. Genome-wide DNA methylation 

analysis is typically carried out using microarrays or next generation sequencing (NGS) (Rakyan 

et al. 2011). Methylation arrays for humans are excellent, with the Illumina Infinium capable of 

measuring 5mC at ~850,000 loci. However, there are no equivalent arrays for mice. The best 

option we are aware of is the Mouse CpG Island Microarray from Agilent, which can assay 

~90,000 loci, much less than the human arrays. However, the extent of genome-wide coverage 

offered by arrays of any kind is poor relative to Next Generation Sequencing (NGS). The gold-

standard for genome-wide DNA methylation analysis is whole genome bisulfite sequencing 

(WGBS) (Lister et al. 2009; Rakyan et al. 2011). Here, the entire genome is subjected to bisulfite 

treatment and sequenced to high depth of coverage, providing single base resolution of 
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methylation. This makes it very attractive, but it is still too costly for the large numbers of 

samples required for association studies. RRBS, one the other hand, is an excellent compromise. 

Using enzymatic digestion at CpG sites followed by fragment size selection, the sequencing 

libraries are enriched for regions of the genome with high CpG density, which are often 

important regulatory regions. By trading full genome-wide coverage for high-resolution at these 

important loci, RRBS requires just ~20 million reads per sample, thereby enabling sufficient 

numbers to be assayed for an association study (Gu et al. 2011).  

We focused on 5-methylCytosine (5mC) instead of other DNA modifications for various 

reasons. Although other DNA modifications have been discovered, 5-hydroxymethylcytosine 

(5hmC) (Kriaucionis and Heintz 2009; Pastor et al. 2011) or 5-formylcytosine (5fC) (Bachman et 

al. 2015), the role of 5mC in cell differentiation and regulation is the best-characterized, meaning 

that 5mC results are more readily interpretable. Furthermore, the bisulfite sequencing approach 

(RRBS) (Meissner et al. 2005; Gu et al. 2011) that we intend to optimize works by converting 

unmethylated cytosines to uracils via sodium bisulfite treatment (which then convert to thymines 

in PCR) (Frommer et al. 1992).  

Previous epigenome-wide association studies of liver tissue have used RRBS methods 

that prepare sequencing libraries in a conventional way (Hahn et al. 2017; Stubbs et al. 2017). 

However, a recent systematic evaluation of library preparation methods by Li et al ((Zhou et al. 

2019) shows that the new Adaptase technology outperforms traditional library techniques. The 

authors conclude that libraries prepared by Adaptase achieve the highest proportion of CpGs 

assayed, most effective sequencing coverage, and lowest proportion of low-quality reads. No 

published reports utilize this new technology for liver RRBS. Therefore, we wanted to 

implement the Adaptase method in the RRBS protocol for liver DNA. We took this novel 
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method to see how it performs in test samples and obtain quality control information. Briefly, the 

Adaptase enzyme maximizes the recovery of low concentrations of single stranded DNA by 

ubiquitous ligation and priming by universal tags. This ensures successful subsequent 

amplification of all DNA fragments. Thus, preserving DNA information and library complexity.  

We subjected 600 ng of genomic DNA from mouse liver to DNA methylation analysis by 

RRBS using the commercially available Adaptase technology in the ACCEL NGS Methyl-Seq 

Kit (Swift Bioscience). This involved Msp I digestion of DNA, size-selection, bisulfite 

conversion, simultaneous tailing and ligation by Adaptase of all single stranded DNA fragments, 

3’extension, bottom strand ligation, and finally unique sequencing adapter ligation through PCR 

amplification to produce the final sequencing library (Figure 5.1). Library size distribution and 

integrity was validated using the high-sensitivity DNA chip on an Agilent BioAnalyzer. 

Multiplexed pair end 150bp sequencing was carried out on an Illumina HiSeq 4000 at the 

GeneWiz service provider sequencing facilities. We carried out NGS on 4 test samples. We 

aimed to exceed the recommended 20-25 million reads needed to obtain enough coverage depth 

for accurate methylation measurement.  
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Figure 5.1. Schematic representation of the seven steps of the optimized RRBS protocol. 
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5.3. Method 

5.3.1. Sample 

 Genomic DNA was obtained from 20 mg liver tissue of 4 months old sample and a 32 

months old sample using the AllPrep DNA/RNA kit (Qiagen). DNA quality and quantity were 

measured on Nanodrop spectrophotometer (ThermoFisher) and Qubit 4.0 (ThermoFisher) 

respectively. 

5.3.2. Reduced Representation Bisulfite Sequencing (RRBS) 

RRBS libraries were prepared as previously described (Gu et al. 2011) with slight 

modifications. 600 ng genomic DNA was cut enzymatically by Msp I (R0106T, New England 

Biolabs, Ipswich, MA) overnight (16hrs) at 37 °C, then purified the next day by QIAquick PCR 

purification kit (Qiagen). The purified Msp I digested DNA was run on a 2% ethidium bromide 

agarose gel adjacent to a paired lane of genomic DNA of the same sample to check for 

successful Msp I digest. Unsuccessful digests were repeated. The sample was size selected for 

fragments between 100-220 base pair (bp) long using the 2% ethidium-free agarose gel cassette 

(CEF2010, Sage Science, Beverly, MA) on a Pippin Prep machine. The Pippin Prep protocol was 

set to the “Range” collection mode and reference lane 3 was used for the provided marker E. 

Samples were collected from the elution module using 40µL of provided electrophoresis buffer. 

The size selected Msp I digested DNA was bisulfite converted by the EZ DNA methylation kit 

(D5001, Zymo Research, Irvine, CA) according to manufacturer’s recommendation. Briefly, 

samples were incubated at 37 °C for 15 min followed by overnight (16hrs) incubation with 

100µL of provided CT conversion reagent at 50 °C to allow the deamination process of 

unmethylated cytosines into uracils to occur. Samples were eluted in a final 10µL elution buffer. 

2 µL was used to measure the concentration of the samples using the ssDNA Qubit assay 
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(Q10212, ThermoFisher). Samples with concentration below detection range were repeated. 

Finally, about 3 ng of Msp I digested, size-selected, and bisulfite converted DNA was used as 

input for the ACCEL-NGS Methyl-Seq DNA Library kit (30024, Swift Bioscience) to create the 

RRBS libraries. 

Briefly, 8µL of sample was mixed with provided low EDTA TE buffer q.s 15µL and 

incubated at 95 °C for 2min and then placed on ice, spun down and added to 25µL of Adaptase 

reaction mixture. The Adaptase reaction mixture components are 11.5µL of low EDTA TE, 4 µL 

each of provided Buffer G1 and Reagent G2, 2.5 µL Reagent G3, and 1 µL each of Enzyme G4, 

5, and 6. The mixture was incubated at 37 °C for 15 min, then at 95 °C for 2 min. The samples 

were kept on ice followed by the addition of 44 µL of Extension Reaction mixture containing the 

following, 2 µL Reagent Y1, 42 µL Enzyme Y2. The samples were mixed and incubated at 98°C 

for 1 min, followed by 62 °C for 2 min and 65 °C for 5 min and a 4°C hold. The samples were 

then cleaned up from reaction components using 134 µL of SpriSelect beads (Beckman-Coulter). 

The samples were eluted in 15µL low EDTA TE and added to 15µL of the Ligation mixture. The 

Ligation mixture contained 3 µL Buffer B1, 10 µL Reagent B2, 2 µL Enzyme B3. The samples 

were incubated at 25 °C for 15min. The samples were cleaned up from reaction components with 

42 µL beads. The samples were eluted in 20 µL low EDTA TE buffer. 5 µL of unique index 

from Methyl-Seq Set A indexing kit was used per sample (36024, Swift Bioscience). Each of the 

young and old sample was run twice with different indices. 25 µL of PCR reaction mixture was 

added that contained the following 10 µL low EDTA TE buffer, 10 µL Buffer R1, 4 µL Reagent 

R2, 1 µL Enzyme R3 and allowed to amplify on Proflex thermal cycler (Applied Biosystems). 

PCR conditions were as follows 98 °C for 30 sec followed by 10 cycles of 98°C for 10sec, 60°C 

for 30sec, 68°C for 60sec, and a final hold at 4°C. PCR reaction was cleaned up twice with 50µL 
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of SpriSelect beads following manufacturer’s recommendation for libraries intended for 

sequencing on patterned flow cells such as HiSeq4000. Final libraries were eluted in 22µL low 

EDTA TE and 1µL was used to measure concentration using the DS DNA Qubit assay 

(ThermoFisher). 1µL was used to trace the size-distribution and average library size on the HS 

DNA chip on Agilent 2100 Bioanalyzer. Libraries were sequenced pair ended 150 bp on 

Illumina HiSeq4000 using 5% Phi-X spike-in (as positive control for successful sequencing run) 

by GeneWiz service provider. Each RRBS sample yielded a single Fastq file. The reverse reads 

were discarded.  

5.3.3. Data processing  

Sequencing reads (FASTQ files) were mapped to the mouse genome (mm10) and 

methylation calls are made using Bismark (Krueger and Andrews 2011), which is based on Bowtie 

(Langmead and Salzberg 2012). Bismark yielded for each RRBS sample a quality control file and 

one coverage file per sample with CpG position and methylation information, expressed as 

unmethylated and methylated reads at each CpG.  
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5.4  Results 

5.4.1. DNA extraction, MspI digestion, and fragment isolation 

DNA extraction from the mouse liver samples was successful with mean DNA 

concentration of 120 ng/µL with an average 260/280 value of 2.0 [1.93-2.06]. 600 ng of genomic 

DNA was enzymatically cut with MspI and was size selected for fragment between 100-220 bp, 

which gave the highest resulting yield of 0.5-1% w/w, which was within expected range 

(Meissner et al. 2005).  

5.4.2. RRBS library preparation and Quality control  

3ng was used as input for library preparation. Library amplification was successful with a 

final library concentration of 12.9 ng/µL for an average of 258 ng per sample. Average library 

size and molarity was 301 bp and 63.6 nMol respectively. Our RRBS library distribution shows a 

unique pattern of three distinct peaks similar to those previously reported. Three unique peaks at 

259, 282, and 316 bp were present in the BioAnalyzer trace of the RRBS libraries (Figure 5.2).  

Each peak represents high abundance of fragments of similar fragment sizes. This peak profile is 

a characteristic of enzymatically digest DNA fragment by MSP I.  
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Figure 5.2. Representative RRBS library trace. Showing peaks distinct to RRBS libraries at 259, 

282, 316 bp. X-axis is Arbitrary fluorescence units [FU], y-axis is fragment size in base pair 

[bp]. A peak at 35 and 10380 bp indicate the lower and upper ladder marks for the High 

sensitivity 2100 BioAnalyzer assay. 
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Age (months) Sample ID Index Index sequence 

4 4-11 replicate 1 I4 TGACCA(AT) 

4 4-11 replicate 2 I2 CGATGT(AT) 

32 32-15 replicate 1 I5 ACAGTG(AT) 

32 32-15 replicate 2 I16 CCGTCC(CG) 

 

Table 5.1. Summary table reporting chronological age (months) and ID of each sample, 

index and index sequence used. 

 

Age (months) Total number of reads 
Total number of  

Unique Alignments 

Proportion of 

Unique Alignments 

4m rep1 37,014,015 19,576,596 0.549 

4m rep2 54,032,672 27,520,231 0.509 

32m rep1 57,122,708 28,007,798 0.490 

32m rep2 41,196,659 16,898,265 0.410 

 

Table 5.2. Summary table reporting average total number of reads and total number of 

Unique Alignments per age (months) 

Age (months) 
Number of Cytosines 

assayed post-QC 

Cytosines in common 

across 2 replicates 

Proportion in common 

across 2 replicates 

4m rep1 1,048,263 
1,029,626 0.982 

4m rep2 1,171,890 

32m rep1 1,176,430 
1,026,686 0.978 

32m rep2 1,050,249 

 

Table 5.3. Summary table reporting number of unique cytosines captured per replicate 

after quality control (n reads per cytosine: 10 < C >300) 

 

5.4.3. Next Generation Sequencing (NGS) data 

Bismark was run according to default settings for RRBS fastq files (Krueger and 

Andrews 2011). Reference mouse genome used was mm10. Bismark output included a summary 

file and a methylation coverage file per sample. Total sequences analyzed for each replicate of 
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the 4 and 32 months samples respectively are shown in Table 5.2. Reads with unique alignments 

per sample ranged from 16.9M to 28M per sample/replicate (Table 5.2). The percentage of 

unique alignment to total sequence analyzed was approximately 50% for 3 of the 4 samples. 

These values improve upon previously reported results from traditional RRBS (Chatterjee et al. 

2012). while replicate 2 of the 32 month sample was somewhat lower at 41% and this made the 

average percentage alignment for the 32 month samples somewhat lower (Figure 5.3 a). Quality 

control (QC) of cytosine position coverage was set at the levels used by Stubbs et al. whereby 

sites with 10 or fewer reads and those with 300 or more reads are discarded. Despite replicate 2 

of the 32 month sample having least aligned reads (Table 5.2), the number of Cytosine positions 

with good data, i.e. 1,050,249 after QC, was still slightly more than for replicate 1 of the 4 month 

sample (Table 5.3). Overall, despite the number of uniquely aligned read numbers differing by a 

factor of 1.6 across the samples, the number of Cytosine positions passing QC was remarkably 

similar. Most importantly, replicates returned high quality quantitative information for almost the 

same sets of approximately 1 million Cytosine positions (98% the same) despite there being 

approximately 20 million CpGs in the mouse genome. This showed that the replicates were 

highly consistent in the regions of the genome they captured. 

The percentage 5mC (in CpG context) was 37.25 and 33.85 % for the 4 and 32 months 

respectively (Figure 5.3 b). The percentage of non CpG methylation detected was about less 

than 1.5 % for both ages. This data suggests that the sequencing of the RRBS libraries was 

successful with equivalent numbers of total cytosine detected for both ages. However, a clear 

decrease in the CpG methylation calls was present in the 32 months (old) age compared to the 4 

months (young) age. This effect direction mirrors that observed using ELISA global assay in 

previous section of this dissertation (see Chapter 2 Figure 2.6) 
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Figure 5.3. Bar plot of data from Bismark quality report showing (a) Percentage of total and 

unique alignments per age and (b) CpG methylation percent per age.  
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5.5. Discussion 

 We previously initiated a set of studies investigating liver specific methylation changes 

with age at candidate genes involved in phase I and II metabolism. Our studies were based on a 

gene selection approach identified from large epigenome-wide association studies in human 

blood. Indeed, these studies demonstrated, to the best of our knowledge, the first evidence of the 

influence of age-related epigenetics changes on the pharmacokinetics of drug metabolizing 

enzymes. However, several other genes from these human studies showed varying degree of 

evidence of change with age. An estimated one third of all genes involved in ADME processes 

show various levels of association with age (Dozmorov 2015). Therefore, optimization of a 

highly reproducible method for the genome-wide quantitation of epigenetic marks at regions of 

regulatory importance was warranted. We demonstrated in this study the feasibility of using 

RRBS to quantify 5mC from mouse liver DNA of old and young age that can be leveraged to 

larger epigenome-wide aging studies. This is an ongoing effort in our lab, where we will attempt 

to elucidate the degree of age-related variation of 5mC on genes controlling the attributes of 

mouse hepatic metabolism on a genome-wide basis.  
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Chapter 6: Overall Conclusions and Future Directions 

Through this work we have demonstrated a novel approach for answering an overarching 

question of what additional determinants of biological variability are affecting drug metabolism 

in advanced age. Our hypothesis that epigenetic mechanisms such as DNA methylation and 

histone modifications influence drug metabolism with age was warranted in order to set the stage 

for new technologies to overcome the limitations of current tools used in the clinic that guide 

drug dosing decisions in the older adult population. We aimed to elucidate the nature of the 

relationship between epigenetic dysregulation and the function of drug metabolizing enzymes in 

advanced age. In fact, we were able to define the continuity of the relationship from DNA to 

function in a unique set of experiments that, to the best of our knowledge, have not been pursued 

before. In addition, this work described the influence of epigenetics on genes encoding both 

phase I and II metabolizing enzymes. We show that both phases are under the influence of age-

related epigenetic change with varying degrees and through shared and distinctive mechanisms. 

For phase I, we showed that the Cyp2e1 gene is under the influence of age-related changes to 

5mC and histone acetylation (H3K9ac). The degree of effect on the downstream function of 

CYP2E1 is substantial for both epigenetic marks. On the other hand, while 5mC and H3K9ac 

levels at the Sult1a1 phase II metabolism gene changed with age, only H3K9ac was shown to 

influence expression.  

Epigenetic modifications have demonstrated clinical usefulness through successful 

examples, such as the use of DNA methylation as a clinical biomarker to guide drug selection. 

For example, MGMT methylation status is now being used clinically to guide treatment selection 

for glioma multiforme patients. We believe DNA methylation could be utilized in the clinic as a 

clinical biomarker to guide drug dosing decisions for older adults. Although H3K9ac was a 
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better predictor of function for both Cyp2e1 and Sult1a1, it is difficult to conceive of histone 

modifications being used as clinical biomarkers using the methods we employed here (chromatin 

immunoprecipitation). Alternative, novel methods that are more rapid and robust will be needed 

before histone acetylation can see widespread use as a clinical biomarker.  

DNA methylation is easy to obtain from peripheral tissue such as blood. Here, we 

demonstrated correlations between levels of 5mC in the liver for Cyp2e1 and Sult1a1 and those 

in whole blood. These relationships suggest that blood-based biomarkers may reflect hepatic 

5mC levels and these may be useful to guide drug dosing in the future. However, significant 

additional work in humans will be necessary to demonstrate the feasibility of this innovation.  

The work as presented here serves as a first step towards future research aimed at 

evaluating the utility of epigenetics in the clinic. Our group is in the process of pursuing a larger 

ageing study that examines the degree of genome-wide 5mC change with age in a mouse model. 

We believe that similar efforts might be underway and along with ours will serve the aging 

community to alleviate one of the major problems currently facing the older adult population, 

adverse events in pharmacological therapy.
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