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Parkinsonian rigidity is caused by the inability of the muscles to relax and extend properly, due to 

reduced dopamine levels and often begins on one side of the body before spreading contralaterally. The 

current standard for determining joint rigidity in a clinical setting is a test completed by the clinician 

based on the feel of the relaxed wrist and elbow joints as they are passively flexed and extended and a 

series of ordinal rating scales, the Movement Disorder Society’s – Unified Parkinson’s Disease Rating 

Scale (MDS-UPDRS), Hoehn and Yahr Scale (H&Y), and Parkinson’s Disease Questionnaire-39 (PDQ-

39). These methods are used to determine the severity of the patient’s disease and the impact it has on 

their quality of life, but they lack objectivity and do not differentiate between individual symptoms. We 

present a torque-based device to objectively quantify rigidity in a PD patient’s arm. The device employs a 

servo motor-shaft assembly, connected to a rigid forearm sling, and controlled by a computer to passively 

flex and extend the elbow joint laterally. Two individuals were used for preliminary results in lieu of the 

patient restrictions due to COVID-19. A sine, ramp, and random (sine-like) stimuli were used on each 

person during a relaxed phase, and a co-contracted or clenched-fist phase. A torque transducer and 

potentiometer measured the torque and position with respect to time while angle of rotation, acceleration, 



ix 

and velocity of the shaft were monitored simultaneously to ensure safety. Results showed that the 

magnitude of rigidity was greater during co-contraction than during relaxation indicating that rigidity can 

be objectively measured using this device. Quantifying joint rigidity will allow for a better understanding 

of the mechanisms of rigidity in Parkinson’s and other movement disorders. 
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 Introduction 

Parkinson’s Disease (PD) is a neurodegenerative condition, with no cure, brought on by the 

selective death of dopaminergic neurons in the substantia nigra region of the midbrain. PD occurs most 

often in those over the age of 50, with the average age of onset at 60, and affects more than 10 million 

individuals worldwide and more than one million individuals in the United States making it the second 

most prevalent neurodegenerative disease in the U.S. behind Alzheimer’s Disease (Elkouzi, n.d.). In 

addition to a few environmental factors, some genetic factors have been identified, though they are 

extremely rare occurring in only 5-10% of patients (Tysnes & Storstein, 2017). The presence of Lewy 

bodies made up of clumping alpha-synuclein proteins in the substantia nigra is also considered a possible 

link to PD but the significance of these Lewy bodies and their increased presence in the substantia nigra is 

not well understood (Tysnes & Storstein, 2017). 

 

Symptoms of Parkinson’s Disease 

Despite a lack of understanding concerning the cause of 

PD itself, significant research has been conducted to determine the 

cause of PDs hallmark symptoms. The dopaminergic neurons in 

the substantia nigra are responsible for secreting dopamine, a 

neurotransmitter vital to many pathways in the brain including 

those involved in motor control, motivation, and reward (Perry, 

2015). During motor control, nigral neurons use dopamine to 

interact with movement regulating neurons in the basal ganglia 

as part of the biochemical sequence that allows for fine motor control (Triarhou, 2000-2013). Without this 

communication between the substantia nigra and basal ganglia, movements would be delayed and 

uncoordinated (Perry, 2015). As a result of the substantial decrease in dopamine levels, caused by 

Figure 1: Decreased dopaminergic neurons 

cause a lack of pigmentation in the brain 
(https://medlineplus.gov/ency/imagepages/19515.htm) 
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dopaminergic neuronal cell death, a decrease in this essential biochemical communication occurs leading 

to the presence of the corresponding symptoms.  

PD symptoms are divided into two main categories, motor symptoms including, bradykinesia, 

tremor, rigidity, dystonia, dyskinesia, freezing, masked face, shuffling gait, postural instability, and soft 

speech; and non-motor symptoms including, constipation, excessive sweating, fatigue, hallucinations and 

delusions, mood disorders such as depression and anxiety, sleep disorders, and vision problems all of 

which can worsen as time progresses (Spears, (n.d.) a ; Spears, (n.d.) b). As the disease state progresses 

and the presenting symptoms worsen, the increased disability and complications that arise often 

deteriorate the patient’s quality of life (QoL) (Bhidayasiri & Martinez-Martin, 2017). 

 

Symptom Presentation 

 Parkinson’s Disease is known as an individual condition, meaning symptom presentation varies 

from one patient to the next and presented symptoms appear and evolve at different rates for each patient 

as well, although most individuals don’t begin noticing symptoms until years after they develop PD 

(Barmore, n.d.). There is evidence that the initiation of dopaminergic neurodegeneration occurs decades 

before the manifestation of any motor symptoms, presenting non-motor prodromal symptoms that alone 

would not necessarily point to PD, such as constipation and REM-Sleep Behavior Disorder (RBD), 

effectively evading diagnosis based on current diagnostic standards (Mantri & Morley, 2018). This latent 

and early stage of PD has been named Prodromal-PD and is defined by Mantri and Morley (2018) as “the 

stage at which individuals do not fulfill diagnostic criteria for PD…but do exhibit signs and symptoms 

that indicate a higher than average risk of developing motor symptoms and a diagnosis of PD in the 

future”.  
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Parkinsonian Rigidity 

Though each patient will experience many non-motor and 

motor symptoms, the most associated and diagnostically relevant 

symptoms caused by the death of these neuronal cells, are movement 

related, including tremor, rigidity, and bradykinesia (Guttman & 

Furukawa, 2003). Joint rigidity, one of the key indicators, results from 

the inability of the muscles to relax and extend properly due to an 

increase in passive stiffness of the affected muscles brought on by reduced levels of dopamine (Cano-de-

la-Cuerda et al., 2011). An increase in passive muscle stiffness can cause two different types of rigidity, 

lead-pipe rigidity and cogwheel rigidity (Endo et al., 2009). Lead-pipe rigidity is detected as a constant 

force and defined as uniform resistance, while cog-wheel rigidity is detected as an intermittent force and 

defined as on-and-off resistance shown in Figure 2 (Chunbao Wang et al., 2014).  Rigidity, regardless of 

the type, often begins in one arm and gradually spreads unilaterally to the leg, then through the trunk and 

eventually to the other side of the body and is not always present during passive movement but can be 

brought on by movement on the contralateral side of the patient such as opening and closing the patient’s 

hand, known as Froment’s Maneuver (Association, E. P. D., 2016; Guttman & Furukawa, 2003).  

 

Clinical Standard for Rigidity Assessment 

The current standard for assessing rigidity in a clinical setting is a subjective test completed by 

the clinician on the arm of the patient. This exam relies on the clinician to determine whether the level of 

rigidity has increased based on the feel of the relaxed wrist and elbow joints as they perform passive 

flexion and extension (Perera et al., 2019). Rating the perceived degree of rigidity during this exam and 

comparing it to prior visits to determine if the perceived degree of rigidity has changed does not allow for 

an accurate measure of rigidity, which can be made worse if the patient is experiencing tremors or cog-

wheel rigidity at the time of the exam, and lacks repeatability due to uncontrollable external factors. Due 

to the varying rates at which rigidity develops from one patient to the next and the lack of reproducibility 

Figure 2: Types of Rigidity (Wang et 

al., 2014) 
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of the diagnostic exam, the level of rigidity and progression of this critical PD symptom cannot be 

quantitatively measured. The presence of quantitative data regarding progression of rigidity could lead to 

more customized drug treatment options and an eventual increase in Health-Related Quality of Life 

(HRQoL). 

 

Diagnosing PD 

Because of the variability and unpredictability of its symptoms and the overlap of symptoms with 

other neurodegenerative disorders, a phenomenon described by the term Parkinsonism, PD can be 

difficult to diagnose and treat effectively. In addition to the erratic nature of symptom presentation and 

progression, the only definitive diagnostic test is one implemented post mortem and there are currently no 

objective clinical measures of disease progression (Guttman & Furukawa, 2003; Merello & Antonini, 

2019; Bhidayasiri, & Martinez-Martin, 2017). Because of this, much of the past PD research has been 

dedicated to creating, testing, and improving subjective measures, while proposing and testing objective 

measures for diagnosing and evaluating disease progression.  

 

Clinical Standard for Diagnosis 

The current clinical standard for diagnosing and determining approximate disease progression is a 

combination of three parts, including: a complete neurological evaluation, in which the neurologist will 

assess affected motor controls watching for any issues with gait, balance, and muscle tone; an in-depth 

review of the patient’s medical history, including any prodromal symptoms; and subjective disease 

surveys completed by the patient and clinician (Ford-Martin & Alic, 2005; Holden et al., 2018; 

Downward, 2017). In an attempt to mimic the diagnostic process of expert clinicians and develop a 

standard for those who have less experience, the Movement Disorder Society (MDS), created a diagnostic 

tool aptly named the Movement Disorder Society Clinical Diagnostic Criteria for Parkinson’s Disease 

(MDS-PD Criteria). This guide was designed for use in research, but upon further testing, the MDS 

observed high sensitivity and specificity of the criteria when compared with the current gold standard – 
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diagnosis by an expert. This confirmed the diagnostic capability labeling the MDS-PD Criteria as a valid 

clinical diagnostic tool (Postuma et al., 2018).  

 

MDS-PD Diagnostic Criteria 

The MDS-PD Criteria 

explains that after motor Parkinsonism 

existence is determined, with help 

from the MDS-UPDRS and defined by 

the presence of bradykinesia (the core 

feature of clinical PD) accompanied 

by either rigidity, resting tremor or 

both, a PD diagnosis can be 

determined based on three categories of diagnostic features. Feature 1 – absolute exclusion criteria (a 

negative feature that argues against PD diagnosis) is meant to rule out PD from other parkinsonisms; 

feature 2 – red flags (another negative feature which must be offset by supportive criteria to allow 

diagnosis), and feature 3 – supportive criteria (a positive feature that increase confidence of PD diagnosis) 

(Tysnes & Storstein, 2017; Postuma & Berg, 2016). From these features there are two levels of diagnostic 

certainty: clinically established PD and clinically probable PD. The requirements for the diagnosis of each 

are shown in Table 1. Clinically established PD maximizes specificity, providing a reliable diagnosis 

when the test is positive but not necessarily ruling out the disease when the test is negative. Whereas, 

clinically probable PD balances specificity and sensitivity, considering more of the false negatives that 

high levels of specificity neglect (Postuma et al., 2015).  

 

Subjective Rating Scales  

After a diagnosis is made, tests are conducted to determine approximate disease progression. 

Rigidity along with other PD symptoms are evaluated subjectively in three prominent rating scales, the 

MDS Clinical Diagnostic Criteria for PD 

(Postuma et al., 2015)   

Type of diagnosis 

Clinically Established PD Clinically Probable PD 

1. Absence of absolute 

exclusion criteria 

1. Absence of absolute exclusion 

criteria 

2. At least two supportive 

criteria 

2. Presence of red flags 

counterbalanced by supportive 

criteria. If 1 red flag is present, there 

must also be 1 supportive criterion. 

No more than 2 red flags are allowed 

in this category. 
3. No red flags 

 

Table 1: MDS Clinical Diagnostic Criteria for Parkinson’s Disease 

(Postuma et al., 2015) 
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Movement Disorder Society’s – Unified Parkinson’s Disease Rating Scale (MDS-UPDRS), the Hoehn 

and Yahr Scale (H&Y), and the Parkinson’s Disease Questionnaire-39 (PDQ-39) (Ford-Martin & Alic, 

2005; Holden et al., 2018; Downward, 2017; Bhidayasiri, & Martinez-Martin, 2017).  

 

Movement Disorder Society’s – Unified Parkinson’s Disease Rating Scale 

The MDS-UPDRS is a comprehensive ordinal rating scale created in the 1980s and revised by the 

MDS in 2008 to reflect research and advances made since its creation (Goetz et al., 2008). The goal of 

this rating scale was to provide an easy to use, comprehensive rating scale that would work for all PD 

patients regardless of disease severity, current medications, or age. Proven through clinimetric testing to 

be a reliable and valid tool for all stages of PD diagnosis and progression, the MDS-UPDRS has four 

distinct parts, encompassing both motor and non-motor symptoms of PD. The four parts are Non-Motor 

and Motor Experiences of Daily Living (NM-EDL, M-EDL), Motor Examination, and Motor 

Complications. Each question has 5 possible answers relating to frequency or intensity, ranging from 0 

(normal) to 4 (severe) (Goetz et al., 2008). The MDS-UPDRS is administered by a combination of a 

clinician and the patient or caregiver, if necessary, depending on the section.  

 

Hoehn and Yahr Scale 

The H&Y scale is used to characterize progression of motor symptoms on a scale of 1 – 5 but 

does not account for non-motor symptoms of PD (Barmore, n.d.). The H&Y scale, administered 

completely by the rater, consists of five stages used to demonstrate the overall disease progression as 

defined by the patient’s approximate level of disability (Goetz et al., 2008; Bhidayasiri, & Martinez-

Martin, 2017). Stage I of H&Y is considered early disease in which the patient experiences mild, 

unilateral PD symptoms with minimal to no effect on function; Stage II is still considered early disease 

like Stage I but includes bilateral symptoms and possibility of experiencing problems with speech, 

rigidity, tremor, and bradykinesia; Stage III, considered mid-stage, is characterized by postural instability, 

with falls becoming increasingly common, bradykinesia, and the ability of the patient to remain fully 
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independent; Stage IV progression is severe and patients are noticeably incapacitated and unable to live 

independently, needing some assistance in daily activities; Stage V describes a patient who is wheelchair 

or bedridden, needing 24-hour assistance, and possibly experiencing hallucinations (Downward, 2017). 

The ease of use and clear result of the H&Y have caused it to become a commonly adopted metric for 

describing a patient’s PD stage throughout the progression of the disease (Bhidayasiri, & Martinez-

Martin, 2017); the patient’s H&Y rating is even included as a question in part three of the MDS-UPDRS 

(Goetz et al., 2008).  

 

Parksinson’s Disease Questionnaire - 39 

The third and final subjective measure, the PDQ-39, evaluates the effects that PD has on the 

patient’s Health-Related Quality of Life (HRQoL). This test is made up of 39 questions, completed by the 

patient with multiple choice answers, regarding frequency of symptom manifestation, ranging from 0 

(never) to 4 (always). As a measure of HRQoL and well-being, the PDQ-39 focuses on the impact that PD 

has on the mental state, emotional state and the level of social functioning of the patient (Cano-de-la-

Cuerda et al., 2011; Health Related Quality of Life and Well-Being, 2010).  

 

These subjective measurements have been generally successful at diagnosing PD and determining 

approximate disease severity because de novo diagnosis of PD and qualitative measurement of disease 

progression are both based on symptoms that can be subjectively assessed by the patient and the clinician 

(Guttman & Furukawa, 2003). 

 

Objectives 

While the subjective scaling systems currently in use have proved their efficacy in determining 

overall disease progression of PD and will remain valuable assets in research and diagnostic efforts, it is 

well known that quantification of disease state, including progression and severity of individual 

symptoms like rigidity, is a necessity when it comes to PD monitoring and research. In these rating scales 
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the information provided by the patient and the clinician is subjective and can change based on various 

human and environmental factors present on the day the survey is administered (Guttman & Furukawa, 

2003). However, studies show objective quantification of rigidity can be achieved by determining the 

amount of torque needed to change passive joint position during externally imposed movement (Xia et al., 

2010). PD’s variability necessitates quantifiable objective measures in order to obtain unbiased results, 

detect subtle changes in symptom progression, and simplify patient participation in future studies to better 

understand the mechanisms of rigidity in parkinsonian disorders (Bhidayasiri & Martinez-Martin, 2017). 

The goals of this study are to develop a torque-based device, using a servo motor, that will objectively 

measure rigidity in the arm of patients suffering from PD and other movement disorders, to incorporate 

necessary hardware-based safety features for safe operation and characterize the device to determine its 

suitability for use in future research endeavors.  

 

 Previous Attempts 

Motivation 

Parkinson’s Disease progression, currently evaluated by subjective clinical scales, is monitored 

and reported in terms of disease progression as a whole and not individual symptom progression. As a 

result, inter-patient variability of symptom manifestation and progression is a known drawback of 

diagnosing and tracking PD. As such, objectively quantifying rigidity, one of the cardinal features of PD, 

would be useful for evaluating symptom progression, ultimately increasing treatment efficacy and 

resulting in a better QoL. Rating scales, as the backbone of clinical standard for diagnosis, are limited by 

their subjectivity. Since the mid-1900s there have been many attempts at objectively quantifying rigidity 

but limitations, including lack of correlation with current rating scales and small sample sizes, have 

prompted the absence of a clinically accepted standard (Prochazka et al., 1997). Recent research on the 

quantification of rigidity has been focused on producing mechanical devices, equipped with sensors to 

measure torque, angular velocity, and other variables during passive movement, for objective 
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quantification. These mechanical devices can be delineated into two categories, rater-driven sensor 

devices, and power-driven sensor devices which incorporate a drive such as a servo motor.  

 

Rater-driven Sensor Devices 

Before 1997, many methods were attempted using sensors to quantify rigidity however, 

Prochazka et al. noticed that there were major differences between these methods and the standard clinical 

exam. In their 1997 study, the clinical exam was completed on subjects while equipped with a force 

sensing cuff and transducers to measure force and displacement gauge to measure changing position. 

Torque (or limb impedance) was then calculated by multiplying the distance between the point of 

application of the sensor and the elbow joint by the force. This study was completed on 14 patients with 

mild to severe PD and the results were compared to the UPDRS at the time of the study. The subjective 

rating of rigidity was determined for each patient by the clinician before the tests were performed a 

second time with the cuff. The authors found that rigidity varied greatly during the clinical exams 

monitored by the cuff but that during the standard clinical exam, a single number associated with rigidity 

is given. As a result, this did not allow for accurate comparison between the clinical exam occurring with 

and without the cuff. To avoid this limitation, during the exam with no cuff, the rater continually 

verbalized their estimated rigidity rating. In this study there were observed differences in the speed and 

range at which raters performed their tests but no statistical difference in the mean impedance between 

raters was found, indicating that rater variability was not an issue. However, this study also examined 

rigidity in the patient when on and off medications but found that while the calculated torque values were 

different, the values perceived by the clinician were not, suggesting that the score of the rater was not 

always a reliable assessment of rigidity. Because of the exclusion of the many influences of limb rigidity 

in engineering tests, not only did this study conclude that “narrowing down” of test conditions using this 

or other devices is contradictory to the clinical exam but also concluded that a simple device such as this 

would allow for increased inter-rater reliability.  



10 

In a similar study by Takayuki et al., in 2009, torque was calculated after measuring force with a 

series of force sensors and a gyroscope, and distance from the elbow joint during passive flexion and 

extension movements; however, EMG data was also collected, to analyze any myoelectric features during 

passive movement of the limb. This study had a sample size of 51 patients, consisting of 24 healthy older 

adults and 27 PD patients with rigidity ranging from mild to moderate and rated each patient using the 

MDS-UPDRS before any testing was completed. A hold-ramp-hold-ramp-hold movement was 

implemented starting at maximum flexion to determine muscle tone during flexion and extension. The 

authors found that rigidity values based on the calculations of torque did not correlate well to the UPDRS 

because the muscular dynamics of rigidity differ between flexion and extension, further demonstrating the 

limitations of the current clinical procedure. As a result, the authors defined rigidity as a sum of an 

“elastic” component and average force which they termed “difference of bias” and noted that the most 

studies do not differentiate between flexion and extension scores during testing.  

Ultimately the authors in both studies noted that further study was needed to determine how to 

mimic current clinical standard exams in a controlled environment while monitoring all test parameters 

including muscle tone during passive flexion and passive extension.  

 

Power-driven Sensor Devices 

Each of these studies considered subjective testing an insufficient tool to monitor changes in 

rigidity and considered the quantification of rigidity important for determining and increasing efficacy of 

drug treatment methods. The basis of the device used to measure rigidity by Relja, Petravic, and Kolaj 

(1996)  is an electromotor that drives an “arm board” equipped with a torque transducer and a 

potentiometer used to simultaneously measuring torque and position, with a constant velocity, through 

phases of passive flexion and extension. “Net work” was calculated as a measurement of rigidity and 

represented by the area of a hysteresis diagram. Each of 127 subjects, made up of 24 PD patients and 103 

controls, was evaluated using the UPDRS before the trial. The authors also measured rigidity with respect 

to activation of the contralateral limb known as activated rigidity when patients were on and off 
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medications to determine differences before and after treatment. The study was deemed repeatable, and 

clinically reliable when compared to subjective ratings of rigidity. In spite of this, the small sample size of 

PD patients and comparatively limited disease knowledge were the main limitations of the study.  

In a 2002 study by Powell et al., the authors sought to determine the effects of velocity and 

amplitude on rigidity during passive movement and to determine the effects of dopaminergic medications 

on rigidity. The device used in this study consisted of a servo motor and shaft attached to the end of a 

manipulandum. Torque and position were measured about the wrist during ramp and hold trajectory for 

four different combinations of velocity and angle of displacement. Surface EMG was also measured on 

the wrist and finger flexor muscles for each patient. The initial measurement occurred when patients were 

off medication for at least 12 hours and then tests were completed again after their normal dose was 

administered. Hysteresis curves of torque with respect to joint position were analyzed along with EMG 

data. The authors found that the greater the angle of displacement, the greater the value of rigidity, 

determining that rigidity is dependent on amplitude though the this contradicts the clinical description of 

rigidity as constant passive stiffness. These authors also found that rigidity did not significantly decrease 

due to dopaminergic medication however a major limitation is the single orientation in which this study 

measured rigidity compared to the three-dimensional movements assessed in clinical exams.  

Together, these studies explore only a few of the causes associated with and tests quantifying and 

treating parkinsonian rigidity. Small sample sizes, a lack of correlation with clinical standards and clinical 

testing procedures, and lack of complete joint modeling are just a few of the hurdles necessary to 

overcome to objectively quantify joint rigidity.   

A third study (Sin et al., 2019), used a robotic device to improve repeatability, and inter-rater 

reliability while measuring spasticity in stroke patients during stretch reflex measurements. While 

spasticity is not the same as rigidity, the device design is relevant and is composed of a torque sensor, a 

processor, an encoder, a motor, a controller and a forearm manipulandum style arm sling. The arm sling 

uses linear sliders to perfectly adjust the length from the axis of rotation to the manipulandum handle and 

position of restraints to fit each individual patient and to ensure that the elbow is aligned about the axis of 
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rotation. In this study, the adjustable arm sling allows for repeatability in testing and the controller allows 

for inter-rater reliability. Adopting the concept of creating an adjustable arm sling would allow for 

increased inter-rater reliability and thus repeatability while measuring torque.  

 

 Methods 

Device Setup 

To quantify rigidity, a torque-based device was designed to be used on a patient’s arm. The 

device consists of three key inter-connected components (Figure 3). The first, called the motor assembly, 

utilizes a 20KΩ, heavy-duty, multi-turn, precision potentiometer (Bourns, 3540S-1-203L) to measure 

shaft position of the servo motor (Kollmorgen, JR16M4CH/ENC), a transmission-shaft assembly, 

equipped with a torque transducer (Sensotec, QSFK-9/J301-01) to measure torque, two photologic slotted 

optical switches (TT Electronics, OPB991) to limit the angle of rotation, and a rigid forearm sling. The 

connections of this assembly run through an emergency power shut-off junction box for organization of 

electrical connections and added safety. The second component, called the controller/power assembly 

contains data processing components and the power supply components of the device including a 

transducer power supply (Transducer Techniques, Model PSM-R), a 12000 µF electrolytic capacitor 

Figure 3: Device Setup (not pictured: computer, D/A, and A/D converters) 
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(Vishay Sprague Powerlytic™, 36DY), Variac transformer (Staco, 1010B), servo amplifier/controller 

(Advanced Motion Controls, 25A20), 12V DC power supply, and safety circuit board. The two 

compartments are connected via a DB-15 connecter cable in order to provide the device’s input and 

output signals, and a locking power cable to power the motor. The third assembly consists of the external 

data processing equipment including an analog-to-digital (A/D) and a digital-to-analog (D/A) converter, a 

computer, and an oscilloscope (Agilent Technologies, DSO-X 2024A) used for viewing real-time data. 

An isolation transformer (Toroid, ISB-060A) is used to avoid ground loops and isolate the common 

ground for the device and power ground from the outlet. A full list of parts can be found in Appendix 1. 

The connections between and within these components can be seen in Figure 4 and Figure 5. Using an 

MS DOS computer platform, stimulus signals are sent through the controller/power assembly to the motor 

while position and torque data are sent through the controller/power assembly to the computer 

Figure 5: Device Block Diagram 

Figure 4: Isolation Transformer 

Block Diagram 
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simultaneously. Working together, these three components flex and extend the elbow joint to mimic the 

movements during rigidity testing in the current standard clinical setting and the combination of position 

and torque data are used as a measurement of rigidity with respect to time.  

 

Features of the Motor Assembly  

The motor assembly, shown in Figure 6, consists of several 

components that drive the motor and track torque and position during 

each experiment. The servo motor is the basis of the assembly and 

allows for precise control of rotation. Attached to one end of the motor is 

the multi-turn potentiometer, which monitors lateral position of the 

patient’s arm. The output of the potentiometer is an analog signal 

directly correlated to position with respect to time. Attached to the 

opposite end of the motor is the transmission-shaft assembly, which can 

rotate 90° to allow for measurement of torque about the horizontal or 

vertical axis. Two optical switches are affixed at the base of the shaft on the 

transmission to a 3D printed mount that allows for different heights of the 

two sensors. These sensors work in conjunction with two 3D printed shaft 

collars with attached brass vanes. The printed shaft collars contain small set 

screws that allow for positional adjustments of the collars and vanes. The 

maneuverability of the shaft collars allows for restriction of the angle of rotation of the 

rigid arm sling as a safety precaution (more information is included in Hardware Safety 

Features). The torque transducer is located towards the top of the shaft to measure torque as the shaft 

rotates and the rigid forearm sling is affixed at the top of the shaft, with its axis of rotation about the shaft. 

The output voltages of the potentiometer, torque transducer, and two optical switches and power inputs 

for the torque transducer, optical switches, potentiometer and servo motor are all fed through a plastic 

Figure 7: 3D model of the 

photologic optical switch mount 

Figure 8: 3D 

model of a shaft 

collar 

Figure 6: Motor Assembly (not 

pictured: mounted optical switches, 

DB-15 inter-assembly connector) 
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junction box equipped with a red emergency power shut-off button which when pressed disconnects 

power to the motor and must be twisted in order to be released.  

 

Controller/Power Assembly 

The controller/power assembly contains data processing 

components and the power supply components of the device 

including a transducer power supply, 12000µF electrolytic capacitor, 

Variac transformer, servo amplifier/controller, 12VDC power supply, 

and safety circuit board. The transducer power supply is a bipolar 

supply that powers only the torque transducer. There is also an 

isolated 12VDC power supply that is used to power the TTL safety 

circuit board. Separate power supplies are needed because the safety 

circuit and torque transducer together exceed the current limits of the 

transducer power supply. However, it is important to note that all 

ground signals within this device are common, including the chassis, 

to avoid ground loops. The Variac transformer, motor supply circuit, 

and transducer power supply provide power to the servo motor and 

torque transducer. The servo amplifier/controller is designed to drive 

DC motor with precision and is one of the most important components 

because it controls the motor. Using a negative feedback loop the 

controller analyzes the position of the motor with respect to the 

position of the input stimulus. If there is any difference between the two signals >~100mV, the servo 

motor, driven by the shaft position difference with the motor, produces a step change in position to 

minimize the error. These movements are intense, jolting movements and while not unsafe, they can be 

uncomfortable. For this reason, the position of the sling should be adjusted so that the potentiometer 

signal and stimulus signal are equal before the inhibit is reset. The output of the safety circuit is also 

Figure 9: Controller/Power Assembly 

front view 

Figure 10: Controller/Power Assembly 

top view 

Figure 11: Controller/Power Assembly 

rear view 
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monitored by the controller using the inhibit feature. This feature is used to implement limits that when 

triggered will shut down the motor by pulling the inhibit signal to ground. Under normal and safe 

conditions, the output of the safety circuit to the inhibit pin is 5V. In accordance with the safety circuit, 

when unsafe conditions are met, the output of the circuit drops to 0V and stays there until the device is the 

device is reset, causing the controllers inhibit to trigger.  

 

Hardware Safety Features 

To ensure the safety of any participant, a transistor-transistor logic (TTL) based digital safety 

circuit was designed using integrated circuits to interact with the inhibit feature on the controller. All 

connections were installed onto a circuit board using a combination of solder and wire wrapping, a 

technique that produces connections more durable than those made strictly with solder and allows for 

more simple modifications. When the inhibit signal on the controller is pulled to ground (0 volts), the 

controller cuts power to the motor. To make this device safe, we incorporated three limits into the circuit 

design, position, velocity and torque.  

 

Figure 12: Safety circuit board (front view) 
Figure 13: Safety circuit board (back view and 

wire wrap connections) 
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Position Limit 

The position limit (Figure 15) 

restricts shaft angle of rotation and includes 

two photologic slotted optical switches 

mounted at the base of the shaft and two 

shaft collars, with brass vanes attached, 

tightened onto the shaft using set screws. 

During testing, the shaft collars were set to 

ensure that the rigid arm sling would not 

rotate more than 90° but can be adjusted to desired angle. As the shaft rotates, the vanes of brass rotate 

with the shaft. When either vane passes through the slot of an optical switch, interrupting the signal, the 

output of that optical switch drops to 0 volts(V), known as logical LOW. A hex inverter (Texas 

Instruments, SN74LS04N) was used to invert the logic signal of the optical switches so they would match 

Figure 14: Logic Circuit Schematic 

Figure 15: Visual representation of the position limit 

viewed from above transected shaft. 
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the logic of the quad differential comparator (Texas Instruments, LM339) which goes to 5V, or logical 

HIGH, upon exceeding its limit.  

 

Torque and Velocity Limits 

Three comparators on a quad comparator chip were used to evaluate limits set for velocity and 

torque. Position data from the potentiometer was differentiated using a High Pass Filter (HPF) (Figure 16) 

to attain velocity and amplified to counteract the effects of the HPF on the signal. These values of 

velocity were compared to reference values using the comparator. The torque values from the torque 

transducer were also passed through the comparator. Because the potentiometer is bi-directional, the 

values received from the potentiometer are both positive and negative and must be analyzed as such. The 

TTL logic of the comparator states that if input voltage (Vin)>reference voltage (Vref) the output is a 

logical 1 or 5V (HIGH), whereas if Vin<Vref the comparator output is LOW. Standard comparator logic 

does not work for negative values, so we created a window comparator that allows for the comparator to 

judge based on a reference window instead of a single reference value. If the source signal is between the 

two reference values (within the window) the output is LOW, but if the source signal falls outside of the 

reference signal the comparator output goes HIGH.  

 

 

 

Figure 16: High Pass Filter Schematic 
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Position, Torque, and Velocity Create the Inhibit Signal 

Next, all three outputs of the comparator are sent to a dual 5-input positive-NOR gate (Texas 

Instruments, SN74F260) which evaluates inputs based on the NOR logic (Figure 17) and combines them 

into one output; if any input is high the output of the NOR is LOW. The inverted signal from the optical 

switches is also sent to the NOR gate so that if any one of these devices is tripped (HIGH), the output of 

the NOR is LOW. The signal output of the NOR matches with the logic of the inhibit pin but a latching 

mechanism was needed in order to make sure the device 

turned off and stays off instead of turning back on as soon 

as the error is resolved. To achieve this, a quadruple set-

reset (S-R) latch (Texas Instruments, SN74LS279A) was 

used along with a single pull, single throw (SPST) always 

off-momentarily on (OFF-MOM) push button switch 

(Grayhill) and a 3-lead bi-color LED (Bivar, PM53-

KNBCW12.0) indicator light which turns red if the inhibit 

signal has been tripped and stays green at all other times. 

The output of the S-R latch (which stays latched until 

manual reset, Figure 18) is sent to the controller as the input for inhibit. When the inhibit feature is active 

(meaning there is an issue), the indicator light will be red, the motor will be off, and the push-button 

switch will have to be pushed just once in order to reset.   

 

 

 

Figure 17: NOR Logic 
(http://www.eeherald.com/section/design-guide/logic-design.html) 

Figure 18: Set-Reset Latch Logic. Output = Q 
(https://www.allaboutcircuits.com/textbook/digital/chpt-10/s-r-

latch/) 
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Additional Components of the Safety Circuit 

In addition to the logic components of 

this circuit, there are several others necessary 

for the safety circuit to work. These include the 

negative voltage converter (Figure 19), which 

converts a +12V into -10V to be used as Vin for 

several of the devices using a switched-

capacitor voltage converters with regulators 

(Texas Instruments, LT1054), the adjustable 

linear voltage regulator (STMicroelectronics, LM317T) (Figure 20), which regulates 12V down to 10V, 

the five volt fixed voltage regulator (Texas Instruments, LM340T) (Figure 21), and the high pass filter 

(Figure 16), needed to differentiate and analyze the position data. Together these TTL devices form the 

hardware-based safety features for this device. 

 

 

 

 

 

 

 

Data Processing Assembly 

The software used for processing the data was software created and modified by Dr. Paul Wetzel 

using a MS DOS platform in line with an external A/D and D/A converter. The program provided 

stimulus files to the controller and the A/D sampled the potentiometer and torque data each at a sampling 

rate of 500Hz. Because these stimulus files were created for a different use, we attenuated the ramp and 

sine files using an external potentiometer.  

Figure 19: Negative Voltage Converter Schematic 

Figure 20: Adjustable Regulator Schematic 
Figure 21: 5V regulator Schematic 
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Connections Between Assemblies 

A DB-15 cable was used to make each connection from the motor assembly to the 

controller/power assembly aside from the power cable for the motor which was connected with an 

industrial grade non-shrouded locking plug to ensure that the motor would not become disconnected from 

power by mistake. Device signals were sent to and from the controller/power assembly and the data 

processing equipment with BNC cables.   

Participants 

In lieu of the restrictions due to the COVID-19 pandemic, no PD patients were available, and no 

study was able to take place. Instead, evaluation was completed on two healthy individuals, person 1 and 

person 2, identified by GM and PW, respectively. To simulate a scenario with increased torque, as is the 

case with Parkinsonian rigidity, individuals were instructed to co-contract the muscles surrounding their 

elbow joint by clenching the fist of the tested arm. Tests were run on the right arm of each participant.  

 

Figure 22: Potentiometer Offset-Summing Amplifier Schematic 
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Evaluative Protocol 

Person 1 and person 2 were instructed to stand perpendicular to the table next to the device, with 

their right hip touching the side of table. The individual’s right arm was then placed in the sling with their 

elbow sitting directly over top of the shaft and their palm positioned outward with their thumb toward the 

ceiling. The arm was secured with two Velcro straps, one at the wrist and one just below the elbow, to 

restrict movement of the arm within the sling. The position of the rigid arm sling was then moved to the 

zero position, as seen on the oscilloscope, by rotating the shaft until the position signal on the scope 

matched that of the stimulus signal; in this case the stimulus file was programmed so that it started and 

ended the signal at zero volts. The zero position of the potentiometer correlated to a flexion angle of 

approximately 45° about the elbow. This setting can be altered by turning the potentiometer by hand and 

should be decided upon based on the content of the stimulus file, for example, when using a sine wave, 

which oscillates above and below zero periodically, you must start the device in the center of the range of 

motion.  

Directions were given to the 

individual to relax their limb as much 

as possible during relaxed tests and 

make a tight fist during the entirety of 

the co-contraction tests. Three stimuli 

were applied including, sinusoidal 

stimulus (sine3.dat), a ramp stimulus 

(ramp3.dat), and a random stimulus (rnd-100f.dat) made up of sinusoidal 

content of varying amplitude and frequency. The forearm was displaced through a maximum total range 

of 90° (+/- 45° from the zero position). Each person underwent two trials of each stimulus type, one with 

a relaxed joint and one under co-contraction. Each stimulus file was also run with no load to determine 

the level of device noise for each test. Data from the torque transducer and potentiometer were sampled at 

a rate of 500 Hz. Using a stand-alone six degree of freedom magnetic tracking system called, A Flock of 

Figure 23: Arm shown during 

relaxation 

Figure 24: Arm shown during co-

contraction or clenched-fist phase 
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Birds (Ascension Technologies, Colchester, VT), angle (yaw, pitch, and roll) and position (x, y, z) data 

was also collected at a rate of 125 Hz and expanded to 500 Hz, by repeating each value four times, to 

allow for comparison between the files and to determine the degree of yaw, pitch and roll of the device 

arm.  

 

Data Analyses 

Torque and position output voltages for relaxation and co-contraction evaluations were 

graphically compared with respect to time for each different stimulus. Mean and variance were also 

calculated for torque in each trial and compared to one another within their stimulus category. Using a 

custom code written by Dr. Paul Wetzel, Discrete Fourier Transforms were performed on the torque data 

to determine the frequency content of the random and sine stimuli.  

 

 Results  

Comparison of Velocity to Stimulus Position 

To determine efficacy of the HPF, the velocity was sampled instead of torque during a test run of 

the random stimulus with no load. In the graph of velocity and position with respect to time, shown in 

Figure 25, we expected to see the velocity curve, shown in red, phase shifted to the right of the stimulus 

file. This graphical representation proves that the HPF is differentiating position into velocity. 

 

 



24 

Quantification of Perceived Rigidity in Co-contracted Versus Relaxed Trials 

Perceived rigidity during co-contraction and during relaxation was compared for each person and 

for each stimulus signal. During the relaxed tests for sine (Figure 32 and Figure 34) and random stimuli 

(Figure 27 and Figure 29), the torque values are relatively low with a couple of peaks following 

significant changes in the stimulus. During the co-contraction tests for sine (Figure 33 and Figure 30) and 

random stimuli (Figure 28 and Figure 30), the peaks are larger meaning that perceived torque is greater 

during the clenched-fist phase than during the relaxed phase. This makes sense based on prior research. 

During the ramp stimulus, there is not a significant difference between torque during co-contraction 

(Figure 38 and Figure 40) and during relaxation (Figure 37 and Figure 39). Median torque and variance 

were also calculated for each test resulting in exceptionally low variances (Table 2, Table 3, and Table 4).  

 

  

 

Figure 25: Values for position and velocity with device under the “no-load” condition. 

Figure 26: Torque values for the Random stimulus with no load. 
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Figure 27: Torque values for the Random stimulus during relaxation for GM. 

Figure 28: Torque values for the Random stimulus during co-contraction for GM. 
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Figure 30: Torque values for the Random stimulus during co-contraction for PW. 

Figure 29: Torque values for the Random stimulus during relaxation for PW. 
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Figure 33: Torque values for the Sine stimulus during co-contraction for GM. 

Figure 31: Torque values for the Sine stimulus with no load. 

Figure 32: Torque values for the Sine stimulus during relaxation for GM. 
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Figure 34: Torque values for the Sine stimulus during relaxation for PW. 

Figure 35: Torque values for the Sine stimulus during co-contraction for PW. 
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Figure 36: Torque values for the Ramp stimulus with no load. 

Figure 38: Torque values for the Ramp stimulus during co-contraction for GM. 

Figure 37: Torque values for the Ramp stimulus during relaxation for GM. 
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Figure 39: Torque values for the Ramp stimulus during relaxation for PW. 

Figure 40: Torque values for the Ramp stimulus during co-contraction for PW. 
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Table 1      
Mean and Variance Values for Torque from a Random 

Stimulus   

            

Random Stimulus 

  No-load GM (R) GM (C) PW (R) PW (C) 

Mean 0.01250 0.04254 -0.04380 0.04271 0.07009 

Variance 0.00017 0.00277 0.01031 0.00337 0.00891 

Note: (R) stands for relaxed arm, (C) stands for co-contracted arm. 

Mean and variance calculated for torque values which are measured 

in volts (V). 

 

Table 2: Mean and variance values for torque from the random stimulus 

Table 2      

Mean and Variance Values for Torque from a Sine Stimulus   

            

Sine Stimulus 

  No-load GM (R) GM (C) PW (R) PW (C) 

Mean 0.01206 0.03145 -0.04351 0.04300 0.04835 

Variance 0.00021 0.00038 0.00227 0.00037 0.00098 

Note: (R) stands for relaxed arm, (C) stands for co-contracted arm. Mean 

and variance calculated for torque values which are measured in volts 

(V). 

 

Table 4: Mean and variance values for torque from the sine stimulus 

Table 3      
Mean and Variance Values for Torque from a Ramp 

Stimulus   

            

Ramp Stimulus 

  No-load GM (R) GM (C) PW (R) PW (C) 

Mean 0.01205 0.03047 -0.04883 0.03382 0.01974 

Variance 0.00209 0.00411 0.00920 0.00628 0.01189 

Note: (R) stands for relaxed arm, (C) stands for co-contracted arm. 

Mean and variance calculated for torque values which are measured in 

volts (V). 

 

Table 3: Mean and variance values for torque from the ramp stimulus 
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Stimulus Frequency Content 

A Discrete Fourier Transform (DFT) was conducted, based on the chirp-z algorithm, on the sine 

and random position data to determine the frequency content of each waveform. The sine data had a peak 

magnitude at 0.35 Hz which is the known frequency content of the sine wave. The random signal had 

many peak magnitudes because it consisted of varying different sinusoidal signals. The frequency content 

of the waveform will never change with this setup because the motor controls the sling and does not allow 

for any position differences because of the negative feedback loop with the controller. This is shown in 

the graph below where the peak magnitudes for relaxed and co-contracted trials are the same. 

 

 

 

 

 

 

 

 

 

 

Device Rumble 

Roll, pitch and yaw were measured using a magnetic tracker and tracking device, which was 

attached directly behind the elbow on the rigid arm sling at the point of rotation. The roll and the pitch are 

of interest because there is a slight amount of play in the device due to space between the gear teeth in the 

transmission. The values of roll, seen in (Figure 46 and Figure 47), were less when there was no load in 

the device but there was no significant difference between the relaxed and co-contracted phases. The 

reverse was the case for pitch (Figure 44 and Figure 45), which was higher when there was no load than 

while tests were run. Like the roll values, the measured pitches during co-contraction and during 
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Figure 41: Frequency content of position in the random stimulus 
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relaxation were remarkably similar. The measured yaw (Figure 42 and Figure 43) should have changed a 

lot because that was the orientation of movement but it seemed to change the least. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 43: Yaw of the device during co-contraction for GM and PW vs. during no-load condition. 

Figure 42: Yaw of the device during relaxation for GM and PW vs. during no-load condition. 
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Figure 44: Pitch of the device during relaxation for GM and PW vs. during no-load condition. 

Figure 45: Pitch of the device during co-contraction for GM and PW vs. during no-load condition. 
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Figure 47: Roll of the device during co-contraction for GM and PW vs. during no-load condition. 

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

10 15 20 25

R
o

ll 
(d

eg
re

es
)

Time [s]

Roll During Relaxation vs. No-Load

No-Load (Sine, roll) Relaxed (Sine, GM, roll) Relaxed (Sine, PW, roll)

Figure 46: Roll of the device during relaxation for GM and PW vs. during no-load condition. 
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 Discussion 

Sine, Discussion Ramp and Random Waveform Characterization 

The main finding of the current study was the ability to objectively determine torque needed to 

flex and extend the elbow joint with respect to a specific stimulus signal. The random and sine signals 

show promise but there was too much force behind the abrupt changes of direction during the ramp 

stimulus and it does not mimic natural movement, nor does it mimic the clinical exam used to determine 

rigidity. These abrupt, sudden changes in direction, accentuated due to the negative feedback loop, led to 

similar torque values during relaxation and co-contraction and seemed to lightly shake the table while 

tests were being run. As such the ramp3.dat stimulus used in present form is not recommended, however a 

ramp and hold stimulus, which allows for softening of the abrupt changes, remains a possible solution.  

During the relaxation tests of the random stimulus, most of the peaks in torque were accompanied 

by larger amplitude peaks during co-contraction.  Although in (Figure 28), the torque signal during co-

contraction appears to have an offset and two of the peak torque values during relaxation are larger than 

their co-contraction counterparts. The torque transducer, is directional, meaning that a value below zero 

indicates torque in the opposite direction, not a lack of torque. However, human error is likely as this 

offset was repeated by person 1 in the sine tests (Figure 33) but did not occur for person 2 in either test.  

Another possible reason could be attempted resistance to the movement by doing more than just co-

contracting the muscles surrounding the elbow. In this case though the two peaks shown during the 

relaxation phase look larger than the co-contraction peaks prompting further explanation. Without 

measuring muscle activity during co-contraction and relaxation we cannot determine the exact reason for 

these peak magnitudes. However, they occur at the highest velocities of the stimulus and seem to be 

prompted by a change in direction. These larger magnitude peaks during relaxation could also be showing 

a natural reaction of the body to co-contract due to sudden change in direction and high speeds, like those 

in the ramp stimulus.  
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For the sine waves, the torque values appear to be larger during co-contraction than they are 

during relaxation although the offset was still present for person 1. Because we were unable to measure 

co-contraction in the surrounding muscles, we cannot definitively determine a cause for the offset or the 

torque peaks during the relaxation phase.  

 

Calculated Variance 

Mean and variance were both calculated for torque in each trial and for each person. The 

variances are all extremely small and instead of looking at the variance itself, the proportion of relaxed 

phase variance to co-contracted phase variance was calculated.  Even though the variances overall are 

low, meaning the spread beyond the median is small, the variance for the co-contracted phase shows a 

value at least 25% higher than that of the relaxed phase in the sine and random stimuli. This would mean 

that average torque values are higher in the co-contraction phase than during the relaxed phase. During all 

three stimuli, and with each of the subjects the calculated variances were higher in the co-contracted data 

than in the relaxed data although the variances from the ramp data had the lowest increases.  

 

Frequency Response (DFT) 

The DFT of a stimulus during relaxation and co-contraction will look the same regardless of 

torque because the position of the signal is the same for each change. DFT measures frequency content of 

a waveform and because of the presence of the negative feedback loop in the controller, the position data 

is the same during relaxation and co-contraction. The DFT of the random file has many different 

magnitude peaks relating to the changing frequency of the random stimulus. The sine stimulus used has 

only one peak at 0.35 Hz which is to be expected due to the known frequency content of the sine wave. 

 

Limitations and Suggested Improvements 

There were many limitations in this preliminary study, including the small sample size and the 

absence of PD patients. The device was also not evaluated for use in the vertical plane. Although the 
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results are repeatable, co-contraction was not constant throughout each test run or between stimuli and 

without further evaluation we would not be able to determine the varying degrees of co-contraction 

throughout the test. Each stimulus file was run multiple times before recorded tests were run and greater 

torque during co-contraction was a result in those as well. Though co-contraction is a good alternative in 

this situation, a preliminary study consisting of PD patients to see a comparison of torque in a PD patient 

population versus a control group should be completed.  

In addition to the limitations of the study itself, there are a few serious factors with respect to 

clinical use that must be considered, including the backlash in the transmission which could be 

remediated by removing the transmission altogether as the servo motor was made for precise movement. 

Unfortunately, the transmission is what allows the shaft-sling assembly to rotate into the lower position 

and the device would no longer have the capability of measuring in two different planes. In order to retain 

this ability, transmission updates to decrease the clearance between the gear teeth if possible or obtaining 

a higher precision transmission would decrease backlash. 

The feedback mechanism also must be considered when selecting patients for a future study. 

Because the motor will force the patients arm to move regardless of ability, a patient’s range must be 

examined before determining candidacy. While limits may be set to ensure the device does not exceed a 

certain angle of rotation, each participant should be evaluated for range of motion in their elbow joint 

prior to involvement to ensure safety.  

The device is also not easily portable. It can be carried by a single person, one assembly at a time 

but it is bulky and unfortunately many of the components are heavy. There is also currently no height 

adjustment and so the device itself is not customizable to people of varying heights, or for those who 

cannot stand. The device is tall and therefore would need to be placed on a shorter table or an adjustable 

height stand so that it could easily be moved higher or lower to allow for height adjustments. On a 

standard height table, the device must be used while standing. Furthermore, there is no way to immobilize 

the rest of the patient’s body during testing. A seated approach would allow for a smaller overall height 

range and test subjects could be restrained more easily.  
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While this is not a necessary upgrade, a modified arm sling would provide patients with more 

comfort, better restraint of the limb, and it would ensure that each patient’s arm is tested about the same 

point. The current sling is made to be one size fits all with Velcro straps used to position the forearm and 

hold it in place, but it is not very comfortable. I suggest a modified partially 3D printed arm sling with the 

ability to increase length of the sling, and a manipulandum to ensure proper rotation of the wrist, similar 

to the example from Sin et al. (2019) These modifications would increase repeatability and provide 

comfort for the patient 

 

Future Directions and Conclusions 

Although this device has not yet been tested on PD patients, the preliminary results of torque 

measured in phases of co-contraction and relaxation during passive flexion and extension of the forearm 

of two healthy individuals proves that this device does effectively measure torque. In addition, the safety 

features included in the TTL safety circuit will allow for reliable operation of the device in a research 

setting. In correlation with the clinical standard subjective rating scales, this device could be used to 

objectively quantify torque, and therefore rigidity, in the elbow joint of patients to better understand the 

mechanisms of rigidity in those suffering from Parkinson’s and other movement disorders. 
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Appendix 1: Parts List  

 

Part Name Part Number Qty. Manufacturer 

12 VDC Power Supply SDI18-12-UC-P5 1 CUI Inc. 

20 KΩ Multi-turn Precision 

Potentiometer 
3540S-1-203L 1 Bourns 

12000µF Powerlytic™ Capacitor 36DY 1 Vishay Sprague Powerlytic™ 

Medical Grade Isolation Transformer ISB-060A 1 Toroid 

Photologic Slotted Optical Switch OPB991 2 TT Electronics 

Servo Amplifier/Controller 25A20 1 Advanced Motion Controls 

Servo Motor JR16M4CH/ENC 1 Kollmorgen 

Torque Transducer QSFK-9/J301-01 1 Sensotec 

Transducer Power Supply Model PSM-R 1 Transducer Techniques 

Transmission Unknown 1 Motovario 

Variac Transformer 1010B 1 Staco 

100K Ω Trimpot® W104 1 Bourns 

10K Ω Trimpot® W103 1 Bourns 

1K Ω Trimpot® W102 2 Bourns 

20K Ω Trimpot® W203 1 Bourns 

3-Lead Bi-Color LED PM53-KNBCW12.0 1 Bivar 

500 Ω Trimpot® W501 1 Bourns 

5K Ω Trimpot® W502 1 Bourns 

5V Fixed Voltage Regulator LM340T 1 Texas Instruments 

Adjustable Linear Voltage Regulator LM317T 1 STMicroelectronics 

Capacitors ----- 12 See Appendix 2 

Diodes 1N914 3 Vishay 

Dual 5-Input Positive-NOR Gate SN74F260 1 Texas Instruments 

Heat Sink ----- 2 N/A 

Hex Inverter SN74LS04N 1 Texas Instruments 

Monolithic Sample-and-Hold Circuit LF398N 1 Texas Instruments 

Push-Button Switch 30-6 2 Grayhill 

Quad Differential Comparator LM339 1 Texas Instruments 

Quadruple S-R Latch SN74LS279A 1 Texas Instruments 

Resistors ----- 30 See Appendix 2 

Re-triggerable Monostable Multivibrator 

"One-shot" 
SN74LS123N 1 Texas Instruments 

Silicon NPN Transistor 2N2222 1 Central Semiconductor Corp. 

Switched-Capacitor Voltage Converters 

with Regulators 
LT1054 1 Texas Instruments 

Ultraprecision Operational Amplifier OP177 3 Analog Devices, Inc. 
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Appendix 2: Resistor and Capacitor List 

 

 Resistors 

Number: Value: 

R1 4.02K Ω 

R2 5.11K Ω 

R3 5.11K Ω 

R4 301 Ω 

R5 126 Ω 

R6 309 Ω 

R7 105 Ω 

R8 126 Ω 

R9 309 Ω 

R10 105 Ω 

R11 301 Ω 

R12 301 Ω 

R13 30.1 Ω 

R14 20K Ω 

R15 180K Ω 

R16 5.11K Ω 

R17 10K Ω 

R18 475 Ω 

R19 5.49K Ω 

R20 174 Ω 

R21 15K Ω 

R22 15K Ω 

R23 15K Ω 

R24 13.7K Ω 

R25 13.3K Ω 

R26 1K Ω 

R27 4.99K Ω 

R28 5.23K Ω 

R29 5.23K Ω 

R30 5.23K Ω 

 

Capacitors 

Number: Value: Type: 

C1 10 µF tantalum 

C2 22 µF tantalum 

C3 0.0022 µF mylar 

C4 100 µF electrolytic 

C5 0.1 µF mylar 

C6 2.2 µF mylar 

C7 2.2 µF mylar 

C8 100 µF electrolytic 

C9 0.1 µF mylar 

C10 1 µF tantalum 

C11 10 µF electrolytic 

C12 0.1 µF mylar 
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