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Abstract

In this thesis we consider a problem in Graph Theory known as the Dollar Game. The

Dollar game was first introduced by Matthew Baker of the Georgia Institute of Technol-

ogy in 2010. It is a game of solitaire, played on a graph, and is a variation of chip firing,

or sand-piling games. Baker approached the problem within the context of Algebraic

Geometry. It is the goal of this paper to provide an overview of the necessary graph the-

ory to understand the problem presented in this game, as well as background on chip

firing games, their history and evolution. Finally we will present a variety of results

about the Dollar Game from a graph theoretical standpoint.



Chapter 1

Introduction

1.1 Introduction

This thesis explores a particular problem in graph theory, known as the Dollar Game,

a game of solitaire played on a graph. It is a variation of chip-firing games, which fall

under the branch of graph theory known as algebraic graph theory. Study of chip-firing

games expanded rapidly throughout the eighties and nineties, relying heavily on group

theory. J. Spencer first began looking into chip-firing games on paths, but the games

were quickly expanded to general finite graphs by his successors.

The current form of the Dollar Game was first introduced by Matthew H. Baker of

Georgia Institute of Technology [3]. The Dollar Game is a game of solitaire, played on a

graph on which each vertex holds an integral number of dollars, not necessarily positive

or non-negative. The goal of the game is to get every vertex out of debt through a

series of borrowing and lending moves between neighboring vertices. Baker determined

necessary conditions for winnable games, and he also determined sufficient conditions

for winnable games. He presented proofs of these conditions in the field of Algebraic
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Geometry.

Our aim is to expand on Baker’s work by providing graph theoretical proofs to the

results he found, as well as some of our own results. We also present a variety of

algorithms we believe solve this game given certain sufficient conditions. We present

our progress in this thesis, as well as our plans for continued work on this problem.

First, we will present a basic overview of graph theory, and the background knowledge

necessary to understand the Dollar Game. Next we will provide a history and evolution

of the chip firing games that lead to the Dollar Game, and present some interesting

results on that topic. Finally we will close with an analysis of the dollar game and

present several results we were able to obtain. We will also present our progress towards

graph theoretical proofs of the sufficient conditions, and discuss how we would like to

continue in the future.

1.2 Background Literature Review: Graph Theory [5]

We begin with a brief overview of the topic of graph theory, focusing on the relevant

definitions needed in order to formally introduce chip firing games and the Dollar game

in particular.

A graph is an ordered pair G = (V ,E) consisting of a non-empty set of vertices V and

a set of edges E. The set E consists of non-ordered pairs of (not necessarily distinct)

vertices. The vertices in the ordered pair are the endpoints of the edge. An edge with

the same vertex as its endpoints is a loop.
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Figure 1.1: A graph G with vertex set V(G) = {a,b, c,d, e, f} and edge set E(G) =
{(a,b), (a, c), (b, c), (b,d), (c, e), (c, f), (d, e)}.

Two vertices u, v ∈ V(G) are said to be adjacent if they are the endpoints of an edge in

the graph. If two vertices are adjacent, then they are said to be neighbors. An edge is

said to be incident to its endpoints and vice versa. The degree of a vertex, d(v), is equal

to the number of edges incident to the vertex, with loops counting twice.

Figure 1.2: The degree of vertex d is 3, while the degree of vertex e is 2.

A walk is a list of vertices v1v2...vk such that vi is adjacent to vi+1 for each 1 6 i < k. A

closed walk is a walk such that v1 = vk. A path is a walk such that v1, v2, ..., vk are all

distinct vertices. A (u, v)−path is a path the begins at vertex u and ends at vertex v. A

cycle is a closed walk whose origin and internal vertices are distinct.

A graph is said to be connected if for every pair of vertices u, v ∈ V(G) there exists a

(u, v)−path. If a graph is not connected, then its maximal connected subgraphs are the

components of the graph.

3



Figure 1.3: The graph G has three cycles: abc,acd and abcd.

A tree is a connected graph G that doesn’t contain any cycles. A tree has n − 1 edges,

where n is the number of vertices in the graph. The spanning tree of a graph G is a

subgraph T that has the same vertex set as G, is connected, and is a tree.

4



Chapter 2

Literature Review: Chip Firing Games

2.1 Origin of Chip Firing Games

A precursor to the chip firing games was studied in a 1986 paper by J. Spencer, who

investigated a process of balancing vectors [9]. A non-negative integer N is placed in the

center coordinate of a row vector of length N {a1,a2, ...,aN}, and the other coordinates

are padded with zeros. A turn consists of taking each coordinate in the vector with a

number n > 1, subtracting 2bn
2
c, then adding bn

2
c to the right and to the left [1].

Example 1. Beginning with an initial value of five.

I n i t i a l Configurat ion : <0 ,0 ,5 ,0 ,0>

Step One : <0 ,2 ,1 ,2 ,0>

Step Two : <1 ,0 ,3 ,0 ,1>

Step Three : <1 ,1 ,1 ,1 ,1>

5



Example 2. Beginning with an initial value of six.

I n i t i a l Configurat ion : <0 ,0 ,0 ,6 ,0 ,0 ,0 >

Step One : <0 ,0 ,3 ,0 ,3 ,0 ,0 >

Step Two : <0 ,1 ,1 ,2 ,1 ,1 ,0 >

Step Three : <0 ,1 ,2 ,0 ,2 ,1 ,0 >

Step Four : <0 ,2 ,0 ,2 ,0 ,2 ,0 >

Step Five : <1 ,0 ,2 ,0 ,2 ,0 ,1 >

Step Six : <1 ,1 ,0 ,2 ,0 ,1 ,1 >

Step Seven : <1 ,1 ,1 ,0 ,1 ,1 ,1 >

In general, if N is odd, the process concludes with a string of N consecutive 1’s in the

center of the vector, and if N is even, the process concludes with a zero in the center, and

a string of N
2

consecutive 1’s to the left and N
2

consecutive 1’s to the right of the center

[4].

Spencer and several others expanded upon this paper in 1989 by converting this process

to a game of subdividing and moving piles of discs. The game begins with several piles

of discs, all arranged in a line. A legal turn of the game is to choose any pile with more

than one disc, and move one disc to the left and one disc to the right [1].

They focused the study of this game on how long it would take the game to terminate

(that is, when no pile has more than one disc), and what the final configurations would

look like. Although the game is defined for any line of piles of disks, Spencer et al

focused on the version that mirrored his initial work with vectors and began each game

with the disks all stacked in the center pile. They discovered that the final configuration

of this game always mirrored the final configuration of the original version on vectors.

Spencer and his colleagues further found that given any initial configuration of the game,

with the discs initially spread over several piles lined in a row, the final configuration

6



would always be the same, regardless of the order in which the turns were taken [1].

We include two examples here, but for clarity we will illustrate the piles of discs using

vectors as in the original version of the game.

Example 3. Consider this new configuration of five discs where we will always take the

first available move on the left-hand side.

I n i t i a l Configurat ion : <0 ,1 ,2 ,2 ,0>

Step One : <0 ,2 ,0 ,3 ,0>

Step Two : <1 ,0 ,1 ,3 ,0>

Step Three : <1 ,0 ,2 ,1 ,1>

Step Four : <1 ,1 ,0 ,2 ,1>

Step Five : <1 ,1 ,1 ,0 ,2>

Step Six : <1 ,1 ,1 ,1 ,0 ,1 >

Now we will play this same configuration, but we will always take the first available

move on the right-hand side.

I n i t i a l Configurat ion : <0 ,1 ,2 ,2 ,0>

Step One : <0 ,1 ,3 ,0 ,1>

Step Two : <0 ,2 ,1 ,1 ,1>

Step Three : <1 ,0 ,2 ,1 ,1>

Step Four : <1 ,1 ,0 ,2 ,1>

Step Five : <1 ,1 ,1 ,0 ,2>

Step Six : <1 ,1 ,1 ,1 ,0 ,1 >

Notice that we end up with the same final configuration despite taking our moves in a

different order.

7



2.2 Chip Firing Games

The disk stacking game can be exactly represented by placing N chips on the center

vertex of a graph that is a path of length N + 1, or for the more generalized version,

assigning a non-negative integer n of chips to each vertex on a path of sufficient length.

As in the previous game, we choose any vertex whose number of chips exceeds its

degree per turn (in this case, 2 for internal vertices), and sends one chip along each of

its incident edges to its neighbors.

Now, consider an arbitrary, finite, connected, simple graph and label each vertex with a

non-negative integer for a total of N chips all together. A legal turn is taken by selecting

a vertex v with chip number greater than or equal to its degree, and moving one chip

along each of the vertex’s incident edges to its neighbors. The number of chips at vertex

v decreases by its degree, and each of its neighbors increase their chips by one. The game

terminates when there are no more legal moves on the board. The question is whether

the game will ever terminate, or if the game will go on infinitely.

Definition 1. Let G be a finite, connected, simple graph. Assign a non-negative integer

C(v) to each vertex. We say that a vertex has C(v) chips and refer to this assignment this

assignment on all vertices as a chip configuration [8].

Definition 2. We say a vertex v is ready to fire if the number of chips located at v is

greater than or equal to its degree.

Definition 3. Let G be a graph with configuration C(v). Then the configuration C(v) is

said to be stable if there are no vertices in G that are ready to fire.

8



Example 4. In the following example, we begin with 6 chips on the graph. We have f fire

first, followed by a and d. Then c is ready to fire and does so. Following this move, the

game terminates as the graph configuration is now stable, Notice that the total number

of chips on the graph never changes.

Figure 2.1: Example of a chip firing game.

Lemma 4. [4, Lemma 3.2] If a game terminates, then there is at least one vertex that never fires.

Proof. Let G be a finite, simple, connected graph with configuration C(G). Suppose the

configuration stabilizes, but every vertex fires. Then let v be the vertex which has gone

the longest since firing at the time the configuration stabilizes. Then every neighbor of

v has fired at least once after v fired, but before the game stabilized. Since v received at

least one chip from each of its neighbors, the number of chips on v must be at least its

degree. Thus v is ready-to-fire, which contradicts the game stabilizing [4].

Notice that in example 3, neither vertex c nor e fired during the game.

Lemma 5. [4, Lemma 3.1] If a game goes on infinitely, then every vertex fires an infinite number

of times.

9



Proof. Let G be a finite, simple, connected graph with configuration C(G). Suppose the

configuration never stabilizes. Then there exists some vertex v such that v fires an infinite

number of time. Let u be a neighbor of v. Then u receives an infinite number of chips

from v. But the number of chips on the graph is finite. Thus, u must fire an infinite

number of times as well. Since the graph is connected, this argument can be made for

every vertex [4].

Theorem 6. [4, Theorem 3.3] Let E be the number of edges in the graph. If N < E, then C(G)

will stabilize.

Proof. Let G be a finite, simple, connected graph with configuration C(G). Let N be the

number of chips on the graph and let E be the number if edges in the graph. Suppose

N < E. Now, color the edges each a different color with colors 1,2,...,E. Each time a chip

is fired down an edge, color the chip with the edge’s color. That edge is now paired

with that chip, and the chip can only be fired along that same edge. So every chip either

gets colored, or remains stationary on its vertex if that vertex never fires. Since N < E,

there exists some edge that never gets paired with a chip. That edge is incident with a

vertex, and as such, that vertex never fires. Thus, by 5 we know that the configuration

must stabilize.

Theorem 7. [4, Theorem 3.3] Let E be the number of edges in the graph, and let V be the number

of vertices. If N > 2E− V , then C(G) will never stabilize.

Proof. Let G be a finite, simple, connected graph with configuration C(G). Let N be the

total number of chips on the board, E the number of edges in the graph and V be the

number of vertices in the graph, such that N > 2E − V . Suppose C(G) stabilizes. Then

for any vertex v in the graph C(v) 6 d(v) − 1 Thus, N 6
∑

v∈V(G)

(d(v) − 1) = 2E − V .

But this contradicts N > 2E − 1. Thus, C(G) must always have some vertex v such that

C(v) > d(v), and the configuration never stabilizes [7].

10



Theorem 8. [4, Theorem 3.3] If N > E, there is always an initial configuration that leads to a

game that never stabilizes.

Proof. Let G be a finite, simple, connected graph. Assign a direction to each edge so that

the graph is acyclical. Now, place chips on each vertex equal to the vertices out-degree,

d−(v). Since every edge contributes one out-degree to one of its endpoints, and N > E,

we know this can be done. Since G as a directed graph is acyclic, there exists some vertex

v such that d−(v) = d(v). This vertex is ready-to-fire in G. Fire one chip along each of

its incident edges. Now v has no chips, and every neighbor of v has one more chip than

previously.

Reverse the orientation of every edge incident to v. This is another acyclic orientation,

and as such, there exists a vertex u 6= v such that d−(u) > d(u). This vertex is ready-

to-fire in G and repeating this process of reversing the orientation of the edges incident

to the vertex that just fired immediately after firing ensures there is always a vertex

ready-to-fire, and thus the configuration never stabilizes. [7].

Example 5. In this example we give an acyclic orientation to our previous chip firing

example graph, and then place d−(v) chips on each vertex. The total number of chips is

N = E. The vertex b is ready-to-fire, so it sends a chip to each of its neighbors. We then

reverse the orientation of the edges incident to b. Now a is ready-to-fire. It fires and we

reverse it’s incident edges. The vertex c is now ready-to-fire. After reversing the edges

incident to c we have two vertices ready to fire, d and f. It doesn’t matter which we fire

first, so we fire f. The vertex d is not incident to f, so reversing f’s incident edges doesn’t

impact d. Now d fires and we reverse it’s incident edges. Again we have two vertices

that are ready-to-fire, and again it doesn’t matter which we choose to go first. But notice

that by the time we get back to b having all outgoing edges, all of its neighbors must

have fired in the interim. Thus, it must have enough chips to be ready-to-fire.

11



Figure 2.2: Example of the first five moves in an infinite configuration with N = E.

Theorem 9. [4, Theorem 3.3] If N 6 2E− V , the there is always some initial configuration that

leads to a stable game.

Proof. Let G be a finite, simple, connected graph. Suppose N = 2E − V . Then for each

v ∈ V(G) let C(v) = d(v)−1. (Recall that
∑

v∈V(G)

(d(v)−1) = 2E−V . If N < 2E−V , simply

remove (2E − V) −N chips from the vertices of your choosing. Since C(v) < d(v) for all

v, the configuration is stable [7].

Interestingly, like the vector/disk balancing games, given an initial configuration, ei-

ther every chip firing game is infinite, or it terminates in the exact same configuration,

regardless of the order the turns are taken in [4].

2.3 The Bank Game

A variation of the chip firing games is known as the Bank variant. It works almost the

same as the regular chip firing games, except that it introduces the concept of bank.

Definition 10. If a vertex v in G is designated as a bank, then v cannot fire unless no

other non-bank vertex in G is ready-to-fire [8].

12



This version established the beginning of thinking of the chips as a form of currency. The

bank vertex stores chips until the ”economy” becomes stagnant, and then revitalizes the

economy in this circumstance.

Definition 11. A chip configuration on a graph G is said to be bank stable if the only

vertex ready-to-fire is a bank vertex.

Theorem 12. A bank game configuration on a graph G will always become (bank) stable.

Proof. Let G be a finite, simple, connected graph with configuration C(G). Let v ∈ V(G)

be a designated bank and suppose the game never stabilizes. Then v never fires. But this

contradicts 5. Therefore the game must become (bank) stable.

In 1999, N.L. Biggs of the London School of Economics introduced a further bank variant

he called the Dollar Game. In Biggs’ variant, the bank vertex is allowed to go into debt,

or have a negative number of chips. Not only is the bank vertex allowed to go into debt,

the bank must fire if at any point it has a positive number of chips. The game stabilizes

if no non-bank vertex is ready-to-fire and the bank has a non-positive balance [2]

13



Chapter 3

The Dollar Game

In 2007, Matthew Baker introduced another variant of the dollar game, and it is this

version of the game that will concern us for the remainder of this thesis. In Baker’s dollar

game, the chips are still replaced with dollars and the game represents an economy of

sorts. Instead of there being bank vertices that can go into debt, any vertex, in this

case representing households or individuals, can go into debt. At the beginning of

the game, vertices are assigned any integer amount, either negative, zero or positive.

Negative integers represent a vertex being in debt, and a positive integer represents a

vertex having a surplus of funds. The goal of the game is to get every vertex out of debt

through a combination of lending and borrowing moves.

Definition 13. A vertex may make a lending move by giving each of its neighbors one

dollar. The lending vertex does not necessarily have to have the dollars to accommodate

this and may go into debt to complete this move.

Note that this is equivalent to the chip firing move in the chip firing games with the

exception that now vertices can go into debt. However, there is an additional inverse

move for this game.

14



Definition 14. A vertex may make a borrowing move by borrowing a dollar from each

of its neighbors. The neighboring vertices do not necessarily have to have the funds to

cover this, and may go into debt as a result of this move.

It’s important to note that while a vertex may go as far into debt (or in the positive) as

necessary, like the chip firing games, the overall total amount of money on the board

never changes. Additionally, for a game to winnable, each of its components must be

winnable, so we will only be considering finite, connected graphs.

Definition 15. Let G be a graph. Assign an integer D(v) to each vertex. We say that a ver-

tex has D(v) dollars and refer to this assignment on all vertices as a dollar configuration

of G denoted D(G).

Theorem 16. If a game on graph G is winnable, then the total number of dollars on the board

must be non-negative.

Proof. Let G be a graph with dollar configuration D(G). Suppose G is winnable. Then

at the end of the game we have D(v) > 0 for all v ∈ V(G). Thus
∑

v∈V(G)

D(v) > 0 at

the end of the game. But the total number of dollars on the graph never changes, thus∑
v∈V(G)

D(v) must always be non-negative.

Lemma 17. The results of a lending move can be achieved exactly through a series of borrowing

moves.

Proof. Let G be a graph with dollar configuration D(G). Let x be a vertex in H. Suppose

we want x to lend a dollar to each of it’s n neighbors. Then we want each of x’s neighbors

to gain a dollar, and x to lose n dollars. Then for each v ∈ H\ {x}, borrow one dollar, and

consider the outcome for a vertex v.

Case 1: v is a vertex that is not adjacent to x. Then v borrows a dollar from each of its k

15



neighbors, and gains k dollars. But v also has k neighbors borrow from it, so v loses k

dollars. This is a total net gain of 0 dollars.

Case 2: v is adjacent to x. Then v borrows a dollar from each of its j neighbors to gain

j dollars. However, v also has j − 1 neighbors borrow a dollar from it, so v loses j − 1

dollars. This is a net gain of 1 dollar.

Case 3: v = x. Then v borrows no dollars from it’s neighbors and gains 0 dollars.

Additionally, v has n neighbors borrow one dollar each, so v loses n dollars. This is a

net loss of n dollars.

This is equivalent to x lending each neighbor a dollar. Therefore, any lending move can

be achieved through a sequence of borrowing moves.

Corollary 18. If a game on a graph G with initial configuration D(G) is winnable, then it can

be won through only making borrowing moves.

Lemma 19. Borrowing moves are commutative, so it does not matter which order they are taken

in.

Proof. Let G be a graph with initial dollar configuration D(G). Let x,y be vertices of G.

Let the degree of x, d(x) = n and d(y) = m. Suppose x borrows a dollar. Then all of x’s

neighbors decrease by one dollar and x increases by n dollars. Then y borrows a dollar.

Neighbors of y decrease by one dollar and y increases by m dollars. In total, shared

neighbors of x and y decrease by two dollars, and neighbors in the symmetric difference

decrease by one dollar. If x and y increase by n and m dollars respectively, unless they

are neighbors. In that case x increases by n− 1 dollars and y increases by m− 1 dollars.

Now suppose y borrows a dollars first Then all of y’s neighbors decrease by a dollar

and y increases by m dollars. Then x borrows a dollar, so all of x’s neighbors decrease

by a dollar and x increases by n dollars. In total, shared neighbors of x and y decrease

16



by two dollars, and neighbors in the symmetric difference decrease by one dollar. If x

and y increase by n and m dollars respectively, unless they are neighbors. In that case x

increases by n− 1 dollars and y increases by m− 1 dollars. This is the same outcome as

when x borrowed first. Therefore, borrowing moves are commutative.

Since lending moves can be converted to borrowing moves, and borrowing moves are

commutative, we can assume all moves happen simultaneously.

Definition 20. Let T be a connected acyclic graph (tree). Let P be a path in T . Let xi be a

vertex on P. Then define the xi-subtree to be the subgraph of T consisting of xi and the

branches of of xi that do not lie along P.

Figure 3.1: Example of an xi-subtree. The x3-subtree is outlined in the red box.

Lemma 21. For a game on a tree graph T , a dollar can be moved from any one vertex to any

other vertex while maintaining dollar amounts on all other vertices in the tree.

Proof. Let T be a tree with dollar configuration D(G). Suppose there is one dollar on

vertex x we wish to move to vertex y. Since T is a connected tree, there exists a unique

(x,y)-path. Let P = xx1...xn−1y be such a path. Then the distance from x to xi along
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path P is i. For each xi along P and its corresponding xi-subtree, borrow i dollars. For y

which is distance n from x, and its corresponding y-subtree, borrow n dollars.

Consider vertex v after these moves have taken place.

Case 1: v = x. Then x decreases by one dollar.

Case 2: v = xi for some xi along P. Then xi borrows [d(xi)]i dollars. But it has [d(xi) −

2]i+ (i− 1) + (i− 2) = [d(xi)]i dollars borrowed from it, for a net change of zero dollars.

Case 3: v ∈ the xi-subtree. Then v borrows [d(v)]i dollars, but also has [d(v)]i dollars

borrowed from it, for a net change of zero dollars.

Case 4: v = y. Then y borrows [d(y)]n dollars. But it also has (n − 1) + [d(y) − 1]n =

[d(y)]n− 1 dollars borrowed from it, for a net change of one dollar.

Therefore we have moved one dollar from x to y without changing the dollar amounts

on any other vertices.

Corollary 22. If a game on a tree T has configuration D(T) such that the total number of dollars

on the graph is non-negative, then the game is winnable,

Proof. This follows immediately from the fact that we can move any positive dollar

amount to any other vertex without impacting the dollar amounts on the other ver-

tices.

Example 6. In this game, we wish to move the $1 that is currently on the vertex x to the

vertex y so that y can get out of the negative. We need to leave all other dollar amounts

on vertices unchanged, or one of them may go into the negative. We begin by having

vertex x1 borrow $1 since it is distance one from x. Then vertex x2 and all vertices on

the x2-subtree borrow $2. This leaves all of the vertices on the subtree, excluding x2,

with unchanged dollar amounts, since they each have an even exchange of $2 with their
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neighbors. Then x3 borrows $3, and finally, y and the y-subtree borrows $4. Again, the

additional vertices on the y-subtree remain with unchanged dollar amounts since it’s an

even exchange of currency between neighbors.

Figure 3.2: Example of moving one dollar from one vertex to another on the tree.

We have seen that having a nonnegative total dollar amount is necessary for a winnable

game, and we have shown that this condition is sufficient for a winnable game on a

tree. However, this condition is not sufficient in general for arbitrary graphs that contain

cycles.
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3.1 The Dollar Game with Cycles

A non-negative total of dollars on the graph is a necessary condition for the game to be

winnable, but it is not sufficient.

Example 7. The following initial configuration on the triangle graph is not winnable,

despite there being a non-negative total on the graph.

Figure 3.3: Example of an unwinnable configuration with total dollars equal to zero on
a triangle graph.

Notice that if the positive vertex a lends to its neighbors, we end up with a clockwise

rotation of the original configuration. If the negative vertex borrows, the configuration

rotates counterclockwise. No matter how we try to structure our lending and borrowing

moves, we will always end up with some rotation of the initial configuration eventually.

We can actually prove this configuration is unwinnable. Since we can look at the bor-

rowing moves of the game as if they happen simultaneously, then we can prove that the

above example is not winnable. Say vertex a borrows x dollars from its two neighbors,

vertex b borrows y dollars from its two neighbors, and vertex c borrows z dollars from

its two neighbors. Then for there to be a winnable solution, it would need to satisfy the

following system of equations:


2x− y− z+ 1 = 0

−x+ 2y− z− 1 = 0

−x− y+ 2z = 0
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Solving this system of equations we obtain x = z − 2
3

and y = z − 1
3
. Since vertices can

only borrow whole dollar amounts, this is an unwinnable game.

Example 8. The following configuration on the triangle graph is clearly winnable, even

though it has the same total dollar amount as our first triangle graph in the previous

example. If a lends $1, then the game is won. Alternatively, c could borrow $1 followed

by b borrowing $1.

Figure 3.4: Example of a winnable configuration with total dollars equal to zero on a
triangle graph.

It might be tempting to think that the above configuration is only winnable because the

debt is split evenly between a’s neighbors. However, there are examples where that is

not the case, and our proof that the first triangle configuration wasn’t winnable holds the

key. The first configuration wasn’t winnable because it required non-integer solutions.

In fact, it required rational solutions where the divisor was three.

Example 9. It may then come as no surprise that the following configuration does have

a solution.

Solving the following system of equations:


2x− y− z+ 3 = 0

−x+ 2y− z− 3 = 0

−x− y+ 2z = 0
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Figure 3.5: Another example of a winnable configuration with total dollars equal to zero
on a triangle graph.

we obtain x = z− 1 and y = z+ 1. One possible solution to this is x = 0,y = 2, z = 1. In

order for the figure, b borrows $2 and then c borrows $1.

Figure 3.6: Solution to triangle example.

Theorem 23. A dollar configuration with total zero dollars on a triangle graph is winnable if

and only if the difference between initial dollar amounts of any two vertices is a multiple of three.

Proof. Let D(G) be an initial dollar configuration on a triangle graph G such that the

total dollar amount on the graph is zero dollars. Let vertex a have A dollars, vertex b

have B dollars and vertex c have C dollars. Let a borrow x dollars, b borrow y dollars,

and c borrow z dollars. Then the following system of equations must have an integer

solution 
2x− y− z+A = 0

−x+ 2y− z+ B = 0

−x− y+ 2z+ C = 0

where A+ B+ C = 0. Solving this system of equations we obtain:
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A− C =
−4a− 2b

6
=

−(2a+ b)

6

b− c =
−a− 2b

3
.

This implies that (2a + b) = 3k for k ∈ Z and (a + 2b) = 3J for J ∈ Z. Then 2a + b = 3k

implies b = 3k− 2a. Substituting into A+ B+ C = 0 we obtain

A+ (3k− 2A) + C = 0

3k−A+ C = 0

−A+ C = −3k

A− C = 3k.

This implies that A ≡ C mod 3. Additionally A + 2B = 3J implies A = 3J − 2B. Again,

substituting into A+ B+ C = 0 we obtain

(3J− 2B) + B+ C = 0

3J− B+ C = 0

−B+ C = −3J

B− C = 3J.

This implies B ≡ C mod 3, which implies that A ≡ B mod 3. Thus, the difference

between the initial dollar amounts of any two vertices is a multiple of three.
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3.1.1 The Impact of the Graph’s Betti Number

Definition 24. For a graph G, let V be the number of vertices of G, E the number of

edges of G. Then the Betti number of G is E− V + 1. This can also be thought of as the

minimum number of edges one would need to delete from G to obtain a tree [3].

Note that for a graph G, if we consider T = a spanning tree of G, then T has v− 1 edges.

Then there are e− (v+ 1) edges of G that are not contained in T . If we add any of those

remaining edges to T we will introduce a cycle to the graph.

Figure 3.7: The Betti number of G is 5 - 4 + 1 = 2. If we remove edges dc and ac we will
have a tree.

Theorem 25. [3] For a graph G with initial dollar configuration D(G), if the total dollar amount

is greater than or equal to the graph’s Betti number, then the game is winnable.

Baker proved this theorem in his paper with Algebraic Geometry using Riemann-Roch

and Abel-Jacobi theory. It was our aim to provide a graph theoretical proof of this

theorem.

First, notice that if G is a tree, then the Betti number E−V+1 = (V−1)−V+1 = 0. This

supports the fact that a tree is winnable with any nonnegative dollar total on the graph.

We will show this for a single cycle with total dollars on the graph equal to the Betti

number, which for a cycle is one.
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Proposition 26. If C is a cycle with dollar configuration D(C) such that the total number of

dollars on the cycle is one, then we can move a dollar from positive vertices to a negative vertex

without bringing other vertices into debt.

Proof. Let C be a cycle with dollar configuration D(C) such that the total number of

dollars on the cycle is one. If there are no negative vertices then the game is already

won. So assume there is a negative vertex v. For clarity, orient the cycle so v is at the

bottom in approximately the six o’clock position. There must be at least one positive

vertex. Let x be the closest positive vertex to v traveling clockwise from v around the

cycle and let y be the closest positive vertex to v traveling counterclockwise around the

cycle. Note that it may be that x = y. In that case, x = y would have at least $2 since the

total must be equal to one.

Let P1 be the path x = xox1x2...xn = v be the (x, v)-path on the left of the cycle and let

P2 be the path y = x0y1y2...ym = v be the (y, v)-path on the right hand side of the cycle.

Let n be the length of P1 and let m be the length of P2. Without loss generality, suppose

n 6 m. Then have all vertices on the (x,y)-path that does not run through v lend n

dollars. Then for each i, vertex xi lends n − i dollars. Additionally, for each i, vertex yi

lends (n− i) dollars, unless (n− i) is negative, in which case the vertex lends nothing.

Consider vertex w after these moves.

Case one: w = x or w = y. Then w lends n dollars to each of its two neighbors, but gets

back n dollars from one neighbor and n − 1 dollars from the other neighbor. If w starts

with d dollars, then w finishes with d − 2n + n + (n − 1) = d − 1. So, each of the two

positive vertices lose one dollar.

Case two: w is a vertex on the (x,y) path that does not go through v. Then w lends n

dollars to each of its neighbors, but also receives back from each of its neighbors. This is
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an even exchange of money, so the dollar amount on w remains unchanged.

Case three: w lies on P1. Then w = xk for some k. Suppose w starts with d dollars. Then

w lends n−k to each of its two neighbors, but gains n−k+1 dollars from one neighbor,

and gains n − k − 1 from the other neighbor. So w is left with d − 2(n − k) + (n − k +

1) − (n− k− 1) = d dollars, so w total dollars remains unchanged.

Case four: w = v or w lies on P2 and is the first vertex that doesn’t lend money. Then

w receives one dollar from its neighbor and does not lend anything back, so w’s dollars

increase by one. If w = v and n = m then v is the first vertex that doesn’t lend for both

P1 and P2. In that case, v increases by two dollars.

Case five: w lies on P2 and does not lend, not does it receive anything from its neighbors.

Then clearly its dollar amount doesn’t change.

Therefore, positive dollars can be moved to a negative vertex without bringing any other

vertices into debt.

Example 10. See figure 3.8. In the following example, we have two vertices, e and i with

positive dollar amounts, and one vertex, a with a negative dollar amount. We wish to

move a dollar to the negative vertex a. We begin by having all vertices on the (e, i)-path

that does not run through a each lend the dollar amount equal to min{d(e,a),d(i,a)}

which in this case is d(i,a) = 3. The vertices on the interior path do not change their

dollar amount, since this is an even exchange of currency. The vertices e and i are each

in the negative by two dollars from the excess money loaned to d and j respectively.

In the second step, vertices d and j each lend one dollar less than they received, so

in this case, they each lend two dollars. This pays back the debt to vertices e and i

respectively. Additionally vertices c and k increase to two dollars each, and d and j are

each at negative one dollar from the excess lent to c and k respectively.
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Finally, in the third step, vertices c and k each lend one dollar less than they received,

so in this case, they each lend one dollars. This pays back the debt to vertices d and j

respectively. Additionally vertices b and a increase by one dollar, giving b one dollar

and a coming out of the negative to zero dollars.

Figure 3.8: Example of moving a dollar to a negative vertex on a cycle.

3.1.2 Attempts at a General Proof

We have made several attempts at a general proof. At best we were able to prove that

we can get the graph down to having only one vertex in the negative. We will present

27



two of these proofs here. The first attempt at a proof was induction on the Betti number

of the graph.

Proposition 27. Given a connected graph G with dollar configuration D(G), if the total number

of dollars on the graph is equal to or exceeds the Betti number of the graph, then there is a sequence

of borrowing moves that leads to at most one negative vertex on the graph.

Proof. We know this is true for Betti number equal to zero by Theorem 22. Now suppose

it is true for graphs with Betti number B and consider a graph with Bettie number B+ 1.

Consider subgraph G ′ = G− e where e is a non cut edge. Let x,y be the endpoints of e.

Then the Betti number is decreased by one, and by the induction hypothesis, we know

there is a solution.

Apply this solution to the original graph G by having all of the vertices in G borrow the

same amount that they borrowed in the solution for G ′.

Case one: In the solution, both x and y borrow the same dollar amount. Then replacing

the edge creates an even exchange between the two, and their values don’t change. The

solution still works and the game is won.

Case two: In the solution, x and y borrow different amounts. Without loss of generality

suppose x borrows more than y. If y does not have the excess currency available to lend

this difference to x, y will now be in debt, but it will be the only vertex in debt.

The second proof was an attempt to induct on the number of vertices in the graph.

Proof. Suppose we have a simple connected graph with n = 2 vertices with dollar con-

figuration D(G) such the the total dollars on the graph is greater than or equal to the

Betti number of the graph. Then the graph is P2 and we know by Theorem 22 there is a

sequence of borrowing moves that will win the game.
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Assume this is true for all graphs with k vertices. Suppose G has k+ 1 vertices. Choose

an edge with endpoints x and y. Suppose x has a dollars and y has b dollars. Create

G ′ by contracting the edge xy, and combining the dollar amounts from both vertices.

This may create multiple edges in the graph G ′. These are needed to maintain the vertex

degrees from the original graph. This new combined vertex has (a + b) dollars. By

the induction hypothesis, there is a sequence of borrowing moves the solves the game.

Uncontract the edge, and utilize the same borrowing moves in the original graph. Have

vertices x and y both borrow the same amount as the combined vertex in the solution

from G ′.

We know that all vertices besides x and y are positive in G, since vertex degrees were

maintained in G ′. However, in general, while the new dollar amounts on x and y sum

to a positive amount, it is possible that one of the two vertices is negative.

While there is still a lot that we don’t completely understand about the Dollar Game

on more complex arbitrary graphs, we will continue to work towards a general graph

theoretical proof for arbitrary graphs, and hope to make further progress in the near

future.
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