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Abstract 
 

Treating ovarian cancer is challenging due to a variety of genetic mutations and affected cell 

types attributing to cancer development, diagnosis in advanced stages, and acquired drug resistance 

mechanisms (MDR) due to chemotherapy treatment.  Taxol, a free drug formulation of paclitaxel 

(PTX), is one of the most widely used chemotherapeutic drugs. Clinically, paclitaxel is used in 

combination with other drugs such as lapatinib (LAP) to increase treatment efficacy and overcome 

MDR.  In both pre-clinical and clinical studies, sequentially delivering drug combinations have been 

found to improve drug efficacy.  However, there is a challenge with translating pre-clinical results to 

clinical practice due to a difference in time-scales of treatment schedules, i.e, hours in preclinical 

studies vs. days to weeks in clinical studies.  Furthermore, the drug efficacy of free drug formulations 

is limited due to poor solubility, poor bioavailability, and severe toxicity. Nanoparticle drug delivery 

can overcome these limitations with controlled drug release.   

Flash NanoPrecipitation (FNP) is developed as a rapid, scalable, self-assembly process that 

leverages intermolecular interactions to encapsulate hydrophilic macromolecules and weakly 

hydrophobic drugs (logP <6) via in situ complexation with antioxidants (i.e. tannic acid) formulating 

a pH-labile platform. A single-step method using FNP was demonstrated by complexing proteins with 

tannic acid and then stabilized with a polyelectrolyte. These nanoparticles have high encapsulation 

efficiency of hydrophilic macromolecules (~80%), are stable at physiological conditions, and 

disassemble upon changes in pH to release their biologic payload.  

Next, in situ coordination complexation of tannic acid and iron (TA-Fe3+) via FNP was used 

to encapsulate paclitaxel and lapatinib in pH-labile, polymer-stabilized nanoparticles. The drug release 

at pH 7.4 was driven by Fickian diffusion while at pH 4 drug release was driven by dissolution of the 

core. Encapsulation of paclitaxel and lapatinib into nanoparticles increased drug potency by 1500-fold 



Shani L. Levit • Ph.D. Dissertation • Chemical and Life Science Engineering   2 
 

for paclitaxel and 6-fold for LAP in vitro with ovarian cancer cell line (OCA-432). When PTX and 

LAP were co-loaded into the same nanoparticle, they displayed a synergistic interaction indicated by 

a combination index of 0.23.  Sequential drug delivery was also examined with delivery of single-drug 

nanoparticles using two ovarian cancer cell models with three different treatment schedules. The 

response was cell-dependent; overall the greatest cytotoxicity was observed with simultaneous drug 

treatment or paclitaxel delivery followed by delivery of lapatinib 24 hours later.  Based on these 

results, further enhancement of drug efficacy was explored by formulating a paclitaxel prodrug (PTX 

conjugated to Vitamin E). The drug release of the prodrug from the nanoparticle was faster than 

paclitaxel due to different driving forces (i.e. compression of core) which facilitated sequential release 

of the paclitaxel prodrug prior to lapatinib. In vitro, there was an 8-fold and a 5-fold increase in drug 

efficacy of the prodrug relative to paclitaxel in free drug formulations and in nanoparticles, 

respectively. The potency was further enhanced by co-encapsulation with lapatinib. Overall, these 

findings provide the foundational methods to increase efficacy of paclitaxel and control drug release 

from nanoparticle for sequential drug delivery.  

 While nanoparticle formulations offer advantages over free drugs for sequential drug delivery 

of drug combinations, the stability of nanoparticle dispersions, which requires cold-chain storage, is 

an obstacle for translation to clinical practice. While drying the dispersion can improve long-term 

storage, the main limitations of current drying methods are particle aggregation, high-energy 

reconstitution, and the use of large amounts of cryoprotectants. A novel, rapid, and room-temperature 

method for drying nanoparticles via electrospinning was developed. Redispersion by hand-mixing to 

the original nanoparticle size was achieved when the fiber diameter and nanoparticle diameter were 

comparable. Overall, the techniques laid out in this dissertation facilitate translation of controlled 

sequential drug delivery to clinical practice using nanomedicines for treating ovarian cancer. 
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1. Chapter 1: Review of Sequential Drug Delivery of Drug 

Combinations for Chemotherapeutic Treatment of Ovarian 

Cancer 

 

 

 

 

1.1. Introduction 

Ovarian cancer is one of the most common forms of cancer among women with over 200,000 

new cases of ovarian cancer each year worldwide [1]. Genetically inherited gene mutations are one of 

the most significant risk factors for ovarian cancer. Other risk factors include age, gynecological 

conditions, pelvic inflammatory disease, and polycystic ovarian syndrome [1]. Both the prevention 

and early detection of ovarian cancer are difficult because most cell markers cannot be reliably 

diagnosed during early stages [1–4]. Therefore, ovarian cancer is primarily diagnosed in advanced 

stages (stage III) when the 5-year survival rate is only 30% [1].  

There are five primary types of ovarian cancer, each with different progression, genetic 

mutations, and prognoses associated with the disease. These five types of ovarian cancer originate 

from three cell types: epithelial cells, stromal cells, germ cells. Among these, epithelial ovarian cancer 

is one of the most common [4]. However, the pathogenesis is still not well understood and there are 

varieties of mutation profiles that contribute to the development of ovarian cancer. Type 1 serous and 

mucinous tumors are associated with the mutation of BRAF and KRAS oncogenes, endometroid 

tumors are associated with PTEN gene [1,5]. Type II high-grade serous and carcinosarcoma tumors 
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have p53, BRCA1, and BRCA 2 gene mutations [4,6]. A more detailed review of ovarian cancer 

epidemiology is available by Reid et al. [1].  

For all types of ovarian cancer, the standard of care includes surgery to remove the majority of 

the tumor followed by chemotherapy [4]. Surgery entails a hysterectomy, removal of both ovaries, and 

removal of tumor tissue to reduce volume [6].  However, surgery alone is ineffective at completely 

treating ovarian cancer, due to the formation of microscopic tumor tissues and macroscopic peritoneal 

implants that form during advanced stages [7].  For patients with advanced stage ovarian cancer, 

platinum-based chemotherapy, such as cisplatin, following surgery was the standard of care for over 

40 years.  

Paclitaxel, extracted from the bark of the Yew tree, was discovered to have anticancer activity 

and in the 1990’s was FDA approved for ovarian cancer treatment [4,8]. Currently, the standard of 

care is two-drug combination treatment of carboplatin and paclitaxel infusion over 3 hours weekly, 

for 6 cycles. While this treatment has been found to prolong survival and improve quality of life for 

patients, it is associated with severe systemic toxicity and many patients experience recurrence. Only 

a small population have long-term remission [7,9,10]. [7]Treating patients with recurring ovarian 

cancer and acquired drug resistance mechanisms remains a significant challenge [7].  

Sequential treatment with of drug combinations is a common practice for managing recurring 

ovarian cancer. One of the common sequences is first-line carboplatin and paclitaxel therapy followed 

by a re-treatment of both drugs at first relapse which has high response rates (~85%). Due to various 

factors such as the type of ovarian cancer, genetic mutations, and development of resistance 

mechanisms, selecting appropriate drug combinations as well as treatment schedule is challenging 

(Figure 1). Both clinical and pre-clinical studies have investigated sequence schedules of drug 

combinations to overcome these limitations [12–14].  
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Figure 1: Diagram of advantages of drug combination for treating ovarian cancer. (A) Synergy can be observed 

when the drug combinations act through multiple pathways. (B) Combinations can overcome multi-drug 

resistance (MDR) mechanisms to increase anticancer activity. (C) Delivery of drug combinations can also 

reduce toxicity by reducing the necessary doses of each drug. Reprinted from [11], Copyright (2012), with 

permission from Elsevier  

 

 

The definition of sequential therapy is an important consideration when developing new drug 

combinations and translational research. However, there is not a direct comparison between clinical 

and pre-clinical results due to a difference in time schedules. Clinically, sequences of drug 

combinations are treated on the order of days to weeks [15–17] . However, in vitro and in vivo 

sequential drug treatments are on the order of hours which are on the same timescale as many drug-

activated pathways [13,18,19]. This results in a disparity between practices in pre-clinical studies and 

the clinic. While delivering therapeutic dosages on the same time scale as cellular activity can enhance 

therapeutic efficacy, two major challenges for transitioning this practice into the clinic are patient 

compliance and increased cytotoxicity. Nanoparticle drug delivery can overcome these limitations 

with controlled drug release.  
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This review will discuss the clinical motivations for sequential chemotherapy for treating 

ovarian cancer. The focus on this review is combinations of small molecules including platinum 

chemotherapeutic agents, taxane agents, doxorubicin, targeted protein inhibitory drugs, as well as 

other therapeutic agents. In vitro and in vivo drug efficacy are discussed in terms of drug synergy for 

free-drug delivery of drug combinations. Nanoparticle drug combinations of polymer micelles, 

dendrimers, and lipid nanoparticles are also reviewed for treatment of ovarian cancer. Lastly, 

computational modeling and predictive approaches are discussed to facilitate the selection of drug 

combinations and schedules.  

 

1.2. Clinical Motivation 

1.2.1. Drug Resistance Mechanisms  

With chemotherapy treatments, many patients often relapse due to development of drug 

resistance mechanisms. Drug resistance can be attributed to five factors: 1) Drug inactivation or 

detoxification, 2) dose intensity, 3) drug efflux,  4) DNA repair, 5) cell death inhibition [20,21]. 

Ovarian cancer cells are known to form resistance mechanisms to a variety of drugs including cisplatin, 

carboplatin, and paclitaxel (Figure 2) [20].  

Cells have mechanisms for detoxification or inactivation of anticancer drugs, particularly 

platinum therapies, thereby reducing their potency [22,23]. Drugs interact with proteins that either 

modify, degrade, form drug complexes, or downregulate proteins necessary for metabolic activation 

of the drug [24,25]. Metallothionein and glutathione are known to play a role in detoxification either 

by altering drug transportation, enzymatic-catalysis of inactivation of platinum, or inhibiting DNA 

damage induced by platinum therapies [20]. Some of the proteins involved with the activation and 

inactivation of the drugs are cytarabine (AraC), cytochrome P450 (CYP), glutathione-S-transferase 

(GST), and uridine diphospho-glucuronosyltrasnferase (UGT) [21,24,25]. 
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The drug resistance is also attributed to an increase in drug efflux. Cancer cells can decrease 

drug accumulation by enhancing drug efflux. The class of ATP-binding cassette (ABC) transporters 

are membrane proteins that have a role in removing and regulating the transport of substances across 

the cell membrane. However, in some cancer cells, there is an upregulated expression of the ABC 

transporters, which facilitate the removal of anticancer drugs thereby lowing intracellular drug 

accumulation. From the ABC transporter family, three proteins are known to be associated with drug 

resistance: multidrug resistance protein 1 (MDR1), multidrug resistance-associated protein 1 (MRP1), 

and breast cancer resistance protein (BCRP). These proteins effect the drug efflux of taxane and kinase 

inhibitor drugs among others [26,27]. Interestingly, a decrease in platinum drug accumulation is not 

associated with P-glycoprotein expression while it is a factor for Taxol resistance [20]. 

Platinum drugs can be particularly susceptible to drug resistance.  Platinum therapies induce 

cytotoxicity by forming lesions in DNA which disrupt DNA synthesis and gene expression. Studies 

have shown that in cells resistant to platinum therapy, DNA repair is enhanced and the rate of DNA 

repair may also depend on the affected genomic regions [28,29]. DNA repair mechanism also involves 

nucleotide excision repair and homologous recombination [30,31].  

Drug resistance can also occur by cell inhibition of apoptosis and autophagy pathways. For 

example, apoptosis can be inhibited by overexpression of antiapoptotic proteins such as B-cell 

lymphoma 2 (BCL-2) and Akt proteins  [21]. Review of drug resistance mechanism can be found 

elsewhere: [20,21,32].  



Shani L. Levit • Ph.D. Dissertation • Chemical and Life Science Engineering   8 
 

 

Figure 2: Mechanisms of cancer cell resistance to anticancer therapy ranging from changing expression of 

proteins to effecting drug accumulation, drug metabolism, and altering gene expression or repair to apoptotic 

pathways. (A) Reprinted from [33], Copyright © 2013, Springer Nature and  (B) reprinted from [34], Copyright 

© 2014 Kapse-Mistry, Govender, Srivastava and Yergeri. 

 

1.2.2. Standard of Care & Sequential Treatment 

The challenge still remains to treat patients with recurring ovarian cancer while preventing 

drug resistance mechanisms. Some of the current approaches for treating ovarian cancer with 

multidrug resistance as well as preventing resistance include 1) combination therapy with noncross-

resistant agents; 2) sequential therapy of drug combinations; 3) dose-intense chemotherapy 4) 

intraperitoneal therapy which exposes cancer cells to higher drug concentration at tumor site; 5) use 

of signal transduction inhibitors such as tyrosine kinase inhibitors; 6) new drug formulations such as 

nanoparticles [35]. Although, dose-intense chemotherapy has shown limited efficacy with the 

maximum dose limitations in clinical setting. 

In cases where the time to relapse is within 6 months after first-line treatment, the ovarian 

cancer is considered platinum resistant [3,7].[3].The current standard of care is dependent on platinum 

sensitivity with therapy responses based on a platinum-free interval during second-line therapy leading 

to improved patient outcomes [36]. Therefore, incorporation of a platinum-free interval has been an 

important consideration for both platinum-sensitive and -resistant groups. Other studies have 

investigated methods to overcoming these challenges with combination chemotherapy regimens such 
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as drug combinations of carboplatin with gemcitabine which was found to improve progression time 

and progression-free survival compared to platinum treatment alone [37]. The treatment-free or 

platinum-free intervals have been found to be important for improving patient responses to therapies 

because the interval can aid in reducing the tumor resistance to therapies. However, after even the 

first-line treatment, many patients develop drug resistant mechanisms which limit the efficacy of 

chemotherapies [9].  

The second, third, and fourth relapses cycle through etoposide, liposomal doxorubicin, and 

topotecan, respectively. But there are severe limitations of this sequence due to cumulative toxicity of 

these drugs and decrease in quality of life for the patient [38].  

An alternative sequence approach, the first-line therapy remains carboplatin with paclitaxel, 

followed by topotecan as the second-line therapy. The reason for the shift is that although the efficacy 

of topotecan is comparable to single-drug platinum-therapy, it does not induce cumulative toxicity and 

patient response is higher with minimal pretreatment. This allows for treatment with other 

chemotherapeutic agents upon the next relapse [39,40].  

In an effort to improve patient outcomes, strategies such as maintenance therapy and 

intraperitoneal drug administration, as well as drug combination treatments, have been investigated 

[7]. Maintenance therapy has been investigated as a means to prevent relapse [7,41]. One study dosing 

12 monthly cycles of paclitaxel found that it produces neurotoxicity and the results were inconclusive 

[41]. Similarly, maintenance studies with topotecan and epirubicin did not show an improvement in 

patient survival [42,43].  Intraperitoneal (IP) chemotherapy delivers the anticancer drugs directly into 

the peritoneal cavity and has been investigated in small-volume ovarian cancers. The advantages of 

this delivery method is that higher drug concentrations can be delivered to the tumor tissue [44]. While 

this treatment improves survival, it is not commonly used due to severe toxicity [45].  
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Currently, the standard of care is two-drug combination treatment of platinum agent with 

paclitaxel. McGuire et. al. [46] found that drug combinations of paclitaxel and cisplatin significantly 

improved survival rates. Furthermore, increasing dosage concentrations of paclitaxel and cisplatin was 

found to improve survival; however, it also increased neurological and gastrointestinal toxicity [47]. 

This led the change in standard of care to combination of taxol chemotherapeutics with carboplatin, a 

less toxic platinum agent delivered through infusion over 3 hours in six three-weekly cycles [46,48].  

While combinations of paclitaxel and carboplatin reduce some of the cytotoxic effect observed 

with paclitaxel and cisplatin, patients still experience systemic toxicity. Side effects include 

myelosuppression, neuropathy, and alopecia [7].  Other studies have found that delivering a weekly 

schedule of dose-dense paclitaxel improved the survival while minimizing progression [49,50]. A 

study by Kutsumata et al. investigated delivery of dose-dense paclitaxel and carboplatin (1 hr infusion) 

on a weekly regimen compared to the standard treatment of paclitaxel and carboplatin (3 hr infusion) 

every 3 weeks in a phase III trial. The study found that weekly dose-dense therapy of paclitaxel with 

carboplatin significantly improved patient survival [49]. Another limitation of chemotherapy is the 

cumulative toxicity with multiple treatments [51]. There is still a need to improve chemotherapy and 

minimize side effects of the treatment. 

Other combinations of chemotherapeutic agents and dosing schedules have also been explored 

clinically in an effort to overcome drug resistance mechanisms, prevent relapse, and limit systemic 

toxicity. A Phase I trial examined sequence schedules of gemcitabine in combination with paclitaxel 

in patients with recurring epithelial ovarian cancer. The study found a schedule of paclitaxel treatment 

on day 1 and gemcitabine on day 1 as well as day 8 increased patient response rate by 41% and enabled 

high drug dosing with tolerable toxicity  [12]. Another clinical trial examined drug combinations of 

cyclophosphamide, hexamethylmelamine, adriamycin, and cis-dichlorodiammineplatium(II) in 

patients with ovarian carcinomas. The drugs were administered on a 4 -week cycle simultaneously on 
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day 1 and hexamethylmelamine was given orally on days 1-14. However, this treatment was found to 

induce severe side effects [52].  

More recently, the standard of care has shifted to nanoparticle drug formulations [53]. 

PEGylated liposomal doxorubicine (Doxil), has been shown to enhance drug efficacy in recurring or 

resistant ovarian cancers. Initially, Doxil was treated at 50 mg/m2 every 4 weeks but there was schedule 

and dose-dependent toxicity associated with this treatment [54,55]. This led to several studies 

examining reduced dosage to 40 mg/m2 every 4 weeks which was found to minimize toxicity and 

enhance treatment efficacy [56]. In order to further improve patient response to treatment, Doxil has 

been used in combination with other chemotherapies such as carboplatin, paclitaxel, and gemcitabine 

in a variety of treatment schedules. Overall, the studies found that reducing the dosages of both agents 

would minimize toxicity and increase therapeutic efficacy [57–59]. 

Overall clinical practices are shifting to sequential chemotherapy of drug combinations. 

Selection of appropriate drug combinations is an important consideration to prevent cross-resistant 

therapies and minimize cumulative toxicities [9]. Certain sequences can enhance drug efficacy, 

producing a synergistic drug interaction while others can be antagonistic; therefore, exploring efficacy 

of drug sequence schedules will drive improvements in chemotherapeutic treatments. There also needs 

to be a consideration for the time scale of sequential treatments conducted in clinical practice, typically 

on the order of one week, and methods for closing the gap between pre-clinical studies which are 

conducted on shorter treatment cycles.  

 

1.3. Drug Interaction and Synergy Methods 

With the growing approach of drug combination therapies, it is important to understand the 

interactions of the drugs. Screening studies help to determine the concentrations of the drugs necessary 

to produce an effective treatment. Therefore, understanding the dose-response interaction of each drug 



Shani L. Levit • Ph.D. Dissertation • Chemical and Life Science Engineering   12 
 

is vital. Multiple drugs can either exhibit no cross-interaction with each other, producing an additive 

effect. However, drug combinations can also interact with one another depending on the drug target, 

downstream pathways activated by the drugs, and other biochemical interactions in the cells. These 

interactions are classified as either synergistic or antagonistic effects. Synergistic drug interaction is 

classified as a greater overall effect of two or more drugs than the sum of their individual effects. In 

the reverse case, when the combination of multiple drugs produces a smaller effect than the sum of 

the individual components, the drug interaction is antagonistic. This is a particularly important concept 

for developing new drug combinations and schedules because the combination of the drugs could 

produce an enhanced cytotoxic effect (synergistic) or inhibit cytotoxicity and induce greater systemic 

toxicity [60]. There are several methods for quantifying the synergy and drug interaction which are 

discussed here.  

 

1.3.1. Fractional Inhibition Concentration 

The fractional inhibition concentration (FIC) is a measure of synergy [61].  It is often used in 

defining synergistic effects of antibacterial drugs [62–64]. The FIC index is defined by (Eq. 1): 

∑ 𝐹𝐼𝐶 =  
𝑀𝐼𝐶𝐴,𝐵

𝑀𝐼𝐶𝐴
+ 

𝑀𝐼𝐶𝐵,𝐴

𝑀𝐼𝐶𝐵
       (Eq. 1) 

where the minimum inhibitory concentration, MIC, of drug A in combination is divided by the MIC 

of the drug alone resulting in the FIC of drug A (FICA) and added to the FICB of the second drug in a 

two drug system. In practice, the FIC is measured with a checkerboard dilution assay of the two 

selected drugs to measure the inhibitory activity of antibacterial and antibiotic drugs. Then the 

inhibitory activity is measured with a variety of methods including visual, spectrophotometric, and 

colorimetric assay from which the MIC is determined as the minimum drug concentration of a single 

drug necessary to inhibit bacterial growth [62].  
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Generally, synergy is defined for FIC values below 0.5 and values between 0.25 to 0.75 are 

regarded as weak synergistic. Additive interaction is considered between 0.5 – 4 and values over 4 are 

defined as antagonistic [62]. 

 

1.3.2. Interaction Index and Isobologram 

The interaction index can also be used to describe the combined effects of two or more drugs 

with Eq. 2 [65]: 

𝐼 =  
𝐷1

𝐼𝐷𝑋,1
+  

𝐷2

𝐼𝐷𝑋,2
      (Eq. 2) 

Where D1 and D2 are the concentrations of drug 1 and 2 delivered in combination and IDX,1 

and IDX,2 are the drug concentrations that produce the same level of effect, X, when treated alone. 

Often it is described at 50% inhibition (X = 50%). The Hill equation (Eq. 3) describes the drug induced 

effect, E, measured experimentally and uses the 50% inhibition concentration.  

𝐸 =  𝐸𝑚𝑎𝑥  ×
𝐶ℎ

𝐼𝐶50
ℎ+𝐶ℎ

      (Eq. 3) 

Where Emax is the maximum drug effect (near 100%), C is the drug concentration, and h is the Hill 

coefficient that describes the shape of the concentration-effect relationship [60].  

When the interaction index is equal to 1, there is no drug interaction. An interaction index 

below 1 indicates the two drugs are synergistic but when the value is greater than 1 the drugs are 

antagonistic. This concept is widely represented with an isobologram (Figure 3A), which represents 

the interaction of two drugs [66]. When there is no interaction between the drugs, the activity level is 

independent of the drug concentration. The isobologram is typically used at 50% inhibition (IC-50) 

effects and the line connecting the activity of the individual drugs defines zero drug interaction. When 

the 50% inhibition of the two drugs is below this line, the drugs are displaying synergism and if the 

concentrations are above the line of additivity, then the drug interaction is antagonistic [60]. The 
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isobologram is often used as a method for defining drug combination synergy, as it is a simple analysis 

technique.   

 

Figure 3. (A) Isobologram with concentrations of drug A and B on the X and Y axis. The line between the IC-

50 of drug A and B is the additivity effect of the drug combination. Below the line of additivity is synergy and 

above is antagonism. (B) and (C) are other visual representations of drug interaction. (B) is a plot of the 

combination index (CI) versus fraction affected (fA) and (C) dose reduction (DRI) index plotted against the 

fraction affected (fA). Figure reprinted from [60], Copyright © 2012 Breitinger. Licensee IntechOpen. 

 

1.3.3. Median Effect Analysis 

The median effect analysis (Eq. 4) was derived by Chou et al.  [67,68]:  

(
𝑑

𝑀
)

𝑛
=  

𝐸𝑑

1− 𝐸𝑑
       (Eq. 4) 

Where d is the drug dose, Ed is the effect of the drug,  and M is the dose that causes 50% effect or 50% 

cytotoxicity in the case of chemotherapy which is also defined as the half-maximal inhibitory 

concentration, IC-50. The n is the constant from the slope of the dose-response curve. This equation 

Figure 3 (synergy) A

B C
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can be used to understand the interaction between the drug dosage and response. The median effect 

analysis equation was used as the basis for developing the combination index and dose response index. 

1.3.4. Combination Index and Dose Response Index 

The median effect analysis and interaction index equations were extended to define the 

combination index (CI) to describe interaction of multiple drugs and the type of interaction between 

the drugs [69]. The combination index for multiple drug is defined by Eq. 5: 

𝐶𝐼 =  ∑
(𝐷)𝑗

(𝐼𝐷𝑋)𝑗

𝑛
𝑗=1         (Eq. 5) 

Where n is the number of drugs in the combination. When the CI is equal to 1 the effect is additive. 

When the CI is less than 1 the effect is synergistic and when it is above 1 the effect is antagonistic 

(Figure 3B). Furthermore, in the cases of synergistic interaction the dose reduction index (DRI) has 

been introduced to determine the reduced dose of the drugs necessary to achieve the same effect (Eq. 

6) [60]. 

𝐶𝐼 =  
1

(𝐷𝑅𝐼)1
+ 

1

(𝐷𝑅𝐼)2
      (Eq. 6) 

The DRI is defined by Eq. 7.  

𝐷𝑅𝐼𝑗 =
(𝐼𝐷𝑋)𝑗

(𝐷)𝑗
      (Eq. 7) 

The DRI is typically plotted against the fraction affected (fa) and described by a Chou-Martin plot 

(Figure 3C) [60]. It should be noted that the concentrations or effect level that are investigated can 

produce different results for drug interaction and some areas of the dose-response curve of the 

combination therapy could be further away from the point of single drug treatment, which could result 

in misinterpretation [70,71]. Furthermore, drug combinations can be biphasic, meaning that the dose-

response curve is non-linear and there can be a concentration range in which the drugs are synergistic 

or antagonistic [60,70].  
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Additionally, the effect of drug combinations can be unequal for the drugs used. When one or 

both the drugs have no effect individually but the combination does not affect the outcome it is termed 

inertism. In the case when the two drugs do not produce an effect individually but in combination they 

are synergetic, it is termed as coalism [60,72]. In the case of three or more drugs and varying schedules 

of delivery, determining synergistic interaction can be more complex [60]. In practice, combination 

index and dose response index are the two most common approaches for defining the synergistic 

activity of anticancer drugs.  

 

1.3.5. Other Models of Drug Interaction 

There are several other methods that help describe drug interaction. The Bliss independence 

model is based on the additivity of probability theory and defined by Eq. 8 when two drugs have no 

interaction. 

𝑌𝑎𝑏,𝑃 =  𝑌𝑎 + 𝑌𝑏 − 𝑌𝑎𝑌𝑏       (Eq. 8) 

Where Ya and Yb are the percent inhibition of drugs a and b and Yab,P is the percent inhibition of the 

drug combination [73]. However this model can only be applied to systems with linear drug 

concentration-inhibition relationships [60].  

The Loewe additivity model also describes drug interaction defined by Eq. 9. This model 

assumes that a drug cannot interact with itself. The Loewe additivity model is used in cases where the 

drug concentration-inhibition relationship is nonlinear and includes the isobologram [60].  

∑
𝑥𝑗

𝑋𝑗

𝑛
𝑗=1      (Eq. 9) 

Where xj is defined as the dose of compound j in combinations that produces an effect, y. The dose of 

individual treatment with compound j that produces the same effect, y, is represented as Xj. When the 

value is less than 1 indicates synergism and greater than 1 indicates antagonism [74].  
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Drugs can produce a synergistic effect by having one biological target or affect multiple 

pathways. However, the interaction of drugs can produce an agnostic effect by interfering with their 

metabolism which could affect the clearance, drug absorption, and tissue distribution of the drugs. 

Generally, these chemotherapy drugs affect a multitude of pathways and biochemical processes, 

therefore synergy can be difficult to quantify [60]. The Loewe additivity method is used more over 

compared to the Bliss Independence model, because the Loewe model takes into account similar 

mechanisms of action of the two compounds while the Bliss Independence assumes independent 

mechanisms of action [75].  Overall, characterizing synergy of drug combinations can be a useful tool 

for screening drugs and predicting the clinical response.  There are many different models for 

determining drug synergy with different assumptions of the drug interaction and most often the 

isobologram, combination index, and Loewe additivity model are used because they are based on 

measuring the dose for a certain inhibitory effect.   

 

1.4. Sequence-Dependent Synergy of Free Chemotherapeutic Drugs 

Historically, ovarian cancer has been treated with free drug formulations. Following the 

development of Taxol, there was a shift to combination therapy of paclitaxel with cisplatin or 

carboplatin [76–79]. Combination therapy provided several advantages including reducing the toxicity 

of the drug dose, inhibiting cancer activity with multiple molecular targets, and limiting the 

development of or overcoming drug resistance mechanisms [79,80]. Combination therapy has also 

been extended to sequential delivery of free drugs as a method for coordinating the activation of 

anticancer pathways to optimize drug efficacy. Free drug combinations and sequential drug delivery 

of small molecules paired with platinum or taxane drugs are discussed in this section as these two 

agents are most common in chemotherapeutic treatment of ovarian cancer but are also associated with 

high prevalence of resistance mechanisms.   
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1.4.1. Platinum Agents with Taxane 

Platinum and taxane combination regimens are often examined because both agents induce cell 

cycle-dependent effects. Cell cycle arrest at specific phases with sequential delivery could play an 

important role in the cell cycle arrest leading to cancer cell death [13]. The interaction of these drugs 

has been examined with various treatment schedules on ovarian cancer models to determine whether 

the combination provides a synergistic effect. 

Sequential delivery of cisplatin with taxane agents has been evaluated on both platinum-

resistant and -sensitive cells with cell-dependent outcomes [81,82]. A study by Judson et al. 

investigated combination of cisplatin with paclitaxel in platinum-resistant and -sensitive cell lines 

(A2780, A2780CP, 2008, C-13, SKOV-3, OVC 420, OVCA 429, OC-194, OC-494). Paclitaxel alone 

was found to induce apoptosis in both cisplatin-resistant and -sensitive cell lines; however, the addition 

of cisplatin inhibited paclitaxel-induced apoptosis in cisplatin-resistant cells. Similar effects were also 

observed when the drugs were sequentially administered with paclitaxel followed by cisplatin. As 

cisplatin did not inhibit stabilization of the microtubules nor the expression of Bcl-2, the results suggest 

that cisplatin targets are downstream of the primarily targets of paclitaxel in cisplatin-resistant cells 

[83]. 

Another study on the sequential delivery of paclitaxel and cisplatin was done by Vanhoefer et 

al. on ovarian adenocarcinoma cells (EOVI and EVO2) from patients pretreated with platinum 

therapies. Vanhoefer et al. found that treating the cells with paclitaxel 24 hrs prior to cisplatin produced 

a synergistic effect determined via isobologram analysis. However, when the two drugs were 

administered simultaneously or in the reverse sequence, the treatment was antagonistic. Furthermore, 

the study found that pre-exposure to cisplatin resulted in long-lasting antagonistic effects (up to 72 

hours post treatment) which could be attributed to a decrease in intracellular accumulation of paclitaxel 
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due to downregulation of glutathione (inhibiting cytotoxicity) and delaying cell phase transition from 

S-phase induced by cisplatin to G2/M phase induced by paclitaxel. The overall findings of the study 

found a schedule-dependent synergy of cisplatin plus paclitaxel (Figure 4A and 4B) [84].  

Second generation platinum therapies have also been considered in combination with taxane 

drugs to determine the synergistic effect and an optimal sequencing schedule [85–87]. Several studies 

examined combination of either cisplatin or carboplatin with taxane drugs. Smith et al. evaluated the 

toxicity of taxane (docetaxel and paclitaxel) with either cisplatin or carboplatin on several human 

ovarian cancer cell lines (CAOV-3, OVCAR-3, SKOV-3, ES-2, OV-90, TOV-112D, and TOV-21G). 

Cisplatin was found to be more toxic compared to carboplatin in terms of cell growth inhibition with 

either doxotaxel or paclitaxel as is reported in other clinical studies [76–78]. 

 

Figure 4. Isobolograms of sequentially delivered drugs to two human leukemia cells, HM2 cells (closed circles) 

and HM51 cells (open circles) with (A) cisplatin 24 hours prior to paclitaxel and (B) paclitaxel 24 hours prior 

to cisplatin. (C) Tumor weight after sequential delivery of paclitaxel and bleomycin with the lowest tumor 

weight observed with (+) bleomycin administer prior to paclitaxel. (A) and (B) Reprinted from [84], Copyright 

(1995), with permission from Elsevier. (C) Reprinted from [14], Copyright © 2001, © 2001 Lippincott Williams 

and permission from Wolters Kluwer. 

 

The relatively high systemic toxicity of cisplatin led to a shift to carboplatin as well as other 

platinum therapeutics. Carboplatin plus paclitaxel treatment has been examined on ovarian cancer cell 

models. A study found that sequential treatment of carboplatin followed by paclitaxel produced a 

synergistic effect, while reverse sequence and simultaneous treatment produced an additive effect 

using isobologram analysis. Similar results were also observed in human lung cancer cells (NSCLC, 

A B C
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A549) [14]. Furthermore, another study investigated binary combinations of paclitaxel or colchicine, 

which like paclitaxel also inhibits tubulin polymerization, with cisplatin, oxaliplatin, YH12 (trans-

PtCl2(ammino) {imidazo-(1,2-α)pyridine}) and TH1 [(trans-PtCl(NH3)2}2 {trans-Pt(3-

hydroxypyridine)2(H2N(CH2) 6NH2)2}Cl4)  in different sequences of treatment. Two cells were 

tested, A2780 and platinum-resistant, A2780CisR and the synergy was evaluated with the combination 

index. A sequence-dependent synergistic effect was observed. The greatest synergy was observed 

when paclitaxel or colchicine were administered first followed by the platinum agent 4 hours later. 

This combination produced a weaker synergistic effect in platinum-resistant cells compared to the 

A2780 cells. The strongest synergy was observed in both cell lines when they were treated with 

cisplatin with either paclitaxel or colchicine. However, when the combinations were delivered 

simultaneously or with pre-treatment of platinum therapy (4 hrs or 24 hrs prior) produced an 

antagonistic effect in both cisplatin-resistant and -sensitive cell types [18]. 

Other platinum therapeutic agents such as ZD0473 also been considered. A study investigated 

the effects on a new generation platinum agent, ZD0473, in combination with paclitaxel in vitro. Four 

different human ovarian carcinoma cells (A2780, A2780CisR, CH1, A2780E6) were examined with 

and without platinum resistance. In all four cell lines, simultaneous treatment with ZD0473 and 

paclitaxel produced a synergistic effect as defined by the median effect analysis. Furthermore, ZD0473 

administered 24 hrs before paclitaxel produced a synergisitic growth inhibitory effect compared to the 

reverse sequence in 3 of 4 cell lines, with the exception being A2780E6 cells that have inactivated p53 

[88]. Interestingly, these results are in contrast to studies with cisplatin and paclitaxel combinations, 

which showed that paclitaxel delivery prior to cisplatin, produces a synergetic interaction 

[81,82,84,88]. 

Overall, there was a sequence dependent synergetic effect of platinum and taxane combination 

therapies. In the cases when cisplatin was administered, a synergistic effect was observed when the 
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taxane was administered prior to cisplatin. This was particularly evident in cells with platinum-

resistance due to cisplatin treatment.  However, with other platinum therapeutic agents, the reverse 

sequence, platinum followed by taxane, or simultaneous treatment, produced synergism, independent 

of platinum resistance. 

1.4.2. Platinum Agents with Protein Targeted Inhibitory Drugs 

Inhibitory agents have also been explored for overcoming drug-resistance mechanisms, 

proliferation or antiapoptotic genes that are expressed by the ovarian cancer cells. These agents include 

tyrosine kinase inhibitors, Wnt/β-catenin, PARP, Akt, PI3K inhibitors, and histone deacetylase 

inhibitors [89–95].    

Platinum therapies have also been explored in sequential combination with these inhibitory 

agents with synergistic drug interaction [96,97]. A proteasome inhibitor, bortezomib, was studied in 

combination with carboplatin, oxaliplatin, or trans-bis(3-hydroxypyridine)dichloroplatinum(II) 

(CH1) on ovarian cancer cells that are platinum-sensitive (A2780 and SKOV-3) and -resistant 

(A2780CisR and A2780_ZD0473R). The results found that bortezomib enhances intracellular 

accumulation of the platinum therapies thereby increasing drug efficacy due to inhibition of platinum-

induced down-regulation of copper transporter 1 (CTR1). In the sequence of platinum agent followed 

by bortezomib was antagonistic in platinum-resistant cells, while for platinum-sensitive cells the 

sequences did not have a significant impact on drug synergy [96].  The difference in the cell response 

to the sequential treatment can be attributed to a difference in drug resistance mechanism, i.e. 

difference in protein recognition and processing of the cells as well as p53 expression. Furthermore, 

these results provide evidence that chemotherapeutic agents can be paired with drugs that target 

overexpressed genes for cell specific therapy. 

 



Shani L. Levit • Ph.D. Dissertation • Chemical and Life Science Engineering   22 
 

1.4.3. Platinum Agents with Other Small Molecule Drugs 

Platinum combination therapies have been also explored with a variety of other therapeutic 

agents as methods to overcome drug resistance and improve drug efficacy. Gemcitabine, vinorelbine, 

topotecan, and doxorubicin are common chemotherapeutic agents that have been considered in 

combination with platinum agents [37,88,98–100]. A study examined the effect of administrating 

ZD0473 with gemcitabine, vinorelbine, topotecan, or doxorubicin using four different human ovarian 

carcinoma cell lines (A2780, A2780CisR, CH1, A2780E6). The study found a synergistic effect with 

ZD0473 was combined with topotecan in 3 of 4 cells lines where an antagonistic effect was observed 

in wild-type p53 A2780 cells. The results for ZD0473 in combination with vinorelbine only produced 

a synergistic effect in 1 of 4 cells lines.  In all 4 cell lines, ZD0473 with doxorubicin resulted in no 

drug interaction or an antagonistic effect [88]. The difference in the cell response to the drug 

combinations can be attributed to a difference in drug resistance mechanism, difference in protein 

recognition and processing of the cells, and p53 expression. 

Small molecules including supplements have also shown promising results in combination 

with chemotherapeutic agents [18]. Yunos et al. examined binary combination of cisplatin (Cis) with 

either curcumin (Cur), and epigallocatechin-3-gallate (EGCG), supplements (phytochemicals) from 

plants due to their antioxidant properties, on a A2780 cell line and cisplatin-resistant, A2780CisR cell 

line. The study examined simultaneous delivery and sequential delivery as well as timing of sequential 

delivery (at 4 hours or 24 hours). Treating the cells with cisplatin 4 hours before curcumin and EGCG 

produced the highest synergistic effect; therefore, lower concentrations delivered in a short time period 

produced the highest cytotoxicity. Curcumin targets pro-apoptotic proteins: p53, BAX, NF-kB, p38, 

and MAPK. Delivery of cisplatin increases ROS therefore the addition of curcumin or EGCG after 

cisplatin act to protect the DNA by scavenging free radicals, which results in more platinum-DNA 

binding compared to the less favorable platinum-thiol binding (Figure 5) [18]. 
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Figure 5. Representative image of cascade pathway activated by sequential co-delivery of cisplatin and EGCG. 

Reprinted from [18], Copyright © 2020 by The International Institute of Anticancer Research. 

 

Platinum therapy has also been examined in combination with arsenic trioxide (ATO), a drug 

that inhibits growth and induces apoptosis, on suspended and adherent ovarian cancer cells (COC1, 

A2780, IGROV-1, SKOV-3, and R182). Using Chou-Talalay analysis and the dose-reduction index 

(DRI), found that the combination of cisplatin plus ATO produced a weakly synergistic interaction in 

suspended ovarian cancer cells (COC1) and a stronger synergistic interaction in adherent cells that 

were both platinum-sensitive and -resistant and a DRI from 1.2- to 13.5-fold [101].   

 Overall, sequential therapy of platinum therapies with various small molecule drugs such as 

chemotherapeutic agents and antioxidants have shown sequence dependent synergistic activity. 

Selecting the appropriate sequence is also dependent on the drug combination. Considerations include 

the relation of the drug targets to the downstream pathway of platinum therapies or if it is being applied 
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as a counter measure to the negative effects of platinum therapy such as upregulation of pro-cancer 

proliferating pathways or formation of free radicals.  

 

1.4.4. Taxane Agents with Protein Targeted Inhibitory Drugs 

Other than platinum therapies, taxane agents such as paclitaxel are one of the most widely used 

anticancer drugs for treating ovarian cancer [102–104]. Paclitaxel targets microtubules in the cell and 

inhibits polymerization necessary for mitosis leading to cell death [105–107]. The limitations of 

paclitaxel efficacy are either through acquired or inherent mechanisms of drug resistance and high 

systemic toxicity. Therefore, paclitaxel is often paired with other agents to improve therapeutic 

efficacy and patient outcomes [108–114].  One class of drugs is those that target specific proteins to 

inhibit pro-tumorigenic cell function such as epidermal growth factor receptor (EGFR) inhibitors and 

histone deacetylase inhibitors among others [111–117]. In this section, we will discuss drug 

combinations of paclitaxel with protein inhibitor drugs.  

Epidermal growth factor receptors are membrane-bound proteins that play a role in signal 

transduction of critical pathways including proliferation and pro-survival. In cancer, EGFR is often 

overexpressed or there is an increase in the activation of downstream pathways of EGFR that promote 

tumor growth. EGFR activity can be targeted with EGFR inhibitors including small molecule drugs 

such as tyrosine kinase inhibitors and monocolonal antibodies (mAb) [118–122].  An example of these 

is HB-EGF inhibitor which is a membrane surface EGFR ligand and is involved in MAPK signaling 

and activation of ERK and AkT. HB-EGF expression is also associated with paclitaxel drug resistance 

due to activation of anti-apoptotic signaling.  

Combination of paclitaxel and CRM197 (HB-EGF inhibitor) was examined for synergistic 

interaction in treating SKOV-3 cells and SKOV-3 mouse models overexpressing HB-EGF with 

sequential treatment of CRM197 and paclitaxel. This study found that the combination of these drugs 
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has an inhibitory effect on cell proliferation and enhanced apoptosis by inhibiting ERK and AkT 

activation while activating p38 and JNK. The results showed a synergistic effect in both in vitro and 

in vivo models [115].  

Similarly, other EGFR inhibitors (gefitinib, ZD674, cetuximab) were examined with either 

docetaxel or paclitaxel with sequential delivery method in esophageal cancer (KYSE30). A synergistic 

interaction was observed when the chemotherapeutic agent was administered followed by the EGFR 

inhibitor and an antagonistic interaction was observed in the reverse sequence. The difference in the 

outcome was attributed to the arrest of cells in the G2/M phase [19].  

Another study investigated a Akt inhibitor (MK-2206), downstream of EGFR in combination 

with paclitaxel ovarian cancer cells [117]. The serine/threonine kinase Akt plays a prominent role in 

promoting cell survival and inhibiting apoptosis; therefore, inhibition of this protein is an important 

factor in promoting cytotoxicity of cancer therapies [123,124]. The combination treatment of MK-

2206 and paclitaxel produced a synergistic interaction  in ovarian cancer cells (SKOV-3 and NCI-N87 

cells) due to suppression of both Akt and EGFR-2 signaling pathways in vitro and in vivo. 

Chemotherapeutic agents were also tested with MK-2206 on ovarian cancer cells (A2780) and a 

synergistic effect was observed with doxorubicin (topoisomerase inhibitor), camptothecin 

(topoisomerase inhibitor), gemcitabine (anti-metabolite), 5-FU (anti-metabolite), and carboplatin 

(DNA cross-linker) [117]. 

Histone deacetylase and histone acetyl transferases are commonly used as anticancer targets 

because of their role in gene transcription. By using inhibitors, we can arrest tumor growth and induce 

apoptosis [125–127]. A study by Modesitt and Parsons examined sequential treatment of vorinostat, a 

histone deacetylase inhibitor, with paclitaxel on three different cell types (SKOV-3, OVCAR-3, 2774) 

and a mouse model. The treatments evaluated were paclitaxel alone, vorinostat alone, vorinostat 

followed by paclitaxel, and paclitaxel followed by vorinostat, as well as simultaneous delivery. The 
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cell viability of SKOV-3 and OVCAR-3 cells was not significantly lowered by sequential treatment 

and overall, the combination treatment was not superior to individual drug treatment. The 2774 cells 

did show higher cytotoxicity when treated with paclitaxel followed by a low dose of vorinostat. The 

in vivo results did not show a difference between sequences of administration.  HDAC inhibitors have 

a role in inducing differentiation, growth arrest, and promoting apoptosis by increasing expression of 

pro-apoptotic proteins while decreasing anti-apoptotic proteins (survivin). HDAC inhibitors also have 

a role in altering the expression of p21 which is involved with regulation of cell cycle thereby 

increasing cell cycle arrest. 2774 cells have a low expression of survivin and low p21 activity which 

could indicate they are more susceptible to combination treatment with vorinostat compare to the other 

cell types. The study concludes that the benefits of sequential and combination treatments are cell-

dependent and tumor specific; therefore, the treatment needs to be tailored to specific ovarian cancer 

mutation to optimize therapeutic effects [116]. 

Cyclooxygenase (COX) inhibitors have also been examined for treating ovarian cancer in drug 

combinations. COX enzymes play a role in cell migration and tumorigenesis [128–130]. In a study by 

Li et al., two COX inhibitors, celecoxib and SC-560, two COX inhibitors, were examined alone and 

in combination with paclitaxel on SKOV-3 carcinoma cells xenografts. Alone, celecoxib and SC-560 

significantly decreased tumor volume compared to the control group and the tumor volume was further 

decreased with the addition of paclitaxel. Interestingly, the results from treatment with celecoxib and 

SC-560 individually were very similar to two drug combinations with the COX inhibitor and Taxol. 

The greatest decrease in tumor volume, cyclin D1 expression, and cell proliferation were observed in 

three-drug combination of both COX inhibitors and paclitaxel. These results suggest that the COX 

inhibitor drugs decrease expression of cyclin D1 which can inhibit the cell cycle progression from G1 

to S phase, which could limit the efficacy of paclitaxel [131]. 
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The results from studies combining paclitaxel with protein inhibitor drugs suggest that these 

combinations can improve drug efficacy. The synergistic drug interactions can also be enhanced with 

sequential delivery of the drugs, but selection of an appropriate drug pair is cell dependent. Sequence 

of delivery can be synergistic and considerations should include whether the proteins that are inhibited 

are independent or downstream of the pathway activated by paclitaxel, facilitate paclitaxel 

accumulation, or the enhance cell cycle arrest.   

 

1.4.5. Taxane Agents with Other Small Molecular Drugs 

Other small molecule drugs have also been considered in combination treatments with 

paclitaxel. For example, drugs that have been used for years in treated cancer such as bleomycin are 

also being considered in sequential drug dosing. A study found that simultaneous treatment of 

paclitaxel and bleomycin, which halts cells in G2 phase, produced a similar synergetic effect compared 

with sequential dosing of bleomycin followed by paclitaxel in HEY cell line. The results from the 

study suggest non-overlapping toxicities of the two therapies [14].  

Along with traditional anticancer drugs, experimental drugs or existing drug not previously 

used for cancer treatment are also being considered for sequential drug delivery to improve efficacy 

of paclitaxel [132–134]. Zibotentan (ZD4054), an endothelin-1 and endothelin A receptor (ETAR) 

antagonist (overexpression of ETAR is associated with ovarian carcinomas) has been found to 

significantly inhibit cancer cell growth. ZD4054 has also been examined in combination with current 

standard of care therapies (platinum or taxane). Binary combinations with either cisplatinum or 

paclitaxel were found to significantly inhibit cell proliferation of HEY cells in vitro.  The results were 

further improved with the co-treatment of all three drugs which inhibited proliferation in vitro and 

inhibited tumor growth and neovascularization in vivo (HEY xenograft). These results support the idea 

that drug  combinations with different target mechanisms can produce synergism [132].  
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Sequential combinations of Taxol and flavopiridol were also examined on ovarian carcinoma 

by Song et al.. Flavopiridol is a first cyclin-dependent kinase inhibitor involved in cell cycle regulation. 

While Taxol and flavopiridol treatment alone on SKOV-3 cells was cytotoxic, sequential combinations 

resulted in further decrease in cell viability. Sequential delivery of Taxol (treated for 24hrs) followed 

by flavopiridol (for 24 hrs) produced the greatest synergistic effect with the greatest cell death and 

highest apoptotic rate in vitro. However, in vivo (SKOV-3 xenograft) the sequential combination was 

not synergistic [133].  

Another category of drugs that have been examined are those that regulate cellular metabolism. 

These drugs have also been considered for sequential drug therapy to improve therapeutic efficacy 

with paclitaxel. Difference sequences were evaluated for delivering PTX and 8-Chloro-adenosine 

3′,5′-Monophosphate (8-Cl-cAMP), an antimetabolite. The study examined two cell lines with 

different sensitivity to the drugs. Using the Chou-Talalay method, they examined the combination 

index (CI) at 20%, 50%, and 80% cell kill values while maintaining the same ratio between the two 

drugs. At 20% kill, paclitaxel followed by 8-CI-cAMP had the highest CI values, at 50% kill, 8-CI-

cAMP followed by paclitaxel had highest CI for A2780 cells and opposite sequence for OAW42 cells, 

and at 80% cell kill 8-CI-cAMP followed by paclitaxel had highest CI. Overall, paclitaxel treatment 

before 8-Cl-cAMP was the most effective method with highest synergy while 8-Cl-cAMP before 

paclitaxel had the lowest effectiveness for both cell lines compared to simultaneous treatment. These 

results suggest pre-exposure of paclitaxel produced greatest synergy (Figure 6). 8-Cl-cAMP, like 

paclitaxel, accumulates the cells in the G2-M phase of the cell cycle. Resistance to paclitaxel-induced 

apoptosis is dependent on activation of the Raf-1 kinase activity. 8-Cl-cAMP exposure inactivates 

Op18 which has a role in increasing tubulin polymerization thereby increasing the proportion of 

stabilized tubulin which can be exposed to paclitaxel [135].  
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Lonidamine (inhibits aerobic glycolysis) has also been used to treat ovarian cancer in 

combination with Taxol. Orlandi et al., treated A2780 cells with sequential combinations of 

lonidamine and Taxol and found that the efficacy of the treatment was sequence dependent. Synergy 

was observed when the cells were treated with Taxol prior to lonidamine while an antagonistic 

interaction was observed in the reverse sequence or simultaneous treatment. Lonidamine was 

determined to not modify the effects induced by Taxol (cell cycle arrest, tubulin polymerization, and 

apoptosis) and instead impacted the induction of the Bax protein as well as other targets [136]. 

 

Figure 6. Combination index of cells (A) A2780 and (C) OAW42 cells treated with 8-CI-cAMP followed by 

paclitaxel and (B) A2780 and (D) OAW42 cells treated with the reverse sequence. Drug synergy is dependent 

on the drug ratio and sequence. Reprinted from [135] with permission from AACR. 

 

Synergistic drug interactions have been observed between sequential delivery of paclitaxel and 

various small molecule drugs. Often synergy is dependent upon drug combination but it is also worth 

noting that in many cases, delivery of paclitaxel prior to the secondary drug agent enhances treatment 

A B

C D
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efficacy. These observations could be attributed to the regulatory pathways inhibited or activated by 

the drug combination leading to first cell cycle arrest and then inducing cell death.   

 

1.5. Nanoparticle Drug Combinations 

Studies and clinical practices with free drugs have shown the advantages of drug combinations 

for treating ovarian cancer, as previously discussed. However, there are many limitations of free drug 

formulations. The safety and efficacy of anticancer drugs are limited by their high systemic toxicity 

and poorly water-soluble. This leads to the challenge of balance delivering a safe dose while 

maintaining high enough bioavailability to target tissue for an efficacious dose. Furthermore, it is 

difficult to compare sequential treatment between pre-clinical and clinical studies due to a disparity 

between sequence cycles that is on the order of hours versus days. There is also limited control over 

the timing of drug delivery at the target sight with both techniques due to low targeting specificity. 

Filling the gap between drug delivery schedules conducted at the clinical setting compared to those 

done on the bench top also needs to be addressed in order to facilitate translational research.  

Nanoparticles can address many of these challenges. Encapsulation of the drugs paired with 

controlled and sustained drug release can facilitate in minimizing toxicity and improving controls over 

the drug pharmacokinetics [137–139]. Furthermore, the nanoparticles can be designed for both passive 

and active targeting while mitigating immunogenicity with techniques such as PEGylation  and 

increase control over sequential drug delivery at the target sight [140]. In this review, we will cover 

applications of polymer-based nanoparticles for simultaneous and sequential delivery of drug 

combinations.  Detailed reviews of liposomal-based nanoparticles can be found here: [141,142]. There 

are many advantages of polymer-based nanoparticle vehicles over liposomes including greater payload 

of hydrophobic molecules which encompass the majority of anticancer drugs, size control, relatively 
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greater structural integrity and stability, greater control over particle design in terms of polymer 

selection, functional groups, and drug release kinetics.  

 

1.5.1. Polymer Nanoparticles and Micelles 

Encapsulating chemotherapeutic agents into polymer micelles is one approach for improving 

drug efficacy and overcoming limitations such as drug solubility. Polymer micelles are often 

formulated with amphiphilic macromolecules that have a hydrophilic and hydrophobic block. The 

structure of the block co-polymers allows for assembly of a single layer micelle with a hydrophobic 

core and hydrophilic shell. The structure of the micelles is spherical although other morphologies such 

as rods and tubules have also been investigated [143–146]. Thorough reviews of micellar nanoparticles 

for chemotherapeutic treatment of cancer can be found elsewhere [147–149].  

 The formulation of polymeric micelles leverages the self-assembly nature of the amphiphilic 

polymer structures. Some of the self-assembly formulation methods include ultrasonication, thin-film 

dispersion, and Flash NanoPrecipitation (FNP) [147–150]. Based on the polymer selection, the surface 

chemistry, degradation rate, and size of the nanoparticles can be tuned. Drugs can be loaded into 

micelles by either precipitating the drugs into the hydrophobic core or conjugating the drugs to the 

polymers. The advantages of polymer micelles as a carrier for chemotherapeutic agents are high drug 

loading, sustained drug release, and the micelles can be tailored for responsive drug release [147–150]. 

In this review, we will focus on nanoparticles encapsulating platinum and taxane agents in 

combination with small molecules drugs for the treatment of ovarian cancer.  

 

1.5.1.1. Combination Drug Delivery with Platinum Drug Agents 

Core-shell polymer nanoparticles have also been investigated to deliver platinum-based agents 

for ovarian cancer treatment. For example, core-shell coordinated polymer nanoparticles formulated 
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with a 1,2-dioleoyl-sn-glycero-3-phosphate (DOPA) core and DSPE-PEG shell co-encapsulated 

carboplatin and gemcitabine monophosphate. These nanoparticles were used to treat platinum-

resistant cells (A2780/CDPP) in vitro. A synergetic interaction was observed in platinum-resistant 

cells. The advantages of delivering carboplatin and gemcitabine in nanoparticle formulation were 

extending blood circulation times, increasing drug uptake by 5-fold, and reducing tumor weight 12-

fold compared to free drug combination of platinum-resistant xenografts [151]. Polymer micelle 

carriers have also been used in delivery of oxoplatin with curcumin. A triblock copolymer was utilized 

to formulate the nanoparticles with oxoplatin conjugated to the amine-bearing polymer and curcumin 

encapsulated into the core via self-assembly. The co-administration of curcumin and oxoplatin on 

A2780 cells resulted in slight synergistic interaction with free drugs (CI ~0.8). The two drugs were 

also administered in co-loaded micelles to A2780 cells and a strong synergistic interaction (CI ~0.3) 

was observed; however, two single-drug micelles produced a weaker synergistic interaction [152].  

Gemcitabine has also been examined in nanoparticle combinations with doxorubicin. A study by Liu 

et al. determined that the  doxorubicin/gemcitabine micelles improved the synergistic interaction and 

endocytosis of the drugs [153].   

 

1.5.1.2. Combination Drug Delivery with Taxane-based Agents 

With the therapeutic efficacy observed with free drug delivery of taxane-based drug 

combinations, a similar approach has also been applied to polymer nanoparticle drug delivery. In a 

study by Devalapally et al., poly(ethylene oxide) modified poly(epsilon-caprolactone) (PEO-PCL) 

nanoparticles were co-encapsulated with tamoxifen (estrogen receptor modulator) and paclitaxel to 

enhance drug efficacy in MDR ovarian cancer. The synergy of the drug combination was examined in 

vitro on wild-type (SKOV-3) and MDR positive cells (SKOV-3TR) as well as xenografts of the two 

cell lines. Co-administering paclitaxel (20mg/kg) and tamoxifen (70mg/kg) in PEO-PCL nanoparticles 
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reduced the IC-50 of paclitaxel by 10-fold in SKOV-3 cells, and 2-fold in SKOV-3TR and effectively 

suppressed tumor growth in drug-sensitive and -resistant models with low systemic toxicity. These 

results suggest that administering tamoxifen enhances the cytotoxicity of paclitaxel to aid in 

overcoming drug resistance [154].  

Protein specific inhibitors have also been co-encapsulated with paclitaxel in polymer 

nanoparticles [155,156]. Katragadda et al., examined combinations of paclitaxel with tanespimycin 

(17-AAG, antineoplastic antibiotic that inhibits cytosolic functions) in polymer micelles in vivo. The 

authors determined that the co-loaded (paclitaxel-17-AAG) in 1,2-Distearoyl-sn-glycero-3-

phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000]  (PEG-DSPE) micelles increased 

tumor drug concentration by 3.5- and 1.7-fold and significantly arrested tumor growth compared to 

equivalent free drug combinations in ovarian tumor (SKOV-3) xenografts [156].   

Three-drug combinations have also been examined with paclitaxel co-encapsulated with 

cyclopamine (hedgehog inhibitor) and gossypol (BcL-2 inhibitor) in poly(ethylene glycol)-block-

poly(ℇ-caprolactone) (PEG-b-PCL) micelles. Cyclopamine and gossypol loaded alone in the micelles 

exhibited minimal cytotoxic effects. In vitro, the 3-drug micelles did not exhibit significantly more 

potency compared to paclitaxel micelles in 2D cell model (SKOV-3 and ES-2).  However, in 3D ES-

2 model the treatment results in disaggregation of the spheroid, possibly due to multiple mechanisms 

including inhibition of Hedgehog signaling by cyclopamine aiding in reversing taxane resistance. In 

vivo, the 3-drug micelles significantly reduced tumor volume and extended survival time compared to 

paclitaxel micelles alone [155].  

Drugs that affect the metabolic activity of cancer cells are also an important class of drugs that 

have been considered with paclitaxel in both free drug and nanoparticle formulations. Lonidamine was 

co-administer with paclitaxel in EGFR-targeted PCL nanoparticles to facilitate in overcoming MDR. 

Co-delivery of paclitaxel and lonidamine in nanoparticles resulted in a greater reduction in cell 
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viability of MDR ovarian cells (SKOV-3TR, OVCAR-5) compared to the equivalent drug 

concentrations delivered in single-drug nanoparticles and free drug formulations. The results from the 

study suggest that lonidamine promotes mitochondrial binding of pro-apoptotic BcL-2 proteins in 

combination with microtubule stabilization induced by paclitaxel which facilitates in overcoming 

MDR. The benefit of co-delivering these drugs in a EGFR-targeted nanoparticle platform allows for 

active targeting of EGFR that is overexpressed by MDR cells and sustained drug release on the order 

of several days enabling greater drug efficacy compared to free formulations (Figure 7) [157].  

Alternative therapeutic agents have also been examined in nanoparticle formulations. 

Paclitaxel has often been paired with curcumin as a method for treating ovarian cancers [158–162]. 

While this approach is promising, nanoparticles formulations have encapsulated these drugs to 

improve drug efficacy. Boztas et al., encapsulated curcumin and paclitaxel in poly(β-cyclodextrin 

triazine) (PCDT) nanoparticles via complexation to the polymer. Interestingly, delivering curcumin 

nanoparticles significantly improved cytotoxicity compared to the free drug form but delivering 

paclitaxel nanoparticles did not affect the cytotoxicity. When both the curcumin and paclitaxel 

nanoparticles were co-delivered, a synergistic effect was observed in vitro on A2780 and SKOV-3 

cells compared to co-delivery of the free formulation that did not display a synergistic interaction. 

Additionally, the co-delivery of two particles resulted in significantly higher cell death. The benefits 

of this particle platform are the improved drug solubility and bioavailability [158]. Tacrolimus 

(FK506) has previously been prescribed as an immunosuppressive drug for organ transplant and has 

also now been also examined for treating ovarian cancer. Tacromlimus was co-encapsulated with 

paclitaxel in polymer micelles (poly(ethylene glycol)- poly(ℇ- caprolactone) (MPEG-PCL)) to 

overcome MDR. The advantages of this nanoparticle platform is that it is a one-step solid dispersion 

method that does not require organic solvents and high drug loading. When the nanoparticles were 

examined in vitro, the co-loaded nanoparticle exhibited greater cytotoxicity effect in MDR cells 
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(A2780/T) compared to paclitaxel-sensitive cells (A2780). Furthermore, co-delivering paclitaxel and 

FK506 in the micelles increased the intracellular paclitaxel concentration, G2/M arrest, and greater 

apoptosis of drug-resistant cells compared to drug-sensitive cells or micelles encapsulating only 

paclitaxel [163]. 

 

Figure 7. Diagram of nanoparticle endocytosis and delivery of drug combinations. Delivery of drug 

combinations targets multiple proteins and results in activation of multiple cascade pathways to induce cell 

death. Reprinted (adapted) with permission from  [157]. Copyright (2011) American Chemical Society. 

1.5.2. Dendrimers 

Dendrimers are another type of polymer nanoparticles with hyper-branched structures. 

Dendrimers are comprised of multiple branches of long polymer strands with each branch referred to 

as a generation. The structure allows for tailoring of the branches and chemical composition to tune 

the size, hydrophobicity, surface charge, drug encapsulation, and targeting. Drugs can either be loaded 

in dendrimers by covalently conjugating to the polymer branches or entrapped in the dendrimer core 

cavities by electrostatic or hydrophobic interaction. Applications and formulations of dendrimers can 

be found elsewhere [164–166].  
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Dendrimers have also been investigated as vehicles for co-delivery of anticancer drugs. 

Platinum drugs such as cisplatin have been examined in co-loaded dendrimers to improve drug 

efficacy. Cisplatin was co-loaded with paclitaxel in three layer linear dendritic telodendrimer micelles. 

The telodendrimer was formulated by complexing cisplatin to the carboxylic acid groups between 

adjacent branches and conjugating paclitaxel to the interior layer. Paclitaxel exhibited fast release 

while cisplatin exhibited relatively slower release. In vitro study on SKOV-3, ES-2, and Hela cells 

and found that at a ratio of 2:1 cisplatin to paclitaxel was synergistic for all cells types. With a 

xenograft model, the co-loaded nanoparticles had the highest accumulation in the tumor tissue, 

decreased tumor volume, and increased survival time, which suggests increased drug efficacy and 

reduced renal toxicity of co-loaded nanoparticles. Encapsulation into nanoparticles could increase 

PTX bioavailability to tumor tissue while delivering slow dosage of cisplatin to improve overall 

efficacy [167].  

In another example, Guo et al., cisplatin and doxorubicin were co-delivered using fourth-

generation polyamidoamine dendrimers (HA@PAMAM-PT-Dox). The dendrimers were modified 

with hyaluronic acid (HA) and the drugs were covalently conjugating to the fourth generation of the 

dendrimer.  The cytotoxic activity of the dendrimer was examined in vitro with a breast cancer cell 

model (MCF-7 and MDA-MB-231) and found that the HA@PAMAM-PT-Dox nanoparticles induced 

greater reduction in cell viability at lower concentrations and synergistic activity compared to both the 

dendrimers containing only cisplatin and the free drugs. The co-loaded dendrimers were also examined 

in vivo using MDA-MB-231 xenografts and determined that the HA@PAMAM-PT-Dox inhibited 

tumor growth as well as reduce the toxicity [168]. 

Dendrimers have also been examined for combination drug delivery of paclitaxel co-

encapsulated with other anticancer drugs and have displayed synergistic activity. Zou et al., combined 

paclitaxel and borneol (P-gp inhibition effects) in PEG-PAMAM dendrimers via a one-step 
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precipitation method. The authors found that the P-gp inhibitory activity of borneol increased the 

intracellular paclitaxel concentration. Furthermore, the dendrimer drug combination exhibited higher 

cytotoxicity and apoptosis in vitro (A2780/PTX cells) as well as a significant decrease in tumor 

volume in vivo (A780/PTX baring mice) compared with the free drug formulations [169].  

Other drug combinations have also been considered in dendrimers for enhancing drug efficacy. 

Co-encapsulation of doxorubicin and bortezomib in telodenrimers have shown synergy in vitro 

(SKOV-3 and H929 cells) and improved anticancer activity in vivo (SKOV-3 xenograft). The 

nanoparticles were formulated by spatial separation of the two drugs, doxorubicin conjugated to the 

interior and bortezomib conjugated in the intermediate generations of the dendrimer. The nanoparticles 

displayed synergistic interaction at a wide range of drug ratios [170].  

Another dendritic approach is using peptide dendrimers with added properties of enzyme-

responsive drug delivery. For example, a tetra-peptide sequence (Gly-Phe-Leu-Gly) was utilized for 

responsive release of doxorubicin from PEGylated dendrimers to improve drug accumulation and 

antitumor activity [171]. Such approaches can be coordinated with multiple drugs for sequential drug 

release. Similarly, pH-responsive dendrimers have also been used for delivering drug combinations. 

A study synthesized a 5 generation EDA-PPI dendrimer with glycine-tBOC and folic acid-fMOC 

loaded with methotrexate and tretinoin with slight improvement in drug efficacy with co-encapsulation 

[172,173]. Synergistic or enhanced anti-cancer activity has also been found with a variety of dendrimer 

drug combinations in lung, breast, and brain tumors [174,175]. 

 

1.5.3. Lipid Nanoparticles 

Lipid nanoparticles combine the advantages of liposomes and polymer micelles in that they 

are a single lipid layer with a hydrophobic core and hydrophilic outer shell. Lipid nanoparticles can 

be formulated with solid or liquid lipids, nanostructured lipid carriers and lipid drug conjugates. As 
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with micelles, the lipids can be modified for controlled release. There are various methods in which 

lipid nanoparticle can be prepared including high pressure homogenization, solvent emulsification-

evaporation, or emulsions. Detailed reviews discussing formulation of lipid nanoparticles can be found 

elsewhere [176,177] 

Lipid nanoparticles have also been examined for enhancing the drug efficacy and synergy of 

drug combinations. For example, a combination of paclitaxel and curcumin (downregulate ABC 

transporters) have been encapsulated in oil-in-water nanoemulsions with flaxseed oil prepared by 

high-energy ultrasonication. The paclitaxel and curcumin nanoemulsions were found to enhance the 

cytotoxic effect and increase apoptosis, however the drug combination was only slightly synergistic 

(CI = 0.93) in both drug-sensitive cells (SKOV-3) and additive effect in drug-resistant cells (SKOV-

3TR) and similar effects were observed with free drug form [178]. 

Along with traditional lipid nanoparticles, lipid-polymer hybrid nanoparticles have also been 

examined for delivering drug combinations to overcome cancer resistance mechanisms. Zhang et al., 

examined encapsulating paclitaxel and tetrandrine (P-glycoprotein inhibitor) in iRGD peptide by 

conjugating paclitaxel to the polymer core and precipitating tetrandrine in the core creating a core-

shell structure. The core-shell structure allowed for sequential release of the two drugs with release of 

tetrandrine prior to paclitaxel. The co-loaded nanoparticles increased the intracellular paclitaxel 

accumulation mediated by tetrandrine resulting in an increase apoptosis in A2780/PTX cells [179]. 

A similar lipid nanoparticle formulation has been applied to co-delivery of doxorubicin and 

triptolide (herbal extract with antitumor activity). Lipid-polymer hybrid nanoparticles were formulated 

with monomethoxy-poly(ethylene glycol)-S-S-hexadecyl (mPEG-S-S-C16), soybean lecithin, and 

poly(D,L-lactide-co-glycolide) (PLGA) and the drugs where loaded via self-assembly. This 

nanoparticle formulation allowed for reduction-sensitive simultaneous drug release. In vitro the co-

loaded nanoparticles were synergistic over a wide range of concentrations with a 1:0.2 ratio of 
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doxorubicin and triptolide exhibiting the strongest synergy. Furthermore, in vivo co-loaded 

nanoparticles significantly decreased tumor volume even compared to two single-drug loaded 

nanoparticles indicating spaciotemporal effect [180]. 

Another unique formulation was created by Lee at al., in which they co-delivered doxorubicin 

and cisplatin in single polymer-caged nanobins. The nanobins were formulated by lipid-templated 

polymer platform with the doxorubicin encapsulated in the core and cisplatin conjugated to the 

polymer shell. The benefits of this nanoparticle platform are that the drug loading and surface 

chemistry is tunable, and they allow for sustained drug release on the order of several days. The 

nanoparticle drug combination displayed synergism in ovarian cancer cells (OVAR-3) as well as breast 

cancer cells compared to both free drug and single-drug nanobins resulting in enhancement of 

cytotoxicity of each drug [181]. Other formulations of drug combinations encapsulated in lipid-

polymer nanoparticles have displayed synergistic activity such as doxorubicin with paclitaxel [182] 

and doxorubicin with indocyanine green [183] in other forms of cancer.  

 

1.5.4. Sequential Drug Delivery with Nanoparticles 

Sequential combination therapy with free drug formulations has been shown to improve drug 

efficacy and overcome resistance mechanisms. A similar approach can be applied to nanoparticle drug 

formulations to further enhance drug efficacy [184–190]. However, few studies have examined 

sequential drug delivery with nanoparticle formulation of anticancer drugs in ovarian cancer. Previous 

studies have shown that the optimal drug delivery sequence is cell-specific; therefore a greater 

attention needs to be placed on the effects of sequential delivery with nanoparticles on ovarian cancer 

treatment.   

With nanoparticle formulations, several sequential delivery methods can be applied such as 

combination of nanoparticles with free drugs, two single-drug loaded nanoparticles, or co-
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encapsulation. The two former approaches can be easily modulated by controlling when the two drugs 

are delivered. The release of two drugs can be coordinated using various approaches such as 

coordinating diffusion rates with either drug hydrophobicity (prodrug approach) or selection of the 

core-shell [191,192]. Additionally, co-encapsulation provides the benefits of spatial and temporal 

control of multiple drugs [193].   

For example, combinations of three drugs have also been co-encapsulated into PLA-b-PEG 

nanoparticles to facilitate with multiple target approach via controlled drug release. Three anticancer 

drugs: paclitaxel, 17-allylamino-17-demethoxygeldanamycin (17-AAG), and rapamycin, were 

encapsulated in the particle core. In vitro, the drug release rate was found to be dependent on the 

hydrophobicity of the drugs (17-AAG > PTX > RAP) and the 3-drug loaded nanoparticles were found 

to have strong synergistic interaction in breast cancer cells (Figure 8) [194,195]. 

There have been many applications of these techniques with single-drug nanoparticles; 

however, few studies have extended the approaches to co-encapsulated nanoparticles [196–198]. 

Stimuli-responsive drug release of drug combinations from nanoparticle is one such approach and 

reviews of stimuli-responsive nanoparticle platforms can be found in [192,199–204]. By utilizing 

stimuli-responsive platforms and controlled drug release, we can address the gap between pre-clinical 

and clinical studies in terms of drug delivery time-frame.   
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Figure 8. (A) Polymer nanoparticle loaded with three drugs for controlled release. RAP and 17-AAG are loaded 

in the core while paclitaxel is conjugated to the polymer shell. (B) Synergy is observed when all three drugs are 

co-delivered across the range of fraction affected. Reprinted (adapted) with permission from [194]. Copyright 

(2011) American Chemical Society.  

 

1.6. Modeling Synergy of Drug Combinations 

Conventional approach of dose-response quantification can be resource-intensive and does not 

provide a comprehensive understanding of complex biological systems and mechanisms of synergy. 

Furthermore, screening various drug combinations and treatment schedules for various types of 

cancers is very time-intensive. An alternative approach for further understanding the interaction of 

drug combinations is through systems biology modeling. This approach is based on protein interaction 

networks and drug activated cascades. Some studies have explored whether expression of key 

oncogenes can provide a guideline for determining synergistic drug combinations for treating ovarian 

cancer. For example, BRCA expression is found in over 50% of epithelial ovarian cancers therefore 

providing a screen for first-line therapies [205].  

One method for predicting synergy of combinations is protein-protein interaction (PPI) 

network which is based on the functional associations of key proteins (activations/ inhibition) and drug 

targets to predict synergy. In these cases, synergy can be evaluated based on topology score and agent 

https://pubs.acs.org/doi/full/10.1021/mp2000549

Figure 6. fa–CI plots of 2-in-1, and 3-in-1 PEG-b-PLA 

micelles for (A) MCF-7 human and (B) 4T1 murine breast 

A
B
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score. The topology score is based on topology relationship between targets and drugs while agent 

score is based on the phenotype similarities of drugs [206]. The PPI network methods provide 

information about feedback structure and cascade pathways of drug targets (Figure 9A). A similar 

approach is dynamic pathway simulation which models the dynamic behavior of drugs and 

mechanisms of action. These models are based on concentrations and activity levels of various 

components such as genes, metabolites, and proteins and yields dose-response data by utilizing 

ordinary differential equations (Figure 9B). 

 

 

Figure 9. Diagrams of (A) PPI network modeling, (B) dynamic pathway modeling, and (C) examples of 

network motifs that facilitate in determining synergy of drug combinations. Reprinted from [206]. Copyright 

© 2015, Springer Nature. 

PPI and dynamic pathway simulation provide an understanding of which interactions in the 

pathways can produce a synergism thereby providing the mechanism of action. However, the 

limitations of these models are that they are either complex or not all encompassing. Instead, network 

motifs can be used to describe the same number of events in distinct patterns, which can be used to 

distinguish which characteristic of the pathway produce synergistic activity (Figure 9C). Overall, with 

these models it can still be difficult to predict drug activity in disease-specific pathways as well as 

overlook drug behavior (absorption and metabolism) and secondary drug activating pathways. 

Alternative methods include machine learning based methods [207,208]. Genomics, 

transcriptomics, and metabolomics have facilitated the development of these drug combination studies 

A B C
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[209,210]. Other consideration for formulating methods are side-effects and addressing those networks 

in the model. An example of these models is the Petri-net (EPN) model developed by Jin et al. [210]. 

Overall, there are different approaches that can be taken to understand the interactions and effects of 

drug combinations. However, due to the complexity of drug interactions and pathways, they can still 

be challenging to predict. A detailed description of drug combination modeling can be found in [206]. 

The benefit of this approach is that it provides an understanding of the mechanisms of clinically used 

therapies as well as predicting synergy of novel combinations [206]. 

Two examples of network models were developed by Pandey et al. and Jain et al. [211,212] 

Pandey et al., developed a mathematical model for sequential drug combinations in breast cancer with 

PI828, an inhibitor of P13K, and cis-platinum nanoparticles. The model explored the interaction of 

the drugs with three critical proteins: pAkt, XIAP, and capsase-3 and modeled as a feedback reaction 

loop. The phosphorylation of Akt activates a cascade pathway that activates XIAP which protects the 

cells from auto-ubiquitination and phosphorylates caspase-9 which is correlated to cell death. 

Activation of Caspase-3 induces a negative feedback on Akt by inhibiting it activity. The drug activity 

was modeled based on the assumption that cisplatin nanoparticles increase production of pAkt and 

caspase-3 and reduce the activity of XIAP and that PI828 inhibits phosphorylation of Akt via 

inhibitions of PI3K. Each of the interactions was modeled by a system of equations to describe 

production, decay, inhibition, and drug effects of the three proteins. The drug release from the 

nanoparticles was also accounted for in the model by a biexponential release profile (Figure 10) [211]. 

The model predicted that initial administration of cis-platinum nanoparticles followed by PI828 24 hrs 

later produced the maximum drug efficacy compared to other sequence schedules (earlier or later than 

24 hrs and reverse sequence) and validated with in vitro and in vivo experiments [211].   

Jain et al. examined cancer cells that are resistant to carboplatin and paclitaxel treatment due 

to BcL family of proteins and anti-apoptotic protein BcL-xL. Jain et al. modeled the synergism of 
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sequential delivery of ABT-737 and carboplatin on ovarian cancer cells. The model suggests that 

delivering carboplatin followed by ABT-737 produced the highest synergy. It suggests that carboplatin 

treatment primes cells for ABT-737 by increasing cell dependence on BcL-xL for survivial then 

treating the cells with ABT-737 decreases the activity of BcL-xL below the threshold of cell survival. 

The model can also be used to determine the minimal dosage necessary for effective treatment [212]. 

 

Figure 10. Simplified pathway cascade for modeling interaction of cisplatin and PI828. Reprinted (or adapted) 

from [211], with permission from AACR. 

Cancer cells heterogeneity and microenvironments can also have an effect on the drug activity 

and drug resistance mechanisms [213–215]. Sun et al., developed a stochastic differential equations 

(SDEs) based model to address cell heterogeneity and adaptability to connect cellular mechanisms of 

drug resistance to population-level patient survival. This model was used to predict patterns in drug 

combination synergy. The study found a dose-dependent synergistic effect of co-treating BRAF and 

PI3K inhibitor compared to BRAF and MEK inhibitors due to different downstream targets of the two 

inhibitors and the results were confirmed with experimental data [216].  

 

1.7. Conclusion 

Combination chemotherapy can improve drug efficacy and lower systemic toxicity by 

targeting multiple pathways to induce cell death, lowering dosages, and overcoming drug resistance 

mechanisms. Sequential drug delivery has shown to improve the results of drug combinations due to 

synergistic drug interaction. Overall, drug synergy is highly dependent on cell type due to the 
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expression levels of key proteins involved either in drug resistance mechanisms or circumventing cell 

death. Due to the expression of these proteins, selecting appropriate drug combinations that will 

produce a synergistic or additive effect is an important consideration. Additionally, cells are sensitive 

to both the ratio of the drugs and to the sequence that they are delivered. This presents an immense 

challenge of selecting the optimal treatment for ovarian cancer due to the limitless number of 

combinations.  

 As a means to narrow in on a course of treatment, modeling the drug interaction with key 

proteins and gene expression is a vital tool. By first identifying the pathways and proteins involved in 

inhibiting cell death and promoting proliferation in ovarian cancer cells, models can be applied to 

determine both the appropriate drug combination as well as sequence of treatment. This can be 

particularly useful in more complex tumors with various types of cancer cells.   

 Furthermore, many in vitro or in vivo sequence schedules that optimize drug synergy are on 

the order of hours while in the clinic, chemotherapeutic treatment cycles are conducted over the course 

of a week. This difference in time scales can produce differences in therapeutic outcomes due to a 

difference in driving mechanisms of synergy. This makes translation of pre-clinical methods to clinical 

application very difficult due to patient and caregiver compliance. However, nanoparticle drug 

delivery can alleviate these practical challenges as well as overcome the disadvantages of free drug 

formulations. Nanoparticles can be designed for controlled and sustained release of drug combinations 

making them a great vehicle to decrease drug dosage and decrease systemic toxicity but increase 

bioavailability to improve patient outcomes. Nanoparticle drug delivery can also facilitate drug 

delivery on the order of hours to the target sight without the need for multiple injections from 

caregivers. Therefore, nanoparticles provide a natural transition from pre-clinical studies to therapeutic 

treatment of patients without compromising the drug efficacy of sequential drug delivery. However, 

delivery of drug combination in nanoparticles is still an emerging area of study and there has been a 
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limited number of studies investigating sequential drug release from nanoparticles. Therefore, future 

studies need to examine the synergistic interaction of sequential release from nanoparticles to treat 

ovarian cancer. These include examining sequential delivery of nanoparticle drug combinations for 

multiple ovarian cancer cell lines which can be done with multiple single-drug nanoparticles delivered 

at specific time points, then translating these results to designing controlled drug delivery from a single 

nanoparticle using approaches such as pH-labile drug release and prodrug formulations. The goal of 

future studies is designing sequential drug delivery of drug combinations from a single nanoparticle 

with an optimized sequence schedule.  
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2. Chapter 2: Project Overview 

 

 

 

 

 

2.1. Overview 

Ovarian cancer is one of the most prevalent forms of cancer in women with over 200,000 new 

cases each year [1,217–222]. Treating ovarian cancer is inherently challenging due to various genetic 

mutations, advanced stage diagnosis, and acquired drug resistance mechanisms with continual 

chemotherapy treatment [1–4,223]. Free drug treatment with chemotherapeutic agents also causes 

systemic toxicity with low bioavailability and control over drug delivery. Therefore, there is an urgent 

need to improve chemotherapeutic treatments without the need for formulating new drug agents.  

This study focuses on improving drug efficacy of anticancer drugs and overcome challenges 

in drug resistance, poor drug solubility, and poor bioavailability. Nanoparticle drug delivery will be 

used to control drug delivery using a pH-labile platform, drug combinations, and a prodrug approach 

to modulate the drug properties. The advantage of nanoparticle drug delivery is that is can be used to 

increase drug solubility in the bloodstream as well as control the pharmacokinetics of the drug to 

minimize side effects and increase activity in target site. Polymer nanoparticle are formulated via Flash 

NanoPrecipitation which is a rapid and scalable method. Furthermore, by leveraging  a pH-labile 

platform, the drug release can be tuned for sustained release in the bloodstream and rapid drug release 

upon cellular endocytosis when there is a change in environmental pH [204]. Drug combinations have 

also been found improve the cytotoxicity of chemotherapeutic agents with multiple protein targets and 

pathways to cell death [18,96,224]. Therefore, co-encapsulation of multiple drugs are examined in this 
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study as a means to increase drug efficacy and synergy. Paclitaxel, a chemotherapeutic agent, and 

lapatinib, a tyrosine kinase inhibitor, are used as the model system. Lastly, prodrug formulation is 

investigated as a means to control the relative drug release of the drug combinations for sequential 

drug delivery to enhance drug efficacy. This approach will improve the understanding of nanoparticle 

formulation methods that correlate to an increase in drug efficacy, overcome drug resistance, and 

controlled drug release from nanoparticles.  

 

2.2. Significance and Background 

Formulating these two anti-cancer drugs, paclitaxel and lapatinib, into a single nanoparticle 

formulation would address many of the challenges of treating ovarian cancer and provide several 

advantages over current delivery methods. Furthermore, sequential drug release from pH-labile 

nanoparticles can significantly improve drug efficacy and overcome multi-drug resistance (MDR). 

This approach can be applied to treating thousands of patients with ovarian cancer to improve their 

quality of life.  

Tumor sensitivity to chemotherapeutic agents can decrease with continual treatments [225].  

Tumor cells can develop resistant mechanisms against chemotherapies via acquired MDR. One of 

these mechanisms involved overexpression of ATP-binding cassette (ABC) transporters such as ABC 

subfamily B member 1 (ABCB1) also called P-glycoprotein (P-gp) [226,227]. One of the function of 

these transporters (e.g. ABCB1) is to remove drugs from tumor cells thereby decreasing the 

intracellular drug accumulation [226,227]. Without sufficient intracellular accumulation, there is 

insufficient levels of chemotherapeutic agents for a cytotoxic effect [228]. Furthermore, the ABC 

transporters are also associated with upregulation of human epidermal growth factor receptors 

(EGFR). The EGFR proteins are overexpressed resulting in upregulation of several protein kinase 

signaling pathways such as mitogen-activated protein kinase (MAPK) known to promote tumor 
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growth, angiogenesis, and metastasis among other effects [226,229,230]. These effects in combination 

with low anti-cancer drug accumulation in tumor cells due to the ABC transporters make treating 

patients with MDR extremely difficult. 

As a means to overcome MDR in ovarian cancer, current approaches include combination drug 

therapy [35]. Drug combinations allow for targeting of multiple anticancer pathways, overcome and/or 

prevent drug resistance mechanisms, increase drug accumulation, lower systemic toxicity, and 

improve patient outcomes [9,12,57–59]. Furthermore, sequential drug delivery is a developing 

approach that has been shown to further improve the synergy of drug combinations. Sequential 

delivery allows for both parallel and interconnected cascade pathways to induce cell death and 

overcome the multiple drug resistant mechanisms of cancer cells [206].   

Research in sequential drug delivery to treat ovarian cancer has been primarily focused on free 

drug formulations [18,84,88,116,131,133]. However, there are several limitations with free drug 

delivery. Chemotherapeutic free drug formulations are often hydrophobic and poorly water solubility 

resulting in poor bioavailability while inducing severe side effect [108,231]. Another challenge with 

free drugs is sequential delivery has to be done by trained personnel and delivery on the order of hours 

can be difficult in the clinical setting without drug targeting. Without methods to control drug delivery, 

increase bioavailability, and reduce toxicity, treating ovarian cancer remains a challenge.  

There is a critical need for improving current treatment methods of MDR ovarian cancers. 

Advances in formulation of combination nanoparticle therapies offer a new paradigm to deliver an 

effective drug dosage, overcome MDR, control sequential drug delivery, simplify drug regimens to 

improve patient adherence as well as decrease side effects.  Nanoparticle formulations can be designed 

for passive targeting and controlled drug delivery without use of toxic solvents as well as prevent 

premature degradation [108,232,233]. Nanoparticle combination therapy has been a growing approach 

for increasing efficacy of anti-cancer drugs and overcoming effects like MDR. Co-encapsulation of 
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drug combinations would improve co-localization of the drugs in the tumor tissue and improve 

spatiotemporal control of drug delivery [108,234–237].  

Broadly, this nanoparticle platform can be applied to sequentially delivering other 

chemotherapeutic agents as well as a broad range of drugs. Encapsulating drug cocktails into pH-labile 

nanoparticles with controlled sequential release provides cost effective and accelerated improvement 

in controlled drug delivery and drug efficacy that can be applied to a variety of diseases.  

 

2.3. Model Drug Selection 

Taxol (paclitaxel) is one of the most widely used chemotherapeutic agents for treating ovarian 

cancer [103,104]. Paclitaxel binds to the β-subunit of tubulin, which stabilized the tubulin polymers 

preventing polymerization of microtubules [105–107]. Prolonged stabilization of microtubules 

prevents mitosis resulting in cell cycle arrests in the G2/M phase [107]. Clinically, PTX is used in 

combination with other drugs to increase the efficacy of treatment by targeting multiple pathways and 

overcoming drug resistance [115,238,239].   

Lapatinib (Tykerb) or lapatinib ditosylate, is a drug that is effective at increasing accumulation 

of chemotherapeutic agents in MDR cells. Lapatinib is among a family of tyrosine kinase inhibitors 

which functions by binding to the ATP-binding sites of ABC transporters and inhibiting the 

transporter’s function. Lapatinib thereby increases the intracellular drug accumulation of 

chemotherapeutics such paclitaxel [226]. Lapatinib has also been found to aid in inhibiting cell growth 

of MDR cells. It is currently FDA approved for combination therapies in metastatic breast cancer 

[240–242]. There are several ongoing clinical trials investigating the potential of lapatinib to increase 

the efficacy of anti-cancer drugs in other advanced solid tumors including ovarian cancer 

[104,246,247]. Thus lapatinib has the potential to overcome MDR effects in ovarian cancer and 

increase the efficacy of currently used chemotherapeutic agents (Figure 11). 
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Figure 11. ABC transporters are responsible for removing drugs from the cell resulting in drug resistance. 

Lapatinib inhibits the activity of the transporters which sensitizes the cells and increases intracellular 

chemotherapeutic accumulation. 

 

There are several obstacles with using paclitaxel and lapatinib in combination therapies. 

Paclitaxel is a cytotoxic agent that targets microtubules and prevents disassembly resulting in cell 

death which can be highly toxic for healthy cells [103]. Side effects can include low blood pressure, 

risk of infection, formation of blood clots, and neurotoxicity [108–110]. Additionally, paclitaxel is 

formulated with Cremophor EL, polyethoxylated castor oil which can cause severe side effects, 

including nephrotoxicity and neurotoxicity [108,109]. Both paclitaxel and lapatinib are relatively 

hydrophobic, poorly water soluble, and have low permeability which limits drug efficacy [248,249].  

For treatment with these medications, patients require premedication before injection and complex 

treatment regiments [250,251]. This can lead to issues with patient compliance. There are ongoing 

studies on development of new therapeutic agents to overcome MDR and challenges with toxicity 

[252,253]. Formulating these two anti-cancer drugs into a single nanoparticle formulation would 

address many of these challenges and provide several advantages over current delivery methods.  

Additionally, prior clinical studies have suggested that sequential delivery of paclitaxel and 

lapatinib improve drug efficacy [240,247]. Sequential delivery of chemotherapeutic agents and 
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tyrosine kinase inhibitors have been further investigated in free-drug in vitro [254–257]. Some of the 

studies found that delivering the chemotherapeutic drug prior to the tyrosine kinase inhibitors provided 

a synergistic effect compare the reversed order [254–256]. Another study indicated that treatment with 

the tyrosine kinase inhibitors prior to the chemotherapeutic drug provided a more effective treatment 

schedule for MDR cancer cells [257]. While there is still some debate as to which treatment schedule 

is more effective, these studies do suggest that a sequence-dependent synergistic effect on the 

cytotoxicity of MDR cancer cells.  Incorporating controlled drug release of paclitaxel and lapatinib 

from nanoparticles can facilitate in further understanding the sequence-dependent drug interaction and 

improve drug efficacy.  

 

2.4. Prior Art 

Several nanoparticle formulations encapsulating paclitaxel and lapatinib have been previously 

considered [108,234–237,258].  Lipopolymer micelles co-encapsulating lapatinib and paclitaxel were 

found to significantly decrease cell viability of prostate cancer cells in vitro and decrease tumor 

volume in vivo relative to drugs delivered individually in nanoparticle form [234].  In another study 

co-encapsulated lapatinib and paclitaxel in polyelectrolyte nanoparticles with sonication-assisted layer 

by layer (SLBL) technique produced a paclitaxel core and lapatinib shell. These nanoparticles showed 

a significant decrease in cell viability compared to nanoparticles containing only paclitaxel [108]. 

Another study also investigated delivering paclitaxel and lapatinib in a core-shell structure using 

polymer micelles. Binding lapatinib to PEG resulted in a delayed release of lapatinib relative to 

paclitaxel. There was an increase in cytotoxicity of approximately 10% when the cells were treated 

with paclitaxel/lapatinib nanoparticles that release paclitaxel followed by lapatinib compare to 

paclitaxel nanoparticles [235]. These studies suggest there is a synergistic effect of delivering 

nanoparticle drug cocktails on chemotherapeutic efficacy for treating drug resistant cancer and provide 
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the foundation for formulating polymer nanoparticles drug cocktails. However, many of the methods 

for nanoparticle formation are time-intensive and not scalable. Furthermore, the drug release kinetics 

is not well understood from polymer nanoparticles as well as the influence of sequential delivery on 

cell cytotoxicity. Understanding this interaction, it is possible to design a nanoparticle system that 

maximizes the potency of the drugs. 

 

2.5. Flash NanoPrecipitation 

Flash NanoPrecipitation is a rapid, scalable process for encapsulating drug combinations. In 

FNP, PEGylated block copolymers direct self-assembly of kinetically trapped nanoparticles with high 

drug loading capacities, narrow size distribution, and tunable surface chemistry (Figure 12)  [259]. 

By leveraging a pH-labile nanoparticle platform, we can introduce additional control of drug release 

after a change in pH of localized environment. The pH-labile nanoparticle are formulated by 

complexing an antioxidant (i.e. tannic acid) with Fe3+ (aq.) in situ. Antioxidant metal complexes are 

insoluble under basic conditions (pH >7) and soluble in acidic environments (pH <5). To achieve pH-

labile nanoparticles we will encapsulate antioxidant metal complexes using a block copolymer 

stabilizer via FNP. The resulting nanoparticles are pH-labile; the nanoparticles are stable under basic 

conditions (pH >7) when the complex is insoluble and the nanoparticles disassemble in acidic 

environments (pH <2) when the complex is soluble [260]. 
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Figure 12. Flash NanoPrecipitation (FNP) is a rapid and scalable process with high drug loading. The rapid 

change in solvent quality during mixing of the solvent stream with the miscible anti-solvent stream in the 

Confined Impinging Jet (CIJ) Mixer leads to 1) precipitation of core material and 2) self-assembly of block 

co-polymer. The growth stabilized by block co-polymer adsorption. Nanoparticle size is governed by rate 

of nucleation and growth relative to self-assembly. 

 

The advantages of pH-labile nanoparticle platform is control over drug release. Ideally, the 

nanoparticles would minimize the amount of drug released into the bloodstream while delivering the 

payload to the target sight. A pH-labile nanoparticle will allow for slow, sustained release under pH 

7.4 conditions in the bloodstream. With passive targeting using nanoparticles < 200 nm, there is 

preferential accumulate in the tumor tissue through leaky tumorigenic vasculature  [261]. Upon 

endocytosis by the cancer cells, a change in pH in the lysosome (pH ~4) will induce rapid drug release 

due to the degradation of the particle core (Figure 13). 
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Figure 13. Two potential pathways of drug delivery from pH-labile nanoparticles. (1) When the nanoparticles 

are endocytosed the pH decreases resulting in destabilization and drug release or (2) diffusion-limited drug 

release from the nanoparticle outside the cell. 

 

2.6. Approach 

We propose developing a nanoparticle platform for sequential delivery of paclitaxel and 

lapatinib to decrease drug dosage and improve drug synergy. Our central hypothesis is that sequential 

release of paclitaxel and lapatinib from a co-loaded nanoparticle will improve drug potency in 

terms of cell viability and enhance drug synergy.   

Flash NanoPrecipitation (FNP) is typically performed with highly hydrophobic moieties as 

indicated by the calculated octanol water partition coefficient, logP > 6; successful nanoparticle self-

assembly occurs due to hydrophobic interactions between the precipitating core material and 

hydrophobic block of the block co-polymer.  Previously, FNP has been limited to hydrophobic 

materials due to instability and particle disassembly with non-hydrophobic materials (logP < 6).  In 

this work, we will develop methods to encapsulate the model drugs which are not highly hydrophobic 

using Flash NanoPrecipitation. The challenge this work will address is formulating uniform 

nanoparticles with size control and maintaining strong interaction between the hydrophobic block of 

the block co-polymer and the particle core. This work will provide the foundation for encapsulation 
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of a wide variety of drugs into stable polymer nanoparticle without the need for tuning drug 

hydrophobicity. 

Furthermore, to establish sequential release, we have proposed to formulate a hydrophobic 

paclitaxel-prodrug to control the drug release profile relative to paclitaxel and lapatinib [262].  By 

tuning the properties of paclitaxel with a prodrug approach, we can control the rate of diffusion from 

the nanoparticle core. This provides an additional measure of control over the drug release particularly 

to facilitate sequential delivery of paclitaxel and lapatinib.   

 

2.7. Specific Aims 

Designing nanoparticles with tunable release kinetics will enable sequential delivery from pH-

labile nanoparticles. To accomplish this goal, we will completed three specific aims: 

 

Aim 1: Paclitaxel, paclitaxel-prodrug, and lapatinib will be encapsulated in pH-labile 

nanoparticles. The formulation parameters of weakly hydrophobic drugs (logP < 6) will be 

determined for formulating monodispersed nanoparticles ~100 nm. We will formulated both 

single-drug loaded nanoparticles as well as co-loaded nanoparticles with paclitaxel/lapatinib or 

paclitaxel-prodrug/lapatinib (Figure 14). 

Aim 2: The drug release kinetics of paclitaxel, paclitaxel-prodrug, and lapatinib from pH-labile 

nanoparticles will be determined. The drug release profile will be determined via dialysis under 

sink-conditions at pH 7.4 and pH 4 as representative biological conditions.  
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Figure 14. Overview of nanoparticle synthesis with Flash NanoPrecipitation to encapsulate paclitaxel and 

lapatinib with a tannic acid (TA) and iron coordination complex using an amphiphilic block copolymer 

stabilizer. 

 

Aim 3: Finally, we will examined the drug efficacy of the nanoparticles in vitro by examining cell 

viability. Comparisons will be made between the free drug and nanoparticle formulations as well 

as single-drug and co-loaded nanoparticles and the synergistic drug interaction will be evaluated. 

Furthermore, sequential delivery of single-drug loaded nanoparticle as well as controlled release 

from co-loaded nanoparticles will be evaluated. The mechanisms of drug efficacy will also be 

further assessed by examining the cell cycle distribution following treatment. 

 

These three aims will enabled us to determine whether encapsulating these drugs into 

nanoparticles can enhance drug efficacy. This research approach will also addresse if co-loading the 

drugs into nanoparticles can improve drug synergy. Additionally, whether sequential delivery of 

paclitaxel and lapatinib from nanoparticles can improve drug efficacy and if the drug release can be 

controlled by tuning the drug hydrophobicity and environmental pH.   
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2.8. Overview of Dissertation 

The main objectives of this study were to developing a method for encapsulating paclitaxel, 

paclitaxel-prodrug, and lapatinib into nanoparticles and understanding the implications of sequential 

drug delivery. Then based on these findings a nanoparticle platform for controlled drug release with 

enhanced drug efficacy was developed. Finally, we addressed clinical limitations of nanoparticles in 

terms of shelf-stability and reconstitution from dried form (Figure 15).   
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Figure 15. Overview of experimental studies covered in this dissertation. In Chapter 3 we discuss encapsulation 

of protein followed by the nanoparticle formulation process for encapsulating weakly hydrophobic drugs and 

synergistic activity of co-loaded nanoparticles in Chapter 4. In Chapter 5 we examine sequential drug delivery 

in vitro and in Chapter 6 we investigate formulating nanoparticles for controlled release. Lastly, in Chapter 7 

we discuss electrospinning nanoparticles to extend their shelf-life. 

 

First, we investigated an alternative FNP platform for encapsulating non-hydrophobic drugs 

and macromolecules such as proteins. As FNP has previously been limited to highly hydrophobic 

materials (logP > 6), it was important to understand the fundamentals for an FNP platform 

encapsulating non-hydrophobic materials. By encapsulating proteins such as albumin into polymer 

nanoparticles we can broaden the therapeutic agents that can be co-loaded into polymer nanoparticles 

such as DNA, RNA, and antibodies. Additionally by conjugating weakly or non-hydrophobic drugs 

to albumin we can create another vehicle for drug delivery. These findings are discussed in Chapter 3.  

 Next, another FNP platform was investigated for encapsulating weakly hydrophobic drugs 

(logP < 6). The formation of tannic acid-iron complexes in situ was evaluated as a method for co-

encapsulation of weakly hydrophobic drugs (paclitaxel and lapatinib). The parameters for fabricating 

uniform nanoparticles at ~100 nm were investigated to allow for passive targeting. The drug efficacy 
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was compared between free drug formulations and nanoparticles as well as between co-delivery of 

two nanoparticles and co-loaded nanoparticles. The synergistic drug interaction and cell cycle were 

evaluated and these results are presented in Chapter 4.  

 After determining a platform for encapsulating paclitaxel and lapatinib in polymer 

nanoparticles, sequential drug delivery was investigated. In vitro experiments were conducted and 

both free drug and nanoparticle formulations were delivered in different sequence schedules. These 

findings are presented in Chapter 5.  

Based on the results from sequential drug delivery, nanoparticles for controlled drug release 

were investigated. The relative drug release rate of paclitaxel was tuned by formulating a hydrophobic 

prodrug. The drug release profiles were determined for nanoparticles encapsulating paclitaxel, 

paclitaxel-prodrug, lapatinib, or combinations of those drugs. Finally the drug efficacy was evaluated 

for single-drug and co-loaded nanoparticles encapsulating either paclitaxel or paclitaxel-prodrug. The 

results from these experiments are discussed in Chapter 6.  

 Lastly, we addressed the limitations of translating nanoparticle technology to clinical practices. 

Maintaining shelf-stability and nanoparticle integrity during reconstitution is challenging with 

traditional drying methods. A novel method for rapid, room temperature nanoparticle drying and low-

energy reconstitution via electrospinning was presented. The parameters of this technology are 

discussed in Chapter 7. Finally, the conclusions from the dissertation and final remarks are presented 

in Chapter 8. 

 

 

 

 

 

 

 

 



Shani L. Levit • Ph.D. Dissertation • Chemical and Life Science Engineering   61 
 

3. Chapter 3: Rapid, Single-Step Protein Encapsulation via Flash 

NanoPrecipitation 
 

 

Published: [263] Levit, S.L.; Walker, R.C.; Tang, C. Rapid, Single-Step Protein Encapsulation via 

Flash NanoPrecipitation. Polymers 2019, 11, 1406. 

 

 

Abstract 

  Flash NanoPrecipitation (FNP) is a rapid method for encapsulating hydrophobic materials in 

polymer nanoparticles with high loading capacity.  Encapsulating biologics such as proteins remains 

a challenge due to their low hydrophobicity (logP < 6) and current methods require multiple 

processing steps.  In this work, we report rapid, single-step protein encapsulation via FNP using 

bovine serum albumin (BSA) as a model protein.  Nanoparticle formation involves complexation and 

precipitation of protein with tannic acid and stabilization with a cationic polyelectrolyte.  

Nanoparticle self-assembly is driven by hydrogen bonding and electrostatic interactions. Using this 

approach, high encapsulation efficiency (up to ~80%) of protein can be achieved. The resulting 

nanoparticles are stable at physiological pH and ionic strengths. Overall, FNP is a rapid, efficient 

platform for encapsulating proteins for various applications. 

 

3.1. Introduction 

Flash NanoPrecipitation (FNP) is a versatile method to incorporate hydrophobic drugs, dyes, 

or  inorganic nanoparticles with hydrophobic coating into polymeric nanoparticles via rapid mixing 

achieved with confined impinging jets [150]. Typically, nanoparticle self-assembly involves 

precipitation of the supersaturated hydrophobic material via nucleation, growth and adsorption of a 
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micellizing amphiphilic block copolymer.  The resulting nanoparticles are sterically stabilized with a 

hydrophobic core – hydrophilic shell structure [150,264].  Due to the rapid precipitation rate and strong 

hydrophobic interaction with the hydrophobic block of the amphiphilic block co-polymer necessary 

for stabilization, the use of FNP has generally been limited to encapsulation of hydrophobic materials 

(logP > 6) [265].  Due to the increasing emphasis on biologically derived therapeutics [266] such as 

proteins and peptides,  encapsulation to prevent rapid clearance from natural mechanisms and 

enzymatic degradation of the biologic [267,268] via FNP is of considerable interest.  

Encapsulation of less hydrophobic materials (logP < 6) [269–272] using FNP has been 

achieved via in situ complexation [269–272]. For example, hydrophobic ion pairs [271] or insoluble 

coordination complexes can be formed during mixing and stabilized with an amphiphilic block co-

polymer [272]. To encapsulate peptides, hydrophilic imaging agents, and small proteins (~14 kDa), 

inverse Flash Nanoprecipitation (iFNP) has recently been reported [273,274]. In iFNP, the biologic 

and the amphiphilic block co-polymer are solubilized in a polar organic solvent (e.g. dimethyl 

sulfoxide) and rapidly mixed with a miscible nonpolar solvent (e.g. acetone or chloroform) which 

leads to precipitation of the biologic, adsorption of the hydrophilic block, and stabilization by the 

hydrophobic block in the nonpolar solvent.  These initial particles with a hydrophilic core and 

hydrophobic coating are then crosslinked for stabilization and dispersed in an appropriate solvent for 

a second FNP step and encapsulated within a second block copolymer [273,274]. While promising, 

this approach inherently requires multiple processing steps.   

Another approach to encapsulate biologics has been Flash Nanocomplexation in which 

polyelectrolytes complex with biologics (e.g. negatively charged DNA) to impart stability.  For gene 

delivery, Santos et al. stabilized DNA with linear polyethylenimine (lPEI) (22 kDa) via rapid mixing 

[275]. This approach of leveraging electrostatic interactions has been successful for strong 
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polyelectrolytes such as DNA.  Use of this approach for encapsulation of diffusely charged, globular 

proteins has not yet been reported.   

Therefore, we investigate a single-step method for encapsulation of proteins via FNP.  We use 

bovine serum albumin (BSA) as the model protein and form an insoluble precipitate in situ with tannic 

acid [276–278]. We study various stabilizers (i.e. amphiphilic block co-polymer and polyelectrolytes).  

The effects of formulation parameters e.g. stabilizer concentration, molecular weight, pH, and ionic 

strength on nanoparticle size, zeta potential, stability, protein encapsulation are discussed. 

 

 

3.2. Materials and Methods  

3.2.1.  Materials 

ACS grade tannic acid (TA), calcium chloride (CaCl2), and ACS grade hydrochloric acid (HCl) 

were purchased from Sigma-Aldrich (St. Louis, MO, USA). The branched polyethylenimine (PEI) at 

weight averaged molecular weight (MW) of 2,000 g/mol and 10,000 g/mol, were obtained from 

PolySciences (Warrington, PA, USA), and MW = 750,000 g/mol 50% (w/v) in H2O was obtained from 

Sigma-Aldrich (St. Louis, MO, USA). Bovine serum albumin (BSA), ACS grade acetone, HPLC grade 

tetrahydrofuran (THF), diethyl ether, ammonium hydroxide (NH4OH) (aq. 10% v/v), and ACS 

certified sodium chloride (NaCl) were obtained from Fisher Scientific (Pittsburg, PA, USA). These 

reagents were used as received. Phosphate-buffered saline (PBS) was made with 156 mM NaCl, 

10mM sodium phosphate dibasic anhydrous (Na2HPO4, Fisher Scientific), and 2mM potassium 

phosphate monobasic (KH2PO4, Fisher Scientific). Prior to use, BioRad Protein Assay Dye Reagent 

(Bradford dye, BioRad, Hercules, CA, USA) was filtered with a 0.45µm PTFE filter (Fisher Scientific) 

and diluted 4-fold with deionized water.  Additionally, polystyrene-b-polyethylene glycol (1600-b-

500 g/mol) (PS-b-PEG) obtained from Polymer Source (Product No. P13141-SEO, Montreal, Canada) 
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was dissolved in THF (500 mg/mL) and precipitated in diethyl ether (1:20 v:v THF:ether). The PS-b-

PEG was recovered by centrifuging, decanting, and drying under vacuum at room temperature for two 

days as previously described [279].  

 

3.2.2. Nanoparticle Preparation 

Flash NanoPrecipitation (FNP) was performed with a hand-operated confined impinging jet 

(CIJ) mixer similar to previous reports [10]. Using the amphiphilic block co-polymer stabilizer, PS-b-

PEG was dissolved with TA (5 mg/mL) in acetone by sonication (~40°C) and rapidly mixed with BSA 

dispersed in water (9 mg/mL or 20 mg/mL). The block co-polymer to core material (BSA/TA) ratio 

was 2:1 by mass. The effluent from the CIJ mixer was immediately diluted in deionized water to 

maintain an acetone:water volume ratio of 1:9. To use PEI as a stabilizer, TA (5 mg/mL) was dissolved 

in acetone and rapidly mixed with BSA dispersed in water (9 mg/mL); the mixer effluent was 

immediately diluted into PEI dispersed in water. The amount of PEI was varied relative to the mass 

of BSA/TA to achieve a final ratio PEI:BSA/TA of 1:1, 2:1, or 3:1 by mass.  The volume of aqueous 

PEI was set to maintain a final acetone/water ratio of 1:9 by volume. To determine the role of TA, 

FNP was performed without TA using PEI as a stabilizer by rapidly mixing BSA dispersed in water 

with acetone and immediately diluting with PEI dispersed in water. In some cases, the ionic strength 

or the pH of the aqueous BSA stream was adjusted with HCl and NH4OH to achieve pH values 

between 2 and 10.  In some cases following FNP, dialysis was performed to remove the organic solvent 

using regenerated cellulose tubing with a molecular weight cutoff of 6-8 kD MWCO (Spectra/Por, 

Spectrum Laboratories, Houston, TX) against deionized water at a ratio of 1:100. The bath water was 

replaced four times in a 24-hour period. 
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3.2.3. Nanoparticle Characterization 

The size and zeta potential of the resulting nanoparticle dispersions were measured after 

formulation with a Malvern Zetasizer ZS with a backscatter detection angle of 173° (Malvern 

Instruments Ltd, Malvern, United Kingdom). The intensity average particle size and distribution are 

reported using normal resolution mode with an average of 4 measurements. The polydispersity index 

(PDI) is used as a measure of the breadth of the particle distribution defined from the moments of the 

cumulant fit of the autocorrelation function calculated by the instrument software as previously 

described. Nanoparticles with a PDI below 0.300 were considered uniform [10,19].   

To assess nanoparticle stability, the pH of the nanoparticle dispersions following FNP was 

adjusted between pH 2 and 10 with HCl or NH4OH. The size and zeta potential were tracked by DLS 

for up to a week. Additionally, the effect of ionic strength on particle stability by adding NaCl or CaCl2 

(10 to 300 mM) after FNP and the resulting size and zeta potential were tracked for 24 hours. 

 

3.2.4. Protein Quantification 

The amount of protein encapsulated in the resulting nanoparticles was quantified using a 

Bradford assay. After FNP, nanoparticles were recovered by centrifugal filtration (Amicon Ultracel 

50K, 50,000 NMWL, Merck Millipore Ltd, Burlington, MA).  Briefly, filters were centrifuged (5804 

R 15 amp version, Eppendorf, Hamburg, Germany) at ~4000 rpm for 30-40 minutes. The recovered 

nanoparticles were separated from the supernatant. The recovered particles were washed 3 times with 

acetone (1 mL) to precipitate the BSA and solubilize the other nanoparticle components.  The 

precipitated BSA was recovered from the acetone soluble nanoparticle components by centrifugation 

(10,000 rpm for 5-10 minutes) and decanting the acetone supernatant.  The recovered protein was 

redispersed in water. A Bradford assay was performed on the sample following the manufacture's 

protocol. Briefly, 10 µL of sample and 200 µL of Bradford dye were added to 96-well plate and 

measured with a microplate reader (VersaMax ELISA microplate reader, Molecular Devices, San Jose, 
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CA or Cytation 3 multi-mode reader, BioTek, Winooski, VT) at a wavelength of 595 nm.  Performing 

the procedure with a known amount of BSA, we confirmed 98 ± 3% protein recovery (Table 1). 

 
Table 1. BSA recovery in Bradford assay sample preparation 

Initial Loading (mg) Recovered BSA (mg) Percent Recovered (%) 

0.90 0.88 ± 0.06 98% ± 3% 
 

 

3.3. Results and Discussion 

Tannins such as tannic acid (TA) are known to precipitate proteins. Thus, to encapsulate 

proteins via Flash NanoPrecipitation (FNP), our approach was to form an insoluble complex with 

tannins during mixing in the presence of a stabilizer to facilitate nanoparticle self-assembly and impart 

stability. We use TA and bovine serum albumin (BSA) as a model system. Initially, we examined the 

precipitation of the BSA-TA complex via FNP. We mixed BSA dispersed in water with TA dissolved 

in acetone, which immediately formed a cloudy dispersion with a zeta potential of -13.1 ± 0.6 mV 

(Table 2).  Without a stabilizer, the precipitate continued to grow and macroscopic precipitation was 

observed within 24 hrs. These observations indicate that BSA and TA complex and precipitate 

sufficiently fast upon mixing for nanoparticle self-assembly with FNP. We varied the ratio of BSA to 

TA (between 3:7 and 7:3 by mass) and observed the amount of macroscopic precipitate that formed. 

A mass ratio of 9:5 BSA to TA, produced the greatest amount of macroscopic precipitate (Figure 16) 

and was thus used for subsequent experiments.   

 
 

Table 2. Zeta potential of BSA-TA complex with polymer stabilizers. 

Sample   Zeta Potential (mV) 

BSA-TA precipitate  -13.1 ± 0.6 

BSA-TA with PS-b-PEG  -18.0 ± 3.0 

PEI  +34. 3 ± 4.2 

BSA-TA with PEI   +18.8 ± 0.9 
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Figure 16. Precipitation of BSA and TA - Varying BSA:TA ratio. 

 

Based on these results of rapidly precipitating BSA with TA, we initially formulated 

nanoparticles using an amphiphilic block co-polymer (PS-b-PEG) as a stabilizer. To perform FNP, 

BSA was dispersed in water and rapidly mixed with TA and PS-b-PEG dissolved in acetone. At a 

BSA to TA mass ratio of 9:5 and a block co-polymer to core mass ratio of 2:1, the nanoparticle 

dispersion was polydisperse with multiple peaks at ~100 nm, ~20 nm, and ~10 nm (Figure 17). The 

peaks can be attributed to TA/PS-b-PEG micelles [10], empty PS-b-PEG micelles [281], and soluble 

BSA [282]. The lack of visible TA/BSA precipitate suggests that TA preferentially interacts with the 

block copolymer than with BSA during FNP. Further, there is a mismatch in timescales of 

complexation/precipitation and block copolymer micellization such that the block copolymer rapidly 

forms micelles and on a longer time scale stabilizes TA [10,22]. 

 

 
Figure 17. Nanoparticles formulated with PS-b-PEG (28 mg/mL) and TA (5mg/mL) dissolved in acetone 

and rapidly mixed with BSA (9mg/mL) dispersed in water via FNP. 
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To promote BSA/TA interactions, we performed FNP with an excess of protein. When the BSA 

to TA ratio was increased to 4:1, nanoparticles were initially formed with a size of ~600 nm with PDI 

of 0.347 ± 0.045 similar to BSA-TA without stabilizer (Figure 18A and Figure 18B).  The measured 

zeta potential, -18.0 ± 3.0 mV, is consistent with other PEG based block copolymer stabilized 

nanoparticles [265,284]. Therefore, it appears that upon mixing, BSA and TA complex and precipitate 

then the hydrophobic block of the amphiphilic block copolymer stabilizes the precipitate. TA also 

undergoes intermolecular interactions with the PEG block of the block copolymer via hydrogen 

bonding forming an insoluble complex that is confined to the nanoparticle core with the TA/BSA 

precipitate.  The hydrophobic block of the block copolymer adsorbs to the precipitating nanoparticle 

core (hydrophobic PS-block, TA/BSA precipitate, TA:PEG) due to hydrophobic interactions.  The 

PEG that is not complexed with TA microphase separates from the PS-block and orients into the 

aqueous phase providing steric stabilization.  In this case, nanoparticle assembly is driven by a 

combination of hydrophobic and hydrogen bonding interactions. 

 

 

Figure 18. Dynamic light scattering (DLS) intensity weighted size distribution results of (A) Bovine 

serum albumin-tannic acid (BSA-TA) complex without the presence of a stabilizer, (B) BSA-TA 

complex with an amphiphilic block co-polymer, and (C) the BSA-TA complex stabilized with 750kDa 

polyethylenimine (PEI), immediately upon mixing and after 24 hrs. The BSA-TA complex stabilized 

with PEI did not change in size after 24 hrs. 
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 While PS-b-PEG initially facilitated nanoparticle self-assembly, the resulting nanoparticle 

dispersion, initially transparent, turned cloudy over several hours indicating nanoparticle growth. Over 

24 hours, TA and BSA partition out and re-precipitate outside of the nanoparticle core. Similar 

behavior has been observed with TA [10] and peptides [273] which is attributed to low affinity 

between the hydrophobic block of PS-b-PEG and the BSA/TA precipitate.    

Therefore, we next considered alternative stabilizers.  Since we observed the initial BSA/TA 

complex showed a negative zeta potential of -13.1 ± 0.6 mV, we considered a cationic polyelectrolyte, 

polyethylenimine (PEI). To perform FNP, BSA dispersed in water was rapidly mixed with TA 

dissolved in acetone.  The effluent of the mixer was immediately diluted into PEI with a molecular 

weight of 750,000 g/mol (750kDa PEI) dispersed in water. Introducing PEI stabilizer facilitated 

nanoparticle self-assembly and conferred nanoparticle stability (Figure 18c). The resulting 

nanoparticles were 107 ± 5 nm with a PDI 0.285 ± 0.004 and a zeta potential of +18.8 ± 0.9 mV (Table 

3).  No macroscopic precipitate was observed over at least 7 days The positive zeta potential suggests 

that PEI was present at the surface of the nanoparticles encapsulating the anionic BSA-TA precipitate 

providing some degree of steric stabilization as zeta potentials greater than +35 mV are required for 

entirely electrostatic stabilization [284]. 

 

Table 3. Effect of polyelectrolyte stabilizer molecular weight on nanoparticle properties and stability. 

   Initial   7 days 

Sample   
Zeta potential 

(mV) 
  

Diameter 

(nm) 
  PDI   

Zeta potential 

(mV) 
 Diameter 

(nm) 
  PDI 

10kDa PEI  +15.7 ± 1.0  153 ± 7  0.125 ± 0.022  +14.4 ± 1.9  152 ± 1  0.055 ± 0.013 

750kDa PEI   +18.5 ± 1.3   107 ± 5   0.285 ± 0.004   +18.5 ± 1.3   94 ± 3   0.259 ± 0.011 
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Figure 19. Effect of PEI molecular weight on nanoparticle formulation. 

 

Since stabilizer properties can greatly affect resulting nanoparticle properties [265,285–287], 

we investigated the effect of PEI molecular weight (Table 4) on nanoparticle assembly and stability.  

We used molecular weights of 750kDa, 10kDa, and 2kDa.  Interestingly, while 750kDa PEI resulted 

in 107 ± 5 nm stable nanoparticle, 10kDa PEI formed monodisperse, stable particles with a diameter 

of 153 ± 7 nm with a PDI of 0.125 ± 0.022 and a zeta potential +14.4 ± 1.9mV (Table 3, Figure 19). 

The 2kDa PEI did not facilitate nanoparticle assembly ( 

 

Table 5) and FNP resulted in macroscopic precipitate.  Thus, PEI molecular weights greater 

than 10kDa were necessary for nanoparticle formation via self-assembly to encapsulate the BSA/TA 

complex.  High molecular weight polyelectrolytes have been reported to strongly absorb onto surfaces 

which improve the stabilization of dispersions [288,289] such as the BSA/TA precipitate. In contrast, 

low molecular weight polyelectrolytes have higher intermolecular charge repulsion which limits the 

electrostatic stabilization of the BSA/TA precipitate [289].  
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Table 4. Size and zeta potential of PEI dispersed in water 

 

 

 

 

 

 

 

Table 5. Effect of PEI molecular weight on nanoparticle formulation 

Molecular Weight   Diameter (nm)  PDI  Zeta Potential (mV) 

2kDa PEI  753 ± 230  0.596 ± 0.090  - 4.2 ± 1.1 

10kDa PEI  153 ± 7  0.125 ± 0.022  + 15.7 ± 1.0 

750kDa PEI  101 ± 3  0.274 ± 0.007  + 20.6 ± 1.8 

 

We confirmed the role of electrostatic interactions in nanoparticle assembly and stabilization 

by examining the effect of pH of the BSA stream on particle formation. First, we confirmed TA 

precipitates BSA at various pHs; we observed macroscopic precipitation for pHs between 7 and 4.5, 

and no visible precipitate at pH 2 (Figure 20).  The maximum amount of visible BSA-TA precipitate 

was produced at pH ~ 5 which can be attributed to protein aggregation near the isoelectric point of 

BSA (pI = 4.8) [290] comparable to previous reports [276].  Subsequently, the pH of the BSA stream 

was adjusted to between 2 and 10 prior to FNP while the PEI reservoir was unbuffered (pH ~ 10) and 

the nanoparticle size and zeta potential were examined. Varying the pH of the BSA stream did not 

change the size or zeta potential of the 750kDa PEI NPs (Table 6) indicating the measured properties 

are dictated by the PEI.  Interestingly, decreasing the pH to 2 using 10kDa PEI disrupted particle 

assembly (Figure 21 and Table 7) and instead formation of a visible precipitate was observed. The 

net charge of BSA is dependent on pH; decreasing pH below the isoelectric point results in protonation 

of the protein and a net positive charge [276,278].  With a net positive charge, BSA repels the cationic 

PEI (pKa ~ 10) [288,291] and thus particles do not form.  Therefore, particle assembly requires pHs 

Molecular Weight   Diameter (nm)  Zeta Potential (mV) 

2kDa PEI  140 ± 99  13.4 ± 2.5 

10kDa PEI  5.1 ± 0.7  12.3 ± 3 
750kDa PEI  101 ± 7   18 ± 2.9 
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at or above the isoelectric point of the protein (i.e. pH >5) to ensure electrostatic interaction with the 

PEI stabilizer.  

 

 
Figure 20. Precipitation of BSA and TA at various pH conditions. 

 

 

Table 6. Effect of pH of the BSA stream and PEI reservoir on 750kDa PEI nanoparticles 

pH of BSA  pH of PEI  Zeta potential (mV)  Diameter (nm)  PDI 

2  10  + 23.2 ± 1.7  95 ± 8  0.340 ± 0.046 

 2  + 28.7 ± 17.9  115 ± 10  0.324 ± 0.100 

5  10  + 18.9 ± 0.9  105 ± 6  0.289 ± 0.017 

 5  + 38.7 ± 2.0  113 ± 8  0.304 ± 0.096 

10  10  + 24.0 ± 1.8  124 ± 13  0.434 ± 0.085 

 

 

 

 
Figure 21. DLS of the 10kDa PEI nanoparticles formulated under different pH conditions by varying the 

pH of the BSA stream. 
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Table 7. Effect of pH of the BSA stream and PEI reservoir on 10kDa PEI nanoparticle formulation 

pH of BSA  pH of PEI  Zeta potential (mV) 

2 
 

10  + 23.2 ± 1.7 

 
2  + 31.3 ± 3.6 

5 
 

10  + 15.6 ± 0.4 

 
5  + 30.2 ± 2.2 

10 
 

10  + 15.7 ± 1.1 

 

 

Based on these results, we propose that the mechanism of nanoparticle self-assembly differs 

between the 10kDa and the 750kDa PEI. Interestingly, 750kDa PEI NPs have a size of ~100 nm, 

similar to the hydrodynamic diameter of 750kDa PEI (Table 4). Therefore, the high molecular weight 

PEI aggregates.  These aggregates serve as the nanoparticle template and a sink for absorbing the 

anionic BSA/TA complex.  In contrast, nanoparticles formulated with 10kDa PEI (~150 nm) are much 

larger than their corresponding polymer in aqueous media (~5 nm).  For this stabilizer, BSA/TA 

complex and precipitate. Particle assembly occurs as cationic 10kDa PEI adsorbs to the anionic 

BSA/TA precipitate via electrostatic interactions.  This mechanism of nanoparticle self-assembly is 

analogous to previous work with FNP encapsulating coordination complexes or ion pairs formed 

during mixing [272–274,292,293].  Schematics of the particle self-assembly mechanisms for the 

750kDa and 10kDa PEI are shown in Figure 22.  
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Figure 22. Schematic of proposed self-assembly mechanisms using 750kDa and 10kDa polyethylenimine 

(PEI) via Flash NanoPrecipitation (FNP) with PEI stabilizer. In the confined impinging jet (CIJ) mixer the 

bovine serum albumin (BSA) and tannic acid (TA) interact via hydrogen bonding to form an insoluble 

complex. Then the complex is immediately diluted in a reservoir containing PEI. The BSA-TA complex 

interacts with the PEI via electrostatic interaction. High molecular weight 750kDa PEI aggregates template 

nanoparticle assembly and absorb the BSA-TA precipitate. In contrast, 10kDa PEI adsorbs on the 

precipitating BSA-TA complex forming a core-shell structure. 

 

Building on these results, we next sought to understand the effect of formulation parameters 

on nanoparticle assembly, specifically nanoparticle size. Typically, when nanoparticle assembly 

occurs due to hydrophobic interactions between the precipitation core material and micellizing block 

co-polymer, the nanoparticle size can be tuned with the mass ratio of the block co-polymer to the core 

materials as well as the total solids concentration [294]. 

The mass ratio of PEI to BSA-TA complex was adjusted from 3:1 to 2:1. However, for the 

750kDa PEI, decreasing the relative amount of stabilizer resulted in unstable nanoparticles with visible 

precipitate forming within 24 hours (Table 8). For the 10kDa PEI, stable particles were achieved with 

lower relative amounts of stabilizer. While the size was not significantly affected, the PDI increased 

indicating less uniform particles (Table 9). Overall, we observe that the range of stabilizer to core 

ratio that forms stable, uniform nanoparticles is relatively narrow compared to the range used with 

hydrophobic interactions driving nanoparticle self-assembly.  This finding is consistent with particle 

formation involving in situ coordination complexation [10] or cationic polysaccharides [295]. A ratio 

of 3:1 PEI to BSA-TA complex was used for subsequent experiments. 
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Table 8. Varying ratio of stabilizer to core for 750kDa PEI nanoparticles. 

Polymer : Core 
 Initial  24 hrs 
 Size (nm) PDI  Size (nm) PDI 

3 : 1  105 ± 2 0.279 ± 0.007  100 ± 3 0.260 ± 0.002 
2 : 1  145 ± 39 0.442 ± 0.034  1257 ± 80 0.873 ± 0.109 

 

Table 9. Varying total solids concentration and ratio of BSA to TA by mass for nanoparticles 

 made with 10kDa PEI 

Polymer : Core 
  

Total solids 

(mg/mL)   Size (nm)   PDI   Zeta Potential 

(mV) 
3 : 1    5.6   143 ± 8   0.166 ± 0.033   + 14.8 ± 1.1 
3 : 1   11.2  319 ± 185  0.075 ± 0.051  + 11.8 ± 1.0 
2 : 1    4.2   136 ± 42   0.357 ± 0.055   + 15.0 ± 1.4 

 

 

To vary particle size, the total solids concentration of the BSA, TA, and PEI in the final 

dispersion was varied from 5.6 mg/mL to 11.2 mg/mL; the 9:5 ratio of BSA:TA and 3:1 ratio of 

PEI:BSA/TA were held constant. We note that with the 750kDa PEI stabilizer, the total solids 

concentration did not affect particle size or stability (Table 10).  Using 750kDa PEI as a stabilizer, 

particle assembly was templated by the aggregated polymer [289,291,296]. The results are comparable 

to previous reports with various PEI systems at constant charge ratios [297,298].  Interestingly, with 

the 10kDa PEI stabilizer, doubling the total solids concentration resulted in a two-fold increase in 

particle size from 143 ± 8 nm to 319 ± 185 nm while maintaining a PDI less than 0.300 (Table 9). The 

trend of increasing size with total solids concentration is comparable to previous results with FNP. 

During FNP, there is a rapid precipitate of the core materials simultaneously with the self-assembly 

and adsorption of the polymer on the surface of the nanoparticles. The growth of the nanoparticles is 

arrested by the adsorption of the polymer on the surface of the core, kinetically stabilizing the 

nanoparticle. By varying the concentration of the polymer relative to the core, the adsorption of the 
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polymer on the particle surface can be slowed thereby promoting greater core growth producing larger 

nanoparticles. This result has been attributed to a greater rate of core growth relative to the rate of 

nucleation which results in larger particle size [150,294].  Overall, these results support the mechanism 

of particle self-assembly in which TA precipitates the protein and further precipitation is arrested by 

adsorption of the 10kDa PEI stabilizer.     

 
Table 10. Varying Total Solids of 750kDa PEI nanoparticles 

Total Solids 

(mg/mL)   

Zeta Potential 

(mV) 
 

Initial 

 

24 hrs 

Size (nm) 
 

PDI Size (nm) 
 

PDI 

2.8 mg/mL   + 23.7 ± 1.8  107 ± 7  0.276 ± 0.005  107 ± 7  0.276 ± 0.005 

5.6 mg/mL  + 19.5 ± 1.2  99 ± 2  0.270 ± 0.009  98 ± 1  0.264 ± 0.006 

11.2 mg/mL   + 18.0 ± 0.4  101 ± 1  0.276 ± 0.009  101 ± 1  0.271 ± 0.005 

 

 

Salt and pH are expected to greatly affect electrostatic assemblies [299], thus we examine 

nanoparticle stability as a function of pH and ionic strength.  After mixing, the nanoparticle dispersion 

had a pH of ~10 due to the PEI.  As expected, decreasing the pH to 2 caused the nanoparticles with 

the 10kDa PEI stabilizer to disassemble, as indicated by DLS.  The presence of a peak on the order of 

10 nm can be attributed to unencapsulated BSA [282] (Figure 24A). At acidic conditions, protonation 

of PEI and BSA leads to a net positive charge on both molecules and charge repulsion, which 

destabilizes the particles.  Similar results were observed after dialysis of the nanoparticles against 

deionized water (Figure 23) due to decrease in pH near the isoelectric point of BSA.  Therefore, the 

pH of the nanoparticle dispersion should be greater than the isoelectric point of the protein to maintain 

particle stability.  Surprisingly, the particles using the 750kDa stabilizer were stable below the 

isoelectric point of BSA (pH < 4.8) when both the PEI and BSA are expected to carry a net positive 

charge (Figure 24B).  The PEI aggregates may provide a localized buffering effect preventing 

protonation of BSA [291].  
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Figure 23. DLS of 10kDa PEI nanoparticles after dialysis. 

 

 

Figure 24. Effect of nanoparticle dispersion pH on size for (A) 10kDa polyethylenimine nanoparticles 

(PEI NPs) and (B) 750kDa PEI NPs. The size of the particles was measured 24 hours after adjusting 

the pH. The 10kDa PEI NPs destabilized under acidic conditions and released bovine serum albumin 

(BSA). The 750kDa PEI NPs did not change size at acidic pH.   

 

To further understand particle stability, we investigated the effect of adjusting the ionic 

strength of the particle dispersion between 0.01 M to 0.3 M with monovalent and divalent salts. With 

the 750kDa PEI stabilizer, the measured size decreased slightly in the presence of salt at ionic strengths 

greater than 0.01 M (Table 11).  The decrease in particle size with ionic strength has been observed 

previously and was attributed to decreased intra-molecular charge repulsion forces which allow for 

tighter PEI aggregate formation [291]. 
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Table 11. Effect of ionic strength on particle stability of 750kDa PEI nanoparticles 

Salt added   Concentration 

(mM)   Ionic 

Strength (M)   Diameter (nm)   PDI   Zeta Potential 

(mV) 
Initial 750kDa PEI  0  0  107 ± 5  0.285 ± 0.004  18.5 ± 1.3 

NaCl   10   0.01   89 ± 2  0.254 ± 0.007  12.7 ± 0.5 
 

 30  0.03  87 ± 9  0.276 ± 0.039  15.8 ± 1.2 
 

 100  0.1  91 ± 2  0.246 ± 0.004  14.8 ± 3.4 
 

 300  0.3  84 ± 5  0.297 ± 0.032  20.0 ± 4.2 
CaCl2  10  0.03  84 ± 5  0.288 ± 0.028  23.1 ± 4.0 

    100   0.3   85 ± 4   0.306 ± 0.0.024   21.2 ± 4.0 
 

 

In the presence of NaCl, the size of 10kDa PEI stabilized nanoparticles was not affected at 

ionic strengths less than 0.03 M and increased two-fold at ionic strength 0.3 M. The presence of salts 

introduce charge screening and reduce the electrostatic interactions between the 10kDa PEI stabilizer 

and anionic TA/BSA precipitate leading to the increase in particle size [289,300].  Interestingly, the 

diameter of the 10kDa PEI stabilized nanoparticles was 290 ± 6 nm in the presence of NaCl, compared 

to 188 ± 7 nm with CaCl2 at the same ionic strength (0.3 M) (Table 12). The difference in particle size 

in the presence of Ca2+ and Na+ ions at the same ionic strength can be attributed to a 3-fold difference 

in ion concentration of Na+ ions compared to Ca2+ which resulted in greater charge screening and thus 

larger particle size.  Additionally, calcium promotes protein/TA precipitation compared to sodium 

[278] and specific BSA-calcium interactions promote BSA aggregation compared to sodium [301], 

which prevents particle swelling.   

 

Table 12. Effect of ionic strength on 10kDa PEI nanoparticle properties. 

Salt added   
Concentration 

(mM) 
  

Ionic 

Strength (M) 
  Diameter (nm)   PDI   

Zeta Potential 

(mV) 

Initial 10kDa PEI  0  0  146 ± 2  0.125 ± 0.020  15.7 ± 2.0 

NaCl   10   0.01   145 ± 2  0.065 ± 0.019  13.5 ± 2.6 

  30  0.03  139 ± 2  0.069 ± 0.007  13.4 ± 2.0 

  100  0.1  194 ± 3  0.035 ± 0.023  14.3 ± 0.3 

  300  0.3  290 ± 6  0.110 ± 0.024  11.8 ± 1.4 

CaCl2  10  0.03  138 ± 6  0.351 ± 0.019  15.8 ± 1.0 

    100   0.3   188 ± 7   0.148 ± 0.022   16.1 ± 0.5 
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Taken together, these results demonstrate that self-assembled nanoparticles are stable at 

physiologically relevant ionic strengths (~0.15 M). The particles are pH labile.  Specifically, they are 

stable at basic pH (e.g. 7.4) and disassemble at acidic pH.  Such properties may be promising for 

controlled release application such as intracellular delivery [10,41–43].  

Finally, we quantified the amount of BSA in the nanoparticles in terms of encapsulation 

efficiency and protein loading for both molecular weights of PEI via Bradford assay.  To understand 

the role of TA in nanoparticle assembly, we compared formulations with and without TA.  

Interestingly, while TA did not affect particle size or zeta potential (Table 13), it greatly affected the 

amount of protein incorporated into the nanoparticles (Table 14). For example, using the 750kDa PEI 

stabilizer, the protein encapsulation increased from 50% with TA to 74% without the presence of TA.  

This result suggests that the charge density of BSA alone compared to the BSA/TA complex enhances 

interactions with PEI.  Additionally, the absence of TA may increase BSA-PEI interactions. In 

contrast, with the 10kDa PEI NPs, the protein encapsulation increased from 8% without TA to 79% 

with TA.  This result supports the mechanism of self-assembly in which TA/BSA complex and 

precipitate and further growth of the precipitate is prevented by adsorption of the 10kDA PEI 

stabilizer.   

 

Table 13. Effect of TA on nanoparticle formulation 

PEI MW  Formulated with 

TA? 
 Size (nm)  PDI  Zeta Potential 

(mv) 
10kDa  No  141 ± 13  0.196 ± 0.053  + 16.1 ± 1.4 
  Yes  153 ± 7  0.125 ± 0.022  + 15.7 ± 1.0 
750kDa  No  90 ± 11  0.301 ± 0.064  + 23.5 ± 2.8 
  Yes  101 ± 3  0.274 ± 0.007  + 20.6 ± 1.8 
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Table 14. Effect of tannic acid (TA) on protein encapsulation. 

Sample   Condition   
Encapsulation 

Efficiency (EE%) 
  

Drug Loading 

(DL%) 

10kDa PEI NPs  no TA  8% ± 3%  1% ± 0% 

 
 with TA  79% ± 7%  13% ± 1% 

750kDa PEI NPs 
 

no TA  74% ± 6%  12% ± 1% 

 
 

with TA  50% ± 10%  8% ± 2% 

 

Interestingly, the 10kDa PEI stabilizer resulted in higher protein loading (13% compared to 

8%) and encapsulation efficiency (79% compared to 50%) than achieved with the 750kDa PEI 

stabilizer (Table 14). Nanoparticle assembly using the 10kDa PEI that occurs due to adsorption of the 

stabilizer to the precipitate forms kinetically trapped core-shell structures and enhances protein 

encapsulation compared to the absorption of the precipitate with the 750kDa PEI aggregates. This 

improvement in loading is analogous to traditional FNP with hydrophobic small molecules [305]. 

Interestingly, in the absence of TA, protein encapsulation efficiency in the 750kDa PEI NPs increased 

from 50% to 74%. This could suggest that proteins can be encapsulated with FNP in the absence of 

organic solvents and without the need for precipitation limiting protein denaturation and reduction in 

functionality. Excitingly, the encapsulation efficiency of protein via rapid mixing with 10kDa PEI is 

greater (~ 80%) than generally reported for encapsulating biologics via nanoprecipitation (7 – 40%) 

[273,306]. These results suggest that FNP facilitated by TA/BSA complexation and precipitation is a 

highly efficient, rapid process for encapsulating proteins.  

 

3.4. Conclusions 

Overall, we have demonstrated a rapid, single-step method using Flash NanoPrecipitation for 

encapsulating biologics (i.e. proteins) with high encapsulation efficiency (up to ~80%).  Nanoparticle 

formation involves complexation and precipitation with tannic acid and stabilization with a cationic 

polyelectrolyte. Nanoparticle self-assembly is driven by hydrogen bonding between TA and protein, 



Shani L. Levit • Ph.D. Dissertation • Chemical and Life Science Engineering   81 
 

then electrostatic interactions between the TA/protein precipitate and polyelectrolyte stabilizer.  The 

resulting particles are stable at physiological ionic strengths and pH labile, i.e. stable above the 

isoelectric point of the protein and disassemble at pHs below the isoelectric point of the protein, to 

facilitate potential controlled release applications.  
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4. Chapter 4: Rapid Self-Assembly of Polymer Nanoparticles for 

Synergistic Codelivery of Paclitaxel and Lapatinib via Flash 

NanoPrecipitation 

 

Published: [307] Levit, S.L.; Yang, H.; Tang, C. Rapid Self-Assembly of Polymer Nanoparticles for 

Synergistic Codelivery of Paclitaxel and Lapatinib via Flash NanoPrecipitation. Nanomaterials 2020, 

10, 561. 

 

 

Abstract 

Taxol, a formulation of paclitaxel (PTX), is one of the most widely used anticancer drugs, 

particularly for treating recurring ovarian carcinomas following surgery.  Clinically, PTX is used in 

combination with other drugs such as lapatinib (LAP) to increase treatment efficacy.  Delivering drug 

combinations with nanoparticles has the potential to improve chemotherapy outcomes. In this study, 

we use Flash NanoPrecipitation, a rapid, scalable process to encapsulate weakly hydrophobic drugs 

(logP <6) PTX and LAP into polymer nanoparticles with a coordination complex of tannic acid and 

iron formed during the mixing process. We determine the formulation parameters required to achieve 

uniform nanoparticles and evaluate the drug release in vitro. The size of the resulting nanoparticles 

was stable at pH 7.4, facilitating sustained drug release via first-order Fickian diffusion. 

Encapsulating either PTX or LAP into nanoparticles increases drug potency (as indicated by the 

decrease in IC-50 concentration); we observe a 1500-fold increase in PTX potency and a 6-fold 

increase in LAP potency. When PTX and LAP are co-loaded in the same nanoparticle, they have a 

synergistic effect that is greater than treating with two single-drug loaded nanoparticles as the 

combination index is 0.23 compared to 0.40, respectively. 
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4.1. Introduction 

Ovarian cancer remains one of the most difficult cancers to treat due to late stage diagnosis 

and its highly malignant nature [102].  Chemotherapies such as Taxol, a formulation of paclitaxel 

(PTX), remains to be one of the most widely used cancer treatments particularly for recurring ovarian 

carcinomas following surgery [102–104]. The mechanism of action for PTX is binding to the β-subunit 

of tubulin at two sites, which stabilized the tubulin polymers preventing cytoskeletal rearrangement 

for cellular function [105–107]. Stabilizing tubulin results in cell cycle arrests in the G2/M phase [107]. 

However, there are many challenges with the use of Taxol. There are severe systemic side effects 

associated with PTX treatment such as low blood pressure, risk of infection, formation of blood clots, 

and neurotoxicity [108–110]. Additionally, PTX is poorly water-soluble and has low permeability 

which limits drug efficacy due to low drug concentrations reaching the tumor site [248]. Clinically, 

PTX is used in combination with other drugs to increase the efficacy of treatment by targeting multiple 

pathways [115,238,239].  

Paclitaxel is often used in combination with Lapatinib (Tykerb, LAP), a class of tyrosine kinase 

inhibitors [111–114].  Several studies observed an increase in drug efficacy in terms of tumor cell 

death and decrease in tumor volume when PTX and LAP were used in combination [112,308]; in some 

cases, a synergetic effect was observed [309].  However, combination treatment required 

premedication before injection, i.e., complex treatment regimens with multiple methods of 

administration [250,251]. Formulation of drug combinations in nanoparticles could overcome low 

solubility and permeability of the drugs to deliver an effective drug dosage to the tumor site and 

simplify drug regimens to improve patient adherence, while decreasing side effects [108,232,233].  

Co-encapsulation of PTX and LAP may improve the co-localization of the drugs in the tumor 

tissue and increase drug efficacy [108,234–237]. For example, PTX and LAP have been co-formulated 

in a core-shell structure using polymer micelles. Lapatinib was conjugated to a PEGylated block 
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copolymer and formulated into micelles encapsulating PTX in the core. Interestingly, formulation into 

the polymer micelles increased the potency of the PTX as indicated by a 2-fold decrease in the half 

maximal inhibitory concentration (IC-50) concentration in certain types of breast cancer [235]. 

Although the increase in potency via formulation into nanoparticles is exciting, this approach requires 

multiple steps and covalent modifications of LAP which results in the formation of a new compound, 

requiring further testing for FDA approval, a costly and time-consuming process [271].  

Nanoparticle formulations co-encapsulating PTX and LAP without chemical modification of 

LAP has also been considered [108,234–237,258].  Vergara et al. co-encapsulated LAP and PTX in 

polyelectrolyte nanoparticles by sonication-assisted layer-by-layer (SLBL) technique. To formulate 

these nanoparticles, PTX-chitosan nanoparticles were first formed, followed by the sequential 

deposition of alginic acid and chitosan coatings.  Lapatinib was co-deposited with chitosan to achieve 

nanoparticles with a PTX core and LAP shell. The core-shell nanoparticles showed a significant 

decrease in cell viability in vitro compared to PTX loaded nanoparticles and free PTX [108]. While 

the results are promising, the formulation of the nanoparticles was time intensive as each deposition 

of each layer required 20-45 minutes.   

Co-loading both LAP and PTX in the nanoparticle core has been achieved using lipopolymer 

[234] or Pluronic F127 polymeric micelles [310]. Formulation using the Pluoronic F127 suppressed 

tumor cell proliferation and decreased IC-50 by 10-fold relative to free drug combination treatment of 

PTX and LAP [310]. These nanoparticles provide the basis for further improvements of drug 

combinations; however, the formulation method is challenging to scale up [311].  Furthermore, the 

drug effect when co-delivering drugs in nanoparticle form in terms of synergy is not well established.  

In this study, we extend the use of Flash NanoPrecipitation (FNP) to PTX and LAP by 

leveraging in situ coordination complexation of tannic acid and iron. Flash NanoPrecipitation enables 

the rapid, scalable formulation of drug combinations [259]. However, this method has generally been 
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limited to highly hydrophobic materials (logP > 6) [265]. Encapsulating PTX and LAP using FNP is 

challenging due to their relatively weak hydrophobicity (PTX, logP = 3.2 and LAP, logP = 5.4). We 

encapsulate drugs (logP < 6) via in situ coordination complex formation of tannic acid-iron (TA-Fe) 

and stabilization with an amphiphilic block copolymer. Our focus is understanding how incorporating 

multiple drugs affects nanoparticle self-assembly.  Based on our understanding, we establish the 

formulation parameters to form PTX NPs, LAP NPs and PTX-LAP NPs with comparable size (~100 

nm in diameter).  We perform initial drug release studies in vitro, focusing on the release of PTX.  We 

evaluate the potency of the nanoparticles in vitro using an ovarian cancer cell line OVCA-432. The 

core of our preliminary in vitro evaluation is based on IC-50 values; the effect of co-encapsulating the 

drugs in terms of synergy using the combination index is analyzed.   

 

4.2. Materials and Methods 

4.2.1. Materials 

HPLC grade tetrahydrofuran (THF), dimethyl sulfoxide (DMSO), acetonitrile, and Tween 80 

were purchased from Fisher Scientific (Pittsburg, PA). ACS grade tannic acid (TA) and ACS grade 

iron (III) chloride hexahydrate (97%) were purchased from Sigma-Aldrich (St. Louis, MO). Paclitaxel 

(PTX, >98%) and lapatinib (LAP, >98%) were obtained from Cayman Chemical Company (Ann 

Arbor, MI); phosphate buffered saline without calcium and magnesium was purchase from Lonza 

(Basel, Switzerland).  Polystyrene-b-polyethylene glycol (1600-b-500 g/mol) (PS-b-PEG) was 

obtained from Polymer Source (Montreal, Canada) and was purified by dissolving in THF (~40°C) 

and precipitating into diethyl ether then dried by vacuum for two days as previously described [279]. 
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4.2.2. Cell Culture 

Ovarian cancer cell line OVCA-432 was a kind gift from Dr. Xianjun Fang from Virginia 

Commonwealth University. The OVCA-432 cells were cultured in RPMI-1640 media containing 2 

mM L-glutamine (ATCC, Manassas, VA) supplemented with 10% Fortified Bovine Calf Serum (FBS, 

HyClone Cosmic Calf Serum, Fisher Scientific, Pittsburg, PA), 100 U/mL penicillin and 100 µg/mL 

streptomycin (Gemini Bio-Products, West Sacramento, CA), and cultured at 37 °C at 5% CO2. The 

cells were passaged once a week. 

4.2.3. Nanoparticle Formulation 

Flash NanoPrecipitation (FNP) was used to prepare polymer-based nanoparticles 

encapsulating  the anti-cancer drugs with a hand-operated confined impinging jet (CIJ) mixer with 

dilution as previously described [272,312]. Four nanoparticles were formulated that either 

encapsulated the TA-Fe complex (TA-Fe NPs), PTX (PTX NPs), LAP (LAP NPs), or both PTX and 

LAP (PTX-LAP NPs). 

To self-assemble the nanoparticles, PS-b-PEG, TA (4 mg/mL), and one or more of the drugs 

(PTX and LAP) were dissolved in a water-miscible organic solvent (e.g. THF or DMSO) by sonicating 

(~40°C) for 10 minutes to formulate the organic stream. The organic stream was rapidly mixed with 

the Fe3+ (aq., 1 mg/mL) at equal volumes, typically 1 mL, in the CIJ mixer.  The effluent from the 

mixer was immediately diluted in 1X PBS at pH 7.4 for a final organic solvent/water ratio of 1:9 by 

volume. The drug concentration in the organic stream of PTX and LAP was varied from 0.5 mg/ml to 

2 mg/mL; the block copolymer concentration was varied relative to the core material.  Specifically, 

the core material was considered the TA and Fe3+ for the TA-Fe NPs, and for the drug-loaded 

nanoparticles it was determined as TA and the drugs encapsulated. The ratio of the PS-b-PEG to the 

core material was varied between 1:1 to 2:1 by mass. 
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Within 24 hrs of formulation, the nanoparticles were filtered to remove the organic solvent, 

unencapsulated drug(s), and excess TA and Fe3+ with Amicon Ultra-2 Centrifugal filters (Amicon 

Ultra centrifuge filter (Ultracel 50K, 50,000 NMWL), Merck Millipore Ltd, Burlington, MA) by 

centrifuging at 3700 rpm for ~15-30 minutes (5804 R 15 amp version, Eppendorf, Hamburg, 

Germany). The nanoparticle pellet was resuspended with 1X PBS to a nominal concentration ~25 

mg/mL of total solids and stored at ~4 °C. The nanoparticles were used within 5 days of the FNP to 

ensure there was minimal change in particle size and drug loss. 

 

4.2.4. Nanoparticle Characterization 

The size, polydispersity (PDI), and zeta potential of the nanoparticles were characterized 

immediately after FNP and after filtration using dynamic light scattering (Malvern Zetasizer ZS, 

Malvern Instruments Ltd, Malvern, United Kingdom). The nanoparticle size and PDI were measured 

by averaging 4 measurements at a scattering angle of 173°. Nanoparticles populations with a PDI of 

less than 0.400 were considered uniform [313]. The nanoparticle size stability at 4 °C was observed 

by measuring size and PDI for up to 3 weeks after formulation.  The concentration of the nanoparticle 

dispersion following filtration was determined by thermogravimetric analysis (TGA) (Pyris 1 TGA, 

Perkin Elmer, Waltham, MA). 

Transmission electron microscopy (TEM) samples were prepared by diluting the filtered 

nanoparticle dispersions with DI water 1:20 by volume ratio and pipetting 5 μL three times onto a 

TEM grid with Formvar/Carbon support films (200 mesh, Cu, Ted Pella, Inc, Redding, CA) and dried 

under ambient conditions. Dilution was necessary to prevent aggregation during drying.  The samples 

were imaged with a JEOL JEM-1230 (Peabody, MA) at 120 kV.  

To determine the drug content of the nanoparticles, acetonitrile (1.8 mL) was added to 

nanoparticles (50 μL) filtered with Amicon filter, as previously described, and the sample was 
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vortexed so that the nanoparticles would disassemble.  The sample was centrifuged at 10,000 rpm for 

6 minutes, and then the supernatant was collected for reverse-phase high Performance Liquid 

Chromatography (RP-HPLC) (1260 HPLC with Quaternary Pump and UV-Vis Diode Array Detector, 

Agilent, Santa Clara, CA) fitted with a Luna® 5 µm C18 100 Å, LC Column 250 x 4.6 mm 

(Phenomenex, Torrance, CA).   The sample was eluted with degassed acetonitrile and water gradient 

at a flow rate of 1 mL/min (0-1 minute at 80:20, 1-6 of ramp up to 0:100, 6-8 minutes at 0:100, and 

ramp down to 80:20 between 8-9 minutes). PTX was measured at a wavelength of 228 nm with a 

retention time of ~8 minutes and LAP was measured at 332 nm with a retention time of ~9 minutes. 

The concentration of each drug was determined by comparing the peak areas with the standard 

calibration curve. Encapsulation efficiency (EE%) and drug loading (DL%) were calculated based on 

equations 10 and 11, respectively, and the values reported are the average and standard deviation of 

three trials. 

𝑒𝑛𝑐𝑎𝑝𝑠𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 (𝐸𝐸%) =  
𝑀𝑎𝑠𝑠 𝑜𝑓 𝑑𝑟𝑢𝑔 𝑒𝑛𝑐𝑎𝑝𝑠𝑢𝑙𝑎𝑡𝑒𝑑

𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑚𝑎𝑠𝑠 𝑜𝑓 𝑑𝑟𝑢𝑔
𝑥 100%        (Eq. 10) 

𝑑𝑟𝑢𝑔 𝑙𝑜𝑎𝑑𝑖𝑛𝑔 (𝐷𝐿%) =  
𝑀𝑎𝑠𝑠 𝑜𝑓 𝑑𝑟𝑢𝑔 𝑒𝑛𝑐𝑎𝑝𝑠𝑢𝑙𝑎𝑡𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 𝑛𝑎𝑛𝑜𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝑚𝑎𝑠𝑠
 𝑥 100%     (Eq. 11) 

 

4.2.5. Nanoparticle Drug Release In Vitro 

To measure the drug release, 500 μL of concentrated nanoparticle dispersion was loaded into 

7,000 MWCO dialysis unit (Slide-A-Lyzer® MINI Dialysis Unit, Thermo Scientific, Waltham, MA) 

and incubated in 0.5% Tween 80 in PBS at pH 7.4 at 37°C, which was replaced every day of the 

experiment.  Samples (32 μL) at 0 h, 3 h, 6 h, 24 h, 48 h, day 4, day 6, and day 10 were taken from the 

nanoparticle dispersion and the remaining drug concentration was determined by RP-HPLC as 

previously described. Three replicates of each drug-loaded nanoparticle dispersion were tested. 
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4.2.6. Cytotoxicity 

OVCA-432 cells were seeded at a density of 15 x 103 cell/well in a 96-well plate containing 

100 µL of complete medium. The cells were incubated at 37 °C in 5% CO2 overnight. Then the media 

was replaced with 100 µL medium containing free-drug or nanoparticles and treated for 48 hrs. Stock 

solution of free-drug were prepared by dissolving PTX (12 mg/mL) or LAP (5 mg/mL) in DMSO and 

sonicating for 5 minutes. Then the drugs were diluted with complete media and serial dilutions were 

performed to achieve concentrations between 200 - 0.0002 µg/mL. Additional DMSO was added for 

a final DMSO concentration of 2% v/v. The nanoparticles were concentrated with Amicon filters 

(50kDa MWCO) as previously described and the nanoparticle pellet was diluted with 1X PBS. The 

PTX NPs and LAP NPs were individually concentrated to 1000 μg/mL of drug. The PTX-LAP NPs 

were concentrated to 500 µg/mL relative to PTX. The nanoparticle-loaded medium was prepared by 

diluting the stock nanoparticle dispersion with complete media and performing serial dilutions for 

final concentrations between 200 - 0.0002 µg/mL. The cells were also treated with complete media 

and 2% DMSO media as controls for comparison. There were 6 replicates for each experimental 

condition. After 48 hrs, the cell viability was measured with WST-1 assay (Sigma-Aldrich, St. Louis, 

MO) according to manufacturing instructions.  Briefly, the drug-loaded medium was removed and 100 

µL of RPMI-1640 with Phenol Red (Fisher Scientific, Pittsburg, PA) containing 10% WST-1 solution 

was added to each well as well as to 6 empty wells. The cells were incubated between 45 - 90 minutes 

until there was a visible color change to a golden-yellow or the absorbance of control wells reached at 

least 0.700 measured with a microplate reader (VersaMax ELISA microplate reader, Molecular 

Devices, San Jose, Ca) at a wavelength of 440 nm with background subtraction of 640 nm. The cell 

viability was determined by subtracting the background noise (wells containing only 10% WST-1 in 

media) from the samples and then dividing the sample absorbance by the average absorbance of the 
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untreated wells. The relative cell viability was expressed as a percentage of the untreated cells with 

mean ± standard deviation of six replicates. 

 

4.2.7. Cell cycle analysis by flow cytometry 

The cells were seeded at a density of 20 x 104 cells/mL in a 35 mm petri dish containing 3 mL 

of complete media. The cells were incubated at 37°C and 5% CO2 until 90% confluence and the media 

was replaced every 2 days. The cells were treated with either free PTX, free LAP, PTX NPs, LAP NPs 

at the IC-50 concentration or left untreated for 48 hrs at 37 °C. After 48 hrs treatment, the cells were 

stained with Propidium Iodide (PI Flow Cytometry Kit, Abcam, Cambridge, MA) for flow cytometry 

according to manufacturing instructions. Briefly, the cells were trypsinized and the aspirated medium 

and PBS were collected to minimize cell loss. The cells were centrifuged at 700 x g for 5 minutes as 

necessary. The cells were washed with 1X PBS and fixed with 66 % ethanol by slowly adding ethanol 

to PBS during vortexing. The cells were stored in ethanol at 4 °C for at least 2 hrs and up to 4 days. 

The cells were centrifuged and washed with PBS to remove the ethanol. The 1X Propidium Iodide and 

RNase solution was prepared immediately prior to use by mixing 5% v/v of 20X Propidium Iodide 

and 0.05% v/v 200X RNase in 1X PBS. Then the cells were resuspended in 200 µL/500,000 cells of 

1X Propidium Iodide and RNase solution and incubated in the dark at 37 °C for 30 minutes. Prior to 

flow cytometry, the cell samples were stored on ice and filtered through a cell strainer (Falcon Test 

Tube with Snap Cap, Fisher Scientific, Pittsburg, PA). Flow cytometry was performed on a BD 

FACSCanto™ II Analyzer (BD Biosciences, San Diego, CA) and 10,000 cells were analyzed at an 

excitation of 488 nm and emission of 670 nm. The samples were analyzed in triplicate. 
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4.3. Results and Discussion 

4.3.1. Nanoparticle Preparation and Characterization 

Flash NanoPrecipitation (FNP) is a well-established polymer-directed self-assembly method 

for preparing size-tunable nanoparticles encapsulating highly hydrophobic molecules (logP > 6).  

Since nanoparticle self-assembly involves adsorption of the hydrophobic block of the block copolymer 

to a precipitating core material, this process has generally been limited to highly hydrophobic materials 

with logP of 6 or greater [259,265]. Since PTX is not sufficiently hydrophobic to form stable particles 

via FNP directly [314], we explore an alternative approach in which we encapsulate PTX (logP = 3.2) 

and LAP (logP = 5.4) using a pH-labile, tannic acid-iron (TA-Fe) based nanoparticle platform [272].  

To prepare TA-Fe based nanoparticles, FNP was performed by mixing drug(s), TA and PS-b-

PEG dissolved in a water-miscible (THF or DMSO) organic solvent with iron (III) chloride dissolved 

in water in a confined impinging jet mixer.  The effluent from the mixer was quenched in a bath of 

PBS, pH 7.4, conditions under which the TA- Fe coordination complex is expected to be insoluble.  

Upon rapid mixing, the TA and Fe3+ form an insoluble coordinate complex which co-precipitates with 

the drug(s) forming the particle core.  Precipitation of the core materials is arrested by adsorption of 

the hydrophobic block of the block copolymer and the PEGylated end of the block copolymer 

sterically stabilizes the nanoparticle in dispersion (Figure 25). The dispersions appeared red which is 

consistent with the tris-complex of TA and iron expected at pH 7.4 [294,311]. Nanoparticles 

encapsulating the TA-Fe complex (TA-Fe NPs) are 109 ± 5 nm (Figure 26) with a zeta potential of -

21.4 ± 2.1 mV consistent with other PEGylated nanoparticles [265,284].  
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Figure 25. Overview of nanoparticle synthesis with Flash NanoPrecipitation to encapsulate. paclitaxel and 

lapatinib with a tannic acid (TA) and iron coordination complex using an amphiphilic block copolymer 

stabilizer. The organic solvent stream contains the stabilizer, PS-b-PEG, TA, and one or more drugs of interest. 

The organic stream is rapidly mixed with the aqueous stream containing iron using a CIJ mixer. Upon rapid 

mixing, the TA and iron from an insoluble complex which facilitates the precipitation and encapsulation of 

paclitaxel and lapatinib. The resulting nanostructures are kinetically trapped. 

 

 
Figure 26. Dynamic light scattering of TA-Fe NPs (containing no drugs). 

 

 

Our initial goal was to achieve uniform PTX-loaded nanoparticles on the order of 100 nm to 

allow for passive targeting [315]. We examined the effect of organic solvent selection, total solids 

concentration, ratio of the block copolymer to core materials, and drug concentration on the ability to 

make uniform particles and resulting nanoparticle size.  
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Two water-miscible organic solvents were considered, THF and DMSO, as the block 

copolymer, TA, LAP and PTX were sufficiently soluble for the self-assembly of nanoparticles via 

FNP.  However, when DMSO was used for the organic stream, a visible red-purple precipitate formed 

immediately upon mixing in the reservoir. With THF, stable PTX-loaded nanoparticle dispersions 

were achieved with a zeta potential of -22.1 ± 2.1 mV and no precipitate was observed. These results 

suggest that co-precipitation of PTX and the TA-Fe complex and the rate of PS-b-PEG self-assembly 

is more appropriately matched using THF as a solvent than DMSO as a solvent.  Thus, THF was used 

as a solvent in all further experiments. 

To further tune the size of the PTX-loaded particles, we examined the effect of other 

formulation parameters. At a total solids concentration of 18 mg/mL in the streams and above, there 

are two size populations in the intensity weighted distribution with peak diameter ~30 nm and ~100 

nm.  The population with hydrodynamic diameter of ~30 nm can be attributed to empty block 

copolymer micelles [271,280] produced with the PTX-loaded nanoparticles of ~100 nm (Table 15).  

The inability to form uniform particles at high concentrations has been previously observed and could 

be attributed to a limited affinity between stabilizer and TA-Fe precipitate at high iron concentrations 

[271].   

 

Table 15. Summary of paclitaxel nanoparticle formulations. 

Total solids 

(mg/mL) 

Ratio of  

BCP: core 

PTX Concentration 

(mg/mL) 
Size 1 (nm) 

Size 2 

(nm) 
PDI 

18 2:1 1 107 ± 2 32 ± 1 0.275 ± 0.009 

36 2:1 2 113 ± 6 31 ± 1 0.372 ± 0.012 

11 1:1 1 170 ± 33 0 0.142 ± 0.053 

13.5 1.5:1 1 128 ± 7 0 0.244 ± 0.034 

16 2:1 1 111 ± 10 0 0.255 ± 0.021 

19 2:1 2 117 ± 3 20 ± 1 0.268 ± 0.009 

16 2:1 1 111 ± 10 0 0.255 ± 0.021 

14.5 2:1 0.5 134 ± 42 0 0.232 ± 0.145 

* The average ± standard deviation of 3 replicates of FNP are reported. 
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To improve particle uniformity, we next examined the ratio of the block copolymer to core 

materials (BCP:core with the core defined as concentration of TA and PTX in the formulation) at 

reduced total solids concentration. Specifically, three BCP:core ratios, i.e., 1:1 1.5:1 and 2:1 were 

studied with total solids concentration less than 16 mg/mL. All three ratios produced uniform 

nanoparticles with a PDI < 0.400. At a 1:1 BCP:core ratio, the particles were 170 ± 33 nm.  Increasing 

the amount of block copolymer from a 1:1 to 2:1 BCP:core ratio produced in a 35% decrease in particle 

size (Table 15) and a 2:1 BCP:core ratio uniform PTX-loaded particles with a hydrodynamic diameter 

of 117 ± 3 nm were achieved. TEM confirmed the nanoparticles were spherical and the size was 

consistent with DLS (Figure 27A). This trend has been attributed to an increase in the rate of self-

assembly relative to the rate of core growth, limiting the growth of the core before it is kinetically 

stabilized. These results are comparable to FNP systems using hydrophobic core materials (logP > 6) 

in which the particle size can be tuned by varying the ratio of the block copolymer to the core 

[259,293]. 

 

 
Figure 27. TEM images of (A) PTX NPs, (B) LAP NPs, and (C) PTX-LAP NPs. 
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Thus, we next investigated the effect of PTX concentration to maximize the drug loading in 

the nanoparticle while maintaining uniform, ~100 nm nanoparticle formulations (Figure 28). We 

varied the PTX concentration from 0.5 to 2 mg/mL in the organic stream.  Increasing the PTX 

concentration to 2 mg/mL resulted in two size populations with peak diameters of ~100 nm and ~20 

nm (Table 15) possibly due to a mismatch time scales of complexation/precipitation and block 

copolymer micellization at higher concentrations of drug.  The highest concentration that we used that 

resulted in uniform PTX-loaded particles was 1 mg/mL.   

 

 

Figure 28. Representative dynamic light scattering results of uniform (red) paclitaxel nanoparticle 

(PTX NPs), (blue) lapatinib nanoparticle (LAP NPs), and (purple) co-loaded paclitaxel-lapatinib 

nanoparticle (PTX-LAP NPs) samples produced at ~100 nm (each DLS curve is the average of n = 4 

measurements). Representative transmission electron microscopy (TEM) image of PTX-LAP NPs 

(scale bar = 200 nm), as inset. 

 

In parallel with formulating PTX-loaded nanoparticles, we also used FNP to encapsulate LAP 

within TA-Fe nanoparticles via in situ complexation with the aim of achieving uniform LAP 

nanoparticles ~100 nm in diameter.  

Similar to PTX, total solids concentration above 36 mg/mL in the streams resulted in two size 

populations in the intensity weighted distribution with peak diameter ~30 nm and ~100 nm due to the 

formation empty block copolymer micelles.  Lowering the total solids concentration to 16 mg/mL, 
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nanoparticle dispersions with uniform size were achieved (Table 16).  Nanoparticle dispersions with 

uniform particle size were obtained at BCP to core ratios between 2:1 and 1:1.  Interestingly, the size 

of the LAP-loaded NPs was independent of BCP: core ratio.  This result indicates that the 

concentrations used the rate of LAP/TA-Fe co-precipitation is comparable to the self-assembly of PS-

b-PEG micellization. 

 

Table 16. Summary of lapatinib nanoparticle formulations. 

Total solids 

(mg/mL) 

Ratio of 

BCP:core 
Size 1 (nm) Size 2 (nm) PDI 

16 2:1 91 ± 10 0 0.214 ± 0.038 

36 2:1 106 ± 5 26 ± 4 0.288 ± 0.004 

10.5 1:1 134 ± 8 0 0.255 ± 0.012 

15.3 2:1 126 ± 7 0 0.380 ± 0.037 

* The average ± standard deviation of 3 replicates of FNP are reported. 

 

Next, we investigated the effect of LAP concentration to maximize the drug loading in the 

nanoparticle while maintaining uniform size distributions (diameter ~100 nm).  At LAP concentrations 

2 mg/mL nanoparticle were produced at ~150 nm and ~30 nm (Figure 29).  These results are 

comparable to the results observed with PTX.  Reducing the drug concentration, uniform, ~100 nm 

particles were achieved and confirmed with TEM (Figure 28 and Figure 27B).  These results suggest 

co-precipitation of these weakly hydrophobicity drugs (logP <6) with the TA-Fe core affect timescale 

of precipitation as well as the affinity of the stabilizer and the core that can result in the formation of 

empty micelles and need to be considered when formulating these drug-loaded nanoparticles.  
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Figure 29. Dynamic light scattering of LAP NPs. Nanoparticles were formulated at 1mg/mL and 2mg/mL drug 

concentration in the organic stream. The LAP NP dispersion produced at 2 mg/mL had multiple size peaks at 

~150 nm and ~30 nm, while the LAP NPs produced at 1 mg/mL were uniform at ~100 nm.  

 

Finally, our goal was to produce co-loaded nanoparticles containing both PTX and LAP (PTX-

LAP NPs). Based on the findings from formulating PTX NPs and LAP NPs, we first focused on drug 

concentration using THF as the organic solvent. Using a drug concentration of 1 mg/mL PTX and 1 

mg/mL LAP (a total drug concentration of 2 mg/mL), nanoparticles with multiple two size populations 

(peak diameters of 119 ± 28 nm and 22 ± 3 nm) were observed. When the total drug concentration 

was decreased to 1 mg/mL (0.5 mg/mL each of PTX and LAP), uniform nanoparticles were produced 

at 115 ± 3 nm (Table 17).  These results are comparable with PTX NPs and LAP NPs where a 

maximum drug concentration of 1 mg/mL could be used in the formation of monodispersed 

nanoparticles. To maximize the drug loading, a BCP:core ratio of 1:5:1 was used.  TEM confirms the 

particles are spherical and the particle size is consistent with DLS (Figure 28). Additionally, the 

nanoparticle size and polydispersity was unaffected by the filtration process (Table 18). Nanoparticle 

size was stable for up to two weeks after FNP when stored at 4 °C (Table 19). 
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Table 17. Effect of varying drug concentration when preparing for formulating PTX-LAP NPs. 

Sample  

Drug Concentration (mg/mL)  

Size 1 (nm) Size 2 (nm) PDI 
PTX LAP  

PTX-LAP NPs 
1 1  119 ± 28 22 ± 3 0.330 ± 0.080 

0.5 0.5  115 ± 3 0 0.248 ± 0.007 

 

 

Table 18. Comparing nanoparticles size and polydispersity before and after filtration. 

Sample 
Unfiltered  Filtered Change in 

nanoparticle 

size (%) 
Size (nm) PDI   Size (nm) PDI 

TA-Fe NPs 134 ± 3 0.129 ± 0.012  135 ± 5 0.148 ± 0.022 1% 

PTX NPs 170 ± 33 0.142 ± 0.053  164 ± 36 0.175 ± 0.050 -4% 

LAP NPs 117 ± 7 0.335 ± 0.025  107 ± 8 0.344 ± 0.041 -9% 

PTX-LAP NPs 120 ± 35 0.294 ± 0.085  110 ± 12 0.271 ± 0.068 -8% 

 

 

Table 19. Nanoparticle stability. 

Nanoparticles 

 Initial (T = 0)  T = 2 weeks 

  Size (nm) PDI  Size (nm) PDI 

TA-Fe NPs   151 ± 5 0.258 ± 0.003  158 ± 2 0.228 ± 0.011 

PTX NPs  136 ± 27 0.280 ± 0.059  142 ± 58 0.344 ± 0.225 

LAP NPs  117 ± 7 0.247 ± 0.049  132 ± 25 0.332 ± 0.132 

PTX-LAP NPs   84 ± 16 0.286 ± 0.026  81 ± 21 0.266 ± 0.058 

 

Following FNP, the drug concentration in the resulting dispersions was determined by HPLC 

after disassembling the nanoparticles with acetonitrile.  From the drug concentration, the encapsulation 

efficiency and drug loading of PTX and LAP were determined.  The encapsulation efficiency of the 

drug is the amount of drug encapsulated compared to the nominal amount in the formulation. The drug 

loading of PTX and LAP in the single drug loaded nanoparticles were similar (Table 20) and 

comparable to previous literature using polymer micelles [237,316].  For the single drug loaded 

nanoparticles, the encapsulation efficiency PTX and the LAP were 37.6 ± 14.4% and 25.0 ± 1.5%, 
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respectively which are comparable to previous reports using polymer micelles [316].  Interestingly, in 

the co-loaded nanoparticles the encapsulation efficiency of PTX increases from 37.6 ± 14.4% to 67.0 

± 2.2% while the encapsulation efficiency for LAP in PTX-LAP NPs remained the same as the LAP 

NPs (Table 20). This result could be attributed to a more hydrophobic core environment in the 

presence of LAP facilitating encapsulation of PTX.  Due to the selective increase in encapsulation 

efficiency of PTX in the presence of LAP, the drug loading of PTX was 2.7-fold higher than the LAP 

loading (2.11 ± 0.50% compared to 0.79 ± 0.49%) despite using equal amounts of each drug during 

mixing (0.5 mg/mL of each).  Notably, these drug concentrations are comparable to previous studies 

micelles [237,316]. 

 

Table 20. Encapsulation Efficiency and Drug Loading of Nanoparticles. 

 
  

 

 

 

 

 

* The average ± standard deviation of 3 replicates of FNP are reported. 

 

 

4.3.2. Drug Release 

As a first step to understanding the in vitro drug release rates of PTX and LAP from 

nanoparticles, dialysis was performed with PBS at pH 7.4 with Tween 80 similar to previous studies 

[317–320]. Examining the PTX-loaded nanoparticles, a burst release was observed within the first 6 

hours at which ~20% of PTX was released. After 6 hours, the burst release was followed by sustained 

PTX release and the drug release plateaued at ~40% at day 6 (Figure 30A).  In comparison, ~25% of 

LAP released from LAP-loaded NPs in the first 3 hours (~25%). Following the burst release, the 

sustained release of LAP release over 6 days was observed with ~35% total drug release achieved 

(Figure 30B).   

Samples 
Encapsulation efficiency (EE%)  Drug loading (DL%) 

PTX LAP  PTX LAP 

PTX NPs 37.6 ± 14.4 --  3.11 ± 1.88 -- 

LAP NPs -- 25.0 ± 1.5  -- 1.82 ± 0.71 

PTX-LAP NPs 67.0 ± 2.2 25.9 ± 3.5  2.11 ± 0.50 0.79 ± 0.40 
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PTX release from the co-loaded nanoparticles was comparable to the single drug loaded 

nanoparticles with burst release in the first 6 hours and cumulative drug release at day 6 of ~40%.  We 

examined the drug release kinetics of PTX from single-drug and co-loaded nanoparticles and fitted it 

to Korsemeyer-Peppas diffusion model (Eq. 12) [321,322].  

                         
𝑀𝑡

𝑀∞
= 𝑎𝑡𝑛 (Eq. 12) 

Where the Mt is the drug release at time, t, M∞ is maximum drug release, and a is the release rate. The 

diffusion exponent, n, is determined based on the fit and described the drug release mechanism [321]. 

The diffusion exponent for PTX released from PTX NPs and from PTX-LAP NPs was 0.34. Since the 

diffusion exponent was less than 0.45, it indicates first-order Fickian diffusion kinetics [323,324].  

Examining LAP release, we observe a slight decrease in cumulative release after 24 hours 

(Figure 30B).  The fluctuations for lapatinib release from the nanoparticles are unusual but similar 

observations have been previously reported in other drug release systems [325,326]. The fluctuations 

in cumulative release can be potentially attributed to supersaturation of lapatinib in the dialysis media 

in the first 24 hours due to burst release of the drugs from the nanoparticles. Supersaturation could 

cause nanoprecipitation of LAP which could result in the apparent drop in cumulative drug 

accumulation [327]. This phenomena has been observed with other hydrophobic drugs from 

nanoparticles [325,327]. 

 
Figure 30. The cumulative drug release of paclitaxel (PTX) and lapatinib (LAP) from polymer nanoparticles 

(NPs) from (A) PTX from PTX NPs, (B) LAP from LAP NPs, and (C) PTX and LAP from co-loaded 
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nanoparticles. The graph shows the average ± standard deviation of 3 replicates of FNP and independent drug 

release assays. 

    

Investigating release from the PTX-LAP NPs, there is a decrease in cumulative release in LAP 

between 6 and 24 hours (Figure 30C).  This result suggests that the release of PTX increases the 

supersaturation of and nanoprecipitation of LAP.  Notably, when comparing LAP release from the co-

loaded nanoparticles to the single drug-loaded nanoparticles, burst release occurred over 6 days rather 

than 3 days and the cumulative LAP release at 6 days was 2-fold lower for co-loaded nanoparticles 

compared to single-drug nanoparticle (~16% compared to ~35%) (Figure 30C). Co-encapsulating 

PTX and LAP into nanoparticles resulted in a decrease in the cumulative drug release of LAP but the 

drug release was comparable for PTX to single-drug loaded nanoparticles. The slower burst release of 

LAP from co-loaded nanoparticles may be attributed to lower drug loading concentrations compared 

to LAP NPs resulting in a slower dissolution profile, a phenomenon observed with hydrophobic 

materials [328].  These results are consistent with previous literature indicating LAP has a slower 

release profile compared to PTX from polymer micelles [309]. Studies to further characterize the drug 

release, especially LAP, using alternative media (e.g. other surfactants, or biologically relevant media 

such as full growth medium with serum) will be pursued in future work.   

 

4.3.3. Assessing Drug Efficacy of Single Drug Nanoparticles 

Finally, the efficacy of the nanoparticle dispersions were assessed in vitro with ovarian cancer 

cells, OVCA-432. Specifically, we used the IC-50 concertation, i.e. the drug concentration that reduces 

the cell viability by 50%, as a measure of potency.  As a control, the cell viability was first examined 

for cells treated with TA-Fe nanoparticles without drug.  When treated with 50 µg/mL based on total 

solids concentration the cell viability was 95% (Table 21).  Examining the dose-response, the IC-50 

concentration for the TA-Fe nanoparticles was ~1000 µg/mL of total solids concentration.  This result 
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demonstrates that the nanoparticle platform itself has minimal cytotoxic effects consistent with 

previous reports [271]. 

 
Table 21. Cell viability of cell treated with Fe-TA NPs. 

Total Solids 

Concentration (µg/mL) 
Cell viability 

5000 7 ± 1% 

1000 38 ± 3% 

500 74 ± 5% 

100 89 ± 5% 

50 95 ± 4% 

10 108 ± 4% 

5 106 ± 8% 

1 101 ± 6% 

0.5 100 ± 11% 

 

 

Next, we compared the potency of the nanoparticles compared to the free drug at the equivalent 

free drug concentration.  We note at the concentrations of nanoparticles used, the (TA-Fe NPs) alone 

did not induce cytotoxic effects and the IC-50 was reproducible with OVCA-432 cells.  Encapsulating 

the PTX shifts the dose-response curve to lower concentrations compared to free PTX (Figure 31) 

indicating an increase in potency upon encapsulation.  A similar trend was observed for LAP (Figure 

32).  Interestingly, the dose-response curve of PTX NPs and LAP NPs plateaued at ~20% cell viability. 

At low drug concentrations, the TA in the nanoparticle could counter the effects of the drugs by 

inducing an antioxidant effect and eliminate free radicals produced with the anticancer drugs 

[329,330]. 
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Figure 31. Dose response curve for cell treated with free PTX (blue) and PTX NPs (red). 

 

 
Figure 32. Dose response curve for cell treated with free LAP (blue) and LAP NPs (red). 

 

Specifically, the IC-50 concentration decreases from 70.6 ± 5.1 µg/mL for free PTX to 0.04 ± 

0.003 µg/mL when encapsulated (p < 0.05) (Table 22).  A similar result was observed for LAP; upon 

encapsulation, there was a nearly 6-fold increase in potency as the IC-50 decreased from 4.6 ± 1.3 

µg/mL for the free drug to 0.80 ± 0.26 µg/mL when formulated into nanoparticles (p < 0.05) (Table 
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22). While decreases in IC-50 concentration compared to the free drug form have been observed in 

other polymer nanoparticle formulations [234,331,332] and is not fully understood, the 1500-fold 

increase in PTX potency in this nanoparticle is noteworthy.  The significant increase in PTX potency 

in the TA-Fe could be attributed to several contributing factors including sustained release over the 48 

hour treatment period an increased bioavailability due to the nanoparticle formulation [234,333,334]. 

 

Table 22. IC-50 of paclitaxel, paclitaxel nanoparticles, lapatinib, and lapatinib nanoparticles in  

OVCA-432 cells 

Drug 

Treatment 
 IC-50 (µg/mL) 

  PTX LAP 

Free PTX*  70.6 ± 5.1 -- 

4.6 ± 1.3 Free LAP*  -- 

PTX NPs  0.040 ± 0.003 --- 

LAP NPs  --- 0.80 ± 0.26 

*In 2% DMSO with full growth medium.  

**The average ± standard deviation (n = 6 treatments) are reported. 

 

 

4.3.4. Cell Cycle Analysis 

To better understand the increase in drug potency upon encapsulation, we examined the effect 

of treatment on cell cycle using flow cytometry. The difficulty of treating cancer is the rapid 

proliferation of tumor cells and the propensity for metastasis. It is vital that cancer treatments such as 

PTX inhibit proliferation. For example, PTX arrests cells in the G2/M phase by stabilizing microtubule 

and preventing their disassembly necessary for cell division [335]. Thus, we examined the effect of 

the nanoparticles on cell cycle using flow cytometry.  Specifically, we compared the cell cycle of cells 

treated with free PTX and PTX NPs at their respective IC-50 concentrations. The untreated control 

cells were primarily in the G0/G1 phase with only 9% in the G2/M phase. With free PTX, the percentage 

of cells in the G0/G1 phase drops from 62% to 45% and there is an increase in the number of cells in 

the G2/M phase to 31% (Figure 33A).  These results indicate that free PTX formulations accumulates 
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OVCA-432 cells in the G2/M phase and likely decrease the cell viability by preventing progression to 

mitosis [335].  LAP and LAP-NP treated cells remained primarily in the G0/G1 phase (Figure 33B) 

and the proportions for LAP and LAP-NPs were comparable.  Thus, free LAP, and LAP NPs seem to 

stabilize the cells in the G0/G1 phase over the 48 hours treatment with minimal progression to the 

subG1 phase as expected since LAP is known to arrest cancer cells in the G1 phase of the cell cycle 

[336]. 

 

 

Figure 33. Cell cycle analysis of OVCA-432 cells from flow cytometry to compare free drug (in 2% DMSO) 

and nanoparticle formulations for A) paclitaxel (PTX) and B) lapatinib (LAP). The graph shows the average ± 

standard deviation from 3 replicate wells. 

 

 

Figure 34. Cell cycle distribution of untreated cells and cell treated with TA-Fe NPs. 
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While the control nanoparticles had no effect on the cell cycle (Figure 34), when OVCA-432 

cells were treated with PTX NPs the proportion of cells in G0/G1 phase is similar to free PTX treated 

cells.  Notably, treatment with PTX NPs shifted the cells to the subG1 phase relative to both free PTX 

and control (Figure 33A) and decreased the proportion of cells in the G2/M phase from 31% to 11%.  

Increase proportion in the subG1 phase could indicate that cells spend a shorter time in the G2/M phase 

with rapid DNA fragmentation [337] or it could be attributed to a short period of G1 arrest followed 

by progression to the subG1 phase during the 48 hour treatment [338]. Importantly, cells in the subG1 

phase undergo DNA damage, which can lead to cell death over time [339]. Overall, these changes in 

the cell cycle are support our findings that encapsulation increases PTX potency compared to free 

PTX.  

 

4.3.5. Drug Combination and Synergy 

 

Next, we examined the efficacy of the co-loaded formulation. Co-encapsulating encapsulating 

the PTX with LAP further shifted the dose-response curve to lower concentrations compared to free 

PTX (Figure 35). Co-encapsulating PTX and LAP further increases PTX potency as indicated by the 

2-fold-decrease in IC-50.   
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Figure 35. The cell viability dose-response curve of OVCA-432 cells when treated with (blue) paclitaxel 

nanoparticles (PTX NPs) and (red) paclitaxel-lapatinib nanoparticles (PTX-LAP NPs). The PTX-LAP NPs 

treatment shifts the dose-response curve to lower drug concentrations compared to the PTX NPs treatment. The 

graph shows the mean ± standard deviation from one experiment performed with 6 replicate wells. 

 

Based on the IC-50 of PTX-LAP NPs, we compared the cell viability of OVCA-432 cells 

treated with a single-drug nanoparticle (0.009 µg/mL PTX or 0.004 µg/mL LAP) to co-loaded PTX-

LAP NPs (Table 23). The control nanoparticles containing no drug (TA-Fe NPs) at the same total 

solids concentration (~0.5 µg/mL) exhibited no cytotoxic effects on the OVCA-432 cells. When the 

OVCA-432 cells were treated with PTX NPs, there was a slight decrease in the cell viability to ~80% 

whereas LAP NPs did not significantly affect cell viability.  As expected, the PTX-LAP NPs reduced 

cell viability to ~50% which was significantly lower compared to both PTX NPs (p = 0.0002) and 

LAP NPs (p = 0.0001) (Figure 36). These results indicate that at equivalent drug concentrations, co-

loaded PTX-LAP NPs had the greatest potency.  
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Figure 36. Cell viability of OVCA-432 cells after 48 hour treatment with (gray) media, (purple) tannic acid-

iron nanoparticles (TA-Fe NPs), (pink) paclitaxel nanoparticles (PTX NPs), (light blue) lapatinib nanoparticles 

(LAP NPs), (green) paclitaxel-lapatinib nanoparticles (PTX-LAP NPs). The cells were treated with a PTX 

concentration of 0.009 µg/mL and LAP at 0.004 µg/mL based on IC-50 of the PTX-LAP NPs. The cell viability 

was significantly lower when the cells were treated with PTX-LAP NPs when compared to PTX NPs (p < 0.05) 

and LAP NPs (p < 0.05). The graph shows the mean ± standard deviation from one experiment performed with 

6 replicate wells. 

 

Building on these results, we compared the combination treatment to the single drug treatment 

to determine if there was a synergistic effect of co-treating the cells with PTX and LAP. Synergy was 

examined with the combination index (CI) based on the Chou-Talalay method and when the CI is 

below 1, the combination treatment is synergistic compared to the sum of the individual drug 

treatments [340–342].  Free PTX and free LAP can be combined synergistically as indicated by the 

CI of 0.18.  PTX and LAP target different mechanisms of the cell to produce an anticancer effect 

[8,343]. LAP inhibits the function of ABC transporters, which helps increase the intracellular 

concentration of PTX thereby increasing drug efficacy [234,344,345]. Similar synergistic effects were 

seen with chemotherapeutic agents and tyrosine kinase inhibitors [238,239]. 

Interestingly, the CI of the co-loaded PTX-LAP NPs was 0.23 comparable to the free drug 

combination and lower than co-delivered nanoparticles, which had a CI of 0.40 (Table 23). These 

results indicate an advantage to co-encapsulation of both drugs within the same particle. The co-loaded 

nanoparticles could enhance the co-localization of the drugs particularly if the nanoparticles are 

endocytosed by tumor cells.  Overall, we have presented a rapid and scalable approach to 
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encapsulating chemotherapeutic combinations in a pH-labile nanoparticle platform that enhances the 

potency treatment ovarian cancer in vitro. 

 

Table 23. IC-50 and combination index of paclitaxel-lapatinib nanoparticles (PTX-LAP NPs) (co-loaded) 

compared to simultaneous delivery of paclitaxel nanoparticles (PTX NPs) and lapatinib nanoparticles (LAP 

NPs) (two single drug-loaded NPs) in OVCA-432 cells. 

 

 

 

 

* The average ± standard deviation from one experiment performed with 6 replicate wells is reported. 

 

4.4. Conclusion 

In conclusion, we demonstrated encapsulation of weakly hydrophobic drugs (logP <6) into 

polymer nanoparticles in a rapid, scalable FNP process using in situ complexation of TA-Fe.  The size 

of the resulting nanoparticles is stable at pH 7.4, facilitating sustained drug release via first-order 

Fickian diffusion. Importantly, the nanoparticles that encapsulate PTX and LAP are significantly more 

potent than the free drugs as indicated by the significantly decreased IC-50. Co-encapsulating PTX 

with LAP further increased potency.   Additionally, co-encapsulating PTX and LAP had a synergistic 

effect comparable to the free drug and greater than co-delivery of the single drug loaded nanoparticles 

indicating an advantage co-encapsulation of both drugs within the same particle. Building on this 

promising study, further studies to understand the cytotoxic effects (e.g. apoptosis), nanoparticle 

uptake and localization within cells, protein adsorption to nanoparticles, as well as evaluation in 

additional cell lines will be considered in future work. This is an intriguing approach for improving 

the potency of existing chemotherapeutics.  

 

 

Drug Treatment 
IC-50 (µg/mL) Combination Index 

(CI) PTX LAP 

PTX NPs and LAP NPs 0.015 ± 0.003 0.007 ± 0.001 0.40 

PTX-LAP NPs 0.0090 ± 0.0009 0.0040 ± 0.0004 0.23 
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5. Chapter 5: Sequence-Dependent Cytotoxicity of Nanoparticle 

Delivery of Paclitaxel and Lapatinib in Ovarian Cancer Cells  

 

 

 

 

Abstract 

 Treating ovarian cancer with acquired drug resistance is challenging with chemotherapeutic 

agents. Recently approaches of sequentially delivering drug combinations have been found to improve 

drug efficacy. In this study, we extend this approach to examine the efficacy of sequential drug 

delivery of two anticancer drugs, paclitaxel and lapatinib, in polymer nanoparticle formulations. 

Paclitaxel and lapatinib were individually loaded into polymer nanoparticles by Flash 

NanoPrecipitation via in situ tannic acid-iron complexation. In vitro experiments were conducted on 

ovarian cancer cell models (OVCA-432 and OVCAR-3). We examined the cell viability and cell cycle 

distribution after three sequence schedules; simultaneous delivery, paclitaxel followed by lapatinib, 

and lapatinib followed by paclitaxel. While the response was cell-dependent, the greatest cytotoxicity 

was observed when the cells were treated simultaneously with paclitaxel and lapatinib for 48 hours or 

with paclitaxel for the first 24 hours followed by lapatinib for a second 24 hour period. This reduction 

in cell viability paralleled the shift observed in the cell cycle distribution to an increase in the G2/M 

and subG1 phases. 
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5.1. Introduction 

Treating ovarian cancer with chemotherapeutic agent (e.g. paclitaxel) remains a challenge due 

to development of drug resistance mechanisms [7,102]. The drug resistance is also attributed to several 

factors including drug inactivation, dose intensity, DNA repair, cell death inhibition, and drug efflux 

[20,21]. Cellular drug resistance mechanism such as increased drug efflux are attributed to an 

overexpression of ATP-binding cassette (ABC) transporters that have a role in removal of anticancer 

drugs [344]. ABC transporter inhibitors, e.g. lapatinib (LAP), have be used in combination with 

chemotherapeutics to reduce drug efflux and increase the efficacy of the chemotherapeutic agent 

[226,240,246].  

Recently, there has been a shift to examining sequential drug delivery of drug combinations 

for managing recurring ovarian cancers [12,238,346,347]. These studies have found that sequential 

treatment of two or more drugs can increase anticancer activity through synergistic drug interaction 

and enable higher drug dosing with tolerable toxicity  [12,84,116,117]. Vanhoefer et al. investigated 

sequential delivery of paclitaxel and cisplatin on ovarian adenocarcinoma cells from patients 

pretreated with platinum therapies and found that a sequence treatment of paclitaxel 24 hrs prior to 

cisplatin produced a synergistic effect [84]. When PTX was co-delivered with vorinostat, a histone 

deacetylase inhibitor, to treat ovarian cancer cells a sequence-dependent synergetic activity was 

observed in vitro and in vivo. However the synergetic activity was also cell type dependent  attributed 

to the protein expression of drug targets [116]. Sequential delivery of chemotherapeutic agents and 

transporter inhibitors similar to lapatinib have also been investigated in free-drug formulations in vitro 

[254–257]. Some of the studies found that delivering the chemotherapeutic drug prior to the inhibitory 

drug provided a synergistic effect compared to the reversed order [254–256]. Another study indicated 

that treatment with the inhibitory drug, sorafenib, prior to the chemotherapeutic drug, docetaxel, 

provided a more effective treatment schedule for drug resistant cancer cells [257]. While there is still 
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some debate as to which treatment schedule is more effective and if the observed synergy is cell type 

dependent, these studies do suggest that a sequential drug delivery has the potential to increase 

treatment efficacy to induce greater cancer cell death.  

Overall, these studies suggest that drug delivery sequence schedules can be tailored to increase 

drug efficacy. The benefit of this approach is targeting multiple interconnecting cascade pathways at 

specific time points to produce an enhanced anticancer effect [206,341]. Many of the sequential drug 

delivery studies are limited to free drugs [84,116,254–257]. The limitations of free drug formulations 

are poorly drug solubility and have low bioavailability while inducing severe systemic toxicity. 

Additionally, there is poor control over sequential drug delivery with free drug formulations [188,348]. 

Nanoparticle drug formulations can address these challenges with controlled drug delivery, passive 

targeting through enhanced permeability and retention (EPR) effect, improve drug solubility and 

bioavailability, and reduction in systemic toxicity [188,348,349]. 

Polymer nanoparticles formulations of paclitaxel with other anticancer drugs have been 

explored for combination treatment of ovarian cancer. These studies found that polymer nanoparticle 

formulations of drug combinations have been found to enhance synergistic interaction, significantly 

reduced tumor volume and extended survival time compared to delivery of single-drug nanoparticles 

in ovarian cancer [154–157]. Nanoparticle combination drug delivery has been extended to explored 

sequential drug delivery with nanoparticles for other forms of cancer [184–190,194,195]. Two 

anticancer drugs, doxorubicin and imatinib, were co-loaded into PEGylated nanoparticles for 

sequential drug delivery (under acidic conditions) and enhanced drug uptake and apoptosis compared 

to single-drug nanoparticles or co-delivery of free drugs [185]. While this study provides a foundation 

for pursing the study of drug combination nanoparticles, there is still limited understanding of which 

sequence schedule produce optimal drug efficacy. Further studies are needed to explore the effects of 

sequential drug delivery with polymer nanoparticles on ovarian cancer cells  
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In this study, we explore sequential drug delivery of paclitaxel and lapatinib on ovarian cancer 

cell model (OVCA-432 and OVCAR-3). We encapsulate paclitaxel and lapatinib into single-drug 

nanoparticles via Flash NanoPrecipitation (FNP) [306]. Three different sequence schedules are 

explored; simultaneous delivery, paclitaxel prior to lapatinib, and lapatinib prior to paclitaxel. 

Treatment efficacy of nanoparticle formulations were compared to free drug in vitro and evaluated 

using cell viability and cell cycle analysis.   

 

5.2. Materials and Methods 

5.2.1. Materials 

HPLC grade tetrahydrofuran (THF), dimethyl sulfoxide (DMSO), and acetonitrile were 

purchased from Fisher Scientific (Pittsburg, PA). ACS grade tannic acid (TA) and ACS grade iron 

(III) chloride hexahydrate (97%) were purchased from Sigma-Aldrich (St. Louis, MO). Paclitaxel 

(PTX, >98%) and lapatinib (LAP, >98%) were obtained from Cayman Chemical Company (Ann 

Arbor, MI); phosphate buffered saline without calcium and magnesium was purchase from Lonza 

(Basel, Switzerland).  Polystyrene-b-polyethylene glycol (1600-b-500 g/mol) (PS-b-PEG) was 

obtained from Polymer Source (Montreal, Canada) and was purified by dissolving in THF (~40°C) 

and precipitating into diethyl ether then dried by vacuum for two days as previously described [278]. 

 

5.2.2. Cell Culture 

Ovarian cancer cell line OVCA-432 was a kind gift from Dr. Xianjun Fang from Virginia 

Commonwealth University. Ovarian cancer cell line OVCAR-3 was purchased from ATCC 

(Manassas, VA). The OVCA-432 cells were cultured in RPMI-1640 media containing 2 mM L-

glutamine (ATCC, Manassas, VA) supplemented with 10% Fortified Bovine Calf Serum (FBS, 

HyClone Cosmic Calf Serum, Fisher Scientific, Pittsburg, PA), 100 U/mL penicillin and 100 µg/mL 
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streptomycin (Gemini Bio-Products, West Sacramento, CA). The OVCAR-3 cells were cultured in 

RPMI-1640 media supplemented with 20% FBS and 1 mg/mL bovine insulin (Sigma Aldrich, St. 

Louis, MO). Both cell lines were cultured at 37 °C at 5% CO2 and passaged once a week. 

 

5.2.3. Nanoparticle Formulation 

Flash NanoPrecipitation (FNP) was used to prepare polymer-based nanoparticles 

encapsulating  the anti-cancer drugs via tannic acid-iron in situ complexation with a hand-operated 

confined impinging jet (CIJ) mixer, as previously described [271,306]. Briefly, PS-b-PEG (10 

mg/mL), TA (4 mg/mL), and either PTX (1 mg/mL) or LAP (1mg/mL) were dissolved in THF by 

sonicating (~40°C) for 10 minutes to formulate the organic stream. The organic stream was rapidly 

mixed with the Fe3+ (aq., 1 mg/mL) at equal volumes (1 mL of each stream) in the CIJ mixer.  The 

effluent from the mixer was immediately diluted in 1X PBS at pH 7.4 for a final organic solvent/water 

ratio of 1:9 by volume. Nanoparticles encapsulating paclitaxel (PTX NPs) or lapatinib (LAP NPs) 

were formulated using the described method.  

Within 24 hrs of formulation, the nanoparticles were filtered to remove the organic solvent, 

unencapsulated drug(s), and excess TA and Fe3+ with Amicon Ultra-2 Centrifugal filters (Amicon 

Ultra centrifuge filter (Ultracel 50K, 50,000 NMWL), Merck Millipore Ltd, Burlington, Ma) by 

centrifuging at 3700 rpm for ~15-30 minutes (5804 R 15 amp version, Eppendorf, Hamburg, 

Germany). The nanoparticle pellet was resuspended with 1X PBS to a nominal concentration ~25 

mg/mL of total solids and stored at ~4 °C. The nanoparticles were used within 5 days of the FNP to 

ensure there was minimal change in particle size and drug loss. 
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5.2.4. Nanoparticle Characterization 

The size and polydispersity (PDI) of the nanoparticles were characterized after FNP using 

dynamic light scattering (Malvern Zetasizer ZS, Malvern Instruments Ltd, Malvern, United Kingdom). 

The nanoparticle size and PDI were measured by averaging 4 measurements at a scattering angle of 

173°. The average and standard deviation of three replicates of each nanoparticles are reported.   

 The nanoparticle encapsulation efficiency (EE%) and drug loading (DL%) were determined 

for the two nanoparticles. The nanoparticles were filtered to remove the organic solvent, 

unencapsulated drug(s), and excess TA and Fe3+ with Amicon Ultra-2 Centrifugal filters (Amicon 

Ultra centrifuge filter (Ultracel 50K, 50,000 NMWL), Merck Millipore Ltd, Burlington, Ma) by 

centrifuging at 3700 rpm for ~15-30 minutes (5804 R 15 amp version, Eppendorf, Hamburg, 

Germany) within 24hrs of formulation. The nanoparticle pellet was resuspended with 1X PBS to a 

nominal concentration ~25 mg/mL of total solids and stored at ~4 °C.  

The concentration of the nanoparticle dispersion was determined by thermogravimetric 

analysis (TGA) (Pyris 1 TGA, Perkin Elmer, Waltham, MA). The nanoparticle dispersion was loaded 

at 10 uL and the temperature was ramped up from 28ºC to 110ºC at 10ºC/min and held for 30 minutes 

at 110ºC. The final nanoparticle mass was used to determine the nanoparticle drug loading. 

To determine the drug content of the nanoparticles, acetonitrile (360 µL) was added to 

nanoparticles (10 μL) and the sample was vortexed so that the nanoparticles would disassemble.  The 

sample was centrifuged at 10,000 rpm for 7 minutes, and then the supernatant was collected for 

reverse-phase high Performance Liquid Chromatography (RP-HPLC) (1260 HPLC with Quaternary 

Pump and UV-Vis Diode Array Detector, Agilent, Santa Clara, CA) fitted with a Luna® 5 µm C18 

100 Å, LC Column 250 x 4.6 mm (Phenomenex, Torrance, CA).   The sample was eluted with 

degassed acetonitrile and water gradient at a flow rate of 1 mL/min (0-1 minute at 80:20, 1-6 of ramp 

up to 0:100, 6-8 minutes at 0:100, and ramp down to 80:20 between 8-9 minutes). PTX was measured 
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at a wavelength of 228 nm with a retention time of ~8 minutes and LAP was measured at 332 nm with 

a retention time of ~9 minutes. The concentration of each drug was determined by comparing the peak 

areas with the standard calibration curve. Encapsulation efficiency (EE%) and drug loading (DL%) 

were calculated based on equations 10 and 11, respectively, and the values reported are the average 

and standard deviation of three trials. 

𝑒𝑛𝑐𝑎𝑝𝑠𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 (𝐸𝐸%) =  
𝑀𝑎𝑠𝑠 𝑜𝑓 𝑑𝑟𝑢𝑔 𝑒𝑛𝑐𝑎𝑝𝑠𝑢𝑙𝑎𝑡𝑒𝑑

𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑚𝑎𝑠𝑠 𝑜𝑓 𝑑𝑟𝑢𝑔
𝑥 100%        (Eq. 10) 

𝑑𝑟𝑢𝑔 𝑙𝑜𝑎𝑑𝑖𝑛𝑔 (𝐷𝐿%) =  
𝑀𝑎𝑠𝑠 𝑜𝑓 𝑑𝑟𝑢𝑔 𝑒𝑛𝑐𝑎𝑝𝑠𝑢𝑙𝑎𝑡𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 𝑛𝑎𝑛𝑜𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝑚𝑎𝑠𝑠
 𝑥 100%       (Eq. 11) 

 

5.2.5. Determining Half Maximal Inhibitory Concentration 

The half maximal inhibitory concentration (IC-50) of free PTX, free LAP, PTX NPs, and LAP 

NPs for both OVCA-432 cells and OVCAR-3 cells. Cells were seeded at a density of 15 x 103 cell/well 

in a 96-well plate containing 100 µL of complete medium. The cells were incubated at 37 °C in 5% 

CO2 overnight. Then the media was replaced with 100 µL medium containing free-drug or 

nanoparticles and treated for 48 hrs. Stock solution of free-drug were prepared by dissolving PTX (12 

mg/mL) or LAP (5 mg/mL) in DMSO and sonicating for 5 minutes. Then the drugs were diluted with 

complete media and serial dilutions were performed to achieve concentrations between 200 - 0.0002 

µg/mL. Additional DMSO was added for a final DMSO concentration of 2% v/v. The nanoparticles 

were concentrated with Amicon filters (50kDa MWCO) as previously described and the nanoparticle 

pellet was diluted with 1X PBS to a concentration of 1000 μg/mL of drug. The nanoparticle-loaded 

medium was prepared by diluting the stock nanoparticle dispersion with complete medium and 

performing serial dilutions for final concentrations between 200 - 0.0002 µg/mL. The cells were also 

treated with complete media and 2% DMSO media as controls for comparison. Cells were treated for 

48 hours with 6 replicates of each conditions and the cell viability was measured with a WST-1 assay 
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(Sigma-Aldrich, St. Louis, MO) according to manufacturing instructions. Briefly, the media was 

removed and replaced with 10% WST-1 solution. The cells were incubated between 45 - 90 minutes 

until there was a visible color change to a golden-yellow or the absorbance of control wells reached at 

least 0.700 measured with a microplate reader (VersaMax ELISA microplate reader, Molecular 

Devices, San Jose, Ca) at a wavelength of 440 nm with background subtraction of 640 nm. The cell 

viability was determined by subtracting the background noise (wells containing only 10% WST-1 in 

media) from the samples and then dividing the sample absorbance by the average absorbance of the 

untreated wells. The cell viability of cells treated with free drug were normalized with cells treated 

with 2% DMSO. The relative cell viability was expressed as a percentage of the untreated cells with 

mean ± standard deviation of six replicates. 

 

5.2.6. Cell Viability with Sequential Drug Treatment 

The cell viability was examined for the OVCA-432 and OVCAR-3 cells treated for 24 hrs with 

either free drugs or nanoparticles. The cells were dosed at half the IC-50 concentrations according to 

Table 24 for OVCA-432 cells and Table 25 for OVCAR-3 cells as indicated under T = 0 treatment. 

The cell viability was also examined for the OVCA-432 and OVCAR-3 cells following sequential 

treatment over 48 hours (24 hours with first dose, second 24 hours with second dose). Three different 

sequences were evaluated: 1) simultaneous treatment of both drugs; 2) treatment with paclitaxel for 

24 hours followed by lapatinib for 24 hours; and 3) treatment with lapatinib for 24 hours followed by 

paclitaxel for 24 hours. Again, the cells were dosed at half the IC-50 concentrations according to Table 

24 for OVCA-432 cells and Table 25 for OVCAR-3 cells. After total 48 hr treatment period, the cell 

viability was measured with WST-1 assay, as previously described [306].   
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Table 24. Sequential drug dosing of OVCA-432 cells for evaluating cell viability. 

Formulation Sequence Schedule 

Drug Concentration for Treating OVCA-432 cells (μg/mL)* 

T = 0 hr  T = 24 hr  Total drug dose 

Paclitaxel Lapatinib  Paclitaxel Lapatinib  Paclitaxel Lapatinib 

Free drug 

Simultaneous delivery 17.8 1.2  17.8 1.2  36 2.3 

PTX -> LAP 36 --  -- 2.3  36 2.3 

LAP -> PTX -- 2.3  36 --  36 2.3 

Nanoparticles 

Simultaneous delivery 0.01 0.2  0.01 0.2  0.02 0.4 

PTX NPs -> LAP NPs 0.02 --  -- 0.4  0.02 0.4 

LAP NPs -> PTX NPs -- 0.4  0.02 --  0.02 0.4 

*The drug concentrations were selected based on half the IC-50 dose of each drug to allow for a greater range in cell 

viability results post treatment.  

 

 

Table 25. Sequential drug dosing of OVCAR-3 cells for evaluating cell viability. 

Formulation Sequence Schedule 

Drug Concentration for Treating OVCAR-3 cells (μg/mL)* 

T = 0 hr  T = 24 hr  Total 

Paclitaxel Lapatinib  Paclitaxel Lapatinib  Paclitaxel Lapatinib 

Free drug 

Simultaneous delivery 0.0025 1  0.0025 1  0.005 2.0 

PTX -> LAP 0.005 --  -- 2  0.005 2 

LAP -> PTX -- 2  0.005 --  0.005 2 

Nanoparticles 

Simultaneous delivery 0.0075 7.75  0.0075 7.75  0.015 15.5 

PTX NPs -> LAP NPs 0.015 --  -- 15.5  0.015 15.5 

LAP NPs -> PTX NPs -- 15.5  0.015 --  0.015 15.5 

*The drug concentrations were selected based on half the IC-50 dose of each drug to allow for a greater range in cell 

viability results post treatment.  

 

 

5.2.7. Cell Cycle Analysis by Flow Cytometry 

The OVCA-432 and OVCAR-3 cells were seeded at a density of 20 x 104 cells/mL in a 35 mm 

petri dish containing 3 mL of complete media. The cells were incubated at 37°C and 5% CO2 until 

90% confluence and the media was replaced every 2 days. The cells were treated with three different 

sequence schedules using with either free drugs or nanoparticle formulations. Three different 

sequences were evaluated: 1) simultaneous treatment of both drugs; 2) treatment with paclitaxel for 

24 hours followed by lapatinib for 24 hours; and 3) treatment with lapatinib for 24 hours followed by 
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paclitaxel for 24 hours. The cells were dosed at the IC-50 concentrations for cell cycle analysis 

according to Table 26 for OVCA-432 cells and Table 27 for OVCAR-3 cells.  

 

 
Table 26. Sequential drug dosing of OVCA-432 cells for cell cycle analysis. 

Formulation Sequence Schedule 

Drug Concentration for Treating OVCA-432 cells (µg/mL)* 

T = 0  T = 24  Total drug dose 

Paclitaxel Lapatinib  Paclitaxel Lapatinib  Paclitaxel Lapatinib 

Free drug 

Simultaneous delivery 36 2.3  36 2.3  72 4.6 

PTX -> LAP 72 --  -- 4.6  72 4.6 

LAP -> PTX -- 4.6  72 --  72 4.6 

Nanoparticles 

Simultaneous delivery 0.02 0.4  0.02 0.4  0.04 0.8 

PTX NPs -> LAP NPs 0.04 --  -- 0.8  0.04 0.8 

LAP NPs -> PTX NPs -- 0.8  0.04 --  0.04 0.8 

*The drug concentrations were selected based on the IC-50 dose of each drug. 

 

 
Table 27. Sequential drug dosing of OVCAR-3 cells for cell cycle analysis. 

Formulation Sequence Schedule 

Drug Concentration for Treating OVCAR-3 cells (µg/mL) 

T = 0 hr  T = 24 hr  Total drug dose 

Paclitaxel Lapatinib  Paclitaxel Lapatinib  Paclitaxel Lapatinib 

Free drug Simultaneous delivery 0.005 2  0.005 2  0.01 4.0 

 PTX -> LAP 0.01 --  -- 4  0.01 4.0 

 LAP -> PTX -- 4  0.01 --  0.01 4.0 

Nanoparticles Simultaneous delivery 0.015 15.5  0.015 15.5  0.03 31.0 

 PTX NPs -> LAP NPs 0.03 --  -- 31  0.03 31.0 

 LAP NPs -> PTX NPs -- 31  0.03 --  0.03 31.0 

*The drug concentrations were selected based on the IC-50 dose of each drug. 

 

 

The total treatment time was 48 hrs at 37 °C. Then, the cells were stained with Propidium 

Iodide (PI Flow Cytometry Kit, Abcam, Cambridge, MA) for flow cytometry according to 

manufacturing instructions. Briefly, the cells were trypsinized and the aspirated medium and PBS were 

collected to minimize cell loss. The cells were centrifuged at 700 x g for 5 minutes as necessary. The 

cells were washed with 1X PBS and fixed with 66 % ethanol by slowly adding ethanol to PBS during 

vortexing. The cells were stored in ethanol at 4 °C for at least 2 hrs and up to 4 days. The cells were 
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centrifuged and washed with PBS to remove the ethanol. The 1X Propidium Iodide and RNase solution 

was prepared immediately prior to use by mixing 5% v/v of 20X Propidium Iodide and 0.05% v/v 

200X RNase in 1X PBS. Then the cells were resuspended in 200 µL/500,000 cells of 1X Propidium 

Iodide and RNase solution and incubated in the dark at 37°C for 30 minutes. Prior to flow cytometry, 

the cell samples were stored on ice and filtered through a cell strainer (Falcon Test Tube with Snap 

Cap, Fisher Scientific, Pittsburg, PA). Flow cytometry was performed on a BD FACSCanto™ II 

Analyzer (BD Biosciences, San Diego, CA) and 10,000 cells were analyzed at an excitation of 488 

nm and emission of 670 nm. The samples were analyzed in triplicate. 

 

5.3. Results and Discussion 

5.3.1. Nanoparticle Formulation 

Paclitaxel and lapatinib were encapsulated into single-drug polymer nanoparticles via Flash 

Nanoprecipitation [306]. Briefly, encapsulation of these weakly hydrophobic drugs (logP <6) was 

facilitated via in situ tannic acid-iron complexation which forms an insoluble complex under neutral 

pH conditions [271,306]. To formulate the nanoparticles, an organic stream comprised of the block 

co-polymer (PS-b-PEG), tannic acid, and one of the drugs was rapidly mixed with Fe3+ (aq.) in a 

confined impinging jet (CIJ) mixer. The rapid change in solvent quality forms the tannic acid-iron 

complex, precipitates the drugs, and self-assemblies the block co-polymer. The nanoparticles are 

kinetically stabilized by the adsorption of the block co-polymer onto the growing core [306].  

 Polymer nanoparticles were formulated with either paclitaxel (PTX NPs, 1 mg/mL) or lapatinib 

(LAP NPs 1 mg/mL). The PTX NPs were formulated at ~ 130 nm and the diameter of LAP NPs was 

~ 120 nm. Both nanoparticles were monodispersed indicated by a single size peak and a PDI below 

0.300 [312] (Table 28). These nanoparticles are on the order of 100 nm and allow for passive targeting 

[349].  
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Table 28. Nanoparticle Characterization. 

Nanoparticles 
 

Size (nm) PDI 
 

  

PTX NPs  136 ± 27 0.280 ± 0.059  

LAP NPs  117 ± 7 0.247 ± 0.049  

 

5.3.2. Assessing Potency of Single-Drug Treatment via Cell Viability 

Following formulation of the nanoparticles, the drug efficacy of paclitaxel and lapatinib, 

treated individually were evaluated in vitro on two ovarian cancer cells OVCA-432 and OVCAR-3. 

Cells were treated with the free drug and nanoparticle formulations of paclitaxel and lapatinib. The 

dose-response was measured with WST-1 assay and the half maximal inhibitory concentration (IC-

50) was used as a measure of drug potency.  

The free drug treatment with paclitaxel resulted in an IC-50 of 70.6 ± 5.1 µg/mL for the OVCA-

432 cells. The OVCAR-3 cells had a lower IC-50 value of 0.004 ± 0.001 µg/mL when treated with 

free paclitaxel. In comparison, treatment with free lapatinib of OVCA-432 and OVCAR-3 cells 

resulted in equivalent IC-50 concentrations at ~4 µg/mL (Table 29).  The two ovarian cancer cell lines 

had significantly different responses to treatment with free paclitaxel on the order of 5-magnitude. 

These results indicate that the OVCA-432 cells are more resistant to free paclitaxel compared to 

OVCAR-3 cells and comparable cytotoxicity due to lapatinib. These results are surprising as the 

OVCA-3 cells are considered resistant [350,351], but the results suggest that the OVCA-432 cell have 

greater resistance to paclitaxel compared to OVCAR-3 cells. Further investigations are necessary to 

determine the reason for the differences observed such as examining protein phosphorylation, 

microtubule polymerization, and P-glycoprotein expression and are outside the scope of this study.  
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Table 29. The IC-50 values for free drug and nanoparticle treated cells. 

Drug 

Treatment 

 OVCA-432 cell  OVCAR-3 cell 
 IC-50 (µg/mL)  IC-50 (µg/mL) 

 PTX LAP  PTX LAP 

Free PTX  70.6 ± 5.1 --  0.004 ± 0.001 -- 

Free LAP  -- 4.6 ± 1.3  -- 4.1 ± 0.7 

PTX NPs  0.040 ± 0.003 ---  0.027 ± 0.005 --- 

LAP NPs  --- 0.80 ± 0.26  --- 31 ± 8 

 

Next, we compared the single-drug treatment potency of nanoparticles to free drug 

formulations. In OVCA-432 cells, encapsulating PTX in nanoparticles reduced the IC-50 over 1500-

fold from 70.6 ± 5.1 to 0.040 ± 0.003 µg/mL. Inversely, the OVCAR-3 cells exhibited an increase in 

IC-50 when treated with the nanoparticle formulations compared to free drug. The IC-50 increased 7-

fold from 0.004 ± 0.001 µg/mL to 0.027 ± 0.005 µg/mL when the OVCAR-3 cells were treated with 

nanoparticles compared to free PTX (Table 29). These results indicate that OVCAR-3 are resistant to 

nanoparticle formulation of paclitaxel and differ from previous studies that have treated OVCAR-3 

cells with paclitaxel loaded polymer nanoparticles [350]. This could possibly be attributed to 

difference in nanoparticle formulation and drug release, as well as  cell-line dependence which has 

been previously observed but poorly understood [83,88]. Overall, encapsulating paclitaxel into 

nanoparticles produces similar drug potency between cell lines.   

Next, we examined the potency of lapatinib loaded nanoparticles. Encapsulating LAP 

decreased the IC-50 of OVCA-432 cells from 4.6 ± 1.3 µg/mL with free LAP to 0.80 ± 0.26 µg/mL. 

When OVCAR-3 cells were treated with LAP NPs, an increase in the IC-50 was observed from 4.1 ± 

0.7 µg/mL to 31 ± 8 µg/mL. As with PTX NPs, we observed a resistance in the OVCAR-3 cells to the 

nanoparticle form of lapatinib. These results are interesting and provide further support that 

formulation into nanoparticles improves drug potency in the OVCA-432 cell line while deceases drug 

potency in the OVCAR-3 cell line.  The effect may be attributed to aspects of the nanoparticle 
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formulation such as nanoparticles size (endocytosis mechanisms), surface charge, or additional 

component (tannic acid-iron complex).   

 Overall, the OVCA-432 and OVCAR-3 had differing responses to treatment with nanoparticles 

compared to free drug. The paclitaxel potency was increased by 1500-fold when the OVCA-432 cells 

were treated with PTX NPs, indicating a significantly improvement in drug potency. However the 

potency decreased by 7-fold for OVCAR-3 cells when PTX was encapsulated. A similar trend was 

observed with LAP NPs. The results indicate a 5-fold increase in LAP potency for OVCA-432 cells 

with the nanoparticle formulation. However the OVCAR-3 cells exhibited a 8-fold decrease in LAP 

potency when treated with LAP NPs. The results indicate a cell-type dependent potency to 

nanoparticle formulations which could be attributed to endocytosis mechanism [352] or possibly the 

presence of tannic acid and iron in the nanoparticle formulation that reduce anticancer effects [353]. 

 

5.3.3. Comparing Cell Viability after 24 Hour Treatment with Free Drug and Nanoparticles 

After we determined the drug potency, we examined the drug cytoxicity after 24 hour 

treatment. The cells were treated either simultaneously with paclitaxel and lapatinib or with paclitaxel 

alone and lapatinib alone. The concentration the OVCA-432 and OVCAR-3 cells are treated with are 

described in Table 24 under T = 0 hr. Additionally, the cells were treated with free drug and 

nanoparticles formulations.  

Examining the free drug treatment, the OVCA-432 cells had a significant reduction (p < 

0.0001) in cell viability to ~17% when treated simultaneously with paclitaxel and lapatinib relative to 

the control cells. Treatment with free paclitaxel had an even greater reduction in the cell viability of 

the OVCA-432 cells to ~5% (p < 0.001). There was only a slight decrease in cell viability with free 

lapatinib of ~78%. In comparison, the OVCAR-3 cells exhibited a similar trend with the three 

treatments. The free lapatinib had no effect on the cell viability of the OVCA-432 cells. The lowest 
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cell viability of ~75% was attributed to treatment with free paclitaxel (Figure 37). Interestingly, these 

results are opposite to the IC-50 results, as the cell viability of the OVCA-432 cells is lower after 24 

hours compared to OVCAR-3 cells.  

 

Figure 37. The cell viability was examined for OVCA-432 and OVCAR-3 cells following 24 hour treatment 

with a single free drug dose. Cells were either treated simultaneously with free paclitaxel and free lapatinib 

(light blue, PTX + LAP), with free paclitaxel alone (pink, Free PTX), with free lapatinib alone (light orange, 

Free LAP), or untreated (light grey, Control). 

The two cell lines were also treated with either with a single nanoparticle or simultaneously 

with both PTX NPs and LAP NPs. In the case of OVCA-432 cells, there was a slight reduction in cell 

viability of 76% and 81% when treated simultaneously with two nanoparticles and with LAP NPs 

individually, respectively. Treatment with PTX NPs significantly reduced the cell viability of the 

OVCA-432 (p < 0.0001) and had the greatest reduction in cell viability relative to the other two 

nanoparticle treatments. However simultaneous nanoparticle treatment produced the greatest 

reduction in cell viability of OVCAR-3 cells (p < 0.0001) (Figure 38). 
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Figure 38. The cell viability was examined for OVCA-432 and OVCAR-3 cells following 24 hour treatment 

with a single nanoparticle drug dose. Cells were either treated simultaneously with PTX NPs and LAP NPs 

(dark blue, PTX NPs + LAP NPs), with PTX NPs alone (magenta, PTX NPs), with LAP NPs alone (orange, 

LAP NPs), or untreated (dark grey, Control). 

 

The results from the 24 hour free drug treatment indicate that free paclitaxel had the greatest 

cytotoxic effects compared to free lapatinib and simultaneous treatment for both cell lines. The trends 

with the free drug are comparable between the two cell lines, however the OVCAR-3 cells had higher 

cell viabilities for all three treatments. However the nanoparticle drug efficacy differed between the 

two cell lines. The lowest cell viability was observed with PTX NPs for the OVCA-432 cells while 

the simultaneous nanoparticle treated had the greatest drug efficacy for the OVCAR-3 cells. These 

results indicates that a single 24 hour dose with free drugs produces comparable trends in drug efficacy 

for ovarian cancer cells such as lower cell viability with simultaneous delivery and paclitaxel relative 

to lapatinib.  

However, with a single 24 hour dose with nanoparticle the drug efficacy is both cell type and 

treatment dependent. This could be attributed to the activation of signaling cascades and the 

variabilities of expression of key proteins involved with either tubulin polymerization as well as ABC 

transporter inhibition in the two cell lines [90,124,354,355].  It is also worth noting, that the OVCA-

432 cells exhibit a significant decrease in cell viability after simultaneous and free paclitaxel treatment 
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compared to OVCAR-3 cells. In comparison, the cell viability following 24 hr treatment with 

nanoparticle is comparable between the two cell lines. This could be attributed to the slow drug release 

of paclitaxel and lapatinib from the nanoparticles [306] which facilitates the continuous delivery of a 

controlled dose. This suggest that nanoparticle drug delivery can produce consistent results between 

ovarian cancer cell types after a single dose and overcome the mechanisms of drug resistance. Further 

experiments such as measuring P-glycoprotein activity and nanoparticle endocytosis could facilitate 

in further understanding this phenomenon.  

 

5.3.4. Comparing Cell Viability Following Sequential Drug Combination Treatment 

Following the 24 hour treatment of the cells, the efficacy of sequential treatment was 

investigated for the two ovarian cancer cells. The cell viability was examined after treatment with 

three difference sequence schedules and dosed with the concentrations described in Table 24 for 

OVCA-432 cells and Table 25 for OVCAR-3 cells; 1) simultaneous drug delivery of paclitaxel and 

lapatinib, 2) paclitaxel followed by lapatinib, and 3) lapatinib followed by paclitaxel. The cells were 

treated for a total of 48 hours prior to measuring the cell viability.  

 Sequential treatment with free drugs produced comparable trends between the OVCA-432 and 

OVCAR-3 cells for the three sequences. Treatment with free paclitaxel followed by lapatinib 

decreased the cell viability to ~52% for the OVCA-432 cells (p < 0.0001) and ~44% for the OVCAR-

3 cells (p < 0.0001). Simultaneous treatment with paclitaxel and lapatinib produced similar results to 

paclitaxel first treatment with cell viabilities of 56% and 49%, respectively for OVCA-432 and 

OVCAR-3 cells (Figure 39). The similarities in the trends between OVCA-432 and OVCAR-3 cells 

suggest that simultaneous delivery or free paclitaxel followed by lapatinib produces the greatest 

decrease in cell viability.  
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Figure 39. The cell viability of OVCA-432 cells and OVCAR-3 cells following 48 hour sequential treatment 

with free paclitaxel and free lapatinib. The cells were either untreated (light grey, Control), or treated with 

sequential drug delivery over 48 hours: simultaneous treatment of free paclitaxel and free lapatinib (light blue, 

Free PTX + Free LAP), (pink) paclitaxel followed by lapatinib (pink, Free PTX > Free LAP), and lapatinib 

followed by paclitaxel (light orange, Free LAP > Free PTX). 

 

Next, we examined the cell viability of the two cell lines following sequential delivery with 

nanoparticles. The OVCA-432 cell line exhibited comparable levels of cytotoxicity across the three 

sequential treatments. In comparison, the three sequence schedule produced widely different results 

in OVCAR-3 cells. The lowest drug efficacy only resulted in a cell viability of 47% with simultaneous 

treatment with two nanoparticles, while PTX NPs followed by LAP NPs treated had the greatest drug 

efficacy resulting in a cell viability of ~3% for OVCAR-3 cells (Figure 40). 
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Figure 40. The cell viability of OVCA-432 cells and OVCAR-3 cells following 48 hour sequential treatment 

with PTX NPs and LAP NPs. The cells were either untreated (dark grey, Control), or treated with sequential 

drug delivery over 48 hours: simultaneous treatment of PTX NPs and LAP NPs (dark blue, PTX NPs + LAP 

NPs), paclitaxel followed by lapatinib (magenta, PTX NPs > LAP NPs), and lapatinib followed by paclitaxel 

(orange, LAP NPs > PTX NPs).  

 

Interestingly, the trends observed with sequential treatment with free drug parallel the  results 

from single dose 24 hour treatment. Free paclitaxel produced the greatest cytotoxic effect in both 

OVCA-432 and OVCAR-3 cells after 24 hours while free lapatinib produced to lowest. These results 

indicate that the first line of treatment has the greatest impact on the receptibility of the cells to the 

drugs. This could be attributed to longer incubation time for the drug uptake by the cells in the first 24 

hours allowing for regulation of downstream anticancer pathways. The similarity in the trends 

observed with free drug between the two cell lines is noteworthy. Overall, the results from sequential 

free drug treatment suggest that either simultaneous delivery of paclitaxel and lapatinib or delivery of 

paclitaxel followed by lapatinib 24 hrs later produces the greatest cytotoxic effects.  

 Examining the results from sequential treatment with nanoparticles, there is a wide difference 

in response between the two cells lines for all three treatment schedules. The OVCAR-3 have 

substantially lower cell viability for all three treatments compared to OVCA-432 cells. The difference 

could be attributed to the resistance mechanisms to paclitaxel of OVCA-432 cells observed in the IC-
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50 experiments as noted by the higher IC-50 values for paclitaxel which inhibit reduction in cell 

viability. However, in the case of OVCAR-3 cells, the IC-50 results with nanoparticles showed low 

potency of both PTX NPs and LAP NPs while delivery of both nanoparticles displayed high potency.  

This difference could be attributed to interconnecting signaling cascades activated by the 

presence of both paclitaxel and lapatinib in OVCAR-3 cells, but perhaps some of the key proteins 

involved are over- or under-expressed in OVCA-432 cells producing a different outcome over the 48 

hour period. Furthermore, the three nanoparticle sequence schedules produce similar cell viabilities 

over 48hrs in the OVCA-432 cells. These results suggest that the OVCA-432 are not sequence 

dependent with nanoparticle treatment. Inversely, the OVAR-3 cells did exhibit sequence dependent 

cytotoxicity with the greatest cytotoxic effects observed with PTX NPs treatment 24 hours prior to 

LAP NPs. Cell-dependent cytotoxicity due to sequential and simultaneous drug delivery of paclitaxel 

and an inhibitor agent were also observed in previous studies [238,256,346,347]. 

 

5.3.5. Comparing Cell Cycle Following Sequential Drug Combination Treatment 

The cell cycle was also examined for the OVCA-432 and OVCAR-3 cells following sequential 

treatment based on drug dosing described in Table 26 and Table 27 for each cell line, respectively to 

understand the interaction of the drugs on the cell activity. Generally, paclitaxel arrests cells in the 

G2/M phase [335], while lapatinib arrests cells in the G0/G1 phase [336]. Thus, the order the order the 

cells are treated with the drugs could impact the final cell phase. The cell cycle was measured by 

analyzing the PI absorbance with flow cytometry. The cells were treated with the three sequential 

schedule previously described at each drug’s IC-50 concentration. The cells were treated with both 

free drug and nanoparticle formulations.  

 Following treatment with free drugs, the OVCA-432 cells displayed a sequence dependent 

distribution in the cell cycle. OVCA-432 cells treated simultaneously with paclitaxel and lapatinib had 
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a decrease in cells compared to the control cells in the G0/G1 phase from ~62% to ~20%. There was a 

large increase in the number of cells in the S and G2/M from ~18% to ~29% and ~9% to ~34% when 

treated simultaneously with paclitaxel and lapatinib. When the OVCA-432 cells were treated with 

paclitaxel followed by lapatinib, there was also a decrease in cells in the G0/G1 phase and an increase 

in cells in the S phase compared to simultaneous delivery. However, a greater percentage of OVCA-

432 cells treated with paclitaxel followed by lapatinib accumulated in the subG1 phase and decrease 

in percentage of cells in the G2/M compared to the simultaneous treatment. Sequential treatment with 

free lapatinib followed by paclitaxel resulted in accumulation of the OVCA-432 cells in the G0/G1 

phase and comparable cell distribution in the other three cell phases to the control cells (Figure 41) 

 Next, we examined the cell cycle distribution of the OVCAR-3 cells after sequential treatment 

with free drugs. The control cells that were untreated primarily accumulated in the G0/G1 phase at 

~64%. In comparison, all three sequences accumulated even higher percentage of cells in G0/G1 

compared to the control. Examining the distribution in the other three phases, all three sequences 

decreased the percentage of cells in the S and G2/M, but saw an increase of cells in the subG1 phase 

relative to the control (Figure 41). There was no variability in the cell cycle distribution for the three 

sequential treatments with free drug for OVCAR-3 cells.   
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Figure 41. The cell cycle distribution for OVCA-432 and OVCAR-3 cells treated with three sequence schedules 

using free drugs. The cells were either untreated (light grey, Control), simultaneously treated with free paclitaxel 

and free lapatinib (light blue, PTX + LAP Free), free paclitaxel followed by free lapatinib 24 hrs later (pink, 

PTX > LAP Free), or free lapatinib followed by free paclitaxel 24 hrs later (light orange, LAP > PTX Free). 

 

The OVCA-432 cells were also treated with nanoparticle formulation delivered in the three 

sequence schedules. Interestingly, the three nanoparticle sequential treatment produced comparable 

cell distributions. The notable difference is the cells treated simultaneous with PTX NPs and LAP NPs 

had decrease in percentage of cells in the G0/G1 and subG1 phases relative to the control from 62% to 

56% and 11% to 4%, respectively. Additionally the simultaneous drug treated cells exhibited a slight 

increase in the S and G2/M phases relative to the control cells (Figure 42).  

 Following sequential treatment with nanoparticles the cell cycle distubution was exmained for 

the OVCAR-3 cells. The untreated cells accumulated in the G0/G1 phase. The distribution is 

comparable between the simultaneously delivered nanoparticles and PTX NPs followed by LAP NPs. 

There was a decrease in number of cells in the G0/G1 phase from 64% to 40% and 34%, respectively. 

The cell distribution primarily accumulated in the subG1 phases with an increase from the control cell 

of 5% to 20% and 18%, respectively. Cells treated with LAP NPs followed by PTX NPs exhibited a 

OVCA-432 OVCAR-3
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smaller decrease in the G0/G1 phase of 52%. Additionally, the cells exhibited only a slight increase in 

cells in the G2/M phases equivalent to the two other sequential treatments (Figure 42). 

 

Figure 42. The cell cycle distribution for OVCA-432 and OVCAR-3 cells treated with three sequence schedules 

using nanoparticle formulations. The cells were either untreated (dark grey, Control), simultaneously treated 

with PTX NPs and LAP NPs (blue, PTX NPs + LAP NPs), PTX NPs followed by LAP NPs 24 hrs later 

(magenta, PTX NPs > LAP NPs), or LAP NPs followed by PTX NPs 24 hrs later (orange, LAP NPs > PTX 

NPs). 

When we compared the results observed in the cell cycle analysis to the cell viability after 

sequential treatment. Interestingly, in the case of OVCA-432 cells, when treated with nanoparticles all 

the sequence schedules reduced the cell viability to ~80%. The similarity in the cell viability results 

could be attributed to a small shift in the cell cycle distribution of the OVCA-432 cells compared to 

the control for all three sequences. Therefore, it is not surprising to see that for OVCAR-3 cells when 

we observed a large reduction in cell viability due to simultaneous nanoparticle treatment as well as 

PTX NPs followed by LAP NPs we also see a large decrease in cells in the G0/G1 phase and a 

redistribution to the subG1 phase. As previously observed, accumulation in the subG1 phase rather 

than then G2/M phases could indicate cells are spending a shorter period of time in G2/M arrest before 

progressing to subG1 due to DNA damage leading to cell death [337,339].  

Overall examining the results observed from the free drug and nanoparticle sequential 

treatment, we find that the greatest reduction in cell viability was observed in the cases where there 

OVCA-432 OVCAR-3
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was either a decrease of cells in the G0/G1 phase, increase in G2/M, increase in subG1, or combination 

thereof. These results indicate that sequentially delivering paclitaxel and lapatinib has an effect on the 

cell cycle arrest and the greatest cytotoxicity was observed when there was redistribution to G2/M and 

subG1 phases. Furthermore, these results suggest that the timing of lapatinib delivery can enhance the 

effects of paclitaxel to limit proliferation and induce cell death particularly in sequential delivery of 

paclitaxel followed by lapatinib or simultaneous delivery of both drugs.  

 

5.4. Conclusion 

In this study, we have examined in vitro sequential delivery of paclitaxel and lapatinib 

encapsulated into polymer nanoparticles on ovarian cancer cells. We observed a sequence-dependent 

cytotoxic effect. The greatest reduction in cell viability was observed in the cases with simultaneous 

delivery of paclitaxel and lapatinib or paclitaxel followed by lapatinib. We observe variability in the 

cytotoxicity both due to the cell type and the drug formulation (nanoparticle compared to free drug). 

A parallel was observed between the reduction in cell viability and the cell cycle distribution, with the 

lowest cell viability observed when there was increase in percentage of cells in the G2/M and subG1 

phases indicating an increase in paclitaxel activity. These results are promising for establishing 

sequential drug delivery with nanoparticles as a method for treating ovarian cancer. Building on this 

promising study, further studies to examine the gene expression and protein phosphorylation are 

necessary to understand the effects of sequential drug delivery as well as a broader cell population. 

Evaluating the rate of drug release from the nanoparticles will be important for designing 

nanomedicines to achieve sequential delivery paclitaxel and lapatinib from co-loaded nanoparticles 

for spatiotemporal control of drug release. 

 

 

 



Shani L. Levit • Ph.D. Dissertation • Chemical and Life Science Engineering   134 
 

6. Chapter 6: Controlled Drug Release of a Paclitaxel Prodrug from 

pH-Labile Nanoparticles to Improve Drug Efficacy 

 

 

 

 

Abstract 

 The drug efficacy of chemotherapeutic agents such as paclitaxel is limited due to their poor 

solubility, poor bioavailability, and acquired drug resistance mechanisms in ovarian cancer cells. 

Prodrug formulations have the potential to enhance the drug efficacy by increasing drug potency. In 

this study, we examined combining prodrug formulation of paclitaxel with a pH-labile nanoparticle 

platform to control drug delivery and the effect on drug efficacy. pH-labile nanoparticles were 

formulated using Flash NanoPrecipitation paired with in situ tannic acid-iron complexation. We 

determined the formulation parameters required to produce monodispersed nanoparticles 

encapsulating a hydrophobic prodrug of paclitaxel alone and in combination with lapatinib. The 

nanoparticle drug release profiles were evaluated in vitro under pH 7.4 and pH 4 conditions and fit 

with the Korsemeyer-Peppas model and Hixson-Crowell model, respectively. The drug release at pH 

7.4 of paclitaxel-lapatinib nanoparticles is governed by Fickian diffusion, but the release of prodrug-

lapatinib nanoparticle is governed by Super Case II transport resulting in sequential drug release.   The 

drug release kinetics at pH 4 are governed by dissolving core due to the solubilization of TA-Fe3+. The 

drug efficacy was evaluated in vitro with ovarian cancer cell model (OVCA-432) and we determined 

that the prodrug formulation of paclitaxel increased drug potency of the nanoparticle formulation by 

5-fold. Based on the results of the study, the drug efficacy of paclitaxel could be increased by 
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formulation of a hydrophobic prodrug, encapsulation into nanoparticles, co-encapsulation with 

lapatinib, or combination of these approaches.  

 

6.1. Introduction 

Taxol, a formulation of paclitaxel (PTX), is one of the most widely used anticancer drugs for 

treating ovarian carcinomas. However, there are challenges associated with Taxol treatment due to its 

poor solubility, poor bioavailability, and acquired drug resistance mechanisms resulting in low drug 

efficacy [102–104,248]. There are several approaches to improving drug efficacy of chemotherapeutic 

agents, such as prodrug formulation, encapsulation into nanoparticles, and co-delivery with other anti-

cancer drugs.  

Formulation of prodrugs of therapeutic agents is an approach to modulating the properties of 

the drug molecule such as hydrophobicity, vehicles for targeting, and chemical stability [262,356,357]. 

By modulating these properties, prodrugs have the potential to overcome challenges of the therapeutic 

agent. Prodrugs are formulated by conjugating a molecule such as an enzyme or an inactive molecule 

by linker. Therefore, the properties of the prodrug can be tuned with a combination of the selected 

molecule and degradation rate of the linker [358]. Previous studies have examined formulation of 

paclitaxel prodrugs [262,357]. Ansell et al. formulated a series of hydrophobic paclitaxel prodrugs 

with various lipids conjugated via a nondegradable linker and examined their stability, half-life, and 

drug efficacy. The study found that while the drug efficacy was decreased in vitro when treating breast 

cancer cells, the half-live was extended compared to paclitaxel [261].  Another study synthesized 

silicate ester derivatives of paclitaxel with a range of hydrolysis rates and those with relatively fast 

hydrolysis exhibited comparable cytotoxicity to paclitaxel [357].  

Another advantage prodrug formulations is they can facilitate stable encapsulation into 

polymer nanoparticles [262,357,359]. Nanoparticles drug delivery can be used to control the rate of 
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drug delivery, control pharmacokinetics, and lower systemic toxicity [188,201,204]. However, it can 

be challenging to encapsulate therapeutic agents that are not highly hydrophobic into polymer 

nanoparticles [357,359]. Therefore, combining the benefits of prodrugs approach and nanoparticle 

drug delivery can advantageous for treating ovarian cancer. For example, Ansell et al, also examined 

encapsulation of their prodrugs into polymer nanoparticles by co-encapsulations with a lipid, 

phosphatidylcholine, via Flash NanoPrecipitation (FNP). This technique facilitated paclitaxel 

encapsulation and control the drug release by adjusting the length of the alkyl anchor [261]. Other 

nanoparticle platforms have also been investigated for encapsulating paclitaxel prodrugs [360–363]. 

Stevens et al. investigated encapsulating a hydrophobic carbonyl cholesterol prodrug of paclitaxel into 

lipid nanoparitcles by co-encapsulation with PEGylated cholesterol. This formulation allowed for high 

paclitaxel encapsulation efficiencies and improve cytotoxicity in vitro and in vivo [360].  

Encapsulation of hydrophilic paclitaxel prodrugs into nanoparticles has also been investigated 

such as poly(ethylene glycol)-b-poly(acrylic acid) (PEG-b-PAA) conjugated paclitaxel. The prodrugs 

were encapsulated into a pH-responsive nanoparticle (i.e. release under acidic conditions) and 

displayed enhanced drug efficacy in vitro [361].pH-responsive nanoparticle platforms allow for 

control of drug delivery and can be advantageous in delivery of drug combinations to increase drug 

efficacy.  

Sequential delivery of combination chemotherapeutics has shown improvements in drug 

efficacy [184,186,190]. By tuning the properties of the paclitaxel with a prodrug approach, we can 

sequentially deliver it drug combinations to increase cytotoxicity of the treatment. In this study, we 

will investigate paclitaxel drug efficacy with a hydrophobic prodrug formulated by conjugating α-

tocopherol (vitamin E) using a diglycolic anhydride linker and encapsulation into a pH-responsive 

nanoparticle platform. The nanoparticles will be formulated with in situ complexation with tannic 

acid-iron complex via Flash NanoPrecipitation, as previously described [271,306]. The nanoparticle 
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formulation parameters are investigated for encapsulation of the hydrophobic prodrug alone and in 

combination with lapatinib, an anticancer drug. The drug release kinetics are determined for the 

nanoparticles under pH 7.4, when the TA-Fe3+ is insoluble and the nanoparticles are stable and pH 4, 

when the TA-Fe3+ is solubilizing and destabilizing the nanoparticles. Lastly, the drug efficacy is 

compared in vitro using ovarian cancer cell model between paclitaxel and its prodrug counterpart in 

free drug form, encapsulated into nanoparticles alone and in combination with lapatinib.  

 

6.2. Materials and Methods 

6.2.1. Materials 

HPLC grade tetrahydrofuran (THF), dimethyl sulfoxide (DMSO), diglycolic anhydride (97%, 

Alfa Aesar), Diisopropylcarbodiimide (99%, Alfa Aesar), alcohol-free chloroform, acetonitrile, and 

acetic acid were purchased from Fisher Scientific (Pittsburg, PA). ACS grade tannic acid (TA), ACS 

grade iron (III) chloride hexahydrate (97%), α-tocopherol (Vitamin E, >95.5%), and sodium acetate 

were purchased from Sigma-Aldrich (St. Louis, MO). Paclitaxel (PTX, >98%) and lapatinib (LAP, 

>98%) were obtained from Cayman Chemical Company (Ann Arbor, MI); phosphate buffered saline 

without calcium and magnesium was purchase from Lonza (Basel, Switzerland).  Pyridine, 

dichloromethane (DCM), hydrochloric acid (HCl), anhydrous magnesium sulfate, and 4-N,N-

dimethylaminopryridine kindly gifted from Dr. Thomas Roper from Virginia Commonwealth 

University. Polystyrene-b-polyethylene glycol (1600-b-500 g/mol) (PS-b-PEG) was obtained from 

Polymer Source (Montreal, Canada) and was purified by dissolving in THF (~40°C) and precipitating 

into diethyl ether then dried by vacuum for two days as previously described [278]. 
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6.2.2. Cell Culture 

Ovarian cancer cell line OVCA-432 was a kind gift from Dr. Xianjun Fang from Virginia 

Commonwealth University. The OVCA-432 cells were cultured in RPMI-1640 media containing 2 

mM L-glutamine (ATCC, Manassas, VA) supplemented with 10% Fortified Bovine Calf Serum (FBS, 

HyClone Cosmic Calf Serum, Fisher Scientific, Pittsburg, PA), 100 U/mL penicillin and 100 µg/mL 

streptomycin (Gemini Bio-Products, West Sacramento, CA). The cells were cultured at 37 °C at 5% 

CO2 and passaged once a week. 

 

6.2.3. Prodrug Formulation 

A hydrophobic paclitaxel-prodrug was formulated via conjugation to α-tocopherol (vitamin E) 

lipid anchor which was previously described by Ansell, et al [261]. The paclitaxel-prodrug was 

formulated by a two-step reaction using a diglycolic anhydride linker. In the first- step of the reaction 

the lipid anchors were synthesized via an oxidation reaction of tocopherol (1 equiv) and diglycolic 

anhydride (3 equiv) in pyridine to form a carboxylic acid group on the lipid anchor. The reaction was 

monitored by TLC. The product from the first reaction was extracted using dichloromethane (DCM) 

and hydrochloric acid (HCl) and recovered by drying in a rotovap. Then in the second step the lipid 

anchor was conjugated to paclitaxel via an esterification reaction in which paclitaxel (1 equiv) was 

reacted with the tocopherol lipid anchor (2 equiv), 4-N,N-dimethylaminopryridine (3 equiv), and 

diisopropylcarbodiimide (1.3 equiv) in chloroform. This reaction forms a covalent link between the 

hydroxyl group on the paclitaxel and the carboxylic acid group on the lipid anchor forming an ester 

(Figure 43). The reaction was monitored with TLC until completion. The mixture was then washed 

with HCl and dried over anhydrous magnesium sulfate. The product was purified with a silica gel 

column using a hexane/ethyl acetate gradient and the dry formulation was recovered by removal of 

the solvent with a rotovap. The final product was analyzed with H1 NMR (Appendix I, Figure S1) 
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and direct-infusion electrospray mass spectrometry (Appendix I, Figure S2) performed the Chemical 

and Proteomic Mass Spectrometry Core Facility at Virginia Commonwealth University. The reaction 

yield was ~60% and the synthesized paclitaxel-tocopherol prodrug had a molecular weight of 1380 

g/mol by mass spectroscopy. 

 

 

Figure 43. Two-step synthesis of the paclitaxel-prodrug with α-tocopherol as the lipid anchor. In the first step 

the tocopherol lipid anchor is synthesized and in the second step paclitaxel is conjugated to the lipid anchor to 

form the prodrug. 

 

6.2.4. Nanoparticle Formulation 

Flash NanoPrecipitation (FNP) was used to prepare polymer-based nanoparticles 

encapsulating  the anti-cancer drugs via tannic acid-iron in situ complexation with a hand-operated 

confined impinging jet (CIJ) mixer, as previously described [271,306]. Six nanoparticles were 

formulated that either encapsulated the TA-Fe complex (TA-Fe NPs), PTX (PTX NPs), LAP (LAP 

NPs), both PTX and LAP (PTX-LAP NPs), PTX-prodrug (Pro NPs), both PTX-prodrug and LAP 

(Pro-LAP NPs). 
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Briefly, PS-b-PEG, TA (4 mg/mL), and one or more drugs were dissolved in THF by 

sonicating (~40°C) for 10 minutes to formulate the organic stream. The organic stream was rapidly 

mixed with the Fe3+ (aq., 1 mg/mL) at equal volumes (1 mL of each stream) in the CIJ mixer.  The 

effluent from the mixer was immediately diluted in 1X PBS at pH 7.4 for a final organic solvent/water 

ratio of 1:9 by volume. The nanoparticles were formulated based on the concentration and ratios 

described in Table 30.  

 

Table 30. Formulation parameters for single-drug and co-loaded nanoparticles with paclitaxel, prodrug, and 

lapatinib. 

Drug 
Drug Concentration 

(mg/mL) 
BCP:Core ratio 

Total solids 

Concentration (mg/mL) 

PTX 1 2:1 16 

LAP 1 2:1 16 

PTX-LAP 0.5 / 0.5 1.5:1 13.5 

Prodrug 0.5 2:1 14.5 

Prodrug-LAP 0.5 / 0.5 1:1 11 

 

 

Within 24 hrs of formulation, the nanoparticles were filtered to remove the organic solvent, 

unencapsulated drug(s), and excess TA and Fe3+ with Amicon Ultra-2 Centrifugal filters (Amicon 

Ultra centrifuge filter (Ultracel 50K, 50,000 NMWL), Merck Millipore Ltd, Burlington, Ma) by 

centrifuging at 3700 rpm for ~15-30 minutes (5804 R 15 amp version, Eppendorf, Hamburg, 

Germany). The nanoparticle pellet was resuspended with 1X PBS to a nominal concentration ~25 

mg/mL of total solids and stored at ~4 °C. The nanoparticles were used within 5 days of the FNP to 

ensure there was minimal change in particle size and drug loss.  

 

6.2.5. Nanoparticle Characterization 

The size and polydispersity (PDI) of the nanoparticles were characterized after FNP using 

dynamic light scattering (Malvern Zetasizer ZS, Malvern Instruments Ltd, Malvern, United Kingdom). 
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The nanoparticle size and PDI were measured by averaging 4 measurements at a scattering angle of 

173°. The average and standard deviation of three replicate FNP samples are reported.   

The nanoparticles were analyzed with transmission electron microscopy (TEM). Samples were 

prepared by diluting the filtered nanoparticle dispersions with DI water 1:20 by volume ratio and 

pipetting 5 μL three times onto a TEM grid with Formvar/Carbon support films (200 mesh, Cu, Ted 

Pella, Inc, Redding, CA) and dried under ambient conditions.  The samples were imaged with a JEOL 

JEM-1230 (Peabody, MA) at 120 kV.  

 The nanoparticle encapsulation efficiency (EE%) and drug loading (DL%) were determined 

for the size nanoparticles. The nanoparticles were filtered to remove the organic solvent, 

unencapsulated drug(s), and excess TA and Fe3+ with Amicon Ultra-2 Centrifugal filters (Ultracel 

50K) by centrifuging at 3700 rpm for ~15-30 minutes (5804 R 15 amp version, Eppendorf, Hamburg, 

Germany) within 24hrs of formulation. The nanoparticle pellet was resuspended with 1X PBS to a 

nominal concentration ~25 mg/mL of total solids and stored at ~4 °C.  

The concentration of the nanoparticle dispersion was determined by thermogravimetric 

analysis (TGA) (Pyris 1 TGA, Perkin Elmer, Waltham, MA). The nanoparticle dispersion was loaded 

at 10 µL and the temperature was ramped up from 28ºC to 110ºC at 10ºC/min and held for 30 minutes 

at 110ºC. The final nanoparticle mass was used to determine the nanoparticle drug loading. 

To determine the drug content of the nanoparticles, acetonitrile (360 µL) was added to 

nanoparticles (10 μL) and the sample was vortexed so that the nanoparticles would disassemble.  The 

sample was centrifuged at 10,000 rpm for 7 minutes, and then the supernatant was collected for 

reverse-phase high Performance Liquid Chromatography (RP-HPLC) (1260 HPLC with Quaternary 

Pump and UV-Vis Diode Array Detector, Agilent, Santa Clara, CA) fitted with a Luna® 5 µm C18 

100 Å, LC Column 250 x 4.6 mm (Phenomenex, Torrance, CA).    
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Chromatography for PTX NPs, LAP NPs, and PTX-LAP NPs samples was eluted with a 

gradient of degassed water and acetonitrile at a flow rate of 1 mL/min (0-1 minute at 80:20, 1-6 of 

ramp up to 0:100, 6-8 minutes at 0:100, and ramp down to 80:20 between 8-9 minutes). PTX was 

measured at a wavelength of 228 nm with a retention time of ~8 minutes and LAP was measured at 

332 nm with a retention time of ~9 minutes. The Pro NPs and Pro-LAP NPs samples were eluted with 

a gradient of degassed 10 mM sodium acetate buffer (pH 5.6) and methanol at a flow rate of 1 mL/min 

(0-5 minutes at 70:30, 5-16 minutes of ramp up to 0:100, 16-17 minutes of at 0:100, and 17-21 minutes 

of ramp down to 70:30). PTX-prodrug was measured at a wavelength of 228 nm with a retention time 

of ~16 minutes and LAP was measured at 332 nm with a retention time of ~9 minutes.  

The concentration of each drug was determined by comparing the peak areas with the standard 

calibration curve. Encapsulation efficiency (EE%) and drug loading (DL%) were calculated based on 

equations 10 and 11, respectively, and the values reported are the average and standard deviation of 

three trials. 

𝑒𝑛𝑐𝑎𝑝𝑠𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 (𝐸𝐸%) =  
𝑀𝑎𝑠𝑠 𝑜𝑓 𝑑𝑟𝑢𝑔 𝑒𝑛𝑐𝑎𝑝𝑠𝑢𝑙𝑎𝑡𝑒𝑑

𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑚𝑎𝑠𝑠 𝑜𝑓 𝑑𝑟𝑢𝑔
𝑥 100%        (Eq. 10) 

𝑑𝑟𝑢𝑔 𝑙𝑜𝑎𝑑𝑖𝑛𝑔 (𝐷𝐿%) =  
𝑀𝑎𝑠𝑠 𝑜𝑓 𝑑𝑟𝑢𝑔 𝑒𝑛𝑐𝑎𝑝𝑠𝑢𝑙𝑎𝑡𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 𝑛𝑎𝑛𝑜𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝑚𝑎𝑠𝑠
 𝑥 100%    (Eq. 11) 

 

6.2.6. Nanoparticle Drug Release In Vitro 

The drug release from the nanoparticles was measured under neutral and acidic conditions. 

The nanoparticle samples were prepared by concentrating the dispersion to 1000 µg/mL drug 

concentration for PTX NPs, LAP NPs, and Pro NPs, and 500 µg/mL paclitaxel or prodrug 

concentration of PTX-LAP NPs and Pro-LAP NPs using Amicon Ultra-2 Centrifugal filters (Ultracel 

50K), as previously described. The concentrated nanoparticle dispersion (500 μL) was loaded into 

7,000 MWCO dialysis unit (Slide-A-Lyzer® MINI Dialysis Unit, Thermo Scientific, Waltham, MA) 
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and incubated in dialysis media at 37°C, which was replaced every day of the experiment. 

Nanoparticles tested under neutral conditions were incubated with PBS at pH 7.4 with 0.5% Tween 

80 and the nanoparticle dispersion was sampled (32 μL) at 0 h, 3 h, 6 h, 24 h, 48 h, day 4, day 6, and 

day 10. Nanoparticles that were tested under acidic conditions were incubated with 50 mM acetate 

buffer at pH 4 with 0.5% Tween 80. The nanoparticle dispersion under acidic conditions were sampled 

(32 μL) at 0 h, 10 min, 30 min, 1 h, 2 h, 5 h, 8 h, 24 h, 48 h, day 4, day 6. The drug concentration was 

determined by RP-HPLC as described for measuring encapsulation efficiency and drug loading. Three 

replicates of each drug-loaded nanoparticle dispersion were tested. 

 

6.2.7. Determining Half Maximal Inhibitory Concentration 

The half-maximal inhibitor concentration (IC-50) of the free drug and nanoparticle formulation 

were examined for the OVCA-432 cells to determine drug potency. Cells were seeded at a density of 

15 x 103 cell/well in a 96-well plate containing 100 µL of complete medium. The cells were incubated 

at 37 °C in 5% CO2 overnight. Then the media was replaced with 100 µL medium containing free-

drug or nanoparticles and treated for 48 hours. Stock solution of free-drug were prepared by dissolving 

PTX (12 mg/mL), PTX-prodrug (5 mg/mL), and LAP (5 mg/mL) in DMSO and sonicating for 5 

minutes. The nanoparticles were concentrated with Amicon filters (50kDa MWCO) as previously 

described and the nanoparticle pellet was diluted with 1X PBS to a concentration of 1000 μg/mL of 

drug. Serial dilutions of the stock free drug and nanoparticle dispersion were prepared with complete 

medium for a final concentration between 200 - 0.0002 µg/mL and a total volume of 100 µL. 

Additional DMSO was added to the free drug formulations for a final DMSO concentration of 2% v/v. 

The cells were also treated with complete media and 2% DMSO media as controls for comparison. 

There were 6 replicates for each experimental condition. After 48 hours, the cell viability was 

measured with WST-1 assay (Sigma-Aldrich, St. Louis, MO) according to manufacturing instructions. 
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Briefly, the drug-loaded medium was removed and 100 µL of RPMI-1640 with Phenol Red (Fisher 

Scientific, Pittsburg, PA) containing 10% WST-1 solution was added to each well and to 6 additional 

empty wells. The cells were incubated between 45 - 90 minutes until there was a visible color change 

to a golden-yellow or the absorbance of control wells reached at least 0.700 measured with a 

microplate reader (VersaMax ELISA microplate reader, Molecular Devices, San Jose, Ca) at a 

wavelength of 440 nm with background subtraction of 640 nm. The cell viability was determined by 

subtracting the background noise (wells containing only 10% WST-1 in media) from the samples and 

then dividing the sample absorbance by the average absorbance of the untreated wells. The cell 

viability of cells treated with free drug were normalized with cells treated with 2% DMSO. The relative 

cell viability was expressed as a percentage of the untreated cells with mean ± standard deviation of 

six replicates. 

 

6.2.8. Cell Cycle Analysis by Flow Cytometry 

The OVCA-432 cells were seeded at a density of 20 x 104 cells/mL in a 35 mm petri dish 

containing 3 mL of complete media. The cells were incubated at 37°C and 5% CO2 until 90% 

confluence and the media was replaced every 2 days. The cells were treated with either free drug  or 

nanoparticle formulations for 48 hours at the IC-50 of each drug formulation, respectively. Then, the 

cells were stained with Propidium Iodide (PI Flow Cytometry Kit, Abcam, Cambridge, MA) for flow 

cytometry according to manufacturing instructions. Briefly, the cells were trypsinized and the 

aspirated medium and PBS were collected to minimize cell loss. The cells were centrifuged at 700 x 

g for 5 minutes as necessary. The cells were washed with 1X PBS and fixed with 66 % ethanol by 

slowly adding ethanol to PBS during vortexing. The cells were stored in ethanol at 4 °C for at least 2 

hrs and up to 4 days. The cells were centrifuged and washed with PBS to remove the ethanol. The 1X 

Propidium Iodide and RNase solution was prepared immediately prior to use by mixing 5% v/v of 
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20X Propidium Iodide and 0.05% v/v 200X RNase in 1X PBS. Then the cells were resuspended in 

200 µL/500,000 cells of 1X Propidium Iodide and RNase solution and incubated in the dark at 37 °C 

for 30 minutes. Prior to flow cytometry, the cell samples were stored on ice and filtered through a cell 

strainer (Falcon Test Tube with Snap Cap, Fisher Scientific, Pittsburg, PA). Flow cytometry was 

performed on a BD FACSCanto™ II Analyzer (BD Biosciences, San Diego, CA) and 10,000 cells 

were analyzed at an excitation of 488 nm and emission of 670 nm. The samples were analyzed in 

triplicate. 

 

6.3. Results and Discussion 

6.3.1. Formulation of Prodrug Nanoparticles 

Polymer nanoparticles were formulated using Flash NanoPrecipitation (FNP), a rapid, scalable 

process for encapsulating hydrophobic (logP > 6) [259,264] and weakly hydrophobic drugs (logP < 6) 

[271,306]. Encapsulation of paclitaxel and lapatinib into nanoparticles via FNP via in situ coordination 

complexation of an antioxidant (i.e. tannic acid) with iron was previously described [306]. In situ 

complexation of tannic acid and iron has also been applied to hydrophobic materials [271]; therefore, 

it was selected to encapsulation the hydrophobic prodrug of paclitaxel (logP = 10.1) alone and in 

combination with lapatinib. Briefly, nanoparticles were formulated by dissolving the block co-polymer 

(PS-b-PEG), tannic acid, and one or more drugs in THF to make the organic stream. The organic 

stream was rapidly mixed with Fe3+ (aq.) in a confined impinging jet (CIJ) mixer. Upon mixing, an 

insoluble tannic acid-iron (TA-Fe) complex is formed, precipitation of the drugs, and self-assembly 

of the PS-b-PEG. The formation of the TA-Fe complex facilitates encapsulation the precipitating drugs 

and the growth of the nanoparticle core is kinetically stabilized by the adsorption of the block co-

polymer onto the surface of the core. This study will focus on parameters of encapsulating hydrophobic 

drugs and drug combinations. 
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The goal was to formulate monodispersed nanoparticles <200 nm nanoparticles for passive 

targeting [314]. We first examined encapsulating the hydrophobic paclitaxel prodrug alone (Pro NPs). 

Based on previous results, we determined the two parameters that effect nanoparticle size and 

polydispersity were ratio of the concentration of the drug and the ratio of the block co-polymer to core 

(BCP: core). Initially, we examined the prodrug concentration relative to the streams and a BCP: core 

ratio of 2:1 was selected based on previous results for single-drug nanoparticles [306]. At a drug 

concentration of 1 mg/mL large nanoparticles were produced at 184 ± 11 nm and a secondary particle 

size of 26 ± 2. The nanoparticles on the order of ~30 nm can be attributed to empty block copolymer 

micelles [271,280]. When the prodrug concentration was reduced to 0.5 mg/mL the primarily particle 

size decreased to ~155 nm but also contained a secondary micelle peak.  By further reducing the drug 

concentration to 0.25 mg/mL, monodispersed nanoparticle were produced at a size of 135 ± 6 nm and 

a polydispersity (PDI) of 0.206 ± 0.017 (Table 31). However, this resulted in relatively low nominal 

drug loading. Therefore the BCP: core ratio was examined as a method for increasing the nominal 

drug loading while maintaining a monodispersed particle distribution.  

 

Table 31. Varying the concentration of the PTX-prodrug. 

Sample Ratio 
Prodrug Concentration 

(mg/mL) 
Size 1 (nm) Size 2 (nm) PDI 

Pro NPs 

2:1 1 184 ± 11 26 ± 2 0.373 ± 0.050 

2:1 0.5 156 ± 18 29 ± 2 0.318 ± 0.021 

2:1 0.25 135 ± 6 -- 0.206 ± 0.017 

 

The maximum drug concentration at a BCP: core ratio of 2:1 was 0.25 mg/mL which is less 

than the maximum drug concentration previously observed for PTX NPs and LAP NPs (BCP: core = 

2:1) of 1 mg/mL [306]. The decrease in maximum drug loading could be attributed to relatively greater 

affinity of the hydrophobic block of the block co-polymer onto the surface of the growing core of the 

Pro NPs due to the higher hydrophobicity of the prodrug [261,263].  
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Varying the ratio of the block co-polymer had an impact on the size and polydispersity of the 

Pro NPs. A drug concentration of 0.5 mg/mL was used in these experiments in order to increase the 

nominal drug loading. Decreasing the ratio from 2:1 to 1:1 increased the nanoparticle size from ~155 

nm to ~390 nm as well as the PDI to 0.789 ± 0.172. These nanoparticles were considered polydispered 

due to the large PDI. At a ratio of 1.5:1 and a drug concentration of 0.5 mg/mL, monodispersed 

nanoparticles were produced at 98 ± 4 nm and a PDI of 0.233 ± 0.008 (Table 32). TEM analysis 

confirms the particles are spherical and the particle size is consistent with DLS (Figure 44).  

From the results we observed that both the BCP: core ratio and the total drug concentration of 

Pro NPs can be tuned to formulated monodispered nanoparticles. Interestingly, the intermediate ratio 

of the BCP: core produced monodispered nanoparticles on the order of ~100 nm. This could be 

attributed to an appropriate matching of timescales between nucleation of the core (TA-Fe3+ 

complexation and precipitation of the prodrug) and self-assembly of the block co-polymer. By 

matching the timescales, we minimized the formation of empty micelles and allowed for greater 

nominal drug loading. This principle has been previously described and studied for other hydrophobic 

materials encapsulated via FNP [259,265,281,364].  

 

Table 32. Varying ratio of the block co-polymer to core ratio. 

Sample 
BCP: core 

Ratio 

Prodrug Concentration 

(mg/mL) 
Size 1 (nm) Size 2 (nm) PDI 

Pro NPs 

2:1 0.5 156 ± 18 29 ± 2 0.318 ± 0.021 

1.5:1 0.5 98 ± 4 -- 0.233 ± 0.008 

1:1 0.5 389 ± 138 35 ± 70 0.789 ± 0.172 
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Figure 44. Representative transmission electron microscopy (TEM) images of (A) Pro NPs and (B) Pro-LAP 

NPs taken at 40kX (scale bar = 200 nm). 

 

The parameters for co-encapsulating a hydrophobic drug (logP > 6) with a weakly hydrophobic 

drug (logP < 6) into monodispered nanoparticles were also examined. The prodrug was encapsulated 

with lapatinib to form Pro-LAP NPs. We first examined the ratio of the prodrug to lapatinib. In 

previous studies, co-loaded nanoparticles of paclitaxel and lapatinib a 1:1 ratio by mass and a total 

drug concentration of 1 mg/mL produced monodispersed nanoparticles [306]. Therefore, we selected 

these parameters to determine if they would translate to encapsulating the paclitaxel prodrug and 

lapatinib. Using equivalent concentrations of prodrug and lapatinib at 0.5 mg/mL of each drug 

produced polydispersed nanoparticles with two size populations at ~170 nm and ~31 nm (micelles). 

When the amount of prodrug was decreased to 0.25 mg/mL, there was not a significant impact on the 

nanoparticle size and polydispersity (Table 33). 

 

 

 

TEM images

Pro Pro-LAP

200 nm 200 nm
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Table 33. Varying the prodrug concentrations of Pro-LAP NPs. 

Sample 
BCP: Core 

Ratio 

Drug Concentration (mg/mL) 
Size 1 (nm) Size 2 (nm) PDI 

Prodrug LAP 

Pro-LAP NPs 
2:1 0.5 0.5 169 ± 11 31 ± 3 0.361 ± 0.034 

2:1 0.25 0.5 177 ± 10 36 ± 4 0.271 ± 0.006 

 

Decreasing the prodrug concentration did not facilitate formation of monodispersed 

nanoparticles or effect the particle size. Therefore, the effect of the BCP: core ratio on nanoparticle 

formation was investigated. Equivalent drug concentrations of prodrug and lapatinib for a total drug 

concentration of 1 mg/mL were used to maximize the drug loading to be consistent with the PTX and 

lapatinib formulation. When the BCP: core ratio was decreased from 2:1 to 1:1 monodispersed 

nanoparticles were formed. The nanoparticles formulated at a 1:1 BCP: core ratio were 145 ± 2 nm 

and a PDI of 0.111 ± 0.018 (Table 34). These results were confirmed with TEM analysis (Figure 44). 

These results indicate that decreasing the BCP: core ratio has an impact on the polydispersity 

of the nanoparticles without impacting the nanoparticle size of drug combination of hydrophobic and 

weakly hydrophobic drugs. Similar trends were observed with weakly hydrophobic drugs using TA-

Fe3+ complexation in which varying the BCP: core ratio had a greater impact on polydispersity rather 

than size [306] found with system encapsulating only hydrophobic molecules [263,264]. Furthermore, 

decreasing the BCP: core ratio enabled formation of monodispersed at a total drug concentration of 1 

mg/mL which mimic the results previously observed with PTX-LAP NPs [306]. The Pro-LAP NPs 

required a lower BCP: core ratio of 1:1 rather than 1.5:1 for PTX-LAP NPs, further supports the notion 

that the hydrophobic block of the BCP has a higher affinity for the prodrug. Also the timescales of 

self-assembly and precipitation of the core are better matched at a 1:1 BCP: core ratio.  
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Table 34. Varying the BCP: core ratio of Pro-LAP NPs. 

Sample 
BCP: core 

Ratio 

Drug Concentration (mg/mL) 
Size 1 (nm) Size 2 (nm) PDI 

Prodrug LAP 

Pro-LAP NPs 

2:1 0.5 0.5 169 ± 11 31 ± 3 0.361 ± 0.034 

1:1 0.5 0.5 145 ± 2 0 0.111 ± 0.018 

 

 

We determined the parameters necessary for formulating monodispersed nanoparticles  < 200 

nm with a hydrophobic paclitaxel prodrug as single-drug loaded formulation (Pro NPs) and in 

combination with a weakly hydrophobic drug (Pro-LAP NPs). The TA-Fe3+ complexation enabled 

encapsulation of a hydrophobic drug (logP > 6) as previously described [271]. The polydispersity of 

the nanoparticle was tunable with both the drug concentration and BCP: core ratio. Furthermore, using 

the TA-Fe3+ complexation platform facilitated the co-encapsulation of a hydrophobic (logP > 6) and 

weakly hydrophobic drug (logP < 6) and monodispersed nanoparticles can be formed by tuning the 

BCP: core ratio at a total drug concentration of 1 mg/mL, as previously described for combinations of 

weakly hydrophobic drugs [306].  

 Next, we formulated TA-Fe NPs, PTX NPs, LAP NPs, and PTX-LAP NPs as previously 

reported [306]. Nanoparticle encapsulating only the TA-Fe complex were formulated at a BCP: core 

ratio of 2:1 (core determined as tannic acid and Fe3+ (aq.)) and a tannic acid to Fe3+ ratio of 4:1 by 

mass.  Monodispersed single-drug loaded nanoparticles were formulated at a drug concentration of 1 

mg/mL and a BCP: core (core determined at tannic acid and paclitaxel or lapatinib) ratio of 2:1. The 

co-loaded nanoparticles containing paclitaxel and lapatinib were formulated at a 1.5:1 BCP: core ratio 

(core determined as tannic acid and drugs) and a total drug concentration of 1 mg/mL. A summary of 

all six nanoparticles used in the subsequent experiments can be found in Table 35.  
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Table 35. Size and polydispersity index of nanoparticles. 

Nanoparticles 
 

Size (nm) PDI 
 

TA-Fe NPs  151 ± 5 0.258 ± 0.003 

PTX NPs  136 ± 27 0.280 ± 0.059 

LAP NPs  117 ± 7 0.247 ± 0.049 

PTX-LAP NPs  84 ± 16 0.286 ± 0.026 

Pro NPs  91 ± 10 0.280 ± 0.076 

Pro-LAP NPs  145 ± 29 0.139 ± 0.026 

 

6.3.2. Nanoparticle Encapsulation Efficiency and Drug Loading 

Following nanoparticle formulation with FNP, the encapsulation efficiency and drug loading 

was examined by disassembling the nanoparticles with acetonitrile and measuring the drug 

concentration and nanoparticle dispersion mass by HPLC and TGA, respectively. The encapsulation 

efficiency was determined by comparing the drug mass encapsulated to the nominal amount in the 

formulation using Eq. 10. The encapsulation efficiency was comparable between the single-drug 

loaded PTX NPs and Pro NPs at ~40%. In comparison, the encapsulation efficiency of prodrug in the 

co-loaded nanoparticles was 0.5-fold lower compared to paclitaxel. However, the encapsulation 

efficiency remained ~26% for lapatinib in both co-loaded nanoparticles (Table 36).  

The drug loading was determined by comparing the encapsulated drug mass to the total mass 

of the nanoparticle dispersion. Comparing the drug loading of paclitaxel and prodrug in single-drug 

loaded nanoparticles there was a 2.5-fold greater drug loading of paclitaxel compared to the prodrug. 

Examining the co-loaded nanoparticles, there is still greater drug loading of paclitaxel compared to 

prodrug with a 2-fold difference. The drug loading of lapatinib between the two co-loaded 

nanoparticles is comparable (Table 36).  
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Table 36. Summary of the encapsulation efficiency and drug loading. 

Samples 
 Encapsulation efficiency (EE%)  Drug loading (DL%) 

 PTX / Prodrug LAP  PTX / Prodrug LAP 

PTX NPs  37.6 ± 14.4 --  3.11 ± 1.88 -- 

LAP NPs  -- 25.0 ± 1.5  -- 1.82 ± 0.71 

PTX-LAP NPs  67.0 ± 2.2 25.9 ± 3.5  2.11 ± 0.50 0.79 ± 0.40 

Pro NPs  45.3 ± 1.8 --  1.25 ± 0.22 -- 

Pro-LAP NPs  37.6 ± 1.7 26.9 ± 10.8  1.01 ± 0.02 0.55 ± 0.15 

 

 

The encapsulation efficiency and drug loading results suggest that either the properties of the 

prodrug or the components of the formulation, or combination thereof affect the encapsulation of the 

prodrug. It is possible that the size and/or high hydrophobicity of the prodrug molecules (1381 g/mol) 

relative to the other components of the core prevent high concentrations of the prodrug from being 

encapsulated and resulting in low drug loading. This result suggests that the hydrophobicity of the 

molecule is an important factor in particle assembly due to greater rate of precipitation and core 

formation in the case of single-drug loaded nanoparticles. It is worth noting that the encapsulation 

efficiency and drug loading of lapatinib was not affected by the hydrophobic of the co-loaded 

molecule. In fact, in the co-loaded nanoparticles there is double the drug loading of paclitaxel and 

prodrug than lapatinib which suggests a stronger interaction of paclitaxel and its prodrug to the TA-

Fe3+ complex and the hydrophobic block of the block co-polymer compared to lapatinib. This is 

noteworthy, because in other FNP systems high drug loading is expected of hydrophobic (logP > 6) 

core materials, however these results suggest that in presences of the TA-Fe3+, the interaction with the 

complex as well as the block co-polymer are the guiding factors for drug encapsulation.  

 

6.3.3. Drug Release 

The drug release from the nanoparticles was examined under two pH conditions via dialysis. 

The presence of the pH-labile TA-Fe3+ complex in the nanoparticles allows for controlled over drug 
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release and we expect that when the complex is insoluble under pH > 7 we expect  slow drug release 

from the nanoparticles and when the pH is below 5 the complex becomes soluble we expect rapid drug 

release. The release was measured under pH 7.4 to simulate release in the bloodstream and non-acidic 

tissue as well as pH 4 to simulate nanoparticles that are endocytosed by the cells into a lysosome or 

acidic cancerous tissue [365–367]. The nanoparticles were dialyzed against either 1X PBS at pH 7.4 

with 0.5% Tween 80 or 50 mM acetate buffer at pH 4 with 0.5% Tween 80. The nanoparticles were 

sampled from the dialysis membranes and measured with HPLC to determine the drug release profile.  

The drug release was examined for the single drug nanoparticles; PTX NPs, Pro NPs, and LAP 

NPs to determine their relative drug release rates. Examining the drug release at pH 7.4, the PTX NPs 

exhibited burst release over the first 6 hours at which ~20% of the paclitaxel was released. Under the 

same conditions, ~40% of the prodrug was released during 6 hour burst release from the Pro NPs. The 

LAP NPs exhibited a burst release in the first 3 hours with a cumulative drug release of ~25%  

(Figure 45B). During the sustained drug release period examined for up to 6 days, the release of 

paclitaxel was slow with a cumulative drug release of ~40%. The maximum drug release of prodrug 

from single-drug nanoparticles was ~90%. A total drug release of ~35% was achieved with LAP NPs 

(Figure 45A). 
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Figure 45. (A) The drug release profile of (pink circles) PTX NPs, (orange squares) Pro NPs, (blue rhombus) 

LAP NPs at pH 7.4 sink conditions. Highlighted in the green square is the (B)  close up of the release profile 

between time 0 to 0.5 days. The average and standard deviation are shown for 3 replicate samples. 

 

The drug release from single-drug loaded nanoparticles was also measured under acidic 

conditions (pH 4). All three nanoparticles exhibited burst release within the first hour of dialysis. The 

total paclitaxel released from PTX NPs was ~17%. There was also ~16% of the prodrug released from 

Pro NPs within the first hour. However, there was twice the amount of lapatinib released compared to 

paclitaxel or prodrug over the burst release period (Figure 46B). The drug release was measured over 

6 days during which sustained drug release was exhibited by all three single-drug nanoparticles. The 

total drug release for the PTX NPs, Pro NPs, and LAP NPs after 6 days was ~26%, ~34%, ~29%, 

respectively under acidic conditions (Figure 46A). 

 

A B



Shani L. Levit • Ph.D. Dissertation • Chemical and Life Science Engineering   155 
 

 

Figure 46. (A) The drug release profile of (pink circles) PTX NPs, (orange squares) Pro NPs, (blue rhombus) 

LAP NPs at pH 4 sink conditions. Highlighted in the green square is the (B) close up of the release profile 

between time 0 to 0.5 days. The average and standard deviation are shown for 3 replicate samples. 

 

Next, examined the drug release kinetics from the single-drug nanoparticles under pH 7.4 and 

pH 4 conditions. We fit the data to the Korsemeyer-Peppas diffusion model (Eq. 12): 

𝑀𝑡

𝑀∞
= 𝑎𝑡𝑛         (Eq. 12) 

Where the Mt is the drug release at time, t, M∞ is maximum drug release, and a is the release rate. The 

diffusion exponent, n, is determined based on the fit and describes the drug release mechanism [321]. 

The Korsemeyer-Peppas model is used in cases with non-linear regression, as we have in this 

experiment with an initial burst release followed by a sustained release period and often used to 

describe diffusion from stable nanoparticles. Based diffusion exponent, the diffusion can be classified 

(i.g. Fickian diffusion, non-Fickian transport, etc.). To fit the data to the model, we determined the 

fraction of the cumulative drug released at each time point relative to the maximum drug release at 

day 6. Then we fit a linear trend to log of the cumulative drug release relative to the log time, excluding 
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cumulative drug release > 70% and any outliers. From the slope of the line we determined the diffusion 

exponent, n [321,322].  

 The drug release data from pH 7 conditions fit well to the Korsemeyer-Peppas model, with an 

R2 > 0.7. The diffusion exponent for the release of paclitaxel and lapatinib from single-drug 

nanoparticles is < 0.45 indicating first order Fickian kinetics [323,324] (Table 37). Fickian diffusion 

describe drug release when the rate of diffusion is substantially greater than the polymer chain 

relaxation of block co-polymer [368]. Under this condition, the release rate of paclitaxel and lapatinib 

is dependent on drug hydrophobicity and the concentration gradient. Therefore, the initial burst release 

of paclitaxel and lapatinib can be attributed to the concentration gradient between the nanoparticles 

and dialysis media. This initial burst release is followed by a faster release rate of paclitaxel compared 

to lapatinib due to a difference in drug hydrophobicity. The diffusion exponent for the prodrug from 

Pro NPs was > 0.89 indicating Super Case II transport (Table 37).  This transport describes a system 

in which outer layer of the nanoparticles prevents swelling of the nucleus and instead leads to 

compression of the nucleus and penetration of the solvent which eventually results in disassembly of 

the nanoparticle [368]. The rate of prodrug release is therefore not dependent on rate of diffusion but 

instead the compressive stresses on the nanoparticle core leading to rapid drug release. Furthermore, 

the unexpected rapid release of the prodrug relative to paclitaxel can be attributed to a difference in 

drug release mechanisms and not on the drug hydrophobicity. The compressive stresses on the 

nanoparticle core suggest a strong interaction between the hydrophobic block of the block co-polymer 

and the prodrug and the finding support the previous results observed in the formulation of the Pro 

NPs.  
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Table 37. Rate constant and R2 of nanoparticle drug release at pH 7.4 conditions fit to the Korsemeyer-

Peppas diffusion model. 

Sample Rate Constant (a) Fit (R2) 

PTX NPs 0.341 0.99 

Pro NPs 0.929 0.98 

LAP NPs 0.064 0.689 

PTX in PTX-LAP 

NPs 
0.339 0.728 

LAP in PTX-LAP 

NPs 
0.503 0.994 

Pro in Pro-LAP NPs 1.0 1.0 

LAP in Pro-LAP NPs 1.0 1.0 

 

When we applied to Korsemeyer-Peppas model to the drug release data under pH 4 

conditions, we found that there was very poor fit. Instead, this data was fit to the Hixon-Crowell 

diffusion model (Eq. 13):  

(1 − 
𝑀𝑡

𝑀0
)

1/3
= 1 − 𝐾𝛽𝑡         (Eq. 13) 

Where M0 is the initial amount of drug dose therefor Mt/M0 is the fraction of total drug released. Kβ is 

the release constant which is dependent upon the change in surface and volume of the nanoparticles. 

The Hixson-Crowell model describes drug release from a dissolving core or dissolving tablet; 

[369,370]; therefore, it was an appropriate model to select for this platform as the nanoparticles are 

pH-labile and we expect a dissolution of our core due to the solubilization of the TA-Fe3+ complex 

resulting in a shrinking nanoparticle.  

The data was fit to the Hixson-Crowell model by fitting data between T = 0 and 2 hours 

determined as the period of burst release and the remainder of the data (hour 2 to day 6) during which 
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sustained release occurred was fit separately. The data was plotted as the cube root of the remaining 

drug versus time and the slope was determined from the linear fit as the release constant, Kβ.  

With the Hixson-Crowell model, we examining the fit of the experimental data from pH 4 

conditions of single-drug loaded nanoparticles. Interestingly, we find during both the burst release and 

sustained release rate constants for PTX NPs and Pro NPs were equivalent. Interestingly, the 

cumulative drug release for the prodrug decreases under pH 4 conditions, which can be attributed to a 

difference in stresses on the nanoparticles with the rate of core dissolution under pH 4 is slower relative 

to compression of the core under pH 7.4. The burst release constant for LAP NPs was slightly higher 

compared to PTX NPs and Pro NPs, but the sustained release constant was similar (Table 38). 

Although these three drugs have very different hydrophobicity, the similarity in release rates indicate 

that the drug release kinetics is not described by diffusion out of the core but by particle deterioration.  

Table 38. Rate constant and R2 of nanoparticle drug release at pH 4 conditions fit to the Hixson-Crowell 

diffusion model. 

Sample 

Burst Release  Sustained Release 

Rate Constant 

(KS) 
Fit (R2)  Rate Constant 

(KS) 
Fit (R2) 

PTX NPs 1.23 0.89  0.0072 0.82 

Pro NPs 1.23 0.89  0.012 0.91 

LAP NPs 2.56 0.943  0.0051 0.736 

PTX-LAP NPs 

(PTX) 
0.61 0.937  0.0073 0.958 

Pro-LAP NPs 

(Pro) 
3.07 0.990  0.049 0.732 

PTX-LAP NPs 

(LAP) 
0.61 0.937  0.0073 0.958 

Pro-LAP NPs 

(LAP) 
1.56 0.702  0.017 0.947 
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Next, the drug release under pH 7.4 was investigated for the two co-loaded nanoparticles. For 

the PTX-LAP NPs, burst release was observed within the first 6 hours with equivalent drug release of 

paclitaxel and lapatinib at ~24%. In comparison, ~31% of the prodrug and ~22% of lapatinib were 

released during the 6 hour burst release from Pro-LAP NPs (Figure 47B). The cumulative drug release 

following sustained release over 6 days for the PTX-LAP NPs was ~40% of paclitaxel and 16% of 

lapatinib. There was greater prodrug release from the co-loaded nanoparticles compared to paclitaxel 

with ~50% release, but approximately the same percentage of lapatinib released as the PTX-LAP NPs 

(Figure 47A).  

 

 

Figure 47. (A) The drug release profile of (pink circles) paclitaxel and (blue rhombus) lapatinib from PTX-

LAP NPs and (orange squares) prodrug and (light blue triangle) lapatinib from Pro-LAP NPs at pH 7.4 sink 

conditions. Highlighted in the green square is the (B) close up of the release profile between time 0 to 0.5 days. 

The average and standard deviation are shown for 3 replicate samples. 

 

The drug release profiles of the co-loaded nanoparticles were also examined under acidic 

conditions. The burst release for the PTX-LAP NPs was observed within the first 2 hours of dialysis. 

There was ~16% of the paclitaxel and ~7% of the lapatinib released. In comparison, a burst release 

was observed over the first hour for the Pro-LAP NPs. Double the prodrug was released relative to 
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paclitaxel from the co-loaded nanoparticles. Approximately the same percentage of lapatinib was 

released from PTX-LAP NPs and Pro-LAP NPs during the burst release (Figure 48B). Sustained 

release was observed over 6 days for both co-loaded nanoparticles. The cumulative release of the 

prodrug was greater at ~52% relative to paclitaxel that only had a cumulative drug release of ~30%. 

Comparing the cumulative release of lapatinib from the co-loaded nanoparticles we observed that 

double the lapatinib was released from Pro-LAP NPs compared to the PTX-LAP NPs (Figure 48A).  

 The drug release kinetics for the co-loaded nanoparticles were modeled based on the 

Korsemeyer-Peppas model for pH 7.4 conditions and the Hixson-Crowell for pH 4 conditions as 

previously described for single-drug nanoparticles. Examining first the drug release kinetics under pH 

7.4 conditions, diffusion exponent for paclitaxel (n < 0.45) and lapatinib (n ~ 0.5) from co-loaded 

nanoparticles describes the release kinetics by Fickian diffusion [323,324,368] (Table 37).Therefore, 

the drug release of the PTX-LAP NPs is determined by the drug diffusion from the core based on the 

drug hydrophobicity and concentration gradient. This driving force explains the greater cumulative 

drug release over time of paclitaxel due to lower hydrophobicity (logP = 3.2) relative to lapatinib (logP 

= 5.4) co-loaded nanoparticles. These results suggest sequential drug release of paclitaxel followed by 

lapatinib. In comparison, the diffusion exponents for prodrug and lapatinib in Pro-LAP NPs are greater 

than 0.89, similar to Pro NPs, therefore the drug release is described by Super Case II transport [368].  

Again, in this case the drug release is dictated by the compression on the nanoparticle likely attributed 

to the strong hydrophobic interaction between the block co-polymer and the core. However, it is worth 

noting that the cumulative drug release of the prodrug is greater than lapatinib although the reason for 

this is not clear.  

  Next, we examined the rate constant of the co-loaded nanoparticles fit to the Hixson-Crowell 

model (pH 4). The rate constants for both the burst release and sustained release are comparable 

between paclitaxel and lapatinib in PTX-LAP NPs. Similarly, the prodrug and lapatinib in Pro-LAP 
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NPs had similar rate constants (Table 38). When we compare paclitaxel to the prodrug released from 

co-loaded nanoparticles, we observed a substantially higher constant for the prodrug (faster release) 

relative to paclitaxel. This is noteworthy, since in the single-drug case the two drugs had comparable 

drug release. While the reason for this is unclear, it could suggest a combination of factors such as 

both core solubilization, due to the TA-Fe3+ complex, and compression, due to the block co-polymer 

and prodrug interaction. 

 

 

Figure 48. (A) The drug release profile of (pink circles) paclitaxel and (blue rhombus) lapatinib from PTX-

LAP NPs and (orange squares) prodrug and (light blue triangle) lapatinib from Pro-LAP NPs at pH 4 sink 

conditions. Highlighted in the green square is the (B) close up of the release profile between time 0 to 0.5 days. 

The average and standard deviation are shown for 3 replicate samples. 

 

6.3.4. Drug Potency and Evaluating the IC-50 

The potency of the nanoparticle dispersion was assessed in vitro with ovarian cancer cells, 

OVCA-432 cells. The cells were treated with free drug or single-drug nanoparticle formulations of 

paclitaxel, prodrug, and lapatinib. The cell viability was measured with the WST-1 assay from which 

the half-maximal inhibitory concentration (IC-50) was determined as a measure of potency. We first 

compared the potency of the free prodrug to free paclitaxel. Treatment with the free prodrug produced 
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an IC-50 of 0.010 ± 0.005 mM which was over 8-fold lower compared to free paclitaxel (Table 39). 

These results suggest that formulating hydrophobic prodrug of paclitaxel is an approach to increase 

the potency of paclitaxel to treat ovarian cancer cells.  

Free lapatinib had the highest potency with an IC-50 of 0.008 ± 0.002 mM. Next, we compared 

the potency of the nanoparticle formulations to the free drug. With all three drugs, there was a 

reduction in IC-50 concentration of the nanoparticles relative to the free drug.  The largest increase in 

potency was observed with paclitaxel from ~0.083 mM to ~47 x 10-6 mM followed by the prodrug 

from ~0.010 mM to ~8.7 x 10 10-6 mM. Formulating lapatinib into nanoparticles decreased the IC-50 

to ~0.0014 mM (Table 39). While decreases in IC-50 concentration compared to the free drug form 

have been observed in other polymer nanoparticle formulations [234,331,332] and is not fully 

understood, the 1800-fold increase in paclitaxel potency and 1100-fold increase in prodrug potency in 

this nanoparticle formulation is noteworthy. The significant increase in paclitaxel and prodrug potency 

in the TA-Fe could be attributed to several contributing factors including sustained release over the 48 

hour treatment period an increased bioavailability due to the nanoparticle formulation [234,333,334]. 

Additionally, the Pro NPs exhibited greater potency compared to PTX NPs.   Specifically, 

therefore, the Pro NPs were 5-fold more potent compared to the PTX NPs (per mole of PTX).  Thus, 

formulation of the paclitaxel prodrug and encapsulation into nanoparticle is a method to further 

enhance paclitaxel potency.    

Interestingly, these results differ from previous studies investigating the activity of 

hydrophobic paclitaxel prodrugs  [262,356,357]. Ansell et al, observed a 10-fold decrease in potency 

in ovarian cancer cells (A2780) and a 3-fold decrease in potency in breast tumor cells (MCF-7) when 

comparing α-tocopherol conjugated paclitaxel to paclitaxel drugs that were co-encapsulated with 

phosphatidylcholine (POPC) in polymer nanoparticles via FNP [261].  The difference in the observed 

results could indicate cell-dependent cytotoxicity due to the gene expression [371,372]. Furthermore, 
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the difference in nanoparticle formulation methods, co-encapsulation with TA-Fe3+ versus a 

hydrophobic polymer, could also play a role in the difference in prodrug potency and could, therefore, 

be explained by the Hansch-Fujita parabolic relationship between drug hydrophobicity and cell 

membrane penetration [373]. 

Examining the drug release profile, the rapid release of the prodrug under pH 7.4 conditions 

could suggest in greater bioavailability of the prodrug compared to paclitaxel with this nanoparticle 

platform. Additionally, the diameter of the nanoparticles formulated with TA-Fe3+ were ~100 nm 

which are 4-fold larger compared to those formulated by Ansell et al. (~25 nm), which plays a 

significant role in the mechanisms of endocytosis [374,375]. Additionally the pH-labile platform 

created with TA-Fe3+ can also play a role in the drug delivery mechanism in vitro. Overall these results 

suggest that the potency of paclitaxel is cell-type dependent and can be enhanced with a hydrophobic 

prodrug as well encapsulating in nanoparticles via TA-Fe3+ complexation.  

 

Table 39. The IC-50 of OVCA-432 cells treated with paclitaxel, paclitaxel prodrug, lapatinib in free drug and 

nanoparticles formulations. 

Drug 
Treatment 

 
IC-50 (µg/mL)  IC-50 (mM) 

  
PTX / Prodrug LAP  PTX/Prodrug LAP 

Free PTX   70.6 ± 5.1 --  0.083 ± 0.006   

Free Prodrug   13.3 ± 6.5 --  0.010 ± 0.005   

Free LAP   -- 4.6 ± 1.3  -- 0.008 ± 0.002 

PTX NPs  0.040 ± 0.003 --  47 x 10
-6

 ± 3.5 x 10
-6 -- 

Pro NPs  0.012 ± 0.027 --  8.7 x 10
-6

 ± 20 x 10
-6 -- 

LAP NPs  --- 0.80 ± 0.26  -- 0.0014 ± 0.0004 
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6.3.5. Drug Combination and Synergy 

Next, we examined the efficacy of the two co-loaded nanoparticle formulations. The benefit 

of co-loading drug combinations into nanoparticles is spatiotemporal control of drug delivery as well 

as targeting of multiple anticancer pathways [197,376]. The OVCA-432 cells were treated with co-

loaded nanoparticles loaded with either paclitaxel or its prodrug at a range of concentration and the 

treatment potency was measured with IC-50 concentration. As expected, there was a decrease in the 

IC-50 concentration for all three drugs in the co-encapsulated nanoparticles compared to the single-

drug formulations. Particularly of note, there was a 4-fold decrease for paclitaxel and a 2-fold decrease 

for prodrug when co-encapsulated with lapatinib compared to single-drug formulations (Table 39 and 

Table 40). These results suggest that co-delivery of paclitaxel or its prodrug with lapatinib in 

nanoparticle formulations improved drug efficacy.  This could be attributed to targeting multiple 

anticancer pathways with combined delivery of paclitaxel and lapatinib [111,234,307,309,377]. 

Additionally, co-localization of the drugs relative to the cells [378,379] as well as controlled release 

of the two drugs from the pH-labile nanoparticles [201,204] can enhance drug targeting. Interestingly, 

the IC-50 concentrations was equivalent between PTX-LAP NPs and Pro-LAP NPs for both drugs 

(Table 40). These results indicate that the hydrophobicity of paclitaxel does not impact the efficacy 

of co-encapsulated nanoparticles. The reason for the similarities between IC-50 of the two co-loaded 

nanoparticles is unclear. The results do suggest that a method for improving the potency of paclitaxel 

or its prodrug is co-encapsulation with lapatinib into nanoparticles. Further examination of the cell 

cycle analysis could provide insight into the efficacy of the drugs on the cell activity. 

The synergistic activity was determined with the combination index (CI) for the two co-loaded 

nanoparticles by Eq. 14: 

𝐶𝐼 =
𝐼𝐶50(𝐴)𝑝𝑎𝑖𝑟

𝐼𝐶50(𝐴)
+

𝐼𝐶50(𝐵)𝑝𝑎𝑖𝑟

𝐼𝐶50(𝐵)
         (Eq. 14) 
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Where the IC-50 concentration for drug A in combination (IC50(A)pair) is divided by the IC-50 of drug 

A alone (IC50(A)) and added to that of drug B. A CI less than 1 indicates synergistic drug interaction. 

We determined that PTX-LAP NPs had a CI of 0.23 and Pro-LAP NPs had a CI of 0.54 indicating 

drug synergism (Table 40). While both nanoparticles are synergistic, the PTX-LAP NPs have a greater 

synergistic activity compared to co-loaded nanoparticles containing the prodrug. Since the prodrug is 

more potent that PTX, combining it with LAP has less of an effect which results the higher CI.  

 

Table 40. IC-50 and combination index of co-loaded nanoparticles in OVCA-432 cells. 

Drug Treatment 

IC-50 (µg/mL)  IC-50 (x 10-6 mM) 
Combination 

Index (CI) PTX / Prodrug LAP  PTX/ Prodrug LAP 

PTX-LAP NPs 0.0090 ± 0.0009 0.0040 ± 0.0004  1.1 ± 1.1 6.9 ± 0.69 0.23 

Pro-LAP NPs 0.0064 ± 0.0075 0.0046 ± 0.0054  4.6 ± 5.4 7.9 ± 9.3 0.54 

 

 

6.3.6. Cell Cycle Analysis 

To better understand the efficacy of paclitaxel and its hydrophobic prodrug on the ovarian 

cancer cells, we examined the cell cycle distribution using flow cytometry. Paclitaxel is known to 

arrest cells in the G2/M phase by stabilizing microtubule and preventing their disassembly necessary 

for cell division [335]. Untreated OVCA-432 cells were primarily distributed in the G1/G0 phase at 

~62% and only ~9% of cells were in the G2/M phase. Cells were treated with the free drug and 

nanoparticles at each treatment’s IC-50 concentration. We first compared the distribution following 

treatment with free drugs. Free paclitaxel reduced the percentage of cells in the G1/G0 phase to 46% 

and stabilized the cells in the G2/M phase (~30%). Interestingly, while free prodrug also reduced the 

percentage of cells in the G2/M phase, the cells accumulated in the subG1 phase (~25%) rather than 

the G2/M phase (~6%) (Figure 49). The greater accumulation of cells in the subG1 phase treated with 
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the prodrug could indicate that by increasing hydrophobicity of paclitaxel cells spend less time in the 

G2/M phase and transition to the subG1 phase due to cell damage. 

 

 

Figure 49. Cell cycle analysis of OVCA-432 cells from flow cytometry of (grey) untreated cells, and cells 

treated with either (pink) free paclitaxel or (green) free prodrug. 

 

Next, we compared the cell cycle distribution when the OVCA-432 cells were treated with 

single drug nanoparticles containing paclitaxel and prodrug. In this case, the cell distribution was 

similar between the two nanoparticles with a decrease in the G1/G0 phase to ~40% and an increase in 

cells in the S and subG1 phases. There is only a slight increase in cells in the G2/M phase for both 

nanoparticles relative to the control cells. The differences worth noting are that the PTX NPs exhibit 

a greater percentage of cells in the subG1 phase of ~25% compared to Pro NPs (~17%) (Figure 50). 

Since the cells were treated at the IC-50 concentrations of both particles and induce similar cell cycle 

arrest, it suggests that the drugs have a similar effect at these concentrations. As the Pro NPs were 

treated at a 8-fold lower concentration on a molar basis suggests higher potency of the Pro NPs 

formulation. 
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Figure 50. Cell cycle analysis of OVCA-432 cells treated with single drug nanoparticles. The cell distribution 

was compared between (grey) untreated cells, (pink) PTX NPs, and (green) Pro NPs. 

 

Finally, we compared the treatment with the two co-loaded nanoparticles. The PTX-LAP NP 

treatment did not affect the cell distribution compared to the untreated cells with greatest proportion 

of cells in G1/G0 phase. However, the Pro-LAP NPs reduced the proportion of cells in the G1/G0 phase 

and redistributed the cells among the other three phases. Particularly, there was a large increase in 

cells in the subG1 phase from ~11% to ~24% and only a slight increase in the G2/M phase from ~9% 

to ~15% (Figure 51). In this case, the cells were treated with similar drug concentrations as the IC-50 

concentrations are comparable. Therefore, while they both reduce cell viability by equivalent 

percentages, there is greater cell cycle arrest observed with Pro-LAP NPs and a more rapid shift to 

subG1 phase which could results in greater and more rapid cell death indicating increased potency of 

co-encapsulation of the prodrug with lapatinib.   

Therefore, the difference observed in the cell cycle distribution could be due to a difference in 

drug release rates. There is a faster rate of prodrug release compared to paclitaxel from co-loaded 

nanoparticles under both pH 7.4 and pH 4 conditions therefore more prodrug is bioavailable. 

Furthermore, in previous unpublished data (Chapter 5), when sequential delivery was examined, we 
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determined the delivery of paclitaxel prior to lapatinib increased drug efficacy. Therefore with Pro-

LAP NPs we have an even greater difference in the cumulative drug release of the two drugs 

suggesting there is enhanced cytotoxic effects observed with cell cycle analysis due to sequential drug 

delivery.   

 

 

Figure 51. Cell cycle analysis of OVCA-432 cells treated with co-loaded nanoparticles. The cell distribution 

was compared between (grey) untreated cells, (pink) PTX-LAP NPs, and (green) Pro-LAP NPs. 

 

6.4. Conclusion 

In this study, we demonstrated the potential of encapsulating a hydrophobic paclitaxel prodrug 

into pH-labile nanoparticles as a method to enhance drug efficacy and control drug release.  Parameters 

for formulating monodispersed nanoparticles via Flash NanoPrecipitation with a tannic acid-iron 

complex were determined for encapsulating the hydrophobic drugs (logP > 6) and in combinations 

with a weakly hydrophobic drug (logP < 6). By examining the drug release profiles, we determined 

that the prodrug has faster rate of drug release in both pH 7.4 and pH 4 conditions relative to paclitaxel 

and lapatinib due to a difference in the drug release mechanisms. The drug efficacy of the prodrug was 

8-fold higher delivered as a free drug and 5-fold higher in the nanoparticle formulation compared to 
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equivalent formulations of paclitaxel in ovarian cancer cells. The cytotoxic effects were further 

enhanced by co-encapsulation with lapatinib, which produces similar levels of potency between 

paclitaxel and its prodrug counterpart. Overall, these findings provide the foundation for developing 

co-encapsulated nanoparticles with controlled drug release as well as methods for improving the drug 

efficacy of paclitaxel. 
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7. Chapter 7: Rapid, Room Temperature Nanoparticle Drying and 

Low Energy Reconstitution via Electrospinning 

 

Published: [278]  Levit, S.L.; Stwodah, R.M.; Tang, C. Rapid, Room Temperature Nanoparticle 

Drying and Low-Energy Reconstitution via Electrospinning. Journal of Pharmaceutical Sciences 

2018, 107, 807–813. 
 

 

 

7.1. Abstract 

 Nanoparticle formulations offer advantages over free drug; however, stability of the 

nanoparticle dispersions is a significant obstacle and drying is often required for long-term size 

stability.  The main limitation of current drying methods is particle aggregation upon reconstitution 

which can be overcome with sonication (impractical in a clinical setting) or large amounts of 

cryoprotectants (result in hypertonic dispersions). Therefore, new approaches to nanoparticle drying 

are necessary.  We demonstrate conversion of nanoparticle dispersions to a dry, thermostable form via 

electrospinning.  As proof-of-concept, polyethylene glycol stabilized nanoparticles and polyvinyl 

alcohol were blended and electrospun into ~300 nm fibers. Following electrospinning, nanoparticles 

were stored for at least seven months and redispersed with low osmolarity to their original size without 

sonication.  The nanoparticle redisperse to their original size when the fiber diameter and nanoparticle 

diameter are comparable (NP:NF ratio ~ 1).  Nanoparticles with liquid cores and larger particles better 

maintained their size when compared to nanoparticles with solid cores and smaller particles, 

respectively.  Storing the nanoparticles within nanofibers appears to prevent Ostwald ripening 

improving thermostability. Overall, this novel approach enables rapid, continuous drying of 
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nanoparticles at room temperature to facilitate long-term nanoparticle storage.  Improved nanoparticle 

drying techniques will enhance clinical translation of nanomedicines. 

 

7.2. Introduction 

 Nanoparticle (NP) drug formulations offer advantages over free-drug formulations such as 

increased bioavailability and intracellular accumulation with relatively low toxicity [380–382].  

However, stability of the NP dispersions is a formidable problem [383].  Often, cold-chain storage is 

required to prevent Ostwald ripening.  The requirement of cold-chain storage is challenging for clinical 

applications [384]. Often, to achieve stable formulations with long shelf-lives, complete drying of the 

sample is required [385,386].  However, maintaining NP size during drying remains a significant 

challenge.  

Three techniques commonly used for drying drug-loaded NPs are freeze drying, spray drying, 

and more recently spray freeze drying [386–392].  Freeze drying is a three-step process in which the 

water is removed with an initial freezing step followed by sublimation and desorption [393]. Spray 

drying is a continuous process in which  the NP suspension is turned into droplets that are rapidly 

dried with a hot gas [394–396].  Spray freeze drying is an integration of the two methods, in which 

the solution is turned into droplets that are immediately frozen followed by sublimation of the 

remaining liquid [397]. While some particles have had success [396,398], the main limitation of 

current drying methods is particle aggregation after drying and reconstitution so the nanometer particle 

size, which is vital for therapeutic efficacy [399,400] cannot be maintained [393,401]. For example, 

after freeze drying, β-carotene- and paclitaxel-loaded NP made by Flash NanoPreciptation (FNP) 

method, redispersions resulted in at least a 2.25-fold increase in particle size even with sonication, a 

process which is considered impractical in a clinical setting [385,402]. Freeze dried vitamin E (VE) 

NPs stabilized with polystyrene-b-polyethylene glycol (PS-b-PEG) that were made via FNP exhibited 
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a 3-fold increase in size after reconstitution with sonication [385]. Therefore, new approaches to NP 

drying that maintain NP size after reconstitution are necessary.   

Cryoprotectants or excipients, such as glucose, sucrose and trehalose, etc., can prevent 

aggregation [388,403]. However, significant amounts of protectant/excipient are generally required 

[388,398,404].   For example, spray freeze drying PCL NPs required concentrations of 70 wt.% 

mannitol to achieve a final NP size to initial NP size (Sf/Si) ratio of 1.5 [398].  When freeze drying 

drug-loaded NPs using trehalose as a cryoprotectant, a mass ratio of 5:1 trehalose: NPs was required 

for redispersion [402]. The large amount of protectant is problematic for parenteral administration 

because the osmolarity of the protectant results in a hypertonic formulation [385].  

We present electrospinning NPs blended with a water soluble polymer as an alternative to 

freeze drying to rapidly convert NP dispersions to a dry form that can be stored at room temperature.  

In electrospinning, the polymer blend is extruded at a constant rate and when the force due to an 

applied electric field overcomes surface tension, a liquid jet forms.  As the liquid jet travels to a 

grounded collector, it is whipped and stretched and the solvent rapidly evaporates creating a solid fiber 

[405–409].  The fiber is deposited as a random, non-woven material.  Electrospinning the blend of 

NPs and a water soluble polymer, the NPs are encapsulated within the resulting polymer fibers.  The 

nonwoven material can be stored at room temperature and the fibers dissolved in aqueous media to 

reconstitute the NPs.   

Use of polymers as excipients are a promising alternative to saccharides because they can be 

added at high mass ratios relative to the NPs without creating hypertonic formulations. Polymers, such 

as polyvinyl alcohol  (PVA), used as excipients in traditional drying techniques, spray drying and 

spray freeze drying [410] have been considered. Approaches using polymers as in techniques such as 

electrospinning and electroblowing have been employed for preserving  amorphous formulations of 
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small molecules [411].  However, the applicability of such techniques for converting NPs to a dry, 

stable form have yet to be demonstrated. 

In this work, we demonstrate electrospinning as a rapid, room temperature method to convert 

NP dispersions to a dry, thermostable form that can be redispersed to the original NP size without 

sonication.  We use NP formulations sterically stabilized with polyethylene glycol (PEG) as a model 

system because PEG coatings increase circulation time and delay clearance by the mononuclear 

phagocytic system [412–415]. Such particles can be fabricated using FNP, a rapid and scalable 

method. In FNP, PEGylated block copolymers direct NP self-assembly during rapid mixing of the 

hydrophobic drug and block copolymer dissolved in an organic stream with a miscible anti-solvent 

stream. Due to the rapid mixing, the NPs are kinetically trapped with high core loading capacities, 

narrow size distribution and tunable size [260]. Blends of the PEGylated FNP particles with PVA were 

electrospun to convert the NPs into a stable, dry form. PVA was selected as a starting point for these 

experiments because it is often included in freeze dried formulations [393,410].  The NPs were 

reconstituted to their original size without sonication.  The effect of fiber processing on final NP size 

was explored.  Specifically, we examined the effect of NP composition, NP size, and NP to fiber 

diameter ratio.   

 

7.3. Materials and Methods 

7.3.1. Materials 

 The NPs were formulated with amphiphilic block co-polymer, polystyrene-b-PEG (1600-b-

5000 g/mol) (PS-b-PEG) obtained from Polymer Source (Montreal, Canada). PS-b-PEG was dissolved 

in THF (~40°C) and precipitated into diethyl ether and dried in vacuum. For the core materials, α-

tocopherol (Vitamin E, VE, Sigma-Aldrich, St. Louis, MO) and polystyrene (PS) with molecular 

weight (MW) = 800 – 5 000 Da (Polyscience, Inc., Warrington, PA) were used. Tetrahydrofuran 
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(THF) was used as the solvent (HPLC grade, Fisher Scientific, Pittsburgh, PA). The electrospinning 

polymer was polyvinyl alcohol (PVA) with MW = 205 000 Da (Mowiol 40-88, Sigma-Aldrich, St. 

Louis, MO). All other reagents were used as received.    

 

7.3.2. Nanoparticle Preparation 

 NPs were prepared via FNP with a hand-operated confined impinging jet mixer with dilution 

[260].  In Flash NanoPrecipitation, the hydrophobic core material is initially molecularly dissolved 

with the amphiphilic block copolymer stabilizer and is rapidly mixed with a miscible, non-solvent for 

the hydrophobic core.  This rapid mixing with the non-solvent decreases the solvent quality for the 

core material and hydrophobic block of the amphiphilic block copolymer i.e. decreases the solubility 

of the core material and hydrophobic block of the stabilizer which induces simultaneous precipitation 

of the core material and micellization of the block copolymer.  Adsorption of hydrophobic block on 

the precipitating core material arrests nanoparticle growth while the hydrophilic block sterically 

stabilizes the nanoparticle [416].  In a typical experiment, PS-b-PEG was dissolved in THF with core 

material (VE or PS) at a total solids concentration ~30 mg/mL.  Typically, 0.5 mL of the organic 

stream was rapidly mixed with an equal amount of water (miscible non-solvent for the hydrophobic 

core material) and immediately diluted with 4 mL of water to maintain a THF:water ratio of 1:9 by 

volume. The ratio of the block copolymer to core material was varied to tune the size of the NPs based 

on pervious studies [260].  Following mixing, the organic solvent was removed by dialysis, using 

regenerated cellulose tubing with a molecular weight cutoff of 6-8 kDa (Spectra/Por, Specturm 

Laboratories, Houston, TX), against a 100-fold volume of water for 24 hours with four changes of the 

bath. NP size before and after dialysis were measured using Dynamic Light Scattering (DLS).  
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7.3.3. Initial Nanoparticle Characterization 

 The mean particle size and distribution was determined by DLS using a Malvern Zetasizer ZS 

(Malvern Instruments Ltd, Malvern, UK) with a backscatter detection angle of 173°. Initial particle 

size distributions are reported using the normal resolution model intensity weighted distribution 

(average of 4 measurements). For the initial NP size, particle uniformity was defined as size 

distribution with a single Gaussian peak. The polydispersity index (PDI) is a measure of the breadth 

of the particle distribution defined from the moments of the cumulant fit of the autocorrelation function 

calculated by the instrument software as previously described [260].  

 

7.3.4. Electrospinning 

 For electrospinning, aqueous solutions of PVA were prepared by dissolving 9.5 wt.% PVA in 

water. The PVA was stirred at 60°C overnight until the solution was macroscopically homogeneous 

and then stored at 4°C.  The NPs in water (after dialysis) and dissolved PVA were combined in various 

proportions and stirred for several minutes at room temperature until macroscopically homogenous. 

The final PVA concentration for electrospinning was 7 wt.%  based on previous studies [417]. The 

NP loading (mass of NPs per mass of PVA) was systematically varied.   

 The blend of polymer and NPs was electrospun using a conventional set-up [417]. Briefly, 

polymer-NP blend was pumped (New Era Pump System, Inc., Farmingdale, NY) through a 22-gauge 

(inner diameter = 0.508 mm) stainless steel needle (Jensen Global, Santa Barbra, CA) at a constant 

rate while applying a constant voltage (Matsusada High Precision Inc., Shiga, Japan). Typical, process 

parameters were: tip-to-collector distance of 15 cm, applied voltage of 13-15 kV, flow rate of 0.5 

mL/hr.  Blends were electrospun for 20 mins so the resulting mat was thick enough to easily remove 

from the foil.  Each solution was electrospun in triplicate and stored at ambient conditions. 



Shani L. Levit • Ph.D. Dissertation • Chemical and Life Science Engineering   176 
 

7.3.5. Nanofiber Characterization 

 The fiber samples were sputter-coated (POLARON E5400 SEM Coating system) with gold 

(~10 nm) or gold:palladium target 60:40 and analyzed with scanning electron microscopy (SEM) 

(JEOL LV-5610, JOEL, Peabody, MA) at an accelerating voltage of 20kV. Images were taken at a 

magnification of 10,000x with a working distance of 10 mm. The average fiber diameter and standard 

deviation were determined by measuring the diameter of at least 75 fibers from 4-5 fields of view 

using ImageJ software.  

 

7.3.6. Nanoparticle Reconstitution 

 The NPs were reconstituted by dissolving the resulting nanofibers (after being removed from 

the foil and weighed) in deionized (DI) water.  Mass of fibers to volume of DI water ratio was held 

constant at 0.4 mg fiber per mL of DI water.  The redispersions were hand-mixed for ~10 min with 

brief, intermittent vortexing until there were no visible aggregates.   The reconstituted samples were 

syringe filtered (Whatman 0.45 μm nylon filter) and measured on DLS.  The time between 

reconstitution and syringe filtering was varied and no significant effect of delay time was observed.    

This fiber to water ratio was selected so that the dissolved polymer and NP sizes could be resolved 

using DLS to determine the NP size upon reconstitution post-electrospinning. The NP size and PDI 

were obtained using the Multiple Narrow Modes algorithm based on non-negative least squares fit 

using Zetasizer software as has been previously reported [418,419].  Since the resolution of DLS is 

inherently limited to a factor of 3 [420], only samples with a NP intensity peak size (nm)/PVA intensity 

peak size (nm) > 3 are reported.  
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7.4. Results 

7.4.1. Proof of Concept 

 PEG-stabilized NPs loaded with VE or polystyrene homopolymer (PS) were fabricated with 

FNP.  The size of the NPs was tuned by varying the ratio of core material to block copolymer stabilizer 

in the formulation [260].  The initial VE-loaded NPs were between 95 and 175 nm and PS-loaded NPs 

were between 110 and 190 nm (Table 41). 

 

Table 41. Characteristics of NPs electrospun fibers 

Core material  Initial NP  NP loading  Nanofiber 

    
Diameter (nm)    (wt.%)   Diameter (nm) 

VE 

  95 ± 4   0.8   365 ± 36 

 118 ± 5  0.8  249 ± 32 

 129 ± 2  0.8  326 ± 34 

 144 ± 9  0.8  322 ± 56 

 174 ± 2  0.8  291 ± 37 
  1.7  303 ± 34 

    3.2   292 ± 47 

PS 

 112 ± 5  0.8  354 ± 31 

  192 ± 14   0.8   390 ± 37 

 

 To demonstrate proof-of-concept of drying NPs via electrospinning, aqueous blends of NPs 

and a water-soluble polymer, PVA, was used as a model system.  PVA was selected because its 

electrospinning has been well characterized [417,421]. PVA was used at concentration of 7 wt.% 

because there is sufficient molecular entanglement to facilitate fiber formation [417,421]. At 7 wt.% 

PVA and NP loading up to 3.2 wt.%, the PVA-NP blend solutions were electrospun to produce 

continuous, uniform fibers with no evidence of beading (Figure 52). Since the fiber diameters were 

larger than the NPs, the NPs appear encapsulated within smooth PVA fibers.  The fiber diameter and 
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fiber size distribution (relative standard deviation) with and without VE or PS NPs were comparable 

(Figure 52). Therefore, at the NP loadings used, the presence of the NPs did not significantly affect 

the PVA entanglement required for fiber formation.  This result is comparable to other PVA-blend 

systems [421]. Thus, these results demonstrate that NPs can be converted into a dry form, i.e. 

encapsulated within polymer fibers, by electrospinning a blend with a spinnable polymer.   

 

Figure 52. SEM images of electrospun PVA fibers loaded with NPs. A) PVA only fibers with an average 

nanofiber (NF) diameter of 329 nm ± 34 nm, B) PVA fibers with 95 nm VE NPs at 0.8 wt.% with an average 

NF diameter of 364 nm ± 36 nm, C) PVA NF with 3.2 wt.% loading of 174 nm VE NPs with an average 

diameter of 292 nm ± 47 nm, and D) PVA fiber with 0.8 wt.% loading of 112 nm PS NPs and NF diameter 

of 354 nm ± 31 nm. All samples electrospun to form continuous, uniform fibers. 

 

7.4.1.1. Nanoparticle Reconstitution 

 For nanoparticle reconstitution, water was added to the PVA fibers followed by hand-mixing. 

The polymer fibers start to dissolve immediately after the addition of water and appear completely 

dissolved after 5 minutes of hand-mixing (Figure 53). These results show that the NPs can be rapidly 

reconstituted using hand-mixing (low-energy mixing). Nanoparticles reconstituted with hand-mixing 

retain their initial size (Sf/Si = 1.0 – 1.2) (Table 42).  Notably, previous results freeze drying (without 

excipient) similar particles stabilized by PS-b-PEG did not retain their size as well.  Sonication was 

required to obtain a Sf/Si of 2.9 [385].  Using PS-b-PEG-stabilized nanoparticles as a model system 
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suggests that drying NPs via electrospinning with PVA is a promising approach for converting 

nanoparticles to a dry form while maintaining particle size.  

 

Figure 53. Rapid NP reconstitution using low-energy mixing. A) Initial NP-loaded fibers B) Immediate 

dissolution of PVA fibers upon addition of DI water, and C) Visible confirmation of NP reconstitution after 

5 mins of hand-mixing. 

 

Table 42. Comparing reconstitution techniques 

VE NPs  Initial NPs  Reconstituted NPs  Change in   S
f  

/ S
i
   

    Diameter (nm)   Diameter (nm)   Size (%)     
20 min hand-mix 

& vortex 
  

174 ± 2 
  174 ± 20   0%   1.0 

5 min hand-mix     174 ± 17   0%   1.0 
 

 

 The reconstitution of the NPs was examined by dissolving the fibers in phosphate buffer 

solution (PBS) and compared with water. All samples have 15-16% change in size and a Sf/Si of 1.1-

1.2 (Table 43). Thus, the buffer does not appear to alter the reconstitution of the NPs compared to 

dissolution in water.  NPs can be reconstituted in PBS or water for potential clinical applications.  

Since the results were comparable when reconstituting in water or buffer, water was used in further 

experiments.  
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Table 43. Dissolving fibers in PBS 

VE NPs in PVA   Change in Size (%)   Sf  / Si     

dissolved in DI  16%  1.2 

dissolved in PBS w/ KCl  15%  1.1 

dissolved in PBS w/out KCl   16%  1.2 

 

The osmolarity of the dispersion upon reconstitution is an important consideration in 

intravenous formulations.  The PVA in the reconstituted solution of NPs has an approximate 

osmolarity of 0.002 mOsM. For comparison, the osmolarity of saline solution and PBS are 300 mOsM 

and 150 mOsM, respectively.  Therefore, the polymer has a negligible contribution to the osmolarity 

of the final formulation when reconstituting in saline or buffer.    

 

7.4.1.2. Nanoparticle Storage 

 The shelf-life of the dry NPs in nanofibers at ambient temperature was examined using 120 

nm VE NPs at a loading of 0.8 wt.%. The fiber sample was stored for 7 months at ambient conditions 

and then reconstituted.  The NPs reconstituted from fibers after 1 day and after 7 months were 

comparable (Figure 54). Notably, for the original NP dispersion stored at 4°C for 7 months, there was 

a 54% increase in diameter likely due to Ostwald ripening [399] (Table 44). These results suggest that 

converting the NP dispersion to a dry form, i.e. encapsulated within the polymer fibers, prevents 

Ostwald ripening.  Therefore, NP storage in nanofibers improves the size stability of NPs enabling 

storage of the NP formulations at room temperature and avoids the need for cold chain storage.  
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Figure 54. Particle size distribution measured by dynamic light scattering of 118 nm VE NPs reconstituted 

within 1 day of drying and after 7 months of storage at ambient conditions. The peak at ~30 nm is attributed 

to the dissolved polymer in the solution and the solution and the peak at ~160 nm is attributed to the 

reconstituted NPs. The NP size is comparable upon reconstitution after 1 day and 7 months of storage at 

ambient conditions. 

 

Table 44. Comparing size stability of NPs after storage for 7 months 

Sample   Storage temperature Change in size (%) 
NPs in solution   4°C   54% 
Dried NPs   ~23°C   4% 

 

 

7.4.2. Effect of Particle Properties 

7.4.2.1. Nanoparticle Composition 

 Building on the results demonstrating proof-of-concept, we further probed the effect of fiber 

processing and particle properties on redispersed NP size. First, we investigated the effect of the 

composition of the NP core by comparing VE- and PS-loaded NPs.  The melting point of VE is 3°C 

which is below the working temperature of the NP processing; therefore, VE core is expected to be in 

liquid phase. PS has a glass transition temperature of 100°C [422], which is above the working 

temperature; therefore, the PS core is expected to behave as a solid. NPs of similar size were compared: 
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the VE NPs has an initial diameter of 118 nm ± 5 nm and the PS NPs has an initial diameter of 112 

nm ± 5 nm (Table 41). The fiber diameter was ~300 nm so the initial NP to nanofiber diameter ratio 

(NP:NF) was 0.47 for both samples.  

 Using the Multiple Narrow Modes algorithm, the DLS results of the reconstituted NPs showed 

a bimodal distribution (Figure 55). We attribute the peak at ~30 nm to the dissolved PVA and the 

second peak to the reconstituted NPs. The reconstituted NP size was taken as the NP peak intensity. 

For both VE and PS NPs, there was an increase in NP diameter upon reconstitution in water. When 

compared to the initial NP size, the final size to initial size (Sf/Si) was 1.3 for the liquid core NPs and 

1.7 for the solid core NPs (Table 45).  

 

 

Figure 55. Particle size distribution measured by dynamic light scattering of the initial NPs, PVA control, 

and reconstituted (RC) NPs for A) VE NP and B) PS NPs. The second peak for RC NPs shifts to the right 

indicative of an increase in particle size relative to initial NPs. 
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Table 45. NP core composition and size influences NP size stability after reconstitution 

NP Core  Initial NPs  Nanofiber  NP:NF  Reconstituted NPs  Change in  
S

f  
/ S

i
     

    
Diameter  

(nm) 

  Diameter  

(nm) 

  Ratio  
  

Diameter  

(nm)   
 Size (%) 

  
  

VE 
  118 ± 5   249 ± 32   0.47   159 ± 18   35%   1.3 

  144 ± 9   322 ± 56   0.45   169 ± 10   17%   1.2 

PS 

  112 ± 5   240 ± 32   0.47   189 ± 43   69%   1.7 

  192 ± 14   390 ± 37   0.49   223 ± 24   16%   1.2 

 

 

 Interestingly, the increase in PS NPs was almost 2-fold greater than the VE NPs (i.e. 77 nm 

for PS NPs comparted to 41 nm for VE NPs) (Table 45).  This result suggests that NPs with a liquid 

core are more resistant to changes in size during fiber processing.  Similar results have been observed 

with lyophilization [402] and was attributed to ability of a NP with a liquid core to deform much more 

than a NP with a solid core.  Since the liquid-core particles deform, the forces experienced during 

drying are distributed over a larger area.  In contrast, solid-core particles that do not deform experience 

higher stresses (same force over a smaller area) which may cause aggregation [402].  In this method 

of drying, fiber formation involves uniaxial elongation of a viscous liquid jet [423], as the solvent 

evaporates there is a transition from a liquid jet to a solid fiber, followed by stretching and thinning of 

the solid fiber.  Since the diameter of the liquid jet is typically on the order of millimeters and much 

larger than the NP, we posit the shear forces have minimal influence on the NP deformation. As the 

jet is elongated and the solvent evaporates,  it transitions from a liquid jet to a solid fiber (micron to 

nanometer diameter) resulting in high elongational stresses [424]. The elongational force as the fiber 

thins can cause the NPs to rotate and deform along the axis of shear stresses [425,426]. The liquid core 

particles are expected to deform during fiber formation and redisperse into spheres close to the original 
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size upon reconstitution.  In contrast, the solid-core particles may undergo some degree of aggregation 

during fiber formation and subsequent redispersion.  

 

7.4.2.2. Effect of Nanoparticle Size 

 Next, we varied the initial size of the NPs at comparable NP:NF ratios. For VE NPs, the size 

of the NPs varied from 118 nm to 144 nm and the NP:NF ratio was ~0.5, i.e. the NP diameter was 

approximately half of the final nanofiber diameter. For PS NPs, the NP size varied from 112 nm to 

192 nm and the NP:NF ratio was ~0.5.  In both cases, the larger NPs better maintained their size upon 

electrospinning and redispersion compared to the smaller particles.  For PS NPs, when the NP size 

increased from 112 to 192 nm, the change in NP size after reconstitution decreased from 69% to 16% 

resulting in a decrease in Sf/Si from 1.7 to 1.2 (Table 45).  A similar trend was observed with VE NPs. 

The change in VE NP size after reconstitution decreased from 35% to 17% resulting in a Sf/Si from 

1.3 to 1.2.  This result may be because larger particles have larger surface area to distribute the force 

the NPs are subjected to during fiber formation which reduced potential aggregation.   

 

7.4.2.3. Effect of nanoparticle size relative to nanofiber size 

 Based on these results, we investigated the effect of fiber size relative to the particle using VE 

NPs.  The size of the VE NPs was varied between 95 nm and 175 nm (Table 41).  When electrospun, 

the resulting fibers diameter was comparable and we examined the ratio of the NP diameter to 

nanofiber diameter (NP:NF diameter).  For NPs ~95 nm and fiber diameter ~300 nm (NP:NF ratio 

0.26), the change in size upon electrospinning and redispersion was 39%, i.e. a Sf/Si ratio of 1.4. As 

the NP size increased relative to the nanofiber size (increasing NP:NF ratio), there was a decrease in 

the Sf/Si ratio.  Specifically, for the large NPs (NP:NF ratio 0.60), there was no significant change in 

NP size and a Sf/Si ratio of 1.0 (Table 46). 
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Table 46. NP:NF ratio influences NP size stability after reconstitution 

Initial NPs  Nanofiber  NP: NF  Reconstituted NPs  Change in 
 

S
f  
/ S

i
   

Diameter (nm) 
 

Diameter (nm)  Ratio 
 

Diameter (nm) 
 

Size (%)     

95 ± 4   365 ± 36   0.26   133 ± 36   39%   1.4 

129 ± 2  326 ± 34  0.40  150 ± 18  16%  1.2 

174 ± 2   291 ± 37   0.60   174 ± 20   0%   1.0 

 

 These results indicate that matching the NP size to the NF size, i.e. NP:NF ratio ~1,  better 

maintain NP size upon redispersion compared to when the NP diameter is much smaller (less than 

half) than the nanofiber diameter.  When the NPs are small relative to the fiber diameter, multiple 

small particles in close proximity could aggregate as the liquid jet elongates and transitions to a solid 

fiber.  In contrast, when the NP is similar in size to the resulting nanofiber, the number of particles in 

the liquid jet as it transitions to a solid fiber is geometrically constrained to one particle.  This 

geometric constraint may prevent NP-NP interactions that can lead to aggregation. Notably, given the 

appropriate NP size relative to NF diameter ratio, drying NPs by blending and electrospinning with a 

water soluble polymer is a promising approach that enables drying and redispersion with no significant 

change in NP size. 

 This observation related to NP:NF ratio is important for extending this approach to additional 

nanoparticle systems in future studies.  Since NPs are often designed to be a certain size, varying 

nanofiber size will be an important consideration.  Fiber diameter of electrospun nanofibers is a 

complex function of electrospinning polymer properties, solvent, and process parameters [427,428]. 

 

7.4.2.4. Practical Considerations 

 Building on these results, the NP loading in the polymer fibers was also examined. The loading 

of VE NPs (174 nm) was varied from 0.8 to 3.2 wt.% (mass of NP/mass of polymer).  NP loading of 

0.8 wt.% was the minimum NP concentration required to resolve the NP and PVA peaks using DLS.  
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The final size was not significantly affected by the 4-fold increase in NP loading; the Sf/Si ratios were 

1.0 for the range of loadings examined (Table 47).  These loadings are comparable to drying FNP 

nanoparticles via freeze drying [429] and spray freeze drying [430].   

 

Table 47. NP loading concentration 

NPs loading  Initial NPs  Nanofiber  NP:NF  Reconstituted NPs  Change in  Sf  
/ S

i
     

   Diameter  

(nm) 

 
Diameter  

(nm) 

 
Ratio 

  

 
Diameter (nm) 

  
Size (%)  

    

0.8%  174 ± 2  291 ± 37  0.60  174 ± 20   0%   1.0 
1.7%  174 ± 2  303 ± 34  0.57  171 ± 11  -2%  1.0 
3.2%   174 ± 2   292 ± 47   0.60   173 ± 10   -2%   1.0 

 

Our focus has been demonstrating electrospinning is a viable approach to converting 

nanoparticles to a dry form and that the nanoparticles can be reconstituted to their original size.  These 

preliminary results indicate the reconstituted particle size is not significantly affected by the 

nanoparticle loading for the nanoparticle loadings examined.  Further increasing the nanoparticle 

loading is of practical interest. Promising results maintaining nanoparticle size at high nanoparticles 

using PVA excipients in spray freeze drying have been reported [410] thus higher loadings may be 

possible and will be addressed in future studies.   Extension to electrospinnable polymers and 

biocompatible nanoparticle formulations that are FDA approved for parenteral formulations will also 

be considered [431–433].  

Finally, preliminary experiments electrospinning nanoparticles (VE core, PS-b-PEG stabilizer) 

with and without dialysis indicate that the presence of the organic solvent does not significantly affect 

fiber formation or nanoparticle reconstitution.  In contrast, freeze drying (without excipient) after 

dialysis resulted in smaller redispersed particles when compared to non-dialyzed samples [402].  
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Therefore, it may be possible to directly electrospin after FNP and avoid the purification step to 

remove the organic solvent.  The presence of the organic solvent considering solvents other than 

tetrahydrofuran, e.g. DMSO, during electrospinning will be further explored in future studies. 

 

Table 48. Comparing drying and reconstitution of dialyzed particles to non-dialyzed particles 

VE NPs  Initial NPs  Nanofiber  NP:NF  Reconstituted NPs  Change in  S
f  

/ S
i
     

    
Diameter 

(nm) 
  Diameter 

(nm) 
  Ratio 

  
  Diameter (nm)   Size (%)  

  
  

Dialyzed   174 ± 2   291 ± 37   0.60   174 ± 20   0%   1.0 
Non-Dialyzed   157 ± 6   223 ± 28   0.70   164 ± 21   4%   1.0 

 

7.5. Conclusion 

 We demonstrate electrospinning as a new method to convert NP dispersions to a dry, stable 

form for long-term storage at room temperature.  Using PEGylated NPs and PVA fibers as a model 

system, we show NPs can be stored at room temperature for at least seven months and redispersed to 

their original size without sonication.  Thus, encapsulating NPs in polymer fibers prevents changes in 

size due to Ostwald ripening. The dissolved polymer following electrospinning contributes negligibly 

to the osmolarity of the final NP dispersion.  

The final NP size is affected by polymer fiber formation and NP properties. NP composition, 

NP size, and nanofiber diameter relative to NP diameter are important considerations.  Sizes of the 

NPs upon redispersion are maintained when the fiber diameter and NP diameter are comparable 

(NP:NF ratio ~ 1).  NPs with liquid cores and larger particles better maintained their size when 

compared to NPs with solid cores and smaller particles, respectively.  We attribute the observed 

differences to deformation during liquid jet-to-solid fiber transition during electrospinning.  
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Overall, electrospinning blends of NP dispersions and water-soluble, spinnable polymer is a 

novel approach for rapid, continuous drying of NPs at room temperature and redispersion to their 

original size at low osmolarity without sonication.  This method overcomes the long standing 

challenge of particle aggregation that occurs with traditional drying methods (freeze drying and spray 

drying). Converting NP dispersions to dry, thermostable formulations will avoid the need for cold 

chain storage and enhance translation of nanomedicines to clinical practice.  
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8. Chapter 8: Conclusion 

 

 

 

 

8.1. Overview of Project Goals 

The goal of this study was to co-encapsulate paclitaxel and lapatinib in pH-labile PEGylated 

nanoparticles to reduce drug dosages and increase drug efficacy. We formulated a controlled release 

platform by tuning the hydrophobicity of the drugs and pH-labile nanoparticle core. This enabled 

sequential delivery of drug combinations to further improve drug efficacy through synergistic 

interactions [261].  There were three aims set out to achieve these goals and they were presented in 

this research study. First, we developed formulation parameters for encapsulation of weakly 

hydrophobic drugs alone and in combination via in situ tannic-acid iron complexation using Flash 

NanoPrecipition (FNP). Next, the drug release profile was measured under pH 7.4 and pH 4 sink 

conditions and then the kinetics were determined using two drug release models. Finally, the drug 

efficacy of the nanoparticles were examining in vitro with an ovarian cancer cell model and the 

synergistic drug interaction was evaluated.    

 

8.2. Conclusions from Study 

The main objective of this study was to determine if co-encapsulation of paclitaxel and 

lapatinib into nanoparticles would enhance drug efficacy and if sequentially delivering these drugs 

would further improve synergy as a means to improve current chemotherapeutic treatments and 

translation to clinical practice. Ovarian cancer cells with multi-drug resistance (MDR) can be difficult 
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to treat due to an increase in the efflux of chemotherapeutic agents and low drug bioavailability; 

therefore, nanoparticle drug delivery of paclitaxel, a chemotherapeutic agent, with lapatinib, a tyrosine 

kinase inhibitor, is an advantageous approach for increasing drug bioavailability and lowering drug 

dosage and overcoming MDR.  

Two nanoparticle platforms were developed in this study to encapsulate hydrophilic 

macromolecules and weakly hydrophobic drugs via Flash NanoPrecipiation (FNP). To encapsulate 

biologics like albumin, we developed a rapid, single-step method by leveraging tannic acid-protein 

complexation in situ during FNP. The complexes were electrostatically stabilized with a cationic 

polyelectrolyte. This formulation allows for high protein encapsulation efficiency (~80%) as well as 

pH-labile controlled release. These experiments provided the foundation to extend FNP to 

encapsulation of weakly hydrophobic drugs (logP < 6). Again, in situ complexation of an antioxidant 

complex was critical for encapsulation of the target drugs. Paclitaxel and lapatinib were encapsulated 

into polymer nanoparticles via in situ complexation of tannic acid and iron. The tannic acid-iron 

complex also provided advantages of a pH-labile drug release. In this study we develop the principles 

for formulating monodispersed nanoparticles at ~100 nm encapsulating both single drug and drug 

combinations. These experiments provide the foundation for controlled delivery of multiple drugs.  

 Following formulation of the nanoparticles, the drug release kinetics was characterized in vitro. 

The drug release profile was determined for paclitaxel, paclitaxel-prodrug, and lapatinib in both pH 

7.4 and pH 4 sink conditions. We identified that the paclitaxel-prodrug was released as a faster rate 

relative to both paclitaxel and lapatinib as the drug transport of the prodrug was guided by different 

mechanisms than for paclitaxel and lapatinib. The drug release under pH 4 conditions was guided by 

core dissolution due to the solubilization of the TA-Fe3+ complex. These results provide the foundation 

for understanding methods for controlling drug release from tannic acid-iron nanoparticle platform by 

tuning drug hydrophobicity. The efficacy of the nanoparticles was determined in vitro with an ovarian 
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cancer cell model. Firstly, we determined the encapsulation of the drugs into nanoparticles improved 

the drug efficacy by over 1500-fold for paclitaxel and its prodrug and by 5-fold for lapatinib when 

formulated with the TA-Fe3+ complex. The potency of paclitaxel was also improved by the conjugation 

to a hydrophobic lipid (vitamin E) in both free drug and nanoparticle formulations. Furthermore, co-

encapsulation had a synergistic effect relative to single-drug nanoparticles for both paclitaxel-lapatinib 

and prodrug-lapatinib combinations due to spatiotemporal control.  

 Translating nanoparticle drug delivery research into clinical practice is a challenge due to poor 

shelf-stability and reconstitution of nanoparticles with traditional methods (e.g. freeze drying). To 

address these limitations, we developed a novel method for drying nanoparticles via electrospinning. 

We demonstrate electrospinning as a new method for converting nanoparticle dispersions into dry, 

stable form for long-term storage at room temperature by electrospinning the nanoparticles with a 

water-soluble polymer as well as rapid redispersion to original nanoparticle size at low osmolality. 

This technology provides the platform for translating controlled release nanoparticles into clinical 

practice. 

 

8.3. Future Work and Potential Impact 

Sequential delivery of paclitaxel and lapatinib was investigated in this study. We observed cell-

dependent synergy due to sequential drug delivery, which was confirmed with cell cycle analysis. 

These experiments provided direction for further improvement in cytotoxicity of the anticancer drugs 

through controlled release. We investigated the effects of tuning paclitaxel hydrophobicity by 

formulating a hydrophobic prodrug. We determined that nanoparticles loaded with the prodrug were 

more cytotoxic compared to nanoparticles loaded with paclitaxel. Additionally, co-encapsulating 

paclitaxel or the prodrug with lapatinib enhanced the drug efficacy through synergistic drug 

interaction. Overall, the results from these experiments have shown that we can control the drug 
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release from nanoparticles by leveraging the pH-labile nature of the tannic acid-iron nanoparticle 

platform and tune of the drug release profiles by modulating drug hydrophobicity. More importantly, 

this controlled delivery platform sequentially delivers drug combinations on the order of hours which 

enhances drug cytotoxicity and reduces dosages improving chemotherapeutic treatment.  

The results from this study display great promise for sequential drug delivery of 

chemotherapeutic agents from nanoparticles for treating ovarian cancer. This area of research opens 

up many avenues for further investigation in future studies. This includes studies on the synergistic 

effects of sequential drug delivery on a wide range of ovarian cancer cells with different levels of 

expression of key proteins and receptors. Furthermore, creating a correlation between sequential 

delivery results observed with free drugs and nanoparticles will be of significant importance in a larger 

population of cells. This will provide the foundation for translating previous studies with free drugs to 

nanoparticle research. Other markers of cell death and cytotoxicity can also be explored such as 

live/dead stains, apoptosis assays to determine mechanism of cell death (necrosis vs apoptosis) such 

as analysis of subG1 peaks and TUNEL assay, and microtubule polymerization. Additional 

examination of nanoparticles could also facilitate translation to clinical practices such as replacing the 

polymer used in FNP with an FDA approved biodegradable polymer such as poly(lactic-co-glycolic 

acid)-b-poly(ethylene glycol) (PLGA-b-PEG). Exploring this line of research will facilitate future 

nanomedicine design of sequential treatments and optimize chemotherapeutic treatment with 

paclitaxel. 

Another important future step is examining sequentially release from nanoparticles in vivo to 

better understand the drug efficacy for progressing the research to clinical studies. These experiments 

will be done with a xenograft model using human ovarian cancer cells. The tumor cells will be 

subcutaneously implanted in immunocompromised mice and the nanoparticle treatment will be 

administered intravenously to parallel typical administration of paclitaxel in clinical settings as well 
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as the intended administration of the nanoparticle treatment. This method of administration will 

provide evidence of selective nanoparticle accumulation in the tumor tissue compared to free drug 

formulations. This will be examined by conjugating a fluorescent marker on paclitaxel and lapatinib. 

From the in vivo experiments will evaluate drug biodistribution in key tissues (i.g. tumor, liver, kidney, 

heart, etc.), systemic toxicity, tumor volume and weight over time, the pharmacokinetics, drug 

clearance, and survival time. Furthermore, we will compare the nanoparticle drug formulations to 

pharmaceutical grade Taxol (paclitaxel) and Tykerb (lapatinib). As a method to further improve 

selective accumulation of the nanoparticles in the tumor tissue and minimize side effects, targeting 

moieties on the nanoparticles will also be explored in vivo. Selection of an appropriate target will be 

an important consideration. For example, CD44 is a good choice because it is a membrane receptor 

that is overexpressed on ovarian cancer cells and can be targeted with an antibody conjugated to the 

PEGylated amphiphilic polymer.  Exploring this line of research will facilitate future nanomedicine 

design of sequential treatments and optimize chemotherapeutic treatment with paclitaxel. 

Additionally, this future work can provide a better understanding of methods to overcome drug 

resistance in ovarian cancer as well facilitate in translation to phase I clinical trials. The culmination 

of the research covered in this dissertation as well as the proposed studies for future work will facilitate 

in translation of this platform into a clinical study and eventually clinical practice for treating ovarian 

cancer.  

Translating sequential drug release from nanoparticles to clinical practice is the first step for 

improving clinical practices in the areas of ovarian cancer. The research in this dissertation present 

two platform for encapsulation and controlled delivery of hydrophobic, weakly hydrophobic, 

hydrophilic small molecules, and hydrophilic macromolecules. These nanoparticle platforms could be 

extended to encapsulate a wide variety of drug combinations not only to treat ovarian cancer but other 

forms of cancer. Other small molecule chemotherapeutic agents can be encapsulated such as 
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carboplatin as well as macromolecules such as DNA or RNA for gene therapy through controlled 

release from polymer nanoparticles. While this opens up the possibility for limitless combinations of 

therapeutic agents there is still a need to understand the effects of sequential delivery of these 

combination on different cancer cells. Therefore, there needs to be a greater focus on developing an 

index for key pro-survival pathways for a wide range of cancer cells types. Based on this information, 

we can use network modeling to facilitate predicting the combinations and sequences which will 

improve drug efficacy and patient outcomes. Finally, these results can be applied to animal models 

and clinical trials using nanoparticle drug delivery to improve patient’s lives.   
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 Lead in coordinating 2-3 events per month to encourage student collaboration and a positive work 

environment.  

 Dedicated to providing colleagues professional development opportunities through workshops and 

career panels.  
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Appendix I: Paclitaxel Prodrug Analysis 
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Figure S1: (A) and (B) 1H NMR of paclitaxel prodrug formulated with an α-tocopherol linker 

formulated in this study which are comparable to the (C) NMR spectra observed by Ansell at el. 

when formulating the same prodrug. Reprinted (adapted) with permission from [261]. Copyright (2008) 

American Chemical Society. 
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Figure S2: Direct Infusion Mass-Spectroscopy of the prodrug. 
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