University of Tennessee at Chattanooga UTC Scholar

ReSEARCH Dialogues Conference Proceedings

ReSEARCH Dialogues Conference Proceedings 2020

Apr 15th, 9:00 AM - 11:00 AM

Association of heart rate variability with perceptual-motor measures among ROTC cadets

Ashley Grillo University of Tennessee at Chattanooga

Abigail Rogers University of Tennessee at Chattanooga

Tyler Perry University of Tennessee at Chattanooga

Follow this and additional works at: https://scholar.utc.edu/research-dialogues

Recommended Citation

Grillo, Ashley; Rogers, Abigail; and Perry, Tyler, "Association of heart rate variability with perceptual-motor measures among ROTC cadets". *ReSEARCH Dialogues Conference proceedings*. https://scholar.utc.edu/research-dialogues/2020/day2_posters/104.

This posters is brought to you for free and open access by the Conferences and Events at UTC Scholar. It has been accepted for inclusion in ReSEARCH Dialogues Conference Proceedings by an authorized administrator of UTC Scholar. For more information, please contact scholar@utc.edu.

Association of Heart Rate Variability with Perceptual-Motor Measures among ROTC Cadets Ashley Grillo, MS, ATC; Abigail Rogers, MS, ATC; Tyler Perry , MS, ATC; Gary B Wilkerson, EdD, ATC; Shellie N Acocello, PhD, ATC

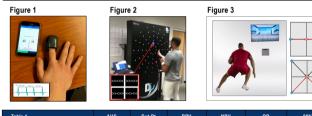
THE UNIVERSITY OF TENNESSEE

BACKGROUND AND PURPOSE

Rapid responses to the complex situational demands of combat is essential for operational success and survival of personnel¹
 Cognitive control refers to collective brain processes relating to decision-making and execution of goal-directed behaviors
 Heart rate variability (HRV) provides an important indicator of autonomic balance, which can influence performance capabilities^{2,3}

- Regulation of autonomic function involves neural circuits that overlap with those controlling goal-directed perception and action
- A combat scenario can impose an extreme degree of uncertainty and anxiety about responses that must be executed rapidly
 HRV may reflect an individual's capacity to respond effectively while exposed to intense mental and physical demands
- Integration of perceptual-motor processes has been found to vary substantially among both general and elite populations⁴
- · Visual-motor reaction time (VMRT) and whole-body reactive agility (WBRA) metrics have demonstrated discriminatory power
- The purpose of this study was to assess associations between serial measurements of HRV and performance metrics relating to
 perceptual-motor integration required for rapid decision making and appropriate motor responses among male ROTC cadets

PARTICIPANTS & PROCEDURES

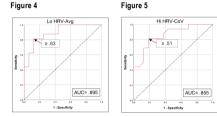

32 male ROTC cadets (178.8 ± 7.7 cm; 79.3 ± 10.4 kg) provided HRV measurements 2X per week over a 10-week period
 Resting-state HRV measures acquired prior to morning exercise; 0530 – 0600 (CorSense®, Elite HRV, Asheville, NC; Figure 1)
 HRV represented as natural log of root mean-square of successive differences in R-R intervals during a 60-second recording
 Intra-individual session-to-session HRV average (HRV-Avg) calculated from available data (minimum of 7 recording sessions)
 Intra-individual session-to-session HRV average (HRV-Avg) calculated from available data (minimum of 7 recording sessions)
 Intra-individual RRV variability over time represented by coefficient of variation (HRV-CoV = Standard Deviation / HRV-Avg)
 Cohort median values defined suboptimal (Lo HRV-Avg and Hi HRV-CoV) versus optimal status (Hi HRV-Avg and Lo HRV-CoV)
 Prior to initiation of the HRV monitoring period, cadets provided survey responses and completed VMRT and WBRA tests
 10-item Overall Wellness Index (OWI) generates 0 – 100 score for frequency and recency of 82 physical or mental problems
 List of 82 problems derived from recognized symptoms of post-concussion syndrome grouped into 10 categories
 VMRT quantified by a 60-s test (Dynavision D2TM, West Chester, OH; Figure 2) that incorporated 48 flanker test responses
 Opposite-side button pairs illuminated; center arrow direction indicated correct response

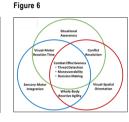
WBRA quantified by 20-target lateral (Lat) and 12-target diagonal (Diag) movements (TRAZER[®] Westlake,OH; Figures 3)
 Randomized virtual targets on monitor disappeared with whole-body movements to corresponding spatial coordinates
 Metrics included Reaction Time (RT), Acceleration (Acc), Deceleration (Dec), Speed (Spd), and Asymmetry (Asym)

Receiver operating characteristic analysis used to define optimal cut-points for predictors with area under curve (AUC) ≥ .550
 Cross-tabulation and logistic regression analyses used to quantify exposure-outcome associations for strongest predictors
 Positive predictive value (PPV) and negative predictive value (NPV) calculated for univariable and multivariable associations
 Logistic regression model estimates of log odds converted to probability (0.00 – 1.00) for Lo HRV-Avg and Hi HRV-CoV status
 Odds ratio (OR) and 90% confidence interval (Cl) calculated for univariable and multivariable associations

RESULTS

- Participants completed an average of 14.5 ± 2.9 measurement sessions (minimum of 7 sessions and maximum of 19 sessions)
 Autonomic balance over time categorized as Lo HRV-Avg ≤ 4.49 (suboptimal) versus Hi HRV-Avg > 4.49 (optimal)
- Variability in autonomic balance categorized as Hi HRV-CoV ≥ .0695 (suboptimal) versus Lo HRV-CoV < .0695 (optimal)
- 3-Factor logistic regression model demonstrated strong discrimination between suboptimal versus optimal HRV-Avg (Table 1)
- 1) VMRT Left Right Difference ≥ 23 ms, 2) Overall Wellness Index ≥ 82, and 3) WBRA Diagonal Avg Asym ≥ 18.4%
 Probability for subcotimal HRV-Avg status (≥ .62): 87% PPV: 82% NPV: OR = 30.33: 90% Cl: 5.95 154.77 (Figure 4)
- Processing to subopumar HV-Avg status (2. 02, 07 # FFV, 02 # HFV, 04 = 00.53, 50 # 01, 0.59 = 104, 17 (Figure 4)
 e2-Factor logistic regression model demonstrated strong discrimination between suboptimal versus optimal HRV-CoV (Table 2)
- 1) Overall Wellness Index \geq 82 and 2) VMRT Left Right Difference \geq 23 ms
- Probability for suboptimal HRV-CoV status (≥ .51): 81% PPV; 81% NPV; OR = 18.78: 90% CI: 4.23 83.31 (Figure 5)




	lable 1	AUC	Cut-Pt	PPV	NPV	OR	90% CI
	VMRT Left – Right Difference*	.746	≥ 23 ms	72%	79%	9.53	2.41, 37.79
	WBRA Lateral Test Duration	.664	≥ 62 s	67%	71%	5.00	1.40, 17.88
	Overall Wellness Index*	.652	≤ 82	82%	67%	9.00	2.02, 40.11
	WBRA Diagonal Avg Asymmetry*	.648	≥ 18.4%	73%	62%	4.33	1.14,16.49
	WBRA Lateral RT Avg	.582	≥ 558 ms	62%	73%	4.33	1.14, 16.49

* Variables included in 3-Factor logistic regression model

Table 2	AUC	Cut-Pt	PPV	NPV	OR	90% CI
Overall Wellness Index*	.729	≤ 82	82%	67%	9.00	2.02, 40.11
VMRT Left – Right Difference*	.725	≥ 23 m s	67%	71%	5.00	1.40, 17.88
WBRA Lateral Speed Asymmetry	.652	≥ 6.5%	69%	63%	3.86	1.09, 13.61
WBRA Lateral RT Asymmetry	.607	≥ 32.8%	83%	58%	6.82	1.00, 46.34
WBRA Diagonal RT Asymmetry	.588	≥ 30.2%	65%	67%	3.67	1.07, 12.52

CLINICAL RELEVANCE

Combat effectiveness critically depends on the ability to perceive and respond to rapidly changing environmental conditions
 Threat detection, maneuverability, and rapid decision-making may be adversely affected by subtle neural impairments (Figure 6)
 Previous research has demonstrated that HRV values reflect self-regulation of behavioral, cognitive, and emotional processes^{2,6}
 Executive functions linked to HRV include inhibitory control and attention, which are highly lateralized to the right hemisphere
 Perceptual-motor performance capabilities may depend on neural processes that overlap with autonomic control reflected by HRV
 Left – Right VMRT difference previously associated with concussion history; possibly due to persisting neural impairment⁴
 OWI score inclusion in both suboptimal HRV prediction models suggests a neural deficiency similar to the effect of concussion
 WRBA Diagonal Avg Asym may be an indicator of inefficient transfer of neural information between brain hemispheres
 Autonomic balance (HRV), perceptual-motor efficiency (VMRT and WBRA), and absence of symptoms related to neurological
 disorders (OWI) appear to be important interrelated indicators of abilities that are critical to warfighter combat effectiveness

REFERENCES

- Davidson SP, Cain SM, Mcginnis RS, Vitali RR, Perkins NC, Mclean SG. Quantifying warfighter performance in a target acquisition and aiming task using wireless inertial sensors. *Appl Ergon*. 2016;56:27-33.
- Hansen AL, Johnsen BH, Sollers JJ, Stenvik K, Thayer JF. Heart rate variability and its relation to prefrontal cognitive function: the effects of training and detraining. Eur J Appl Physiol. 2004;93(3):263-272.
- Jennings JR, Sheu LK, Kuan DC-H, Manuck SB, Gianaros PJ. Resting state connectivity of the medial prefrontal cortex covaries with individual differences in high-frequency heart rate variability. Psychophysiol. 2015;53(4):444-454.
- Wilkerson GB, Nabhan DC, Prusmack CJ, Moreau WJ. Detection of persisting concussion effects on neuromechanical responsiveness. *Med Sci Sports Exerc.* 2018;50(9):1750-1756.
- 5. Hansen AL, Johnsen BH, Thayer JF. Vagal influence on working memory and attention. Int J Psychophysiol. 2003;48(3):263-274.
- Holzman JB, Bridgett DJ. Heart rate variability indices as bio-markers of top-down self-regulatory mechanisms: A meta-analytic review. Neurosci Biobehav Rev. 2017;74(A):233-255.