
Multi-signal Anomaly Detection for
Real-Time Embedded Systems

by

Reinier Torres Labrada

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Applied Science
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2020

c© Reinier Torres Labrada 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Waterloo's Institutional Repository

https://core.ac.uk/display/323473169?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

This thesis presents MuSADET, an anomaly detection framework targeting timing
anomalies found in event traces from real-time embedded systems. The method leverages
stationary event generators, signal processing, and distance metrics to classify inter-arrival
time sequences as normal/anomalous. Experimental evaluation of traces collected from two
real-time embedded systems provides empirical evidence of MuSADET’s anomaly detection
performance.

MuSADET is appropriate for embedded systems, where many event generators are
intrinsically recurrent and generate stationary sequences of timestamp. To find timing-
anomalies, MuSADET compares the frequency domain features of an unknown trace to
a normal model trained from well-behaved executions of the system. Each signal in the
analysis trace receives a normal/anomalous score, which can help engineers isolate the
source of the anomaly.

Empirical evidence of anomaly detection performed on traces collected from an industry-
grade hexacopter and the Controller Area Network (CAN) bus deployed in a real vehicle
demonstrates the feasibility of the proposed method. In all case studies, anomaly detection
did not require an anomaly model while achieving high detection rates. For some of the
studied scenarios, the true positive detection rate goes above 99 %, with false-positive rates
below one %. The visualization of classification scores shows that some timing anomalies
can propagate to multiple signals within the system. Comparison to the similar method,
Signal Processing for Trace Analysis (SiPTA), indicates that MuSADET is superior in de-
tection performance and provides complementary information that can help link anomalies
to the process where they occurred.

iii

Acknowledgements

I would like to thank all the people who made this thesis possible. Especially Professor
Sebastian Fischmeister for his patience and support.

Especial thanks to Professor Zhou Wang, and Professor Rodolfo Pellizzoni for their
excelent feedback and dedication to review this thesis. Your input helped me improve the
quality of this work.

iv

Dedication

This is dedicated to my wife and daughter for their love an patience during all the
missing hours.

v

Table of Contents

List of Figures ix

List of Tables x

Abbreviations xi

1 Introduction 1

1.1 Motivating example . 2

1.2 Problem statement . 5

1.3 Contributions . 5

1.4 Thesis Organization . 6

2 Related Work and Background 8

2.1 Related Work . 8

2.2 Background . 9

2.2.1 Real-Time Systems Theory . 9

2.2.2 Signal Processing . 12

2.2.3 Distance Measures . 15

2.2.4 Anomaly Detection . 19

vi

3 MuSADET-Framework 21

3.1 Overview . 21

3.2 Trace and Signal Models . 23

3.3 inter-arrival times sequence (IATS) Features 28

3.3.1 Modelling IATS as a renewal processes 28

3.3.2 Ratio of DC to Total Power . 32

3.3.3 Estimated Power Spectral Density 34

3.3.4 Binary Power Spectral Sequence . 37

3.4 Classification of test features . 42

3.4.1 Classification by χ2 distances on power spectral density (PSD) features 42

3.4.2 Classification by Jaccard distance on binary power spectral sequence
(BPSS) features . 44

3.4.3 Classification by DC to total power ratio (DCTPR) 45

4 Case Studies 47

4.1 Performance Analysis . 48

4.2 HCRL CAN injection . 50

4.2.1 Brief introduction to CAN-bus . 50

4.2.2 Attack scenarios . 52

4.2.3 Training . 53

4.2.4 Anomaly detection setup . 54

4.2.5 Discussion . 55

4.3 QNX HEXACOPTER . 62

4.3.1 Training . 63

4.3.2 Anomaly detection setup . 64

4.3.3 Discussion . 64

5 Conclusions 71

vii

References 72

APPENDICES 80

A Comparison to Alternative Methods 81

viii

List of Figures

1.1 A system of two periodic tasks with deterministic execution times. 3

1.2 A system of two tasks showing normal/anomalous behaviour. 4

3.1 multi-signal anomaly detection for real-time traces (MuSADET)’s workflow. 22

3.2 Example of a trace model. 26

3.3 Response times and their inter-arrival time. 30

3.4 Example of IATSs and their power spectra. 35

3.5 Binary Power Spectral Sequence. 38

4.1 Confusion table and rate equations. 48

4.2 CAN bus fundamentals. 51

4.3 ROC curve for the HCRL GEAR DRIVE scenario. 56

4.4 ROC curve for the HCRL FUZZY trace. 59

4.5 Grid of classification scores for selected CAN-ID’s 61

4.6 ROC curves for the QNX HEXACOPTER dataset. 65

4.7 ROC curves for the QNX HEXACOPTER dataset. 66

4.8 ROC curves for the QNX HEXACOPTER dataset. 67

4.9 Grid of classification scores for selected signals from the HEXACOPTER
dataset. 69

ix

List of Tables

2.1 Computational complexity of spectral estimation methods. 15

2.2 OTUs expression of binary instances. 18

3.1 Example of an event trace. 25

4.1 Overview of the HCRL-CAN dataset . 53

4.2 Training Results Summary for the HCRL-CAN dataset 55

4.3 Summary of performance metrics for the CAN GEAR scenario. 58

4.4 Summary of performance metrics for the CAN FUZZY secenario. 60

4.5 Overview of the QNX HEXACOPTER dataset 63

4.6 Performance metrics for the HEXACOPTER. Classification by power spec-
tral density (PSD). 68

4.7 Performance metrics for the HEXACOPTER. Classification by BPSS. . . . 68

x

Abbreviations

AD anomaly detection 9, 67

BPSS binary power spectral sequence vii, 6, 37–39, 42, 43, 60–63

CAN controller area network 7, 21, 28, 32, 45, 48–50, 52–58, 67

DC direct current 6, 23, 28, 29, 32–34, 40, 43, 44, 53, 58, 67

DCTPR DC to total power ratio vii, 6, 32–34, 43, 47, 50, 57, 60, 67

DFT Discrete Fourier Transform 33

DOS denial of service 8

DTFT Discrete Time Fourier Transform 12

EDF earliest-deadline first 10

ETP execution-time profile 3

FD frequency domain 5, 10, 15, 16, 20, 34, 37–40, 62, 67

FT Fourier Transform 9, 35, 37

IATS inter-arrival times sequence vii, 3–6, 9, 10, 12, 13, 15, 20–24, 27–29, 31–37, 39, 40,
43, 44, 52, 53, 55, 58, 60, 62, 67

IID independent identically distributed 27, 28

MSE mean square error 36

xi

MuSADET multi-signal anomaly detection for real-time traces ix, 2, 4–7, 9, 11–13, 15,
16, 18–23, 36, 39, 42, 45–47, 50–54, 56, 58, 60–63, 66, 67

PCP priority ceiling protocol 11

PSD power spectral density vii, viii, 5, 6, 12, 13, 15, 16, 18, 27–29, 32, 34–40, 42, 60–64,
66, 67

QNX QNX operating system 58

QoS quality of service 8

RM rate monotonic 10

ROC receiver operating characteristic curve 46, 47, 52–54, 58, 59, 61, 63, 66

RTA response-time analysis 10, 11

RTES real-time embedded system 1–3, 10, 11

RTS real-time system 9–11, 27

SiPTA Signal Processing for Trace Analysis 5, 6, 9, 45–47, 53, 58, 60–62, 66, 67

TSS time-stamp sequence 27

WCET worst-case execution time 3

WSS wide-sense stationary 5, 9, 11, 12, 28, 29, 32, 34, 40

xii

Chapter 1

Introduction

Real-time embedded systems (RTESs) control most of today’s sophisticated and techno-
logically advanced infrastructure. Undetected defects or malfunctions of the controlling
devices can lead to catastrophic and costly failures such as the Therac-25 [54] medical
particle accelerator, and the Ariane 5 flight [47]. As RTES become more complex their
safety requirements turn harder to assess [41]. Approaching the issue of deploying safe
systems requires the use of tools capable of detecting problems or potentially problematic
conditions before they pose a threat.

There are several tools applicable to RTES and oriented toward meeting safety require-
ments. For example, real-time systems theory analyzes the system under its worst-case
timing scenario to check response-time deadlines. Model-checking formally verifies a model
of the system to check if it meets a given specification. Runtime verification checks the
output of the running system towards a formal specification. Testing verifies the output of
the system run under a particular set of scenarios. Anomaly detection looks for outliers in
the observable output of the system that may be indicators of unsafe conditions. None of
these techniques alone can guarantee that the system will behave safely upon deployment.
Real-time theory cannot provide guarantees on the system’s input/output correctness. Due
to model state-explosion, model-checking tends to be computationally unfeasible. Runtime
verification depends on the completeness and accuracy of the system’s formal specification.
Testing cannot cover the whole input/output space of the system, and anomaly detection
may rise false alarms or may fail to detect hazardous conditions.

In this thesis, we focus on monitoring employing anomaly detection to tackle one facet
of the unsolved problem of incomplete verification for complex embedded software. For
most systems, it is impossible to explore all possible values of its input/output domain

1

during testing, and as a result, monitoring is still the ad hoc engineering solution for error
detection [51]. Monitoring is, therefore, a requirement in safety standards for embedded
systems, such as ISO-26262 for functional automotive [43], and DO-178C for airborne
systems [36]. Monitoring aims to track that part of the input/output domain visited by
the system during its operation to check whether or not it meets the specification. Among
the many different monitoring mechanisms, anomaly detection tries to detect uncommon
behaviour or bursts of unexpected activity [19].

The difficulty in detecting anomalies is twofold: First, the system output for anomalous
behaviour can be in the range of the input/output domain, and second, anomalies tend to
be single occurrences of unexpected behaviour [20]. Moreover, anomalies are not necessarily
an indication of a failure or unsafe condition; they are an unknown and infrequent system
state that needs analysis. In the case of RTES, timing anomalies are of great importance
because they can lead to missed deadlines or may be a symptom of malfunction.

1.1 Motivating example

Multi-signal anomaly detection for real-time traces (MuSADET) integrates real-time sys-
tems, signal processing and anomaly detection. The following example is an attempt to
familiarize the reader with the topic.

Consider a real-time system implemented as a task set of two tasks with task properties
shown in Figure 1.1.a. Each task can change state according to the transition diagram of
Figure 1.1.b. This system will produce the scheduling plot of Figure 1.1.c. Both tasks
are periodic and scheduled by a rate monotonic scheduler [53, 32]. Either task can change
its state by itself or due to scheduling actions. For example, any task will become sus-
pended at the end of a job (self-change), while τ2 is preempted soon after τ1 becomes ready
(scheduling-action). Whenever a task changes state, the operating system issues a new
trace entry for that specific event.

The schedule in Figure 1.1.c repeats starting at t = 30 producing a periodic sequence
of events. This deterministic task model simplifies time correctness analysis [51] and is the
primary motivation behind a large research body under the real-time system theory [71].
Real-time scheduling is attractive because it analyzes a deterministic case with polynomial
or pseudo-polynomial time complexity, while general scheduling is known to have NP-Hard
complexity [22]. As a result, many RTES are implemented as periodic task sets to simplify
timing analysis with guarantees of meeting the systems deadlines. Hence, a periodic and
well-behaved task set should generate events that exhibit recurrent behaviour. In practice,

2

a) Task set properties.

0 5 10 15 20

τ1

τ2

Ready BlocksKey:

25 30 tjob finishes

preempted

new job dispatched

created

BLOCKED RUNNING

READY

b) Task’s transition diagram. c) Schedule.

Running

Task T C P

τ1 10 5 1
τ2 15 5 2

T: Period

C: Worst-case execution time

P: Priority 35

Figure 1.1: A system of two periodic tasks with deterministic execution times.
The system is defined by the properties in table (a). The transition state diagram shown in (b) will

produce the periodic schedule shown in (c). The schedule repeats after t=30 due to the use of worst-case

execution times.

due to scheduling actions and tasks execution-time profiles (ETPs) the timestamps of
events generated by the system should be considered non-deterministic.

One could assume that a feasible periodic task set would not be affected by timing
issues that may cause abnormal behaviour. However, according to [77], timing anomalies
can induce chaotic behaviour. We argue that even when timing-anomalies do not bring
instability to a system, their effects are detectable through trace analysis. For exam-
ple, Figure 1.2 presents the inter-arrival times sequence (IATS) for the Job Completes
(JC) event of τ2 for the deterministic system of Figure 1.1. Instead of worst-case execu-
tion times (WCETs), we used ETPs when simulating tasks. Due to the use of ETPs, both
tasks generate their events at random timestamps. The periodic activation of τ1 and τ2
guarantees a constant rate of events per hyper-period, while the ETP randomizes events
timestamps. The plot for the IATS and its corresponding power spectrum in Figure 1.2.b
being the expected behaviour. Swapping the priorities of τ1 and τ2 preserves the system’s
feasibility, but violates tasks precedencies as shown in Figure 1.2.c. By inspecting the IATS
in Figure 1.2, we would conclude that there is no apparent difference between the normal
and anomalous IATS while the power spectra are distinctively different. If, for example, an
attacker swaps task’s priorities, the priority swap can be detected by finding the similarity
between the power spectra of normal and anomalous IATS and then assigning an anomaly
score employing a classification algorithm. This example shows the potential for detecting
timing anomalies by using signal processing to extract frequency domain features from
IATS. To complete the process, we will require methods to compare features effectively,
and a method to decide whether the system is behaving normally or anomalously.

Since recurrent processes are at the foundation of RTES, we could use the IATS gen-

3

a) Task set properties and task execution time pro�les.

Task T C P

τ1 10 5 1
τ2 15 5 2

T: Period C: Worst-case execution time

0 100 300200 0 π0.2 0.4 0.80.6

0 π0.2 0.4 0.80.6

0

2

4

frequency [ω]

0

2

4

10

15

20

100 300200
10

15

20

0

Amp

Amp
6

6

b) Normal execution scenario.

c) Anomalous execution scenario. sample No.

∆t inter-arrival times sequence EOTC 2 power spectrum

inter-arrival times sequence EOTC 2 power spectrum

frequency [ω]sample No.

∆t

1 3

p (t)

0

0.5

t

τ1

5 1 3

p (t)

0

0.5

t

τ2

5
P: Priority

Figure 1.2: A system of two tasks showing normal/anomalous behaviour.
The Cheddar [72] simulated task-set in (a) produces the normal IATS for τ2 JOB COMPLETES (JC)

event in (b). Swapping tasks priorities for several jobs of τ2 generates anomalous IATS shown in (c). The

anomalous behaviour is detectable by comparing the IATS power spectra.

erated by such processes to learn features from well-behaved executions of the system.
Detecting timing anomalies would be accomplished by comparing the learned features to
features extracted from traces recorded under unknown operating conditions. Using well-
behaved executions to train a normal model allows considering the system under analysis
as a black-box system. The black-box abstraction enables anomaly detection without the
need for an anomaly model. Not requiring an anomaly model allows MuSADET to perform
anomaly-detection on any system with recurrent generators, and a tracing mechanism that
records timestamps and identifiers for generators and signals.

4

1.2 Problem statement

Given a model of normal behaviour learned from well-behaved executions of the
system, and some test trace recorded under unknown conditions automatically
determine whether or not there are timing anomalies in the test trace. For each
anomaly found, report the signals and time windows in which the anomalies
are present.

We loosely define a timing anomaly as a sequence of inter-arrival times whose frequency
domain features are dissimilar to features in the normal model. We assume that IATS are
at least wide-sense stationary (WSS) and, thus, will have well-defined frequency domain
(FD) features. Since IATS can be long, we divide it into windows, each covering some
time interval. MuSADET assigns a normal/anomalous score to each signal in the window.
Therefore, due to the nature of data and choice of feature, our method is appropriate for
scenarios where anomalous behaviour is persistent during the time-span of the window
under analysis.

The problem statement defines a semi-supervised binary classification problem. Mu-
SADET requires traces considered normal to build a model. Then test traces can be
compared to check if they conform to the learned model. The main goal of using normal
traces to construct a model of the system is the minimization of false positives and false
negatives error rates. We introduce the framework for anomaly detection in Chapter 3.

1.3 Contributions

The main contributions of this work are as follows:

Trace and signal modelling

Our method models signals as renewal Poisson processes. First, we relax the stationarity
requirement of IATS to WSS. Second, we apply nonparametric power spectral density
(PSD) estimation to compute the power spectrum from the signal’s IATS. Our method
improves over [85] by solving issues in its trace to signal model. The fundamental issue
of Signal Processing for Trace Analysis (SiPTA) is that it can extract sequences with
duplicate timestamps. Sequences with duplicate timestamps result from joining at least two
nonindependent renewal processes, which is a violation of the superposition principle [25].

5

Features

We show that an IATS can be (i) a constant amplitude signal or (ii) a wide sense sta-
tionary sequence. We propose two mutually exclusive features to classify IATS as nor-
mal/anomalous. The DC to total power ratio (DCTPR) can be used to classify only
direct current (DC) IATS, while PSD estimates are better suited for stationary IATS.
PSD estimation methods are among the oldest in signal theory. However, its use for
timing anomaly detection on event traces still provides new insights and needs further
exploration. We present an improvement of the feature proposed in [85] by using Welch
periodograms [81, 61], and by separating DC from non-DC IATS.

Augmented anomaly detection granularity

We propose a technique that improves over [85]. Instead of assigning a score to the whole
trace, we classify signals independently and allow adjusting the length of the classification
window. Anomaly detection at the signal level facilitates the isolation of timing anomalies.
Being able to use different window lengths enables analysis at different time bands, which
in turn determines the response time of the detector when used in an online environment.

Improvement of classification performance

We tested MuSADET with two datasets, and demonstrate with the HCRL-CAN dataset
that SiPTA [85] fails when a system is mainly composed of generators producing DC
IATS. For the HEXACOPTER dataset, we show that although SiPTA still performs well,
MuSADET provides better accuracy and robustness. We propose the χ2 symmetric dis-
tance [14] based on Pearson and Neyman’s distances [68] to compare PSDs, which includes
the whole spectrum versus the single peak method of [85]. Finally, we tested the Jaccard
similarity [30] on the binary power spectral sequence (BPSS) derived from the PSD, also
with better performance than SiPTA.

1.4 Thesis Organization

We begin Chapter 2 with a background review of anomaly detection applied to scenarios
similar to those we target with MuSADET. Chapter 2 continues with an introduction
to the fundamental concepts supporting MuSADET and finishes with a general overview

6

of anomaly detection. We present MuSADET’s framework in Chapter 3 along with its
underlying mathematical model for trace parsing into signals, feature extraction from said
signals and classification of test features. Chapter 4 presents and discusses two case studies
where we applied MuSADET to detect anomalies. The first case tackles intrusion detection
in the controller area network (CAN) bus system of a commercial grade car. The second
case addresses timing anomalies in a HEXACOPTER where the system is disturbed by
a non-terminating process or excessive use of the input-output subsystem. Finally, we
present our conclusions in Chapter 5.

7

Chapter 2

Related Work and Background

2.1 Related Work

Finding anomalies soon after they occur is almost impossible. Timing anomalies, in partic-
ular, need progression over time to achieve detection. For example, denial of service (DOS)
attacks is one well-studied problem where instantaneous detection is impossible [49, 1, 62].
Among DOS attacks, low rate stealthy DOS modes [21, 56, 1] are harder to detect because
they do not flood the victim with network packets, and therefore the attack must persist
for some time before the detector can raise the alarm. Intrusion detection in informa-
tion systems [84], metamorphic virus detection [78], and temporal debugging of real-time
applications with quality of service (QoS) requirements [39] also demand some level of
progression or presence of abnormal sequences to achieve detection.

The type of data, its generating process and the technique used to find anomalies affect
the anomaly detection performance on sequence data. Moreover, data can be processed in
its native domain or after applying some transformation [16, 17].

Markov models are suitable for sequences of event symbols and can detect anomalies
within long sequences but suffer from high false-negative rates [16]. For example, Markov
techniques are used in [83, 60] to learn a model from normal sequences and then use the
learned model to predict the probability of observing each symbol of the test sequence.
Hidden Markov Models (HMM) [34] techniques learn a model from normal sequences and
then compute the probability of test sequences being normal/anomalous. Markov mod-
elling methods are useful for sequences of random symbols (e.g., user identifiers or event
names) that would not benefit from domain transformation [16].

8

Similarity-based anomaly detection (AD), is simple and highly effective when one of
the sequences has a defined pattern [17]. For example, similarity-based techniques [50, 8]
are applied to sequences of fixed length, resulting from aggregations of random variables
or presence/absence of features [52, 5]. Distance-based methods are commonly applied to
vectors that represent points in Euclidean space or are the result of a domain transfor-
mation of a base sequence vector (usually from time-domain to frequency-domain). Some
distance/similarities are equivalent, depending on the mathematical model used [68].

Signal processing is a standard tool used for domain transformation of base sequences.
For instance, in [35, 23, 67, 65, 58], wavelet transforms were applied to anomaly detection in
network systems while the Fourier transform was used in [86]. In most cases, AD performed
using signal processing focus on signals derived by counting packets [21, 1] in the network.
In contrast, multi-signal anomaly detection for real-time traces (MuSADET) focuses on
the inter-arrival times of consecutive events for some well-defined class of events.

In [85], Mehdi et al. presented Signal Processing for Trace Analysis (SiPTA), an anomaly
detection engine for embedded systems that demonstrated the feasibility of using signal
processing and inter-arrival times sequence (IATS) to analyze event traces. Despite its
promising results, SiPTA relies on incorrect assumptions. For example, SiPTA applies the
Fourier Transform (FT) to extract the frequency spectrum of time-stamp sequences and
then records the component of maximum amplitude and the frequency where it occurred.
This approach assumes that IATS are periodic sequences, and we showed in Figure 1.2
that IATS could be non-periodic. Also, using a single peak for classification of a set of
IATS assumes the existence of a single dominant peak located around the same frequency.
Lastly, the normalization applied to the amplitude spectrum requires the same length for
model and test sequences limiting the application of SiPTA to a single detection win-
dow. MuSADET borrows some principles from [85] but applies a different classification
strategy that improves anomaly detection accuracy and tackles all previously mentioned
shortcomings.

2.2 Background

2.2.1 Real-Time Systems Theory

For MuSADET, the Real-time system (RTS) theory provides the framework sustaining
the fundamental assumption that signal generators are wide-sense stationary (WSS) pro-
cesses. In our motivating example presented in Section 1.1, we showed that periodic tasks

9

generate events in a recurrent fashion that can be modelled by their frequency domain
(FD) features. RTS theory heavily relies on the notion of periodic tasks or aperiodic tasks
modelled as periodic or sporadic equivalents. Hence real-time embedded systems (RTESs)
are commonly implemented under the paradigm of periodic task sets.

The central motivation behind the real-time systems theory is to determine if a given
task set will meet its deadlines under the worst-case execution scenario. According to [32,
22, 71], theoretical results suitable to be applied in real applications exist since the seminal
paper of Liu and Layland [55], which settled the foundations for schedulability analysis
based on the processor utilization factor. The basic model comprises a task set Γn ,
〈τ1, τ2, . . . , τn〉 with n periodic and independent tasks, each task τi having period Ti, and
worst-case execution time or capacity Ci. Task set Γn is guaranteed to be feasible when
scheduled by the Rate Monotonic algorithm if the following relation holds:

Utot ≤ n
(
2
1/n − 1

)
(2.1)

Where the total processor utilization factor is:

Utot =
n∑

i=1

Ci

Ti
(2.2)

A result of this model is that the schedule repeats after the hyper-period Th , lcm{Ti}, i =
1, 2, . . . , n, the least common multiple of all periods. We have seen from Figure 1.1 that
tasks executed with deterministic computation times will produce periodic IATS.

Even if Liu and Layland’s model only accept independent periodic tasks, they proved [55]
that rate monotonic (RM), and earliest-deadline first (EDF) are optimal scheduling algo-
rithms for static and dynamic priorities assignments respectively [53, 32]. The result shown
in (2.1) is relevant because the rate monotonic algorithm can be implemented over fixed-
priority preemptive schedulers.

Response-time analysis (RTA), introduced by Joseph and Pandya in 1986 [42], is an-
other important branch in the RTS theory. Rather than computing the processing load
of each task, this approach relies on calculating the time a task needs to finish a released
job. Response-time analysis can compute the load, and the interference suffered due to
preemption from tasks with higher priorities to the task under analysis. The basic test can
be solved by the following recurrent relation [2]:

10

Rn+1
i =

∑

∀j∈hp(i)

⌈
Rn
i

Tj

⌉
Cj (2.3)

Where Rn+1
i is the response-time of the current iteration, the test stops with the

response-time Ri of task τi if Rn+1
i = Rn

i and Rn+1
i ≤ Di or fails if at any point Rn+1

i > Di.

There are two notable implications of applying RTA to RTES. First, the hyper period
principle is preserved, hence under the deterministic worst-case model; the system schedule
becomes periodic with the period Th. Second, RTA can incorporate blocking and delays
that prevent the task to gain access to the processor, and also tasks with deadlines shorter
than periods [32, 71].

Further developments in real-time theory included tests for systems with tasks that
share resources or suffer release jitter. The analysis requires the use of the Priority ceiling
protocol (PCP) to avoid deadlock and cope with priority inversion. There are equations
for systems with sporadically repeating tasks, a mention to tick scheduling, and precedence
relations between cooperating tasks that run on different processors. Burns et al. [11, 12]
tackled the analysis of tick driven schedulers that employ lists to hold the ready and blocked
tasks. They extended the RTA by modelling the behaviour of the scheduler when it moves
tasks from one list to another and the treatment of interrupts that preempts any task
and the scheduler itself. Katcher et al. presented a framework based on the processor
utilization factor with the same intention [44]. Both pieces of research constitute good
examples of how to apply theoretical results in engineering.

Real-time system theory enables checking task sets that can meet all deadlines and
allows simulating synthetic task sets for trace generation. For example, the system of
Section 1.1 was simulated by the real-time simulator Cheddar. Having task sets capable
of producing WSS sequences is required by MuSADET to detect timing anomalies. Since
missed deadlines can be detected easily, we are not interested in including them under the
MuSADET framework. After testing that simulated task sets can indeed produce WSS
time-stamp sequences we moved onto working with traces generated by real-world systems.

The intuition that a real system with tasks having varying execution time per job
instance will generate recurrent streams of events follows from the concept of the hyper-
period. The RTS theory settles the foundation to determine task periods and compute
other system properties from the trace. For example, in [40], we showed a method to mine
task periods from traces. This method serves two purposes; it can be used to check for
the system’s specification or in the case of MuSADET to determine parameters for feature
extraction.

11

2.2.2 Signal Processing

The purpose of using signal processing in MuSADET is the estimation of the features
from timestamp sequences. We must consider that a scheduled task set is time-domain
non-deterministic, and therefore their IATS should be considered realizations of a random
process. Stationary or periodic IATS can be processed using power spectral density (PSD)
estimation.

If an IATS originates in a WSS process, its first and second moments statistics will be
on statistical equilibrium. That is, let xi[n] be an IATS generated by task τi, we say that
xi[n] is WSS if; the mean and variance of xi[n] are constant, and the autocovariance of
xi[n] is time-invariant.

E[x[n]] = mx, and var[x[n]] = σ2
x (2.4)

Where E[x[n]] and var[x[n]] are the expected value and variance of the discrete sequence
x[n] respectively. The second condition needs the covariance of x[n] and x[m] to be a
function of the lag between the two sequences ` , n−m,n > m, that is:

cxx[n,m] , cov(x[n], x[m]) = cxx[l] for all n,m (2.5)

Based on the concept of hyper period, Diaz et al. [27] showed that when the number of
observed hyper periods tends to infinity, the distribution of response-times for a periodic
task set becomes stationary. Response-times are an upper bound of time-domain task’s
activity. Therefore we can assume that IATS should also be stationary. The intuition
comes from the fact that response-times are a subset of the events generated by a task. If
response-times are stationary then the underlying generator must also be stationary.

The assumption that IATS are WSS enables the use of power spectral density estima-
tion. Methods for PSD estimation can be classified into nonparametric and parametric [59].
The nonparametric approach does not assume there exists a model for the signal gener-
ator [64]. Since it is hard to establish a possible model for tasks as IATS generators,
we focus on nonparametric PSD estimation. The methods under consideration are the
periodogram [69] with its variations [4, 81], and the Blackman-Tukey method [7].

The power spectral density of a random process is the Discrete Time Fourier Transform
(DTFT) of its autocorrelation sequence. It is a function of average signal power versus
frequency (ω) [45, 59].

12

Sxx(ω) ,
∞∑

l=−∞

rxx[`]e
−jω` (2.6)

In MuSADET, we are interested in the PSD of IATS because the PSD could be used as
the frequency domain signature of the generating task. The expectation is that the PSD
will change if the behaviour of the task changes. The problem of (2.6) is that the analytic
function of the autocorrelation is hard to determine. However, for stationary IATS, PSD
estimation is possible from realizations of the process [59] and the periodogram.

P̂ (ω) =
1

N

∣∣∣∣∣
N−1∑

n=0

x[n]e−jωn

∣∣∣∣∣

2

(2.7)

Equation (2.7) is the discrete-time version of the periodogram, which is a function of
frequency. The periodogram was proposed by Schuster in 1898 [69]. Schuster used the
periodogram to find hidden periodicities in astronomical and meteorological data sets.

Although a powerful tool, the periodogram is not a good estimator of the PSD. The
problem is that the periodogram is not a consistent estimator of S(ω) [45]. We should notice
that the periodogram is a biased estimator of S(ω) because E[P̂ (ω)] 6= S(ω). However, the
periodogram is an asymptotically unbiased estimator of S(ω). That is, the expected value
of the periodogram approaches S(ω) as N →∞ (where N is the length of x[n]) :

lim
N→∞

E
[
P̂ (ω)

]
= S (ω) (2.8)

The most problematic property of the periodogram is that its variance does not improve
by increasing the length of x[n]. The variance of the periodogram as N →∞ is:

lim
N→∞

var
[
P̂ (ω)

]
= S2 (ω) (2.9)

A solution to the problem of PSD estimation by nonparametric methods consists of
splitting the sequence x[n] into a set of smaller segments. Then computing the periodogram
of each segment and finally aggregating the results by averaging. Two classic methods that
use this techniques are Bartlett [4, 3], and Welch [81, 82].

The Bartlett method of averaging periodograms divides the sequence x[n] into a set of
K segments of length M , where xk[m] = x[m+kM], k = 0, 1, . . . , K−1,m = 0, 1, . . . ,M−

13

1, then the periodogram is found for each segment using (2.7). Given that P̂k is the
periodogram of the kth segment, the average of the periodograms is found by:

P̂B(ω) =
1

K

K−1∑

k=0

P̂k(ω) (2.10)

The Welch method divides x[n] into a set of L segments of length M where segments
are allowed to overlap, now each segment is formed as xk[m] = x[m+kD], k = 0, 1, . . . , L−
1,m = 0, 1, . . . ,M − 1, where in most cases D ≤ M . For D = M/2 the overlap is 50%,
being this the most common setting when using the Welch method. When D = M , there
is no overlap and Welch is equivalent to Bartlett, that is, L = K. Instead of finding the
individual periodograms using (2.7), Welch proposed the use of a modified periodogram
by windowing the sequence xk[n], therefore:

P̂mk(ω) =
1

MU

∣∣∣∣∣
M−1∑

m=0

x[m]w[m]e−jωn

∣∣∣∣∣

2

(2.11)

Where U is the the normalization factor for the window w[n]:

U =
1

M

M−1∑

m=0

w2[m] (2.12)

The Welch PSD estimate is found by averaging the modified peridograms (3.6):

P̂W (ω) =
1

L

K−1∑

k=0

P̂mk(ω) (2.13)

The last method to consider in this case is the Blackman and Tukey method proposed
in 1958 (given reference is the corrected version published in 1959) [7]. The rationale
of this method is to find the Fourier Transform of the windowed sample autocorrelation.
Windowing the autocorrelation reduces the effect of large lags by giving a smaller weight
to estimates for which ` is large. The effect of this windowing is a smoothing of the
periodogram estimate, the formula is:

P̂BT (ω) =
N−1∑

n=−(N−1)

rxx[`]w[n]e−jωn (2.14)

14

Averaging or smoothing periodograms improves the consistency of the estimated PSD.
The process comes with the drawback of trading improvement of the variance at the expense
of frequency domain resolution. This issue becomes relevant when the signal under analysis
contains components that are close in frequency because the method may fail to tell them
apart. Increasing the length of the signal by padding will not improve the resolving capacity
of any of these methods because there is no new information introduced to the signal.

Computational requirements are another factor to consider when using any of the meth-
ods shown in this thesis. MuSADET deals with a large number of signals with concurrent
processing needs. Hence, we must take into account the total number of computations
required to find PSD estimates. Table 2.1 includes a summary of the computational com-
plexity for each of the methods presented above. Formulae in Table 2.1 use M radix-2
FFTs (i.e. M length is a power of two) computed over an N length sequence.

Table 2.1: Computational complexity of spectral estimation methods.

Method Number of FFT Complexity

Bartlett ≈ N
M

O
(
N
2

log2M
)

Welch 50% overlap 2N
M

O (N log2M)

Blackman-Tukey ≈ N
M

O (N log2 2M)

This table is a compilation of computational complexities from Proakis and Manolakis, for

details see: [64].

2.2.3 Distance Measures

In the previous section, we presented the fundamentals of the signal processing methods
applied in MuSADET to extract FD features from IATS. We now present distances or
similarities measures to compare power spectra. A distance measure or distance for short
is a function that takes two vectors and outputs a scalar that measures how far apart are
the input vectors. We formalize a distance function [26] as follows.

Let X, Y be two finite vectors, a measure or distance is a mapping function D : X×Y 7→
[0,∞). That is D takes in two real vectors and outputs a scalar representing the closeness
or similarity between X and Y . A distance function should have some desirable properties
to be of practical use:

• D(X, Y) > 0 non-negativity: This property, required by definition above and forces

15

the distance function to be valid if and only if the formula maps to [0,∞) or if the
input vectors meet the requirements to make the distance possible.

• D(X, Y) = 0⇔ X = Y Identity of indiscernibles

• D(X, Y) = D(Y,X) symmetry: Although a requirement for a distance to be metric
it is not met by all distances.

• D(X, Y) 6 D(X,Z) + D(Z, Y) subaditivity or triangle inequality: Another
requirement for metric distances not met by all distances.

We present two classification categories for distances: (i) non-binary measures, for real-
valued vectors; (ii) binary measures, for categorical data that takes on presence/absence
(p/a) usually codified as p = 1, a = 0.

The term similarity is related to distance because many distances are equivalent to
similarities through algebraic manipulation. For example, all distances that map to [0, 1]
become similarity by applying S = 1 − D. In the case of similarity, if the input vectors
are equal then their similarity is Sx,y = 1. Due to the relationship between similarities and
distances, many authors use the concepts interchangeably. We may also use the broader
term measure to refer to distances or similarities as a general group of mapping functions.

Non-Binary Measures

MuSADET applies non-binary measures to PSD estimates (FD features). Frequency do-
main features in MuSADET are finite vectors, where each vector component is the power
at a discrete frequency. When the distance measure is close to zero, the two PSDs are con-
sidered similar; if one of the PSDs is normal, then the other PSD should also be normal.

According to [14], non-binary measures can be catalogued in different families. The
Minkowski family (2.15) [48, 26] generalizes some well known and useful distances, including
the Euclidean. For example, p = 1 is known as Manhattan or City Block, p = 2 is
Euclidean, and p = ∞ is the Chebyshev distance [14]. All distances in the Minkowski
family are metric, i.e. they are symmetric and subadditive. In particular, Manhattan and
Euclidean are the basis for other more elaborate distances to compare vectors of probability
mass functions.

DMink = p

√√√√
d∑

i=1

|xi − yi|p (2.15)

16

The intersection family [14] makes extensive use of Manhattan distance (Minkowski
with p = 1) [29]. They find the similarity by considering the overlap (or lack of) of two
vectors. For example, the non-overlap intersection (2.16) is more sensitive to elements of
different sign and thus useful to detect changes in sign.

Dnon−Int =
1

2

d∑

i=1

|xi − yi| (2.16)

The Wave-Hedges (2.17) [14] (also known as Soergel [26]) or the Czekanowski (2.18)
distance applied to non-negative vectors, is bounded by the number of components. Each
element in the sum is a normalized and independent, positive weighting coefficient. There-
fore these two distances are appropriate when no component is considered dominant. Con-
sequently, the choice of measure depends on the specific properties of the vectors under
analysis.

DHed =
d∑

i=1

|xi − yi|
max(xi, yi)

(2.17)

DCzek =

d∑

i=1

|xi − yi|

d∑

i=1

(xi + yi)

(2.18)

The χ2 family [14] relies on the squared Euclidean distance (Minkowski with p = 2) [26].
The cornerstone of this family is Pearson χ2 divergence, also known as Pearson distance
(2.19), which is useful when comparing probability mass functions that follow χ2(K) where
K is the number of degrees of freedom.

DP =
d∑

i=1

(xi − yi)2
yi

(2.19)

The Pearson distance is non-symmetric and, therefore, in some cases, ill-suited as a
feasible measure. Another related measure is Neyman’s distance (2.20), which is also
applicable in similar contexts to that of Pearson.

17

DN =
d∑

i=1

(xi − yi)2
xi

(2.20)

Notice that Dp(x, y) = DN(y, x) and non-negative if xi, yi > 0 where 0 6 i 6 N , and
N is the number of components of the two vectors. Both Pearson and Neyman distances
meet the identity of indiscernibles property, therefore they can be combined to produce
symmetric distances such as the max-symmetric χ2 distance [14] shown in (3.14) and
presented in Section 3.4.1.

Binary Measures

Measures for binary or categorical data can be represented using the Operational Taxo-
nomic Units (OTU) notation [30] shown in Table 2.2. The notation has its root in taxo-
nomic classification, where a significant number of these measures originated. Let X, Y be
two finite vectors of attributes, a measure or distance compares X, and Y based on the
selection of the properties that are relevant to the comparison. Therefore, selecting the
appropriate distance or similarity is based on making a sensible choice [30].

One of the most common similarity distances for binary data is the Jaccard distance [30]
that focuses on positive matches and the total number of mismatches (2.21). For example,
let X = {1, 1, 0}, and Y = {1, 0, 0}, then a = 1, b = 0, c = 1, d = 1, and DJac = 1

1+0+1
= 1

2
.

Table 2.2: OTUs expression of binary instances.

1 (presence) 0 (absence) sum

1 (presence) a =
∑
xiyi b =

∑¬xiyi a+ b
0 (absence) c =

∑
xi¬yi d =

∑¬xi¬yi c+ d
sum a+ c b+ d n = a+ b+ c+ d

DJac(X, Y) =
a

a+ b+ c
(2.21)

MuSADET employs a peak detection algorithm to find dominant peaks in normal
PSDs, then transforms them into binary sequences. Therefore, we are interested in finding
similarities between binary sequences. Since we are interested in matching dominant peaks,
we favour positive matches while penalizing mismatches. Distances that take into account
terms a and d in the numerator, while b and c in the denominator are of great interest.

18

Below, we include a selection of some binary distances. For a comprehensive list, please
read [24].

DSok(X, Y) =
a+ d

a+ b+ c+ d
[74] (Sokal) (2.22)

DSokSne(X, Y) =
2(a+ d)

2a+ b+ c+ 2d
[74] (Sokal & Sneath) (2.23)

DRogTan(X, Y) =
a+ d

a+ 2(b+ c) + d
[76] (Rogers & Tanimoto) (2.24)

2.2.4 Anomaly Detection

Many different strategies exist toward finding anomalies, most valid if applied to the appro-
priate type of anomaly and available data. In the ecosystem of anomaly detection methods,
MuSADET is a classification engine based on time series. Our tool tries to classify timing
anomalies in trace data converted to inter-arrival time series. Tools such as MuSADET
train on a set of known labelled data to learn a model or classifier. After the classifier is
learned it is used to label unknown data as normal or anomalous [18, 19].

The choice of approach for anomaly detection is highly dependent on the type of avail-
able data [19]. More than one technique applies to the same type of data, in the case of
time series, some popular techniques are:

Similarity-based techniques treat the test sequence as a unit-element compared against
the learned sequence. The classification depends on distance or similarity computed
by some measure.

Window-based techniques compare a short window of symbols or short normal sub-
string within the test sequence at a time. The window is usually shifted over the test
trace to find anomalies.

Markovian techniques predict the probability of observing each symbol of the test se-
quence, using a probabilistic model, and use the per-symbol probabilities to obtain
an anomaly score for the test sequence.

19

In MuSADET, we apply signal processing to extract FD features from IATS. After
converting the IATS to frequency domain by a method such as Welch, we can rely on
classification based on similarity/distance. Indeed, this choice of method is very convenient
because the parameters to compute the power spectrum of the model and the test trace
can simplify the classification process.

There are many measures useful for anomaly detection, recent surveys on this field
report at least 76 for binary-based similarities [24] and 56 for the numeric (non-binary)
class [15]. Similarity measures have been used to find sub-sequences or strings within a
longer sequence [10]. A group of machine learning and clustering techniques using similarity
distances are reported in two comprehensive surveys [19, 20].

20

Chapter 3

MuSADET-Framework

3.1 Overview

multi-signal anomaly detection for real-time traces (MuSADET)’s outline is shown in Fig-
ure 3.1. MuSADET analyzes event traces to detect timing anomalies. Traces can be
produced within the system (e.g., operating system traces) or captured by an external
trace logger (e.g., a controller area network (CAN) trace logger). MuSADET works under
the semi-supervised paradigm [38], and thus, must be trained on traces collected during
well-behaved executions of the system under analysis. There are four modules, as depicted
in Figure 3.1, and two operational regimes, as explained below:

Training:

Before MuSADET can perform anomaly detection on test data, it must train a model of
the system under analysis. The training stage requires a set of traces that are deemed
normal. We assume that traces collected from a well-behaved system operating under
normal conditions should mitigate the presence of anomalies.

Once the set of training traces is available, the training process can begin, with parsing
being the first step. MuSADET will create a profile containing a description of the trace
format and a data structure for the trained model. The analyst is responsible for providing
the trace format of the system and the commands required to parse the training traces.
During parsing, MuSADET will mine the set of generators and their signals. For each
signal found in the trace, MuSADET will extract timestamp sequences and compute their
inter-arrival times sequence (IATS).

21

The analyst can select signals for the system’s profile, then MuSADET will compute
and store the IATS of selected signals. Some IATS may not be suitable for feature extrac-
tion. For example, short signals containing a few time stamps for the whole trace can be
excluded from the model. Short signals are usually the result of initialization or sporadic
routines that do not repeat with a recurrent pattern and therefore do not produce recurrent
streams of time stamps. The analyst can also exclude signals at will if they do not provide
useful insight into the system’s behaviour. Once the profiling is complete, the features
extractor will compute the frequency domain features for each of the IATS and determine
the appropriate method for classification. Finally, the trainer learns a model from the
training features. The system’s model is a collection of features associated with the set
of signals and will be used to classify test traces when MuSADET operates in detection
mode.

Persistent Storage

Analyst

Feature Extractor

profile

*profile &

training

features

Parser

profile &

training

traces

*profile

&

training

IATS

learned

model

Trainer

profile &

learned

model

scores &

anomalous

IATS

Classifier

trace

stream

IATS
features

& IATS

IATS

buffers

Training stage

profile &

training

features

Figure 3.1: MuSADET’s workflow.

22

Anomaly Detection:

In this mode, MuSADET parses the incoming stream of trace entries using the systems
profile, which contains a description of the trace format and the set of signals to analyze.
Since a trace can be of infinite length, MuSADET will process windows covering a fixed
amount of time. The length of the detection window, stored in the profile, is a trade-off
between feasibility and responsiveness. However, the detection window influences anomaly
detection capabilities. For example, if the window is short compared to the average event
rate, there would not be enough information to compute useful features. If the window
is too long, anomalies can be washed out by long segments of normal data or the time to
detection can be so large that the results may become useless.

After computing IATS from signals in the model set, MuSADET will determine if they
meet the length and presence requirements. For example, if signals are missing in the test
trace but are present in the profile of normal traces, they will be reported as an anomaly.
For signals present in the normal model, MuSADET checks whether they are long enough
to be processed by the features extractor. Signals failing the length requirement are also
anomalous, but they do not requiere further analysis. Signals that appear in the test trace
but are missing in the profile of normal traces are direct anomalies. We want to stress that
anomalies are not indications of faults and, therefore, not necessarily linked to threats to
the system. If, for example, MuSADET starts while the system boots, then signals related
to the boot process will be missing, although the system may be operating normally.

The features extractor will process those IATS that meet the presence and length
requirement. When in detection mode, the features extractor computes those features
specified in the profile, this avoids wasting computing resources because not all features
are suitable for the classification of all types of IATS. Once feature processing is complete,
they are sent to the classifier. The classification process is feature dependent. For fully
periodic IATS the method relies on the direct current (DC) significance method and the
average amplitude of the IATS. If the IATS is non-DC then its classification will be based
on its power spectrum and comparisons to equivalent features in the normal model.

3.2 Trace and Signal Models

Consider the trace snippet shown in Table 3.1. Each row or entry is a tuple composed
of data points describing a single event that occurred at a particular time instant. For
example, the trace entry e1 records that the interrupt handler 0x44 preempted the process
with PID = 1 at time t = 2. Events are activity markers of a generator’s activity, and each

23

generator can issue entries for several event types. Trace entries can share data values and
thus, the parsing process must guarantee the extraction of consistent IATS. Of significant
importance are those time entries having the same timestamp, like e1 and e2. For the case
of e1 and e2, consistency is achieved by recognizing that the generators and events are
different. We do not assume that timestamps will be unique because their value depends
on the time resolution of the tracing tool, and therefore multiple entries may have the same
timestamp.

Our goal is the extraction of IATS to model the behaviour of the system. The trace
and signal models are as follows:

Definition 1 (Trace). A trace T , 〈H,B〉 is a table with header H and body B. The
header H , 〈t, G, S〉 of T is a tuple of attribute names where t is time stamp, G is the
set of attribute names for generators, and S is the set of attribute names for signals. The
body of T is B , {e1, . . . , eN} : 1 ≤ i ≤ N a set of N trace entries.

For example, the header of Table 3.1 is: H = 〈t, {PID, TID}, {CLASS, EVENT}〉, where
G = {PID, TID} and S = {CLASS, EVENT}. For this example, we need to combine the
process identifier and the thread identifier as the generator identifier. The event identifier
requires the combination of the event class and event type columns.

Definition 2 (Trace entry). A trace entry is a tuple ei , 〈v(t), v(G), v(S)〉 of attribute
values with attribute names {t, G, S} ∈ H.

Definition 3 (Generator class). The generator class of T is G , proj(T , G), where
proj(T , G) is the projection of trace T on the set of attributes names G ∈ H.

We range over the elements of G using the notation gi where gi ∈ G and 1 ≤ i ≤ |G|.
The generator class contains all the identifiers for generators found within the trace. A
generator is an independent entity that issues trace entries. For example, from the trace
example of Table 3.1, we have processes and threads within processes. Since each process
can spawn several threads we project both columns to obtain the generator class. Each
generator gi ∈ G can produce trace entries for a combination of several columns we identify
as a signal, hence a generator has an associated signal class.

Definition 4 (Signal class). The signal class Si of generator gi is Si , proj(T , S, gi),
where proj(T , S, gi) is the projection of trace T on the set of attributes names S ∈ H
given generator gi.

24

Table 3.1: Example of an event trace.

ei t PID TID CLASS EV ENT

1 2 1 INT 0x44
2 2 1 1 THREAD THREADY
3 3 1 1 THREAD THRUNNING
4 12 1 INT 0x44
5 12 1 1 THREAD THREADY
...

...
...

...
...

...
16 49 5 INT 0x49
17 49 5 COMM SND PULSE EXE
18 49 5 1 THREAD THRUNNING
19 49 1 1 THREAD THREADY
20 49 5 COMM REC PULSE
...

...
...

...
...

...
32 54 1 1 THREAD THRUNNING
33 54 1 1 THREAD THREADY
34 56 1 COMM SND MESSAGE
35 56 1 COMM REC MESSAGE
36 58 1 COMM SND MESSAGE
...

...
...

...
...

...
39 59 1 4 THREAD THREADY
40 59 1 4 THREAD THRUNNING
41 59 1 COMM REC PULSE
42 60 1 4 THREAD THRECEIVE
43 61 5 INT 0x49
...

...
...

...
...

...
72 72 1 INT 0x44
73 72 1 1 THREAD THREADY
74 74 1 1 THREAD THRUNNING
75 82 1 INT 0x44
76 82 1 1 THREAD THREADY
...

...
...

...
...

...

The entry index numbers (ei column) were added as a guide.

25

G proj(T , G)

g1 〈1, NULL〉 S1 proj(T , s1j, g1)
s11 〈INT, 0x44〉
s12 〈COMM, SND MESSAGE〉
s13 〈COMM, REC MESSAGE〉
s14 〈COMM, REC PULSE〉

g2 〈1, 1〉 S2 proj(T , s2j, g2)
s21 〈THREAD, THREADY〉
s22 〈THREAD, THRUNNING〉

g3 〈5, NULL〉 S3 proj(T , s3j, g3)
s31 〈INT, 0x49〉
s32 〈COMM, SND PULSE EXE〉
s33 〈COMM, REC PULSE〉

g4 〈5, 1〉 S4 proj(T , s4j, g4)
s41 〈THREAD, THREADY〉
s42 〈THREAD, THRUNNING〉

Figure 3.2: Example of a trace model.

We range over the elements of Si using the notation sij where sij ∈ Si and 1 ≤ j ≤ |Si|.
The signal class allows to differentiate among the different event types within a generator
and enables the extraction of signals. Figure 3.2 shows the model for the trace snippet of
Table 3.1. Notice that among the signal classes we can have equal elements e.g. s22 = s42
but since messages of that type are generated by different generators we will obtain different
signals.

Definition 5 (Signal). Let sij ∈ Si be a signal identifier for generator gi ∈ G. Signal
Sij is the subset of entries from T that match the given generator and signal identifiers.
Formally: Sij , sel(T , gi, sj), where sel() is the selection function.

For example, from the model in Figure 3.2, given g2 and s21 we obtain the signal
S21 = sel(T , 〈1, 1〉, 〈THREAD, THREADY〉) = {e2, e5 . . . , e19, . . . , e33, . . . , e73, e76 . . .} contains
the trace entries generated by the generator with identifier g2 = 〈1, 1〉 and registered on
the trace for the events with identifier s2 = 〈THREAD, THREADY〉.

26

Definition 6 (Consistent signal). Signal Sij is consistent if and only if for every entry pair
ei, ej ∈ Sij : ei.t 6= ej.t. That is, all entries in a signal must have different timestamps.

From Definitions 5 and 6, it is clear that choosing the set of attribute names for genera-
tors and signals requires careful analysis. For example, if G = {PID} or S = {THREAD} then
the selection function of Definition 5 will return subsets with repeated timestamps. Such
subsets of entries are not consistent signals because they violate a fundamental property
of Poison renewal processes, which states that multiple instances of the same event cannot
arrive at the same time [46].

Notice that from Definition 5, the timestamp (t) is the only attribute value that can
change among any pair of entries taken from a well-formed signal. When Sij is consistent,
then the sequence rij(Sij, t) , sort(proj(Sij, t)), (i.e., the ordered projection of signal Sij on
the timestamp attribute name t ∈ H) can be modelled as a renewal Poisson point process.

Assumption 1 (TSS are WSS processes). Let r be the real time-stamp sequence (TSS) of
signal S (for clarity, we dropped the sub-index ij). A renewal Poisson process for S can be
defined in terms of r as: Rn ,

∑n
i=1 Xi, where X1,X2, . . . is the sequence of inter-arrival

times, and each Xi is an independent identically distributed (IID) random variable [25, 46].
{Xi} is defined in terms of the arrival timestamps as Xi , r[i]− r[i− 1] for i > 1.

For Rn to be stationary, the event’s timestamps need to be independent. To meet
this requirement, we do not allow the creation of signals that combine different events
(see Definitions 4 through 5). For example, combining commands such as file open(),
file close() will produce signals where timestamps are dependent on each other. Sig-
nal consistency (see Definition 6) is another requirement for stationarity. Because even
though in theory, two events cannot occur at the same time, limitations of the tracing
mechanism could generate timestamps of equal value. We also rely on the real-time system
(RTS) theory principle of task’s job independence stated in Section 2.2.1, i.e. consecutive
jobs occur in the next period regardless of previous job execution.

Since Rn is stationary, it enables the use of power spectral density (PSD) estimation
to compute the distribution of the signal’s power over frequency from realizations of {Xi},
which in turn allows the comparison of normal to test spectra. A realization x[n] of {Xi}
called IATS (IATS) can be extracted from finite instances (r[m]) of TSS.

Definition 7. The IATS x[n] of TSS r[m] is the N -length sequence after applying the
mapping function f [n] : r[m]→ x[n]; where f [n] , r[m]− r[m− 1] | 1 ≤ m < M , M = |r|
is the length of r[k], N = M − 1 is the length of x[n], and f [n] is the first difference
function.

27

3.3 IATS Features

IATS belong to two classes:

Constant or DC sequences: This type of IATS results from specific design require-
ments. For example, instants of job release for periodic tasks in scheduled systems,
sensor data transmitted on CAN-bus at a constant rate, periodic interrupts triggered
by hardware timers.

Periodic and aperiodic sequences: Most systems will likely generate this type of IATS.
Events can be deterministic to produce periodic IATS, or random to produce aperi-
odic IATS. These two types of IATS can be processed using PSD estimation.

3.3.1 Modelling IATS as a renewal processes

In Section we assumed that IATS are wide-sense stationary (WSS) sequences, in this section
we show that IATS are indeed WSS sequences to which we can apply PSD estimation
methods. We start analyzing periodic tasks under the worst case scenario and then extend
the analysis to the general case. Our focus is on response times as they upper bound all
other event generators for the same task. We also assume that the properties of the renewal
process for response-times holds for any other event generated within the execution of a
job. Extending the response-time analysis to other events requires that the average number
of events generated within each job is constant over time.

We start our analysis by noting that a renewal process is an arrival process in which
inter-arrival intervals are IID random variables. The rationale behind arrival theory is that
the generating process resets at each arrival epoch. Renewal processes can be specified
through the inter-arrival times Sn = X1 + · · · + Xn or the underlying counting process
N(t), t > 0. Consider the case where the nth arrival occurs at t = τ , then counting k
arrivals from Sn = τ we have Sn+k − Sn = Xn + · · ·+Xn+k;Xi = Si − Si−1. Hence, given
Sn = τ, {N(τ + t) − N(τ); t > 0} we have a renewal counting process {N(t); t > 0} in
which N(t) represents the number of arrivals to a system in the interval (0, t] with Sn 6 t.

The counting process N(t) and the inter-arrival process Sn are specifications that can
be used to analyze the underlying renewal process. Each specification provides different
possibilities, depending on the property of interest. In our case we want to determine if
IATS generators are WSS. Notice that not all renewal processes meet stationary condi-
tions. For example, aperiodic tasks such as error handlers or initialization routines can be

28

modelled as a renewal process but in this case the expected value of the inter-arrival times
is ill defined (i.e. the IATS has no mean). A renewal process Sn is WSS if it meets the
following conditions:

• E [Xn] = µ for all t. That is, the expected value of the inter-arrival times is constant.

• KXX(t1, t2) = KXX(t2 − t1, 0) , KXX(t2, t1) = KXX(τ). That is, the autocovariance
function KXX is time invariant.

• E
[
|Xn|2

]
6∞. That is the expected value of the squared inter-arrival times is finite.

We start our analysis with the deterministic case where a task has periodic release time
T and worst-case response time R. The random variable Xn(t) for the inter-arrival time
at epoch n = N(t) is defined in terms of the inter-arrival process as Xn(t) , Sn − Sn−1.
Considering R as the event of interest we have:

Xn(t) = Sn − Sn−1
=

⌊
t

T

⌋
T +R−

(⌊
t− T
T

⌋
T +R

)

= T

where the nth release period is N(t) =
⌊
t
T

⌋
. The expected value of this process is:

E [X(t)] = E[{Xn}] =
1

n

n∑

i=1

Ti = T

with variance σ2 = 0. This result may seem trivial but if we allow σ = c for small
c we have a process where the expected value of inter-arrival times is still T with most
its energy located at ω = 0. Therefore, for a constant-rate generator there is no need to
compute the PSD, it suffices to analyze the ratio of energy at DC to the total signal’s
energy. For a constant-rate generator, the proportion of energy that is accounted for the
small variability of its inter-arrival times becomes noise in its power spectrum. More details
about this particular type of inter-arrival process is presented in the following Subsection.

For the general case, we assume that the system total utilization is below one (see
Equation 2.1) while the analysis of its worst-case response times meets the requirements

29

stated in Section 2.2.1, Equation 2.3 or some other similar equation from the worst-case
response family. In [28, 27, 57] Dı́az, López et al. developed a stochastic framework for
real-time systems and proved that the response-time distribution of schedulable systems
is stationary. However, that does not mean the inter-arrival times are also stationary.
From Figure 3.3 we see that a new job n is released with the task period. In the analysis
of [27, 57] the response time Rn of the nth job depends on three factors: the pending
workload at t = nT , the interference suffer by the job and the computation time required
by the job. Using those three factors they proved that Rn is a random variable with
stationary probability density function FR. In our analysis we do not need the usual index
numbers for tasks and jobs.

ttn−1 tn = nT tn+1

T

Rn−1 Rn

Xn
n−1 n+1

Figure 3.3: Response times and their inter-arrival time.

Xn = R(tn)−R(tn−1)

= tn +Rn − (tn−1 +Rn−1)

= nT +Rn − ((n− 1)T +Rn−1)

= T +Rn −Rn−1

The expected value of Xn for sufficiently large n i.e. n→∞ can be computed as:

E[Xn] =
1

n

n∑

i=1

Xi

= T +
1

n

n∑

i=1

Ri −
1

n

n∑

i=1

Ri−1

= T +
Rn

n
= T (3.1)

30

with initial condition R0 = 0.

There are two consequences of this result. First, the event expectation follows the job
activation time. Second, if the event occurs multiple times within the execution of the job
the expected value between the last occurrence of the previous job and first occurrence
of the next job will dominate the average of the renewal process. That is, long renewals
dominate over shorter ones. For theoretical explanation of this second consequence please
read [70, 33]. The first consequence is evident in Figure 1.2, where the IATS mean is 15
time units regardless of the priority change. The second consequence is harder to show
from IATS.

We now demonstrate that the autocovariance function is time invariant. Let FR be the
probability density function of response times for some task in the system. In [27, 57] Dı́az,
López et al. proved that FR is stationary. From the autocovariance function definition we
have KXX(t1, t2) , E[(Xt1 − µt1)(Xt2 − µt2)] = E[Xt1Xt2]− µt1µt2 . From Equation 3.1 we
have that µ = T for all t, therefore:

E[(Xt1 − µt1)(Xt2 − µt2)] = (Xn − T)(Xn−1 − T)

= [(T −Rn)− T][(T −Rn−1)− T]

= RnRn−1

= F 2
R

also for all t. Note that the stationarity condition for FR implies that the distribution
of response-times is time invariant over a sufficiently long time interval. In fact the proofs
in [27, 57] show that Rn becomes stationary over the task hyperperiod, consequently KXX

is also time invariant for IATS.

Assume we have a feasible system, let Xn(t) be the inter-arrival time for the counting
process N(t) as shown before, then by definition Xn(t) 6 max [{X}] for all n and for any
job in the system:

Xn(t) = T +Rn −Rn−1 6 T +R− C0

where Rn is the response time of the nth job, T the task period, R the worst-case
response time, and C0 the best-case computation time of the task. Note that in this case
the previous job had zero pending load and no interference, with minimum computational
demand, i.e. Rn−1 = C0. Neglecting the best case computation time, we maximize the
inter-arrival time.

31

max [{X}] 6 T +R− C0 < T +R

by substituting R with the upper bound from [73, 6] we obtain:

max[{X}] <
Ti

(
1−∑

i<j

Uj

)
+
∑
i<j

Cj

1−∑
i<j

Uj
<

Ti +
∑
i<j

Cj

1−∑
i<j

Uj

where

Ri 6

∑
i<j

Cj

1−∑
i<j

Uj

is the upper bound of response time, and U the utilization; the indexes i, j are included
because the response-time bound at priority level i is calculated from the worst-case pa-
rameters of all tasks with priorities below or at level i. The utilization factor and the basic
schedulability bound were introduced in Section 2.2.1.

Finally, we have that:

E
[
|Xn|2

]
< E

[
|max[{X}]|2

]
<∞

Since the three properties required for WSS stationarity have been demonstrated we
can safely apply PSD estimation to IATS.

3.3.2 Ratio of DC to Total Power

An IATS generated by a constant-rate generator produces DC IATS. Some real systems
like CAN-bus can generate events at an almost constant rate. A DC IATS concentrates
all the signal power at ω = 0. Therefore, we define the DC to total power ratio (DCTPR)
as the ratio of energy at zero frequency to total signal energy. For DC IATS, an anomaly
will be a drop in DCTPR for an IATS expected to be DC. We compute the DCTPR based
on the energy preserving property of the Fourier transform:

32

Lemma 1. DCTPR: The DC to total power ratio of IATS x[n] is a measure of the amount
of energy located at ωk = 0, it can computed as:

D =

∣∣∣∣
N−1∑
n=0

x[n]

∣∣∣∣
2

N
N−1∑
n=0

|x[n]|2
(3.2)

Proof. Let x[n] be a finite length IATS with Discrete Fourier Transform (DFT) X[k], its
DC to total power ratio is defined as:

D =
|X[0]|2

N−1∑
k=0

|X[k]|2

=

∣∣∣∣
N−1∑
n=0

x[n]e−j0n
∣∣∣∣
2

N−1∑
k=0

∣∣∣∣
N−1∑
n=0

x[n]e−jωn
∣∣∣∣
2

=

∣∣∣∣
N−1∑
n=0

x[n]

∣∣∣∣
2

N−1∑
k=0

∣∣∣∣
N−1∑
n=0

x[n]e−jωn
∣∣∣∣
2 (3.3)

From Plancheret-Parseval’s theroem we have:

N−1∑

n=0

|x[n]|2 =
1

N

N−1∑

n=0

|X[k]|2

=
1

N

N−1∑

k=0

∣∣∣∣∣
N−1∑

n=0

x[n]e−jωn

∣∣∣∣∣

2

N

N−1∑

n=0

|x[n]|2 =
N−1∑

k=0

∣∣∣∣∣
N−1∑

n=0

x[n]e−jωn

∣∣∣∣∣

2

(3.4)

33

Substituting the LHS of (3.4) in (3.3) we get:

D =

∣∣∣∣
N−1∑
n=0

x[n]

∣∣∣∣
2

N
N−1∑
n=0

|x[n]|2
(3.5)

By using 3.2, we can compute the DCTPR from x[n] in O(1) time complexity after the
first N samples. When D ≈ 1, the IATS has almost constant amplitude, and the DCTPR
becomes the most reliable feature for anomaly detection. If an IATS expected to be DC
under normal conditions becomes non-DC, its DCTPR will decrease because more energy
distributes to other frequencies in the power spectrum. The DCTPR can detect deviations
from DC by using the time-domain representation of x[n]. The DCTPR is superior to
alternative methods such as comparing the incoming samples to the expected value and a
set tolerance, thus removing tuning and human intervention.

3.3.3 Estimated Power Spectral Density

Consider the IATS shown in Figure 3.4; both originated on a stationary generator. The
time-domain representations of the IATS in Figure 3.4 show noticeable differences while the
power spectra are similar. From the similarities of the power spectra, we can conclude that
despite the IATS differences, the generating process has maintained its temporal behaviour
with respect to its generator.

Factors such as phase shifts in the generating process, small variations of inter-arrival
times, and the first time stamp of the IATS leads to differences in IATS computed from the
same generator. Issues such as those mentioned before do not affect the power spectrum
of the IATS in frequency domain (FD). They mostly change the phase information of
the signal in FD. Hence, we shift our attention to FD analysis because we can observe
substantial differences in the IATS, and because the said differences do not necessarily
correlate with timing anomalies.

When the IATS generating process is at least WSS, its PSD (i.e. power spectrum) has
a defining FD fingerprint useful for anomaly detection. An anomaly will result in the
loss or change of stationarity, thereby changing the PSD (i.e. the PSD changes its shape).
Having different realizations of an IATS with different PSD shape is not enough for an

34

unbiased comparison because IATS of different total energy are subject to scale differences
and spectral leakage. Therefore, we seek a feature with the following basic properties:

5

Amp
1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

0
0 20 60 8040 100

0 20 60 8040 100

0.2π 0.4π 0.8π π0.6π

∆t× 107

∆t× 107

0.67

0.70
4

3

2

1

5

0

4

3

2

1

sample no.

sample no. ω

a. IATS

c. IATS

b. Power Spectrum

d. Power SpectrumAmp

P̂N

S(ω)

P̂N

S(ω)

0.2π 0.4π 0.8π π0.6π
ω

Figure 3.4: Example of IATSs and their power spectra.
Two segments of 100 samples of IATS from the same generator in a, and c with their corresponding

normalized true PSD (S(ω)), and Welch peridogram (P [k]) on the right. Note how although the IATS

segments show differences, their power spectra are almost identical.

Scale independence

According to Parseval’s theorem [61, 59], the Fourier Transform (FT) is energy preserv-
ing. Therefore the PSD of two sequences with similar frequency structure but different
total energy are subject to scale differences. When computing model features, we use
IATS computed from broader time windows than during anomaly detection. An IATS
containing more samples increases the accuracy of the PSD estimate and reduces the effect
of inconsistencies within the trace.

35

When MuSADET works in detection mode, we use narrower time windows for the IATS
segments. The window length segment determines the time to detection, and thus, it should
be as narrow as possible. This difference of window lengths used when MuSADET operates
in different modes changes the total energy contained in the IATS of windows covering
different time-spans. Hence, the method of choice must normalize the PSD amplitude
while preserving the structure of power distribution in the frequency domain.

A Consistent estimate of the true PSD

The computed spectrum from the IATS must converge to the true PSD as N →∞, where
N is the number of samples. This restriction serves two purposes: (i) by using longer
sequences, more accurate PSD can be computed for the model, and (ii) it minimizes the
mean square error (MSE) of the distance between similar PSD computed from sequences
of different length.

Computing the PSD

In our case, we opted for the Welch periodogram because it estimates the PSD using
overlapping segments of x[n], which reduces the variance of the power spectrum. Another
advantage of the Welch method is a reduction of spectral leakage due to windowing. The
method to compute the Welch periodogram is as follows:

Let x[n] be an IATS of length N . First, split x[n] into a set of L overlapping segments
of length M . Then compute the segment modified periodogram (we dropped the signal
index to reduce notation cluttering):

P̃ (l)[ωk] =
1

MU

∣∣∣∣∣
M−1∑

m=0

x(l)[m]w[m]e−j
2πm
M

∣∣∣∣∣

2

, l = 0, 1, . . . , L− 1 (3.6)

where w[m] is a window to reduce spectral leakage and U is w[m]’s normalization factor.
The Welch PSD estimate is found by averaging the modified periodograms computed using
(3.6):

P̂W[ωk] =
1

L

L−1∑

l=0

P̂ (l)[ωk] (3.7)

36

More details on the Welch method can be found in [61, 59]. According to [13] scaling or
normalizing the periodogram while preserving the FD structure can be achieved by using
the sample variance of the times series (γ̂0 = var[x[n]]) as the normalizing factor:

P [ωk] =
1

Lγ̂0

L−1∑

l=0

P̂ (l)[ωk] (3.8)

The PSD estimate computed using (3.8) exhibits our sought properties. First, due
to the averaging effect of the Welch method, P [ωk] is a consistent estimate of the true
PSD. Second, P [ωk] is also scale-independent due to the normalization by γ̂0. We consider
P [ωk] as a defining feature for normal behaviour and use the notation P [ωk], P [k] or P ,
depending on or our need to specify the index of the frequency bin.

3.3.4 Binary Power Spectral Sequence

In [85], Mehdi et al. used the dominant peak of the FT for anomaly detection. They as-
sumed that a recurrent generator would always have a fundamental frequency and, there-
fore a dominant peak in the amplitude of the FD representation of the IATS. We do not
make such an assumption because the power spectrum of an IATS can contain more than
one dominant peak. Instead, we analyze the PSD to determine a base threshold above
which the PSD contains dominant peaks. We then transform the original PSD into a
binary sequence where peaks above the threshold take the binary value one and the rest
the value zero. We call this transformed sequence binary power spectral sequence (BPSS),
which can then be compared to other BPSSs by a binary measure. Binary measures, when
implemented as logic functions, reduce computational complexity. Also, the BPSS makes
possible signal processing optimizations when computing the PSD of test IATS.

Let P̂n[k], P̂t[k] be the N -length PSD estimates of a normal, and test IATS respectively.
Assume we want to determine how similar these two PSD estimates are. We need these
two PSD in binary form to enable the comparison by a method like the Jaccard distance
[24]. Therefore we can convert these PSD estimates to a binary sequence as follows:

Definition 8 (Binary power spectral sequence). A binary sequence BP [n] such that it
takes the binary value one if P̂ [k] > ThAUTO and zero otherwise.

BP [n] =

{
1, P̂ [k] ≥ ThAUTO

0, otherwise
(3.9)

37

where ThAUTO is a threshold above which the PSD has dominant peaks.

Classification using the BPSS focuses on the structural similarity of the power spectrum.
That is, instead of checking the closeness of the signal’s power at all frequencies, a binary
measure, applied to the BPSS computes the distance based on the presence/absence of
dominant FD peaks. For example, the plots in Figure 3.5 show the difference between
PSD and BPSS. Notice that in the BPSS, all frequency components bellow the threshold
are treated as noise.

Amp

0.25

0

0.05

0.15

0.2π 0.4π 0.8π π0.6π
ω

0.25

0

0.05

0.15

0.2π 0.4π 0.8π π0.6π

Amp

ω

P̂W
peaks threshold

P̂W
peak threshold

Normal PSD

Anomalous PSD

Amp
1

0
0.2π 0.4π 0.8π π0.6π

ω

B̂W

Normal BPSS

Amp
1

0
0.2π 0.4π 0.8π π0.6π

ω

B̂W

Anomalous BPSS

Figure 3.5: Binary Power Spectral Sequence.
A normal and an anomalous PSD on the left with their corresponding BPSS on the right. Note the

missing dominant peak in the bottom right plot of the anomalous BPSS.

Peak detection

To detect dominant peaks, we apply BPSS THRESHOLD (Algorithm 1), an adaptation of
the PERIOD HINTS algorithm. Proposed by Vlachos et al. [80], PERIOD HINTS deter-
mines a threshold above which any component in the power spectrum becomes a period

38

hint. A period hint is a dominant FD peak that may be associated with a real period-
icity of the stationary signal. PERIOD HINTS uses the raw periodogram and contains
other features not needed in MuSADET. For example, PERIOD HINTS may discard some
hints if they are likely to represent unreal periodicities. In MuSADET we cannot assume
that there are underlying periodicities such as seasonal cycles and therefore we include all
dominant peaks in the model.

MuSADET must handle the presence of low-frequency components that do not provide
useful information regarding the true periodicities of the generator. That is, there may be
dominant peaks in the low-frequency range due to very long periodicities or leakage. We
approach this issue by filtering the time series and applying the Welch method to compute
the PSD. The use of Welch periodogram reduces leakage while low-frequency peaks are
removed by filtering the IATS with a high pass filter. BPSS THRESHOLD returns th the
threshold above which FD peaks become dominant and the BPSS of IATS x.

Algorithm 1 BPSS THRESHOLD

Require: x, h,M
Ensure: th, b {Threshold of significant peaks and BPSS }

1: Pmax = ∅ {Vector of maximum peaks}
2: xf = filter(x, h)
3:

4: for l = 1 to 100 do
5: xl = permute(xf)

6: Ŵl = welch(xl,M) {segment length: M , overlap: 50%}
7: insert(Pmax, max(Ŵl))
8: end for
9:

10: sort(Pmax, descending)
11: th = Pmax[5] {5th element is 95th largest power}
12:

13: ŴW = welch(xf ,M)
14:

15: for k = 1 to
∣∣∣ŴW

∣∣∣ do

16: b[k] = (ŴW [k] > th) ? 1 : 0
17: end for
18:

19: return b, th

39

To detect dominant peaks, BPSS THRESHOLD takes three input parameters: (i) an
IATS x, (ii) a high pass filter kernel h, and (iii) the segment length for the Welch pe-
riodogram. First, the algorithm filters x to obtain xf (line 2). Then it randomizes the
content of xf to produce xl. The scrambling process should destroy the frequency domain
structure of xf , and therefore the PSD of xl would not resemble the PSD of xf . The

maximum power of Ŵl is then stored in the power array Pmax. The scrambling of xf , PSD
estimation, and maximum power picked (lines five through seven) is repeated 100 times to
produce periodograms without the FD structure of xf . Finally, the algorithm will set the
threshold to the fifth higher power in Pmax, which should be enough to separate dominant
and non-dominant peaks in the PSD of xf .

Computational advantage of BPSS over PSD estimates

By using BPSS instead of PSD we can reduce the computational complexity of MuSADET’s
anomaly detection on non DC signals. However, when using BPSS we sacrifice feature accu-
racy for anomaly detection performance. The differences in anomaly detection performance
for our case study are presented in Section 4.3. The improvements on computational com-
plexity we discuss below only apply when MuSADET works on detection mode. During
the training stage the model BPSS must be computed as described before and therefore
training on BPSS features requires more computations than PSD.

We start our discussion by noticing that the BPSS feature would contain a few dominant
peaks. For example, the normal BPSS in Figure 3.5 has two dominant peaks out of sixteen
frequency components. The BPSS feature heavily relies on the Fast Fourier Transform
(FFT) to compute the power spectrum for each of the windows required to compute the
Welch periodogram. Training provides model BPSS from which we can extract which
frequency components should have dominant peaks. Computing a few DFT points can
reduce the number of computations required to extract the feature from analysis IATS.
Hence, we require an algorithm that can compute K frequency components of the power
spectrum with a lower computational load than O(M log2M). Where K is the number of
frequency components and M the length of the sequence.

We shall note that direct computation of the M -point DFT is in O(M2), and the FFT
computes all DFT coefficients in O(M log2M). The Goertzel [37] algorithm can compute
a few samples of the DFT with more efficiency than the FFT but will require O(M2) if all
DFT points are computed with this method. The FFT works as a block algorithm and its
computing cost is fixed for a given sequence length.

Let K be the number of dominant peaks in a model BPSS the Goertzel algorithm is

40

more efficient than the FFT when K < log2M [59]. We start the analysis by noting that:

ej
2πkM
M = 1

Then the DFT of x[n] can be written as:

X[k] = ej
2πkM
M

M−1∑

n=0

x[n]e−j
2πkn
M

=
M−1∑

n=0

x[n]e−j
2π
M
k(n−M)

=
M−1∑

n=0

x[n]ej
2π
M
k(M−n) (3.10)

Equation 3.10 can be transformed into a recursive filter as described in [79, 59] where:

yk[n] = ej
2πkn
M yk[n− 1] + x[n], 0 6 n 6M

X[k] = yk[M]

with initial conditions yk[−1] = 0, and input x[n] = 0 for n < 0 and n > M . The
Goertzel algorithm expressed in recursive form requires M complex multiplications to
compute one DFT value. Hence if K DFT points are needed computational complexity is
O(KM) and Goertzel outperforms the FFT when K < log2M . A further improvement,
although not significant in terms of algorithmic analysis, could take advantage of DFT
points computed for previous windows at the expense of storage cost. Since the Welch
periodogram splits a window of length N into smaller overlapping windows. Storing DFT
values of previously computed significant peaks can improve performance and enable the
use of a sliding window with reduced cost when averaging a few frequency components.

In this thesis we did not compute the BPSS using the Goertzel algorithm. By applying
the Goertzel method we would assume that only normal dominant peaks will be above the
peak threshold. Although normal IATS should only have peaks at its dominant frequency
components it is not the general case for all IATS, making Goertzel only valid to classify
normal IATS. Moreover, to use the Goertzel algorithm the violation of its assumption must

41

be taken into consideration. For example, by checking if there are chances to have other
dominant peaks at frequency components that should be below the threshold. Validating
the said assumption could be done by applying Parseval’s theorem after computing each
PSD point to determine if there is more energy left in the power spectrum such that
a peak cannot be above the threshold. Notice that applying Goertzel would require a
strategy to either include more frequency components until no more peaks can go beyond
the threshold or switch to the PSD method when the assumption cannot be satisfied with
absolute certainty. Hence, we limited our work to verify whether or not the BPSS is a
feasible feature for anomaly detection by first computing the PSD and then transforming
it into the BPSS.

3.4 Classification of test features

We detect anomalies present on test IATS by comparing its defining feature to a model. For
non-DC IATSM , {P1, . . . , PN} is a set of N PSD estimates. We present the classification
of non-DC signals first.

3.4.1 Classification by χ2 distances on PSD features

Consider a feature P [k] computed from Equation (3.8), and the random variable Pk, the
signal power at ωk. Since x[n], the IATS generated by a recurrent generator is a WSS
stationary sequence, we can assume that Pk is normally distributed with sample mean
Pk = 1

Lγ̂0

∑L−1
l=0 P̂

(l)
ij [ωk] and sample variance s2k = var[P̂

(l)
ij [ωk]/γ̂0], hence:

Pk ∼ N(S(ωk), σ
2(ωk)) (3.11)

where S(ωk) is the true mean power with variance σ2(ωk) at frequency ω = ωk. Since Pk

is normally distributed, then P2
k ∼ χ2(1). Let WK = P2

1 + P2
2 + · · ·+ P2

K , it is known that
WK ∼ χ2(K) where the χ2 metric can be computed by:

QP =
K∑

k=1

(Pk − S(ωk))
2

S(ωk)
(3.12)

Equation 3.12 is also known as the Pearson’s-χ2 distance and can be used to measure
the distance between features Pa, and Pi as:

42

QP (a, i) =
K∑

k=1

(Pa[k]− Pi[k])2

Pi[k]
(3.13)

where Pa is the analysis feature and Pi is the model feature. The QP (a, i) statistic in (3.13)
can be approximated by a χ2(K − 1) distribution and is a measure of the discrepancy
between the observed feature Pa and the expected feature Pi ∈M.

Since (3.13) is a nonsymmetric distance, it can produce false results even when the
compared spectra are dissimilar. To avoid this problem we take the max-symmetric χ2

distance [14] defined as the maximum between the χ2-Pearson’s and χ2-Neyman’s distances:

V (a, i) = max (QP (a, i), QN(a, i)) (3.14)

where the χ2-Neyman distance QN(a, i) is:

QN(a, i) =
K∑

k=1

(Pa[k]− Pi[k])2

Pa[k]
(3.15)

Computing classification score

Note that applying the method described above produces |M|, χ2 distances. Hence after
choosing distance V (a, i) : 1 6 i 6 |M| we can use a p-value and the χ2(K−1) distribution
to assign the final classification.

If V (a, i) ≤ χ2
p(K−1) there is no evidence to reject the null hypothesis that the features

are equivalent, whereas if V (a, i) > χ2
p(K − 1), it is unlikely that the differences between

the features are due to random chance. Formally:

H0 : V (a, i) ≤ χ2
p(K − 1)

Ha : V (a, i) > χ2
p(K − 1)

Based on the test above we assign a classification score as:

vi =

{
1 V (a, i) > χ2

p(K − 1)(anomalous)

0 otherwise(normal)

43

Selecting V (a, i) for classification presents a variety of options. The appropriate index
1 6 i 6 |M| of the model feature taken as a reference to assign the score would depend on
the sensitivity level or decided based on efficiency needs for an online anomaly detection
scenario. For example, selecting max(V (a, i)) would be pessimistic given the model and
comparison feature. Another approach could classify the feature as anomalous as soon as
some V (a, i) > χ2

p(K − 1) meaning that we accept the feature to be normal if an only if
all distances are smaller than χ2

p(K − 1), which is also a pessimistic approach. Selecting

the median distance Ṽ (a, i) is neither pessimistic nor optimistic. When using the median
distance method an odd number of model features ensures that a χ2 value is selected. The
last two methods help to reduce the number of distances required to determine the score.
We used the middle-point distance method in our evaluation of MuSADET.

3.4.2 Classification by Jaccard distance on BPSS features

Consider a feature BP computed by Equation (3.9), it takes the value one for significant
peaks of the PSD, and zero otherwise. The BPSS can now be compared to model features
by a binary measure. The choice of measure will determine the effectiveness of the similarity
test. A normal BPSS should contain a small number of dominant peaks. That is, most
frequency components of model features would be zero. The bias of the BPSS toward
significant peaks determines the choice of measure.

In Section 2.2.3, we presented some widely used binary measures. We also stressed the
relevance of matches and mismatches. After testing some binary measures, we concluded
that the best choice would be the Jaccard similarity. The rationale for our choice stands on
how the Jaccard similarity operates. Positive matches of the BPSS, (i.e. matching dominant
peaks) are divided by the total of matches and mismatches. The number of matches in
the denominator forces the similarity to be one when both features are the same. Even if
the features have the same dominant peaks, any mismatch will reduce the similarity. For
example, consider the BPSSs as shown in Figure 3.5 they share one dominant peak, and
there is a mismatch at the last frequency component, therefore DJac(a, i) = 1

2
, which in

this case means that both sequences are dissimilar.

Computing classification score

To compute the score we apply (3.16) to all model BPSSs comparing them with the test
BPSS

44

DJac[i](BPa, BPi) =
a

a+ b+ c
(3.16)

to obtain a set of similarities, where BPa is the analysis feature, BPi ∈ M is the model
feature, and a, b, c are computed according to Table 2.2.

Note that applying the method described above produces |M|, Jaccard similarities.
To compute a score from this set of similarities, we apply the harmonic mean, which is
appropriate to compute the average of rates. Notice that the Jaccard similarity can be
seen as a rate. In our case, the harmonic mean is less sensitive when the similarities are
close to one but reacts strongly when any similarity is close to zero. The score based on
BPSS is computed as:

sB =
N

N∑

i=1

1

DJac[i]

(3.17)

Note that if any of the similarities is zero then its reciprocal in Equation (3.17) would
be undefined, therefore in case a similarity is zero we assign a real number close to zero to
overcome division by zero.

3.4.3 Classification by DCTPR

Despite the power of DCTPR to detect departure from DC, it is not enough to classify
the signal. For example, a misbehaving generator that doubles the rate of an event will
have the same DCTPR, but the average of the IATS will be half of the expected value.
Therefore, in the presence of a signal with normal DCTPR we also check that the mean
value of the IATS amplitude is within a specific range. Hence, we assign an anomaly score
score for DC signals as follows:

SD =

{
0 Da > Th ∧ x̄a ∈ [x̄a ± nsM] (normal)

1 otherwise(anomalous)

where Th : Th < 1 is the classification threshold for the DCTPR, sM is the standard
deviation of the IATS in the model and n > 0 is a scaling constant.

The threshold Th sets how much energy needs to be concentrated at ω = 0. If Th is
too low, it would consider signals with significant non-DC peaks as DC while a too high

45

threshold would force classification by the χ2 metric of signals whose non-DC part of the
power spectrum is composed of noise.

We do not propose any automated method to tune Th but we found that Th = 0.9 (i.e.,
at least 90 % of the signal’s energy must be DC) as threshold worked well for the datasets
we present in our case studies. The term nsM sets the tolerance variation of the mean
value of the IATS. For DC signals sM is always relatively small, and we found that for
n = 1 classification results were accurate.

46

Chapter 4

Case Studies

In this chapter, we present and discuss the results of applying multi-signal anomaly detec-
tion for real-time traces (MuSADET) to detect timing anomalies present in datasets from
two different systems. The HCRL CAN1 injection dataset contains traces collected from
the controller area network (CAN) deployed in a vehicle. The HEXACOPTER2 dataset
is composed of traces collected from a QNX3-controlled hexacopter. Both datasets con-
tain normal data from which we trained normal models. After training the model, we
performed anomaly detection on test data for which we present two analysis techniques.
The performance analysis evaluates the quality of anomaly detection while the visualiza-
tion technique shows how our tool can be useful in an engineering environment. We also
provide a comparison between MuSADET and the related method Signal Processing for
Trace Analysis (SiPTA), where we show that MuSADET outperforms SiPTA. The follow-
ing section presents a brief introduction to performance analysis and our choice of tools or
indicators. We also introduce a graphical method to present anomaly scores to an analyst.
Such visualizations are useful because they can show how some generators and signals are
affected by present anomalies.

1An in depth description of the HCRL CAN dataset can be found at:
http://ocslab.hksecurity.net/Datasets/CAN-intrusion-dataset

2Contact information for inquiries about the HEXACOPTER dataset can be found at:
https://uwaterloo.ca/embedded-software-group/

3http://blackberry.qnx.com/

47

4.1 Performance Analysis

We provide performance analysis on anomaly detection for both case studies. Since Mu-
SADET is a binary classifier, the results of a particular classification setup depends on the
threshold that divides the data into normal/anomalous. For each possible threshold value,
there is a particular distribution of predictions. Rates are computed from the confusion
table, as shown in Figure 4.1.

The first analysis method we show is the receiver operating characteristic curve (ROC) [9,
31], which provides an intuitive graphical representation for threshold levels that cover the
scores range. The second analysis takes the best threshold value and analyzes the perfor-
mance using indicators (measures) that assess the quality of the classifier from different
viewpoints. The following subsections provide a brief introduction to the ROC curve and
the indicators we use.

False negative
FN

(Type II error)

True class

Pr
ed
ic
te
d
cl
as
s

positive: P negative: N

P
T

P
N

True positive TP

True negative
TN

False positive
FP

(Type I error)

True positive rate

TPR =
TP

P

False positive rate

FPR =
FP

N

True negative rate

TNR =
TN

N

False negative rate

TNR =
FN

P

Rates

Figure 4.1: Confusion table and rate equations.
Confusion table on the left and the corresponding rate equations on the right.

Receiver Operating Characteristic

The ROC curve [9, 31] is a well-known method to analyze the performance of classifiers.
The ROC curve is attractive due to some desirable properties. (i) it is a compact and
normalized graphic representation of classification rates, (ii) it is insensitive to change in
the class distribution, (iii) it is suited for discrete and continuous classifiers. ROC curves
provide an intuitive representation for classification performance as detection threshold
changes. In this thesis, we use the ROC to show how the classifiers under analysis (Mu-
SADET or SiPTA) performs when detecting anomalies from different generators and sig-
nals.

48

The ROC curve is built from the anomaly detection results obtained after applying
MuSADET or SiPTA to windows (segments) of a trace. Recorded results for each window
contain computed scores for signals and the window’s true value. Based on the threshold
level, each window receives a class assignment. The first threshold being the minimum
score among all windows. The results are cast into the confusion table, and the computed
FPR and TPR become the coordinates of the ROC for that particular threshold. The
threshold is then increased by a set amount and the computations involving the confusion
table repeats to cover the range of scores.

The process to construct a ROC curve yields a graph such as the one shown in Fig-
ure 4.3. For this example, the threshold ranges over the interval Th ∈ [0, 1] where Th = 1
means that a window of a particular signal will be classified normal if the DC to to-
tal power ratio (DCTPR) score is exactly one and anomalous otherwise. The point for
Th = 1, located at coordinate (0, 0), means that all windows are considered normal, there-
fore TPR = 0 and FPR = 0. That is, no anomalous windows are found, and no normal
windows are misclassified. Likewise, the point for Th = 0 located at coordinates (1, 1)
means that all windows are considered anomalous, therefore TPR = 1 and FPR = 1.
That is, all anomalous windows are found, but also all normal windows are misclassified.
The perfect classifier would have a point at coordinates (0, 1) where all true positives are
found without any false positive. Desirable points are those near coordinate (0, 1), where
the true positive rate is maximized while the false positive rate is minimized.

Performance measures

Several measures provide insight into how certain classifier performs. The results computed
from a confusion table are the first group of such measures. The problem is that they alone
do not provide a complete picture of the classifier. Performance measures such as accuracy,
precision, recall, and F1-scores, complement the ROC curve. These metrics enable com-
parisons between SiPTA and MuSADET. They also allow comparisons within MuSADET.
Since MuSADET is a multi-signal classifier, we are also interested in its performance for
different signals. We report performance measures in a table such as Table 4.3 we also
included a brief description of some measures.

Precision: Pr = TP
TP+FP

quantifies the quality of positive predictions.

Recall: Rc = TP
P

quantifies the retrieving power of the classifier.

Accuracy: Acc = TP+TN
P+N

is an overall measure that quantifies the capacity of the detector
to properly identify both positive and negative cases from the overall population.

49

F1-score: Defined as F1 = 2 Precision·Recall
Precision+Recall

this measure combines the two indicators
aimed at positive classification using the harmonic mean. The F1-score is known to
be biased toward positive classification.

Mathews Correlation Coefficient: Mcc = TP×TN−FP×FN√
(TP+FP)(TP+FN)(TN+FP)(TN+FN)

combines

all the elements of the confusion table and therefore includes both negative and pos-
itive predictions as a measure of classification quality. The MCC is also a balanced
measure and works quite well even when the classes are of different size.

4.2 HCRL CAN injection

The traces in this dataset were collected by the Hacking and Countermeasure Research
Lab (HCRL-South Korea). Table 4.1 is the summary of the HCRL dataset. Each trace
contains two segments. The first segment includes normal and anomalous messages injected
into CAN. Following the anomalous fragment, there is a segment of normal CAN data.
The conditions in which the vehicle operated during the experiments are unknown. So
we presume that for safety reasons the vehicle was stationary during the collection of
anomalous data.

4.2.1 Brief introduction to CAN-bus

The CAN communication protocol (ISO 11898) is a carrier-sense, multiple-access protocol
with collision detection and arbitration on message priority (CSMA/CD/AMP) [63, 75].
Commonly known as CAN bus it is mostly used in the car industry for which it was
originally designed. CAN bus is fast, robust and low cost due to its simplicity and the
need of only two wires for communication. The fundamental features of CAN bus are
introduced below followed by a more detailed yet brief introduction to the topic.

Carrier Sense Multiple Access (CSMA): Each node on a bus must wait for a pre-
scribed period of inactivity before attempting communication. Multiple nodes can
attempt access to the bus concurrently. The carrier sense feature enables decentral-
ized synchronization to the bus while multiple access simplifies arbitration.

Collision detection (CD): Collisions are detected through bit-wise logic and differential
signalling. A collision is detected when a node tries to transmit a logic one and reads
a logic zero. A node that detects a collision aborts communication.

50

Arbitration on Message Priority (AMP) Communicating nodes will output the CAN-
ID first. If a collision is detected the node with the highest priority wins the arbitra-
tion and keeps transmitting.

The use of differential drivers as shown in Figure 4.2.a increases the signal to noise ratio
of the access media which improves bus robustness. In the case of CAN bus, a logic zero
in the transmitting side (i.e. Tx=0) is converted into a differential or dominant voltage in
the shared data lines (i.e. CANL=Vl, CANH=Vh). A logic one in the transmitter input puts
the output drivers in high impedance. When all transmitting drivers connected to the bus
are in high impedance the data lines in the shared interface become a recessive level. Note
that CANL, CANH take on the same voltage level driven by pull resistors (not shown here).
A recessive level will be overridden by any transmitter driving a dominant bit on the bus.

SOF

1
ID

Control Data CRC ACK EOFArbitration
RTR

11 1
IDE r0 DLC

1 1 4 0-8 bytes 16 2 7

CANL

CANH

TxA

recessive

dominant

tidle SOF ID10..4 ID3 ID2

CANH

CANL

Tx

Rx

a) Simplified driver b) Arbitration example

c) Data frame

TxB

ID1 ID0

0x00A16

0x00B16
1

Figure 4.2: CAN bus fundamentals.
The differential CAN-bus transceiver in a) outputs the signal pattern as shown in b). A Standard

CAN-bus frame is shown in c) where the field width is given in bits. The bubble with a ’1’ shows the

instant where TxB loses arbitration.

Bus arbitration is achieved by sending the CAN arbitration field right after the start
of frame (SOF) bit. The identifier subfield (ID) is transmitted first commencing from the
most significant bit i.e. ID 10. If two nodes start transmitting concurrently as shown in
Figure 4.2.b the active nodes will keep sensing the data lines to confirm that the intended
output is present on the shared lines. If a node wanting to transmit a recessive bit senses
a dominant bit it will stop transmission immediately due to a collision resolved in favour

51

of a highest priority node. In this scenario the node that drives the latest dominant bit
wins arbitration and continues to transmit the rest of the frame. The scheme described up
to this point enforces a priority order in which ID=0 has the highest priority

From the perspective of scheduling theory CAN bus is non preemptable because trans-
mitting nodes cannot be interrupted. However, low priority nodes can block high priority
nodes if they start transmitting before a high priority node needs access to the bus. Col-
lisions do not affect the highest priority node among the set of nodes starting concurrent
transmission. Therefore, high priority nodes will suffer less interference in the presence of
spurious nodes injecting messages on the bus. As node priority decrease a high collision
rate will severely impact the chances of transmission for low priority nodes. When a node
normal transmission timing is affected due to blocking or high collision rates, they will need
to try multiple times and that in turn will affect the inter-arrival times sequence (IATS)
it generates.

4.2.2 Attack scenarios

There are two attack scenarios: (i) fuzzy injection, and (ii) impersonation or spoofing. The
fuzzy injection attack, reported in the can fuzzy trace, contains the longest anomalous
segment and the lowest injected message count. In terms of time length and message
composition, both impersonation traces (can gear and can rpm) are quite similar. For
all three traces, the ratio of injected/normal messages is close to 0.2. Hence we assume
that each experiment follows different message injection rates, which can have an impact
on anomaly detection performance. More details on each attack strategy are presented
below:

• Fuzzy injection: In this scenario, a fuzzy randomizing algorithm generates target
CAN-IDs. Target CAN nodes receive unwanted random data. The attack tries to
disrupt the scheduling of the bus while hindering detection. Low priority nodes should
be particularly vulnerable due to CAN bus collision handling mechanism. Corrupt
data might be hard to detect if it falls within the data range of the transmitting
node. We did not confirm the authenticity of the target CAN nodes. The difficulty
in detecting these schedule-disruptive attacks comes from the fact that each CAN
node receives false messages without a discernible pattern.

• Impersonation or spoofing attacks: In this scenario, messages are injected into spe-
cific CAN nodes. Considering the attack mode tackles a single node, it could be

52

hard to detect without knowing the ID of the target node. The nodes under at-
tack are CAN-ID = 0x43F for the can gear trace and CAN-ID = 0x316 for the
can rpm trace. Due to CAN priority and collision handling mechanism, this scenario
should not disrupt the operation of nodes with higher priority than the node under
attack. However, we found that it is disruptive to the scheduling of the bus, and its
effects can be detected by analyzing high priority nodes.

Table 4.1: Overview of the HCRL-CAN dataset

Trace
Message Count ×103 Time duration [s]

No attack
Attack

Total No attack Attack Total
Normal Injected

can fuzzy 891 2456 492 3839 482 2466 2948
can gear 891 2955 597 4443 482 1949 2431
can rpm 891 3076 655 4622 482 1952 2434

4.2.3 Training

Each trace in the HCRL CAN injection dataset has a section of 482 s of normal data, the
msg f column differentiates between normal and injected messages. To train the model,
we used window segments of 5 s taken from the normal segments of each trace. Each normal
window of five seconds in duration contains around 9,250 CAN messages generated by 26
CAN IDs.

The header of the CAN trace is H = 〈time stamp, can id, dlc, data, msg f〉. Applying
Definition 1 we have: t = time stamp, G = can id, and S = can id, i.e. the signal
identifier is the generator itself. The data, dlc, and msg f columns are excluded from
the trace model.

Each normal section contains messages from 26 CAN IDs. For training, we partitioned
each clean segment into windows covering five seconds of CAN data. From approximately
290 windows of normal CAN data we took a random sample of 60 windows to train the
model. Then we ran MuSADET in training mode to obtain a model of the system contain-
ing all the features for each of the 26 generators. From the analysis of these features, we
found that all generators are periodic, and therefore anomaly detection would be performed
based on the DCTPR feature. The summary of this analysis is presented in Table 4.2.

The results recorded in Table 4.2 show that, when the system operates under normal
conditions, all 26 CAN nodes send messages with a highly consistent rate. Using the

53

median as a criterion, we concluded that all CAN nodes are likely to transmit messages at
a constant rate because the DCTPR feature is above 0.95 for most window segments. The
periodic behaviour is further confirmed by considering the number of traces with DCTPR
above the discrimination threshold of 0.9. For example, generator 0x2C0 has the smallest
minimum DCTPR with 58 windows having D > 0.9 an indication that 0x2C0 generates
messages at a constant rate. Notice that a small number of windows scored DCTPR values
below the threshold, probably due to one or two trace segments containing initialization
data.

4.2.4 Anomaly detection setup

The ratio of injected messages to time duration ra of each attack section in the HCRL CAN
injection dataset is a measure of the prevalence of attacks. The variation of ra indicates that
each attack scenario follows different injection rates. For example, the can fuzzy trace
with ra = 0.199 suggest that the fuzzy attacks are more spread than the impersonation
attacks found in the can rpm dataset with ra = 0.335. From the dataset description we
know that there are 300 localized attacks on each dataset with different injection rates.
Our goal is to detect attacks as soon as possible with the best detection rate. We achieved
this goal by looking into the score for each individually trace segment (window). Because
the time-span of the window under analysis determines the time to detection, it is desirable
to have the smallest possible window.

We tried three different window lengths: 250 ms, 500 ms, and 1 s. Two factors deter-
mined the length of the shorter window. First, the period of the fastest generators (10 ms),
and second the criterion that a window is anomalous if it contains at least one injected
message. For the case that an anomalous 250 ms window has one anomalous message the
ratio of anomalous to normal messages is particularly small and therefore, the anomaly
would be hard to detect. For example, the ratio of anomalous to normal messages for any
10 ms generator would be 1/26 ≈ 3.9% (assuming there are precisely 25 normal messages
for the generator under analysis). That is, we want to assess if MuSADET can find timing
disruptions with a 3.9% minimum impact factor on any fast generator. As the window
length increases the ratio of anomalous to normal messages for most anomalous windows
will increase because more injected messages are likely to be present in the anomalous
window.

We ran MuSADET in anomaly detection mode for the whole segment of anomalous
data. We did not select a random sample of windows for anomaly detection because the
anomalous segment contains enough normal data. The results of the anomaly detection
experiments are presented in the next section.

54

Table 4.2: Training Results Summary for the HCRL-CAN dataset

CAN-ID
DCTPR Count Average Period [ms]

Min Median Max D >0.9 normal gear rpm fuzzy
0x002 0.919 0.987 0.991 60 10 12 12 18
0x0A0 0.963 0.999 0.999 60 100 121 116 183
0x0A1 0.963 0.999 0.999 60 100 122 117 188
0x130 0.891 0.986 0.992 59 10 12 12 19
0x140 0.890 0.986 0.992 58 10 12 12 19
0x153 0.924 0.995 0.997 60 10 12 12 19
0x18F 0.905 0.998 0.999 60 10 12 11 19
0x1F1 0.964 0.999 0.999 60 20 24 23 37
0x260 0.891 0.998 0.999 59 10 12 12 19
0x2A0 0.873 0.998 0.999 59 10 12 12 19
0x2C0 0.845 0.999 0.999 58 10 12 12 19
0x316 0.914 0.996 0.999 60 10 12 2 18
0x329 0.855 0.997 0.999 59 10 12 12 19
0x350 0.875 0.999 0.999 59 10 12 12 19
0x370 0.881 0.999 0.999 59 10 12 12 19
0x430 0.970 0.999 0.999 60 20 23 23 36
0x43F 0.905 0.999 0.999 60 10 3 12 19
0x440 0.896 0.999 0.999 59 10 13 12 19
0x4B1 0.974 0.999 0.999 60 20 24 23 37
0x4F0 0.926 0.999 0.999 60 20 25 24 37
0x545 0.919 0.997 0.999 60 10 13 12 20
0x5A0 0.889 0.999 1.000 58 999 1260 1215 1635
0x5A2 0.889 0.999 1.000 58 999 1281 1224 1698
0x5F0 0.956 0.999 1.000 60 50 64 61 99
0x690 0.936 0.999 0.999 60 100 124 119 189

4.2.5 Discussion

The plots in Figure 4.3 and Figure 4.4 present ROC curves for three selected nodes from
the HCRL CAN dataset. Each ROC curve has three plots with data corresponding to
classification scores for windows of 1 s, 500 ms, and 250 ms where each of the marked data
points over the plot lines represents a classification threshold.

55

HCRL GEAR DRIVE

The ROC analysis for the spoofing scenario to the gear drive is shown in Figure 4.3. The
target node for the spoofing attack is 0x43F (centre plot), showing a positive detection
rate of 100 % for windows of 1 s and 500 ms. Positive classification falls 1 % when the
window length is reduced to 250 ms. In all cases, the false positive rate depends on the
threshold value, where values close to th = 0.9 reduce false positives down to 2 %. When
looking to node 0x002, we can see that more than 75 % of anomalous windows can be
detected with a low number of false positives. A similar situation, but with even better
positive classification, can be observed for node 0x545 and window lengths of 1 s and
500 ms.

0.25 0.5 0.75 0.9 1

1
0.9

0.75

0.5

0.25

0.10 0.25 0.5 0.75 0.9 1

1
0.9

0.75

0.5

0.25

0.10 0.25 0.5 0.75 0.9 1

1
0.9

0.75

0.5

0.25

0.10

Tr
ue

Po
sit
iv
e
Ra

te

False Positive Rate

CAN ID = 0x002 CAN ID = 0x43F CAN ID = 0x545

250 ms
500 ms
1 s

window length
250 ms
500 ms
1 s

window length
window length

250 ms
500 ms
1 s
SiPTA 1 s

Figure 4.3: ROC curve for the HCRL GEAR DRIVE scenario.
From left to right priority on the CAN-BUS decreases. Node is 0x43F the target of the spoofing attack.

The ROC plots in Figure 4.3 show that for this attack strategy, MuSADET can detect
timing anomalies across the system with high confidence. For example, when an attack is
launched, it disrupts the IATS of node 0x002 (the highest priority node), and the anomaly
can be detected indirectly. The performance degradation seen for node 0x545 and window
length of 250 ms is due to deep disruption of the IATS at this level of time resolution. This
effect can be appreciated more clearly in the visualization plot (Figure 4.5).

Table 4.3 contains the performance analysis of selected threshold levels for MuSADET.
The target node is CAN ID = 0x43F; therefore, we should expect superior MuSADET’s
performance for this node. Table 4.3 contains three groups of classifications, one for each
window length. For each window, we present performance measures for three chosen signals
to show high and low priority nodes in addition to the target node. The analysis of SiPTA

56

is not included here because from the ROC curve, and it is clear that SiPTA’s performance
is inadequate.

The first group of measures to analyze are precision, recall, and accuracy. For example,
the precision for the 1 s window is high regardless of the node. That is an indication
of a relatively low false-positive rate almost independent of node priority. As expected
MuSADET’s better precision is achieved for the highest priority node. This precision
may seem odd, but consider that CAN bus is a prioritized and shared real-time interface.
Then we can conclude that high priority nodes will generate IATS with much less variance
around their expected direct current (DC) value than low priority nodes. The reduction of
the IATS variance reduces the number of signals being classified as anomalous when node
priority is high.

Recall and accuracy behave as we expected for injection attacks to a single node. The
best results are achieved for the attacked node because it is the one that suffers the most
interference. The high priority node is more immune to disruption than the low priority
node. Consequently, all three measures are better for the lower priority node. As the
detection window narrows, the measures do not change significantly. We attribute this
behaviour to the constant ratio of normal to anomalous windows that preserve the overall
distribution of Normal/Anomalous windows. A satisfying result is that MuSADET can
identify all anomalous windows for the target node (Rc = 1), but it can also indirectly
detect anomalies when analyzing low and high priority nodes.

The F1-score shows that regardless of the signal, MuSADET is capable of detecting
timing anomalies with high performance, particularly for the target node. Narrowing the
window does not seem to affect performance significantly. However, for the 250 ms window,
the F1-score gets close to 0.9. The problem of the F1-score is that it is biased towards
positive classification and does not provide a fair analysis, mainly when the two classes are
not balanced. Although in our case study, both classes contain about the same amount
of normal and anomalous the bias towards positive classification has some effect. We
also provide the MCC score, which includes all types of predictions and therefore is more
accurate. Again we can confirm that MuSADET performs well both within a particular
detection window and across different windows.

57

Table 4.3: Summary of performance metrics for the CAN GEAR scenario.

Recall Miss rate Accuracy Scores
ID Precision (TPR) (FNR) (ACC) F1 MCC

0x0002 0.9717 0.7843 0.2157 0.8711 0.8680 0.7612
0x043F 0.9405 1.0000 0.0000 0.9658 0.9693 0.9330
0x0545 0.9439 0.8841 0.1159 0.9090 0.9130 0.8197
Window length: 1000ms Threshold=0.9

Recall Miss rate Accuracy Scores
ID Precision (TPR) (FNR) (ACC) F1 MCC

0x0002 0.9668 0.7971 0.2029 0.8890 0.8738 0.7879
0x043F 0.9363 1.0000 0.0000 0.9672 0.9671 0.9365
0x0545 0.9358 0.8801 0.1199 0.9132 0.9071 0.8271
Window length: 500ms Threshold=0.9

Recall Miss rate Accuracy Scores
ID Precision (TPR) (FNR) (ACC) F1 MCC

0x0002 0.9650 0.7790 0.2208 0.8869 0.8621 0.7808
0x043F 0.8603 1.0000 0.0000 0.9262 0.9249 0.8626
0x0545 0.9346 0.8726 0.1251 0.9154 0.9026 0.8298
Window length: 500ms Threshold=0.9

HCRL FUZZY

The ROC analysis for the fuzzy injection scenario is shown in Figure 4.4. There is no target
node for this scenario because messages are injected into random CAN ID’s. The fuzzy
injection strategy is more challenging than spoofing. From the perspective of a CAN node,
these types of attacks are perceived as a moderate increase in traffic. The result can be
clearly seen in the ROC curve as a decrease in positive detection when compared to target
nodes in the spoofing scenarios. A characteristic feature of the fuzzy attack is a progressive
disruption of the timely operation of the CAN bus as the node priority decreases.

From the ROC curve, it is evident that a reasonable amount of anomalous windows
escape detection. For example, more than 25% of the anomalous windows go undetected
for node 0x002.The decrease in FNR correlates with the expectation that low priority
nodes are more vulnerable to injection attacks than high priority nodes.

Since messages injected to CAN bus in the fuzzy strategy do not follow any discernible

58

0.25 0.5 0.75 0.9 1

1
0.9

0.75

0.5

0.25

0.10 0.25 0.5 0.75 0.9 1

1
0.9

0.75

0.5

0.25

0.10 0.25 0.5 0.75 0.9 1

1
0.9

0.75

0.5

0.25

0.10

Tr
ue

Po
sit
iv
e
Ra

te

False Positive Rate

CAN ID = 0x002 CAN ID = 0x43F CAN ID = 0x545

250 ms
500 ms
1 s

window length
250 ms
500 ms
1 s

window length
window length

250 ms
500 ms
1 s
SiPTA 1s

Figure 4.4: ROC curve for the HCRL FUZZY trace.
From left to right priority on the CAN-BUS decreases. All nodes in this scenario receive injected

messages.

pattern we cannot expect that for this scenario the measures will be strongly correlated
to the attack mode. We would expect that the measures are somehow correlated to node
priority as a result of the real-time nature of CAN bus. For example, precision follows
somehow the same pattern as in the previous case, it is better for the highest priority
node and then it wanders for the other two nodes. However, the mechanism by which
this behaviour is repeated is due to different conditions. For the highest priority node the
low variance of IATS is the key factor in avoiding misclassification of normal windows.
However as node priority decreases and recall grows it becomes the dominant factor that
affects the precision.

Recall and accuracy are now inversely correlated to node priority; we attribute this
behaviour to an increase in CAN bus disruption as the node priority decreases. Interestingly
as the detection window narrows, recall and precision increase for each node. This does not
follows the pattern of injection scenarios; where these measures did not change significantly
as the detection window narrowed. There is a simple explanation for this behaviour. With a
wider detection window the density of anomalies within the window should be smaller. The
amount of normal data in the IATS will wash out the anomalies making anomalous windows
more likely to be classified as normal. As the detection window shortens, anomalies become
much more evident and therefore detectable. In contrast, the spoofing class of attacks sends
messages at a high rate to the same node and the influence per window remains unchanged
as we move across the range of CAN nodes.

The F1-score, and MCC-score also correlates with node priority and detection quality is

59

still high despite the fuzzy injection being a more challenging class of attack. Narrowing the
window does not seem to affect performance between 1 s, and 500 ms with some reduction in
the 250 ms. Again we can confirm that MuSADET performs well both within a particular
detection window and across different windows.

Table 4.4: Summary of performance metrics for the CAN FUZZY secenario.

Recall Miss rate Accuracy Scores
ID Precision (TPR) (FNR) (ACC) F1 MCC

0x0002 0.962 0.708 0.187 0.893 0.816 0.790
0x0316 0.916 0.898 0.077 0.921 0.907 0.841
0x0545 0.951 0.919 0.064 0.944 0.934 0.889
Window length: 1000ms Threshold=0.9

Recall Miss rate Accuracy Scores
ID Precision (TPR) (FNR) (ACC) F1 MCC

0x0002 0.972 0.732 0.107 0.936 0.835 0.871
0x0316 0.950 0.863 0.057 0.949 0.905 0.897
0x0545 0.955 0.910 0.041 0.958 0.930 0.916
Window length: 500ms Threshold=0.9

Recall Miss rate Accuracy Scores
ID Precision (TPR) (FNR) (ACC) F1 MCC

0x0002 0.960 0.709 0.105 0.935 0.816 0.864
0x0316 0.962 0.840 0.071 0.950 0.897 0.898
0x0545 0.926 0.811 0.060 0.940 0.865 0.876
Window length: 500ms Threshold=0.9

Visualizing test results

Visualization plots help identify where anomalies are located in the trace and what signals
are affected by it. We present and discuss a grid plot example of classification scores for
the HCRL dataset shown in Figure 4.5.

The x-axis of Figure 4.5 is the time in seconds and the y-axis CAN IDs from the
HCRL GEAR SPOOFING trace. All the signals shown in Figure 4.5 are classified using the
DCTPR method. Hence scores are in the interval [0, 1] where values close to zero means
the window under analysis is normal and close to one anomalous. We selected signals

60

covering a wide range between one of the highest priority nodes (0x002) and the attacked
node (0x43F). Small regions spanning over 100 s in the normal and anomalous portions
of the trace are shown in the top plot, the bottom contains selected regions of 25 s taken
from the plot above. Each cell represents the score for a window covering a fixed amount
of time. Windows are 1 s long for the top plot and 250 ms for the bottom plot. Green
cells show normal windows for their corresponding signal with eight levels representing the
quality of the normal score. Red cells represent an anomalous score with more fine-grained
levels.

0x545
0x43f
0x316
0x2A0
0x130
0x002CA

N
-ID

a�ack-free a�acked

0 7589

1s

40 80 7629 77094s

CA
N
-ID

45 759553.3 61.7 7603.3 7611.74s

0x545
0x43f
0x316
0x2A0
0x130
0x002

250ms
t

t

normal: anomalous:
more lessKey: 0.9 10 0.9 less moremore

Figure 4.5: Grid of classification scores for selected CAN-ID’s
Shown data is from the HCRL GEAR SPOOFING trace. Top-left, 100 windows of one second length in the

normal segment of the trace, in the top-right, the same configuration for the anomalous region. Bottom

plot is a close up of the marked regions in the plot above, each covering 25 seconds with a window length

of 250 ms.

According to the description given by HCRL, each trace contains attacks lasting be-
tween 3 and 5 seconds, which can be seen in the top plot of Figure 4.5 as the vertical red
areas in the anomalous segment. Also, note that anomalies are usually detected first for
the attacked CAN ID (0x43F). Since the CAN specification forces nodes with lower pri-
ority to pull out of the shared bus when a collision is detected, nodes with higher priority
than 0x43F should not suffer such a degree of disruption due to injected messages to node
0x43F. However, it was surprising to find that message injection could affect most signals
with higher priority than 0x43F. We attribute these phenomena to the disruption of the
timely operation of all other nodes in the system that produces a large number of collisions
as the scheduling of the CAN bus is disturbed.

The bottom plot of Figure 4.5 shows how the detection engine performs when the
window size is changed, note the factor is 1:4 when compared to the plot above. Not only
detection performance remains high; the granularity also helps to pinpoint the start of

61

the message injection process. Expected behaviour can be seen, for example; node 0x43F
sees the interference up to 750 ms before other nodes. For some attacks, high priority
nodes (e.g., 0x002) may suffer less interference, meanwhile as priority decreases nodes
will always perceive the effects of messages injected to 0x43F. Time to detection is also
reasonable if the method is applied to online detection because attacks can be spotted and
confirmed within a fraction of a second and therefore corrective measures can be taken
before the attack could jeopardize the integrity of the vehicle.

MuSADET vs SiPTA

The centre plots in the ROC curves (Figure 4.3 and Figure 4.4) shows the performance of
SiPTA for a window length of one second. The positive detection rate of SiPTA is close to
60% in the best case. There are several reasons why SiPTA performs so poorly compared
to MuSADET. First SiPTA aggregates scores for all its channels into an overall score for
the whole window and therefore we cannot provide per-signal analysis. For the can gear
scenario where the attack is launched to a single node the effect of aggregating signal
scores cannot pinpoint that node 0x43F has been attacked. Another reasons come from
assumptions made by SiPTA and the choice of classification feature. In SiPTA scores are
based on the maximum non-DC amplitude peak of the Fourier Transform. Since the IATS
for the HCRL CAN dataset are all DC sequences SiPTA’s assumption does not hold and
therefore SiPTA is unsuitable for this type of scenario. Finally we could not run SiPTA for
window lengths smaller than one second because the IATS are too short and they would
not provide enough information for accurate classification. Due to these factors, it is clear
why SiPTA is unsuitable for anomaly detection when IATS are DC.

4.3 QNX HEXACOPTER

Traces in this dataset where collected by the Embedded Systems Group at the Univer-
sity of Waterloo, Canada. The QNX operating system (QNX) Flight Control dataset [66]
contains recorded events for a gyro-stabilized Mikrokopter hexacopter. There are nine
normal traces in the dataset and a set of traces where different interfering strategies were
tested trying to produce faults. In the interfering group five traces are known to have
produced timing anomalies into the hexacopter. All traces cover around 16 seconds of op-
eration. Interference processes were launched as bash scripts by a user with administrative
privileges.

62

Table 4.5: Overview of the QNX HEXACOPTER dataset

Trace name Anomaly class N/A Windows

clean 02 · · · clean 10 normal all/0
fifo ls sporadic fifo 6/7

fifo ls 01 fifo 6/7
fifo ls 02 fifo 5/8

hil full while while loop —/all
hil half while while loop —/all

There are two types of anomalies in this dataset. The fifo group tries to emulate
a livelock scenario as the run script launches two processes that compete with other pro-
cesses at the same priority level and slow overall system’s progression over time. The
while loop scenario emulates process starvation by launching a while loop that con-
sumes as much computing power as possible.

The summary of the HEXACOPTER dataset is shown in Table 4.5. Two types of inter-
ference are introduced into the HEXACOPTER during operation. In the fifo group, the
anomaly consists of executing a script where an interfering process, launched sporadically,
runs the ls command. In while group, the interfering process launches a script that
runs a while loop continuously. No labels are provided in the original dataset. Therefore it
would be impossible to run ROC analysis for these traces unless assuming that the whole
trace is anomalous. We overcome this issue by identifying when the interfering process was
launched and annotating the windows accordingly.

4.3.1 Training

Each trace in the HEXACOPTER dataset contains around 16 seconds of data. In some
traces initialization data is present for up to three seconds and up to 13 seconds of useful
data for training and anomaly detection. Traces in this dataset are fairly shorter compared
to the HCRL CAN dataset. We opted for 2 s training windows, and were able to divide
the training set into 67 windows of which 33 were randomly selected for the model.

The header of the HEXACOPTER traces contains a large number of columns but
only a few can be used for generators and signals. After applying Deffinition 1 we have:
t = time stamp, G = PID, TID, and S = CLASS, EVENT, where:

PID: Process identifier.

63

TID: Thread identifier.

CLASS: Where the event originates, for example THREAD is a message originated in the
thread.

EVENT: Type of event, for example THREPLY is a reply sent by the process in response
to some received message.

After running MuSADET in training mode we identified around 140 signals in this
dataset. In some cases there were more depending on whether the system produced spo-
radic events or some initialization data was still present in some training windows. Of the
total of signals found many did not meet the requirements of MuSADET, for example,
the IATS of sporadic events do not have samples for analysis. Some other events are still
recurrent but of too low frequency to be useful and while some signals where identified as
DC we already covered that especial case in the previous section. We finally chose a subset
of suitable signals to discuss anomaly detection results. In particular we used signals that
become too short when the detection window is reduced, signals that do not indicate the
presence of anomalous behaviour and signals that can be used to detect anomalies for the
scenarios available in the dataset.

4.3.2 Anomaly detection setup

From the model we selected a subset of signals all non classifiable by DCTPR. We processed
all test traces containing anomalies with MuSADET and SiPTA but since the number of
normal windows present in the anomalous traces is small we also took a random sample
of normal windows from the normal set. By incorporating more normal windows from the
normal set we were able to balance the two classes.

We ran MuSADET and classified the set of test windows by using the power spectral
density (PSD) and the binary power spectral sequence (BPSS) features along with their
corresponding distances. For SiPTA we used the same subset of signals as channels and
ran the classifier. The results of this process is discussed bellow.

4.3.3 Discussion

The ROC curves for the HEXACOPTER dataset are shown in Figure 4.6, Figure 4.7,
and Figure 4.8. Each figure contains plots for the same signals but different groups of

64

traces. For example, Figure 4.6 covers anomaly detection by applying the χ2 symmetric
distance to PSD features, while Figure 4.7 applies the Jaccard distance to BPSS. The left
plot contain ROC curves for the combination fifo and while loop and the other two
plots analyze each type of interference independently. Since MuSADET does not have an
algorithm to tune the detection threshold combining both types of interference provides
insight on how MuSADET performs in a more complex environment.

0.25 0.5 0.75 0.9 1

1
0.9

0.75

0.5

0.25

0.10 0.25 0.5 0.75 0.9 1

1
0.9

0.75

0.5

0.25

0.10 0.25 0.5 0.75 0.9 1

1
0.9

0.75

0.5

0.25

0.10

Tr
ue

Po
sit
iv
e
Ra

te

False Positive Rate

Signal
001:x:COMM:REC MESSAGE
008:x:COMM:REC MESSAGE
465:3:THREAD:THREPLY
501:6:THREAD:THREPLY
SiPTA

Signal
001:x:COMM:REC MESSAGE
008:x:COMM:REC MESSAGE
465:3:THREAD:THREPLY
501:6:THREAD:THREPLY
SiPTA

Signal
001:x:COMM:REC MESSAGE
008:x:COMM:REC MESSAGE
465:3:THREAD:THREPLY
501:6:THREAD:THREPLY
SiPTA

�fo and while loop �fo while loop

Figure 4.6: ROC curves for the QNX HEXACOPTER dataset.
Classification scores of MuSADET are based on the PSD and the χ2-symmetric distance.

The left plot of Figure 4.6 shows that for two of the selected signals positive detection
rate is above 98 % with a false positive rate below 7 %, all other signals, excluding SiPTA
also show good classification accuracy. The centre and right plots present the same analysis
for each scenario. Note that MuSADET can detect both types of anomalous behaviour
with almost exact classification in some cases. The split ROC analysis demonstrates that
MuSADET is robust when facing different anomalous modes but also suggests that classifi-
cation thresholds are anomaly-dependent. For example, starvation or greedy consumption
(e.g., while loop scenario) of resources seems easier to detect than computation demand
that slows down overall temporal progression (e.g., fifo scenario).

The ROC curves of Figure 4.7 show a striking resemblance to Figure 4.6. This plots
correspond to classification by Jaccard distance applied to BPSS. The main goal when
using the BPSS is to reduce computational load and reduce the effect of non dominant
peaks when classifying the signals. The intuition behind BPSS being that the frequency
domain (FD) of IATS generated by recurrent generators will have dominant peaks that
can be used as the defining feature for anomaly detection. That rationale is behind SiPTA
and proved to be correct even when it makes assumptions that do not hold for all cases.

65

0.25 0.5 0.75 0.9 1

1
0.9

0.75

0.5

0.25

0.10 0.25 0.5 0.75 0.9 1

1
0.9

0.75

0.5

0.25

0.10 0.25 0.5 0.75 0.9 1

1
0.9

0.75

0.5

0.25

0.10

Tr
ue

Po
sit
iv
e
Ra

te

False Positive Rate

Signal
001:x:COMM:REC MESSAGE
008:x:COMM:REC MESSAGE
465:3:THREAD:THREPLY
501:6:THREAD:THREPLY
SiPTA

Signal
001:x:COMM:REC MESSAGE
008:x:COMM:REC MESSAGE
465:3:THREAD:THREPLY
501:6:THREAD:THREPLY
SiPTA

Signal
001:x:COMM:REC MESSAGE
008:x:COMM:REC MESSAGE
465:3:THREAD:THREPLY
501:6:THREAD:THREPLY
SiPTA

�fo and while loop �fo while loop

Figure 4.7: ROC curves for the QNX HEXACOPTER dataset.
Classification scores of MuSADET are based on Binary Power Spectral Sequence feature and Jaccard

distance.

As we expected the use of BPSS would produce better results than SiPTA because we are
using more FD information to compute the scores. Another advantage of MuSADET is
classification at signal level without further aggregations that can let anomalies undetected.

A better comparison between classification using PSD and BPSS is presented in Fig-
ure 4.8. As expected the PSD feature outperforms BPSS for the same reason stated above.
The PSD feature contains more information from the frequency spectrum than BPSS and
therefore predictions based on the former should be more accurate. Despite this difference,
we conclude that BPSS is a feature that can be effectively used for anomaly detection in
the context studied in this thesis.

The measures for PSD and BPSS are reported in Table 4.6 and Table 4.7 respectively.
The results demonstrate that anomaly detection by applying FD features is feasible. Note
that in all cases recall is high, hence all methods are capable of retrieving anomalous win-
dows. However it also comes with drawbacks, the first one being relative lack of precision,
an indication that the false positive rate is relatively high. Overall performance in terms of
correct detection is moderate with an accuracy close to 0.9 for all reported signals, except
for SiPTA. That is MuSADET correctly classifies signals with a 90% hit rate.

A better measure to capture the relation between precision and recall is the F1-score
which becomes more relevant for the HEXACOPTER dataset because the classes are not
balanced like in HCRL. There are more normal than anomalous windows in the test set.
Moreover the F1-score gives is based on TP , FP , and P hence it focuses on the quality of
positive predictions by taking into account the wrong positive predictions. For example,

66

0.25 0.5 0.75 0.9 1

1
0.9

0.75

0.5

0.25

0.10 0.25 0.5 0.75 0.9 1

1
0.9

0.75

0.5

0.25

0.10

0.25 0.5 0.75 0.9 1

1
0.9

0.75

0.5

0.25

0.10

Tr
ue

Po
sit
iv
e
Ra

te

False Positive Rate

001:x:COMM:REC MESSAGE 008:x:COMM:REC MESSAGE

465:3:THREAD:THREPLY

0.25 0.5 0.75 0.9 1

1
0.9

0.75

0.5

0.25

0.10

Tr
ue

Po
sit
iv
e
Ra

te

501:6:THREAD:THREPLY

Method
PSD & χ 2 distance
BPSS & Jaccard similarity

Method
PSD & χ 2 distance
BPSS & Jaccard similarity

Method
PSD & χ 2 distance
BPSS & Jaccard similarity

Method
PSD & χ 2 distance
BPSS & Jaccard similarity

Figure 4.8: ROC curves for the QNX HEXACOPTER dataset.
Each plot contains the ROC curve based on classification from PSD and BPSS features.

for most signals reported, MuSADET can recall all anomalous windows, but it does so by
also rising false alarms. For most cases MuSADET’s F1-scores are close to its accuracy
which in this case is an indicator of good performance. After incorporating the MCC
measure we can conclude that there is also a good correlation between the true values and
the classification for both the anomalous and normal classes. Hence, despite differences in
class sizes we do have a classifier that is accurate and unbiased.

67

Table 4.6: Performance metrics for the HEXACOPTER. Classification by PSD.

Precision Recall Miss rate Acc Scores
Generator:Signal (PPV) (TPR) (FNR) (ACC) F1 MCC
001:COMM REC MESSAGE 0.742 1.000 0.041 0.939 0.852 0.811
008:COMM REC MESSAGE 0.590 1.000 0.061 0.881 0.742 0.684
465 3:THREAD THREPLY 0.590 1.000 0.041 0.884 0.742 0.695
501 3:THREAD THREPLY 0.762 0.980 0.102 0.935 0.857 0.793
SiPTA 0.420 0.959 0.184 0.761 0.584 0.467
Window length: 1000ms Metric: Simmetricχ2

Thresholds: MuSaDET = 8.5, SiPTA = 0.002

Table 4.7: Performance metrics for the HEXACOPTER. Classification by BPSS.

Precision Recall Miss rate Acc Scores
Generator:Signal (PPV) (TPR) (FNR) (ACC) F1 MCC
001:COMM REC MESSAGE 0.700 1.000 0.041 0.926 0.824 0.780
008:COMM REC MESSAGE 0.538 1.000 0.102 0.848 0.700 0.619
465 3:THREAD THREPLY 0.563 1.000 0.061 0.868 0.721 0.661
501 3:THREAD THREPLY 0.716 0.980 0.143 0.916 0.828 0.741
SiPTA 0.420 0.959 0.184 0.761 0.584 0.467
Window length: 1000ms Metric: Simmetric BPSS

Thresholds: MuSaDET = 8.5, SiPTA = 0.002

Visualizing classification scores

The plot in Figure 4.9 is similar to the previously discussed for the HCRL dataset. Fig-
ure 4.9 shows classification scores for the normal trace hil clean 04 while the top-right
for trace hil fifo ls 02 containing timing anomalies. All scores shown are for classi-
fication by χ2 distances with normal scores in the interval [0, 24.996), and anomalous in
[24.996,38]. When V (a, i) > 38 it is set to 38 because for such a χ2 value the corresponding
p-value falls in the interval p = (0, 0.001]. The threshold is set to V (a, i) = 24.996 with
p = 0.05 for a right-tail χ2 distribution with 15 degrees of freedom. The bottom plots of
Figure 4.9 show the same trace above processed with a window length of 500 ms.

There are six known anomalies in trace hil fifo ls 02 consisting on running a bash
script that executes a loop that sleeps for 1 s and then runs the command ls. There

68

005:x:COMM:REC MESSAGE

PI
D
:T
ID
:C
LA

SS
:E
VE

N
T

t

t

t

t

0

0

008:x:COMM:REC MESSAGE
008:x:COMM:SND MESSAGE

001:x:COMM:REC MESSAGE
001:x:COMM:SND MESSAGE

005:x:COMM:SND MESSAGE
005:1:THREAD:THRECEIVE
005:1:THREAD:THRUNNING

501:6:THREAD:THREPLY
501:6:THREAD:THRUNNING
465:3:THREAD:THREPLY
465:3:THREAD:THRUNNING

005:x:COMM:REC MESSAGE

008:x:COMM:REC MESSAGE
008:x:COMM:SND MESSAGE

001:x:COMM:REC MESSAGE
001:x:COMM:SND MESSAGE

005:x:COMM:SND MESSAGE
005:1:THREAD:THRECEIVE
005:1:THREAD:THRUNNING

501:6:THREAD:THREPLY
501:6:THREAD:THRUNNING
465:3:THREAD:THREPLY
465:3:THREAD:THRUNNING

1s

500ms
4 8 12

0 4 8 12

0 4 8 12

4 8 12

hil clean 04 hil �fo ls 02

signal too short:normal: anomalous:
more lessKey: 24.97 380 24.97 less moremore

Figure 4.9: Grid of classification scores for selected signals from the HEXACOPTER
dataset.
Top-left, scores for the hil clean 04 trace showing a normal case. Top-right, scores for the

hil fifo ls 02 trace showing various anomalies. Bottom plots are close ups of the corresponding plot

above with a window length of 500 ms. Notice in the bottom-right plot that many windows do not

contain enough inter-arrival times and hence are classified as anomalous by the SIGNAL TO SHORT

criterion.

69

is no trace annotation for anomalies in the HEXACOPTER dataset, hence information
about the anomalies was found by careful inspection of process activity. Each time the
ls command is run, there is timing disruption across the system, and the six times the
command ran can be seen affecting various signals. Figure 4.9 also shows that not all
signals are affected by this type of anomaly. For example, 005:1:THREAD:THRUNNING
is immune to the execution of the ls command. Note that most affected signals are
in the COMM class which is related to kernel-IO activity, and this supports our findings
because ls is also IO heavily oriented. When the window resolution is increased from 1 s
to 250 ms some signals that looked normal become too short to compute their PSD and
therefore are classified as anomalous by the SIGNAL TO SHORT criterion. For example,
005:x:COMM:SND MESSAGE was considered normal in the 1 s analysis, but it was also
close to the normal limit, then it became too short for PSD computation for a 500 ms
window.

QNX HEXACOPTER MuSADET vs. SiPTA

By looking into the ROC curves it is clear that MuSADET outperforms SiPTA as a general
anomaly detector (e.g., 99 % TPR and 5 % FPR MuSADET vs. 98 % TPR and 25 % FPR
SiPTA). Note that SiPTA is equally effective to MuSADET for some types of anomalies.
A key advantage of MuSADET is its ability to tell what signal is being affected by the
anomaly. SiPTA classifies a window as a whole, and no further insight is provided about
what generators and event classes are affected by the anomaly.

70

Chapter 5

Conclusions

Identifying unexpected behavior is crucial for safety-critical embedded systems. In this
work, we demonstrated that event traces are a suitable source of information to detect
anomalies such as attacks on controller area network (CAN) or unwanted computation
demand. The feasibility of our approach relies on the classification of frequency domain
(FD) features computed from inter-arrival times sequence (IATS), namely DC to total
power ratio (DCTPR) or power spectral density (PSD) estimation, and the choice of an
appropriate similarity measure to compare analysis features to model features.

The classification of direct current (DC) IATS by DCTPR yields excellent classification.
When multi-signal anomaly detection for real-time traces (MuSADET) is compared to
Signal Processing for Trace Analysis (SiPTA), it is clear that SiPTA relies on assumptions
that do not hold when the system is mainly composed of periodic generators. Therefore
DC signals should not be ignored when detecting timing anomalies nor they should be
classified by PSD estimation or any aggregating method like SiPTA.

In the case of PSD estimation combined with similarity measures to compare the power
spectra our anomaly detection (AD) engine detected timing anomalies that propagate
throughout the system. MuSADET generally outperforms SiPTA and provides further in-
formation about the anomaly. For example, grid plots can be used to establish relationships
between the anomaly and affected generators.

71

References

[1] M Aiello, E Cambiaso, M Mongelli, and G Papaleo. An on-line intrusion detection
approach to identify low-rate dos attacks. In Security Technology (ICCST), 2014
International Carnahan Conference on, pages 1–6. IEEE, 2014.

[2] Neil C. Audsley, Alan Burns, M. F. Richardson, Ken W. Tindell, and Andy J Wellings.
Applying new scheduling theory to static priority preemptive scheduling. Software
Engineering Journal, 8(5):284–292, September 1993.

[3] M. Bartlett. The statistical approach to the analysis of time-series. Transactions of
the IRE Professional Group on Information Theory, 1(1):81–101, Feb 1953.

[4] M. S. Bartlett. Periodogram analysis and continuous spectra. Biometrika, 37(1/2):1–
16, 1950.

[5] B Berckmoes, R Lowen, and J Van Casteren. Distances on probability measures and
random variables. Journal of Mathematical Analysis and Applications, 374(2):412–
428, 2011.

[6] E. Bini, T. Huyen Chau Nguyen, P. Richard, and S. K. Baruah. A response-time
bound in fixed-priority scheduling with arbitrary deadlines. IEEE Transactions on
Computers, 58(2):279–286, Feb 2009.

[7] R. B. Blackman and J. W. Tukey. The measurement of power spectra from the point
of view of communications engineering. New York : Dover Publications, 1959.

[8] Markus M Breunig, Hans-Peter Kriegel, Raymond T Ng, and Jörg Sander. Lof: iden-
tifying density-based local outliers. In ACM sigmod record, volume 29, pages 93–104.
ACM, 2000.

72

[9] Christopher D. Brown and Herbert T. Davis. Receiver operating characteristics curves
and related decision measures: A tutorial. Chemometrics and Intelligent Laboratory
Systems, 80(1):24 – 38, 2006.

[10] Suratna Budalakoti, Ashok N Srivastava, Ram Akella, and Eugene Turkov. Anomaly
detection in large sets of high-dimensional symbol sequences. 2006.

[11] Alan Burns, Ken W. Tindell, and Andy J Wellings. Effective Analysis for Engineering
Real-Time Fixed Priority Schedulers. IEEE Transactions on Software Engineering,
21(5):475–480, May 1995.

[12] Alan Burns and Andy J Wellings. Engineering a Hard Real-Time System: From
Theory to Practice. Software Practice and Experience, 25(7):705–726, July 1995.

[13] Jorge Caiado, Nuno Crato, and Daniel Peña. A periodogram-based metric for time
series classification. Computational Statistics & Data Analysis, 50(10):2668–2684,
2006.

[14] Sung-Hyuk Cha. Comprehensive survey on distance/similarity measures between
probability density functions. City, 1(2):1, 2007.

[15] Sung-Hyuk Cha. Comprehensive survey on distance/similarity measures between
probability density functions. City, 1(2):1, 2007.

[16] V. Chandola, A. Banerjee, and V. Kumar. Anomaly detection: A survey. ACM
Computing Surveys (CSUR), 41(3):15, 2009.

[17] V. Chandola, A. Banerjee, and V. Kumar. Anomaly detection for discrete sequences:
A survey. IEEE Transactions on Knowledge and Data Engineering, 24(5):823–839,
2012.

[18] V. Chandola, V. Mithal, and V. Kumar. Comparative evaluation of anomaly detection
techniques for sequence data. In 2008 Eighth IEEE International Conference on Data
Mining, pages 743–748, Dec 2008.

[19] Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly detection: A survey.
ACM Comput. Surv., 41(3):15:1–15:58, July 2009.

[20] Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly detection for dis-
crete sequences: A survey. IEEE Transactions on Knowledge and Data Engineering,
24(5):823–839, 2012.

73

[21] Yu Chen and Kai Hwang. Collaborative detection and filtering of shrew ddos attacks
using spectral analysis. Journal of Parallel and Distributed Computing, 66(9):1137–
1151, 2006.

[22] Albert M.K. Cheng. Real-Time Systems. Scheduling Analysis and Verification. Num-
ber ISBN 0-471-18406-3. Wiley Insterscience, 2002.

[23] X. Cheng, K. Xie, and D. Wang. Network traffic anomaly detection based on self-
similarity using hht and wavelet transform. In Fifth International Conference on
Information Assurance and Security, IAS, volume 1, pages 710–713. IEEE, 2009.

[24] Seung-Seok Choi, Sung-Hyuk Cha, and Charles C Tappert. A survey of binary sim-
ilarity and distance measures. Journal of Systemics, Cybernetics and Informatics,
8(1):43–48, 2010.

[25] David Roxbee Cox, David Roxbee Cox, David Roxbee Cox, and David Roxbee Cox.
Renewal theory, volume 1. Methuen London, 1967.

[26] Michel Marie Deza and Elena Deza. Encyclopedia of distances. In Encyclopedia of
distances, pages 1–583. Springer, 2009.

[27] J.L. Diaz, Kanghee Kim, José Maŕıa López, and L. Lo Bello. Stochastic analysis of
priority-driven periodic real-time systems. In Handbook of Real-Time and Embedded
Systems, 2007.

[28] José Luis Dı́az, Daniel F Garćıa, Kanghee Kim, Chang-Gun Lee, L Lo Bello,
José Maŕıa López, Sang Lyul Min, and Orazio Mirabella. Stochastic analysis of pe-
riodic real-time systems. In 23rd IEEE Real-Time Systems Symposium, 2002. RTSS
2002., pages 289–300. IEEE, 2002.

[29] Richard O Duda, Peter E Hart, and David G Stork. Pattern classification. Wiley,
New York, 1973.

[30] Graham Dunn and Brian S Everitt. An introduction to mathematical taxonomy.
Courier Corporation, 2004.

[31] Tom Fawcett. An introduction to roc analysis. Pattern Recognition Letters, 27(8):861
– 874, 2006. ROC Analysis in Pattern Recognition.

[32] C J Fidge. Real-Time Schedulability Tests for Preemptive Multitasking. Real-Time
Systems, 14(1):61–93, 1998.

74

[33] Robert G Gallager. Discrete stochastic processes, volume 321. Springer Science &
Business Media, 2012.

[34] Bo Gao, Hui-Ye Ma, and Yu-Hang Yang. Hmms (hidden markov models) based on
anomaly intrusion detection method. In Machine Learning and Cybernetics, 2002.
Proceedings. 2002 International Conference on, volume 1, pages 381–385. IEEE, 2002.

[35] J. Gao, G. Hu, X. Yao, and R. K. C. Chang. Anomaly detection of network traffic
based on wavelet packet. In Asia-Pacific Conference on Communications. APCC,
pages 1–5. IEEE, 2006.

[36] Gabriella Gigante and Domenico Pascarella. Formal Methods in Avionic Software
Certification: The DO-178C Perspective, pages 205–215. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2012.

[37] Gerald Goertzel. An algorithm for the evaluation of finite trigonometric series. The
American Mathematical Monthly, 65(1):34–35, 1958.

[38] Markus Goldstein and Seiichi Uchida. A comparative evaluation of unsupervised
anomaly detection algorithms for multivariate data. PloS one, 11(4):e0152173, 2016.

[39] Oleg Iegorov, Vincent Leroy, Alexandre Termier, Jean-François Méhaut, and Miguel
Santana. Data mining approach to temporal debugging of embedded streaming appli-
cations. In Proceedings of the 12th International Conference on Embedded Software,
pages 167–176. IEEE Press, 2015.

[40] Oleg Iegorov, Reinier Torres, and Sebastian Fischmeister. Periodic task mining in em-
bedded system traces. In IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS), pages 331–340, Porto, Portugal, 2017.

[41] Taylor T. Johnson, Raghunath Gannamaraju, and Sebastian Fischmeister. A survey
of electrical and electronic (e/e) notifications for motor vehicles. In 24th Interna-
tional Technical Conference on the Enhanced Safety of Vehicles (ESV), pages 1–15,
Gothenburg, Sweden, 2015.

[42] M. Joseph and P. Pandya. Finding Response Times in a Real-Time System. The
Computer Journal, 29(5):390–395, 1986.

[43] Peter Kafka. The automotive standard iso 26262, the innovative driver for enhanced
safety assessment & technology for motor cars. Procedia Engineering, 45:2 – 10, 2012.
2012 International Symposium on Safety Science and Technology.

75

[44] D I Katcher, H Arakawa, and J K Strosnider. Engineering and Analysis of Fixed
Priority Schedulers. IEEE Trans. on Software Engineering, 19(9):6, 1993.

[45] S. Kay. Intuitive Probability and Random Processes using MATLAB R©. Intuitive
Probability and Random Processes Using MATLAB. Springer US, 2006.

[46] John Frank Charles Kingman. Poisson processes, volume 3. Clarendon Press, 1992.

[47] T. Kohda and Y. Takagi. Accident cause analysis of complex systems based on safety
control functions. In RAMS ’06. Annual Reliability and Maintainability Symposium,
2006., pages 570–576, Jan 2006.

[48] Eugene F Krause. Taxicab geometry: An adventure in non-Euclidean geometry.
Courier Corporation, 2012.

[49] Krishan Kumar, RC Joshi, and Kuldip Singh. A distributed approach using entropy
to detect ddos attacks in isp domain. In 2007 International Conference on Signal
Processing, Communications and Networking, pages 331–337. IEEE, 2007.

[50] Terran Lane, Carla E Brodley, et al. Sequence matching and learning in anomaly de-
tection for computer security. In AAAI Workshop: AI Approaches to Fraud Detection
and Risk Management, pages 43–49, 1997.

[51] Philip A Laplante. Real-Time Systems Design and Analysis. Third Edition. IEEE
Press and Wiley-Interscience, 2004.

[52] Pierre Legendre and Marti J Anderson. Distance-based redundancy analysis: testing
multispecies responses in multifactorial ecological experiments. Ecological monographs,
69(1):1–24, 1999.

[53] John P. Lehoczky, Lui Sha, and Ye Ding. The Rate Monotonic Scheduling Algorithm:
Exact Characterization and Average Case Behavior. In Proceedings of the 10th IEEE
Real-Time Systems Symposium, pages 166–171, Santa Monica, CA , USA, 1989.

[54] N. G. Leveson and C. S. Turner. An investigation of the therac-25 accidents. Computer,
26(7):18–41, July 1993.

[55] C L Liu and J W Layland. Scheduling Algorithms for Multiprogramming in a Hard
Real-Time Environment. Journal of the ACM, 20(1):46–61, 1973.

76

[56] Haiqin Liu and Min Sik Kim. Real-time detection of stealthy ddos attacks using time-
series decomposition. In 2010 IEEE international conference on communications,
pages 1–6. IEEE, 2010.

[57] José Maŕıa López, José Luis Dı́az, Joaqúın Entrialgo, and Daniel Garćıa. Stochastic
analysis of real-time systems under preemptive priority-driven scheduling. Real-Time
Systems, 40(2):180, 2008.

[58] W. Lu and A. A. Ghorbani. Network anomaly detection based on wavelet analysis.
EURASIP Journal on Advances in Signal Processing, 2009, 2009.

[59] D.G. Manolakis and V.K. Ingle. Applied Digital Signal Processing: Theory and Prac-
tice. Cambridge University Press, 2011.

[60] Christoph C Michael and Anup Ghosh. Two state-based approaches to program-
based anomaly detection. In Computer Security Applications, 2000. ACSAC’00. 16th
Annual Conference, pages 21–30. IEEE, 2000.

[61] A.V. Oppenheim and R.W. Schafer. Discrete-Time Signal Processing. Pearson Edu-
cation, 2011.

[62] Opeyemi Osanaiye, Kim-Kwang Raymond Choo, and Mqhele Dlodlo. Change-point
cloud ddos detection using packet inter-arrival time. In Computer Science and Elec-
tronic Engineering (CEEC), 2016 8th, pages 204–209. IEEE, 2016.

[63] Keith Pazul. Controller area network (can) basics [an713]. Technical report, Microchip
Technology Inc, 1999.

[64] J.G. Proakis and D.G. Manolakis. Digital Signal Processing: Principles, Algorithms,
and Applications. And Intelligent Manufacturing Systems. Prentice Hall, 1996.

[65] S. Rawat and C. S. Sastry. Network intrusion detection using wavelet analysis. In
Intelligent Information Technology, pages 224–232. Springer, 2005.

[66] Yassir Rizwan. Towards high speed aerial tracking of agile targets. Master’s thesis,
University of Waterloo, 2012.

[67] M. Salagean and I. Firoiu. Anomaly detection of network traffic based on analyti-
cal discrete wavelet transform. In 8th International Conference on Communications
(COMM), pages 49–52. IEEE, 2010.

[68] Neil J Salkind. Encyclopedia of measurement and statistics, volume 1. Sage, 2007.

77

[69] Arthur Schuster. On the investigation of hidden periodicities with application to a
supposed 26 day period of meteorological phenomena. Terrestrial Magnetism, 3(1):13–
41, 1898.

[70] Richard Serfozo. Renewal and regenerative processes. In Basics of Applied Stochastic
Processes, pages 99–167. Springer, 2009.

[71] Lui Sha, Tarek F. Abdelzaher, Karl-Erik Årzén, Anton Cervin, Theodore P. Baker,
Alan Burns, Giorgio C. Butazzo, Marco Caccamo, John P. Lehoczky, and Aloysius K
Mok. Real Time Scheduling Theory: A Historical Perspective. Real-Time Systems,
28(2):101–155, 2004.

[72] Frank Singhoff, Alain Plantec, Pierre Dissaux, and Jérôme Legrand. Investigating the
usability of real-time scheduling theory with the cheddar project. Real-Time Systems,
43(3):259–295, Nov 2009.

[73] Mikael Sjodin and Hans Hansson. Improved response-time analysis calculations. In
Proceedings 19th IEEE Real-Time Systems Symposium (Cat. No. 98CB36279), pages
399–408. IEEE, 1998.

[74] Robert R. Sokal. Distance as a measure of taxonomic similarity. Systematic Zoology,
10(2):70–79, 1961.

[75] SteveCorrigan. Introductionto the controllerareanetwork(can). Technical report,
Texas Instruments, 2016.

[76] Taffee T Tanimoto. Elementary mathematical theory of classification and prediction.
1958.

[77] Lothar Thiele and Pratyush Kumar. Can real-time systems be chaotic? In Embedded
Software (EMSOFT), 2015 International Conference on, pages 21–30. IEEE, 2015.

[78] Annie H Toderici and Mark Stamp. Chi-squared distance and metamorphic virus
detection. Journal of Computer Virology and Hacking Techniques, 9(1):1–14, 2013.

[79] Charles F Van Loan. Introduction to scientific computing. the matlab curriculum
series, 2000.

[80] Michail Vlachos, Philip Yu, and Vittorio Castelli. On periodicity detection and struc-
tural periodic similarity. In Proceedings of the 2005 SIAM International Conference
on Data Mining, pages 449–460. SIAM, 2005.

78

[81] P. Welch. The use of fast fourier transform for the estimation of power spectra: A
method based on time averaging over short, modified periodograms. IEEE Transac-
tions on Audio and Electroacoustics, 15(2):70–73, Jun 1967.

[82] P. Welch. A fixed-point fast fourier transform error analysis. IEEE Transactions on
Audio and Electroacoustics, 17(2):151–157, Jun 1969.

[83] N. Ye and X. Li. A markov chain model of temporal behavior for anomaly detection. In
Proceedings of the 2000 IEEE Systems, Man, and Cybernetics Information Assurance
and Security Workshop, volume 166, pages 171–174. Oakland: IEEE, 2000.

[84] Nong Ye and Qiang Chen. An anomaly detection technique based on a chi-square
statistic for detecting intrusions into information systems. Quality and Reliability
Engineering International, 17(2):105–112, 2001.

[85] Mohammad Mehdi Zeinali Zadeh, Mahmoud Salem, Neeraj Kumar, Greta Cutulenco,
and Sebastian Fischmeister. Sipta: Signal processing for trace-based anomaly de-
tection. In Proceedings of the 14th International Conference on Embedded Software,
page 6. ACM, 2014.

[86] M. Zhou and S. D. Lang. Mining frequency content of network traffic for intrusion de-
tection. In Proceedings of the IASTED International Conference on Communication,
Network, and Information Security, 2003.

79

APPENDICES

80

Appendix A

Comparison to Alternative Methods

Explanatory note

Multi-signal anomaly detection for real-time traces (MuSADET) builds on Signal Process-
ing for Trace Analysis (SiPTA) a work that was originally published by Mehdi et al. [85].
The original paper compares the signal processing approach to alternative methods such
as Markov chains and Neural networks. Despite SiPTA’s having better performance than
the other methods it had flaws that where addressed in an extended paper of which I was
the main author. The paper was submitted to ACM Transactions on Embedded Comput-
ing Systems. The draft was rejected with comments on its fundamental flaws, particularly
some related to the features used for anomaly detection and the classification metric. After
thorough analysis I arrived to the conclusion that there where fundamental flaws in the
trace to signal model. Also, the critics pointed to fundamental problems that would po-
tentially render SiPTA useless if assumptions failed. Nevertheless, SiPTA still outperforms
the method to which was compared and therefore it showed potential for improvement.

The comparison between SiPTA and other methods was carried out by some of the
authors in the draft submitted to ACM Transactions and therefore they are not my original
work. I have included below the paper submitted to ACM Transactions of Embedded
Computing as an indirect comparison between SiPTA’s later improvement to other methods
used for anomaly detection. I was not able to conduct the experiments of MuSADET and
all contributors to the original work had already graduated by the time MuSADET was
complete. Since I do provide a comparative analysis between SiPTA and MuSADET the
following text should serve as reference for the improvement of MuSADET over other
methods.

81

SiPTA: Anomaly Detection in Embedded Systems Through
Signal Processing of Event-Based Traces.

REINIER TORRES, MOHAMMAD MEHDI ZEINALI ZADEH, CARLOS MORENO, MAH-
MOUD SALEM, NEERAJ KUMAR, GRETA CUTULENCO, and SEBASTIAN FISCHMEIS-
TER, University of Waterloo, Canada

Given a set of traces, trace-based anomaly detection tries to find anomalous behaviour. Most current
approaches focus on application outside of the embedded systems domain leaving unexploited some of its
properties.

This work introduces Signal Processing for Trace-based Anomaly Detection (SiPTA) a novel technique for
offline trace-based anomaly detection exploiting the intrinsic periodicity of embedded systems. The method is
particularly useful for embedded systems, and the paper demonstrates this by comparing SiPTA to Markov
Model, and Neural Networks. This article shows the feasibility of SiPTA through case studies involving traces
from a variety of embedded systems. In the experiments, our approach outperformed every other tested
method.

Additional Key Words and Phrases: Anomaly detection, Embedded software monitoring, signal processing,
signals and systems analysis.

ACM Reference Format:
Reinier Torres, Mohammad Mehdi Zeinali Zadeh, Carlos Moreno, Mahmoud Salem, Neeraj Kumar, Greta
Cutulenco, and Sebastian Fischmeister. 00. SiPTA: Anomaly Detection in Embedded Systems Through Signal
Processing of Event-Based Traces. . ACM Trans. Embedd. Comput. Syst. 00, 00, Article 00 (00), 22 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Trace-based anomaly detection can be used as a monitoring and fault recovery tool for safety-critical
embedded systems. Indeed, monitoring is a requirement in safety standards like ISO-26262 [19] for
functional automotive, and DO-178C [16] for airborne systems. Trace-based anomaly detection
(TAD) aims at detecting patterns that do not belong to the known functioning of the system. It uses
time-stamped event traces as information source fromwhich anomalous behaviour can be identified.
The method proposed in this paper leverages the availability of tracing tools, signal processing, a
distance metric, and a threshold based classifier to detect timing anomalies in embedded systems.

Event tracers, used mostly as logging and debugging tools, are available as an internal module in
many real-time operating systems [34]. External tracers such as network loggers are also accessible,
enabling the analysis of network protocols like controller area network (CAN) bus [17]. There are,
at least, two types of anomalies that TAD for embedded systems can target: (i) anomalous execution
sequences, and (ii) timing anomalies. We only focus on timing anomalies, those that arise when the

Authors’ address: Reinier Torres, rtorresl@uwaterloo.ca; Mohammad Mehdi Zeinali Zadeh, mmzeinal@uwaterloo.ca; Carlos
Moreno, cmoreno@uwaterloo.ca; Mahmoud Salem, m4salem@uwaterloo.ca; Neeraj Kumar, n26kumar@uwaterloo.ca; Greta
Cutulenco, gcutulen@uwaterloo.ca; Sebastian Fischmeister, sfischme@uwaterloo.ca, University of Waterloo, ON, Canada.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2017 Association for Computing Machinery.
1539-9087/00/00-ART00 $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

ACM Transactions on Embedded Computing Systems, Vol. 00, No. 00, Article 00. Publication date: 00.

00:2 Torres et al.

execution of programs within the system follows unexpected paths that change its responsiveness.
A fundamental advantage of TAD is its capacity to treat the system under scrutiny as a black box
and still be able to identify anomalous behaviour. The black box approach to system’s behaviour
comes at the expense of classification errors and the need to train the classifier.
The fundamental challenge of trace-based anomaly detection is how to identify an incorrect

behavior without raising too many false alarms. Related work in a comprehensive survey [9]
remarks the importance of checking the effectiveness of detection mechanisms through false
positives, and false negatives. High false alarm rates diminish the value of the tool because the users
stop trusting it. False positives are even more detrimental to the effectiveness of the detector due to
the overlooking anomalous behaviour. A well-known method to evaluate the quality of a detector
is through receiver operational characteristic (ROC) analysis.

Detection of anomalies can be done, online (during runtime) or offline (after the program stops).
Offline anomaly detection considers an entire trace of a system execution scenario for analysis,
while the online approach works on streams of execution events to detect anomalies on-the-fly.
Anomaly detection can also be done using supervised or unsupervisedmethods. Supervisedmethods
require the training of a classification engine, and therefore a set of labelled traces is needed during
training.
This paper presents SiPTA, which realizes a novel technique for offline trace-based anomaly

detection that exploits the intrinsic feature of periodic processes found in embedded systems. This
article is an extension of our previous work that appeared in EMSOFT [41]. As we explain later,
SiPTA uses signal processing algorithms to identify periodic features in times series extracted from
event traces recorded during embedded systems operation. The method presented in this extended
version of SiPTA improves our previous work presented in [41], the contributions of this paper are
outlined as follows:

Exploits the intrinsic periodicity of embedded systems task sets. Embedded systems are
usually implemented as a set of periodic tasks (programs or processes), and we take advantage
of this feature to extract inter-arrival time series (IATS) from event traces. Instead of analyzing
IATS applying approaches found in most anomaly detection methods [10] we compute an
estimate of the power spectral density (PSD), and extract metrics from the IATS’s power
spectrum, that allows the detection of anomalous behaviour.

Formalizes a generic framework for modelling traces. We propose a method that allows
the mapping of the information contained in an event trace to times series. The trace model
presented in this paper is an improvement over previous work [41] with clearer definitions
to decompose a trace into signals from which IATS can be extracted. The new trace model
includes a more consistent and simplified notation and fixes minor inconsistencies present
in [41]. We now focus on the concept of base signal, the simplest unit of information that
can be associated with an event generator; then we extend this to the idea of aggregated
signals, those that are obtained by joining base signals; meanwhile, the concept of channel is
presented as a special case of an aggregated signal.

Improves metrics, and classification. Instead of using the Fourier Transformwe nowpresent
IATS as random variables of real-time applications with stochastic execution times [25].
Therefore we shift the signal processing technique to nonparametric power spectral density
estimation [29]. Based on the new signal processing approach, we define new metrics. For
example, the DC significance is now computed from the PSD of the IATS. We also include
multiple peaks in for the peak/frequency metric which we think represents a noticeable
improvement compared to our previous work [41]. To extract multiple dominant peaks from
the power spectrum of an IATS, we adapted an algorithm presented in [35] that determines

ACM Transactions on Embedded Computing Systems, Vol. 00, No. 00, Article 00. Publication date: 00.

SiPTA: Anomaly Detection in Embedded Systems Through Signal Processing of Event-Based
Traces. 00:3

a threshold above which a wide-sense stationary (WSS) signal shows dominant peaks. We
also changed the classification method to Mahalanobis distance (MD) which improves our
classifier performance by incorporating the correlation of the metrics when calculating
distances.

Demonstrates the feasibility of using signal processing. We show that SiPTA outperforms
other well-known methods to detect anomalies that change the power spectrum of a task
IATS. In our experimental setup, we run SiPTA along with two anomaly detection methods
(Markov Model, and Neural Network) on a set of comprehensive scenarios. The results show
that the current implementation of SiPTA can detect all anomalous traces. We also discuss
why our tool can perform better than the well-established methods used for performance
comparison. The main reason SiPTA outperforms other approaches is the novel approach to
trace modelling and the concept of extracting metrics from IATS power spectra.

In our study, we restrict our attention to traces collected from embedded devices. We evaluate
SiPTA through the analysis of traces generated from QNX RTOS [2]. The systems targeted in
this study are deployed on commercial platforms (i.e., a hexacopter, a car infotainment system,
an a phone OS). The variety of targeted platforms cover a wide range of execution scenarios. We
also chose to create own datasets, since the established datasets [1, 3] are unsuited for embedded
systems and are under criticism [12, 27].
The remainder of the paper is organized as follows: Section 2 is a brief presentation of work

related to anomaly detection; Section 3 presents an overview of the proposed methodology for
detecting anomalies; Section 4 presents the trace model, a set of definitions and operations to
extract times series from the trace; Section 5 introduces the frequency domain metrics computed
from inter-arrival time series; Section 6 presents the raining and classification processes; Section 7
outlines the experimental setup and briefly discusses the alternative approaches toward we compare
SiPTA’s performance; Section 8 presents the results of our experimental setup which are then
discussed in Section 9 along with an analysis on threats to validity; finally we give the conclusions
in Section 10.

2 RELATEDWORK
Detection of anomalies can be done: (i) online, i.e., during runtime or (ii) offline, i.e., once the program
has finished execution. The offline approach considers an entire trace of a system execution scenario
for analysis. The online method works on streams of execution events collected while the system
runs; aiming to detect anomalies on-the-fly. Therefore, online anomaly detection techniques are
suited for monitoring and active corrective measures. They usually do so by adapting the threshold
of the anomaly score according to the captured stream. Offline detection techniques will, therefore,
need some adaptation to be used at runtime, mainly in the amount of data required to detect
anomalies. However, as pointed out in [10], some offline techniques cannot be used for online
anomaly detection as they need to process the entire trace before deriving a conclusion.
In the context of detection of anomalies from sequential traces, most of the research effort

has focused on the anomaly detection of operating system events. A recent survey paper [10]
summarized the progress in that research area. They discussed two major approaches. The first uses
Markovian modeling [38] to study the probabilistic characteristics of event transitions, extending
from first-order to higher-order Markov Models and some equivalent methods as probabilistic suffix
trees (PST), and sparse Markov trees (SMT). The second method models the event transition states
through Finite State Automata (FSA) and Hidden Markov Models (HMM) methods. Besides these,
there are other approaches to anomaly detection that do not fall into either of these two categories.
These alternatives to anomaly detection exploit mathematical concepts that are widely used in

ACM Transactions on Embedded Computing Systems, Vol. 00, No. 00, Article 00. Publication date: 00.

00:4 Torres et al.

signal processing. For instance, wavelet transform was used in [11, 15, 24, 30, 31] and Fourier
transform was used in [42]. Their work focused on detecting anomalies in network-based systems.
In contrast, our tool introduces the idea of using frequency characteristics of event transitions.

3 OVERVIEW
Our work targets timing anomalies by analyzing traces from systems with recurring periodic
processes. Systems build around the concept of periodic tasks (or processes) are prevalent in the
real-time embedded systems domain [22]. Our approach relies on the intuition that periodic task
sets should produce pseudo-recurrent sequences of events. Therefore, timing anomaly detection
can be accomplished by comparing time-stamps metrics computed from unknown traces to those
computed from traces collected under normal operation. The goal is to find evidence to support the
hypothesis that an unknown trace is generated by a known system. The alternative is to classify
the trace as anomalous. Detecting timing anomalies becomes a systematic process that requires a
framework allowing the modelling of traces, training the classifier, and classification.

A general work-flow of our framework is depicted in Figure 1; it is aimed at detecting anomalies
using the offline approach. The tool is composed of three modules organized around two phases. The
training phase requires a set of reference traces from which metrics are computed and analyzed to
create the normal model. During the analysis phase, the tool computes test metrics, these metrics are
compared to the normal model, and a classification score is given to the test trace. The classification
algorithm computes the MD distance of test metrics to the normal model and assigns a classification
score based on a classification threshold. Each block in Figure 1 performs the following operations.

Traces contain information describing the functioning of the system. The information in a trace
is commonly composed of event names, time-stamps, and process names. SiPTA requires
time-stamped entries.

The preprocessor extracts signals from traces, computes their time series, and feeds them
into the underlying signal processing engine. Signals are subsets of the trace obtained by
filtering it to entries for a specific type of event (e.g., entries for the syscal=open, and PID=2).
There are two types of signals: a base signal contain entries for a specific event, while an
aggregated signal is the union of two or more base signals. Time-series are computed from
signals before entering the features extraction engine.

The features extraction engine takes time-series and outputs their frequency domain met-
rics. For the training traces, the set of its metrics represent a point in the multi-dimensional
normal behaviour space. The set of metrics extracted from a trace is the metrics tuple.

The trainer takes a set of metric tuples computed from reference traces to create the normal
model that will be used during the classification phase. The trainer can automatically identify
the signals needed to compute the model. The model is a reduced set of metric tuples to
which test traces will be compared during classification.

The binary classifier computes the distance of a test metrics tuple to the normal model by
using the Mahalanobis distance. It determines whether a test trace is normal or anomalous by
comparing the Mahalanobis distance to a set threshold, and gives a final normal/anomalous
score.

4 TRACE MODEL
The trace model allows the disaggregation of traces into signals and time series. Times series are
computed from signals. Therefore they contain the trace information in a suitable format for further
signal processing. The following definitions provide the formalism to model traces so they can be
precisely decomposed into signals and their corresponding time series.

ACM Transactions on Embedded Computing Systems, Vol. 00, No. 00, Article 00. Publication date: 00.

SiPTA: Anomaly Detection in Embedded Systems Through Signal Processing of Event-Based
Traces. 00:5

learned
model

Test Traces

Normal Traces

Trace
Preprocessor

Features
Extractor

Classifier Scores

Trainer

IATS
test

features

Fig. 1. Work-flow diagram for the offline implementation of SiPTA.

A trace is an array where each data point is a parameter value; rows are entries and columns
event attributes. The parameter value 𝜌𝑖,𝑗 is the value of the data point at location 𝑖, 𝑗, where 𝑖 is
the row index and 𝑗 the column index. The rows in a trace are time-stamped entries, each recording
a specific event. The columns match attribute names like time-stamps, process identifiers (e.g., PID)
or the process state (e.g., READY, BLOCKED). The formalization is as follows:
Definition 4.1 (Trace). A trace 𝑇 ≜ ⟨𝑒1, ..., 𝑒𝑛⟩ is an ordered tuple of 𝑁 entries, where 𝑒𝑖 is the

𝑖𝑡ℎ row of 𝑇 . The order is based on 𝑒𝑖.𝑡; the timestamp value of entry 𝑒𝑖.
A trace of 𝑁 entries is ordered if and only if ∀𝑒𝑖, 𝑒𝑗 ∈ 𝑇 , the property 𝑒𝑖.𝑡 ⩽ 𝑒𝑗 .𝑡 holds, where

entry indexes follow 𝑖 < 𝑗. Note that we allow 𝑒𝑖.𝑡 = 𝑒𝑗 .𝑡 so the tracer can produce different
entries with the same time-stamp. Duplicated entries are not allowed, thus if two or more trace
entries have the same timestamp, their parameter sequence must be different. Therefore a trace is
consistent if for any two entries 𝑒𝑖, 𝑒𝑗 having 𝑒𝑖.𝑡 = 𝑒𝑗 .𝑡 the property 𝑒𝑖.𝑃𝑖 ̸= 𝑒𝑗 .𝑃𝑗 holds.

Definition 4.2 (Trace Entry). A trace entry 𝑒𝑖 ≜ ⟨𝑡𝑖, 𝑃𝑖⟩ is the 𝑖𝑡ℎ tuple of 𝑇 . It consist of a
time-stamp value 𝑡𝑖, and the 𝑀 length parameter sequence 𝑃𝑖, where 𝑀 ≜ |𝑃𝑖|. Each element in
𝑃𝑖 is a parameter value 𝜌𝑖,𝑗 : 1 ⩽ 𝑗 ⩽ 𝑀

Let 𝑃𝑖 be the parameter sequence of entry 𝑒𝑖, the values in 𝑃𝑖 determine a unique event occurred
at time 𝑒𝑖.𝑡, therefore each unique parameter sequence becomes an event identifier. The sequence of
entries having the values of an event identifier is a base signal from which a sequence of timestamps
can be extracted. The set of all event identifiers is the signal class set of the trace. Aggregated
signals are obtained by filtering the trace to contain entries having parameter sequences that match
one of many signal identifiers in the signal class. The formalization is as follows:
Definition 4.3 (Signal Class Set). The signal class set S of trace 𝑇 defined as S ≜ proj(𝑇 (𝑃)) is

the projection of 𝑇 on the set of columns for parameter sequences.
We range over the elements of S using the notation S𝑖, where 1 ⩽ 𝑖 ⩽ |S|. Each element S𝑖 ∈ S

defines a unique event identifier and it is used to extract signals from the trace.
Definition 4.4 (Base Signal). Signal 𝒮𝑖 ≜ 𝑇 (S𝑖) = ⟨𝑒𝑖, . . . , 𝑒𝑘⟩ filters trace 𝑇 to those entries for

which 𝑒𝑗 .𝑃 = S𝑖.
Definition 4.5 (Aggregated Signal). Let S𝑖, . . . ,S𝑘 be elements of S. The aggregated signal

𝒮𝑖∪···∪𝑘 ≜ 𝑇 (S𝑖, . . . ,S𝑘) = ⟨𝑒𝑙, . . . , 𝑒𝑛⟩ filters trace 𝑇 to those entries for which 𝑒𝑚.𝑃 =
S𝑖 ∨ 𝑒𝑚.𝑃 = S[·] ∨ 𝑒𝑚.𝑃 = S𝑘 .
Since signals as defined in definitions 4.4 and 4.5 are tuples of entries they are not suitable for

signal processing. The relevant information of a signal is contained in its time stamps. We first
extract the real-time stamp sequence (RTSS) from a signal and then compute its IATS:

ACM Transactions on Embedded Computing Systems, Vol. 00, No. 00, Article 00. Publication date: 00.

00:6 Torres et al.

Definition 4.6 (Real-Timestamp Sequence). The 𝐿 length real-timestamp sequence 𝑟𝑖[𝑙] of signal
𝒮𝑖 is the projection of 𝒮𝑖 on time-stamps, thus 𝑟𝑖[𝑙] ≜ proj(𝒮𝑖(𝑡)), and 𝐿 ≜ |𝒮𝑖|.

Real-timestamp sequences are monotonically increasing sequences, therefore not bounded, and
hence not suitable for signal processing. Real-timestamp sequences are converted to inter-arrival
time series as presented in [42].

Definition 4.7 (Inter-arrival time series IATS). Given an 𝐿 real-timestamp sequence 𝑟𝑖[𝑙], its
𝑁 = 𝐿− 1 inter-arrival time series 𝑥𝑖[𝑛] is the sequence after applying the first difference function
to subsequent timestamps of 𝑟𝑖[𝑙]:

𝑥𝑖[𝑛] ≜ 𝑟𝑖[𝑙]− 𝑟𝑖[𝑙 − 1] : 1 ⩽ 𝑙 ⩽ 𝐿− 1 (1)

For example, periodic tasks generating at least one event per signal, IATS are bounded positive
sequences. The maximum value an element can take being the task’s period. Some tasks may not
generate one event per signal within each job but their IATS will still be bounded by the maximum
difference between two consecutive events. The following sections are based on the assumption
that tasks will produce at least one event per base signal during the system’s hyper-period.

4.1 Trace Example
Consider the trace shown in Table 1, it is a short view of an event trace recording time-stamps,
process IDs, and system calls. According to our model, trace entry 𝑒4 is the tuple ⟨9, ⟨3, read⟩⟩,
the 𝑠𝑦𝑠𝑐𝑎𝑙 = "read" produced by the process with 𝑃𝐼𝐷 = 3 with time-stamp 𝑡 = 9.
Let S1 = ⟨3, open⟩ and S2 = ⟨3, read⟩ be the first and second event identifiers in the signal

class S, their respective signals are:
𝒮1 = ⟨𝑒1, · · · , 𝑒22⟩, and
𝒮2 = ⟨𝑒2, 𝑒4, 𝑒6, 𝑒7 · · · , 𝑒23, 𝑒24, 𝑒26, · · ·⟩, the aggregated signal
𝒮1∪2 = ⟨𝑒1, 𝑒2, 𝑒4, 𝑒6, 𝑒7 · · · , 𝑒22, 𝑒23, 𝑒24, 𝑒26, · · ·⟩ is the result of joining signals 𝒮1 and 𝒮2.

The real time-stamp sequence of signal𝒮1∪2 is 𝑟1∪2[𝑛] = {0, 3, 9, 10, 13, · · · , 33, 36, 42, 43, · · · }
with IATS 𝑥1∪2[𝑛] = {3, 6, 1, 3, · · · , 3, 6, 1, · · · }. In this example, the IATS shows a recurrent
pattern of inter-arrival times: (3, 6, 1).

Table 1. A simple trace with two element parameter sequences. The entry index number is added for reference.

Index Time PID Syscall Index Time PID Syscall

1 0 3 open 20 30 4 close
2 3 3 read 21 32 3 close
3 3 4 open 22 33 3 open
4 9 3 read 23 36 3 read
5 10 4 read 24 42 3 read
6 10 3 read 25 42 4 open
7 13 3 read 26 43 3 read
8 14 4 close 27 45 4 read
· ·

ACM Transactions on Embedded Computing Systems, Vol. 00, No. 00, Article 00. Publication date: 00.

SiPTA: Anomaly Detection in Embedded Systems Through Signal Processing of Event-Based
Traces. 00:7

5 FREQUENCY DOMAIN METRICS
The IATS extracted from real traces should be considered realizations of random processes. We
motivate our work on the assumption that these processes are WSS when the time-stamps are
produced by periodic tasks. Indeed, periodic tasks are known to be WSS in response times [13],
and we loosely extend this idea to IATS based on the concept of the system’s hyper-period [23, 33].

Consider a periodic task set Γ𝑁 of 𝑁 tasks, each task 𝜏𝑖 having period 𝑇𝑖. Under the worst-case
scenario, the schedule of such task set will repeat after the hyper-period 𝑇𝐻 = lcm(𝑇1, . . . , 𝑇𝑁) [23,
33]. From the IATS perspective, this means that 𝑁𝐸 the number of events of a signal is constant
within one hyper-period, while the amplitude of inter-arrival times is determined by the schedule,
hence all the IATS Γ𝑁 generates are periodic. Therefore, for any signal 𝒮𝑖, with 𝑁𝑖𝐸 events per
hyper-period, we have 𝑥𝑖[𝑛] = 𝑥𝑖[𝑛 + 𝑁𝑖𝐸], and

∑︀𝑁𝑖𝐸−1
𝑛=0 𝑥𝑖[𝑛] = 𝑇𝐻 over any hyper-period.

Relaxing the worst-case execution condition while keeping 𝑁𝑖𝐸 constant allows the amplitude
of inter-arrival times in 𝑥𝑖[𝑛] to vary from one hyper-period to another while keeping the sum
constant over 𝑇𝐻 . However, in the general case, the IATS generated by Γ𝑁 are not periodic
(𝑥𝑖[𝑛] ̸= 𝑥𝑖[𝑛+𝑁𝑖𝐸]) but we conjecture they are WSS.

The expected value and variance of the random IATS generated by Γ𝑁 will be time invariant.
For the random variable 𝑋𝑖, the ensemble of all possible realizations of the random process, and
having 𝑁𝑖𝐸 events per hyper-period the expected value and variance of 𝑋𝑖 are:

E[𝑋𝑖] ≜ 𝜇𝑖 =

∑︀𝑁−1
𝑛=0 𝑋𝑖

𝑘𝑁𝑖𝐸
=

𝑘𝑇𝐻

𝑘𝑁𝑖𝐸
=

𝑇𝐻

𝑁𝑖𝐸
(2)

var[𝑋𝑖]] ≜ 𝜎2
𝑖 = E[(𝑋𝑖 − 𝜇𝑖)] = E[𝑋2]− 𝜇2

𝑖 (3)

where 𝑘 ⩾ 1 : 𝑘 ∈ R is the number of hyper-periods covered by 𝑋𝑖. Indeed Equations (2), and
(3) shows that IATS are mean and variance ergodic, being this the first condition for wide-sense
stationarity [26]. Proving that IATS are indeed WSS is beyond the scope of this work. Nevertheless,
we assume that IATS generated by a periodic task set are realizations of WSS processes. We support
our intuition on [13], and the assumption that the implementation of the system task’s code
remains unchanged during trace collection. Thus, we compute the PSD of IATS and extract suitable
frequency domain (FD) metrics that are used for timing anomaly detection.

5.1 Overview of PSD Estimation.
The recurrent nature of an event generator can be better examined throughout the power spectral
density (PSD) of its IATS. The PSD 𝑆(𝜔) is a continuous function of frequency a discrete represen-
tation is usually computed using some PSD estimation method. An example of two realizations
of IATS generated by a periodic task is shown in Figure 2. Note that even though the IATS have
different time domain representations they have almost identical power spectra. The peaks of the
Welch estimate �̂� [𝑘] shown in Figure 2 b,d are those related to the pseudo-periodic sequence of
inter-arrival times of its underlying generator. Conversely, the power spectrum of an anomalous
IATS will be different to that of its normal counterparts; this is true, even if the anomalous generator
remains WSS. The reason for the difference being that an anomalous generator will have different
moment statistics when compared to a normal generator. Therefore, normal and anomalous IATS
will have different PSD that enables binary classification.

There are two main approaches to PSD estimation: parametric, and non parametric [26, 28].
Parametric methods work under the assumption that the generator (tasks) of the processed time
series (IATS) follows some spectral density function whose parameters can be estimated from a
realization of the signal. nonparametric PSD methods are used when no assumptions can be made

ACM Transactions on Embedded Computing Systems, Vol. 00, No. 00, Article 00. Publication date: 00.

00:8 Torres et al.

5

Amp

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

0
0 20 60 8040 100

0 20 60 8040 100

0.2π 0.4π 0.8π π0.6π

∆t× 107

∆t× 107

0.67

0.70
4

3

2

1

5

0

4

3

2

1

sample no.

sample no. ω

a. IATS

c. IATS

b. Power Spectrum

d. Power SpectrumAmp

ŜW[k]

S(ω)

peak threshold

ŜW[k]

S(ω)

peak threshold

0.2π 0.4π 0.8π π0.6π

ω

Fig. 2. Two segments of 100 samples of IATS from the same generator in a, and c with their corresponding
normalized true PSD (𝑆(𝜔)), and Welch peridogram (�̂� [𝑘]) on the right. Note how although the IATS
segments show differences, their power spectra are almost identical.

about the properties of the generator. In our case, we cannot assert the existence of a model for
generators and therefore we are left to apply nonparametric PSD.
Among the different nonparametric methods for PSD estimation, the periodogram by Schus-

ter [32] is the most basic and best known. Although a powerful tool, the periodogram is not a
consistent estimator of the power spectral density function 𝑆𝑖(𝜔) [21]. Averaging periodograms
is a solution that improves the PSD estimate by reducing the periodogram variance. First, the
sequence 𝑥𝑖[𝑛] is split into a set of smaller segments, then the periodogram of each segment is
computed, and finally, the average periodogram is computed from the set of segment periodograms.
Two classic methods use averaging techniques: Bartlett [7, 8] divides the sequence into a set of
contiguous nonoverlapping segments. The method proposed by Welch [36, 37] finds a set of modi-
fied periodograms by windowing a set of overlapping segments and then averaging the modified
periodograms.

Averaging periodograms improves the consistency of the estimated PSD by reducing the variance
of the estimate at the expense of resolution in the frequency domain. We chose the Welch method
for two reasons (i) it estimates the PSD using more segments, and therefore the variance converges
more quickly, and (ii) individual periodograms are computed from windowed segments that reduce
spectral leakage. The method to compute the Welch periodogram is as follows:

Let 𝑥𝑖[𝑛] be the IATS of signal 𝒮𝑖. First, split 𝑥𝑖[𝑛] into a set of 𝐿 overlapping segments of length
𝑀 . Then compute the segment modified periodogram:

𝑃
(𝑙)
𝑖 [𝑘] =

1

𝑀𝑈

⃒⃒
⃒⃒
⃒
𝑀−1∑︁

𝑛=0

𝑥
(𝑙)
𝑖 [𝑛]𝑤[𝑛]𝑒−j 2𝜋𝑛

𝑀

⃒⃒
⃒⃒
⃒

2

, 𝑙 = 0, 1, . . . , 𝐿− 1 (4)

ACM Transactions on Embedded Computing Systems, Vol. 00, No. 00, Article 00. Publication date: 00.

SiPTA: Anomaly Detection in Embedded Systems Through Signal Processing of Event-Based
Traces. 00:9

Where 𝑈 is the the normalization factor for the window 𝑤[𝑛]:

𝑈 =
1

𝑀

𝑀−1∑︁

𝑚=0

𝑤2[𝑚] (5)

The Welch PSD estimate is found by averaging the modified periodograms computed using (4):

𝑆W𝑖[𝑘] =
1

𝐿

𝐿−1∑︁

𝑙=0

𝑃
(𝑙)
𝑖 [𝑘] (6)

The Welch periodogram is even and centered at 𝜔 = 0, where −𝜋 < 𝜔 ⩽ 𝜋. Therefore only
positive frequencies need to be considered.

5.2 DC significance metric
Consider a direct current (DC) IATS of amplitude 𝐴. This is in general, an uninteresting sequence,
but in our case, it means that the generator is fully periodic because it generates an event every
𝐴 units of time. Since, in the FD, all the energy is concentrated at the DC component the ratio of
energy at 𝜔 = 0 to the total signal energy can be used as an indirect measure of how periodic is
the generator (not the IATS). In practice, we allow some variation around the ideal amplitude, i.e.,
𝐴 − 𝜖 ⩽ 𝑥𝑖[𝑛] ⩽ 𝐴 + 𝜖 : 𝜖 ≪ 𝐴. Under this conditions, 𝑆𝑖(𝜔) ̸= 0 for |𝜔| > 0. However, since
𝜖 ≪ 𝐴, most of the signal energy will still be concentrated at 𝜔 = 0, while the PSD will be almost
zero for any non-zero frequency. Hence, we can use the ratio of energy at 𝜔 = 0 to the total signal
energy (see Equation (7)) as an indirect measure of an event generator’s periodicity.

Definition 5.1 (DC significance metric). Let 𝑆W𝑖[𝑘] be the PSD estimate of IATS 𝑥𝑖[𝑛] computed
by the Welch method. The DC significance (𝒟𝑖) of the IATS 𝑥𝑖[𝑛] is:

𝒟𝑖 ≜
𝑆W𝑖[0]

𝑁−1∑︀
𝑘=0

𝑆W𝑖[𝑘]

(7)

where 𝑆W𝑖[0] is the DC component of 𝑆W𝑖[𝑘]; i.e 𝑆(𝜔)|𝜔=0.

When the IATS is a periodic sequence, the PSD of 𝑥𝑖[𝑛] will have significant harmonics at some
𝜔 ̸= 0, which decreases the DCs value; this means that the DCs is a good estimator of normal
behaviour for DC generators or those whose 𝒟𝑖 ≊ 1. However, most IATS will be far from being
DC or even periodic sequences. Therefore a complementary metric is presented below.

5.3 Multi-peak frequency metric
When the IATS of a generator is a periodic sequence, dominant peaks will show at the fundamental
frequency of the sequence period. The problem is that most real IATS are random and therefore
noise will be present in their PSD. Among the undesirable features emerging in an IATS’s PSD,
low-frequency peaks are of particular interest because they are not related to the real periodicities
of the underlying generator.
Let 𝑥𝑖[𝑛] be an IATS covering some number of hyper-periods, also let 𝑁 be large and 𝑘 small.

The lowest frequency components of 𝑆W𝑖[𝑘] will be located at frequencies near zero, i.e., 𝜔±𝑘 =

± 2𝜋𝑘
𝑁

⃒⃒
𝑘≪𝑁

≈ ±0. Since 𝑆W𝑖[𝑘] is even symmetric, our reasoning follows for 𝜔 ⩾ 0. Recall that
the expected recurrent sequence of an IATS should repeat with each hyper-period. Therefore,
any dominant peak found in the IATS’s PSD should be related to the sequence period. However,
since the IATS is assumed to be WSS low-frequency dominant peaks may appear due to noise and

ACM Transactions on Embedded Computing Systems, Vol. 00, No. 00, Article 00. Publication date: 00.

00:10 Torres et al.

spectral leakage. The problem is that a low dominant peak present at a frequency lower than the
natural frequency of the recurrent sequence is not related to the normal behaviour of the system.
To further complicate this problem, there is no guarantee that these peaks will always be present in
the PSD at the same frequencies and amplitude. We actively remove low-frequency dominant peaks
under the assumption that any peak present under some cutoff frequency 𝜔𝑐 can be attributed to
noise present in 𝑥𝑖[𝑛] and not to the real recurrences in the IATS. As a result, we eliminate these
undesirable peaks by filtering 𝑥𝑖[𝑛] using a high pass filter with cutoff frequency 𝜔𝑐.

Consider 𝑆W𝑖[𝑘], the discrete PSD of filtered 𝑥𝑖[𝑛], 𝑆W𝑖[𝑘] should only contain the dominant FD
peaks of 𝑥𝑖[𝑛] related to recurrent sequences of events. Moreover, a few number of peaks from
�̂� [𝑘] will be significant. The multi-peak frequency metric 𝒫𝑖(𝒮𝑖, 𝑁𝑃) of IATS 𝑥𝑖[𝑛] is the metric
containing the highest peaks of 𝑆W𝑖[𝑘], and is defined as follows:

Definition 5.2 (Multi-peak frequency metric). Let 𝑆W𝑖[𝑘] be the discrete PSD estimate of IATS
𝑥𝑖[𝑛], extracted from signal 𝒮𝑖 and passed through a high pass filter with 𝜔𝑐𝑢𝑡 ⩾ 𝜔𝑐. Assume there
are a minimum of 𝑁𝑃 dominant peaks in 𝑆W𝑖[𝑘]. The multi-peak frequency metric 𝒫𝑖(𝒮𝑖, 𝑁𝑃) of
IATS 𝑥𝑖[𝑛] is the set of amplitude, frequency tuples in decreasing order of amplitude, and frequency.

𝒫𝑖(𝒮𝑖, 𝑁𝑃) ≜
{︁⟨

�̂�𝑖[𝑘]𝑁𝑃
, 𝜔𝑘𝑁𝑃

⟩
, . . . ,

⟨
𝑆W𝑖[𝑘]1, 𝜔𝑘1

⟩}︁
(8)

where 𝑆W𝑖[𝑘]𝑚 ⩾ 𝑆W𝑖[𝑘]𝑙, and 𝜔𝑘𝑚 > 𝜔𝑘𝑙
for any two peaks 𝑆W𝑖[𝑘]𝑚 = 𝑆W𝑖[𝑘]𝑙.

Note that the order is given based on the amplitude first, then the frequency of the peaks for peaks
of equal amplitude. For example, two equal peaks 𝑆W𝑖[𝑘]𝑚 = 𝑆W𝑖[𝑘]𝑙, are ordered according to
their frequencies: 𝜔𝑘𝑚

> 𝜔𝑘𝑙
. Based on the definition, there is no need to extract all the significant

peaks from 𝑆W𝑖[𝑘], but we need a method from which we can determine𝑁𝑃 which it is introduced
in the next section.

6 TRAINING AND CLASSIFICATION
Since we assume that a periodic task is a random process, we should expect some variance in
the power spectrum of its IATS realizations. To compensate for this variance, we train a normal
model from a set of reference (normal) traces. A reference trace is one with a high likelihood of
containing expected sequences of inter-arrival times. Normal traces are recorded under known
operating conditions where no anomalous activity is suspected. For example, a trace from a car
that passes industry standard tests is likely to be normal and therefore can be labelled as such. Our
reference model will be built from information extracted from a training set Tt ≜ {𝑇 t1, . . . , 𝑇 tnt}
composed of nt reference traces.

Analysis traces are recorded under any operating condition, and no assumptions are made about
its conformity to normality. For example, a trace recorded in a normal driving scenario may be
considered an analysis trace. A set of analysis traces Ta ≜ {𝑇 a1, . . . , 𝑇 ana} is composed of na
traces whose classification is unknown. We consider each trace 𝑇 a𝑖 of Ta independently and assign
a classification score to each element of Ta.

The classifier uses the reference model as comparison standard during classification of analysis
traces. The reference model is constructed in two steps: First, each trace in Tt is checked for signal
consistency, which requires the verification of signal existence and signal length. Second, a model
containing the metrics for the signals involved in classification is computed from the traces in Tt.

6.1 Signal consistency
The first step toward a reference model is the determination of what signals are present in all traces
of Tt. Classification based on Mahalanobis distance requires a model composed of a fixed number

ACM Transactions on Embedded Computing Systems, Vol. 00, No. 00, Article 00. Publication date: 00.

SiPTA: Anomaly Detection in Embedded Systems Through Signal Processing of Event-Based
Traces. 00:11

of independent variables. We consider each element in a metric an independent variable. Therefore,
all traces in Tt must contain the same signals. Recall those signal identifiers are elements of the
trace’s signals class set (see Definition 4.3) used to extract signals from the trace (see Definitions 4.4,
and 4.5). Hence, we define a training signal class set for Tt as:

Definition 6.1 (Training signal class set). Let St𝑖 be the signal class set of 𝑇 t𝑖, the 𝑖𝑡ℎ trace in Tt.
The training signal class set, St of Tt defined as St ≜ St1 ∩ St2 ∩ . . . Stnt is the subset containing
the signals common to all 𝑇 t𝑖 ∈ Tt : 1 ⩽ 𝑖 ⩽ nt.

Note that St ⊆ St𝑖,∀𝑇 t𝑖 ∈ Tt, hence non shared signals are excluded from the training signal
class set. There are various reasons to have excluded signals without affecting the model. For
example, a normal trace may contain entries for initialization commands that might not be present
in other normal traces. Moreover, if the signal class set Sa𝑖 of trace Ta𝑖 does not contain St, i.e.,
Sa𝑖∩St ̸= St, there are missing signals in Ta𝑖, and the trace can be classified as anomalous without
further analysis.

A comprehensive model for normal behaviour can be built by using the elements of St as signal
identifiers. However, signals must contain enough information to enable the computation of PSD
estimates by the Welch method. If signals are too short, St can be further reduced. Some signals
may be short without compromising system’s analysis. For example, sporadic tasks that are rarely
activated, or events generated when a task occasionally takes some execution path will be inevitably
short when transformed into IATS. The minimum length 𝐿𝑚𝑖𝑛(𝒮𝑖) of signal 𝒮𝑖 depends on the
desired frequency domain resolution when computing 𝑆W𝑖[𝑘], and the number of segments required
to estimate the PSD.

Definition 6.2 (Short signal). Let 𝑁𝑖 be the length of signal 𝒮𝑖, and 𝐿𝑚𝑖𝑛(𝒮𝑖) ≜ 𝐾𝑖𝑀𝑖 + 1 the
minimum length required to compute an accurate PSD estimate of 𝑥𝑖[𝑛]. Where 𝐾𝑖 is the number
of non overlapping segments, and 𝑀𝑖 the segment length required for an accurate computation of
𝑆W𝑖[𝑘]. Signal 𝒮𝑖 is short if 𝑁𝑖 < 𝐿𝑖(𝒮𝑖).

Finding appropriate values for𝐾𝑖, and𝑀𝑖 is hard without knowing task periods in a task set
and the expected number of events per hyper-period. The difficulty to accurately determine the
minimum length of an IATS is one reason we limited our study to offline anomaly detection. Having
large traces covering a substantial amount of time and containing numerous events reduces the
chances that not enough information is present in the trace.

Short signals cannot be included in the normal model because computing accurate metrics is not
possible. Also, note that St contain signal identifiers only for base signals. In most cases, not all
base signals need to be included, while aggregated signals may better explain the behaviour of a
task. Nevertheless, St is the foundation to construct such set of signals.
It is hard to determine what signal identifiers better represent the behaviour of the system, or

agree on a method to define rules from which aggregated signals can be defined by joining base
signals whose identifiers are taken from St. The main goal should be the minimization of the
number of signals to form from the elements of St. A simple but effective rule we found useful is
the idea of a channel. A channel is the aggregated signal resulting from joining all the base signals
associated with an even generator whose identifiers belong to St.

Definition 6.3 (Channel). Let 𝐺 = ⟨𝑙, . . . , 𝑛⟩ be the set of column indexes associated to event
attributes that uniquely identify event generators in a trace. Also let Gt ≜ proj(St(𝐺)), be the
projection of the training class set on𝐺, and 𝑃𝑖(Gt

𝑖) a logic function that returns true if 𝑃𝑖.𝐺 = Gt
𝑖,

where 𝑃𝑖.𝐺 is the subset of parameter values 𝜌𝑖,𝑚 : 𝑚 ∈ 𝐺. The channel 𝒞𝑖 ≜ 𝑇 (Gt
𝑖) filters trace

𝑇 to those entries for which 𝑒𝑖.𝑃 (Gt
𝑖) holds.

ACM Transactions on Embedded Computing Systems, Vol. 00, No. 00, Article 00. Publication date: 00.

00:12 Torres et al.

6.2 Reference model
The reference model is an ordered collection of metrics computed from signals formed from the
elements of St. Each trace will provide a tuple of metrics per analyzed signal. The metrics of a trace
can be interpreted as a normal point in the multidimensional space of normal behaviour.

Definition 6.4 (Metrics Tuple). Let 𝑇 be a trace either in the training or analysis set. And let Gt

be the set from which channels are extracted from 𝑇 . The metrics tuple ℳ of 𝑇 is:

ℳ ≜ ⟨𝒟(𝒞1),𝒫(𝒞1, 𝑁𝑃1)⟩, . . . , ⟨𝒟(𝒞𝐿),𝒫(𝒞𝐿, 𝑁𝑃𝐿)⟩ (9)
where 𝐿 = |Gt|, and 𝑁𝑃𝑖 is the number of peaks to extract from channel 𝒞𝑖.
The reference model ofTt can now be defined in terms of the metrics tuple of each trace, arranged

in matrix form.

Definition 6.5 (Reference model). Let Tt be a training set of nt traces, with signal set Mt. The
reference modelℛt of Tt is:

ℛt ≜
𝒟1(𝒮m1) 𝒫1(𝒮m1) · · · 𝒟1(𝒮m𝐿) 𝒫1(𝒮m𝐿)

...
...

. . .
...

...
𝒟nt(𝒮m1) 𝒫nt(𝒮m1) · · · 𝒟nt(𝒮m𝐿) 𝒫nt(𝒮m𝐿)

Each row inℛt contains the elements of the metrics tuple for a trace in the training set. Therefore,
the reference model contain the information required to establish a comparison between the set of
training traces to an unknown trace. Each column in ℛt is an independent variable in the normal
behaviour of the system. Meanwhile, each row is a point of the multidimensional, normal space.
An accurate normal operation mode for a system will contain a set of points that cluster in some
region of the multidimensional, normal space.

6.3 Peak detection
The automatic detection of dominant peaks is achieved by applying algorithm 1, an adaptation of the
PERIOD_HINTS algorithm. Originally proposed by Vlachos et al. in [35]; PERIOD_HINTS determines
a threshold above which any component in the power spectrum becomes a period hint. A period
hint is a dominant FD peak that may be associated with a real periodicity of the stationary signal.
PERIOD_HINTS is based on the periodogram and also contain some features not needed in SiPTA.
For example, in [35] some hints may be discarded because they are likely to represent unreal
periodicities in the targeted times series, since our requirements are different we adapted the
algorithm.

Our version, called MULTI_PEAKS and shown inAlgorithm 1 is amodified version of PERIOD_HINTS
that uses filtered time series and the Welch method to compute significant FD peaks. Recall that
spectral leakage is a real problem that arises when computing periodograms, the Welch method
reduces leakage by computing modified periodograms for each segment. Another problem that
contributes to leakage is the segment length, which we keep constant for each signal. Even when
the same signal has IATS of different length for different normal traces; the peaks due to leakage
will appear around the same frequencies and will have about the same amplitude. As mentioned
before, low-frequency peaks are removed by filtering the IATS with a high pass filter. MULTI_PEAKS
returns 𝑁𝑃 the number of FD peaks found, and 𝑡ℎ the threshold above which FD peaks become
dominant.
Recall that we need to know the number of peaks to retrieve from a power spectrum when

extracting the MPFm, but nothing is assumed about the number of dominant peaks in a signal’s PSD.
Since dominant peaks should be present in all normal traces, with some variance allowed, we can

ACM Transactions on Embedded Computing Systems, Vol. 00, No. 00, Article 00. Publication date: 00.

SiPTA: Anomaly Detection in Embedded Systems Through Signal Processing of Event-Based
Traces. 00:13

Algorithm 1 MULTI_PEAKS

Input: 𝑥[𝑛], ℎ[𝑛],𝑀
Output: 𝑁𝑃 , 𝑡ℎ {Number of peaks and threshold of significant peaks}

𝑃𝑚𝑎𝑥 = ∅ {vector of maximum amplitudes}
𝑁𝑃 = 0
𝑥𝑓 [𝑛] = filter(𝑥[𝑛], ℎ[𝑛])

for 𝑙 = 1 to 100 do
𝑥𝑙[𝑛] = permute(𝑥𝑓 [𝑛])

�̂�𝑙[𝑘] = welch(𝑥𝑙[𝑛],𝑀) {segment length: 𝑀 , overlap: 50%}
insert(𝑃𝑚𝑎𝑥, max(�̂�𝑙[𝑘]))

end for

sort(𝑃𝑚𝑎𝑥, descending)
𝑡ℎ = 𝑃𝑚𝑎𝑥[10] {10𝑡ℎ element is 90𝑡ℎ largest power}

�̂� [𝑘] = welch(𝑥𝑓 [𝑛],𝑀)

�̂�𝑠𝑜𝑟𝑡[𝑘] = sort(�̂� [𝑘], descending)

while �̂�𝑠𝑜𝑟𝑡[𝑁𝑃] ⩾ 𝑡ℎ do
increment(𝑁𝑃)

end while

return 𝑁𝑃 , 𝑡ℎ

use MULTI_PEAKS to mine that information from the training set. We propose MODEL_PEAKS, shown
in Algorithm 2, given a channel identifier, it computes the thresholds and peaks for each trace in the
training set, then finds the average threshold and the average number of peaks. MODEL_PEAKS checks
that all channels have at least the average number of peaks before returning the average threshold
and the number of peaks (rounded down to the nearest integer). With the information returned
from MODEL_PEAKS we can proceed to the extraction of the MPFm as defined in Definition 5.2.

6.4 Classification
Based on definitions 6.1, and 6.2, test traces can be deemed anomalous when the signal class of
the analysis trace does not contain the same signals in the training signal class. Formally we say
that some analysis trace 𝑇 a𝑖 is anomalous if Sa𝑖 ∩ St ̸= St, because a signal to form a channel is
missing in 𝑇 a𝑖. A similar reasoning applies to short signals because there are not enough recorded
events to compute an accurate PSD. These two conditions help in the classification of anomalous
traces that do not contain the type or amount of information expected in a normal trace.

Since we consider only one normal space, the classification can be accomplished by computing
the distance of an unknown point to the centroid of the normal cluster. The Mahalanobis distance
is our choice because it takes into account the covariance of the independent variables.

Definition 6.6. Letℳai be the 𝑖𝑡ℎ metrics tuple of analysis set Ta. The distance ofℳai to the
reference model ℛai, extracted from training set Tt is computed by the squared Mahalanobis
Distance:

ACM Transactions on Embedded Computing Systems, Vol. 00, No. 00, Article 00. Publication date: 00.

00:14 Torres et al.

Algorithm 2 MODEL_PEAKS

Input: Gt
𝑖,Tt, ℎ[𝑛],𝑀

Output: �̄�𝑃𝑖, 𝑡ℎ𝑖 {Average number of peaks, and threshold for channels 𝒞t
𝑖 }

𝑇ℎ𝑟𝑒𝑠 = ∅, 𝑁_𝑃𝑘 = ∅

for 𝑘 = 1 to nt do
[𝑡t𝑘ℎ𝑖, 𝑁

t𝑘
𝑃𝑖] = MultiPeaks(𝒞t𝑘

𝑖 , ℎ[𝑛],𝑀)
insert(𝑇ℎ𝑟𝑒𝑠, 𝑡t𝑘ℎ𝑖)
insert(𝑁_𝑃𝑘,𝑁 t𝑘

𝑃𝑖)
end for

𝑡ℎ𝑖 = Average(𝑇ℎ𝑟𝑒𝑠)
�̄�𝑃𝑖 = Average(𝑁_𝑃𝑘)

for 𝑘 = 1 to nt do
if CountPeaks(𝒞t𝑘

𝑖 , 𝑡ℎ𝑖) <
⌊︀
�̄�𝑃𝑖

⌋︀
then

return FAIL, 𝑘
end if

end for

return
⌊︀
�̄�𝑃𝑖

⌋︀
, 𝑡ℎ𝑖

𝐷2
𝑀 (ℳai,ℛt) =

(︁
ℳai − ℛ̂t

)︁𝑇
𝛴−1

(︁
ℳai − ℛ̂t

)︁
(10)

Where ℛ̂t is the columns mean vector of the modelℛt, and 𝛴−1 is inverse of the covariance
matrix ofℛt.

If the traces inTt are similar to each other, their pairwise MDwill be small. Therefore, any normal
trace should also be close to the reference model and 𝐷2

𝑀 (ℳai,ℛt) should also be small. The
more different an analysis trace is to those in the training set, the larger the MD. The classification
is achieved by setting a classification threshold 𝜃M and a classification function as follows:

𝑆(𝐷2
𝑀 (ℳai,ℛt), 𝜃M) =

{︃
1, 𝐷2

𝑀 (ℳai,ℛt) ⩽ 𝜃M

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(11)

where a score of one means the trace is normal, and anomalous otherwise.
Proper determination of a good choice for 𝜃M will require a performance analysis for each

specific application. A well established method to conduct such performance analysis is receiver
operational characteristic. We perform ROC analysis on SiPTA for a set of execution scenarios in
the following section.

7 EXPERIMENTAL EVALUATION
While SiPTA in theory is well suited to the problem domain of periodic systems, we followed up our
theory work with an experimental evaluation to provide quantitative results. This section describes
the experiments we conducted to test our tool, evaluate its performance, and discuss the results.

ACM Transactions on Embedded Computing Systems, Vol. 00, No. 00, Article 00. Publication date: 00.

SiPTA: Anomaly Detection in Embedded Systems Through Signal Processing of Event-Based
Traces. 00:15

7.1 Experimental Setup and Workload
We ran our experiments on the QNX Neutrino 6.4 real-time operating system. While the framework
is independent of specific system traces, we had access to three QNX based embedded platforms,
from which we can gather traces: a hexacopter [4], a QNX CAR infotainment unit, and Blackberry
phones running QNX. This allows us to gather traces from very different execution contexts to
properly evaluate SiPTA.

Data was collected by the QNX kernel logging facility, which provides tracing capabilities through
QNX tracelogger. A trace collected from tracelogger contain a chronological order of system events
such as system calls, message passes, interrupts, I/O, etc. Each trace entry corresponds to a system
event and complementary information, such as the source/destination of a message pass. A sample
trace is shown in the following snippet:
TIMESTAMP, CPU, EVENT, PID, PROC, Details
t1, 1, PROCCREATE, 1, A, PPID: 0 ...
t2, 1, THCREATE, 1, A, ...
t3, 2, INT_ENTR, 1, A, ...
t4, 2, INT_EXIT, 1, A, ...
t5, 1, MSG_SND, 1, A, To: B ...
t6, 1, MSG_RECV, 3, B, From: A ...
.....
tn, 1, KER_CALL, 1, A, SIGKILL ...

The above snippet shows the life-cycle of a process as recorded by the system. The process A,
once created, spawns a thread, services an interrupt and sends a message to some other process B
before being terminated.

Our experimental setup requires a subset of all the information contained in a trace. Specifically,
we only consider the following event attributes: class, event, time, pid, and process name. This is
consistent with related work [9] which reduces the used attributes to similar lists.

The experimental workload consists of six different execution scenarios for the four systems under
test. Each scenario ran between 10 to 20 seconds, and the traces contain all logging information.
Within one scenario each trace covers about the same runtime. For any given scenario, traces
are arbitrarily assigned to the training Tt, or analysis set Ta. All traces are labelled as normal or
anomalous so we can check classification performance. Depending on the detection technique, we
may need only normal traces during training (SiPTA, Markov model) or a combination of normal
and anomalous traces (Neural Networks). The analysis set can contain a set of normal traces, a set
of anomalous traces, or a combination of both.

Hexacopter: The hexacopter system is an unmanned aerial vehicle (UAV) platform, which
implements non-trivial software and systems control [4]. The platform runs on beaglebone
white with ARM Cortex-A8 processor and comprise a networked system of hardware and
software components. The hexacopter has been field tested through several mission-critical
applications including: iceberg monitoring on the open sea and creating infrared maps over
critical Canadian Solar infrastructure. For our experiments, we created two test scenarios. In
both scenarios, the normal traces correspond to the hexacopter running normally:

Scenario Anomalies
Run normally (I) Periodic recursive listing
Run normally (II) Run tight loop process

QNX CAR infotainment device: The second set of scenarios uses QNX CAR [5], which is
the leading in-car infotainment system. The device was running QNX Neutrino on an i.MX6Q

ACM Transactions on Embedded Computing Systems, Vol. 00, No. 00, Article 00. Publication date: 00.

00:16 Torres et al.

(Sabre lite) board with an ARM Cortex A9 quad-core processor. We created the following
scenarios on this platform:

Scenario Anomalies
Idle Induced network traffic, user inputs

Play MP3 Seeking, fast-forward, different song
Play Video Seeking, fast-forward, different video

Run top command Induced network traffic, more shell tasks
Variable speed ping Change ping rate from five to two seconds

QNX-based BlackBerry Z10 phone: The third set of scenarios uses the BlackBerry phone.
These phones run a modified version of QNX Neutrino, however, the tracelogging facilities
are still available. We created the following set of scenarios on this platform:

Normal trace Anomalies
Record video Zooming and toggling the camera, light on/off

Play youtube video Playing different video, toggling HD on/off
Play game Change sound, using different controls

Run flash applet Reload page, leave page

7.2 Evaluation Criteria
To measure the effectiveness of SiPTA, we need to compare the results to different existing tech-
niques. The prevalent metric for comparison in anomaly detection is receiver operating character-
istics curve (ROC) analysis [14].

ROC Analysis. ROC analysis is a common technique in research to compare different classifiers
based on their performance [27, 40]. ROC analysis explains the trade-off between the true positive
rate (TPR), plotted on the y-axis, and the false positive rate (FPR), plotted on the x-axis. To compare
different classifiers, the common approach [14] is to consider the classifier with the higher area
under the ROC curve as the better classifier.

Figure 3 shows an ROC curve for one of the experiment runs. The algorithm calculates the values
for a point (FPR, TPR) using Equations 12 and 13 where a classifier threshold interprets the input
probabilities into a binary output of 0 (negative) or 1 (positive).

TPR =
Positives correctly classified

Total Positives (12)

FPR =
Negatives incorrectly classified

Total Negatives (13)

To obtain all points for the ROC curve when using Markov Model, the algorithm varies the
threshold over a range of all input probabilities to obtain the corresponding points (FPR, TPR)
plotted in the figure. In SiPTA, this corresponds to varying the value of 𝜃M.

In addition to the area under the ROC curve, some important characteristics of the curve help with
the analysis of the classifier performance. For example, point (0, 1) indicates perfect classification
while the region under the dotted line TPR = FPR indicates that the classification is worse than
making a random guess.

ACM Transactions on Embedded Computing Systems, Vol. 00, No. 00, Article 00. Publication date: 00.

SiPTA: Anomaly Detection in Embedded Systems Through Signal Processing of Event-Based
Traces. 00:17

7.3 Comparison to Alternative Approaches
To evaluate SiPTA, we compare it to other methods that implement alternative concepts. For
example, first-order Markov Model [10], relies on a stochastic approach, which assumes that
anomalies change the probabilistic characteristics of event transitions in a sequence of system
events. Another alternative is Neural Networks [6] which trains a neural network using a set of
normal and anomalous traces. The two techniques were chosen due to their popularity in the
domain [9]. As discussed later in this section, the disadvantage of using Neural Networks, is the
inability to use the ROC analysis to compare its performance to SiPTA, and Markov models.

7.3.1 Markov Model Technique. Markov Model is a discrete-time stochastic process used to
study the probability of the change of a random variable value. First-order Markov Models are
commonly used to study the probabilistic characteristics of a single transition between two events
within the trace sequence [18, 38–40].

To compare to the performance of SiPTA, we implemented the anomaly detection engine shown
in Figure 1 using first-order Markov Model. For an input trace sequence, an event represents
a Markov Model state so that the Markov Model will describe the probability of occurrence of
a transition between an event and its first successor. Following the work-flow in Figure 1, the
preprocessor splits the trace into sub-traces based on the process name and extracts only the event
name and event class attributes. For each sub-trace, the Markov Model calculates a transition
probability matrix [38], which indicates the probability of transition between any trace entries.
The averaged transition probability matrices calculated for the training set describe the normal
behavior of the system.

In the testing phase, the classifier compares the transition probability matrix of the test trace and
the normal behavior matrix to decide if the test trace is normal or anomalous. We assign an anomaly
flag for each transition in the test trace that occurs with a probability value that lies outside a
defined region around the mean value of probabilities that describe the normal behavior of the
system. For each experiment, we performed several experiment runs using different sizes for that
region to select the region size that yields the best ROC curve. For the final binary classification,
the percentage of anomalous transitions within the trace indicates, whether the trace is anomalous
or not. Varying a threshold over the range of the percentages, ranging from 0% to 100%, yields
points of ROC curve as described earlier.
For the sake of simplicity of the implementation, transition probability matrices consider only

the transitions in a randomly selected normal trace during the training phase instead of considering
all possible transitions combinations. This consideration reduces the calculations by excluding the
transitions that rarely occur and have no effect on the final classification result.

7.3.2 Neural Networks Technique. Artificial Neural Networks (NN) are massively connected
networks of computational nodes or neurons. The nodes are usually organized in layers (input,
output, and hidden) with weighted connections between them [20]. As the network learns, it
updates the weights on the connections to improve classification.
For the purpose of comparison, the Kohonen self-organizing network (KSON) was used. The

network uses unsupervised learning algorithms to cluster inputs into groups with similar charac-
teristics. The learning is called unsupervised because the output characteristics of the network are
determined internally and locally by the network itself, without any data on desired outputs. The
nodes distribute themselves across the input space to recognize groups of similar input vectors,
while the output nodes compete among themselves to be fired one at a time in response to a
particular input vector [20]. Thus, due to this competitive learning, similar input vectors activate

ACM Transactions on Embedded Computing Systems, Vol. 00, No. 00, Article 00. Publication date: 00.

00:18 Torres et al.

physically close output nodes. We want to take advantage of this characteristic of KSON to classify
the traces.
The input vectors for the network are an encoded representation of the events in a trace. To

generate the encoding we extract event names from the trace and then count the number of
occurrences of each event. The count for each event is then scaled by dividing it by the total number
of logged events in the trace. The input vector is thus a collection of event to count mappings for
the trace.
The training sets for the network need to contain both clean and anomalous traces. When

the network is trained with only clean traces, it is not able to classify anomalous traces as part
of a different cluster during testing. Thus, unlike other approaches, Neural Networks imposes
constraints on the training set. During the testing phase, the network determines the cluster that
the trace belongs to and thus classifies the trace. The classification is typically discrete, with the
output being either 0 (clean) or 1 (anomalous), however the value can be within that interval in
case of more uncertainty.

The difficulty with using Neural Networks technique for comparison with the other approaches
is the lack of a classifier threshold. The classification takes place within the internal structure of
the network using specialized learning algorithms. We can thus alter the structure of the network,
but cannot alter any thresholds that influence the cluster that the network will choose. As a
consequence, we can only report the detection rate for this technique but cannot perform an ROC
analysis.

8 RESULTS
The results of our experiments are summarized in Table 2, that shows the detection rates (TPR)
and false-alarm rates (FPR) for each of the four approaches, namely SiPTAMD, SiPTA, Markov
Model and Neural Networks. SiPTAMD accounts for the new implementation in this paper, for our
previous work we refer the reader to [41]. Contrary to Neural Networks, SiPTA and Markov Model
implement a binary classifier, this allows the use of ROC curves to compare their performance, but
a similar comparison cannot be done with Neural Networks.

As mentioned in Section 7.2, the points (FPR,TPR) represent the ROC curve for each approach.
Figure 3.a, 3.b, and 3.c show the ROC curves for the hexacopter, QNX-Car run top command, and
variable ping speed scenarios, respectively. The remaining scenarios yielded ROC curves similar to
Figure 3 which show near perfect classification for both SiPTA and Markov Model, with SiPTA MD
improving classification performance when compared to its former implementation.

Receiver operational characteristic curves clearly demonstrate the trade-off between the detection
rate and the false-alarm rate for a binary classifier. Those ROC curve points closer to (0, 100) indicate
better results with 100% detection rate and 0% false alarm rate. Although such points are most
desirable, for our comparisons in Table 2, we favor the detection rate while tolerating false-alarm
rate. For example, there are two points at equal distance to (0, 100) for the Run top command, and
SiPTA method. We report the point (20, 100) as a better threshold than (0, 80) because for most
cases the penalty of false negatives outweighs false positives.

9 DISCUSSION
SiPTA outperforms all other approaches. In every studied case, SiPTAMD yields better results

than the contrast approaches (including SiPTA). For instance, as Table 2 indicates, SiPTA yields
perfect classification results for the variable speed ping scenario while Markov Model has 80%
detection rate with 20% false alarm, and Neural Network yields a 75% detection rate. An interesting
question arises from these results: Why SiPTA performs so well when other established methods
fail?

ACM Transactions on Embedded Computing Systems, Vol. 00, No. 00, Article 00. Publication date: 00.

SiPTA: Anomaly Detection in Embedded Systems Through Signal Processing of Event-Based
Traces. 00:19

0 20 40 60 80 100

20

40

60

80

100

T
P
R

(
%

)

0

a. Hexacopter

FPR (%)

0 20 40 60 80 100

20

40

60

80

100

T
P
R

(
%

)

0

b. Run Top Command

FPR (%)

0 20 40 60 80 100

20

40

60

80

100

T
P
R

(
%

)

0

c. Variable Speed Pinging

FPR (%)

SiPTA MD

SiPTA

Markov model

SiPTA MD

SiPTA

Markov model

SiPTA MD

SiPTA

Markov model

Fig. 3. Receiver operational characteristic curves for some scenarios. Each plot contain 11 points per method,
each point corresponds to a different threshold configuration. Points close to coordinate (0, 100) are the
most desirable.

Table 2. Results summary

SIPTA MD SIPTA Markov Model Neural Network

Scenario TPR FPR TPR FPR TPR FPR TPR FPR

Hexacopter (I & II) 100 0 100 0 100 0 91 0
QNX-Car Idle 100 0 100 0 100 0 91 0
QNX-Car play MP3 100 0 100 0 100 0 45 0
QNX-Car Play Video 100 0 100 0 100 0 83 0
QNX-Car Run top command 100 0 100 20 80 20 26 0
Variable speed ping 100 0 100 0 100 20 75 0

The reason why both implementations of SiPTA work in this type of scenario is that a change
in the ping rate also changes the inter-arrival time for each ping command. The overhead to the
system, introduced by the demand of processing the ping commands also affects the inter-arrival
time for other events within the system. The change induced in the IATS for many channels within
the system will appear on the PSD as a change in the frequency location for the dominant peaks.
The plots in Figure ?? show two different PSDs, the normal is on the left and the anomalous case
on the right. The anomalous trace does not contain the same MPFm features when compared to
the normal case.

The Markov Model method fails here because changing the ping rate does not necessarily change
the sequence of events within a channel. Therefore, for some run-time conditions the transition
probability matrix remain invariant to the new conditions. A transition probability matrix that
remains invariant in presence of anomalous behaviour is the main reason this method may classify
20% of anomalous traces as normal. Notice that changing the detection threshold does not improve
detection rate immediately, as it will start considering normal traces as anomalous. Although the
technique seems to work reasonably well and is currently the dominantly used one [9], it failed to
handle certain scenarios. We conjecture that Markov Model will fail whenever the anomaly has an
insignificant effect on the transition probabilities. This is due to events changing their inter-arrival
time without affecting their transitions probabilities, which represents a whole class of anomalies
that SiPTA can detect, however, Markov Model cannot.

ACM Transactions on Embedded Computing Systems, Vol. 00, No. 00, Article 00. Publication date: 00.

00:20 Torres et al.

Amp
0.25

0

0.05

0.15

0.2π 0.4π 0.8π π0.6π
ω

0.25

0

0.05

0.15

0.2π 0.4π 0.8π π0.6π

Amp

ω

ŜW[k]

peak threshold

ŜW[k]

peak threshold

a. Normal b. Anomalous

Fig. 4. In (a) the normal PSD for channel with pid 8204 in the variable speed ping scenario, an anomalous
example is shown in plot (b).

Neural Networks are ill-suited for trace-based anomaly detection. Neural Networks is an established
technique that is used for detecting anomalies, but it is less suitable for this given problem. The
results for Neural Networks indicate that the technique classifies anomalous traces only for some
of the scenarios. Neural Networks are only able to classify anomalous traces if trained with at least
one anomaly similar to the one occurring. Table 2 shows that Neural Networks have a 0% false
alarm rate throughout the experiments, because when the network is not trained with anomalous
traces, then it will tend by default to classify traces as normal. Unlike SiPTA and Markov Model,
Neural Networks require a different training set comprising both normal and anomalous traces.

The concepts are widely applicable. It can be observed that SiPTA has an inherently modular
structure. Each component, namely trace-to-signal modeling, signal processing algorithm, metrics,
and classification technique can be modified to suit application specific scenarios as long as the
modules complement each other. For example, one can use some alternative method to model
trace-to-signal mappings other than assigning channels to each parameter. Similarly, one can
plug-in another signal processing algorithm that exploits some other domain knowledge.

Threats to validity. Our framework is based on the assumption that anomalies cause changes in the
inter-arrival times of events in the trace otherwise, such anomalies will pass undetected. Therefore,
this assumption needs validity verification, so SiPTA can be used whenever the assumption is valid
and dropped otherwise.

Similar to Markov Models, our method still needs supervised learning from a labeled training set.
Even though SiPTA was able to outperform all other studied approaches to anomaly detection for
the comprehensive set of scenarios we created, more evidence is necessary. We need an extension
of the empirical study to more complex scenarios and include more traces in the analysis as to gain
confidence that the method will consistently outperform the contrasting approaches.

10 CONCLUSION
Identifying an incorrect behavior is crucial for safety-critical embedded systems. In this work we
demonstrated that, with an appropriate application of signal processing algorithms on execution
traces, one can identify an incorrect system behavior. We demonstrated the feasibility of such
an approach by implementing these algorithms into SiPTA. In our experiments, we performed a
holistic evaluation of SiPTA by running it on execution traces from varied execution scenarios. To
demonstrate the effectiveness of SiPTA, we compared it with state of art techniques ofMarkovModel
and Neural Networks. The results indicate that SiPTA outperforms all the studied contemporary
approaches.

ACM Transactions on Embedded Computing Systems, Vol. 00, No. 00, Article 00. Publication date: 00.

SiPTA: Anomaly Detection in Embedded Systems Through Signal Processing of Event-Based
Traces. 00:21

REFERENCES
[1] Audit data from MIT Lincolin lab. URL http://www.ll.mit.edu/mission/.
[2] QNX Neutrino RTOS. URL http://www.qnx.com/products/neutrino-rtos/neutrino-rtos.html.
[3] System call dataset from University of New Mexico. URL http://www.cs.unm.edu/~immsec/data-sets.htm.
[4] Unmanned Aerial Vehicle (UAV). URL https://uwaterloo.ca/embedded-software-group/projects/

unmanned-aerial-vehicle-uav-exemplar.
[5] QNX CAR Platform for Infotainment. URL http://www.qnx.com/products/qnxcar/.
[6] A. K. Ghosh and A. Schwartzbard. A Study in Using Neural Networks for Anomaly and Misuse Detection. In Proc. 8th

USENIX Security Symposium, pages 23–36. USENIX, 1999.
[7] M. Bartlett. The statistical approach to the analysis of time-series. Transactions of the IRE Professional Group on

Information Theory, 1(1):81–101, Feb 1953. ISSN 2168-2690. doi: 10.1109/TIT.1953.1188570.
[8] M. S. Bartlett. Periodogram analysis and continuous spectra. Biometrika, 37(1/2):1–16, 1950. ISSN 00063444. URL

http://www.jstor.org/stable/2332141.
[9] V. Chandola, A. Banerjee, and V. Kumar. Anomaly Detection: A Survey. ACM Computing Surveys (CSUR), 41(3):15,

2009.
[10] V. Chandola, A. Banerjee, and V. Kumar. Anomaly Detection for Discrete Sequences: A Survey. IEEE Transactions on

Knowledge and Data Engineering, 24(5):823–839, 2012.
[11] X. Cheng, K. Xie, and D. Wang. Network Traffic Anomaly Detection Based on Self-Similarity Using HHT and Wavelet

Transform. In Fifth International Conference on Information Assurance and Security, IAS, volume 1, pages 710–713. IEEE,
2009.

[12] G. Creech and J. Hu. A Semantic Approach to Host-Based Intrusion Detection Systems Using Contiguous and
Discontiguous System Call Patterns. 2013.

[13] J.L. Diaz, Kanghee Kim, José María López, and L. Lo Bello. Stochastic analysis of priority-driven periodic real-time
systems. In Handbook of Real-Time and Embedded Systems, 2007.

[14] T. Fawcett. An introduction to ROC analysis. Pattern Recognition Letters, 27(8):861–874, 2006.
[15] J. Gao, G. Hu, X. Yao, and R. K. C. Chang. Anomaly Detection of Network TrafïňĄc Based on Wavelet Packet. In

Asia-Pacific Conference on Communications. APCC, pages 1–5. IEEE, 2006.
[16] Gabriella Gigante and Domenico Pascarella. Formal Methods in Avionic Software Certification: The DO-178C Per-

spective, pages 205–215. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012. ISBN 978-3-642-34032-1. doi:
10.1007/978-3-642-34032-1_21. URL https://doi.org/10.1007/978-3-642-34032-1_21.

[17] T. Herpel, B. Kloiber, R. German, and S. Fey. Assessing the can communication startup behavior of automotive ecus by
prototype measurements. In 2009 IEEE Instrumentation and Measurement Technology Conference, pages 928–932, May
2009. doi: 10.1109/IMTC.2009.5168584.

[18] S. Jha, K. MC. Tan, and R. A. Maxion. Markov Chains, Classifiers, and Intrusion Detection. In csfw, volume 1. Citeseer,
2001.

[19] Peter Kafka. The automotive standard iso 26262, the innovative driver for enhanced safety assessment & technology for
motor cars. Procedia Engineering, 45:2 – 10, 2012. ISSN 1877-7058. doi: http://dx.doi.org/10.1016/j.proeng.2012.08.112.
URL http://www.sciencedirect.com/science/article/pii/S1877705812031244. 2012 International Symposium on Safety
Science and Technology.

[20] F.O. Karray and C. De Silva. Soft Computing and Intelligent Systems Design: Theory, Tools and Applications, volume 1.
Pearson Education Limited, 2004.

[21] S. Kay. Intuitive Probability and Random Processes using MATLAB®. Intuitive Probability and Random Processes Using
MATLAB. Springer US, 2006. ISBN 9780387241579. URL https://books.google.ca/books?id=aSjX2tTpmFcC.

[22] Philip A Laplante. Real-Time Systems Design and Analysis. Third Edition. IEEE Press and Wiley-Interscience, 2004.
ISBN 0-471-22855-9.

[23] C L Liu and J W Layland. Scheduling Algorithms for Multiprogramming in a Hard Real-Time Environment. Journal of
the ACM, 20(1):46–61, 1973.

[24] W. Lu and A. A. Ghorbani. Network Anomaly Detection Based on Wavelet Analysis. EURASIP Journal on Advances in
Signal Processing, 2009, 2009.

[25] Sorin Manolache, Petru Eles, and Zebo Peng. Real-Time Applications with Stochastic Task Execution Times: Analysis and
Optimisation. Springer Science & Business Media, 2007.

[26] D.G. Manolakis and V.K. Ingle. Applied Digital Signal Processing: Theory and Practice. Cambridge University Press,
2011. ISBN 9780521110020. URL https://books.google.ca/books?id=XJnWngEACAAJ.

[27] S. S. Murtaza, W. Khreich, A. Hamou-Lhadj, and M. Couture. A Host-based Anomaly Detection Approach by
Representing System Calls as States of Kernel Modules. 2013.

[28] A.V. Oppenheim and R.W. Schafer. Discrete-Time Signal Processing. Pearson Education, 2011. ISBN 9780133002287.
URL https://books.google.ca/books?id=EaMuAAAAQBAJ.

ACM Transactions on Embedded Computing Systems, Vol. 00, No. 00, Article 00. Publication date: 00.

00:22 Torres et al.

[29] J.G. Proakis and D.G. Manolakis. Digital Signal Processing: Principles, Algorithms, and Applications. And Intelligent Man-
ufacturing Systems. Prentice Hall, 1996. ISBN 9780133737622. URL https://books.google.ca/books?id=sAcfAQAAIAAJ.

[30] S. Rawat and C. S. Sastry. Network Intrusion Detection Using Wavelet Analysis. In Intelligent Information Technology,
pages 224–232. Springer, 2005.

[31] M. Salagean and I. Firoiu. Anomaly Detection of Network Traffic Based on Analytical Discrete Wavelet Transform. In
8th International Conference on Communications (COMM), pages 49–52. IEEE, 2010.

[32] Arthur Schuster. On the investigation of hidden periodicities with application to a supposed 26 day period of
meteorological phenomena. Terrestrial Magnetism, 3(1):13–41, 1898. ISSN 0272-7528. doi: 10.1029/TM003i001p00013.
URL http://dx.doi.org/10.1029/TM003i001p00013.

[33] Lui Sha, Tarek F. Abdelzaher, Karl-Erik Årzén, Anton Cervin, Theodore P. Baker, Alan Burns, Giorgio C. Butazzo,
Marco Caccamo, John P. Lehoczky, and Aloysius K Mok. Real Time Scheduling Theory: A Historical Perspective.
Real-Time Systems, 28(2):101–155, 2004. ISSN 0922-6443.

[34] Eg3 Team. Selecting an Embedded RTOS. Technical report, EG3, 2008.
[35] Michail Vlachos, Philip Yu, and Vittorio Castelli. On periodicity detection and structural periodic similarity. In

Proceedings of the 2005 SIAM International Conference on Data Mining, pages 449–460. SIAM, 2005.
[36] P. Welch. The use of fast fourier transform for the estimation of power spectra: A method based on time averaging over

short, modified periodograms. IEEE Transactions on Audio and Electroacoustics, 15(2):70–73, Jun 1967. ISSN 0018-9278.
doi: 10.1109/TAU.1967.1161901.

[37] P. Welch. A fixed-point fast fourier transform error analysis. IEEE Transactions on Audio and Electroacoustics, 17(2):
151–157, Jun 1969. ISSN 0018-9278. doi: 10.1109/TAU.1969.1162035.

[38] N. Ye and X. Li. A Markov Chain Model of Temporal Behavior for Anomaly Detection. In Proceedings of the 2000 IEEE
Systems, Man, and Cybernetics Information Assurance and Security Workshop, volume 166, pages 171–174. Oakland:
IEEE, 2000.

[39] N. Ye, X. Li, Q. Chen, S. M. Emran, and M. Xu. Probabilistic Techniques for Intrusion Detection Based on Computer
Audit Data. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, 31(4):266–274, 2001.

[40] N. Ye, Y. Zhang, and C. M. Borror. Robustness of theMarkov-ChainModel for Cyber-Attack Detection. IEEE Transactions
on Reliability, 53(1):116–123, 2004.

[41] Mohammad Mehdi Zeinali Zadeh, Mahmoud Salem, Neeraj Kumar, Greta Cutulenco, and Sebastian Fischmeister.
SiPTA: Signal processing for trace-based anomaly detection. In Proceedings of the 14th International Conference on
Embedded Software, page 6. ACM, 2014.

[42] M. Zhou and S. D. Lang. Mining Frequency Content of Network Traffic for Intrusion Detection. In Proceedings of the
IASTED International Conference on Communication, Network, and Information Security, 2003.

ACM Transactions on Embedded Computing Systems, Vol. 00, No. 00, Article 00. Publication date: 00.

	List of Figures
	List of Tables
	Abbreviations
	Introduction
	Motivating example
	Problem statement
	Contributions
	Thesis Organization

	Related Work and Background
	Related Work
	Background
	Real-Time Systems Theory
	Signal Processing
	Distance Measures
	Anomaly Detection

	MuSADET-Framework
	Overview
	Trace and Signal Models
	IATS Features
	Modelling IATS as a renewal processes
	Ratio of DC to Total Power
	Estimated Power Spectral Density
	Binary Power Spectral Sequence

	Classification of test features
	Classification by 2 distances on PSD features
	Classification by Jaccard distance on BPSS features
	Classification by DCTPR

	Case Studies
	Performance Analysis
	HCRL CAN injection
	Brief introduction to CAN-bus
	Attack scenarios
	Training
	Anomaly detection setup
	Discussion

	QNX HEXACOPTER
	Training
	Anomaly detection setup
	Discussion

	Conclusions
	References
	APPENDICES
	Comparison to Alternative Methods

