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Abstract 

Global warming is a rising issue and there are many research studies aiming to reduce the 

greenhouse gas emissions. Carbon capture and storage technologies improved throughout the years 

to contribute as a solution to this problem. In this work the post combustion carbon capture unit is 

used to develop surrogated models for operation optimization. 

Previous work included mechanistic and detailed modelling of steady state and dynamic systems. 

Furthermore, control structures and optimization approaches have been studied. Moreover, various 

solutions such as MEA, DEA and MDEA have been tested and simulated to determine the efficiency 

and the behaviour of the system. In this work a dynamic model with MEA solution developed by 

(Nittaya, 2014) and (Harun, 2012) is used to generate operation data. The system is simulated 

using gProms v.5.1 with six PI controllers. The model illustrated that the regeneration of the 

solvent is the most energy consuming part of the process. Due to the changes of electricity supply 

and demand, also, the importance of achieving a specific %CC and purity of carbon dioxide as 

outputs of this process, surrogated models are developed and used to predict the outputs and to 

optimize the operating conditions of the process. 

Multiple machine learning and data driven models has been developed using simulation data 

generated after a proper choice of the operating variables and the important outputs. Steady state 

and transient state models have been developed and evaluated. The models were used to predict 

the outputs of the process and used later to optimize the operating conditions of the process. The 

flue gas flow rate, temperature, pressure, reboiler pressure, reboiler and condenser duties were 

selected as the operating variables of the system (inputs). The system energy requirements, %CC 

and the purity of carbon dioxide were selected to be the outputs of the process. For steady state 

modelling, artificial neural network (ANN) model with backpropagation and momentum was 

developed to predict the process outputs. The ANN model efficiency was compared to other 

machine learning models such as Gaussian Process Regression (GPR), rational quadratic GPR, 

squared exponential GPR, tree regression and matern GPR. The ANN excelled all other models in 

terms of prediction and accuracy, however, the other model’s regression coefficient (R2) was never 

below 0.95. 
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For dynamic modelling, recurrent neural networks (RNN) have been used to predict the outputs 

of the system. Two training algorithms have been used to create the neural network: 

Levenberg-Marquardt (LM) and Broyden-Fletcher-Goldfrab-Shanno (BFGS). The RNN was 

able to predict the outputs of the system accurately. Sequential quadratic programming (SQP) 

and genetic algorithm (GA) were used to optimize the surrogated models and determine the 

optimum operating conditions following an objective of maximizing the purity of CO2 and 

%CC and minimizing the system energy requirements.  
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Chapter 1: Introduction 

The rise in concern for climate change and global warming motivated the research to advance in 

reducing the greenhouse gases emissions specifically carbon dioxide. Since the industrial 

revelation in the eighteenth century, humankind dependency on fossil fuels as a source of energy 

has increased, leading to fast growth in technology and lifestyle developments. Unfortunately, the 

awareness of the environmental effects due to the growth of industry and transportation emissions, 

risen after the clear vision of the global warming (Jacobson, 2009). 

One great problem developed is the greenhouse gas effect, where the gases in the upper atmosphere 

absorb the heat and radiations from the earth’s surface and reflect them back. The greenhouse 

gases are carbon dioxide (CO2), methane (CH4) and nitrous oxide. (N2O) These gases results in 

the increase of the earth’s surface temperature and affects the ecological and environmental 

system. As the production of electricity is the major contributor for carbon dioxide emissions, 

many countries attempt to shift towards renewable sources such as solar, hydro and wind to 

produce electricity (Ranisau et al., 2017). Carbon capture and storage (CCS) technologies can be 

viewed as a solution to reduce the emissions from an existing fossil fuels power plant.  

Three main types of CCS methods are pre-combustion, oxyfuel and post-combustion. For the pre-

combustion and oxyfuel, one must keep in mind that these technologies must be included during 

the design phase of a plant. On the other hand, post-combustion became a mature and reliable 

solution due to the extensive research done on it and the fact of it being retrofitted on existing 

power plants. Steady state models were developed to have a better understanding of the system 

and its capabilities, and the changes due to the change of the operating conditions. Experiments on 

lab-scale plants were necessary to observe the effect of using different solvents and to develop 

dynamic and more mechanistic models (Ahmad, 2019).  

A better understanding of the operating conditions and the variables that affects the process is 

required to perform optimization. Optimizing the operating conditions of the process leads to 

saving cost while maintaining desirable outputs of the process. Investigations of operating 

conditions such as the flow rate of flue gas, solvent type, and controller designs 
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1.1 Thesis Outline 

The objective of this research is to develop surrogated models using machine learning 

techniques to simulate the process. The models used to predict the outputs of both steady state 

and dynamic systems. Moreover, this research illustrates the possibilities of performing 

optimization over the surrogated models to obtain the optimal operating conditions for the 

process. 

Chapter 2 includes the literature review where previous work and background of the process 

modelling is presented. An overview of the CCS is discussed in detail to provide the 

understanding of different systems. 

Chapter 3 illustrates the post-combustion system used in this work and describe the capturing 

process. Sensitivity analysis, steady state, dynamic modelling is explained, and the results are 

discussed. 

Chapter 4 presents the optimization over the developed models and discuss the key findings 

results. While the last chapter is conclusion and recommendation for future work is provided. 
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Chapter 2: Literature Review 

2.1 Background 

Global warming has been a rising issue for the past two decades, and it is our duty as human beings 

and the main cause of climate change to act fast to solve this problem. The rising in Earth’s surface 

temperature is affecting the ecological system and causing many problems such as desertification, 

melting of snow and ice, sea level rise and weather changes around the globe (Draper & Weissburg, 

2019). Greenhouse effect occurring naturally maintains Earth’s temperature at a level making life 

possible for all organisms, however, since the industrial revolution human started contributing in 

increasing the greenhouse effect due to the gas emissions proved by many scientific research 

studies with more than 90% certainty (Hansen, Ruedy, Sato, & Lo, 2010).  

 

The climate change is illustrated by the fact of accelerated melting of ice and glaciers which causes 

the rise in sea level. It is also noticed the change in weather patterns as some places became dryer 

and other places became wetter with stronger storms and floods. Humans’ industrial activities 

caused the rise in carbon dioxide (CO2), nitrogen oxides (NOx) and methane (CH4) gases in the 

atmosphere named greenhouse gases (GHG) (Ahmad, 2019). These gases prevent the transmitted 

heat and light from the Earth’s surface to escape the atmosphere. Furthermore, the GHG reflect 

this heat and light back to the surface causing the rise in the temperature. 

 

Burning fossil fuels such as coal and oil as a source of energy, and oil refineries are the main source 

of carbon dioxide emissions (Jacobson, 2009). Methane is created due to the production and use 

of fossil fuels, livestock and rice farming and landfills. On the other hand, nitrogen oxides 

emissions are caused by synthetic fertilizers for agricultural purposes and combustion of human 

machinery. Another class of gases which are the fluorinated gases, contributes to the greenhouse 

effect because of being used in refrigeration processes and cooling applications.  

 

Deforestation is one major problem caused by humans and it increase the global warming issue.  
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      Changing many forests into farms or cutting trees for wood use or as a source of fuel has a 

huge impact on climate change. The absorption of carbon dioxide naturally by the trees 

decreases and the wind shield effect by the forests is eliminated. Furthermore, the rate of 

decomposition and soil disturbance increase, and this increase the carbon dioxide emissions 

(Jacobson, 2009). 

 

There are four major consequences of global warming and climate change, desertification, 

melting of ice, sea level rising and weather changes across the world. Desertification is an issue 

rising from the increase of the earth’s temperature making arid areas drier even than before. A 

lot of research studies showed that the water cycle is changing, and rain patterns are alternating 

to make dry area drier. Over 2.5 million people in the dry areas are suffering from shortages 

of water and an intense amount of distress (Jacobson, 2009). 

 

Observing the Earth’s poles where ice is the dominating element started to melt down due to 

climate change, also in the Alps, Himalayas and Alaska is serious (Jacobson, 2009). The 

perennial ice that covers the Arctic is melting at a rate of 12% per decade, and the thickness of 

the Arctic has decreased by almost 50% since 1960. Since 2002, the continent of Antarctica 

lost more 100 cubic kilometres of ice per year, this rate has doubled since 2010. 

 

The ice melting is followed by an expected rise in the sea level. Since 1880, the sea level 

increased by 21 cm and the rising rate is accelerating. Oceans are expanding as well as the rise 

in temperature causes water expansion. Finally, stronger storms and hurricanes are observed 

since 1970 due to the rise in oceans’ temperature. The Power Dissipation Index measures the 

destructive power of cyclones and hurricanes. PDI increased in the Pacific Ocean by 35% and 

has nearly doubled for the Atlantic. This tremendous change in weather behaviour can be 

simplified and explained as for every 1 ℃ increase in the water temperature increases the 

global frequency of category 4 and 5 storms by 31% (Jacobson, 2009). 
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There are many solutions proposed to overcome the global warming and climate change issue 

such as using alternative source of fuels such as biofuels and using renewable sources of energy 

that does not contribute in GHGs emissions. The renewable sources include solar 

photovoltaics, concentrated solar power, wind, hydroelectric and nuclear. First, solar 

photovoltaic (PV) are devices that converts solar radiations into a direct current. These devices 

compose of array of cells made of silicon base materials such as polycrystalline silicon or 

amorphous silicon where they are doped to increase the number of positive or negative charge 

carriers. The generation of electricity occurs when the positive and negative junctions are 

formed and illuminated. One major disadvantage of solar PV is that their efficiency decreases 

when the cells temperature exceeds 45 ℃ (Jacobson, 2009). 

 

 

Figure 1: Solar photovoltaic diagram. (Poompavai & Kowsalya, 2019) 

 

Secondly, concentrated solar power (CSP) is another technology that depends on the sunlight. 

Mirrors or reflective lenses reflects and concentrate sunlight and heat a fluid which flows to a 

heat engine to be converted to electricity. This fluid can be pressurized steam or synthetic oil 

or molten salts and located in a fluid collector at a high temperature. The collector can be a set 

parabolic mirrors that focuses light through a pipe containing the fluid to be heated then 

flowing to the chamber to heat water for steam generator and produces electricity. The other 

type of collectors can be a tower centred with set of reflectors surrounding the tower. The main 
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advantage of CSP that no cooling water is required as the power conversion unit is air cooled 

(Jacobson, 2009).  

 

Figure 2: Concentrated solar power plant diagram. (Bishoyi & Sudhakar, 2017) 

 

The third clean technology is wind turbines which converts the kinetic energy into electricity.  

This is done by converting the mechanical movements of a slow turning rotor inside a gearbox 

into fast rotating movements. The efficiency of wind turbines increases as the wind speed 

increases; hence, wind turbines are constructed on flat open areas and very high to capture and 

harness the maximum amount of kinetic energy. However, the speed and frequency of wind 

distribution are the major factors for wind turbines which makes them a non-reliable solution 

for some areas (Jacobson, 2009). 
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Figure 3: Wind turbine components. (Saifullah, Karim, & Karim, 2016) 

 

Currently, hydroelectric power is the largest source of renewable power installed worldwide 

producing electricity. Electrical power is generated when water drops due to gravity driving 

turbines and generators. Dams are installed to collect water allowing the water falling through 

holes when needed. Nuclear power plants are also widely used as an alternative source of 

electricity generation. In nuclear plants the splitting of heavy elements such uranium during 

fission reaction, releases a huge amount of thermal energy that is used to generate steam to 

flow through turbines and generators to produce clean energy (Jacobson, 2009). 
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Figure 4: Hydroelectric power diagram.(Elbatran, Yaakob, Ahmed, & Ismail, 2015)  

 

Furthermore, carbon capture and storage (CCS) is a solution to reduce the emissions 

specifically carbon dioxide (CO2). In CCS, CO2 is collected from point emission source and 

stored underground for other applications such as enhanced oil recovery (EOR)(Raza, 

Gholami, Rezaee, Rasouli, & Rabiei, 2019). There are three main technologies when it comes 

to carbon capture: pre-combustion, oxy-fuel and post combustion capturing. A detailed review 

on CCS technology is provided next chapter. 

  

2.2 Pre-combustion Carbon Capture 

In pre-combustion carbon capture, fossil fuels are converted into combustible gases used in for 

power generation. Carbon dioxide is separated from these gases before combustion. First, 

reforming or partial oxidation processes are used to produce synthesis gas (syngas). In 

reforming, hydrogen (H2) and carbon monoxide (CO) are formed by adding high pressure 

steam to methane gas (CH4)(Sifat & Haseli, 2019). Other reforming processes such as dry 

reforming of methane is used to produce syngas using catalyst instead of steam. On the other 

hand, in partial oxidation pure oxygen is supplied after being separated from air to the methane 

gas to produce syngas. Then, water-gas shift reaction is used to convert syngas to CO2 (Sifat 

& Haseli, 2019). 



 

 19 

 

Steam reforming: CH4 + H2O → CO + 3H2
       (1) 

Partial Oxidation: CH4 + 1/2 O2 → CO + 2H2      (2) 

Water-gas shift: CO + H2O ⇄ CO2 + H2       (3) 

 

The CO2 is removed easily at ambient temperature due to the high pressure from the water-gas 

shift reaction. The remaining gases (mainly hydrogen) are used to generate power. However, 

the energy requirement is high in the overall process due to the energy demand for separating 

oxygen from air in partial oxidation or steam requirement for reforming. An alternative to over 

sorption enhanced water-gas shift reaction (SEWGS) is used to increase the conversion of CO 

by removing carbon dioxide immediately from the products of the reaction (Sifat & Haseli, 

2019). Many research studies proposed an integrated gasification combined cycle (IGCC) 

power plant to reduce the emissions. In IGCC, first oxygen is separated from air using pressure 

swing adsorption or any cryogenic air separation process. Then oxygen is blown to a gasifier 

where fossil fuel such as coal for example, is gasified under high pressure and temperature to 

produce syngas. Then syngas is cooled and treated to remove all impurities before converted 

to CO and CO2 and H2S. Cleaning and removal of sulphur compounds and other impurities is 

required after the water-gas shift process. The remaining products are H2 and CO2, and 

hydrogen is used then to produce power after the separation of CO2. 

 



 

 20 

 

Figure 5: IGCC power plant with a pre-combustion capturing unit.(Moioli et al., 2014) 

 

A lot of work has been done on the separation techniques of the pre-combustion capturing 

process. In 2010, (Romano, Chiesa, & Lozza, 2010) discussed the capturing of CO2 using 

methyl di-ethanol amine (MDA) in absorption column and compared it to other capturing 

processes. His work suggested that greater efficiency can be obtained by avoiding more 

conservative assumptions. (Martin et al., 2011) evaluated the performance of hyper cross-

linked polymers for CO2 adsorption. This work concluded that the polymers were superior of 

zeolite-based materials and activated carbon in the CO2 uptake. Furthermore, these polymers 

showed acceptable selectivity of CO2 and low heat adsorption. 

 

(Schell et al., 2012) tested the adsorption of CO2 using three different metal organic materials. 

Promising results were obtained when comparing USO-2-Ni metal organic framework to 

activated carbon. Moreover, adsorption was also studied by (García et al., 2011) where partial 

pressure of CO2 was the major factor in the capturing process using activated carbon. On the 

other hand, (Casas, Schell, Joss, & Mazzotti, 2013) studied pressure swing adsorption and 
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evaluated multiple process configurations and conditions to obtain better separation. It was 

concluded that decreasing the temperature and adsorption pressure would increase the 

separation efficiency. 

 

Another study investigated air blown gasification rather than oxygen blown gasification and 

the plant efficiency was competitive (Moioli et al., 2014). The evaluation of mesoporous amine 

titanium oxide as a sorbent was done by (Jiang et al., 2015) and showed good stability and 

regeneration without loses, however, it is very expensive material. Absorption processes also 

took place in pre-combustion carbon capturing as (Ho, Jong, Wook, Nam, & Bin, 2014) 

designed two stage pre-combustion CO2 units using physical absorbents. From an energy 

consumption point of view, Selexol was the most efficient in CO2 capturing. Iconic liquid-

based membrane was investigated at high pressure and temperature and it was noticed that the 

membrane contactor efficiency was decreasing with the increasing of its wetness (Dai & Deng, 

2016).  

 

Three studies investigated the hydrate-based gases for separation of CO2 in pre-combustion 

capturing. (Babu, Wen, Ong, & Linga, 2016) concluded that tetrahydrofuran is better than 

other semi-clathrate hydrate formers. On the other hand, tested a combination of 5% TBF and 

10% TBAB and discussed why it is the suitable choice of hydrate- based gas separation process 

(Yang, Jing, Zhao, Ling, & Song, 2016). Furthermore, (Zheng, Zhang, & Linga, 2016) 

illustrated the use of CO2-H2-TBAF as a promoter to increase CO2 gas uptake at ambient 

temperature. 

 

2.3 Oxyfuel Combustion Capture 

In oxyfuel combustion, fuel is burnt in a nitrogen free environment. This is different than the 

conventional combustion which occurs in regular air. The products of oxyfuel combustion are 

mainly water and CO2 where it does not require higher state of separation. The nitrogen in the 

air acts as a temperature moderator and its absence in oxyfuel combustion results in high 

flames’ temperature. This is overcome by recycling part of the carbon dioxide to the combustor 
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with pure oxygen to keep the temperature within acceptable limits. Steam can also be injected 

in the combustion chamber as an alternative to reduce the mediums temperature. The water is 

collected from the products of the combustion by condensation and carbon dioxide is purified 

and compressed and prepared for transportation and storage (Sifat & Haseli, 2019). 

 

Figure 6: Oxyfuel combustion capturing process sequence. (Sifat & Haseli, 2019) 

 

The oxyfuel combustion is considered a great method for carbon dioxide capturing for several 

reasons. For instance, burning fuels in a nitrogen free environment saves significant amount of 

heat that is absorbed by nitrogen in conventional combustion. Furthermore, in oxyfuel there is 

no or much less nitrogen oxides (NOx) produced and no other pollutants in the combustion 

products. However, the cost of producing pure oxygen and compressing carbon dioxide is high, 

this is the main disadvantage of oxyfuel. A lot of research has been done on oxyfuel 

combustion and scientists argued that using membranes for separation is more economical than 

cryogenic methods. Adsorption technologies are yet to be implemented on large scale 

separation (Sifat & Haseli, 2019). 

 

The integration of oxyfuel combustion with carbonation using Mg(OH)2 to capture carbon 

dioxide was discussed by (Said, Eloneva, Fogelholm, & Fagerlund, 2011). The effect of 

Sulphur on oxyfuel combustion was investigated and reported its impact on furnace, ash 
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collection, carbon dioxide compression and transportation and storage (Stanger & Wall, 2011). 

(Chen, Yong, & Ghoniem, 2012) compared the oxyfuel combustion process to post combustion 

capture and reported a 1-5% less loss of efficiency in oxyfuel. This study also concluded that 

higher partial pressure in oxyfuel combustion resulted in higher absorption and emissivity of 

the flue gas. Furthermore, the ignition delay in oxyfuel is longer than other conventional 

combustion systems. 

 

Other researchers studied the effect of recycling carbon dioxide to the combustion chamber. 

(Chen et al., 2012) mentioned the decrease in burning velocity and flame temperature when 

cycling carbon dioxide to the combustion chamber instead of the presence of nitrogen. (Oh & 

Noh, 2012) found that the flame speed of methane in oxyfuel is faster than air fuel combustion 

environment which contradicts Chen’s study. (Mazas, Lacoste, & Schuller, 2016) tested the 

injection of water vapour effect on the speed of flame propagation and observed an increase in 

the molar fraction of steam decreased the flame velocity even at high rate of dilution. 

Moreover, the reduction of burning velocity for air combustion was larger than oxyfuel 

combustion as the steam molar fraction increase. (Xie et al., 2013) conducted experimental 

and numerical study on increasing carbon dioxide fraction in oxyfuel combustion and reported 

the reduction of flame speed, however, methane radiations were much higher. 

 

The effect of ignition, stability of flame and flame extinction in oxyfuel combustion was 

studied by limited number of researchers. A detailed experiment by (Koroglu, Pryor, Lopez, 

Nash, & Vasu, 2016) testing methane in an oxyfuel environment was conducted. It was found 

that ignition delay is longer when methane is burnt in oxygen/carbon dioxide environment than 

oxygen/nitrogen environment. The pressure was varied from 1 to 4 atm and a temperature 

range of 1577 K to 2144 K in a shock tube facility. Similar experiment by (Pryor et al., 2017), 

sensitivity analysis showed that CO2 could slow the overall rate of reaction and increase the 

ignition delay. This experiment was carried at pressure range of 6-31 atm and temperature of 

1300-2000K.  
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(Allam et al., 2013) proposed a novel approach for power generation combined with oxyfuel 

combustion. This approach is basically a Brayton cycle with pressurized supercritical CO2 as 

the working fluid. The study discussed the effect of high-pressure carbon dioxide on heat 

capacity and reported that condensing or vaporizing of water through the cycle is not important. 

The cycle begins with burning fuel in pure oxygen environment at a high-pressure combustor 

to produce a feed stream with pressure of ⁓ 300 bar. The feed stream passes through a turbine 

and expanded with a pressure ratio of 6 to 12 and the heat of the turbine’s exhaust is transferred 

to recycled CO2 stream in a recuperator. As discussed before, the recycled CO2 stream controls 

the temperature of the combustion chamber. A 59% (LHV-based) thermal efficiency was 

reported for using natural gas as a fuel, and 52% efficiency using coal as a fuel. The schematic 

of Allam cycle is shown below (Allam et al., 2013). 

 

Figure 7: Allam cycle illustration. (Allam et al., 2013) 
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2.4 Post Combustion Capture 

For post combustion, the capturing unit is installed in an existing power plant without 

significant changes of the plant. This is the main advantage of post combustion carbon capture 

when compared to oxyfuel and pre-combustion techniques. CO2 is removed from the flue gases 

of the power plants which exists normally at atmospheric pressure. The concentration of carbon 

dioxide is usually in the range of 8-20 % which makes it very low. This variation in the carbon 

dioxide concentration is due to burning different types of fuels, for instance, burning coal 

produces flue gas that contains approximately 14% CO2. However, burning natural gas can 

produce up to 40% if partial oxidation is used. This low percentage makes capturing CO2 a 

challenge since the driving force is low and the cost of energy required is high (Sifat & Haseli, 

2019). 

 

Furthermore, the presence of impurities such as fly ash, SOx and NOx causes the separation 

process to be costlier with the current available technologies. Another challenge is designing 

the equipment for post combustion capture must be specific for each power plant as they differ 

in sizes and capacity (Sifat & Haseli, 2019). The unit must be designed to withstand high 

pressure and temperature environment. Many research studies suggested methods of cleaning 

the flue gas before capturing carbon dioxide. For example, (Merkel, Lin, Wei, & Baker, 2010) 

proposed passing the flue gas first to an electrostatic precipitator (ESP) to remove all large 

particles. A flue gas desulfurization unit (FGD) unit is required next to remove the sulphur 

content from the flue gas. Finally, a post combustion capturing unit is added to remove CO2 

and the remaining component of the flue gas at this stage would be mainly nitrogen. 

 

In a combined cycle post combustion capturing unit with a natural gas power plant, a gas 

turbine expands the product of combusting natural gas with compressed air to produce 

electrical power. The high temperature from the turbine’s exhaust is used to produce steam and 

this steam is used to generate additional power. Then flue gas is cooled and send to the CO2 

capturing unit. Amine based absorbent such as MEA and MDEA scrubs carbon dioxide from 

the flue gas in the absorber column leaving the treated gas to the exhaust (Sifat & Haseli, 2019). 
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The rich solvent is later stripped, and the solvent is regenerated in the desorber column where 

it is recycled back to absorber column and pure CO2 is collected as the top product of the 

stripper. Carbon dioxide is compressed for storage and transportation to be used in other 

applications. 

 

Figure 8: Coal-fired power plant with a post combustion unit. (Sifat & Haseli, 2019) 

 

Figure 9: Natural gas power plant with a post combustion unit. (Sifat & Haseli, 2019) 
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(Merkel et al., 2010) discussed the use of high permeable membranes as a separation method 

and used incoming combustion air as sweep gas in a novel process. This study also emphasized 

the high permeance of the membranes rather than selectivity. In another study, pressure swing 

adsorption superstructure was presented to evaluate the optimality of carbon dioxide capturing 

cycle. The novel superstructure predicted the pressure swing adsorption performance up to 

98%. (Wappel, Gronald, Kalb, & Draxler, 2010) compared the performance of pure and diluted 

iconic liquids to MEA in the absorber column and one of the iconic liquids showed lower 

energy requirement for the overall capturing process. 

 

(Environ, Mason, Sumida, Herm, & Long, 2011) tested two MOFs as adsorbents for the post 

combustion process integrated with PSA. The presence of a strong carbon dioxide adsorption 

site such as Mg2 (dobdc) is essential for MOFs to result in higher capturing rate. Biotechnology 

as a separation method took place in post combustion capture process where (Savile & 

Lalonde, 2011) used carbonic anhydrase derived from thermophiles to catalyze the process. 

Furthermore, nanomaterials as adsorbents showed high performance in capturing CO2 due to 

the high surface area and the ability to adjust their properties, however, the cost of preparing 

and producing such materials is high (Z. H. Lee, Lee, Bhatia, & Mohamed, 2012). 

 

(Scholes, Ho, Wiley, Stevens, & Kentish, 2013) suggested the modification of multiple 

membrane stages and cryogenic separation to increase the capturing efficiency. The cost was 

comparable to the current available technologies. (Bae et al., 2013) evaluated several zeolites 

as adsorbents such as Ca-A(Na0.28Ca0.36AlSiO4) which gave the highest uptake for carbon 

dioxide. The authors in (Brettschneider, Thiele, Faber, Thielert, & Wozny, 2004) developed a 

heat and mass transfer model to illustrate the absorption of carbon dioxide in a solution of 

sodium hydroxide, MEA and MDEA. The model was validated using experimental data. (Liu, 

Yu, Yuan, Liu, & Guo, 2006) proposed a complex computational mass transfer model of an 
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absorption packed column and considered the heat effect for prediction of the temperature and 

concentration profiles.  

 

Computational fluid dynamics (CFD) was coupled with computational heat transfer (CHT) 

model validated with experimental data from a pilot packed tower to capture CO2 from air 

using MEA as a solvent. Furthermore, (Lawal, Wang, Stephenson, & Yeung, 2009)developed 

a dynamic model of a post combustion CO2 capture with MEA and compared two different 

approaches, equilibrium-based versus rate-based. The study concluded that the rate-based 

model gave better prediction of the absorption process. On the other hand, (Nittaya, Douglas, 

Croiset, & Ricardez-sandoval, 2014) proposed a dynamic model of an industrial scale CO2 

capture plant using MEA as a solvent. Three control structures were proposed to maintain a 

capturing rate above 87% when disturbances to the system are introduced. 

 

(Behbahani, Jazayeri-rad, & Hajmirzaee, 2009) used neural networks to detect and diagnose 

faults in a sour gas absorption column. Variations in feed conditions were made to observe the 

changes in CO2 captured, temperature and pressure drop. The performance of back propagation 

neural networks and radial basis function (RBF) to simulate pilot scale packed absorption 

column was compared in (Shahsavand, Fard, & Sotoudeh, 2011). The study showed that RBF 

networks performed more efficiently. The authors in (Li, Sharma, Khalilpour, & Abbas, 2013) 

developed a methodology to determine the optimal operating conditions of a solvent-based 

post combustion carbon capture with a techno-economical objective. Around 1700 case studies 

were used to develop a reduced model of the PCC unit and the optimal values were used as 

control set points for the plant.  

 

Another study by (Chan & Chan, 2017) illustrated the application of piece-wise linear artificial 

neural networks (PWL-ANN) on a carbon dioxide capture process system dataset. The study 

indicated the key process parameters to be steam flow rate through reboiler, reboiler pressure 

and the CO2 concentration in the flue gas. The performance of artificial neural networks (ANN), 

least-square support vector machine (LSSVM), and adaptive neuro-fuzzy inference system 
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(ANFIS) models with AdaBoost-CART algorithm was compared by (Ghiasi, Abedi-farizhendi, 

& Mohammadi, 2019). These models predicted the equilibrium data of a carbon dioxide 

absorption column using monoethanolamine (MEA), diethanolamine (DEA) and 

triethanolamine (TEA). 

 

2.5 Machine Learning 

Machine learning and artificial intelligence are widely used terms nowadays and have proven 

to be powerful tools in the field of technology and data analysis. Several successful 

applications of machine learning such as handwriting and speech recognition, image 

classification, demand forecasting and spam filtration, are used daily by billions of users (J. H. 

Lee, Shin, & Realff, 2018). 

 

Machine learning is classified into four classes, supervised, unsupervised learning, semi-

supervised learning, reinforcement learning. In the first class, the software learns to predict the 

relationship between labelled inputs and outputs data which is used in classification and 

regression applications. While in unsupervised learning, unlabelled data are used to determine 

the distribution which is used in feature extraction and clustering. On the other hand, semi-

supervised learning gained much attention in the past few years as it uses unlabelled data in 

the probability distribution learning process and then optimizes the predictions over labelled 

and unlabelled data in a combined objective. Finally, the reinforcement learning uses critic and 

inputs data to learn the optima relation between inputs and outputs or the relation between 

inputs and performance index. Reinforcement learning is considered to be the best choice for 

many applications as it combines online learning and self-optimization characteristics (J. H. 

Lee et al., 2018). 

  



 

 30 

When it comes to process system engineering (PSE), machine learning plays a great role in 

solving many problems such as nonlinear principle component analysis (PCA), learning time 

series hierarchal features for monitoring and diagnosis, planning and scheduling, control and 

uncertain mapping and dynamics (J. H. Lee et al., 2018). One of the earliest applications of 

machine learning is the invention of auto-encoder (AE), which is an artificial neural network 

that represent encoding of a data set, as in PCA dimensionality reduction of data is achieved. 

(Kramer, 1991) introduced auto-associative neural networks (AANN) which compresses and 

encodes the inputs data in the middle layer of the network and refer to this application to be a 

nonlinear PCA. This neural network was trained to predict the mapping between inputs and 

outputs. the major drawback of this approach was the difficulty of training the network using 

back propagation algorithm which caused the error gradient to become zero in the first few 

layers. (Chatterjee, 2000) also introduced technique in nonlinear model reduction based on 

PCA called proper orthogonal decomposition (POD). This technique was used to reduce the 

dimensionality of discretized fluid flow equations.  

 

The integration of planning and scheduling is a long-standing problem in PSE since high- level 

decision problems (planning) has recurring dynamics and uncertainties are dominating the 

problem and a stochastic dynamic programing is required to solve the problem. Furthermore, 

scheduling which is considered to be a low-level decision problem has more complex state 

representation, and mathematical programing is suitable to solve these kinds of problems. 

Combined planning and scheduling problems are studied, and potential approaches has been 

discussed by (J. H. Lee & Min, 2006; Shin, Lee, & Realff, 2017).  
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Chapter 3: Modelling 

3.1 System Description 

The post-combustion carbon dioxide capturing unit includes two main components: an 

absorber and a stripper column. The flue gas which is loaded with carbon dioxide is feed to the 

absorber column from the bottom and the solvent is feed from the top of the column. In this 

work mono-ethanolamine (MEA) is used as a solvent to absorb the CO2 from the flue gas. The 

flow mechanism in the absorber is counter current and packed columns are used sometimes to 

increase the surface contact area between the gas and the liquid. The rich MEA solution is 

accumulated in the absorber sump tank before flowing to the heat exchanger. The rich solvent 

is feed to the stripper from the top and encounters the steam produced from the reboiler. CO2 

is separated from the MEA solution and comes from the top of the desorber after being cooled 

by a condenser. The regenerated amine solution (free from CO2) is the bottom product passes 

through the heat exchanger. The lean amine is sent to a make-up tank where the water and 

MEA loses are recovered before flowing back the absorber column. The collected CO2 then is 

ready for transporting and storage (Nittaya, 2014). 

 

Figure 10: Post combustion unit schematic. (Nittaya, 2014) 
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The rigorous model used in this work was developed by (Nittaya, 2014) and (Harun, 2012). It 

was built and simulated in gProms v5.1 using six PI controllers; the manipulated and controlled 

variables are illustrated in the following table with the nominal steady state operating values. 

 

Table 1: Manipulated and controlled variables of the post combustion system. (Nittaya, 2014) 

Variable Nominal Value 

Manipulated variable (1) Condenser heat duty (Qcond) 8.6 kW 

Manipulated variable (2) Buffer tank heat duty (Qtank) 164.3 kW 

Manipulated variable (3) Reboiler heat duty (Qreb) 153.6 kW 

Manipulated variable (4) Outlet buffer tank valve (V1) 32% opening 

Manipulated variable (5) Outlet absorber sump valve (V2) 50 % opening 

Manipulated variable (6) Outlet reboiler sump valve (V3) 50 % opening 

Controlled variable (1) Condenser temperature (Tcond) 313.8 K 

Controlled variable (2) Lean amine temperature (Ttank) 312.8 K 

Controlled variable (3) Reboiler temperature (Treb) 388.45 K 

Controlled variable (4) Percentage CO2 removal (%CC) 96.3 % 

Controlled variable (5) Liquid level in absorber sump (L2) 0.3 m 

Controlled variable (6) Liquid level in reboiler sump (L3) 0.3 m 

 

The design parameters of the units which includes dimensions, operating temperature and 

pressure for the model are illustrated below. 

Table 2: Equipment design parameters. (Nittaya, 2014) 

Parameter Value Model 

Absorber (A101) 

Internal diameter (m) 0.43 (Nittaya, 2014) 

Height (m) 6.1 (Nittaya, 2014) 

Packing  IMTP#40 (Nittaya, 2014) 

Nominal packing size (mm) 0.038 (Nittaya, 2014) 
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Specific area (m2/m3) 143.9 (Nittaya, 2014) 

Operating temperature (K) 314-329 (Nittaya, 2014) 

Operating pressure (kPa) 101.3 – 103.5 (Nittaya, 2014) 

Stripper (D101) 

Internal diameter (m) 0.43 (Harun, 2012) 

Height (m) 601 (Harun, 2012) 

Packing  IMTP#40 (Harun, 2012) 

Operating temperature (K) 350-380 (Harun, 2012) 

Operating pressure (kPa) 159.5 – 160 (Harun, 2012) 

Reboiler (R101) 

Operating temperature (K) 383-393 (Harun, 2012) 

Operating pressure (kPa) 160 (Harun, 2012) 

Condenser (C1) 

Operating temperature (K) 312-315 (Nittaya, 2014) 

Operating pressure (kPa) 159 (Nittaya, 2014) 

Cross heat exchanger (HX) 

Internal diameter of shell (m) 0.305 (Nittaya, 2014) 

Internal diameter of tube (m) 0.148 (Nittaya, 2014) 

Outer tube diameter of tube (m) 0.19 (Nittaya, 2014) 

Buffer tank (T1) 

Internal diameter (m) 2 (Nittaya, 2014) 

Absorber sump tank (A102) 

Internal diameter (m) 0.43 (Nittaya, 2014) 

Reboiler sump tank (R102) 

Internal diameter (m) 0.43 (Nittaya, 2014) 

Valves 

Flow coefficient of V1 (m2) 1.01 * 10E-3 (Nittaya, 2014) 

Flow coefficient of V2 (m2) 0.85 * 10E-3 (Nittaya, 2014) 

Flow coefficient of V3 (m2) 0.85 * 10E-3 (Nittaya, 2014) 

3.2 Sensitivity Analysis 

The determination of system inputs and outputs for modelling purposes is essential. The system 

is analysed by studying the effect of changing input variables on the desired outputs. Many 

studies previously discussed the effect of changing different variables such as the flue gas flow 

rate, temperature, pressure, reboiler and condenser duty and lean amine flow rate and 

temperature. This analysis provides insights regarding the behaviour of the proves variables 



 

 34 

and their effects on the process outputs. Furthermore, the design of the machine learning 

models will be depending on the selection of the important variables from the analysis. In this 

section, illustration of how inputs variables selected are affecting the system outputs. for steady 

state modelling, all controllers are turned off and the data is collected at the initial and final 

state. 

First, the change of flue gas flow rate by ± 20% is investigated and shown in the figures below. 

Increasing the flue gas flow rate reduces the system energy requirements while it increases the 

purity of CO2 produced by about 10%. This is justified as the post combustion unit treats more 

flue gas and higher amount of CO2 is loaded to the system. Furthermore, as the flow rate of the 

flue gas increase, the capturing rate decreases but still within acceptable limit which is not 

below 90%. This is expected since the amount of the lean amine treating the flue gas is not 

changing as it is kept constant during the disturbances introduced to the flue gas flow rate. 

 

              Figure 11: The effect of flue gas flow rate on SER. 
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Figure 12: The effect of flue gas flow rate on purity. 

 

 

Figure 13: The effect of flue gas flow rate on capturing rate. 
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Secondly, the flue gas pressure was changed to 90 kPa which is 13% below the nominal value 

and increased gradually to reach 110 kPa which is about 6.5% above the nominal value. It was 

noticed that both SER and the purity of CO2 decreased with the increase of the pressure. 

However, the change in the purity is very small. On the other hand, the capturing rate increased 

with the increase of the pressure. In real life, the change of the flue gas pressure would occur 

if blowers are used to feed the absorber. This will also affect the system energy requirement as 

the energy consumed by the blowers will be added. From the results it was noticed that the 

high-pressure flue gas requires low energy consumption by the system. This can be explained 

as the temperature of the flue gas will increase hence, less heating is required. 

 

               Figure 14: The effect of flue gas pressure on SER. 
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Figure 15: The effect of flue gas pressure on purity. 

 

Figure 16: The effect of flue gas pressure on capturing rate. 

 

0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

90 95 100 105 110 115

m
o

le
 f

ra
ct

io
n

kPa

88

89

90

91

92

93

94

95

96

97

98

99

90 95 100 105 110 115

%
C

C

kPa



 

 38 

The effect of changing the flue gas temperature was also investigated and a change of ± 20% 

was applied to the nominal value. As the temperature if the flue gas increases only the system 

energy requirement increases in a small matter which makes since as less heat is required 

through the process. While the purity and the capturing rate decreases with a change about 

10%. 

 

Figure 17: The effect of flue gas temperature on SER. 
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Figure 18: The effect of flue gas temperature on purity. 

 

Figure 19: The effect of flue gas temperature on capturing rate. 
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increasing both the reboiler and condenser duty will increase the system energy requirement. 

However, when it comes to purity, it was noticed that increasing the reboiler duty would 

decrease the purity of CO2 produced. On the other hand, increasing the condenser duty 

significantly increases the purity of CO2 produced. Moreover, increasing the reboiler duty 

increased the capturing rate significantly. While increasing the condenser duty reduced the 

capturing rate but in a minor concern. 

 

               Figure 20: The effect of reboiler duty on SER. 
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Figure 21: The effect of condenser duty on SER. 

 

Figure 22: The effect of reboiler duty on purity. 
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Figure 23: The effect of condenser duty on purity. 

 

Figure 24: The effect of reboiler duty on capturing rate. 

0.945

0.95

0.955

0.96

0.965

0.97

6500 7500 8500 9500 10500 11500

m
o

le
 f

ra
ct

io
n

Watt

92.5

93

93.5

94

94.5

95

95.5

96

96.5

97

97.5

140000 145000 150000 155000 160000 165000 170000 175000

%
C

C

Watt



 

 43 

 

Figure 25: The effect of condenser duty on capturing rate. 

3.3 Steady State Modelling 

This section describes the development of different machine learning models for the PCC unit 

illustrated earlier. The inputs of the system represent the independent variables while the 

outputs are the dependent variables. In this section controllers are not involved as the initial 

and final state of each simulation is the point of interest. Six main inputs of the system were 

selected based on the literature and sensitivity analysis which are reboiler duty, condenser duty, 

reboiler pressure, flow rate, temperature and pressure of the flue gas. Table (3) illustrates the 

summary of the inputs and outputs chosen for the modelling with the upper and lower limits 

that this system can withstand.  
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Table 3: Inputs and outputs variables for steady state modelling. 

 

 

A change of ± 20% from the nominal value of each input was made to observe the outputs and 

system response. A combination of 324 scenarios were developed by taking into considerations 

an upper, mid and lower limit for each input. Three main outputs were chosen, which are the 

system energy requirement, the capture rate and the purity of carbon dioxide from the 

condenser outlet stream. The changes in the inputs of the system were done interchangeably, 

which means the disturbance was introduce to all the variables simultaneously to cover a wide 

range of the possible changes to operating conditions and to study the effect of these changes 

on the outputs of the process.  The inputs and outputs and their limits are shown in table (3). 

SER describes how much energy is consumed by the reboiler (R102), make-up tank (T1) and 

the condenser (C1) in kJ per kg of CO2 captured. The capture rate (CR) is defined as follows: 

 

    % 𝐶𝑅 = (1 −  
𝑦𝐶𝑂2,𝑜𝑢𝑡,𝐴𝑏𝑠 ×𝐹𝑣,𝑜𝑢𝑡,𝐴𝑏𝑠 

𝑦𝐶𝑂2,𝑖𝑛,𝐴𝑏𝑠 × 𝐹𝑣,𝑖𝑛,𝐴𝑏𝑠 
)  × 100%  

 (4)     

 

Where 𝑦𝐶𝑂2,𝑜𝑢𝑡,𝐴𝑏𝑠 and 𝑦𝐶𝑂2,𝑖𝑛,𝐴𝑏𝑠 are the mole fractions of CO2 in the vent gas stream from the 

absorber and the flue gas stream going to the absorber, whereas 𝐹𝑣,𝑖𝑛,𝐴𝑏𝑠 and 𝐹𝑣,𝑜𝑢𝑡,𝐴𝑏𝑠 are the 

molar flow rates of the flue gas and the vent gas stream respectively.  

 

Variable Variable Name Variable Type Lower limit Mid-Point Upper limit 

x1 Flow Rate (mol/s) Input 3.21 4.0125 5.13 

x2 Temperature (K) Input 299 320 340 

x3 Pressure (kPa) Input 95 103.5 110 

x4 Reboiler Pressure (kPa) Input 140 160 180 

x5 Reboiler Duty (W) Input 141312 158744 170000 

x6 Condenser Duty (W) Input 6600 8600 10600 

y1 System Energy Requirements (kJ/kg CO2) Output 5239 12346 16345 

y2 Capture Rate % Output 68.22 91.78 99.98 

y3 Purity Output 0.55 0.867 0.9997 
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3.3.1  Artificial Neural Network (ANN) 

Artificial neural networks are also known as multilayer perceptron (MLP), they are defined by 

a single input layer with R inputs, M – 1 hidden layer and in each layer a number of neurons 

Sm and an output layer with SM neurons which correspond to the number of outputs of the 

network. An example notation describing the MLP is nn = [ R S1 S2 … SM]. For instance, a 

neural network with three inputs, three hidden layers and one output would be nn = [3 3 3 1]. 

 

 

 

 

Figure 26: ANN configuration (Feed forward neural networks in pyrenn). 

 

The ANN model can be described as a black box device that receives inputs and produces 

outputs (Elkamel, 2006). A wide range of neural network architectures is available to serve 

different types of applications. The ANN used in this work is a typical feed-forward model 

consisting of an input layer, hidden layers and an output layer. The structure of the ANN is 

shown in figure (27). Each layer consists of neurons, and connections between neurons in 

different layers are associated with a weight factor (Chan & Chan, 2017). The weight and bias 

for the ANN were determined using a back-propagation algorithm with momentum. The data 

were divided into two sets, the training set (70%) and the testing set (30%). The training step 

assures that the weights leads to the least sum of squared errors (SSE) between the actual 
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outputs and the predicted ones. The training is performed to achieve an SSE of 10-5. Moreover, 

the data are normalized before training, so the inputs and outputs have the same order of 

magnitude.  

 

Figure 27: ANN structure with single hidden layer. 

 

A sigmoid function was used as an activation function for the hidden layer neurons. The hidden 

layer network with 5 neurons was able to give good predictions of the process outputs. The 

minimum, maximum and average errors calculated along with the coefficient regression for 

statistical analysis were calculated. It is noticed that the performance of the trained network is 

pleasant.  

 

3.3.2 Gaussian Process Regression (GPR) 

In comparison to ANN, Gaussian process regression is also used to model the post combustion 

system. The GPR model is also used to predict the system outputs using the same inputs of the 

ANN. Gaussian process regression (GPR) is one of the most reliable machine learning models. 

It is a supervised learning method designed to solve probabilistic regression and probabilistic 

classification problems (Seeger, 2004). GPR is a powerful tool capable of predicting the 

outputs of a system based on the interpolation of the observations. Furthermore, the predictions 
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are probabilistic which means that empirical confidence intervals can be computed to decide 

refitting the model or adjusting it. Different kernels can be used, however, GPR models are not 

sparse and use the whole sample information for predictions. Another disadvantage of GPR is 

the low efficiency in high dimensional spaces. However, in this work, the system on hand is 

represented by 9 variables and GPR managed to fit the model with high efficiency and low 

error. GPR is specified by its mean and covariance functions, where the prior mean is assumed 

to be constant 0 or the data’s mean. The prior’s covariance is determined by passing a kernel 

object. Maximizing the log-marginal-likelihood (LML) optimizes the hyper parameter of the 

kernel. The simplest form of GPR model can be explained as follow: 

 

𝑦 =  𝑥𝑇𝛽 + 𝜀       (5) 

 

Where ε ⁓ N (0, σ2) and y is the predicted response to a vector x. The error variance (σ) and the 

coefficient β are estimated from the data. The predicted response is explained by introducing 

latent variables, f (xi), i = 1, 2, …, n, from a Gaussian process, and a basis h. The covariance 

function of the latent variables detects the smoothness of the outputs and basis function projects 

the inputs into a p-dimensional feature space. In this work three different kernel functions were 

used in modelling the PCC unit. The first kernel used to predict the capturing rate (CR) and 

the purity of CO2 (PU) is the rational quadratic GPR where the covariance function is defined 

by: 

 

𝑘(𝑥𝑖 , 𝑥𝑗 , 𝜃) =  𝜎𝑓
2 (1 +

𝑟2

2𝛼𝜎𝑙
2)

−𝛼

    (6) 

 

Where σl is the characteristic length scale, α is a positive value scaled mixture parameter and r 

is the Euclidean distance between xi and xj. The second kernel used to predict the purity (PU) 

and capturing rate (CR) is the squared exponential GPR where the covariance function is: 

 

𝑘(𝑥𝑖 , 𝑥𝑗 , 𝜃) =  𝜎𝑓
2 [−

1

2

(𝑥𝑖−𝑥𝑗)
𝑇

(𝑥𝑖−𝑥𝑗)

𝜎𝑙
2 ]               (7) 

 

 

Where σl is the characteristic length scale, and σl is the signal standard deviation. 
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 Finally, a Matern 5/2 kernel was used to predict (CR) and (SER) and the covariance function 

is defined as: 

 

𝑘(𝑥𝑖 , 𝑥𝑗 , 𝜃) =  𝜎𝑓
2 (1 +

√5𝑟

𝜎𝑙
+

5𝑟2

3𝜎𝑙
2) exp (−

√5𝑟

𝜎𝑙
)   (8) 

3.3.3 Tree Regression (Fine Tree) 

Tree regression is another machine learning predicting tool that uses recursive partitioning for 

non-linear systems. It divides the space between leaves/nodes into smaller regions to make the 

interaction manageable. Each terminal node or leaf of the tree represents a cell of the partition. 

It can be viewed as a set of if-else statement to decide the output. Three types of trees exist 

depending on the size of the leaves, fine tree, medium tree and coarse tree. A fine tree model 

with 65 nodes was able to predict (SER) efficiently.  

 

A statistical analysis in table (4) was conducted to compare the developed models and to 

demonstrate the most efficient ones. It is clear that the ANN models excelled all other 

developed models, hence, it is the most recommended model to be used for predictions as the 

accuracy was never below 98%. However, the other models showed high accuracy in 

predicting the process outputs. Moreover, the ANN model was able to predict all process 

outputs while all other models resulted in good predictions for at most two of the process 

outputs. 

 

Table 4: Statistical analysis comparing accuracy of different steady state models. 

Model Output Minimum Error Maximum Error 
Average 

Error 
R2 

ANN 

SER 

0.00067 12.3186 0.18866 0.98108 

Fine Tree 0.00017 15.1444 2.19788 0.96309 

Matern 5/2 GPR 0.02025 15.5239 3.02674 0.95293 

ANN 

CR 

 

0.00078 6.70323 0.87294 0.98414 

Rational Quadratic 

GPR 

0.01040 5.37134 1.07592 0.98269 

Matern 5/2 GPR 0.00912 5.55021 1.12226 0.98152 

ANN 

PU 

0.00155 8.04515 1.31160 0.98732 

Squared 

Exponential GPR 

0.00681 9.86385 1.68887 0.98186 
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Rational Quadratic 

GPR 

0.00665 9.86387 1.68892 0.98186 

 

 

3.4 Dynamic Modelling 

This section illustrates the process of dynamic modelling for the PCC and what are the essential 

variables to be considered, and how are the system inputs and outputs are related. The PCC 

designed and modelled by (Nittaya, 2014) had a set of control objectives summarized as 

follows: 

1. The removal rate of CO2 should be 90% or higher. 

2. The purity of CO2 in the gas product stream leaving the condenser following the 

stripping column should be above 95%. 

 

Figure 28: Post combustion unit control structure.(Nittaya, 2014) 

 

The control structure of the PCC unit consists of six manipulated variables and six controlled 

variables. Three valves are manipulated and regulated to control cooling and heating mediums 

and the liquid level in the sump or surge tanks. For example, the valve (V2) is used to control 

the reboiler temperature (Treb) by regulating the amount of liquid flowing through the reboiler. 
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On the other hand, valve (V1) control the liquid level in the absorber sump tank. This is 

beneficial due to the control of the amount of rich amine flowing to the absorber to guarantee 

sufficient CO2 removal in case of the flue gas flow rate increased. Moreover, valve (V3) 

controls the liquid level in the reboiler tank (Nittaya, 2014). Furthermore, the reboiler duty 

(Qreb) is used to control the %CC, while the condenser duty (Qcond) controls the temperature of 

the condenser. Finally, the makeup tank temperature is controlled by adjusting the tank duty 

(Qtank). The manipulation of the duties is essential to achieve the control objectives; however, 

it is challenging to maintain a low energy consumption to achieve the requirements. The 

previous schematic illustrates the control structure of the system, while table (5) is 

summarizing the controlled and manipulated variables with their set point. 

 

 

Table 5: Manipulated and controlled variables of the post combustion unit. (Nittaya, 2014) 

Manipulated Variables Steady State Nominal Values 

Condenser Duty (Qcond) 8.6 kW 

Reboiler Duty (Qreb) 164.5 kw 

Buffer Tank Duty (Qtank) 155 kW 

Outlet valve position of the buffer tank (V1) 30 % opening 

Outlet valve position of the absorber tank (V2) 50 % opening 

Outlet valve position of the reboiler tank (V3) 50 % opening 

Controlled Variables Set Point 

Condenser Temperature (Tcond) 314 K 

Lean Amine temperature (Ttank) 313 K 

Reboiler Temperature (Treb) 388.5 K 

CO2 percentage removal %CC 95 % 

Liquid level in absorber tank (L2) 0.3 m 

Liquid level in reboiler tank (L3) 0.3 m 

 

For the system modelling, the selection of the inputs and the outputs is critical due to taking 

time in consideration. After the sensitivity analysis and the steady state modelling, the inputs 

(9) and outputs (8) for the dynamic model were selected as shown in Table 6. 
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Variable Variable Name Variable Type Lower Limit Mid-Point Upper Limit 

x1 Flow rate of flue gas (mol/s) Input 3.410625 3.557650869 4.09275 

x2 Temperature of flue gas (K) Input 312.1968 328.3263415 335.6955 

x3 Pressure of flue gas (kPa) Input 101.9475 103.7639886 105.0525 

x4 Valve 1 (%) Input 0.185273 0.209385758 0.265796 

x5 Valve 2 (%) Input 0.3 0.335149049 0.426142 

x6 Valve 3 (%) Input 0.3 0.339364177 0.426809 

x7 Condenser Duty (W) Input 6413.612 7475.737539 9749.903 

x8 Reboiler Duty (W) Input 96029.92 104513.7614 125995.1 

x9 Tank Duty (W) Input 86818.87 104370.1245 136342.2 

y1 Liquid Level in absorber sump (m) Output 0.2957878 0.300034 0.305134 

y2  Reboiler Temperature (K) Output 388.40985 388.4999 388.6231 

y3 Liquid level in Reboiler sump (m) Output 0.315427 0.31792 0.320948 

y4 Condenser Temperature (K) Output 313.0523 315.3805 317.8951 

y5 %CC Output 88.921165 96.41553 98.81392 

y6 Tank Temperature (K) Output 307.2121 313.711 322.586 

y7 SER (kJ/kg CO2) Output 8846.086 10226.91 11994.63 

y8 Purity Output 0.841966 0.8984685 0.954971 

 

 

The open-loop dynamic data was generated by gProms after selecting the proper scenario to 

guarantee covering all the possible situations where the system variables changes 

simultaneously. Having 9 input variables manipulated over the lower and upper limit gives a 

combination of 504 different scenarios, hence, a well schedule of disturbance is needed to 

ensure the continuous of the simulation and a consistent time and sequence. After about six 

CPU days, 2632 data points were obtained by recording the input and output variables value 

each 200 seconds. The simulation was run again with the same setup of scenario and the 

collected data was compared to make sure it is matching the first run.  

 

The remaining work is determining the best modelling technique for the dynamics, and for this 

recurrent neural network (RNN) are used. The RNN are a class of the machine learning 

modelling techniques where it used to predict and simulate the time dependent processes. 

Table 6: Inputs and outputs variables for dynamic modelling. 
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Similar to feedforward neural networks, RNN consist of input layer, hidden layer and output 

layer. The main difference is that RNN are trained by the reverse differential mode which 

means the network has a recurring connection to itself which helps the network to learn the 

effect of the previous input along with the current or new input. 

 

In RNN the connection between components from a supervised cycle is implemented by linking 

the output of a layer m with the input of previous layers < m or with its own layer input. This 

leads to an infeasible system, hence, a real-valued time-delay must be applied to the recurrent 

links. A Tapped Delay Lines (TDL) concept is applied to solve this issue. A TDL includes 

delay operators z−d which delay time-discrete signals by a real-valued delay d. Furthermore, 

the delay elements in a TDL are the sets DIl,m and DLl,m. All the sets contain real-valued delays 

di between a link from the output of layer l to the input of layer m. Therefore, for every di ∈ 

DIl,m or di ∈ DLl,m there has to be a link matrix IWm,l [di] or LWm,l [di]. 

 

Figure 29: Detailed and simplified tapped delay lines (TDL in pyrenn). 

 

The figure above shows an illustration of TDL in a simplified form and detailed one. Three 

different types of TDLs can be introduced to the network, this will add the recursive (time) 

delayed link with their weight matrices. This effect is illustrated in figure () below. First, for 

the input delays, dIn ∈ [0,1, 2, ...], allows to delay the inputs p of the RNN by a real value time 
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step d ≥ 0. The network now can be used for outputs depending on the current input, also the 

previous input. dIn must be non-empty, otherwise no inputs are linked with the neural network. 

When the existing input is used in the RNN, dIn must contain 0. Since the delay only affects 

the inputs, this will not lead to an RNN where DI1,1 = dIn. 

 

Similar to the previous layers, for the output delays dOut ∈ [1, 2, ...], the recurrent link of the 

outputs y can be added to its first layer. If dIn is non-empty, the delays must be greater than 0, 

d >0 and DL1, M = dOut. 

Finally, for the internal delays dIntern ∈ [1, 2, …], the recurrent link is added to all previous 

layers and to itself except from the output layer. The output layer now depends on the internal 

state and dIntern is non-empty, the delays are greater than zero, therefore, DLm,l = dIntern Ɐ 

(m ≤ l| DLm,l  ≠ DL1,M). 

 

Figure 30:  Recurrent connection for a two layers network with possible delays (RNN in pyrenn). 

 

For the training, the RNN model, two training algorithms have been used, the Levenberg-

Marquardt (LM) algorithm and the Broyden-Fletcher-Goldfarn-Shanno algorithm (BFGS). The 

different algorithms are used to minimize the errors in predictions and to reach the best fit of 

the data. The first training algorithm (LM), is known as the damped least squares method which 

is used to solve and fit non-linear least square problems. The advantage of this algorithm that 

it interpolates between the Gauss-Newton algorithm (GNA) and the method of gradient 

descent, which means LM is more robust than GNA and it is capable to find the solution 
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efficiently even if it is far off the final minimum. However, one disadvantage of LM algorithm 

is finding only local minimum. The second algorithm, BFGS, is also a numerical optimization 

algorithm for solving unconstrained nonlinear problems. The iterative method belongs to the 

quasi-Newton methods where it seeks a stationary point of a function, hence, a necessary 

condition for obtaining the optimal solution is that the gradient must be zero. One drawback 

of BFGS that it does not guarantee the fitting of the problem unless the function is a quadratic 

Taylor expansion near optimum. The RNN showed a high performance in predicting the 

process outputs and was able follow the trends using both training algorithm. 

 

Figure 31: Predicted and measured level of liquid in absorber sump versus time. 

 

The previous plot illustrates the actual liquid level in the absorber sump compared to the 

predictions using LM and BFGS algorithms. The RNN followed the trend of the original 

measured data even with the existence of noise. There is some noise in the data presented for 

the period of t = 1500 s and t = 2500 s. This noise is the result of the controllers trying to keep 

the liquid level at the set point. The closed-loop control structure is very tight that it caused 

this behaviour due to the combination of disturbances to the process inputs at the same time. 
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Figure 32: Predicted and measured reboiler temperature. 

 

 

Figure 33: Predicted and measured liquid level in reboiler sump. 
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For the reboiler temperature and the liquid level in the reboiler surge tank, the same observation 

is made, however, BFGS RNN managed to follow the actual data more precisely.  

 

Figure 34: Predicted and measured condenser temperature. 
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Figure 35: Predicted and measured percentage carbon captured. 

 

Figure 36: Predicted and measured tank temperature. 
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Figure 37: Predicted and measured SER. 

 

 

 
 

Figure 38: Predicted and measured purity. 
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For all other outputs, figures (34-38) shows that the RNN was able to predict the actual data 

accurately and the errors were very small. The mean square error (MSE) and the regression 

correlation coefficient (R2) were calculated. It is illustrated in table (7) that the minimum MSE 

obtained is 1.785 × 10-7 for liquid level in reboiler sump using BFGS training algorithm. The 

maximum MSE is 2.692 × 10-3 for the system energy requirement using LM algorithm. 

Moreover, the correlation regression coefficient supported the MSE calculation and the 

maximum R2 is 0.99847 for the liquid level in reboiler sump using LM algorithm, the minimum 

R2 is 0.91467 for system energy requirement using LM algorithm as well. This proves the 

credibility of recurrent neural networks to simulate and predict dynamic processes even when 

the disturbances to the process inputs are occurring simultaneously. The dynamic model can 

be used later on for model predictive control framework and the tuning of the controllers can 

be much faster using the RNN. 

 

Table 7: Performance evaluation of LM and BFGS RNNs models. 

Variable Mean Square Error R2 

Liquid level in absorber sump (Y1_LM) 4.95296E-07 0.98792 

Liquid level in absorber sump (Y1_BFGS) 4.95128E-07 0.98685 

Reboiler Temperature (Y2_LM) 0.000628022 0.92639 

Reboiler Temperature (Y2_BFGS) 0.000317141 0.92459 

Liquid level in reboiler sump (Y3_LM) 1.79362E-07 0.99847 

Liquid level in reboiler sump (Y3_BFGS) 1.78569E-07 0.99264 

Condenser Temperature (Y4_LM) 0.000144473 0.94637 

Condenser Temperature (Y4_BFGS) 0.00040357 0.93985 

%CC (Y5_LM) 2.20291E-05 0.97748 

%CC (Y5_BFGS) 1.3237E-05 0.96972 

Tank Temperature (Y6_LM) 1.97248E-06 0.98795 

Tank Temperature (Y6_BFGS) 1.89199E-05 0.98673 

SER (Y7_LM) 2.69E-03 0.91467 

SER (Y7_BFGS) 1.23E-04 0.93967 

Purity (Y8_LM) 1.01995E-06 0.97878 

Purity (Y8_BFGS) 2.87411E-07 0.98119 
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Chapter 4: Optimization 

In this section, optimization of the process operating conditions is discussed. The goal of the 

optimization from operational point of view is to reduce and minimize the energy consumed 

by the reboiler, mainly, and the condenser and the makeup tank. Moreover, it is required to 

increase the capturing rate and the purity of carbon dioxide as the final product of the process. 

The formulation of the objective function will determine how and what are the best algorithms 

to be used to solve the problem. Two optimization algorithms are used in this work to provide 

optimal solutions/ optimal operating conditions. 

4.1 Sequential Quadratic Programming 

After developing and testing the different modes, it was concluded that the ANN model gives 

the best results in predictions and performance compared to the other models. It is essential to 

use it to determine the optimum operating condition of the PCC unit alongside with the model 

as a prediction tool. The ANN will replace the model equations or process data and optimization 

will be done in a high-speed processing (Elkamel, 1998). It is clear since the developed ANN 

model consists of 9 variables that a non-linear problem (NLP) problem will rise. In general, 

operational objectives would include reducing the system requirements (SER), increasing the 

capture rate (CR) and the purity of CO2 at the condenser outlet stream (PU). A possible 

objective function combining all three objectives (minimizing SER, maximizing CR and 

maximizing PU) thereby testing the ANN’s ability in performing multi-objective optimization. 

This multi-objective function can be written as follows: 

 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓(𝑥) = [
SER(𝑥)

SERU −
PU(𝑥)

PUU −
CR(𝑥)

CRU ]         (9) 

 s. t.          gi (x) = 0       i= 1, 2 …. M           

(10) 

       gi (x) ≤ 0       i= M + 1, 2 …. N              (11) 
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where x is the vector inputs variables to the ANN model. The function f (x) is evaluated first by 

evaluating each output SER, PU and CR at each input vector using the developed ANN then 

the function is calculated according to equation (9). The equality and inequality constraints of 

the model is shown by equation (10) and (11). When the manipulation of all inputs variables 

is not possible the equality constraints are used. On the other hand, inequality constraints are 

used when the upper and lower bounds of the variables are available. The variables in equation 

(9) are scaled and made dimensionless by dividing them by their upper limit so their values 

range between 0 and 1. To obtain the solution, constraints must be added to the problem 

(Elkamel, 1998; Li et al., 2013). For example, the upper and lower limits on the variables are 

used to obtain a solution within the trained data set. This problem is solved using a sequential 

quadratic programming algorithm by (Gill, Murray, Saunders, & Wright, 1984). The main idea 

is to formulate a sub problem based on the quadratic approximation of the Lagrangian  L(x, λ) 

= f(x) +∑ 𝜆𝑖𝑔𝑖(𝑥)𝑁
𝑖=1  , and for iteration k can be presented as 

 

Minimize 
1

2
𝑑𝑘

𝑇𝐻𝑘𝑑𝑘 + ∇𝑓(𝑥𝑘)𝑇𝑑𝑘     (12) 

∇𝑔𝑖(𝑥𝑘)𝑇𝑑𝑘  +  𝑔𝑖(𝑥𝑘) =  0               𝑖 =  1, . . . . . . , 𝑀         (13) 

∇𝑔𝑖(𝑥𝑘)𝑇𝑑𝑘  +  𝑔𝑖(𝑥𝑘) ≤  0               𝑖 =  M + 1, . . . . . . , 𝑁         (14) 

 

Where Hk is a positive matrix approximating the Hessian matrix at iteration k of the Lagrangian 

function and dk is the direction of search. The sub problem is solved by producing a vector dk 

to calculate new iteration xk+1(xk+1 = xk + αk dk). while the Hessian matrix is updated by 

 

𝐻𝑘𝐻 =  𝐻𝑘 +  
𝑞𝑘𝑞𝑘

𝑇

𝑞𝑘
𝑇𝑠𝑘

− 
𝐻𝑘

𝑇𝐻𝑘

𝑠𝑘
𝑇𝐻𝑘𝑠𝑘

     (15) 

Where  

𝑠𝑘 = 𝑥𝑘+1 − 𝑥𝑘      (16) 

 

𝑞𝑘 = ∇𝑓 (𝑥𝑘+1) +  ∑ 𝜆𝑖∇𝑔𝑖(𝑥)𝑘+1 − (∇𝑓(𝑥𝑘 +  ∑ 𝜆𝑖∇𝑔𝑖(𝑥)𝑘

𝑁

𝑖=1

)                               (17)

𝑁

𝑖=1
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4.2 Genetic Algorithm 

Another optimisation method to be tested is that of genetic algorithms (GA). Although both 

the SQP and GA methods are not guaranteed to provide global solutions, the GA might provide 

a better solution than the one obtained by SQP. GA is an inspired algorithm based on genetics 

and natural selection introduced by (Goldberg & Holland, 1988). The algorithm simply works 

by searching over the population which consists a number of solutions. Every single solution 

represents a chromosome with set of genes which makes it unique. Initially, a fitness function 

is used to select the best solutions.  

Then, a mating process between solutions starts to provide higher quality solutions. The first 

generation during the mating process are called the parents. (Koza, Hall, & Holland, 1995) 

explained that every parent will generate two children and it is expected that the offspring will 

have better quality than the parents. The better solutions will eliminate the earlier ones and the 

process repeats until the optimal solution is reached. However, a replacement process is needed 

to overcome the drawback of the possibility to generate some parents from the offspring. 

Where the old population is being replaced by a new one to assure the generation of a new and 

better solutions every time. The mating process can be applied by to variations, crossover and 

mutation. In crossover, the selection of genes to be given to the offspring is random from the 

parents (Koza et al., 1995).  

On the other hand, in mutation, some genes in the offspring are selected and changed to provide 

uniqueness to the solution. In this work, GA was applied on the same objective function 

introduced in the previous section. The algorithm was implemented in MATLAB where the 

population size is determined to be 200 since 9 variables are being studied. The selection is 

done by tournament process where individuals are selected randomly. The crossover fraction 

is varied from 0 to 1 to guarantee the generation of unique offspring over a wide range.  

Later on, the mutation function is Gaussian to add a random number to each vector f individual 

entry. Additional migration process is used with a forward direction to provide the movements 

between sub-populations, so the best solutions eliminates the undesired ones. The algorithm 
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will give the optimal solution after the stopping criteria is met. The stopping criteria is set to 

be the number of generations where the program stops after generating 900 generations.  

 

Figure 39: Genetic algorithm mechanism.  
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Imposing the lower and upper limits on the variables given in Table.1 the optimization problem 

was solved. The optimal operating conditions, the value of the outputs and the objective 

function value are summarized in table (8) below. 

Table 8: Optimization Summary. 

Variables 
Nominal 

Operation 

Optimal Results 

Min. equation (9) Min. SER only Max. PU only Max. CR only 

SQP GA SQP SQP SQP 

Flow Rate (mol/s) 4.0125 5.128 3.21l 5.128u 5.128u 3.222 

Temperature (K) 319.71 300.236 308.459 317.943 299.003 310.082 

Pressure (kPa) 103.5 106.57 110u 109.99 109.98 96.37 

Reboiler Pressure 

(kPa) 

160 179.99 162.98 179.90 180u 143.94 

Reboiler Duty 

(W) 

153,600 16,2108.39 150,228.10 170,000 150,000 150,000 

Condenser Duty 

(W) 

8,600 7,177.084 8,039.959 6,600 7,000.154 7,000 

SER (kJ/kg CO2) 11,324.16 10,415.93 14,936.41 8,851.71 11,054.82 15,684.17 

PU 0.938 0.976 0.918 0.835 0.969 0.912 

CR (%) 96.360 97.073 99.696 92.762 72.119 99.981 

Objective 

Function 

-1.8511 -1.3393 -1.5582 0.5415 -0.9696 -1 

 l = lower limit, u = upper limit 

 

The third column represents the solution obtained after applying the SQP algorithm over the 

objective function in equation (9). The solution recommends using the maximum flow rate for 

the flue gas and the upper limit of the flue gas pressure to obtain 97% capturing rate and a total 

energy requirement of 10415.926 kJ/kg CO2. On the fourth column the same objective function 

is solved using GA and the solution recommends using the lower limit of the flue gas flow rate 

with the maximum pressure to obtain 99.7% capturing rate and total energy requirement of 

14936.41 kJ/kg CO2. 
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The objective function value obtained by SQP was higher than the one obtained by GA, 

however, from an engineering point of view, SQP represents the better solution as minimum 

energy is required and a satisfying capturing rate and purity is achieved at the same time. 

 

Furthermore, the optimization was performed over each output alone to study the possibility 

of achieving satisfying operating conditions. The fifth column represents the optimal operating 

points for the minimization of SER only. Only 8,851 kJ/kg CO2 is required when the flow rate 

of flue gas is at the maximum. Also, maintaining the flue gas feed at a high pressure and 

temperature results in a 92% capturing rate. However, the required condenser duty is at the 

lower limit which explains the purity of 0.83 for the CO2 coming as the product. 

 

In the sixth column, the optimization goal was to maximize the purity of carbon dioxide only. 

From the results, it is clear that this solution is not feasible as the maximum purity was not 

achieved and the capturing rate is 72% which is below the acceptable limits.   Finally, in the 

last column, maximizing the capturing rate was the goal of the optimization and satisfying 

results has been obtained. Almost 100% capturing rate is achieved with a purity of 0.91 but 

higher SER is obtained than all other cases. The recommended optimization algorithm as it 

provided the best solution over other cases is to use SQP over the objective function presented 

by equation (9). 
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Chapter 5: Conclusion & Recommendations 

The objective of this research was to model a post combustion CO2 capturing unit using 

machine learning regression techniques, and to use the surrogated models to optimize the 

operational process inputs to minimize the overall energy consumption and maximize the 

capturing rate and the purity of carbon dioxide. This work consisted of four major steps which 

are, a) post combustion capturing unit developed by (Nittaya, 2014) and sensitivity analysis to 

study the effect of disturbances to system inputs on the outputs. Furthermore, b) generation of 

data using gProms v.5.1 for both steady state and dynamic modelling. Next, c) using different 

machine learning techniques such as artificial neural network (ANN) and Gaussian Process 

Regression (GPR) for steady state modelling. Multiple disturbances were introduced 

simultaneously to the system inputs to generate more than 300 data point for modelling. The 

ANN excelled all other developed models in predicting the process outputs with an accuracy 

of 98%. 

 

For dynamic modelling, 2632 data points were generated after introducing disturbances to the 

system inputs and adding more variables to be observed and predicted since controllers are 

activated. Recurrent neural networks (RNN) were used to predict the system outputs and study 

the dynamic behaviour of the post combustion unit. Two different training algorithms were 

used, LM and BFGS in building the RNN and high performance in predicting all the system 

outputs was obtained. A minimum of 91% accuracy was achieved in predicting the system 

energy requirement using LM algorithm. A maximum accuracy of 98.7% in predicting liquid 

level in the absorber sump using LM algorithm which was slightly higher than BFGS. 

 

 

Finally, optimization of the process operating conditions was performed using two different 

methods, sequential quadratic programming (SQP) and genetic algorithm (GA). The ANN was 

optimized to minimize the normalized system energy requirement (SER) minus the normalized 

capture rate minus the normalized carbon dioxide purity in the outlet stream. The objective 

function value using the GA was -1.5582, which is better than -1.3393 (the value obtained 
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when using SQP). However, the results using SQP were judged to be better since the SER was 

30% lower compared to the value obtained using the GA.  Furthermore, both optimization 

methods resulted in local optimal solutions since the upper and lower limits were used to 

constraint the problem and imposing more constraints to the problem would lead to a better 

solution. 

 

Future work should continue exploring alternative machine learning approaches to model the 

system and to increase the accuracy of the prediction by using more operational historical data. 

Moreover, combining the close-loop to the developed RNN as it is suggested to use the RNN 

in programming and setting the controllers of the system to manage dealing with the 

disturbance faster and overcome the delays. It is also recommended to apply the theoretical 

knowledge in this work on a pilot scale plant to test the validity of the developed models. Using 

different input variables and different optimization algorithms is proposed to obtain better 

optimal operating conditions (global), and more data will enhance the performance of the 

developed model in terms of accuracy and error reduction. 
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Appendix A 

Steady state sensitivity analysis. 

  

 

 

  

Flue gas 

flow rate 
SER %CC PU 

3.009375 13266.96 99.28634 0.8921754 

3.289414 12153.4 98.99757 0.9198547 

3.569453 11226.56 98.61866 0.925988 

3.849492 10447.68 98.14462 0.9418405 

4.129531 9789.823 97.55303 0.9528117 

4.40957 9237.581 96.77143 0.9612555 

4.68961 8787.341 95.65035 0.9692125 

4.969648 8446.363 93.96826 0.9751409 

5.025656 8392.624 93.54128 0.9848458 

    

Flue gas 

pressure 
SER %CC PU 

90.5625 12698.114 89.3274 0.948375 

91.65931 12179.596 90.0397 0.943375 

92.75613 11679.473 90.7631 0.938375 

93.852936 11379.2384 91.4861 0.932953 

94.94975 11078.6714 92.0984 0.927530 

96.04656 10777.6914 92.7218 0.922108 

97.14337 10477.5674 93.3205 0.916685 

98.24019 10327.3334 93.8748 0.910248 

99.337 10177.2104 94.3859 0.903811 

100.433815 10027.0874 94.8846 0.897374 

101.530624 9876.96444 95.35 0.890937 

102.62743 9726.84144 95.7932 0.884500 

103.72425 9576.71844 96.1919 0.878063 

104.82106 9426.59544 96.5684 0.871626 

105.91788 9276.47244 96.9005 0.865189 

107.01469 9126.34944 97.1992 0.858752 

108.1115 8976.22644 97.4757 0.852315 

109.20831 8826.10344 97.6878 0.845878 

110.30512 8675.98044 97.8999 0.839441 
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Flue gas 

Temperature 
SER %CC PU 

298.92886 10437.6 96.28846 0.9493259 

301.20404 10438.1 96.16506 0.9463259 

303.47922 10438.66 96.04166 0.9433259 

305.7544 10439.58 95.82866 0.9403259 

308.02957 10440.8 95.61566 0.9373259 

310.30475 10442.28 95.40266 0.9351859 

312.57993 10443.99 95.18966 0.9330459 

314.8551 10445.91 94.97666 0.9309059 

317.1303 10448.01 94.76366 0.9289189 

319.4055 10450.24 94.55066 0.9269319 

321.68066 10452.48 94.33766 0.9249449 

323.95584 10454.7 94.12466 0.9213849 

326.23102 10456.89 93.82266 0.9178249 

328.5062 10459.01 93.52066 0.9142649 

330.78137 10461.08 93.21866 0.9107049 

333.05655 10463.09 92.91666 0.9071449 

335.33173 10465.03 92.61466 0.8992449 

337.60693 10466.92 92.31266 0.8913449 

339.8821 10468.77 92.01066 0.8834449 

 
Reboiler 

Heat Duty 
SER %CC PU 

141311.7 10304.672 92.99499 0.9490168 

142905.4 10381.405 92.97453 0.9470678 

144499.1 10452.932 93.0044 0.9452366 

146092.7 10518.646 93.08824 0.9434665 

147686.4 10578.843 93.22133 0.9419016 

149280.1 10633.893 93.39855 0.9404824 

150873.8 10684.332 93.61375 0.9391697 

152467.5 10730.958 93.8589 0.9379495 

154061.1 10774.705 94.12519 0.9368004 

155654.8 10816.504 94.40434 0.9356898 

157248.5 10857.303 94.68835 0.9345729 
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158842.2 10897.705 94.97222 0.9334406 

160435.9 10938.101 95.25308 0.9322673 

162029.6 10978.715 95.52958 0.9310474 

163623.2 11019.709 95.80096 0.9297862 

165216.9 11061.271 96.06622 0.9284959 

166810.6 11103.599 96.3242 0.9271892 

168404.3 11146.843 96.57394 0.9259133 

169998 11191.089 96.8148 0.9246678 

 

Condenser 

Heat Duty 
SER %CC PU 

6600.5 10433.74 96.30508 0.9488021 

6822.717 10441.261 96.30522 0.953469 

7044.934 10447.198 96.30509 0.9571191 

7267.15 10451.854 96.30461 0.9599183 

7489.367 10455.48 96.30382 0.9620517 

7711.584 10458.293 96.30278 0.9636689 

7933.801 10460.466 96.30158 0.964892 

8156.018 10462.137 96.30031 0.9658161 

8378.234 10463.418 96.29903 0.9665154 

8600.451 10464.44 96.29753 0.967032 

8822.668 10465.32 96.2955 0.9674278 

9044.885 10466.001 96.29377 0.9677355 

9267.102 10466.563 96.29212 0.9679691 

9489.318 10467.001 96.29085 0.968134 

9711.536 10467.337 96.28986 0.9682709 

9933.753 10467.604 96.28907 0.9683743 

10155.97 10467.812 96.2885 0.9684492 

10378.19 10467.967 96.28814 0.968507 

10600.4 10468.067 96.28804 0.9685527 
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Appendix B 

Creating a neural network function. 

 
function [net]=w_Create(net) 

  

ms_time=str2num(datestr(now,'FFF')); 

RStr = RandStream('mcg16807','Seed',ms_time); 

RandStream.setGlobalStream(RStr); 

  

  

M=net.M;     

layers=net.layers;  

inputs=net.nn(1);  

delay=net.delay;  

  

 

X=[];    

U=[];    

I=cell(M,1);  

  

  

%--------------------------- 

dI{1,1}=delay.In; 

for d=dI{1,1}    

    IW{1,1,d+1}= (-0.5 + 1.*rand(layers(1),inputs));     

end  

X=[1];   

I{1}=1;  

  

%--------------------------------------- 

 

for m=1:M  

    L_b{m}=[];  

    L_f{m}=[];  

     

     

    if m>1   

        l=m-1; 

        dL{m,l}=0;     

        LW{m,l,1}=(-0.5 + 1.*rand(layers(m),layers(l)));     

        L_b{l}=m;  

        L_f{m}=[L_f{m},l];  

    end 
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    for l=m:M  

         

        if (m==1)&&(l==M)    

            dL{m,l}=delay.Out;  

        else 

            dL{m,l}=delay.Intern;  

        end 

         

        for d=dL{m,l}  

            LW{m,l,d+1}=(-0.5 + 1.*rand(layers(m),layers(l)));     

 

            if (sum(l==L_f{m})==0)  

 

                L_f{m}=[L_f{m},l];   

 

            end 

            if (l>=m)&&(d>0)  

 

                if (sum(m==X)==0)  

 

                    X=[X,m];     

 

                end 

                if (sum(l==U)==0)  

 

                    U=[U,l];     

 

                end 

            end 

        end 

    end 

     

    b{m}=(-0.5 + 1.*rand(layers(m),1));  

end 

             

if (sum(M==U)==0)  

    U=[U,M];     

end        

  

for  u=U  

    CX_LW{u}=[];  

    for x=X  
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        if 

(size(intersect(u,L_f{x}))>0)&(sum(x==CX_LW{u})==0)&(any(dL{x,

u}>0))  

            CX_LW{u}=[CX_LW{u},x];    

        end 

    end 

end 

  

for x=1:M  

    CU_LW{x}=[];  

    for u=U  

        if any(dL{x,u}>0)    

            CU_LW{x}=[CU_LW{x},u];    

        end 

    end 

end 

  

net.U=U;  

net.X=X;  

net.dL=dL;  

net.dI=dI;  

net.L_b=L_b;  

net.L_f=L_f;   

net.I=I;       

net.CU_LW=CU_LW;   

net.CX_LW=CX_LW;  

  

net.w_0=Wb2w(net,IW,LW,b);   

                     

     

Train RNN using LM algorithm 
 

 

function net=train_LM(P,Y,net,k_max,E_stop) 

  

dampconst   =     10;    

dampfac    =     3;     

  

[data,net] = prepare_data(P,Y,net); 

  

[J,E,e]=RTRL(net,data);   

  

k=1;  

Ek(k)=E;  
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disp(['Iteration: ', num2str(k),'   Error: ', num2str(E),'   

SkalFakt:', num2str(dampfac)]) 

  

while 1 

  

    JJ=J'*J; 

    w=net.w; 

     

    while 1  

         

G=(JJ+dampfac.*eye(size(JJ,1)))\eye(size(JJ+dampfac.*eye(size(

JJ,1)))); 

         

        g=J'*e;   

        if isnan(G(1,1)) 

            w_delta=-1/1e10.*g; 

        else 

            w_delta=-G*g;   

        end 

        net.w=w+w_delta;      

        [E2] = calc_error(net,data);  

        if E2<E      

            dampfac=dampfac/dampconst;     

            break;                           

        elseif E2>=E     

            dampfac=dampfac*dampconst;             

        end           

    end 

     

    [J,E,e,a]=RTRL(net,data);   

    k=k+1;   

    Ek(k)=E;  

    disp(['Iteration: ', num2str(k),'   Error: ', num2str(E),'   

SkalFakt:', num2str(dampfac)]) 

  

    if (k>=k_max) || (E<=E_stop)  

           break 

    end     

     

end 

  

net.ErrorHistory=Ek; 

  


