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Abstract

Unmanned Aerial Vehicles will soon be integrated in the airspace and start serving
us in various capacities such as package delivery, surveillance, search and rescue missions,
inspection of infrastructure, precision agriculture, and cinematography.

In this thesis, motivated by the challenges this new era brings about, we design a layered
architecture called Internet of Drones (IoD). In this architecture, we propose a structure for
the traffic in the airspace as well as the interaction between the components of our system
such as unmanned aerial vehicles and service providers. We envision the minimal features
that need to be implemented in various layers of the architecture, both on the Unmanned
Aerial Vehicle (UAV)’s side and on the service providers’ side. We compare and contrast
various approaches in three existing networks, namely the Internet, the cellular network,
and the air traffic control network and discuss how they relate to IoD.

As a tool to aid in enabling integration of drones in the airspace, we create a traffic flow
model. This model will assign velocities to drones according to the traffic conditions in a
stable way as well as help to study the formation of congestion in the airspace. We take
the novel problem posed by the 3D nature of UAV flights as opposed to the 2D nature of
road vehicles movements and create a fitting traffic flow model. In this model, instead of
structuring our model in terms of roads and lanes as is customary for ground vehicles, we
structure it in terms of channels, density and capacities. The congestion is formulated as
the perceived density given the capacity and the velocity of vehicles will be set accordingly.
This view removes the need for a lane changing model and its complexity which we believe
should be abstracted away even for the ground vehicles as it is not fundamentally related
to the longitudinal movements of vehicles. Our model uses a scalar capacity parameter and
can exhibit both passing and blocking behaviors. Furthermore, our model can be solved
analytically in the blocking regime and piece-wise analytically solved when in the passing
regime.

Finally, it is not possible to integrate UAVs into the airspace without some mechanism
for coordination or in other words scheduling. We define a new scheduling problem in this
regard that we call Vehicle Scheduling Problem (VSP). We prove NP-hardness for all the
commonly used objective functions in the context of Jobshop Scheduling Problem (JSP).
Then for the number of missed deadlines as our objective function, we give a Mixed Integer
Programming (MIP) formulation of VSP. We design a heuristic algorithm and compare
the quality of the schedules created for small instances with the exact solution to the MIP
instance. For larger instances, these comparisons are made with a baseline algorithm.
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Chapter 1

Introduction
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With the on-going miniaturization of sensors and processors and ubiquitous wireless
connectivity, drones are finding many new uses in enhancing our way of life. There are
many applications for drone technology, ranging from the on-demand package delivery, to
traffic and wild life surveillance, inspection of infrastructure, search and rescue, agriculture,
and cinematography. All drone applications share a common need for both navigation and
airspace management. However, this is a field that is still in its infancy and ideas for
integration of UAVs in the airspace are just starting to appear [30, 48, 91, 44, 62, 47, 61].

Among these applications, aerial package delivery will most urgently require a robust
airspace allocation architecture, as it could result in many thousands of daily flights in
the same geographic area, with many potential conflicts between drones navigating along
similar or intersecting routes. The benefit to the global logistics network is clear, as
drones could usher in a new era of on-demand delivery, and has been shown to be cost-
competitive relative to ground-based delivery as well[14], although longer haul transport
clearly benefits from bundling onto larger transport vehicles. Amazon states that about
83% of their packages weigh below 2.5 kg [37], a reasonable maximum payload for today’s
drones. Similarly, the average weight of packages delivered by Federal Express (Fedex)
is less than 5kg [27]. In my opinion, this model can provide on-demand, inexpensive,
and convenient access to the goods and items already in or near an urban area, including
consumer goods, fast-food, medicine, and even on-demand groceries.

Despite a wave of drone package delivery prototype announcements (e.g. Matternet
[75], Amazon’s prime air [4], Google’s project wing [84], and Dalsey, Hillblom and Lynn
(DHL)’s Parcelcopter [16]), the prospect of integrating drones in the airspace is still unclear.

I believe to successfully integrate drones into the airspace, various components are
needed. We need an architecture that coordinates the access to the airspace and provides
different services that are commonly needed by drones’ applications such as navigation
services. In Chapter 2, I design an architecture called IoD to achieve this purpose. This
will define the framework for other problems that need to be solved.

Within IoD, an important problem to solve is that of scheduling drones. In IoD, I
advocate for centralized scheduling of drones and it will be an integral part of any system
whether they are based on IoD or any other architecture that will be used for integrating
drones into the airspace. In Chapter 3, in this regard I formulate an optimization problem
called Vehicle Scheduling Problem (VSP) and provide a heuristic algorithm for solving it.

In Chapter 4, I provide a traffic flow model for drones which is motivated by their
unique characteristics such as the 3D movement compared to the ground vehicles. The
motivation for this problem is two-fold:
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• Firstly, it serves as a stable speed assignment scheme to be used for the movements
of UAVs over the links. Even though, the speed assignment scheme is for UAVs on a
single link as a first step, it is straightforward to generalize it to UAVs on a network
in a future work as follows. For each drone, the single link is replaced by the path
from the source to destination for that drone. Then, to calculate the speed for the
current drone I consider all the drones on that path as well as drones that are about
to merge on that path in my speed assignment scheme.

• Secondly, we need computing tools for analyzing the behaviors of drones in the air and
use the gained insights to improve the airway structures in the IoD architecture and
provide additional capacity or services as the need for them becomes clear. Among
these tools are traffic flow models. In the traffic literature for ground vehicles, traffic
models have a long history and have been successfully used to analyze various traffic
conditions such as formation of congestion and in general the interaction of vehicles
with the road network infrastructure.

Lastly, various algorithms are needed as will be discussed in my IoD architecture to make
the integration project successful.

I dedicate the next 3 subsections (one for each of these 3 contributions outlined above
from Chapter 2-4) to provide more details about each contribution.

1.1 Internet of Drones

The Internet of Drones is an architecture designed for providing coordinated access to
controlled airspace for UAVs, often referred to as drones. In this thesis, in Chapter 2, I lay
the architecture for generic services that can provide navigation and airspace management
for all current and future applications.

To the best of my knowledge, at the time of publication of the research [30] by my
coauthors and I, there were not any rigorous publication concerning the architecture of
a drone-specific air traffic management system as the technology is still in its infancy.
One good starting point is National Aeronautics and Space Administration (NASA)’s Un-
manned Aircraft System Traffic Management (UTM) project [62, 61, 47], which organized
a symposium to begin preparations of a solution for low altitude traffic management to
be proposed to the Federal Aviation Administration (FAA). Related to this effort, both
Amazon [5, 6] and Google [35] have published white papers which explore some of the
strategies for managing the airspace and coordinating aerial vehicles through onboard

3



system requirements such as Automatic Dependent Surveillance-Broadcast (ADS-B) and
Vehicle to Vehicle (V2V) communication. In all the works cited above, various ideas are
presented in an unsystematic way with the aim of using them in the design of an air traffic
management system. The interaction between these ideas are not studied. Furthermore,
there is not enough structure to explore the connection of these ideas to the existing large
scale networks in other areas and to reason about their viability based on the existing
experiences in these networks. However, my contribution is to approach the drone airspace
management problem by providing a universal architecture and a vocabulary of concepts
to describe the IoD. In the future, different IoD systems can be developed based on it with
their set of protocols and implementations of the features required by my IoD architecture.
I suggest a possible operational model based on my architecture and I discuss the desired
goals of the architecture and also the benefits that it provides as well as the subtleties that
have to be addressed for any IoD system.

Shortly after my coauthors and I published our preprint[31], authors in [15] published
a preprint exploring some of the ideas pertaining to a UAV traffic network, called uNet. In
uNet, instead of using a free-flight mode, similar to my architecture as will be explained,
the airspace is divided into predefined routes. The authors argue that this provides for
less reliance on advanced sense and avoid technologies and the ease of assigning conflict-
free routes to the drones using the existing techniques. They consider use of sector-level
uNets (sNets) where the traffic in each sector is under the authority of that particular
uNet. I have a similar construct in my architecture with different zones where each zone is
under authority of one or multiple Zone Service Provider (Zone Service Provider (ZSP)).
However, one difference is that in my architecture, more than one ZSP can participate in
managing the same zone. Furthermore, I take a systematic approach in defining the layers
of the architecture as well as the features that have to be implemented for each layer.

My core contribution in Chapter 2 is formulating a complex and multifaceted problem
and showing how on an abstract level, it is related to the vast amount of existing literature
on the three existing networks, namely air traffic control, cellular network, and the Internet.
I have crafted a blueprint for the implementation of an IoD system based on my IoD
architecture. By comparing the challenges that IoD and each of the three named networks
address in an abstract way, I have established relationships between existing solutions to
the specific problems of IoD, hence creating well formulated open problems for the research
community in a diverse range of fields. For instance, on an abstract level all four networks
have to route physical objects or data. I have uncovered this connection and others such
as congestion control, admission control, and addressing schemes. I have explained the
existing strategies and made it clear what prevents a straight forward adoption of them
for IoD on some of these matters.
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As mentioned before, although there have been numerous announcements in the media
on drone applications such as package delivery prototypes, there are not any publication
on the architecture for these systems. The FAA’s move to address integration of drones in
the national airspace[22], in response to a mandate by the US House of Representatives[66]
reiterates that IoD is a timely architecture that addresses important questions in this arena.
Although there is significant excitement in the industry, to this date, this topic has not
received much attention in the academic community. IoD serves as a first step for bringing
these important issues to the forefront of academic endeavours and provides the academic
community with well-defined problems to tackle. My hope is that an implementation of
IoD in the next three to five years will make on-demand package delivery as well as other
drone applications possible.

1.2 Vehicle Scheduling Problem (VSP)

VSP is a new scheduling problem that I define in this work. Many of the scheduling
problems in the literature are motivated by real life applications. The motivation for
defining this new scheduling problem is the impending integration of the UAVs into the
airspace and a lack of framework for accommodating them in a scalable way. They will
be used in a wide array of applications from search and rescue, to package delivery, traffic
enforcement, infrastructure inspection and cinematography. This means in any city, there
will be a high amount of congestion that needs to be managed to prevent mid-air collisions
as well as to provide an efficient service[30]. While my main motivation comes from the
application of UAVs, my scheduling problem is generic and malleable enough to use in
other areas as well.

Within the context of IoD, the scheduling algorithms I develop are a first step toward
a scheduler inside the zones that will assign the arrival time stamps for intersections in
the air in that zone to each UAV. There is more work needed to have a fully operational
scheduler within IoD and some necessary next steps are discussed in Chapter 6 for bridging
that gap.

On a high level, the problem I try to solve is as follows. We are given a path over a
graph for each vehicle. My goal is to minimize the number of tardy vehicles (or any other
objective function) subject to the deadlines, minimum and maximum allowed speeds on
the links, and the separation time gap needed when entering the nodes (which play the
role of intersections). One may wish to formulate the problem as a joint optimization of
routing and scheduling whereas in this work I am only interested in the scheduling aspect.
This is a valid problem on its own as for various reasons, as the operator, we might not be
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authorized to make routing decisions. For instance, the government might restrict UAV
flights for a company to only certain paths. Focusing on only the scheduling aspect also has
the advantage of allowing for more specialized heuristics given the more structure imposed
on the problem.

I first compare VSP with a large class of scheduling problems known as JSP. The
Job Shop Scheduling problem comes in many types which are motivated by the real life
problems they strive to solve. Therefore, given the vast amount of literature on the subject,
a first point of attack will be to model my problem in terms of a variant of JSP. In the
classic Job Shop Scheduling problem, we are given a set of jobs, each composed of a chain
of operations, and each operation can be performed on a specific machine from the set of
all machines. A machine can only process one operation at a time at a specified processing
time. At first sight, it seems the nodes in my graph can be simulated by the machines and
the separation time is analogous to the processing time. However, upon further inspection,
it is not clear how to model the time it takes for a vehicle to reach from one node to another.
Of course, this does not seem possible in a straightforward way using the classical type.
However, even using variants of JSP with properties including BLOCKING, NO-WAIT,
SETUP TIMES, etc. does not seem to represent my problem in an uncomplicated way. In
JSP with BLOCKING, machines will hold up the operation and remain busy if the next
machine is busy which corresponds to a lack of buffer between machines. In JSP with
NO-WAIT, a task cannot wait between machines. In JSP with SETUP TIMES, there will
be a time delay to set up a new job on a machine. For a reference to these variants of JSP,
look at e.g. [71].

Some researchers have extended JSP and these more or less standardized variants to
include transportation times between the machines. That is for a job to start executing
in the next machine, it will be delayed by the transportation time between the previous
machine and the new one. For instance, see [46] and [79]. However, in these cases, the
transportation time is fixed whereas in VSP the velocity over a link can be chosen from a
range. Furthermore, in some of these works, one or more robots are used for transportation
with empty trips as necessary which again does not have a resemblance to my work [46],[39].
One might propose to extend JSP with transportation robots further to include variable
transportation times. However, even with these changes, VSP remains a different problem.
For example, if the transportation robot reaches the next machine driving at its minimum
speed, to model VSP, the job must be executed on the next machine right away; in concept
similar to (but not quite) a NO-WAIT condition. Furthermore, for each vehicle in our
problem, we will need a transportation robot which will make it an unusual setting for
JSP with transportation robots since the raison d’etre of the problem is to treat these
robots as extra bottlenecks whose usage needs careful planning and scheduling. However,
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in the proposed setting, there will never be a shortage of them.

Scheduling in computer networks is another area with a vast literature. However, the
underlying structure in computer networks is different. Firstly, the velocity of each packet
during transmission on a link is constant and equal whereas vehicles can have different
velocities over the links. Another difference is that packets might drop (i.e. vanish if needs
be), but this is not an option for the vehicles. Furthermore, the bottleneck are the router
buffers (similar to the nodes in my work) and the packets spend most of their time in
the routers whereas in my case vehicles spend only a minimal amount of time at a node
and spend most of their times travelling on the links. These result in drastically different
scheduling algorithms and policies which makes it difficult to use them in VSP [69].

In the context of the air traffic management, the problems are formulated differently
and the algorithms being used are not directly applicable to my problem. To be more
precise, in the context of the air traffic management, the air space is separated into sectors
that are basically a volume of airspace and the goal is to avoid over loading each sector by
the means of either postponing a flight or changing the calculated route for a flight [3, 65].
Therefore the underlying graph structure in my problem is different.

An area of research that has some similarities is the train scheduling literature. There
are similarities and differences with my approach. Most of these models are designed for a
single main line with multiple short segments attached to the main line where trains can
effectively park and let other trains take over before continuing their travel on the main line.
This is the core difference as in my problem, drones are allowed to pass each other on each
link and links have unlimited capacity. Apart from this core structural difference, and as a
consequence, the ways these problems are formulated are different. In train scheduling, the
railway (edges on the railway graph) is segmented into so called blocks. These are treated
as bottlenecks whereas in my case the edges are not the bottlenecks. Only the intersections
(vertices) of the transportation network are the bottlenecks. One similarity to my approach
is the use of an MIP model and a similar idea of treating arrival Time Stamps at a segment
as a modelling variable (see [17] for an example). Furthermore, there will be different set of
constraints involved as well such as assignment of locomotives and crews which do not have
a counterpart for unmanned aerial vehicles[26, 13]. Additionally, the underlying networks
encountered in practice are vastly different. While in the railway network, the edges are
relatively long and there are few intersections, in the airway network for drones, edges are
relatively short, similar to the road network, and there is an abundance of intersections.

My contribution in Chapter 3 can be summarized as follows.

I define a new scheduling problem called Vehicle Scheduling Problem and formulate it
in terms of a mixed integer linear programming. My model has applications among other
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things to movements of autonomous vehicles over a transportation network; especially
autonomous unmanned aerial vehicles. The model is versatile in that I can model vehicles
with various minimum and maximum speeds as well as deadlines. Furthermore, I can
adjust the safety gap as needed per pair of vehicles for each intersection (that is nodes of
the graph).

I then proceed to show the Non-deterministic Polynomial Time (NP)-hardness of VSP
for all commonly used objective functions in the context of job shop scheduling problems.
These include minimizing

• Makespan: The time the last vehicle exits the graph.

• Total (weighted) completion time: Total or (equivalently) the average travel time
with potentially different weights for different vehicles.

• Maximum lateness: The maximum (positive or negative valued) difference between
deadline and trip completion of all vehicles.

• Total tardiness: The total time past the deadlines.

• (Weighted) number of tardy vehicles: The number of vehicles that missed their dead-
lines.

It is possible to provide an MIP of VSP for all these objective functions. To demonstrate
that with one particularly important objective function for delivery problems, I pick the
objective function of number of tardy vehicles and give an MIP formulation of VSP. To
deal with the computational complexity of VSP in this case, I devise a heuristic algorithm
in the case where all trips are requested at the same time. I analyze the complexity of my
algorithm and compare the solutions yielded from my algorithm to the optimal solution
to MIP for a few random instances with a small number of vehicles. I also compare these
results to a baseline algorithm that I designed.

Finally, I conclude with a discussion of the shortcomings of my algorithm such as
sensitivity to the noise as well as ideas for future improvement.

1.3 Traffic flow models for UAVs

To make integration of the UAVs in the airspace a reality in the realm of IoD, various
technical tools are needed, including traffic flow models over a single link. This is my
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topic of interest for Chapter 4. Given the target time stamps dictated by the scheduler
between intersections in a zone for a UAV, we need a model that flies UAVs between these
intersections over a link while respecting the capacity of the link. A microscopic traffic
flow model for a single link accepts various parameters about each UAV as an input (e.g.
maximum free flow speed) and produces the linear trajectories for these movements.

Furthermore, my traffic flow model can be used as a traffic engineering tool as follows.
By revealing the instances of failure in meeting these targets, it gives insight about forma-
tion of congestion and information about subjects such as whether the capacity on various
links should be decreased or increased to improve the success rate. In their traditional
domain of ground vehicles, traffic flow models help with understanding the formation of
traffic jams as a result of various flow conditions, driving behaviors, road structures such
as on-ramps and off-ramps, etc. They will play an analogous role for UAVs.

Developing microscopic traffic flow modeling for UAVs is a new problem with its unique
set of requirements. The closest related research area we can look for solutions is that of
traffic flow models for ground vehicles. As we will see, even the limited existing works
on UAV traffic flow models are adaptations of ground vehicle traffic flow models. A main
characteristic of traffic flow models for ground vehicles is that they structure the road into
one or multiple lanes and allow the movement of vehicles in this 2D space [41]. I call this
general view of the modelling One/Multilane View (OMV). Within OMV, in the simpler
case of one lane, no passing occurs. Most models are first introduced as one lane models
and then with the aid of a separate lane changing model are extended to multi-lane models
[41, 42, 86].

An OMV-based model is limited in its application to UAVs as their movements are in
the 3D space and lanes are not defined. Furthermore, not only the pass planning aspect
is ambiguous in the 3D space, but also a low level detail that adds to the complexity of a
microscopic model and therefore should be aggregated. This is so since the overall goal is
understanding the longitudinal movements of vehicles along the highway. Finally, in OMV
models, a velocity will be assigned to each vehicle based on the congestion in their lane. In
the same vein, it is ambiguous how the velocity must be determined in the 3D space with
no lanes.

The main problem is to formulate a traffic flow model in a 3D space with no lanes
for UAVs. I solve this problem by using a concept of a channel in which vehicles move
and a density/capacity framework where for a vehicle to move forward, the density (or
congestion) in its horizon must be under the set capacity of the channel. That is the
velocity of each vehicle is set based on the perceived congestion. I call this general view
in modelling, a Density/Capacity View (DCV) as an alternative to OMV. A DCV-based

9



model also aggregates the pass planning aspect by allowing a vehicle to pass when the
congestion is sufficiently low. Furthermore, if instead we use an OMV model to represent
the UAV traffic flow and velocity assignment, we effectively limit the movement of UAVs in
a way that is artificial. This is due to the fact that while ground vehicles can overtake each
other only by moving to the adjacent lanes, we do not have the same channel topology for
UAVs in the air. To illustrate the difference, even if we decide to organize the UAV traffic
flow in lanes, one might envision many lanes and for a UAV to pass another one, any of
these lanes can be used. In other words, any of the lanes are considered adjacent whereas
on the road network this is impossible due to the 2D nature of the roads. Therefore,
using an OMV model for UAVs will result in reduced traffic flow when used as a velocity
assignment scheme.

In this work, the main novelty is to eliminate lanes and formulate a DCV-based micro-
scopic traffic flow model for UAVs with application to ground vehicles as well. Furthermore,
my model can exhibit both blocking and passing regimes (analogous to one and multi-lane
models) by setting a scalar capacity parameter κ below or above a threshold, respectively.
My model is among a few models [38, 63, 92] that can be solved analytically in the blocking
regime and piece-wise analytically in the passing regime. In contrast to the existing liter-
ature on multi-anticipation [88, 89, 55, 18, 32], my model sets the velocity for each vehicle
in a novel way by calculating the overall density in front of each vehicle and imposing a
decaying exponential weight on the distances to every vehicle in the front. Finally, I prove
various properties for my proposed model, including the stability analysis for the blocking
case and the characterization of the asymptotic behavior in the passing case.

In the remainder of this section, I study the related work on traffic flow models in
more details. Car following theories model the vehicles’ movements on a single lane as
they follow each other [41]. There are separate lane changing models such as Minimizing
Overall Braking Induced by Lane change Model (MOBIL) [42] or the model in [86] that
are used to extend these models to multiple lanes.

Most (if not all) of the modern microscopic models are modelled as either single lane or
multi-lane. These include most of the well-known traffic flow models (and their extensions)
such as Optimal Velocity Model (OVM) [7], Full Velocity Difference Model (FVDM) [41],
Intelligent Driver Model (IDM) [87], and Newell’s Car-Following Model [64].

I argued above that pass planning should be aggregated. It is worth noting that in
[52], for macroscopic models (with lanes), authors define a rate of lane changing based on
macroscopic quantities such as density. In [53], based on the work of [52], authors combine
this with a microscopic model together with quantizing the prescribed rate to make it
applicable to the microscopic model. However, still the model is essentially OMV-based,
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although to some extent the lane changing modeling complexity is avoided.

The literature in the area of UAV traffic flow models is very sparse. I am aware of the
following two studies.

To integrate UAVs in the airspace, researchers in NASA [40], propose various structures
for the airspace; including a road network like design (below the skyline; that is the tallest
building height in a city) similar to my work in [30]. They set certain behavioral rules (i.e.
a traffic flow model) for UAVs and accordingly extract the fundamental diagram of flow
versus density. However, no stability analysis is done even though it is the standard in
the traffic engineering community. Authors perform only a numerical simulation under an
acceleration from a standstill, followed by cruising and then braking of the leader on a flight
lane. The traffic flow model is an OMV-based multi-lane model similar to that of ground
vehicle models. In the model, authors consider the reaction delay. Their traffic flow model
is based on a constant gain controller that adjusts the velocity to reach a goal velocity for
some required separation. Also, the lane change is done collaboratively utilizing wireless
communication between vehicles.

In [8], with the goal of studying the wind effect on the fundamental diagram, the authors
extend a car following model by Greenshields et al. [36] to include the wind force. This
is a 1-lane model and no stability analysis is performed for the new model beyond what is
already done for the original model by the research community.

In the context of ground vehicle traffic flow models, traffic flow theory finds its root in
the work of Greenshields in 1930s [36]. Traffic flow models can be classified across different
dimensions, such as the aggregation level. Macroscopic models take a high level view of
traffic flow similar to the flow of liquids or gases. Quantities of interest are local density,
flow, mean speed and variance and their evolution through time [59, 77, 88, 43, 33, 51, 57].
Microscopic models (e.g. see below) to which my model belong such as car-following or
cellular automata models describe the interaction of each driver with its environment. In
these models, we are interested in quantities such as individual position and speed and
perhaps acceleration[88].

Within microscopic models, I categorize the models based on their relevance to my
model. In particular, a distinction is made between 1-lane or multi-lane models. Many of
the classic models are 1-lane models. Among the classics are OVM [7], FVDM [41], and
IDM [87] whereas [58] is a more recent example. However, it is possible to extend these to
multi-lane models by use of a lane change model such as MOBIL which dictates the rule
of when it is safe and beneficial for a vehicle to change lanes[42].

Another distinction is whether a vehicle takes the optimal velocity in equilibrium in-
stantly similar to my model or gradually. Models with delays are able to demonstrate
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delay-induced traffic phenomena at the expense of added complexity. No delay classic
models include Reuschel and Pipe’s models [76, 72]. Classic models such as OVM[7],
FVDM[41], and Newell’s Car-Following Model[64] exhibit delay.

Furthermore, one difference is whether the drivers only react to the immediate vehicle
in the front or beyond. In particular, in multi-vehicle anticipation models, a few vehicles
at the front are considered by the driver for better stability (fewer accidents) [88]. In [89],
the authors extend some of the traffic flow models including OVM, FVDM, and IDM by
adding multi-vehicle anticipation features. In [55] and [18], the authors extend OVM and
Gipps[32].

Additionally, a distinguishing factor is whether the velocity is adjusted based on the
time gaps between two vehicles or the space gaps (such as my model). Models such as
FVDM [41] and IDM [87] use time gaps whereas OVM [7] and Newell’s car following
model [64] use space gaps.

I know of very few models that can be solved analytically. A 1-lane model by Hasebe et
al. [38] uses the hyperbolic tangent function to relate the distance between only subsequent
vehicles to their velocity with exact solution for various delays.

In a highly related work [63], Newell designs a 1-lane model that can be solved analyt-
ically. It was later extended by Whitham[92], finding various exact wave solutions, such
as periodic and solitary waves. The model assigns the velocity at time t+ ∆ to a follower
vehicle according to an exponential decay congestion term at time t where ∆ is a delay
constant. The congestion term is based on only the distance between the follower and the
leader. This results in a non-linear differential equation which Newell transforms into a
linear form when ∆ = 0 and the cars are identical. There are similarities and differences
in how this model relates to my work. I used a similar technique to make my differential
equations linear. Also, I use an exponential decay scheme, but my formulation is different
in that I use all the vehicles in the front and not just the first one. My model is DCV-
based and can exhibit passing or blocking behavior according to the set value for capacity
whereas this is a 1-lane model. Furthermore, except of having the same horizon for each
car, I do not require cars to be identical. Certain details of the models are also different.
For example, my model being DCV based, does not have a concept of minimum headway
or vehicle length.

Finally, stability analysis is an important part of the study of any traffic flow model.
References [88] and [93], establish various needed stability criteria for a traffic flow model.
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Chapter 2

Internet of Drones
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2.1 Introduction

The Internet of Drones (IoD) is a layered network control architecture designed mainly for
coordinating the access of unmanned aerial vehicles to controlled airspace, and providing
navigation services between locations referred to as nodes. The IoD provides generic ser-
vices for various drone applications such as package delivery, traffic surveillance, search and
rescue and more. In this chapter, I present a conceptual model of how such an architecture
can be organized and I specify the features that an IoD system based on my architecture
should implement. For doing so, I extract key concepts from three existing large scale net-
works, namely the air traffic control network, the cellular network, and the Internet and
explore their connections to my novel architecture for drone traffic management. As they
were reviewed more in depth in the introduction, the existing efforts on the integration
of drones into the airspace lack a systematic view to the problem. They resemble a list
of ideas with little organization. In contrast, in this chapter, we tackle this problem by
viewing it as a system design problem.

2.2 Relevant Networks

For designing the architecture of the IoD, I study three distinct large scale network struc-
tures; namely Air Traffic Control (ATC), cellular network, and the Internet. Each of these
networks achieves some of the goals or functionalities I desire for the IoD. In each case,
however, their conceptual architecture falls short of providing a thorough solution to the
unique challenges of IoD. Hence, the importance of studying these systems is twofold.
First, they have valuable lessons about how a scalable and fault tolerant network can be
engineered. Second, their differences guide us to IoD’s specific challenges which have not
been tackled before and are in need of innovative solutions. I describe these structures
through a discussion of goals and functionality that are relevant to IoD and the differences
with IoD that need to be addressed in my architecture.

2.2.1 Air Traffic Control Network

ATC has strong relevance to IoD as efficiently utilizing the airspace and maintaining col-
lision free navigation is an integral part of any IoD architecture. The functioning of ATC
follows similar procedures around the globe. I briefly summarize the components of ATC in
the United States. The FAA is in charge of regulations and air safety, and has partitioned
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the United States’ airspace into 24 areas each managed by one of the 24 Air Route Traffic
Control Center (ARTCC) (Fig. 2.1). There are bilateral letters of agreement between
any two adjacent ARTCCs on how aircraft must transition from one ARTCC to another.
Similarly, within each ARTCC, the airspace is partitioned into between 20 to 80 sectors
and each sector is exclusively managed by one controller and the aircraft transitions be-
tween sectors are done according to facility directives. The main driver in designating the
boundaries of ARTCCs as well as the sectors within each ARTCC is to distribute the load
in an equitable way. As it is evident in Fig. 2.1, the high volume of flights in the densely
populated east coast translates into a higher number of ARTCCs than the central United
States.
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Figure 2.1: ARTCCs in the contiguous United States (recreated from FAA[45]). The zones
cover the airspace above and slightly beyond the contiguous United States.

Traditionally, the main role of air traffic controllers was to keep a prescribed separation
between all aircraft. However, within the next generation of ATC (NextGen) – a new
system with the motivation to address the lack of scalability of the current system, pilots
are more autonomous and as a result in charge of their own separation and controllers in-
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tervene only when necessary. This is possible due to pilots being equipped with Automatic
Dependent Surveillance-Broadcast (ADS-B) technology for navigation and localizing other
aircraft in their proximity. ADS-B uses GPS for navigation and broadcasts aircraft posi-
tion periodically. Use of ADS-B Out (broadcaster only with no receiver) within specific
portions of airspace is mandated by 2020 [90]. Difficulty with aircraft localization has been
a great problem in aviation, forcing most of the air traffic through certain preferred airways
(analogous to the highways on the ground). However, use of ADS-B provides more efficient
direct routing within NextGen which allows flying in a straight line from the departure
to destination airport (also known as free flight) by providing better situational awareness
regarding the congestion. Unlike Internet where if some part of a network exceeds its capac-
ity, it conveniently drops new transferring packets, this is not possible in ATC. Therefore,
all ARTCC’s and sectors and airports must remain within their capacity which makes in
advance reservation necessary. Flight plans are submitted to a central entity called Air
Traffic Control System Command Center (ATCSCC) where according to predicted loads,
a delay is assigned to each flight to ensure the network will not be oversubscribed. Pilots
will receive partial or complete clearance. Once airborne, with the unfolding of how the
actual flights progress, additional delays are assigned to the flights. The idea is to apply
these delays as early as possible in the flight or before takeoff, rather than near the end
where the maneuver space and fuel capacity are limited. These delays can be achieved by
ground hold, lowering the cruising speed or by standard holding patterns. These assigned
delays are communicated to the sector controllers so they know how long they must keep
the aircraft in their designated sector. Interested readers are referred to [65] for a full
treatment of air traffic control systems.

There are certain differences between IoD and ATC. As the number of drones scales
up to the thousands sharing the limited airspace at any time, use of a centralized entity
like ATCSCC for load prediction and assignment is difficult. A helpful approach to deal
with this difficulty is to look into the solutions that are more decentralized in their nature.
With that volume of flights, separation must be autonomously done by the drones and it
is not wise to rely on human interventions for safety management, in contrast to NextGen.
The limited airspace of the urban environment can only accommodate drones that have
minimum performance requirement which, depending on the situation, can be stringent
such as a requirement to execute holding patterns in a small area (ideally hover as in the
case of Vertical Take Off and Landing (VTOL) aircraft) and ability to easily land when
necessary. This opens up many possibilities within IoD for handling congestion which is not
available to the ATC system. Free flight, although a step forward for ATC, is only partially
implementable within IoD due to limited urban airspace, obstacles such as buildings and
birds and high level of congestion anticipated. In other words, the airspace must be highly
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regulated to ensure smooth air traffic flow is achieved.

2.2.2 Cellular Network

In the cellular network, the coverage area is partitioned into most commonly hexagonal
cells forming a honeycomb pattern. The communication signals in each cell are sent to
and received from the mobile users by a dedicated base station. Each base station uses a
certain frequency which is different from the near base stations’ frequencies to minimize
the interference. The range of signal for each base station determines the size of each cell.
Each base station can only carry a certain amount of calls over its frequency channel. As
such, the main driver in determining the size of each cell is the expected number of mobile
users in the region (Fig. 2.2). Hence the densely populated downtown areas can have
many smaller cells whereas in the rural areas, fewer cells with higher range are used. Each
of the base stations are connected to a central entity called Mobile Telecommunications
Switching Office (MTSO). The MTSO is in charge of periodic localization of the mobile
units and assigning a base station to them. Furthermore, it assigns channels to each call
and performs the task of handoff or handover which is basically the transfer of responsibility
for a moving mobile unit from one base station to the other base station as it enters a new
partition. I will later use the same word in the context of IoD. See [74], [34], and [83] for
a comprehensive treatment of the cellular network.

Compared to the best effort philosophy of the Internet, in telecommunication, the
philosophy is that a call must not be admitted if there are not enough resources to sustain
it until its completion. Hence, the handoff process poses a unique challenge as it is not
known whether admitting a call in a cell will result in later termination as the mobile unit
enters a new cell due to a lack of available channels in the new cell. Since the base stations
usually belong to one corporation, the MTSO centrally makes decisions whether to allow
access to a user in an effort to minimize the probability of a dropped call. As we will see,
a similar problem exists for drones in IoD. It is much less expensive to hold a drone on the
ground than to allow it to takeoff and later ground it (order it to land) or hold it (order
to hover or execute holding patterns) due to a lack of resources. Hence, IoD has a design
philosophy that is similar to that of cellular telecommunications networks.

There are still various differences between IoD and cellular networks in an abstract
level. A subtle difference is that in the case of cellular network, the MTSO does not know
which cell will be the next cell a mobile unit will enter after admitting the call in the first
place. But in IoD the source and destination is known to a greater extent for a trip by the
drones which will allow a more optimized utilization of the network resources. Another
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Figure 2.2: An illustration of the cellular networks and base stations.

difference is the central role MTSO plays which is in part possible because each company
holds exclusive rights to certain bandwidths in the frequency spectrum. There are at least
two reasons why a central design does not seem a good choice for IoD. Firstly, the tasks
of IoD are computationally intensive. Hence we have to offload it to many autonomous
systems which coordinate with each other. This way we reduce the complexity of the
problem while settling for a less optimized solution. Secondly, as mentioned in the cellular
network, a portion of the frequency spectrum is allocated exclusively to a corporation
which means it has total control over its use. However, in my design for the IoD, each
portion of the airspace must be shared by all the companies serving the same airspace and
hence the amount of resources available to each company is less predictable. This means
flight planning is a more involved task in a trade-off for a more efficient service provider
market. I believe the exclusive right to the portions of the spectrum has made the entry
of new competitors to the cellular market quite difficult, effectively resulting in a market
with only a limited number of providers.
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2.2.3 Internet

In the Internet, the goal is to connect networks of computers together, so all the comput-
ers on the world-wide network can communicate. The Internet has a layered architecture
consisting of five layers as shown in Fig. 2.3. Layering makes it easier to solve the problem
that the Internet addresses by separating concerns. Each of these layers is to be thought
as a service and upper layers use the services of lower layers. For example, the link layer is
concerned solely with the transfer of data on a single communication link or between two
adjacent nodes and the physical layer is concerned with the physical means for transferring
signals through various mediums, such as air (in case of WiFi) or Ethernet cables. The
Internet layer, relying on the connectivity provided by the link layer is concerned mainly
with routing or forwarding data packets between any two nodes potentially on two differ-
ent local networks through the use of standard global addressing as a best effort service
rather than a reliable one. This is achieved by routers which locally make a decision about
forwarding the data packets they receive to one of the immediately connected networks.
Utilizing the universal unreliable connectivity provided by Internet layer, the transport
layer is concerned with tasks such as the reliability of transmission and congestion control.
Finally the application layer, uses this global and (if needs be) reliable connectivity for
various applications like Web, Email, Voice over IP (VoIP), Remote Login, etc. Such a
decentralized and deliberately simple architecture has made the Internet a unique engi-
neering feat in that it scaled by many orders of magnitude. Readers can refer to [70] for a
comprehensive treatment of the subject of the Internet and to [10] and [11] for discussions
of the philosophical guidelines in its design.

There are similarities and differences between the Internet and IoD. Routing is a task
performed by both networks. However, the time scale on which the Internet operates is
much smaller. In the case of IoD, the longer computation time can allow for the calculation
of more optimal routes. Thus, a possibility is to adopt the routing protocols and adjust
them accordingly. Another difference is that in the Internet, packets that overload the
system can be conveniently dropped since it is buffered and resending it is cheap. In
the IoD case, it is not possible to drop drones since they are physical objects and the
only option is to remove them from the airspace by ordering them to land and providing
resources to them to execute a landing order which is an expensive task. Thus some kind of
reservation has to be enforced to ensure the system operates within its capacity to remain
economical and viable. Whereas ATC is not a system that scales well, the Internet is
designed and shown to scale well and with the expected proliferation of drones, IoD has to
be an architecture that can scale. Using the Internet’s design guidelines that has afforded
it such scalability, such as a decentralized design or providing generic services with the
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Figure 2.3: Layers in the architecture of the Internet

least amount of assumption about the users of the services is monumental in IoD.

2.3 Architecture

In this section, I explain my architecture in more detail. The purpose of my architecture is
to provide extensible generic services to a diverse range of applications, namely navigation
service between any two nodes in an efficient and coordinated manner as well as other
common or future services such as location aware communication. A need for navigation
is the common denominator for drone applications. Serving this need will enable these
applications to build on top of the services provided by the architecture. Furthermore,
drones are mobile yet tasks are local. In case a pool of worker drones rather than individual
drones are responsible for performing these tasks, only the local drones (i.e. those near
the task location) should be notified. Hence, providing a mechanism for location aware
communication is another common need of the applications as well as other services for
which the need will become apparent in the future. Two important concepts to distinguish
in my work are that of an IoD architecture and an IoD system: an architecture gives
abstract design and feature requirements that need to be implemented by any system
that is based on that architecture whereas a system gives concrete protocols (interfaces
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and algorithms) that implement the features required by the architecture. Hence, it is
possible to have many IoD systems all based on the same core architecture each with
their own advantages and disadvantages. Obviously in any engineering project, not all
architectures are viable. Accordingly, at least one working IoD system must implement an
IoD architecture to prove it is viable.

2.3.1 Structure

To describe my architecture, first I need to introduce a set of concepts and explain how
they are related to each other in my architecture. Words with special meanings for my
architecture are italicized and they will form a vocabulary for discussing it.

Airspace is the resource that is utilized by the drones. In my architecture, the airspace
is structured similar to the roads network in the cities. Drones are only allowed inside the
following three: airways playing a similar role to the roads, intersections formed by at least
two airways, and nodes which are the points of interest reachable through an alternating
sequence of airways and intersections. Each of these three has concrete geometric shape
and is guaranteed to be collision free from static structures. Movement of drones inside the
airways and intersections is regulated (for example drones must move only in the designated
direction(s) of an airway or intersection) whereas inside the nodes, drones are in the free
flight mode (Fig. 2.4). The airspace is partitioned into zones and hence each zone contains
its airways, intersections, and nodes. Adjacent zones are reachable from each other through
inbound and outbound gates which are the intersections at the border but they are special
in that they belong to both zones. No airway is allowed to cross the border between two
zones, unless it is segmented into two airways with a gate at the border joining the airways.
The graph that is formed by treating both nodes and intersections (which include gates)
as the vertices and airways as the directed edges is called the zone graph (Fig. 2.5). A
path in the zone graph is called a pathway. I use the word element to refer to airways,
intersections, and nodes. To be reachable, every element has a global address similar to
how hosts have a global address on the Internet. If I take the gates as the vertices and
connect co-zone gates with directed edges called transits, I call the resulting graph the
interzone graph. Inside each zone, the cost of traveling between any pair of gates is called
the transit cost where the cost can be time, distance, etc. (Fig 2.6). A path in this graph is
called a route. For the zone graph, I use the word progress within an airway or intersection
to state how far the drone has progressed the element according to some progress metric
(e.g. distance from the beginning of an airway). In the zone or interzone level, the vertices
and edges contain meta data e.g. in the form of components and attributes as in an
eXtensible Markup Language (XML) tag which provide data about the particular vertex
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or edge. Among the meta data is the minimum performance required from any drone
that wishes to travel along the particular element, such as drone range limitations, landing
restrictions, and other physical constraints. Meta data may also contain more detailed
information about a particular element; for example, the meta data at a node representing
a park can have a map of the park which a drone could use upon entry to the node. A
portion of airspace is either public or private. All elements in public and private airspace
are considered public and private respectively. For private elements, the access rules for
drones is specified as meta data, such as which drones are allowed access to them. At the
lowest level of abstraction, we deal with points in the airspace. The points are uniquely
identified using the coordinate system of (latitude, longitude, altitude). For instance, an
airway’s geometry is understood using points. A path through points is called a trajectory.
Beware that I do not use the term trajectory in the same way it is used in robotics research
where it means a time dependent path.

2.3.2 Components

My architecture comprises of two groups of components: Zone Service Providers (ZSP)
and drones. All ZSPs and drones are connected to the cloud, so communication between
any two components is possible.

1) In each zone, any of the ZSPs provides navigation information between any two el-
ements in their designated zone to the requesting drones. The license to operate a
specific zone is granted by higher authorities. They establish and enforce the gov-
erning laws regarding the airways, intersections and public nodes such as maximum
allowed drone capacity or density in them. My architecture is not concerned with
how ZSPs are realized, but it is worth mentioning that implementing a ZSP merely
as software seems conceivable. I call an organization that offers ZSPs an Internet of
Drones Service Provider (IoDSP). Adjacent ZSPs co-manage the gates and coordi-
nate with each other on handoff; that is when a drone crosses the border and the
responsibility has to be transferred to a new ZSP. Furthermore, ZSP can order a
drone to land or hold its position by hovering or executing holding patterns and I
call these actions grounding and holding respectively. Fig. 2.7 presents a schematic
of the Greater Torontoa Area (GTA) in Canada together with the ZSPs deployed in
the zones by four IoDSPs.

2) Drones in IoD are the autonomous aerial vehicles which are capable of collision free
navigation along a planned route between two nodes and have various performance
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Node 

Figure 2.4: An illustration of the airways, intersections, and nodes

characteristics, such as their range, whether they are capable of VTOL and hovering,
etc. They broadcast information about their position and their future path which will
be used by all ZSPs, not only the particular one serving the drone. Regardless of how
ZSPs and drones are implemented, they shall interact with each other through stan-
dard protocols. For instance, this allows that two competing firms have two different
implementations for their ZSPs and still different drones with different implementa-
tions are able to communicate with the ZSPs through the standard protocols. Drones
are required to assume fully autonomous operation beyond line of sight operation,
be equipped with sense and avoid technology and be capable of emergency landing.
Furthermore, specialized airworthiness certification must be considered to establish
reliability levels for drones that are comparable to those of commercial aircraft when
operating over inhabited areas.
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Figure 2.5: The zone graph for zone 1 is shown. Intersections, nodes, and gates are shown
with circles and marked accordingly. They constitute the vertices. Airways are shown with
arrows and they are the edges of the graph. Most likely, there are many gates between any
two zones, but for simplicity I show only two.

2.3.3 Layers

Similar to the Internet, I propose a layered architecture for IoD. Layering provides many
benefits such as the separation of concerns, scalability, maintainability of the code base,
and flexibility of modifying a layer with minimal changes needed to the other layers. The
fundamental goal that the architecture is concerned with is to enable drones to perform
various applications by providing common generic services for all applications. Conse-
quently, the architecture has two goals. Firstly, it is to provide guidance to a drone from a
source node to a target node and coordinate all drones’ access to the airspace as a service
to the drone. Secondly, it is to make available an extensible platform for other common
current or future services that are needed by applications such as delivery of messages that
are intended for a pool of worker drones for an application in a specific zone (an example
message is a list of local task requests).

24



 

 

 

 

 

 

 

  

 
Zone 2 Zone 4 

Zone 3 Zone 1 

Transit  

Outbound  

    gate  

Inbound 

   gate  

Figure 2.6: The interzone graph for the zones 1-4 is shown. Gates are the vertices of the
graph. Transits as edges are representatives of the possibility of a trip from the inbound
gate to the outbound gate for the drones. Transit cost can be any cost function associated
with the trip between two gates, such as average trip time. Between any two zones, there
can be many gates, but for the sake of simplicity I show only two.

The navigation can be reduced to three sub-tasks. Firstly, the drone will have to
traverse a path on the interzone graph from the source zone to the destination zone.
Secondly, to traverse within each zone, the drone must traverse a path on the airways and
intersections of the zone graph. Lastly, a trajectory of points must be chosen which the
drone has to follow to stay inside the boundaries of the airways, intersections, and nodes.
I tackle each of these tasks in a separate layer. The reason this seems to be a good way of
tackling navigation is that having a single giant system with its map and airspace access
mechanism is computationally complex and unsustainable, if not impossible. By dividing
the problem into smaller sub-problems, each of them becomes more tractable. Therefore,
we trade a more optimal solution for a more tractable solution.

As mentioned, there is more needed than just navigation. For example, for a package
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Figure 2.7: A schematic of the Greater Toronto Area and the zones served by the ZSPs
deployed by four different IoDSPs each colored differently. Handoff occurs at the boundaries
of the zones.

delivery task requested by a grocery store inside some zone, only the drones that are near
the store (say in the same zone) should be notified, not all the drones in the realm of IoD.
Hence, ZSPs must meet these zone-specific demands through a service layer that is used
by all applications. The service layer is extensible to meet the needs for future services as
they will become apparent by the common needs of applications.

My architecture consists of five layers as shown in Fig. 2.1. Drones have functions that
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Application

Service

End to End (E2E)

Node to Node (N2N)

Airspace

Table 2.1: Layers in the architecture of IoD

fall in all the layers while ZSPs only have functions that fall under the airspace layer up to
the service layer. In a strictly layered architecture, each layer provides services that are used
by the layer directly above it. As is the case with the Internet (see [70, pp. xvi,xx,xxi,33-
36,87,147]), my architecture is a relaxed layered architecture where upper layers can access
lower layers and not just the layers directly below them. In effect, layering provides an
effective way for logical organization of the architecture and its easy communication to
other engineers and should not be treated as a never to be broken rule. The lower layers
are not aware of the specifications of the higher layers. The interactions between the layers
shall be through standard interfaces. The protocols then are defined between the same
layers of two components.

I describe each layer in terms of the features it is required to implement to comply
with my architecture. This means that any IoD system must implement those features
and define specific protocols and interfaces that make access to those features possible. I
use capital letters as my convention for the name of the features.

Airspace Layer

The airspace layer is required to implement the following features along with the needed
protocols and interfaces for using these features.
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MAP: ZSP is required to hold geometric representation of the elements in the zone graph;
i.e. the airways, intersections, and nodes.

AIRSPACE BROADCAST AND TRACK: Drones have to broadcast periodically their
three dimensional coordinates and their future trajectories. It is conceivable these data
are needed for path planning in this layer and indirectly in other layers for calculating the
progress.

PLAN TRAJECTORY: ZSP has to provide trajectories to be followed by the drone, so it
stays inside the boundaries of airways, intersections, and nodes of the planned pathway.

AIRSPACE PRECISE CONTROL: I envision a possible need for ZSP to request spe-
cific maneuvers from a drone such as holding, moving to a new point, or landing at a
point. This seems to be a reasonable feature to expect from a universal architecture.

COLLISION AVOIDANCE: In case of dynamic objects such as other drones or birds
obstructing the airways or intersections, the drone must avoid colliding with them by over-
ruling the trajectory. The drone must communicate with other drones in proximity through
standard protocols for coordinated maneuvers for avoiding collision.

WEATHER CONDITION: ZSP must provide the drones with the weather conditions such
as wind speed and temperature, so drones can successfully take these data into account at
the time of executing a trajectory.

Node to Node layer

The features required for the node to node layer is as follows.

ZONE GRAPH: ZSP keeps an up to date zone graph that is augmented with the in-
formation broadcast from all the drones such as the current airway, intersection, or node
of the drones and their future paths as well as their progress within an airway or inter-
section. ZSP knows how many drones are inside an element and roughly how they are
spaced out in an airway or intersection. In the zone graph, the meta data for elements are
stored too, such as the minimum performance requirement which is also a function of the
weather report and changes in time. Furthermore, ZSP must provide protocols for obtain-
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ing the information in the zone graph (e.g. for viewing). Also, it must provide protocols
for updating the map, such as identifying certain airways, intersection, or even the com-
plete zone as no fly areas. Also, ZSP must provide protocols for integrating weather reports.

N2N BROADCAST AND TRACK: Drones are required to broadcast their current ele-
ment, their progress within it in case of airways or intersections, and their future path,
and their estimated fuel time left periodically in a way that is accessible to all ZSPs.

PLAN PATHWAY AND CONTINGENCY: A path on the zone graph must be provided by
ZSP to a drone that requests a path between any two elements as source and (intermediate)
destination in the same zone. The path consists of a sequence of airways and intersections
that have to be navigated for the drone to travel from the source to destination. The path
does not have to be complete and a partial path for getting closer to the destination is also
acceptable. A contingency path must also be provided for example to landing sites which
will be used in case the drone cannot continue on its path, such as unexpected fuel shortage
or when grounding by ZSP is necessary. ZSP has to take into account the performance
characteristics of the drones among other things when allocating a pathway to a drone by
verifying the drone meets the minimum performance rating for the paths. Also, various
meta data for each element in the path can be disclosed to the drones such as the weather
forecasts.

REFUEL: A path to a fuel station node (fuel station can be third party depending on
the preference of the drone) should be provided by ZSP to a drone that needs to refuel.
ZSP must direct the drones to fuel station nodes that are compatible with them. For
example, drones can run on electricity, gas or even hydrogen (in case of fuel cell). When a
drone asks for refuelling, ZSP will give a pathway to the proper fuel station accordingly.

N2N PRECISE CONTROL: It must be possible for ZSP to command the drone to hold
or to move to an element, or to land at a node.

EMERGENCY: When a drone faces a software or hardware failure, if it is capable enough,
it has to broadcast an SOS message to ZSP which must make arrangements such as broad-
casting relevant information to all the drones, so other drones change their pathway or
hold in their current element. Furthermore, ZSP must detect when a drone abruptly stops
broadcasting message and issue the emergency procedures.

CONGESTION NOTIFICATION: Upon request, ZSP must provide congestion report be-
tween any two elements inside the zone.
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End to End layer

The end to end layer must implement the following features.

INTERZONE GRAPH: ZSP must store the partial interzone graph at the very least.
That is, it must have information at least about the the gates and transit costs in its zone
(the other end of spectrum is to have complete knowledge about the interzone graph). This
gives a partial or local knowledge of the interzone graph which must be learned through
different means such as interaction with other zones, or input from administrator. The
graph is augmented with the data broadcast from drones, so it is known which drones are
inside the zone and of them which are inside the gates and which are transiting between
gates. A protocol must be implemented for obtaining the data stored in the interzone
graph (e.g. for viewing the graph).

ROUTING: Any two adjacent zones are likely to have several gates connecting them.
The ZSPs have to provide drones with one next intermediate gate. The transit cost can
be used to provide a shorter route.

HANDOFF: Drones must be able to switch to the new ZSP when entering a new ad-
jacent zone. ZSP must be able to handle the incoming and outgoing drones.

EXPLICIT CONGESTION NOTIFICATION: ZSP has to give explicit congestion noti-
fication on any of its gates and transits to at least the ZSPs in the adjacent zones. The
algorithm to determine a gate or a transit is congested is up to the implementation by the
particular ZSP.

Service layer

The service layer is an extensible layer that currently has the following mandatory feature
and can be extended to add more services in the future as needs arise.

ZONE BROADCAST : The main role of the service layer is to provide a common platform
where zone-related messages can be broadcast to the drones. For instance, a task request
that needs to be performed by a drone in a particular zone can be broadcast to all the
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drones in that zone through service layer in ZSP. A particular task can be grocery pick up
in a zone. Through encapsulation, the service layer does not understand the content of the
message. However, applications by relying on the service layer for receiving the message
will make sense of it.

Application layer

There is no feature requirement for the application layer. These are the applications that
will be written in the future to use the architecture. The point of having a general airspace
navigation and control service along with other services as is provided by the four layers
of airspace, N2N, E2E and service is that many application I can conceive of will use these
services as a foundation. So by providing it once, I enable the whole range of applications
simultaneously, rather than providing a dedicated service to each application.

2.3.4 Cross-cutting features

Any feature listed here cannot be addressed by one single layer and needs to be imple-
mented in several layers.

SECURITY: There are a variety of threats that must be safeguarded against, among
them are authentication of drones and ZSPs and other components outside the IoD sys-
tem, jamming of the broadcast messages, clogging the airspace, and hacking of the drones
or ZSPs.

2.4 Operation model

My architecture can lend itself to various operation models. I discuss one seemingly rea-
sonable model here and in remainder of the chapter I assume that we have adopted this
model.

2.4.1 Model

Public is the owner of the most of airspace. There are two groups of drone owners. The first
group are companies operating fleets of drones and offering various services such as logistics
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to users. The second group are individuals with their private drones. Since airspace is a
public space, all drones are required to be registered with the government for a license to
operate. Interestingly, at the time my coauthors and I were writing the paper related to
this chapter (December 16, 2015), FAA published an interim final rule (for a definition, see
[67]) that mandates owners of drones with a weight between 250 grams to 25 kg to register
it with the U.S. Department of Transportation[25].

The map of where zones are located and the public airways, intersections, and nodes
inside each zone is created by the municipalities in consultation with FAA as it is the
ultimate aviation authority. Drone operations must be confined to inside of these elements
and this must be enforced by the police. Furthermore, unauthorized entry of any drone to
the private airways, intersections, and nodes is considered trespassing. Areas that do not
fall into any zones are considered unregulated.

Private airspace can be defined in various ways. For example, it can be the airspace
directly above a private property and below some elevation level. The municipalities set
the boundaries of the private airspaces. As noted before, within private airspace, private
elements are located. The owner of the private airspace, if inclined, has to design his/her
own map of these elements, according to the constraints set by municipalities. The map is
submitted to the municipality for the purpose of integration with the city’s map along with
consents for releasing the map to one, two or even all IoDSPs. Therefore, one possibility
is that a private node be served exclusively by a single IoDSP, a model similar to how a
host is connected to the Internet using only one ISP. At the same time any drone company
can serve the node so that all the drones are potentially available to the customer resulting
in faster service time. Alternatively, all IoDSPs could provide the same services to every
nodes and differentiate themselves through better implementations of protocols.

The non-exclusive license for IoDSPs to provide their services within each zone is
granted by the municipalities. Airways, intersections, and nodes have to be used according
to the policies set by the municipalities such as the maximum drone capacity or density.
IoDSPs are obliged to provide service to all drones without discrimination (For example,
an IoDSP cannot deny service to a drone in retaliation to the drone using a different IoDSP
in the previous zone). These policies must be enforced by the municipalities and the police.
More than one IoDSP can operate within the same zone. There is no lower or upper limit
on the number of zones within which a company can operate. Any IoDSP can serve any
node, as long as the private owner of the airspace has pre-authorized its access to the map
through municipalities as mentioned above. And finally, during handoff (i.e. when the
drone enters a new zone and the responsibility must be transferred to a new ZSP), drones
can choose any ZSP in the new zone.
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2.4.2 Interactions with outside

The interactions with outside are orthogonal to my architecture. To decide what entities
will use the IoD system and what protocols will be used is a design choice to be made at
the time of implementation. However I mention some of the entities that in all likelihood
will interact with the system to give a real world picture of how an IoD system might
operate.

An example IoD system implements protocols between the ZSPs and US National
Weather Services (NWS) to disable and enable parts of the network in an automated
way. The US Federal Aviation Administration (FAA) might declare a no-fly zone which
is communicated through another protocol to the ZSPs. Other important entities are
possibly third party fuel stations. There can be well-defined protocols for negotiating
between drones and third party fuel stations (if the drone opts for using them) with the
possible role of ZSPs for brokering the messages. Also, for direct messages between a fuel
station and drone at the time of docking, Machine to Machine (M2M) protocols can be
used due to the low latency that is required for the task. Since both drones and ZSPs
are connected to the cloud, users, companies owning the drones, administrators, retailers
like grocery stores, etc., can communicate with them through standard protocols like http
(Fig. 2.8).

2.4.3 Strategies for deployment

A particularly attractive deployment strategy is the use of already deployed cellular net-
works. As explained earlier, in the cellular network, each provider partitions its coverage
area into cells and places base stations in each of the zones. Since these base stations
are already deployed, the physical space is available and they are capable of running the
ZSP software. Therefore, they seem well positioned to implement ZSPs and provide wide
network coverage for IoD. This strategy becomes even more interesting considering that
drones have to use mobile communication which is basically what the base stations provide.
This means that ZSPs will provide not only navigation, but the main communication chan-
nel for the drones. Since base stations are connected to the cloud, ZSPs can communicate
with each other or with other outside entities over the cloud.
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2.5 Discussion and Future Work

2.5.1 Goals, principles, and benefits of my design

In my design of the architecture, I have encouraged principles of openness, modularity,
and interoperability. To achieve this, I require drones to broadcast their information using
standard open protocols to communicate with ZSPs or other drones. Similarly I require
interaction between all ZSPs through standard protocols. I believe it is not common or
reasonable to expect competing ZSPs share traffic information and other statistics. Hence,
by requiring drones to broadcast their current position and future path, I give all ZSPs in
the same zone a chance to manage the traffic and have the big picture of the zone.

One immediate benefit of openness, modularity, and interoperability is the lower overall
cost for creating the navigation network. Similarly, there will be lower initial investment
and lower complexity for the new IoDSPs or drone companies to enter the market. This
leads to the organic growth of the network by lowering the barriers to entry and both
new and existing firms will benefit from the network effect. A key consequence of these
principles is that through innovation, companies will compete in their implementations
while they coordinate on the standards. In my architecture, I have tried to require a
minimal set of functionalities from IoD systems. My intention is that this leaves the door
open for introduction of innovative protocols and algorithms rather than the ones forced
by us.

One important aspect in my design is scalability and survivability. From the experience
of the Internet, survivability is a prerequisite for scalability. In an expansive IoD system,
failures will be commonplace and the IoD system must gracefully survive them. The
IoD architecture comprises of many autonomous subsystems that interact with each other
only locally. This makes it possible to contain failures as opposed to have them ripple
through the entire system and make it unstable. For example, the design of my architecture
promotes that only a small portion of a drone’s trip be reserved at any time by a local
ZSP, since no ZSP has the authority to reserve a path beyond its zone. On the contrary, if
the entire trip was reserved and for some reason the drone could not meet its reservation,
this would affect the whole system. Furthermore, by relying on autonomous subsystems,
the complexity becomes manageable as the size of computational problems that need to
be solved will be substantially smaller.

An important goal in my design is to provide generic services which can serve many
diverse applications. Furthermore, applications that are not even conceived today are more
likely to build on top of generic services than highly specialized ones.
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The concept of collision free network of airways and intersections let us circumvent
the high cost of 3D mapping of the terrain and the buildings in a city. Basically, instead
of guaranteeing a general statement that every possible trajectory in an area is free of
obstacles (or even worse not promise that but require drones to avoid it as the only safety
measure), we guarantee one example trajectory in the area that is free of obstacles (similar
to the road networks). This is a substantially easier task, as mathematicians can attest
to when proving a theorem versus providing an example for which the theorem holds.
In addition, this enables a higher control over where drones can and cannot be (such as
near airports) which is important for safety and security, and noise control (such as near
hospitals or residential units). Law enforcement will be possible when drones only operate
through predicted routes, as a course violation (such as trespassing in the private airspace)
will be easily detected. Furthermore, this results in a more predictable traffic model which
provides more organized data for planning, traffic management, and scheduling. It is
worth mentioning that in ATC, a standard model for avoiding airborne collisions is the
vertical separation of traffic according to direction of flights. In IoD, the model is that
each airway and intersection has a specific direction of flight which is meant to achieve the
same purpose.

Due to the extreme scarcity of urban airspace and safety critical nature of drone oper-
ations, I believe it is necessary to highly regulate its use through a model such as collision
free network of airways and intersections as alluded to above. As such, notions like free
flight as described in the context of NextGen are unlikely to be practical at least in the
urban environment. At the same time I do not take the freedom away completely as free
flight is possible inside the nodes by default with the extra flexibility for having collision
free maps and other information if needed as the meta-data for the nodes. Nodes can
have any geometries which means they have no restriction on the size. Once the drone
enters a node, the ZSP no longer provides a specific trajectory as in the case of airways
or intersections. ZSP will only provide the meta data about that particular node to the
drone. Hence a farming drone is in the free flight mode inside a node representing a farm.
If on the other hand, ZSP’s help with navigation is needed for a node representing a large
national park, the node must be divided into multiple nodes each connected through a
network of airways and intersections, but again inside the newly formed nodes, free flight
is the mode of operation.

Each drone in an IoD system will be capable of performing one or more applications.
In the Internet a user demanding a service accesses a specific host on the network and
interacts with a specific application through unique IP and port numbers. However, in
the IoD the dominant model is not to make requests to a specific drone directly, rather a
pool of drones be ready to accept these tasks broadcast by the ZSP’s service layer. This
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is analogous to the position of the information-centric networking line of research for the
design of the future Internet (see [2] and [94] for recent surveys). The position is that users
are mainly interested in the information rather than the host to host connectivity. In this
work, I advocate that users are mainly interested in a service such as package delivery or
power lines inspection, not the particular drone that performs it or the particular path
within which the drone travels to perform the task.

2.5.2 Routing

A fundamental question about how we implement routing is whether we reserve the entire
path before the start of the trip such as e.g. in Asynchronous Transfer Mode (ATM)
network technologies (see [68] for instance) or metaphorically we start moving while asking
(from the ZSPs) for direction. The latter is the approach the Internet takes and I believe
this is the superior approach for IoD systems. The main reason is that since drones take
a long time to complete their trips, reserving the entire path for them is a wasteful use of
the airspace as precise prediction of the future position of a drone in a complex system like
IoD is not possible. As a result, in the IoD systems that I advocate, there is no guarantee a
drone will complete its trip without being occasionally grounded by ZSPs a few times along
its path, due to a lack of enough airspace. However, grounding a drone is expensive in
terms of energy consumption, travel delay and waste of airspace. The situation is somewhat
similar to the cellular network. In both, it takes a long time for a cellphone user or a drone
to enter a new cell or zone, respectively. The idea in the cellular network is that it is best
to not admit a call, if it has to be dropped later. A similar policy in an IoD system is
useful as it is more expensive to ground a drone than to not let it get airborne in the first
place. This subject is studied extensively in the area of Call Admission Control (CAC)
(See [29] for a survey). However, there are three major differences:

1) In the cellular network, the scheme needed for reserving resources is simpler. Basically
one has to ensure that future cells have enough capacity to admit the mobile unit.
However, in the case of reserving the zone-graph’s elements for the drone, there is
more than one way a drone can travel between any two nodes and hence there is
more complexity in deciding whether enough resources are set aside for a particular
drone or not.

2) On the other hand, in the IoD setting, if nothing unexpected happens, the path a
drone will take can be partially or completely known (depending on the particular
implementation of IoD system) whereas in the cellular network it is often not known
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to which adjacent cell the mobile unit will enter next. Hence, in the IoD, there is
less uncertainty over the path.

3) The CAC decisions are made centrally, partially motivated by the fact that in the
cellular network, the adjacent cells mostly belong to the same company. However,
Distributed Call Admission Control (DCAC) is a possibility, as shown by the seminal
papers [56] and [60], where reservations must be made not only in the current cell of a
mobile user, but also to a lesser extent in the neighbouring cells and the cells beyond
to accommodate the mobile unit as it enters the new cells. If such a reservation
is deemed possible after the base stations communicated with each other, then the
call will be admitted. Referred to as the shadow clusters concept, it is similar to
a quantum wave function which maps the probability of finding an electron in any
region in the space where electron is analogous to the mobile unit.

It is conceivable that a similar idea for IoD inspired by DCAC can provide a routing
algorithm that grounds very few drones while utilizing the airspace in an efficient way,
by not reserving the entire path from the source node to the destination node for them.
Otherwise, prediction errors will ripple through the whole system and make it unstable [10].
As noted above, the routing task will be harder in IoD because of the complex structure of
the resources, but the lower uncertainty over the drone’s path can be useful. Developing
such a routing algorithm is an important contribution to IoD.

2.5.3 Congestion control

With the possibility of thousands of drones at flight at any point in time in an urban
environment, a main purpose of the IoD architecture is to coordinate access to the airspace.
It is instructive to first discuss how the congestion control in the Internet works. The goal in
the Internet is to ensure efficient and fair use of bandwidth. There is no central mechanism
that in the short run allocates bandwidth to each of the hosts, i.e. the end nodes which are
the users of the network. Rather, hosts allocate a fair and efficient amount of bandwidth to
themselves in a participatory fashion. They do this by probing the network and refraining
to add more loads to it if they realize the network is in a congested state. This is done
by analyzing the amount of time it takes for the delivery Acknowledgement (ACK) to be
received by the sender (if ever in case of a dropped packet). To probe the network in a
decentralized way, the network is driven toward congestion which creates delayed or lost
packets which results in delayed or unsent ACKs respectively. From this, the sender realizes
it must slow down in sending more packet until the network becomes less congested. This
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is an implicit way of inferring congestion. Today, some of the routers in the middle of the
Internet are capable of sending Explicit Congestion Notification (ECN) [73] by looking at
the number of packets that they have in the queue that are not yet sent. This is a helpful
feature, because running a network in a congested mode is not efficient; something that we
have to do when the network does not provide feedback, just to be able to implicitly infer
congestion.

The congestion status must be known in IoD within each of ZSPs for two reasons. First,
running a congested airspace translates into grounding or holding which are both expensive
operations. Second, in the Internet, the ACKs happen on the orders of few hundreds of
milliseconds. This fast feedback loop allows implicit congestion probing as a viable option.
In IoD, probing directly with drones (i.e. by seeing if drones get stuck in the congestion
or not) is orders of magnitude slower. Because of especially high cost of congestion for the
IoD, I believe I have to require a feature in the IoD architecture for explicit congestion
notifications to at least the neighbouring zones in the E2E level. This is not needed in
the N2N level, as any ZSP has complete knowledge of the congestion on all the airways,
intersections, and nodes due to the broadcasts from the drones. A major difference with
ATC is that there is no central controller for the whole network (ATCSCC) that regulates
the load on the whole network while each ARTCC only ensures separation, which would
have a negative effect on scalability.

In the design of a congestion control algorithm, it is an open research question how
to achieve a fair and efficient allocation of the airspace while not overloading any of the
elements. A mechanism that exists in the Internet literature to avoid overloading a link is
a token bucket scheme (for example see [80]) in which tokens simply represent resources
and each party is given a token, only if there is a token left. However, it is not clear how
such a mechanism would work for an IoD system as there are more than one ZSPs which
can grant access to the same element, and being competitors, it is reasonable to assume
they will not share information.

An IoD system must achieve fairness in allocation of the airspace. However, fairness is a
subjective term and can lead to different designs depending on how the fairness is defined.
Should we give more priority to the faster drones at the expense of slower ones, since they
use the airspace for a shorter period or should we allocate the airspace to each drone in
an equitable way? In IoD, similar to the Internet, related to the question of fairness is a
design that takes into account the Quality of Service (QoS), i.e. the network performance
according to various metrics. The interesting fact is that not all the applications have the
same needs. For example, a drone that surveys the traffic has to stay aloft for extended
time where short interruptions are not necessarily important whereas a drone that delivers
a package needs the airspace for a short period of time and has to minimize its delivery
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time to meet customers’ demands.

2.5.4 Communication signalling

Since drones are wireless and ZSPs have to broadcast, there will be a high amount of
communication signalling which can flood the allocated frequency channels. IoD protocols
must be designed with respect to the channel capacities as well as the number of drones and
ZSP that will use the channel. If a high signalling overhead is inevitable for the functioning
of IoD, then communication channels must also be treated as a resource similar to how
airways and intersection are treated. Therefore, for the purpose of reserving the airspace for
the drone, communication channels should be reserved as well and if any of these resources
are not available a reservation should be deemed not possible.

2.5.5 Addressing schemes

Similar to the zone graph elements, drones are in need of global addressing. Whereas
airways, intersections, and nodes as well as ZSPs are stationary, drones are mobile. Hier-
archical addressing schemes similar to telephone numbers or IP addresses can prove useful
for the zone graph elements or ZSPs. However, a particular shortcoming of the current
Internet is that when IP was designed, it was assumed that it will work with stationary
units. However, with the proliferation of mobile devices, that assumption is no longer valid.
It seemed reasonable at the time the Internet was designed to have IP address serve two
purposes; i.e. identification and localization. Identification is achieved by requiring every
host to have a unique IP address. Localization is achieved by separating the IP addresses
into a network portion and a host portion where each network can be part of a larger
network; an idea referred to as subnetting. This design choice results in poor performance
when the hosts are mobile[70]. Therefore, any addressing scheme for drones should perhaps
separate these two functions in some form as is the case with most solutions to mobility
on the Internet including Mobile IP and IPv6. A particularly interesting choice would be
geographical addressing[81] where each drone is assigned an evolving address according to
its current geographical position. For instance, this can provide a finer control over which
drones to dispatch for a local task in a zone.
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2.5.6 Drones and minimum performance

In an IoD system, an important ability that might be mandated by authorities in high
traffic areas such as lower altitude in the urban airspace is the VTOL ability which enables
easier grounding or holding by hovering. This can mean that most of the urban airways,
intersections, and nodes in the lower altitude may require VTOL whereas in higher urban
altitude it may not be required. This is because VTOL drones are highly versatile and
can perform tasks in an environment with very little airspace available to them. Most
commercial aircraft are each equipped with on-board systems like Traffic Alert and Collision
Avoidance System (TCAS) which are designed to decrease the chance of mid-air collision
(see [19] for instance). It is a complex system and just to avoid collision between two
aircraft, thousands of lines of code are needed. In my case of lower altitude urban airspace,
it is reasonable to assume that in often congested area with thousands of drones in flight,
to avoid mid-air-collision, aircraft must be able to hover and move vertically to regulate
the traffic, similar to the road network and cars which can stop. Drones are ultimately
responsible for avoiding collisions mid-air and a TCAS like system for drones without
hovering abilities is a major challenge for more than two drones.

2.5.7 Security

Security is not a topic that can be addressed by any single layer. A major challenge in the
Internet today is that security is mostly provided by the application layer and there is a
lack of in-place security mechanism in the lower layers. The Internet has been exploited for
its security vulnerabilities which have led some network researchers to consider the security
as one of the main goals in the next architectures for the Internet [28, 78, 9]. Arguably,
damages from malicious users are more severe in the case of IoD compared to the Internet
and security must be one of the core issues that any architecture for IoD should address.
Given the experience from the Internet, I required in my architecture that security be
implemented across all the layers, as it is a cross-cutting concern.

2.5.8 Validation and technical implementation

In this chapter, I present a conceptual architecture and an important technical contribution
is to instantiate at least one system based on it to validate and demonstrate that my archi-
tecture can work in practice. This entails designing protocol suites and interfaces between
the layers and implementing the layers with the required features. Any inconsistency or
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inefficiency revealed at the time of implementation can be used for later iterations of the
architecture. To implement an IoD system there are many non-programming questions
that have to be answered, such as the questions discussed about routing and congestion
control. This will be the main area of my focus in the future works. Building IoD is a
great undertaking which needs the participation of the research community at large. By
presenting the architecture in the current stage, useful protocols can be discussed and de-
signed by the research community which can be validated once a simulation as well as a
physical platform for IoD is ready. Furthermore, the design of the IoD architecture itself
can benefit from the work of the researchers working on diverse range of networks from air
traffic control to cellular to the Internet who will apply their knowledge to IoD.

We made some strides toward the validation of IoD by implementing a simulator for
various components in IoD. This included simulating the drones, ZSPs, the zone and in-
terzone graphs, and some preliminary simulation of the airspace, N2N, and E2E layer
functions. We used a micro-services architecture together with a message broker agent
for these components as well as a database (stored in memory for fast access) to ease the
transition into a cloud based and decentralized design.

2.5.9 Economics of IoD

From an economic point of view, the operation model and the protocols of the system must
provide enough incentives to the stakeholders to pursue the desired actions. It is interesting
to study related questions through the lens of game theory and mechanism design.

2.5.10 Legislation

Another major topic is to provide a legal framework for the IoD. One of the main barriers
to utilizing the drones today is the lack of legislation that properly address the technology.
This is manifested in the recent Public Law 112-95 titled “FAA modernization and reform
act of 2012”[66] enacted by US House of Representatives. In the Public Law 112-95, the
secretary of Transportation is mandated among other things firstly to develop a compre-
hensive plan for expediting the integration of civil Unmanned Aircraft System (UAS) into
the national airspace system, and secondly create a 5 year roadmap for their introduction.
Thirdly, specifically for small unmanned aircraft system, a rulemaking was required that
would expedite the start of their civilian operation in national airspace system.

In response, in 2013, FAA along with other governmental agencies jointly published
a comprehensive plan for integration of UAS into national airspace system[22]. In this
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document, UAS national goals and objectives are described. One of the goals is to make
civil visual-line-of-sight operation of small UAS a routine by 2015. Initially this will be
outside of class B and C airspace and above urban areas. In accordance with this goal,
in February 2015, FAA published a notice of proposed rulemaking [24] that addresses
introduction of small UAS (i.e. weighing less than 25kg) into national airspace system.
Various safety measures have been proposed such as visual-line-of-sight operations. Flights
are restricted to day time at a maximum altitude of 152.4m above the ground. Small UAS
cannot operate in class A airspace. However, operation within class B, C, D, and E airspace
is possible with permission from ATC. Furthermore, operation in class G airspace does not
require a permission from ATC. As mentioned before, for UAS that weighs more than 250
grams, the owner has to register it with FAA [25] for outdoor operation. Another goal
set forth in the comprehensive plan is to make routine operation of UAS possible in the
national airspace by 2015 for the public organizations and by 2020 for the civilians.

To comply with the public law [66], FAA has published a roadmap for integration
of UAS in the national airspace system[21]. Currently for UAS to access the airspace,
Certificate of Waiver or Authorization (COA) are needed for public operation and certain
airworthiness certificates for experimental civil application as mandated in [66]. Initially
FAA plans to accommodate UAS in the near-term (next 5 years), then it transitions
into the period of integration (5-10 years) in the mid-term and in the long- term (more
than 10 years) it is expected that requirements from UAS will evolve based on the safety
requirements from all type of aircraft and is consistent with the timeline for NextGen
vision. FAA asserts that for UAS to be allowed access to the national airspace, they must
be able to apply and be accepted for standard airworthiness certificate.

A challenging goal for the FAA is to integrate UAS without segregating various types
of aircraft. Two important required technologies according to the FAA’s roadmap is Sense
And Avoid (SAA) and Control and Communication (C2). The SAA is expected to ensure
self-separation and at a later stage collision avoidance which needs to be interoperable
with other collision avoidance systems as well as compatible with ATC separation services.
According to the FAA, third party-communication service providers are used frequently
today and it is a routine task for FAA to effectively monitor their performance. The
choice of the right type of third party C2 providers is dependent on the choice of UAS
architecture. At International Telecommunication Union’s World Radiocommunication
Conference in 2012, an agreement was reached to dedicate a part of frequency spectrum
for exclusive use by UAS. This paves the way for the operation of UAS across international
borders and protects UAS from interference from other devices. [21]

According to the roadmap[21], the FAA asserts that unless new classes of airspace
are specifically created for UAS, for them to be accepted for integration in the national
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airspace system, they must satisfy the following requirements from FAA (with notable
exception of line-of-sight small UAS). In addition to airworthiness certificates alluded to
above, any UAS must register and execute an Instrument Flight Rules (IFR) flight plan
(see [65] for a definition) and be equipped with ADS-B (Out); i.e. the Automatic Depen-
dent Surveillance (ADS) broadcasting component. Furthermore, they have to meet the
minimum performance and equipage requirement of the area where the operation takes
place. Additionally, each UAS must have a flight crew including a pilot-in-command who
is only in charge of only one UAV and fully autonomous operations will not be allowed.
Also, minimum required separation must be met in the controlled airspace and ATC will
be in charge for separation services for the applicable airspace classes for manned and
unmanned aircraft.

In my opinion, the ban on the fully autonomous operation set forth by the FAA in their
roadmap takes away the major benefits of any drone architecture, including IoD. Fortu-
nately, the FAA does not rule out the introduction of new classes specifically designated
for UAS in their roadmap as mentioned above. Certainly, IoD in its current form is a theo-
retical framework that is only viable if these new classes are introduced. According to [21],
the FAA provides a transparent process for setting regulations which encourages comments
from the public as well as other feedback mechanisms for avoiding onerous regulations. In
the process of crafting new legislation, the FAA has been soliciting feedback from the UAS
community with one example being creation of the Advisory and Rulemaking Committee
(ARC) for UAS comprising of members from industry and academia[20]. I am optimistic
that the stakeholders will influence the process in a way that new airspace classes are cre-
ated for UAS rather than what I believe is fitting a fundamentally new technology into a
frame that was designed for a different technology.

—————————————————
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Figure 2.8: Drones and ZSPs are components inside the boundaries of the IoD system as
depicted by the box. Outside components such as fuel stations, private or corporate drone
owners, governmental organizations such as weather services or FAA interact with drones
or ZSPs through standard protocols. Solid lines show some of the possible interactions.
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Chapter 3

Vehicle Scheduling Problem
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3.1 Introduction

I define a new problem called Vehicle Scheduling Problem (VSP). The goal is to minimize
some objective function such as the number of tardy (late) vehicles over a transportation
network subject to maintaining safety distances, meeting hard deadlines, and maintaining
speeds on each link between the allowed minimums and maximums. I prove VSP is an
NP-hard problem for commonly used objective functions that are used in the context of
the job shop scheduling. With the number of tardy vehicles as the objective function,
I formulate VSP in terms of a Mixed Integer Linear Programming (MIP) and design a
heuristic algorithm. I analyze the complexity of my algorithm and compare the quality
of the solutions to the optimal solution for the MIP formulation in the small cases. My
main motivation for defining VSP is to provide a scheduling framework for the upcoming
integration of Unmanned Aerial Vehicles (UAVs) into the airspace. As reviewed in depth
in the introduction, our new scheduling problem poses a new and unique problem. In
particular, the literature on JSP and its extensions including JSP with transportation
robots, as well as the train scheduling do not seem to provide a framework for formulating
this problem.

3.2 Problem definition

I first give an informal definition of VSP and then proceed to define it in a more rigorous
way.

In VSP, we are given a number of vehicles each of which requests to make a trip at some
point in time. Trips take place over a transportation network which is abstracted away as
a graph. Each trip consists of a sequence of edges on this graph. We can have unlimited
vehicles on each edge travelling at the same time, but when any two vehicles reach a vertex
(i.e. intersection), they must be separated by some separation time constant. Therefore,
to minimize some objective function (e.g. number of tardy vehicles) we have to schedule
vehicles in a way that minimizes the congestion or prioritizes certain vehicles. The velocity
of each vehicle on each link must be between a minimum and a maximum velocity. Given
the length of the link, one can instead find the minimum and maximum allowed time on
the link. In the formal definition, instead of formulating in terms of velocities, I use these
time constants. Each vehicle has to meet its trip completion hard deadline. The goal is to
assign an arrival time for each vehicle at each vertex on their way (i.e. the schedule) such
that the objective function is minimized.

Now, I define VSP in a more rigorous way.
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Definition 3.2.1 (Vehicle Scheduling Problem (VSP)). An instance of VSP is a 9-tuple
(G,W, τmin, τmax, ρ, d, d

′, S, f) as follows. Graph G = (V,E) is a directed connected graph
that represents the traffic network. The set W = {W1,W2, · · · ,Wn} is a set of directed
walks on G and Wj =

(
W 1
j ,W

2
j , · · · ,W

qj
j

)
∈ V qj is the sequence of vertices vehicle j will

visit. Time constants τmin and τmax are the set of minimum and maximum allowed times
for a vehicle to reach its next vertex in the walk. Accordingly, for each vehicle j, τmin,j

takes the form τmin,j =
(
τ 1min,j, τ

2
min,j, · · · , τ

qj−1
min,j

)
. In a similar way, τmax,j is defined. The

n-tuple ρ ∈ Rn denotes the trip request times and hard deadline d′ ∈ Rn is the maximum
allowed delays for completing the walks. Soft deadline d ∈ Rn is the maximum allowed
delays after which depending on the objective function, a penalty will incur. The set S is
a set of elements si1,i2j1,j2

∈ R that specify the time separation between distinct vehicles j1
and j2 when performing the i1’th and i2’th step of their walks, respectively. Each element
si1,i2j1,j2

is defined only if vertices W i1
j1

and W i2
j2

are identical.

Subject to the following constraints, the goal is to find a set t = {t1, t2, · · · , tn} where
for each vehicle j, tj =

(
t1j , t

2
j , · · · , t

qj
j

)
assigns to each vertex W i

j an arrival time stamp
while the objective function f : Rq → R is minimized. Note that I define q =

∑
1≤j≤n qj

and f takes the arrival time stamps tij as the input.
Constraints:
Trip request time, trip continuity, and hard deadline:

ρj ≤ t1j ≤ t2j ≤ · · · ≤ t
qj
j ≤ d′j (3.1)

Minimum and maximum allowable link travel time:

τ imin,j ≤ ti+1
j − tij ≤ τ imax,j (3.2)

Separation enforcement:
|ti1j1 − t

i2
j2
| ≥ si1,i2j1,j2

(3.3)

In the definition above, only the vertices are included in the description of the walk and
not the edges. In my definition, since edges have unlimited capacity, we do not concern
ourselves with the particular edge that is chosen. However, in real life application, the
length of a link and the minimum and maximum velocity among other factors might limit
us to a particular edge.

3.3 NP-hardness proof

In the general case, VSP is NP-hard. I prove this for various objective functions. First
I define the GENERALIZED K-MACHINE UNIT JOB SHOP PROBLEM. For the cases
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K = 3 and K = 2, these problems are already defined in [54] and [49] (with no release dates,
deadlines, or no-wait condition), respectively. Since my goal is to reduce this problem to
VSP, I do not use the more or less standard notation for JSP since it makes the description
of the reduction difficult.

Definition 3.3.1 (GENERALIZED K-MACHINE UNIT JOB SHOP PROBLEM: op-
timization version). An instance of GENERALIZED K-MACHINE UNIT JOB SHOP
PROBLEM is a 7-tuple (M,J, r, δ, δ′, θ, f) where M is a set of machines

M = {M1,M2, · · · ,MK},

and J is a set of jobs {J1, J2, . . . , Jn}. Each job Jj =
(
M1

j ,M
2
j , · · · ,M

qj
j

)
∈ M qj denotes

a sequence of machines that will each process job Jj in order, for a duration of one time
unit. The n-tuple r = (r1, r2, · · · , rn) denotes the release dates and δ = (δ1, δ2, · · · , δn)
denotes the soft deadlines corresponding to each job, respectively. Hard deadlines δ′ are
defined similarly. Also, θ is a Boolean parameter that is true if jobs cannot wait between
machines, otherwise false.

Subject to the following constraints, the goal is to find a set x = {x1, x2, · · · , xn} where
for each job j, xj =

(
x1j , x

2
j , · · · , x

qj
j

)
assigns to each operation J ij a starting time on their

associated machine while the objective function f : Rq → R is minimized. Note that I
define q =

∑
1≤j≤n qj and f takes the arrival time stamps xij as the input.

Constraints:

• Operations done in order, i.e. xij + 1 ≤ xi+1
j .

• Any machine can process only one operation at a time, i.e. for any distinct j1, j2, if
there exists i1, i2 such that J i1j1 = J i2j2 , then

∣∣xi1j1 − xi2j2∣∣ ≥ 1.

• No staying on the same machine, i.e. J ij 6= J i+1
j .

• No job scheduled before its release date, i.e. x1j ≥ rj.

• Meeting hard deadlines, i.e. x
qj
j ≤ δ′j.

• No-wait condition, i.e. if θ is true, for any j and any i with 1 ≤ i ≤ qj − 1, we have
xij + 1 = xi+1

j .

I first show there is an efficient reduction from GENERALIZED K-MACHINE UNIT
JOB SHOP PROBLEM with an arbitrary objective function to VSP.
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Theorem 1. GENERALIZED K-MACHINE UNIT JOB SHOP PROBLEM has a poly-
nomial time reduction to VSP.

Proof. The input to GENERALIZED K-MACHINE UNIT JOB SHOP is a 7-tuple

(M,J, r, δ, δ′, θ, f).

The input to VSP is a 9-tuple

(G,W, τmin, τmax, ρ, d, d
′, S, f).

I generate an input to the latter, for every input to the former. I set G with vertices
V1, V2, · · · , VK to be a complete digraph with K vertices. I establish a one-to-one corre-
spondence between the jobs in J and walks in W as follows. Assuming |J | = n and job
Jj has a length of qj; for 1 ≤ j ≤ n and the job Jj = (M1

j ,M
2
j , · · · ,M

qj
j ), I create a

corresponding walk Wj = (W 1
j ,W

2
j , · · · ,W

qj
j ) where W i

j = Vj′ if and only if M i
j = Mj′ .

The sequences ρ, d, and d′ will have a length of n and for any j, both τmin,j and τmax,j
have length qj − 1. Next, I set τmin,j = (1, 1, · · · , 1). If θ is false (i.e. jobs can wait), I set
τmax,j = (+∞,+∞, · · · ,+∞), otherwise if θ is true (no-wait), τmax = (1, 1, · · · , 1). I set
ρ = r. For the deadlines, I set d = δ and similarly d′ = δ′. I set all the separation gaps in
S to 1. Lastly, I will use the same objective function f in the reduction with arguments
changing from xij to tij. This completes the conversion of the inputs. Now, to translate the
solution for VSP to GENERALIZED K-MACHINE UNIT JOB SHOP is straightforward.
To convert the outputs, for any arrival time stamps tij for 1 ≤ j ≤ n, I let xij = tij, and
with this, the reduction is complete.

I prove NP-hardness for all commonly used objective functions in the context of job
shop scheduling [71].

Corollary 1.1. VSP with any of the following objective functions is NP-hard.

Minimizing:

• Makespan (Cmax)

• Total completion time (
∑
Cj)

• Total weighted completion time (
∑
wjCj)

• Maximum lateness (lateness can be positive, 0, or negative for each vehicle) (Lmax)
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• Total tardiness (0 or positive for each vehicle) (
∑
Tj)

• Weighted number of tardy (or late) vehicles (
∑
wjUj)

• Number of tardy (or late) vehicles (
∑
Uj)

Proof. For any of these objective functions, I refer to a special case of GENERALIZED
K-MACHINE UNIT JOB SHOP PROBLEM that is proven NP-hard in the literature.
Then, by applying Theorem 1, the NP-hardness of VSP is established for that objective
function. In the following, the objective functions related to tardy vehicles correspond to
tardy jobs in the context of JSP problem.

Makespan: GENERALIZED K-MACHINE UNIT JOB SHOP is NP-hard according to
[54], where K = 3 and all jobs are released at time 0 (rj = 0) and there is no deadline
(δ′j = +∞) and the jobs can wait (θ = false). This problem is referred to as 3-MACHINE
UNIT JOB SHOP.

Total tardiness : GENERALIZED K-MACHINE UNIT JOB SHOP PROBLEM with
K = 2 and the same setting as in the Makespan case above is NP-hard. This problem is
referred to as 2-MACHINE UNIT JOB SHOP [49, 85].

Total (weighted) completion time, (Weighted) number of tardy vehicles : Using the same
setting as above for 2-MACHINE UNIT JOB SHOP PROBLEM with release dates, this
problem is NP-hard. Note that without the release dates, the unweighted problems are
polynomially solvable [49, 50, 85].

Maximum lateness : For similar setting as in the case of Total Completion Time, 2-
MACHINE UNIT JOB SHOP PROBLEM where jobs cannot wait between two machines
(θ = true) is strongly NP-hard [85].

3.4 Exact MIP formulation

In the next section, I give an MIP formulation of the VSP where to demonstrate, I use
the number of tardy vehicles as my objective function. It is possible to develop MIP
formulation for the other objective functions as well by perhaps introducing more variables
and doing the necessary minor adjustments.
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3.4.1 Notations

I use the same notation from VSP problem and some additional notations as follows.

• Variables P i1,i2
j1,j2

, N i1,i2
j1,j2

, decision binary variable bi1,i2j1,j2
, and a large fixed number M i1,i2

j1,j2

will be used to convert the absolute value constraints to mixed integer linear con-
straints. The decision binary variable will effectively decide between each pair of
vehicles with a conflicting node, which one will have the right of way.

• Variable lj will designate a late vehicle, Xj will designate how early vehicle j is
and a large fixed number Mj will be used to convert the constraints of form Xj =
max(0, dj− t

qj
j ) into mixed integer linear constraints. I add variable dj to designate a

soft deadline that a vehicle will strive to meet. On the other hand, the hard deadline
d′j must be met to have a feasible solution.

3.4.2 Objective function

I use the total number of tardy vehicles as my objective function.

min
∑

1≤j≤n

lj. (3.4)

3.4.3 Constraints

I use the same constraints as in Definition 3.2.1 except for the constraints that follow.
The first constraint is the separation enforcement constraint of Eq. 3.3 where through the
standard techniques, the absolute value constraint can be converted to a set of three mixed
integer linear constraints.

ti1j1 − t
i2
j2

= P i1,i2
j1,j2
−N i1,i2

j1,j2
(3.5)

bi1,i2j1,j2
· si1,i2j1,j2

≤ P i1,i2
j1,j2
≤ bi1,i2j1,j2

·M i1,i2
j1,j2

(3.6)(
1− bi1,i2j1,j2

)
· si1,i2j1,j2

≤ N i1,i2
j1,j2
≤
(
1− bi1,i2j1,j2

)
·M i1,i2

j1,j2
(3.7)

Furthermore, I convert the late vehicle constraints into the acceptable form for a linear
integer programming instance using familiar techniques as follows.

dj − t
qj
j ≤ Xj (3.8)
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0 ≤ Xj (3.9)

Xj ≤Mj · (1− lj) (3.10)

Xj ≤ dj − t
qj
j +Mj · lj (3.11)

3.5 Scheduling algorithms

3.5.1 Baseline algorithm: PROXIMITY

I introduce this baseline algorithm with the purpose of comparing its result to the result
from the heuristic algorithm introduced in the next section. My goal is to establish the
superiority of the latter algorithm.

The algorithm PROXIMITY resembles the decentralized heuristics used by car drivers
in the real world and is as follows. Each vehicle on a link attached to an intersection will
access that intersection at the earliest possible time, if and only if it is the closest (in time)
vehicle to cross that intersection. An implementation of this algorithm is shown in Fig.
3.1 and Fig. 3.2 with mode variable set accordingly.

3.5.2 Heuristic algorithm: DEADLINE & PROXIMITY

My heuristic algorithm is as follows. The algorithm returns the best solution from three
independent subroutines.

• PROXIMITY : It is the baseline algorithm introduced earlier.

• ABS DEADLINE & PROXIMITY: It is similar to PROXIMITY with the difference
that among vehicles of equal (time) distance, the ones with a lower so called delay
slack are prioritized over those with higher values. I calculate the delay slack for
a vehicle as the difference between its deadline and the shortest trip time possible.
However, if no delay slack is left; that is the calculated delay slack is a negative
quantity, I give these vehicles the lowest priorities and among themselves, they will
cross the intersection in arbitrary orders.

• REL DEADLINE & PROXIMITY: It is similar to the previous subroutine except
that the delay slack is divided by the number of intersections left in the trip.

An implementation for each of these subroutines is shown in Fig. 3.1 and Fig. 3.2 with
mode variable set accordingly.
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Input: paths for vehicles, mode
Output: time stamps for each node
1: timeStampSequence = [] //empty list
2: allV ehiclesList = list of all vehicles
3: sort allV ehiclesList ascendingly using SortingKey for comparison
4: for all vehicle in allV ehiclesList do
5: assign earliest possible time stamp to the vehicle’s first node and update data struc-

tures
6: add time stamp to timeStampSequence (if does not exist) in a sorted increasing

order
7: end for
8: while length(timeStampSequence) > 0 do
9: t = timeStampSequence[0]
10: curV ehList = list of all unfinished vehicles with time stamp t for their current node

11: for all v in curV ehList do
12: N = next node in path of v
13: conflictV ehList = list of all vehicles with N in their trip
14: curV ehNextNList = list of all vehicles with next node N and arrival time stamp

t on their current node
15: sort curV ehNextNList ascendingly using sortingKey for comparison
16: for all v2 in curV ehNextNList do
17: if v2 has no time stamp for N then
18: assign the earliest time stamp for N for v2 that satisfies separation constraints

imposed by conflictV ehList and update data structures
19: add this time stamp to timeStampSequence (if does not exist) in a sorted

increasing order
20: end if
21: end for
22: end for
23: delete timeStampSequence[0]
24: end while

Figure 3.1: A subroutine to calculate the time stamps for vehicles. Depending on our input
to the algorithm mode variable, the time stamps are calculated using the baseline rule or
my heuristic rule.
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Input: vehicle, mode
Output: A two tuple to be used for sorting by first element and then the second element
1: first =time distance to next node
2: if mode is PROXIMITY then
3: second = None
4: else if mode is ABS DEADLINE & PROXIMITY then
5: second = remaining delay slack if it is ≥ 0 else +∞
6: else if mode is REL DEADLINE & PROXIMITY then
7: second = delay slack / number of remaining of nodes if it is ≥ 0 else +∞
8: end if
9: return (first,second)

Figure 3.2: The SortingKey subroutine returns a 2-tuple for each vehicle that determines
their local priority based on the chosen rule.

3.5.3 Complexity

The implementation of the three subroutines mentioned above are the same with minor
differences in the SortingKey subroutine component in Fig. 3.2. This results for the
time complexity of all these algorithms to be similar. This is true because with efficient
implementation of the data structures, the SortingKey has the same time complexity of
O(1) in all of the cases. Therefore to obtain the time complexity of all the three subroutines,
we need only to obtain the time complexity of the subroutine in Fig. 3.1.

The time complexity of the algorithm will depend on the actual implementation of the
data structures which is as follows. In the implementation, I assume I populate these data
structures at the point in the algorithm where t is assigned which will take O(1) time on
a large enough hash table. I keep the following hash tables:

• Time stamps to list of vehicles: H1 : t 7→ V

• 2-tuples of current node time stamps and next nodes to list of vehicles: H2 : (t, N) 7→
V .

• Nodes to the list of time stamps: H3 : N 7→ t

The most time consuming operations is step 19 in Fig. 3.1 which takes O (q) where q
is the total number of time stamps. Assuming D is the degree of the underlying graph,
considering the outer loops, the total time spent on this operation is O (q2Dn) where n is
the number of vehicles.
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If we make the further assumption that the length of each path is constant, the com-
plexity of both the baseline and the heuristic algorithm is simplified to O (n3).

3.6 Numerical results

In this section, I compare the performance of my heuristic algorithm DEADLINE & PROX-
IMITY to my baseline algorithm PROXIMITY. Additionally, for the smaller cases, I com-
pare the results from both these algorithms to the exact solution obtained from solving
the MIP. I consider three metrics in my comparisons, namely, the number of vehicles, the
tightness of the soft deadlines, and the run time of the algorithms.

In my setup, I create uniformly at random pairs of source and destination and calculate
the shortest paths on the grid like graph G as shown in Fig 3.3. I use the following
parameters.

• Separation gap si1,i2j1,j2
= 5 for any j1, j2, i1, i2.

• Minimum and maximum times on link τ imin,j = 50 and τ imax,j = +∞ for all i, j.

• Hard deadlines d′j = 2.2qjτmin,j for each j.

• Trip request time ρj = 0 for each j.

For my setup I used Gurobi optimization engine version 8.1.1 running on Microsoft Sur-
face Pro 5 with 8GB RAM and 4 Intel(R) Core(TM) i5-7300U CPUs clocking at 2.60GHz.
A Gurobi Python 3.6 binding was used to solve the MIP exactly. Also, I implemented the
baseline and the heuristic algorithm in Python 3.6.

I create 20 instances of VSP with four different vehicle counts; 25, 50, 75, and 100.
For each instance, I experiment with varying levels of tightness of the soft deadline. The
fraction of missed deadlines corresponding to each deadline value are reported in Fig. 3.4.
The worst run time over all deadlines for each number of vehicles is reported in Fig. 3.5
for the baseline and the heuristic algorithms.

For 25 vehicles, Fig. 3.4a shows the results comparing the percentage of missed dead-
lines for my heuristic algorithm, the baseline, and the exact solution from MIP. Given the
small difference between the result from the baseline algorithm and the exact solution,
it is plausible to infer the baseline algorithm is in fact a very effective one in producing
schedules with a few number of missed deadlines.
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Figure 3.3: Underlying graph for simulation is a 5x5 grid like graph. Each edge represents
a bidirectional path with dedicated lanes for each direction.

In the case of 25 vehicles, I am able to solve most of the MIP instances exactly in a
reasonable amount of time (less than 1 hour). Since The MIP quickly becomes intractable
with increasing the number of vehicles, the 25 vehicles is about the maximum number of
vehicles that can be used in my test. The comparison between the run time of my heuristic
algorithm to the MIP instance solved by Gurobi is reported in Fig. 3.6 on a logarithmic
scale. In most cases, my algorithm is between 1 to 3 orders of magnitude faster, despite
the fact that my heuristic algorithm is implemented in notoriously slow Python.

Finally, Fig. 3.5 shows a comparison between the run time of my heuristic algorithm
and the baseline algorithm.

—————————————————
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(b) Simulation result for 50 vehicles
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(c) Simulation result for 75 vehicles
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(d) Simulation result for 100 vehicles

Figure 3.4: (a), (b), (c), (d) Simulation results for respectively 25, 50, 75, and 100 vehicles
with randomly generated trips comparing the solutions to the baseline algorithm (circle
markers) versus my heuristic algorithm (square markers). For the case of 25 vehicles, I
include also the exact MIP solution (triangle markers). The vertical axis is the fraction
of tardy vehicles averaged over 20 random instances and the horizontal axis is the ratio of
the set soft deadlines to the minimum congestion free trip times.
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Figure 3.5: This figure shows the average taken over 20 samples of the worst run time
among varying levels of soft deadlines. The value of soft deadlines in my test are the same
as those appearing in Fig. 3.4. The chart shows how the run time is affected by increasing
the number of vehicles from 25 to 100. The square markers represent results from my
heuristic algorithm while the circle markers represent the baseline results.
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Figure 3.6: This figure shows the run time results of my heuristic algorithm compared to
the MIP solver in logarithmic scale for 20 random instances. Each value represents the
average of worst run time among various levels of tightness of soft deadlines. These deadline
values are similar to those in Fig. 3.4a. Each of these instances utilize 25 vehicles. The red
bars which all happen to have a value greater than 1 are the run time from MIP solver and
the blue bars under the grid line for 1 are the run time from my heuristic algorithm. As
can be seen, in most cases, my algorithm implemented in Python is between 1 to 3 orders
of magnitude faster.
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Chapter 4

Traffic Flow Model For UAVs
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X0X1XN-1 . . .

Figure 4.1: Vehicle i’s position on the one directional link is shown with xi. The first
vehicles is indexed 0.

4.1 Introduction

In this chapter, I introduce a microscopic traffic flow model called Scalar Capacity Model
(SCM) which can be used to study the formation of traffic on an airway link for autonomous
UAV as well as for the ground vehicles on the road. Given the 3D nature of UAV flights, the
main novelty in my model is to eliminate the commonly used notion of lanes and replace
it with a notion of density and capacity of flow, but in such a way that individual vehicle
motions can still be modeled. I name this a Density/Capacity View (DCV) of the link
capacity and how vehicles utilize it versus the traditional One/Multilane View (OMV). An
interesting feature of this model is exhibiting both passing and blocking regimes (analogous
to multi-lane or single-lane) depending on the set scalar parameter for capacity. I show the
model has linear local (platoon) and asymptotic linear stability. Also, I perform numerical
simulations and show evidence for non-linear stability. My traffic flow model is represented
by a nonlinear differential equation which I transform into a linear form. This makes my
model analytically solvable in the blocking regime and piece-wise analytically solvable in
the passing regime. Finally, a key advantage of using my model over an OMV model for
representing UAV’s flights is the removal of the artificial restriction on passing via only
adjacent lanes. This will result in an improved and more realistic traffic flow for UAVs.

4.2 Model

In my model, I consider a sequence of vehicles numbered as 0 up to N − 1 from the first to
the last vehicle travelling along an infinite link. The position of each vehicle is designated
by xi with respect to some chosen origin (Fig. 4.1).

The vehicles adjust their speeds based on the distances to the vehicles in front of them
according to some exponential weighting scheme. This model is represented by the non-
linear differential equations described by Eq. 4.1, 4.2, and 4.3 as follows.

dxi
dt

= Vi (1− Γi) (4.1)
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Γi =
1

κ

∑
0≤j<i

exp

(
xi − xj
ω

)
(4.2)

dx0
dt

= V0 (4.3)

where the constant Vi is the maximum free flow speed for vehicle i and Γi is the congestion
factor. The constant ω is called the horizon in front of each vehicle. Once the leading
cars are inside this horizon, they will have a substantial effect on slowing down vehicle
i, otherwise their effects will be small. Parameter κ is called capacity. Intuitively, κ is
roughly the maximum number of vehicles permitted inside the horizon ω. One way to see
this is that if all vehicles in front of a vehicle i are located right in front of it, it takes κ
vehicles for Γi to be 1 in Eq. 4.2 and as a result vehicle i to slow down to 0 velocity (i.e. a
perfect jam). However, it is worth mentioning that κ need not be an integer and can take
any real positive value.

In accordance with this, in section 4.4.2, I prove that given 0 < κ ≤ 1, faster vehicles
cannot overtake slower vehicles, corresponding to effectively a 1-lane link (since intuitively
only 1 vehicle is allowed in i’th vehicle’s horizon as explained above). However, if 1 < κ,
faster vehicles might be able to pass slower vehicles if certain conditions are satisfied;
corresponding to a multi-lane link. I refer to these two different regimes as passing and
blocking hereafter.

4.2.1 Discussion and design philosophy

In this section, I discuss the model in greater depth as well as some of the details of the
model. Some of the main design decisions or features of the model are already presented
in the introduction and throughout the chapter and I do not revisit them here.

Originally, in my architecture, Internet of Drones (IoD) [30], I proposed each airway to
be a single lane to reduce technological burden on drones to safely execute a passing ma-
neuver. However, it is plausible that as technology matures, allowing passing will increase
the efficiency of airway usage. I am interested in both of these cases in this chapter.

I argued earlier that the pass planning should be aggregated. In pass planning, we are
dealing with specific maneuvers that happen for a vehicle to change its lateral position (in
DCV models) or lane (in OMV models) which has a low relevance to the goal of studying
the longitudinal movements. Furthermore, from a technical perspective, passing maneuvers
for UAVs is less structured and require a more complex passing model.
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One difference between the ground vehicles and autonomous UAVs is the delay aspect.
I have assumed the delays for an autonomous vehicle to adjust its velocity according to
the traffic condition is negligible. This is not an entirely correct assumption as while it is
plausible to assume the perception and reaction time will be very small compared to the
human operated vehicles, still there will be a delay component dictated by the mechanical
properties of the system and its inertia.

Another design choice that I made was the use of space gaps between vehicles compared
to the time gaps. Time gaps seem to be the reasonable choices in cases where there is a
high disparity between the maximum velocities of different vehicles. But they also lack a
crucial component for use for the airway. Since it is expected that the airway links will
be very low altitude, they will be affected by the wind disturbances present in the urban
centers. These can displace a UAV by several meters. Therefore, it seems the safest choice
is to space vehicles apart enough to safeguard for these disturbances. While time gaps are
important as well, we cannot rely solely on them to ensure the safety of flights.

A difference between my model and multi-anticipation models as reviewed in Chapter
1 is how the congestion is calculated. In my model in accordance to DCV, I take into
account all the vehicles at the front whereas in multi-anticipation models, given the OMV
frameworks, only the vehicles on the same lane are considered.

My model makes it easy to introduce stationary or moving bottlenecks without modi-
fying the model. For example, in the DCV framework, we can adjust the capacity locally
by adding dummy vehicles (stationary or moving) whereas in the OMV case, we need to
deal with explicit lane closures.

4.3 Analytical solution

I study the passing and blocking regimes separately below.

4.3.1 Blocking regime

I use a differential equation technique to transform the characterizing differential equation
(Eq. 4.1) into a linear differential equation. A similar technique was used in [63]. Defining
the auxiliary variable

zi := exp

(
−xi
ω

)
(4.4)
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we will have
dxi
dt

=
−ω
zi
· dzi
dt
. (4.5)

Replacing zi in Eq. 4.1 and Eq. 4.2 will yield

−ω
zi
· dzi
dt

= Vi

(
1− 1

κ

∑
0≤j<i

zj
zi

)
. (4.6)

After simplifications, we will have

dzi
dt

=
−Vi
ω
zi +

Vi
κω

∑
0≤j<i

zj. (4.7)

Eq. 4.7 creates a set of homogeneous linear differential equations. There is no shortage of
ways to solve this set of equations. One particular way which is especially applicable here
is to solve a series of first order linear differential equations as follows. First let me define

Zi(t) =
Vi
κω

∑
0≤j<i

zj. (4.8)

Starting from z1, it can be solved by solving the following differential equation

dz1
dt

=
−V1
ω

z1 + Z1(t). (4.9)

Since Z1 is a known function in time, z1 can be solved easily by the standard methods as
it is a first order linear differential equation. As a result, now Z2 is a known function in
time, and similarly z2 can be solved. Applying this method recursively, the whole set of
equations can be solved by solving the resulting first order linear equation for each zi.

By solving the set of equations using a method like above, in the simple case where all
Vi’s are unique, the general solution to this set of differential equations can be written as

zi(t) =
∑
0≤j≤i

ci,j exp

(
−Vjt
ω

)
(4.10)

where ci,j will be determined using the initial conditions.

In the case where velocities are not unique, the solution looks a bit more involved,
but can be expressed in the following way. First let U be the set of smallest indices of
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vehicles with unique maximum velocities. Let mi,j be the multiplicity of each velocity Vj
for vehicles 0 to i (that is those ahead of vehicle i). Then the solution for zi will be of form

zi =
∑
j∈U
j≤i

∑
0≤d<mi,j

ci,j,d · td exp

(
−Vjt
ω

)
(4.11)

and ci,j,d will be determined by the initial conditions.

4.3.2 Passing regime

The same analytical approach of the blocking regime applies to the passing regime. How-
ever, after each overtake, we need to solve the differential equations again for the vehicles
involved in passing and all the vehicles behind them. Therefore, we need to compute the
passing times or in other words the roots to the equations of type

xi+1 (t)− xi (t) = 0 (4.12)

or equivalently
zi+1 (t)− zi (t) = 0. (4.13)

The problem is to find the equation that has the smallest passing time and the passing
time itself. This is necessary, so the coefficients in the solution can be corrected as soon as
a passing occurs.

I have not developed any heuristics for the root finding algorithm, but it seems plausible
that an algorithm can generate a short list of candidate equations that are suspected to have
the smallest root based on various heuristics such as the distance between two vehicles and
the velocity differences among other things. It is then easy to verify whether the obtained
passing time is indeed minimal by checking that only one pass has occurred.

4.3.3 Stability analysis

As mentioned, a differential equation technique was used to turn Eq. 4.5 and 4.6 into the
linear form of Eq. 4.7. However, since the variables zi in terms of which Eq. 4.7 is linear
are at their cores exponential functions, they can never be 0. This is relevant since the
point where all state variables are 0 is the unique equilibrium point for the linear systems
of form

dq

dt
= Aq
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where
det(A) 6= 0.

Putting Eq. 4.7 in this matrix format will yield a lower triangular matrix A whose diagonal
elements are −Vi

ω
and therefore non-zero. Since in a lower triangular matrix, the eigenvalues

are the diagonal elements and no 0 eigenvalue exists in this case, the determinant is non-
zero. Therefore, we cannot use my analytical result for the purpose of stability analysis.
In the next section, I rely on linearization and numerical simulation to study the stability
of the model in the blocking regime.

4.4 Model properties

4.4.1 Soundness

In this section, I prove a few theorems that establish some of the expectations we have
from a sound model.

We expect the velocities that are prescribed for each vehicle to be in the direction of
the flow; that is non-negative. Here I show that my model never prescribes a negative
velocity.

Theorem 2 (Non-negative velocity). Given vehicle i with maximum velocity Vi in a pla-
toon, dxi

dt
≥ 0.

Proof.
For the sake of contradiction, and without loss of generality, let n be the vehicle closest
to the front in a platoon whose velocity will become negative. Call the moment when the
velocity becomes zero, t = t0. Taking a time derivative from both sides in Eq. 4.1, we will
have

d2xi
dt2

=
Vi
κω

∑
0≤j<i

(
dxj
dt
− dxi

dt

)
exp

(
xi − xj
ω

)
. (4.14)

Evaluating Eq. 4.14 at t = t0, we will get

d2xi
dt2

=
Vi
κω

∑
0≤j<i

(
dxj
dt

)
exp

(
xi − xj
ω

)
> 0 (4.15)

where the strict inequality holds since no vehicle j with j < i can have a negative velocity
due to my assumption and at least the first vehicle has a positive velocity. Since the
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derivative of velocity is positive, the velocity cannot become negative.

Next, I prove that a vehicle with a smaller maximum velocity cannot pass a vehicle
with a larger maximum velocity. One might perceive this is possible if the faster vehicle is
subject to more congestion, but I show this will never be the case.

Before presenting the next theorem, let me first define a platoon. A platoon is referred
to a group of vehicles that travel together while keeping their distances under some upper
bound (i.e. the distance of the first to the last vehicle is always bounded by some constant).

Theorem 3 (No overtaking by slow). Given vehicles i and i+ 1 in a platoon, if

Vi ≥ Vi+1

and
xi (t0) > xi+1 (t0) ,

then
xi (t) > xi+1 (t)

for all t ≥ t0.

Proof.
Assume there exists some t = tp, where

x = xi (tp) = xi+1 (tp) .

By using Eq. 4.1 for vehicle i at time t = tp, we can rewrite Eq. 4.1 for vehicle i+ 1 as

dxi+1

dt
= Vi+1

(
1−

(
1

κ
+ Γi (t)

))
=

− Vi+1

κ
+
Vi+1

Vi

dxi
dt
. (4.16)

From Eq. 4.16 above, it is clear that at t = tp,

dxi
dt

>
dxi+1

dt
.

This proves that passing will never be completed.
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4.4.2 Passing or blocking behavior

First I prove a necessary and sufficient condition for a vehicle to pass another. Then I
prove one of my main results that there exists a threshold for κ above which, the model
permits passing and below which it is not permitted. This constitutes a regime change in
my model.

Theorem 4 (Passing condition). Given vehicles i and i+ 1 in a platoon with

Vi+1 > Vi

and
xi+1 (tp) = xi (tp) ,

vehicle i+1 will pass vehicle i if and only if at the time of passing tp the following condition
is met

κ (1− Γi (t)) >
Vi+1

Vi+1 − Vi
. (4.17)

Proof.
Eq. 4.2 and theorem 2 imply that

0 ≤ Γi (t) ≤ 1.

I use Eq. 4.1 for vehicle i and Eq. 4.16 for vehicle i + 1 (which also holds here) in the
following. Vehicle i+ 1 will pass vehicle i if and only if we have (at time of passing)

dxi+1

dt
− dxi

dt
> 0⇔

(Vi+1 − Vi) (1− Γi (t))−
Vi+1

κ
> 0⇔

κ (1− Γi (t)) >
Vi+1

Vi+1 − Vi
. (4.18)

The next corollary states one of my main results.

Corollary 4.1. κ ≤ 1 is a sufficient condition for no passing to occur.
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Proof.
Eq. 4.2 and theorem 2 imply that

0 ≤ Γi (t) ≤ 1.

Since 0 < κ ≤ 1, we have
0 ≤ κ (1− Γi (t)) ≤ 1. (4.19)

According to theorem 4, a faster vehicle i + 1 will pass vehicle i if and only if Eq. 4.17
holds. But this will not hold as

1 <
Vi+1

Vi+1 − Vi
.

Therefore no passing occurs.

4.4.3 Asymptotic behavior in passing regime

We cannot perform a straightforward stability analysis in the passing regime since it is
not clear how to conceptualize a reasonable equilibrium point in this case. However, the
following theorems will be useful in understanding the passing regime in the asymptotic
case.

Theorem 5 (Order stability). There exists a time T after which the order of vehicles in
the system will not change.

Proof.
The number of possible orderings is fixed. Also, a slower vehicle cannot pass a faster vehicle
according to theorem 3. This creates a partial order on the set of ordering configurations.
Therefore, at any state, either the system remains in that state forever or will move to
a new state according to the partial order with no going back. Since the number of new
admissible states is finite, the system will have to stay in one of the states forever after
some time T .

One might suspect that given enough time, vehicles will be sorted based on their max-
imum velocities; that is the fastest vehicle will become the first vehicle, the second fastest
vehicle will be the second, and so on. But as we will see in Theorem 6, this will not neces-
sarily be the case unless there is a meaningful difference between the velocities of any two
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vehicles. Intuitively, this can be understood in the following way; if a highway is congested
to some extent and there are two vehicles that have slightly different maximum velocities,
it is difficult for the fast vehicle to gain enough speed difference to take advantage of the
little space available and overtake the slow vehicle.

Theorem 6 (All fast vehicles pass condition). For an arbitrary set of N vehicles with the
maximum velocities V0, V1, · · · , VN−1 and arbitrary initial ordering, as time goes to infinity,
vehicles will be sorted via passing according to their maximum velocities, if and only if the
following holds

κ > max
0≤i,j≤N−1

i 6=j

(
Vj

Vj − Vi

)
. (4.20)

Proof.
I first prove given the condition in Eq. 4.20, a sorted order will be achieved. From theorem
5, the final order will be stable. I take the moment we reach the stable state as the origin
of time. For the sake of contradiction, assume the stable order is not sorted according to
the maximum velocities. Let i+1 be the first vehicle with a larger maximum velocity than
vehicle i, that is

Vi+1 > Vi.

Since the vehicles in front of i are faster than i, as the time goes to infinity, we have

Γi (t)→ 0.

So for any sufficiently small ε, there exists some tε such that for

t > tε ≥ 0

we have
Γi (t) < ε.

For any time t > tε, We can rewrite Eq. 4.1 for vehicle i+ 1 as

dxi+1

dt
=

Vi+1

(
1− exp

(
xi+1 − xi

ω

)(
1

κ
+ Γi (t)

))
>

Vi+1

(
1− 1

κ
− ε
)
. (4.21)
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For vehicle i, we have
dxi
dt
≤ Vi.

To prove the passing occurs, it is sufficient to show

dxi+1

dt
≥ Vi + ε′

for all t > tε and some fixed ε′ > 0. Eq. 4.20 implies that

κ >
Vi+1

Vi+1 − Vi
=⇒ 1

κ
= 1− Vi

Vi+1

− ε′′ (4.22)

for some ε′′ > 0. Replacing Eq. 4.22 in Eq. 4.21, yields

dxi+1

dt
> Vi + Vi+1(ε

′′ − ε) > Vi (4.23)

where the last inequality holds for any ε < ε′′ where ε is sufficiently small. Therefore i+ 1
will pass i which will be a contradiction. Therefore, the order is only stable, if it is sorted
according to the maximum velocities.

Now, let us assume the set of given maximum velocities are sorted by index so that a
larger index corresponds to a larger maximum velocity. To prove the other direction of the
theorem, we assume the reverse of Eq. 4.20 holds

κ ≤ max
0≤i,j≤N−1

i 6=j

(
Vj

Vj − Vi

)
=

Vj
Vj − Vj−1

(4.24)

where without loss of generality, I assumed Vj and Vj−1 are the two velocities that maxi-
mize the middle term. The equality above can be inspected to be true by dividing both
the numerator and the denominator in the second term by Vj and observing that only
consecutive indexes can result in a maximum.

I construct a non-passing example as follows. Vehicles j − 1 and j will have maximum
velocities Vj−1 and Vj. All faster vehicles than Vj−1 will be placed in front of the j − 1’th
vehicle. Furthermore, all slower vehicles than Vj will be placed behind the j’th vehicle.
This might induce a change of indices which will be done as needed.

For the sake of contradiction, let us assume the j’th vehicle will pass the j−1’th vehicle.
At the time of passing, theorem 4 implies

κ >
Vj

Vj − Vj−1
(4.25)
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Figure 4.2: In this case, due to the low capacity of the link (κ = 1) a faster vehicle gets
stuck behind a slower vehicle.

given that from Eq. 4.2 and theorem 2 we have

0 ≤ Γj−1 (t) ≤ 1

which results in a contradiction.

I summarize these results together with corollary 4.1 on the effect of κ on how the
model operates in Table 4.1. Two example demonstrations of the effect of κ on the passing
behavior can be seen in Fig. 4.2 and Fig. 4.3.
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Figure 4.3: In this case, the link has enough capacity (κ = 2) and a faster vehicle easily
passes a slower vehicle.

4.4.4 Asymptotic behavior in blocking regime: linear stability
analysis

The standard tool to study the asymptotic behavior in this case is stability analysis. I will
study linear stability analysis for vehicles placed on an infinitely long road.

Equilibrium point for the infinite road case

My state variables are the velocities of each vehicle excluding the first vehicle which has a
constant velocity of V0. Assuming we have a sequence of N vehicles such that

Vi > V0

for all
i ≤ N − 1,
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Table 4.1: Effect of capacity (κ) on the model’s behavior

Capacity (κ) Model’s behavior

Low:
κ ≤ 1

Blocking regime:
No vehicle can pass

Medium:

1 < κ ≤ maxi,j,i6=j

(
Vj

Vj−Vi

) Passing regime:
Initial position of vehicles determines
the final ordering; that is which vehicles
will end up passing

High:

κ > maxi,j,i6=j

(
Vj

Vj−Vi

) Passing regime:
All faster vehicles end up ahead of
slower ones

there exists an equilibrium point where all vehicles travel at the same velocity

veq = veqi = V0.

Local (platoon) and linear stability analysis

Theorem 7. In the blocking regime, given a platoon of N vehicles, the Scalar Capacity
Model has both local (platoon) and asymptotic linear stability.

Proof.
I first prove asymptotic linear stability of the model and then the local (platoon) stability
will follow as a special case. My state variables are the velocities of all vehicles except the
leader V0 as it is fixed. Without loss of generality, I assume

Vi > V0
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for all i > 0 (otherwise, we do not have a single platoon according to lemma 9 in the
Appendix). I define the gap in front of vehicle i and the gap between vehicle n and i,
respectively, as

si := xi−1 − xi, (4.26)

sn,i :=
∑

i+1≤j≤n

sj. (4.27)

In the equilibrium we have

vn = veq = Vn ×

(
1− 1

κ

∑
0≤i<n

exp

(−seqn,i
ω

))
. (4.28)

Now I apply a small perturbation to the velocity of each follower as follows

vi = veq + ui (t) , (4.29)

si = seq + yi (t) . (4.30)

From Eq. 4.26, Eq. 4.29, and Eq. 4.30, we have

dyi
dt

= ui−1 (t)− ui (t) . (4.31)

For yi’s I define an identity similar to Eq. 4.27 as follows

yn,i :=
∑

i+1≤j≤n

yj. (4.32)

Assuming we kick all the follower vehicles out of equilibrium, for the n’th vehicle we will
have

vn = veq + un (t) = Vn×(
1− 1

κ

∑
0≤i<n

exp

(−seqn,i − yn,i (t)
ω

))
. (4.33)

After linearization and simplification using Eq. 4.28, we get

veq + un (t) = Vn×
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(
1− 1

κ

∑
0≤i<n

exp

(−seqn,i
ω

)(
1− yn,i

w

))
=⇒

un (t) =
Vn
κω

∑
0≤i<n

exp

(−seqn,i
ω

)
yn,i. (4.34)

By replacing Eq. 4.31 in Eq. 4.34 and expanding yn,i according to its definition, we will
get

dyn
dt

=
Vn−1
κω

∑
0≤i<j≤n−1

exp

(−seqn−1,i
ω

)
yj

− Vn
κω

∑
0≤i<j≤n

exp

(−seqn,i
ω

)
yj. (4.35)

We can write Eq. 4.35 for
1 ≤ n ≤ N − 1

for all vehicles in a matrix form as
dY

dt
= AY. (4.36)

By inspection, A is a lower triangular matrix with only negative elements. Since the
eigenvalues of a lower triangular matrix are the elements of the diagonal, all the eigenvalues
of the matrix are negative. Therefore, according to the linear stability theory, variables yi
are stable with an equilibrium point of all 0s. Hence, a similar thing can be said about ui.
To understand the rate of convergence, I calculate the eigenvalues which are the elements
of the diagonal of A. In other words, the eigenvalues λn are the coefficients of yn in Eq.
4.35. By inspection, we have

λn =
−Vn
κω

∑
0≤i<n

exp

(−seqn,i
ω

)
=
V0 − Vn

ω
(4.37)

where the last equality is due to Eq. 4.28 and knowing veq = V0. Therefore, the bigger the
difference between V0 and Vn, the faster the convergence will be to the equilibrium point.
The above proved the asymptotic linear stability of the model. Linear (platoon) stability is
proven by considering the special case where there is 0 initial perturbation to the position
and velocity of vehicles

2 ≤ i ≤ N − 1

and accordingly
yi(t = 0) = 0,
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ui(t = 0) = 0.

4.4.5 Asymptotic behavior in blocking regime: nonlinear stabil-
ity analysis

In this section, I perform the non-linear stability analysis for vehicles placed on a ring road.
Note that Eq. 4.2 and Eq. 4.3 are adjusted accordingly to become symmetrical for any
vehicle i (i.e. now each vehicle regardless of their numbering is a follower to every other
vehicle on the ring road).

Equilibrium point for the ring road

Given a fleet of identical vehicles with maximum velocity Vmax travelling on a ring road, the
exact locations of each vehicle is not important to us. However, their relative distance is
important. I take the set of velocities vi as my state variables. Since the motion equations
for all vehicles are symmetrical on the ring road, an immediately obvious equilibrium point
is the case where all velocities are identical. This is equivalent to saying that all gaps are
identical; that is

seq = si =
L

N
(4.38)

where L is the circumference of the ring road and N is the number of vehicles. We define
the overall density ρ as

ρ =
1

seq
.

The equilibrium velocity is calculated as follows:

veq = Vmax

(
1− 1

κ

∑
1≤j≤N−1

exp

(
−jseq

ω

))
=

Vmax

(
1 +

1

κ
− 1

κ

∑
0≤j≤N−1

exp

(
−jseq

ω

))
. (4.39)

Using the identity for the sum of the geometric series, we obtain
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veq = Vmax

(
1 +

1

κ
− 1

κ
·

1− exp
(−Nseq

ω

)
1− exp

(−seq
ω

) ) =

veq = Vmax

1 +
1

κ
− 1

κ
·

1− exp
(−L
ω

)
1− exp

(
−1
ρω

)
 . (4.40)

Vehicle flow, velocity, and density are related by

Q = veqρ

which results in the diagram in Fig. 4.4 relating the traffic flow Q to the density ρ. This
graph is also one of the fundamental diagrams of a traffic flow model and it gives insight into
the macroscopic behavior of my microscopic model. It also gives an intuitive justification
for the soundness of my model, since all traffic flow models (including those cited in this
work) produce a more or less similar graph. That is the traffic flow increases as the density
increases till we reach a peak capacity after which adding any more vehicles will only serve
to decrease the flow.

Numerical experiments

In this section, I initiate the system with a variety of conditions and observe whether the
system will approach to the equilibrium point. I will use a chosen background density
composed with a smaller region of higher density. I will observe how this irregularity will
affect the system’s stability. My experiments parameters are chosen as follows:

• L = 1000m, length of the ring road (m).

• ω = 10m, length of the horizon in front of each vehicle.

• Vmax = 6m/s, for all vehicles.

• κ = 10, model’s capacity.

• tstart = 0s, tend = 500s, start and finish time of simulation.

• ρ = 0.5veh
m

, global density of vehicles. In other words, we have 500 vehicles on the
ring road (a minimum number of vehicles that is required for a realistic simulation
[88]). Note that this does not necessarily translate into an unreasonably high density
of vehicles since the vehicles are not directly behind each other in the 3D space. In
other words, they can be placed anywhere on the vertical plane that belongs to them.
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Figure 4.4: Vehicle flow versus density: For my microscopic model, this graph shows the
macroscopic relationship between the number of identical vehicles passing a fixed point on
a ring road per unit of time and the density of vehicles. As is expected from a traffic flow
model, after a peak density matching the available capacity is reached, traffic flow starts
deteriorating in the sense that any more vehicles only serves to slow down every vehicle.
Before this peak, the traffic is in the free flow regime and then switches to congested.
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Figure 4.5: Time-Space diagram for every 50’th vehicles: 30% of the ring road has a
maximal uniform vehicle density of 1.03veh

m
and the remaining 70% has a uniform density

of 0.27veh
m

. The ring road vehicle density is 0.5veh
m

. Initially, some vehicles are slowed down,
but as time goes on, all the velocities converge to the equilibrium velocity.

To produce Fig. 4.5 and 4.6 we distribute the vehicles in two regions. One region consists
of 30% of the ring road and has the highest possible uniform density of the vehicles and
the remaining vehicles are distributed in the rest of the ring road evenly; so to make the
overall density ρ as above. These experiments provide evidence that no matter how far
from equilibrium the system is, it will converge to the equilibrium. Also, I performed the
same test with the same number of vehicles when 10% or 20% of the ring road had a
maximal traffic jam and each case produced essentially the same graphs.

—————————————————
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Figure 4.6: Minimum and maximum momentary velocity among all vehicles: 30% of the
ring road has a maximal uniform vehicle density of 1.03veh

m
and the remaining 70% has a

uniform density of 0.27veh
m

. The ring road vehicle density is 0.5veh
m

. This graph shows the
convergence to equilibrium velocity.
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Chapter 5

Conclusion
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5.1 Concluding remarks

Many drone applications can benefit from a unified framework that coordinates their access
to the airspace and helps them navigate to the points of interest where they have to
perform a task. Any architecture poised to provide this service must be scalable and be
able to provide it to thousands of drones, which will share the congested and limited urban
airspace.

In Chapter 2, I laid out the conceptual foundation for such an architecture by devel-
oping a vocabulary of concepts for describing the architecture and identifying the relevant
components of it as well as deciding on the boundaries of the architecture. Furthermore, I
designed a structure for the airspace and provided strategies for utilizing that structure in
the airspace. My design makes it possible to provide generic services that can be used by
many applications. To effectively tackle the problem of “how to enable drones to perform
tasks”, I divided the overall required functionality of the architecture into logical layers.
The main sub-problem was the airspace navigation and coordination for various appli-
cations as addressed in the first three layers of IoD. I addressed other common services
that are needed by the applications such as location aware communication in an extensible
service layer. In IoD architecture, I described the features that are required to be imple-
mented in each of these layers by IoD systems. Furthermore, I suggested an operation
model that identifies the role of private and public organizations in the governance of IoD.
Additionally, I explored and discussed some of the difficulties that have to be addressed
for an effective IoD system. In all of this, I used and referred to the wealth of knowledge
acquired from three large scale networks, the cellular network, the air traffic control, and
the Internet. Finally, I discussed the differences and future works that can benefit from
the solutions from the vast existing literature on these three subjects.

In Chapter 3, I introduced a new scheduling problem called Vehicle Scheduling Problem.
Given a path between a pair of source and destination for each vehicle over a graph, the
goal is to minimize some objective function such as the number of tardy vehicles (i.e.
missed deadlines) subject to various constraints as follows. These include, maintaining a
safety time gap at conflicting nodes and meeting hard deadlines after trips are requested
by vehicles. Furthermore, each vehicle is required to maintain its speed in an allowable
range over any link. I established the NP-hardness of VSP for all commonly used objective
functions in the context of JSP. Then, I formulated this problem in terms of an MIP where
the chosen objective function is the number of tardy vehicles. For the case of simultaneous
trip requests, I then devised a heuristic algorithm based on giving priority to vehicles closer
to an intersection and with less slack time left. I also devised a baseline algorithm that
mimics to some extent the real world traffic, i.e. vehicles closer to an intersection will get
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there first. I then performed numerical experiments on random instances of the problem
over a grid like graph to compare the obtained objective value from the exact solution to
the MIP formulation as well as the baseline algorithm and my algorithm.

In Chapter 4, I introduced a microscopic traffic flow model that can be used to study
traffic patterns of unmanned aerial vehicles in the air as they become ubiquitous in the
future. The model is equally applicable to the study of the traffic flow of ground vehicles
on the road. I advanced the state of art by introducing a scalar capacity parameter for
the airway (or roads) rather than the traditional approach of modelling links as 1 lane or
multi-lane. This is suited for the study of the 3D nature of UAV flights as opposed to the
2D nature of ground vehicles movements while also resulting in a simpler model for ground
vehicles by abstracting away the pass planning aspect. By adjusting the scalar capacity
parameter, the model can exhibit passing or blocking behaviors. In the former, vehicles
are free to pass each other while in the latter, no vehicle can pass another one similar to a
one lane road. My model can be solved analytically for the blocking regime and piece-wise
analytically in the passing regime. For the blocking regime I proved linear local (platoon)
stability as well as asymptotic linear stability. Also, using numerical simulation, I showed
evidence for non-linear stability. For the passing regime, I proved theorems outlining the
asymptotic behavior of the model such as whether every faster vehicle gets a chance to
pass slower vehicles as time goes to infinity and what the final order of vehicles will be
after all the overtakings are completed. Lastly, I proved a main theorem characterizing the
transition from blocking to passing as we adjust the scalar capacity parameter.
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Chapter 6

Discussion and Future Work
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6.1 Discussion & Future work

My work in Chapter 2 opened up many exciting avenues for further research and these
were discussed in length and depth in Chapter 2. A major question is what more needs to
be done to use the research work done in Chapter 3 and 4 on vehicle scheduling methods
and traffic flow model for them to be directly applicable in the context of IoD architecture.
I have listed these issues as follows.

• In terms of scheduling UAVs, the work in Chapter 3 is focused on the stationary
problem of UAVs scheduling. That is the trip request times are known ahead of time.
However, in IoD, UAVs enter and leave the zones and the system at unknown times.
Therefore, a first step to close the gap between the scheduling algorithms developed
in Chapter 3 and the IoD is to create the online version of these algorithms and
study their performance for that purpose. Luckily as explained in the following, it
seems both the heuristic algorithm and the baseline algorithm can be adapted to the
online version with some changes. Since the static version of both of these algorithms
are based on deciding the right of way for vehicles in each intersection, i.e. a local
operation, the arrival time of vehicles or the addition of new vehicles in the online
version does not interfere with this core function. That is, for each intersection at
each time, I rank vehicles for access to the intersection based only on their remaining
time distance to the intersection and priorities informed by their deadlines. Hence,
there exist no hurdles to consider new vehicles in this ranking routine as well.

• Another issue that needs attention with regard to bridging the gap between the work
in Chapter 3 and IoD is the issue of noise. Any scheduling algorithm should allow for
errors in arrival times to be of any practical use in IoD. The presence of noise from
different sources including the variable wind gusts is an intrinsic property of any IoD
system.

• Furthermore, the work in Chapter 3 is best suited for application in scheduling UAVs
inside a zone rather than the entire system. That means a routing algorithm is needed
to work at the inter-zone level. It is speculative to assume how the routing algorithm
will work. However, one potential solution is to book a time window for both the
arrival and departure gates for the UAVs. Therefore, the scheduling algorithm, must
have the ability to accept or reject the proposed window by the routing algorithm
and must integrate the newly accepted drone in its scheduling. Also, the routing
algorithm will rely on the intelligence received from the scheduling algorithm to
produce reasonable time windows for these gates. Thus, the needed interface and
mechanisms must be provided by the scheduling algorithm.
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• While the work in Chapter 3 is related to scheduling the arrival times at the nodes
(an N2N layer issue), the work in Chapter 4 is related to UAVs flying through the
links in a way that is stable and respects the link capacity (an Airspace layer issue).
We need both these systems to work in tandem. That is the scheduler sets the target
arrival time windows for each node for a UAV and the role of the traffic flow model
is to meet those targets. The main inputs to the traffic flow model are the maximum
velocity constants for each UAV. Therefore an important missing piece is a module
that takes the scheduled times and translate them to appropriate values of maximum
velocity constants periodically.

• Another issue that needs to be addressed with regard to work in Chapter 4 is that the
speed of each drone is momentarily adjusted to the current state of traffic on the link.
This is especially troublesome when a UAV enters a new link. While the congestion
in the previous link might have been low and thus the UAV has been flying at high
speed, suddenly it might face a high level of congestion and must reduce its speed
sharply which might be physically impossible. Therefore mechanisms must be put in
the place to smooth the transition between the links.

• Another use for the work in Chapter 4 in the context of IoD is traffic engineering of the
airways capacities. Following the previous point, the traffic flow model might fail to
meet the targets set by the scheduler, due to some links being persistently overloaded.
We will need a module that will process the data about airways utilization rate and
the success rate in meeting the arrival targets and translate them into decisions about
adjusting the capacity of the airways.

6.2 Notes on Chapter 3

In Chapter 3, I assumed the route for each vehicle is fixed. There are scenarios where
this might make sense for example when some UAV companies are allocated various paths
in the airspace by the government and all the scheduling must be performed over these
preallocated paths. However, in absence of these kind of limitations, an interesting problem
to consider for future research is the joint optimization of routing and scheduling.

Another simplified aspect of the problem is the assumption that each link has unlimited
capacity for holding vehicles. This is not entirely without merit as the in-flow and out-flow
are bounded by various constraints. However, it might be plausible to set a direct capacity
limit on a link, especially when the minimum permitted velocity on a link is 0.
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With minor modifications, it is possible to expand the DEADLINE & PROXIMITY
algorithm and the baseline PROXIMITY to the dynamic VSP to make it more applicable
to the real world. It is interesting to see how these two algorithms will compare in that
case.

In my numerical result section of Chapter 3, I demonstrated for some special cases the
result from my heuristic algorithm. It will be interesting to explore more cases, such as
when the trip request times are arbitrary and the minimum speed for vehicles can be more
than 0.

A limitation of my work is that in my heuristics algorithm DEADLINE & PROXIMITY,
the access rule is based on first the proximity of the vehicles to the intersections and only
then the deadlines are used as a tie breaking mechanism. In my setup, the time stamps
from the created schedules were all a multiple of an integer (in this case, 5), allowing the
tie breaking rule a chance to have an influence. In practice, the tie breaking will likely
never be used as the odds of having two vehicles at the exact same distance is close to 0.
In other words, in presence of noise, etc., my heuristic algorithm degrades to the baseline
algorithm. A simple fix is to use a window of a certain size inside which the deadline is
the deciding rule. However, to determine the optimal window size will be the subject of a
future work.

Another question with regard to both the baseline and the heuristic algorithms is how
irregular lengths for the links will affect the quality of the created schedules. For example,
a vehicle might be an intersection away from an intersection of interest, and only a very
short distance away. But it will get a lower priority compared to a further away vehicle
which is already on a connected link to the intersection. It is an interesting line of research
to pursue expanding the pool of eligible vehicles in deciding the “right of way” to include
vehicles such as the one in the example above.

Finally, there is an approximation algorithm that is used for Job Shop Scheduling
known as Shifting Bottleneck as first appeared in the seminal work [1]. The goal was to
minimize the makespan (completion time of the last job to finish). The algorithm works
by sequencing each machine as a one machine optimization problem which can be solved
efficiently. At any point, a list of sequenced machines and a list of unsequenced machines
exist. Based on some criteria about which machine is the next greatest bottleneck, the
unsequenced machines are ranked and the machine with the highest rank is chosen to be
sequenced next. Based on the results, the already sequenced machines are resequenced one
by one till no further improvements can be found in their schedule. Again, based on the
outcome of this step, and according to the bottleneck criteria the next machine is chosen
and the process is repeated till all the machines are sequenced. In this context, it is an
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interesting venue for research to see if any algorithm with a similar idea of detecting the
bottleneck vehicles or the bottleneck nodes or even a set of bottleneck neighboring nodes
(similar to a zone) can be used to give better schedules.

6.3 Notes on Chapter 4

My work in Chapter 4 leaves many open questions. An important question is whether
it is possible to add some mechanism for delay, without losing the closed form analytical
solution feature of the model.

Another avenue for research is adding some dummy vehicles to play the role of moving
or stationary obstacles for the traffic flow. This works by consuming the capacity of
the airway/road dynamically. It organically gives rise to inclusion of obstacles without
modifying the model. In the same vein, it is possible to add weights to the exponential
congestion term for different vehicles or dummy vehicles (obstacles). Currently in my
model, all these weights are equal. The ability to set weights can give us powerful tools
for tuning the strength of these obstacles.
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Appendix A

Helpful lemmas for chapter 3

A.1 Lemmas and their proofs

Lemma 8 (Passing threshold). Given only two vehicles on the road with

V1 > V0,

given enough time, vehicle 1 will pass vehicle 0 if and only if

κ >
V1

V1 − V0
.

Proof.
Proving vehicle 1 passes vehicle 0 implies

κ >
V1

V1 − V0

is a straightforward consequence of theorem 4 since

Γ0 = 0

at all times including the passing time between vehicles 0 and vehicle 1.

In the other direction, I prove

κ >
V1

V1 − V0
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implies for all times, that
v1 (t) > v0 (t) .

I first prove the two vehicles will meet as a condition for theorem 4, so we can apply that
theorem.

Variable v1 takes its minimum value v1min
when vehicle 0 and 1 are (hypothetically) in

the same position, that is x1 = x0. Therefore, a pass will occur in that case since we will
have

κ >
V1

V1 − V0
and can use theorem 4,

Therefore, at all other times,

v1 ≥ v1min
> v0 (t) = V0

.

This implies that there exists a time tp when the two vehicles will meet, or in other
words they are in the same position

x0 (tp) = x1 (tp) .

Therefore, according to theorem 4, vehicle 1 will pass vehicle 0.

Without loss of generality, assume vehicle n is the first vehicle for which

Vn = V0.

In the following lemma, I show if a vehicle n in a sequence of vehicles following a leader
with speed V0 has a maximum speed

Vn = V0,

then this will result in creation of two platoons. When

Vn < V0,

this is easy to see. But when the maximum speeds are equal, one can see that this still
holds. More formally:
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Lemma 9 (Platoon splitting). Given a platoon of n vehicles with stable orders with an
extra vehicle n with

Vn = V0

and where vehicle 0 to n− 1 are in equilibrium, if

V0 < Vj

for
1 ≤ j ≤ n− 1,

then vehicle n is not part of the platoon.

Proof.
From Eq. 4.11 and knowing

V0 < Vj

for
1 ≤ j ≤ n− 1

and V0 = Vn, we have

zn = (cn,0,0 + cn,0,1 · t) exp

(
−V0t
ω

)
+

∑
j∈U−{0,n}

∑
0≤d<mn,j

cn,j,d · td exp

(
−Vjt
ω

)
. (A.1)

From the definition of z0 in Eq. 4.4 we have

z0 = exp

(
−x0
ω

)
= exp

(
−x0(0)− V0t

ω

)
. (A.2)

Now, by using Eq. A.1 and Eq. A.2, we get

lim
t→∞

exp

(
x0 − xn

ω

)
= lim

t→∞

zn
z0

=∞ =⇒

lim
t→∞

(x0 − xn) =∞ (A.3)

where the first equality is due to the definition of zi from Eq. 4.4.

Therefore vehicle n cannot be part of the same platoon of vehicles 0 to n− 1 since the
distance between vehicle 0 and vehicle n will increase with no bound.
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