

UNIVERSITY OF THESSALY

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

Master Thesis

"Implementation of a Platform Supporting Programming

Assignments in University Courses"

Author

Machairas Dimitrios

Supervisor

Antonopoulos Christos, Assistant Professor

Committee Members

Bozanis Panagiotis, Associate Professor

Vavalis Emmanouil, Professor

Volos, September 2014

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 17:09:12 EEST - 137.108.70.13

1

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 17:09:12 EEST - 137.108.70.13

2

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ

ΥΠΟΛΟΓΙΣΤΩΝ

Μεταπτυχιακή Διπλωματική Εργασία

 "Υλοποίηση Πλατφόρμας για την Υποστήριξη

Προγραμματιστικών Εργασιών σε Πανεπιστημιακά

Μαθήματα"

Συγγραφέας

Μαχαίρας Δημήτριος

Επιβλέπων Καθηγητής

Αντωνόπουλος Χρήστος, Επίκουρος Καθηγητής

Μέλη Επιτροπής

Μποζάνης Παναγιώτης, Αναπληρωτής Καθηγητής

Βάβαλης Εμμανουήλ, Καθηγητής

Βόλος, Σεπτέμβριος 2014

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 17:09:12 EEST - 137.108.70.13

3

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 17:09:12 EEST - 137.108.70.13

4

UNIVERSITY OF THESSALY

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

"Implementation of a platform supporting programming

assignments in university courses"

A Thesis presented

By

Machairas Dimitrios

APPROVED BY:

Antonopoulos Christos, Assistant Professor

Bozanis Panagiotis, Associate Professor

Vavalis Emmanouil, Professor

Volos, September 2014

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 17:09:12 EEST - 137.108.70.13

5

© Copyright by Machairas Dimitrios, 2014

All Rights Reserved

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 17:09:12 EEST - 137.108.70.13

6

Abstract

As the time passes, the number of university students is rapidly increasing, and the

whole procedure of the submissions management is getting much more difficult.

Each university department has its own needs, in accordance to the subject that is

being taught. For example, a computer science department, may need web

applications for programming courses, where professors will be able to assign

programming tasks to their students. Due to the fact that it concerns programming

courses on different programming languages, when students submit their tasks, they

should be able to view compilation results and results from test cases. Moreover,

since it is a rather common phenomenon that many students try to cheat and copy

from each other, it is vital that such an application use a kind of plagiarism system,

which will detect the same code parts. Furthermore, after the deadline, professors

should have the ability to assign each submission to a grader for grading and

commenting. Consequently, when grades and comments are ready, professors

should be able to publish them so that the students can directly view them.

The purpose of this project is to develop a web platform, which can support

programming assignments (mainly in C programming language), and fulfill the

functionality which was described in the previous paragraph. In some words, we

develop a web platform, where there are 4 kinds of users: Administrator, Professor,

Assistant or Grader and Student. Each user has his own functionality. In particular,

every kind of user can administer courses, labs and homeworks in his own way, apart

from administrator, who can also administer even users.

Last but not least, we used MVC 5 architecture and Bootstrap 3 framework in order

to develop our platform. We have also used SQL for our database, Cygwin software

for compilation functionality and Moss script for system plagiarism's functionality.

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 17:09:12 EEST - 137.108.70.13

7

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 17:09:12 EEST - 137.108.70.13

8

Περίληψη

Καθώς ο αριθμός των πανεπιστημιακών φοιτητών αυξάνεται, η διαδικασία της

διαχείρισης των εργασιών γίνεται όλο και δυσκολότερη. Κάθε τμήμα ενός

πανεπιστημίου όμως, έχει τις δικές του ανάγκες, σύμφωνα με το αντικείμενο, το

οποίο διδάσκεται. Για παράδειγμα, ένα τμήμα πληροφορικής, ίσως χρειάζεται

κάποιες διαδικτυακές εφαρμογές για προγραμματιστικά μαθήματα, στα οποία οι

καθηγητές θα πρέπει να μπορούν να αναθέτουν προγραμματιστικές εργασίες στους

φοιτητές τους. Εφόσον πρόκειται για προγραμματιστικά μαθήματα, σε

διαφορετικές γλώσσες προγραμματισμού, όταν οι φοιτητές υποβάλλουν τις

εργασίες τους, θα πρέπει να μπορούν να δουν τόσο τα αποτελέσματα του

compilation όσο και τα αποτελέσματα των δοκιμαστικών περιπτώσεων που οι

καθηγητές τους έχουν ορίσει για τη συγκεκριμένη εργασία. Καθώς όμως υπάρχουν

πολλές περιπτώσεις αντιγραφής μεταξύ εργασιών, είναι απαραίτητο σε μία τέτοια

εφαρμογή να υπάρχει και κάποιο είδος συστήματος ελέγχου αντιγραφής, το οποίο

θα μπορεί να ανιχνεύει τυχόν ίδια κομμάτια κώδικα. Επιπλέον, μετά το πέρας της

προθεσμίας, οι καθηγητές θα πρέπει να έχουν τη δυνατότητα να αναθέτουν τις

υποβολές των εργασιών των φοιτητών στους αντίστοιχους βαθμολογητές, για

βαθμολόγηση και σχολιασμό. Συνεπώς, όταν οι βαθμοί και τα σχόλια είναι έτοιμα,

οι καθηγητές θα πρέπει να μπορούν να τους δημοσιεύουν, προκειμένου να είναι

άμεσα προσπελάσιμοι από τους μαθητές τους.

Ο κύριος στόχος αυτής της εργασίας είναι να αναπτύξουμε μια πλατφόρμα, η οποία

να υποστηρίζει προγραμματιστικές εργασίες (κυρίως στη γλώσσα

προγραμματισμού C), και να καλύπτει την προαναφερθείσα λειτουργικότητα. Για

την ακρίβεια, αναπτύσσουμε μια πλατφόρμα, στην οποία υπάρχουν 4 κατηγορίες

χρηστών: Διαχειριστής, Καθηγητής, Βοηθός ή Βαθμολογητής και Φοιτητής. Κάθε

χρήστης μπορεί να κάνει κάποια συγκεκριμένα πράγματα στην εφαρμογή. Πιο

συγκεκριμένα, το κάθε είδος μπορεί να διαχειριστεί μαθήματα, εργαστήρια και

εργασίες για το σπίτι με το δικό του τρόπο, εκτός από το διαχειριστή ο οποίος

μπορεί επίσης να διαχειριστεί ακόμη και χρήστες.

Συνοψίζοντας, προκειμένου να αναπτύξουμε την εφαρμογή μας, χρησιμοποιήσαμε

την αρχιτεκτονική MVC 5 και το Bootstrap 3. Επιπροσθέτως, για την υλοποίηση και

τη διαχείριση της βάσης δεδομένων χρησιμοποιήσαμε την SQL, για τη λειτουργία

του compilation χρησιμοποιήσαμε το λογισμικό Cygwin ενώ για το έλεγχο

αντιγραφής εργασιών ένα script που ονομάζεται Moss.

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 17:09:12 EEST - 137.108.70.13

9

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 17:09:12 EEST - 137.108.70.13

10

Acknowledgments

I would like to acknowledge the help and support of Dr. Christos Antonopoulos who

was the supervisor of this thesis, as well as of Dr. Panagiotis Bozanis and Dr.

Emmanouil Vavalis. I would also like to thank Mrs. Vana Doufexi, who has helped me

to a great extent. I also appreciate the help and the love of my family and my friends,

who took a real part in my studies.

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 17:09:12 EEST - 137.108.70.13

11

Dedicated to my family!!!

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 17:09:12 EEST - 137.108.70.13

12

Table of Contents

Abstract .. 6

Περίληψη ... 8

Acknowledgments.. 10

Table of Contents ... 12

List of Tables .. 16

Table of Figures .. 18

1 Introduction .. 21

1.1 Thesis Scope ... 22

1.2 Technologies Used ... 23

1.3 Thesis Organization .. 24

2 Background ... 26

2.1 MVC Architecture ... 26

2.1.1 Interactions .. 26

2.1.2 Use in Web Applications .. 27

2.1.3 MVC Benefits .. 27

2.2 Bootstrap Framework.. 28

2.2.1 Features ... 28

2.2.2 Structure and Function .. 28

2.2.3 Usage ... 29

2.3 Plagiarism Detection - Moss ... 29

2.3.1 Languages .. 30

2.3.2 An Internet Service .. 30

2.3.3 Moss Script Versions and Usage .. 30

2.4 SQL .. 30

2.5 Cygwin .. 31

2.6 Development Tools .. 31

3 Requirements' Analysis ... 33

3.1 Administrator ... 35

3.1.1 User Administration... 36

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 17:09:12 EEST - 137.108.70.13

13

3.1.2 Course Administration ... 36

3.1.3 Lab Administration .. 36

3.1.4 Homework Administration .. 36

3.2 Professor .. 37

3.2.1 Course Administration ... 38

3.2.2 Lab Administration .. 38

3.2.3 Homework Administration .. 38

3.3 Assistant ... 38

3.3.1 Course Administration ... 39

3.3.2 Lab Administration .. 39

3.3.3 Homework Administration .. 40

3.4 Student ... 40

3.4.1 View Enrolled Courses ... 40

3.4.2 Lab Participation .. 40

3.4.3 Homework Participation .. 40

4 Design and Implementation ... 43

4.1 Application Database ... 43

4.1.1 Database Schema .. 45

4.2 Web Application Implementation .. 45

4.2.1 Internet Information Services Manager .. 45

4.2.2 Web Application & Database Connection ... 46

4.2.3 Application Models .. 48

4.2.4 Application Controllers .. 51

4.2.5 Application Views .. 54

4.2.6 Compilation & Testing Functionality - Security Considerations 55

4.2.7 Moss Functionality... 55

5 Deployment and Results ... 58

5.1 User Interface Model ... 58

5.2 User Login ... 58

5.3 Administrator's Panel ... 59

5.3.1 Administrator's Home Page ... 59

5.3.2 Create User .. 60

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 17:09:12 EEST - 137.108.70.13

14

5.3.3 Create Assistants, Professors and Students in Groups................................ 62

5.4 Professor's Panel .. 63

5.4.1 Professor's Home Page .. 64

5.4.2 Create Course and Edit Course Information ... 64

5.4.3 Create Labs and Homeworks ... 67

5.4.4 Lab and Homework Administration .. 71

5.5 Assistant's Panel .. 75

5.5.1 Assistant's Home Page ... 75

5.5.2 Enrolled Courses .. 76

5.5.3 Lab and Homework Administration .. 76

5.6 Student's Panel .. 77

5.6.1 Student's Home Page .. 77

5.6.2 Course Enrollment ... 78

5.6.3 Assignment Submission ... 80

5.6.4 Submission Grade and Comments .. 84

6 Related Work .. 86

6.1 E-learning Platforms ... 86

6.2 Plagiarism Detection Systems .. 87

6.3 Online Compilation Tools ... 88

6.4 Automated Testing Systems ... 88

7 Conclusions ... 90

Bibliography ... 92

Appendices ... 95

Appendix A ... 95

Appendix B ... 98

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 17:09:12 EEST - 137.108.70.13

15

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 17:09:12 EEST - 137.108.70.13

16

List of Tables

Table 1. Database Connection String ... 47

Table 2. Database Connection Function .. 48

Table 3. Grade Model - Attributes ... 49

Table 4. AddGrade Model Function ... 50

Table 5. AddGrade ActionResult Method .. 52

Table 6. Process Run .. 56

Table 7. Add Grade View.. 96

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 17:09:12 EEST - 137.108.70.13

17

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 17:09:12 EEST - 137.108.70.13

18

Table of Figures

Figure 1. Technologies Used .. 23

Figure 2. MVC Components Interaction .. 27

Figure 3. Cygwin window ... 31

Figure 4. The Life of a Homework - UML Sequence Diagram 34

Figure 5. Administrator - UML Use Case Diagram ... 35

Figure 6. Professor - UML Use Case Diagram .. 37

Figure 7. Assistant - UML Use Case Diagram ... 39

Figure 8. Student - UML Use Case Diagram ... 41

Figure 9. Database Tables .. 44

Figure 10. Internet Information Services ... 45

Figure 11. Internet Information Services (IIS) Manager .. 46

Figure 12. Application Models ... 51

Figure 13. Application Controllers ... 53

Figure 14. Application Views .. 54

Figure 15. Log In - Form ... 58

Figure 16. Administrator's Home Page .. 59

Figure 17. User Registration .. 60

Figure 18. Role Choice ... 61

Figure 19. User's Personal Data ... 61

Figure 20. Professors' Data .csv File ... 62

Figure 21. Upload Professors using .csv File .. 62

Figure 22. Application Users .. 63

Figure 23. Professor's Home Page ... 64

Figure 24. Course Creation .. 65

Figure 25. Professor's Course List .. 65

Figure 26. Edit Professors .. 66

Figure 27. Edit Course Information .. 66

Figure 28. Get Course Back Up .. 67

Figure 29. Create Course Lab ... 68

Figure 30. Lab Section Creation ... 69

Figure 31. Lab Sections List .. 69

Figure 32. Create Public Test Case ... 70

Figure 33. Public Test Cases List... 71

Figure 34. Labs List ... 71

Figure 35. Get Submissions on .zip File .. 72

Figure 36. Lab Submissions List.. 72

Figure 37. Grader Choice ... 73

Figure 38. Submission Grade and Comments .. 73

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 17:09:12 EEST - 137.108.70.13

file:///C:/Users/Δημήτρης%20Μαχαίρας/Desktop/ThesisFiles/Write/Machairas_Dimitrios_374.docx%23_Toc398790637
file:///C:/Users/Δημήτρης%20Μαχαίρας/Desktop/ThesisFiles/Write/Machairas_Dimitrios_374.docx%23_Toc398790638
file:///C:/Users/Δημήτρης%20Μαχαίρας/Desktop/ThesisFiles/Write/Machairas_Dimitrios_374.docx%23_Toc398790639
file:///C:/Users/Δημήτρης%20Μαχαίρας/Desktop/ThesisFiles/Write/Machairas_Dimitrios_374.docx%23_Toc398790640
file:///C:/Users/Δημήτρης%20Μαχαίρας/Desktop/ThesisFiles/Write/Machairas_Dimitrios_374.docx%23_Toc398790641
file:///C:/Users/Δημήτρης%20Μαχαίρας/Desktop/ThesisFiles/Write/Machairas_Dimitrios_374.docx%23_Toc398790642
file:///C:/Users/Δημήτρης%20Μαχαίρας/Desktop/ThesisFiles/Write/Machairas_Dimitrios_374.docx%23_Toc398790643
file:///C:/Users/Δημήτρης%20Μαχαίρας/Desktop/ThesisFiles/Write/Machairas_Dimitrios_374.docx%23_Toc398790644
file:///C:/Users/Δημήτρης%20Μαχαίρας/Desktop/ThesisFiles/Write/Machairas_Dimitrios_374.docx%23_Toc398790645
file:///C:/Users/Δημήτρης%20Μαχαίρας/Desktop/ThesisFiles/Write/Machairas_Dimitrios_374.docx%23_Toc398790646
file:///C:/Users/Δημήτρης%20Μαχαίρας/Desktop/ThesisFiles/Write/Machairas_Dimitrios_374.docx%23_Toc398790647
file:///C:/Users/Δημήτρης%20Μαχαίρας/Desktop/ThesisFiles/Write/Machairas_Dimitrios_374.docx%23_Toc398790648
file:///C:/Users/Δημήτρης%20Μαχαίρας/Desktop/ThesisFiles/Write/Machairas_Dimitrios_374.docx%23_Toc398790649
file:///C:/Users/Δημήτρης%20Μαχαίρας/Desktop/ThesisFiles/Write/Machairas_Dimitrios_374.docx%23_Toc398790650
file:///C:/Users/Δημήτρης%20Μαχαίρας/Desktop/ThesisFiles/Write/Machairas_Dimitrios_374.docx%23_Toc398790651
file:///C:/Users/Δημήτρης%20Μαχαίρας/Desktop/ThesisFiles/Write/Machairas_Dimitrios_374.docx%23_Toc398790652
file:///C:/Users/Δημήτρης%20Μαχαίρας/Desktop/ThesisFiles/Write/Machairas_Dimitrios_374.docx%23_Toc398790653
file:///C:/Users/Δημήτρης%20Μαχαίρας/Desktop/ThesisFiles/Write/Machairas_Dimitrios_374.docx%23_Toc398790654
file:///C:/Users/Δημήτρης%20Μαχαίρας/Desktop/ThesisFiles/Write/Machairas_Dimitrios_374.docx%23_Toc398790655
file:///C:/Users/Δημήτρης%20Μαχαίρας/Desktop/ThesisFiles/Write/Machairas_Dimitrios_374.docx%23_Toc398790657
file:///C:/Users/Δημήτρης%20Μαχαίρας/Desktop/ThesisFiles/Write/Machairas_Dimitrios_374.docx%23_Toc398790658
file:///C:/Users/Δημήτρης%20Μαχαίρας/Desktop/ThesisFiles/Write/Machairas_Dimitrios_374.docx%23_Toc398790659
file:///C:/Users/Δημήτρης%20Μαχαίρας/Desktop/ThesisFiles/Write/Machairas_Dimitrios_374.docx%23_Toc398790660
file:///C:/Users/Δημήτρης%20Μαχαίρας/Desktop/ThesisFiles/Write/Machairas_Dimitrios_374.docx%23_Toc398790661
file:///C:/Users/Δημήτρης%20Μαχαίρας/Desktop/ThesisFiles/Write/Machairas_Dimitrios_374.docx%23_Toc398790662
file:///C:/Users/Δημήτρης%20Μαχαίρας/Desktop/ThesisFiles/Write/Machairas_Dimitrios_374.docx%23_Toc398790663
file:///C:/Users/Δημήτρης%20Μαχαίρας/Desktop/ThesisFiles/Write/Machairas_Dimitrios_374.docx%23_Toc398790664
file:///C:/Users/Δημήτρης%20Μαχαίρας/Desktop/ThesisFiles/Write/Machairas_Dimitrios_374.docx%23_Toc398790665
file:///C:/Users/Δημήτρης%20Μαχαίρας/Desktop/ThesisFiles/Write/Machairas_Dimitrios_374.docx%23_Toc398790666
file:///C:/Users/Δημήτρης%20Μαχαίρας/Desktop/ThesisFiles/Write/Machairas_Dimitrios_374.docx%23_Toc398790667
file:///C:/Users/Δημήτρης%20Μαχαίρας/Desktop/ThesisFiles/Write/Machairas_Dimitrios_374.docx%23_Toc398790668
file:///C:/Users/Δημήτρης%20Μαχαίρας/Desktop/ThesisFiles/Write/Machairas_Dimitrios_374.docx%23_Toc398790669
file:///C:/Users/Δημήτρης%20Μαχαίρας/Desktop/ThesisFiles/Write/Machairas_Dimitrios_374.docx%23_Toc398790670
file:///C:/Users/Δημήτρης%20Μαχαίρας/Desktop/ThesisFiles/Write/Machairas_Dimitrios_374.docx%23_Toc398790672
file:///C:/Users/Δημήτρης%20Μαχαίρας/Desktop/ThesisFiles/Write/Machairas_Dimitrios_374.docx%23_Toc398790673
file:///C:/Users/Δημήτρης%20Μαχαίρας/Desktop/ThesisFiles/Write/Machairas_Dimitrios_374.docx%23_Toc398790674

19

Figure 39. Lab Grades and Comments ... 74

Figure 40. Moss Results ... 75

Figure 41. Assistant's Home Page .. 76

Figure 42. Assistant's Course List ... 76

Figure 43. Assistant's Labs List ... 77

Figure 44. Assistant's Labs Submissions .. 77

Figure 45. Student's Home Page .. 78

Figure 46. Student's Course List ... 78

Figure 47. Course Enrollment .. 79

Figure 48. View My Enrolled Courses Page ... 79

Figure 49. List of Homeworks .. 80

Figure 50. Homework Task .. 81

Figure 51. Partner's Choice .. 81

Figure 52. Pending Status .. 82

Figure 53. Accepted Status .. 82

Figure 54. Compilation Results .. 83

Figure 55. Submissions List of Homeworks ... 84

Figure 56. Database Schema .. 99

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 17:09:12 EEST - 137.108.70.13

file:///C:/Users/Δημήτρης%20Μαχαίρας/Desktop/ThesisFiles/Write/Machairas_Dimitrios_374.docx%23_Toc398790675
file:///C:/Users/Δημήτρης%20Μαχαίρας/Desktop/ThesisFiles/Write/Machairas_Dimitrios_374.docx%23_Toc398790676
file:///C:/Users/Δημήτρης%20Μαχαίρας/Desktop/ThesisFiles/Write/Machairas_Dimitrios_374.docx%23_Toc398790677
file:///C:/Users/Δημήτρης%20Μαχαίρας/Desktop/ThesisFiles/Write/Machairas_Dimitrios_374.docx%23_Toc398790678
file:///C:/Users/Δημήτρης%20Μαχαίρας/Desktop/ThesisFiles/Write/Machairas_Dimitrios_374.docx%23_Toc398790679
file:///C:/Users/Δημήτρης%20Μαχαίρας/Desktop/ThesisFiles/Write/Machairas_Dimitrios_374.docx%23_Toc398790680
file:///C:/Users/Δημήτρης%20Μαχαίρας/Desktop/ThesisFiles/Write/Machairas_Dimitrios_374.docx%23_Toc398790681
file:///C:/Users/Δημήτρης%20Μαχαίρας/Desktop/ThesisFiles/Write/Machairas_Dimitrios_374.docx%23_Toc398790682
file:///C:/Users/Δημήτρης%20Μαχαίρας/Desktop/ThesisFiles/Write/Machairas_Dimitrios_374.docx%23_Toc398790683
file:///C:/Users/Δημήτρης%20Μαχαίρας/Desktop/ThesisFiles/Write/Machairas_Dimitrios_374.docx%23_Toc398790684
file:///C:/Users/Δημήτρης%20Μαχαίρας/Desktop/ThesisFiles/Write/Machairas_Dimitrios_374.docx%23_Toc398790685
file:///C:/Users/Δημήτρης%20Μαχαίρας/Desktop/ThesisFiles/Write/Machairas_Dimitrios_374.docx%23_Toc398790686
file:///C:/Users/Δημήτρης%20Μαχαίρας/Desktop/ThesisFiles/Write/Machairas_Dimitrios_374.docx%23_Toc398790687
file:///C:/Users/Δημήτρης%20Μαχαίρας/Desktop/ThesisFiles/Write/Machairas_Dimitrios_374.docx%23_Toc398790688
file:///C:/Users/Δημήτρης%20Μαχαίρας/Desktop/ThesisFiles/Write/Machairas_Dimitrios_374.docx%23_Toc398790689
file:///C:/Users/Δημήτρης%20Μαχαίρας/Desktop/ThesisFiles/Write/Machairas_Dimitrios_374.docx%23_Toc398790690
file:///C:/Users/Δημήτρης%20Μαχαίρας/Desktop/ThesisFiles/Write/Machairas_Dimitrios_374.docx%23_Toc398790691
file:///C:/Users/Δημήτρης%20Μαχαίρας/Desktop/ThesisFiles/Write/Machairas_Dimitrios_374.docx%23_Toc398790692

20

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 17:09:12 EEST - 137.108.70.13

21

1 Introduction

As the time passes, the number of university students is rapidly increasing, and the

whole procedure of the submissions management is getting much more difficult. The

course professors' have not only to evaluate every submission but also to provide

feedback to the students. The already existed old-fashioned tools such as email, are

not so efficient any more, as both professors and graders waste a lot of their time

searching between the submissions. Even though there are platforms for the

management of the submissions, they are not able to fulfill all the needs of each

user. Such platforms, for example, are Open Courses, Coursera and e-class systems.

As a result, there is the need for software assistance, which will facilitate the whole

submissions management.

Each university department has its own needs, depending on the subject that is

being taught. For example, a computer science department certainly needs web

applications for programming courses, where professors will be able to assign

programming tasks to their students. Students must have the ability to view

professors' assignments, and upload their submissions. Due to the fact that it comes

to programming courses on different programming languages, after submitting their

tasks, students should be able to view compilation results and results from test

cases. Furthermore, thanks to the fact that courses use a variety of agile methods,

students must be able to view other enrolled students so as to become partners

(pair programming), and to submit their assignments as a team. Moreover, since

many students try to copy from each other, it is vital that such an application use a

kind of plagiarism system, which can detect same code parts. As a result, after the

deadline and the submission of the tasks, professors will have the ability to see

copied assignments and assign each submission to a grader for grading and

commenting. Consequently, when grades and comments are ready, professors will

be able to publish these grades to students, who will have the opportunity to view

them.

Unfortunately, an online interactive application (like the one we have just

described) between students and professors does not exist and both professors and

students face some difficulties because of this lack of functionality. On the one hand,

students might send wrong submissions to course professors, and as a consequence,

they will start wondering about submissions grades and comments. On the other

hand, professors have to do many different things on different places. First of all,

they have to get submissions one by one and save them all together, so as to check

later if some of them are copied. Moreover, they have to assign submissions to

graders for grading, and before this to check the partner of each student. These

users are also obliged to create a sharing file, where they should create a submission

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 17:09:12 EEST - 137.108.70.13

22

list and assign a grader to each submission. After this grading procedure is over,

professors should check and publish grades and comments somewhere on a web site

for their students to check. Last but not least, graders should have access to the

corresponding file, and search among the submissions the ones that are assigned to

them for grading.

In conclusion, due to the fact that each user has to do different things on different

places, users usually get confused and waste their time. As a result, not only

professors but also graders have more difficulty in managing students' submissions,

which means that they may make some mistakes on submissions results.

1.1 Thesis Scope

The main scope of this thesis, is to develop a web platform, which can support

programming assignments (and mainly in C programming language) and reduce the

difficulty of submissions management. This web application will consider all the

functionality which was described in the previous paragraph, and will make user's

life much easier. Specifically, we aim at contributing to the development of a web

application, where professors, students and graders will be able to interact with each

other.

More specifically, we develop a web platform, where an administrator can manage

users, courses, course laboratories or labs and course homeworks. First, professors

can create and manage online courses, labs and homeworks. They can also add

private and public test cases for unit testing, which will run after each student's

submission. In addition, a professor is able to set a deadline for each task. When this

deadline comes to an end, he has also the ability to view, of course after running a

script for system plagiarism detection, if there are any copied submissions.

Afterwards, the administrators or professors can assign a grader to each submission,

who must grade and comment the tasks that have been assigned to him. Then,

students will receive immediate feedback and they will have the ability to view their

course grades and comments, as well as their submissions.

So, to cut a long story short, using this web platform, not only are professors and

graders able to do their work more easily and faster, but also students can upload

their submissions more quickly and more safely.

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 17:09:12 EEST - 137.108.70.13

23

1.2 Technologies Used

We have used MVC 5 architecture [1] [2], a generic code framework, which means

that we felt free while writing and editing code. As a result, we had the opportunity

to test and fully develop the desired functionality of our platform. Using MVC 5, we

were also able to use some plug-ins, which have helped us to a great extent. We

have also used Bootstrap 3 framework [3], a framework which is appropriate for

designing easily and rapidly a web application. Additionally, Bootstrap 3 was already

installed, as every MVC new project provides it. We have also developed a SQL

database [4], so as to save and edit application's data. We have also used cygwin [5],

a console which runs shell commands, as well as moss script [6], a script which

checks system plagiarism.

We would like to mention, that we have spent a lot of time using moodle [7], which

is a learning platform designed for the development of e-learning systems. However,

we have come to the conclusion that it was almost impossible to customize our

platform using it. As a result, and since our first try failed, we had to start the web

application development from scratch using MVC .

On the next figure (Figure 1), we intend to display how all these technologies were

used together, so as to develop successfully our web platform.

 Figure 1. Technologies Used

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 17:09:12 EEST - 137.108.70.13

https://docs.moodle.org/27/en/About_Moodle

24

1.3 Thesis Organization

This thesis is organized into seven chapters, including Introduction chapter, as

follows:

 Chapter 2 presents web application used technologies and software. It also

contains details and figures about them.

 Chapter 3 analyzes the web application requirements' analysis. We present

individually each kind of user and its own functionality.

 Chapter 4 describes the design and the implementation of the web platform.

In this chapter, there are also some architecture diagrams of the platform as

well as little code parts.

 Chapter 5 focuses on the implementation results and the deployment of the

work. It also provides a user guide for the platform.

 Chapter 6 discusses the related work.

 Chapter 7 concludes the results of this thesis. There are also some written

thoughts of future work.

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 17:09:12 EEST - 137.108.70.13

25

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 17:09:12 EEST - 137.108.70.13

26

2 Background

This chapter discusses in brief, about the technologies and the architectures used as

a background in our application.

2.1 MVC Architecture

MVC (Model-View-Controller) is an architecture for the development of user

interfaces. This architecture divides the application that is being implemented into

three different but interconnected parts. [2]

2.1.1 Interactions

The MVC architecture consists of 3 main components: the Model, the View and the

Controller. Each component has its own functionality, and the combination of them

is indispensable, so as for an application to be developed.

First, the main component of MVC, called model, mirrors the behavior of the

application. Models, are in fact, classes which represent the data of the application

and use validation logic in order to enforce appropriate rules for this information. In

this part, the user should define the necessary class attributes, which should be

associated with one another. What is more, using a controller, the user is able to

have access to these attributes (which should be public in order to be used). We

would like to mention that controllers are classes that handle incoming browser

requests, get model data, and then set view templates that return a response to the

browser. For instance, on a controller the user can fill information on the model's

attributes and afterwards he can return this data on a View. Views are template files

that the application uses to dynamically generate HTML pages. Using a view, users

have the ability to present the model's data to user interface. On the next figure

(Figure 2), we will display the interaction between the three main components of

MVC.

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 17:09:12 EEST - 137.108.70.13

27

2.1.2 Use in Web Applications

Many years ago, MVC was developed in order to satisfy desktop application needs.
Over the years, this technology has been widely adopted as an architecture for
World Wide Web applications in major programming languages. A great number of
frameworks have been developed that enforce this pattern. These frameworks may
be various but the MVC responsibilities are mainly divided between client and
server. In particular, the client sends either requests or form data to the controller
and then gets a full complete web page (or other type of file) from the view.

2.1.3 MVC Benefits

The use of MVC architecture has a lot of benefits. First, the separation of the three

components, allows the re-use of the web applications. As a result, multiple user

interfaces can be implemented without having thoughts of the codebase. What is

more, the web developers of Models can focus exclusively on the application's logic

implementations, modifications, updates without being concerned about the layout

of the application. Furthermore, class developers can build the classes, while the UI

developers can involve in designing the layout of the application simultaneously,

resulting in interdependence issues and of course time conservation. Last but not

least, a lot of updates on the models and on the controllers can be made without

being visible to users. [8]

Figure 2. MVC Components Interaction

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 17:09:12 EEST - 137.108.70.13

28

2.2 Bootstrap Framework

"Bootstrap is the most popular HTML, CSS, and JS framework for developing

responsive, mobile first projects on the web." [3]

2.2.1 Features

Bootstrap can be used along with the latest versions of all major browsers. It has 3
versions. Since version 2.0 the Bootstrap usage also provides responsive web design.
This means that the layout of web pages adjusts according to the characteristics of
the device used. (desktop, tablet, mobile phone). Moreover, with version 3.0,
Bootstrap adopted a mobile first design philosophy, which gives emphasis to
responsive design by default. As a result, we can easily use it in order to develop web
applications compatible with both desktops and mobiles functionality.

2.2.2 Structure and Function

The main structure consists of 3 parts: The CSS stylesheet, Re-Usable components

and Javascript components.

The CSS stylesheet

Bootstrap has many html classes which are available for the most Html tags. These
classes may give a modern and stylish appearance not only to the text, but also to
the tables and the form fields. In many cases, some rules of these classes are
overwritten by the user, according to the needs of his web application.

Re-usable components

Bootstrap also contains some re-usable components. Such components, for example,
are modern dropdown lists or modern buttons. These elements can be used in many
parts of the project with exactly the same structure and the same calling. The
application developer is also able to format these elements.

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 17:09:12 EEST - 137.108.70.13

29

JavaScript components

Bootstrap also uses plenty of Javascript components, so as to extend the

functionality of some html tags such as, for example, an auto-complete function for

input fields, modal windows, dropdown lists, nav tabs, popover and tooltip

functionality, alert windows, buttons, carousels and collapsing menus.

2.2.3 Usage

The usage of Bootstrap in an HTML page is very simple. The user only needs to
download the bootstrap files and add them to his project. Afterwards, he should link
bootstrap css and js files, so that the user will be able to use them. Moreover, as we
have already noticed, bootstrap rules can be overwritten by the user, according to
his application needs. Each user has the ability to change, for example, the layout
and in some way, the functionality of bootstrap components. In this thesis,
Bootstrap 3 is used for the development of our web application. Many rules, have
also been changed according to the application's functionality and layout.

2.3 Plagiarism Detection - Moss

Moss is a technology, which is able to find every possible code similarity between

programs written in a wide range of programming languages. Moss uses an

algorithm, which is characterized by a really significant improvement, over other

similar functionality's algorithms.

Even though, moss uses a really significant algorithm [9], it is not always capable of

detecting plagiarism. Moss is not able to detect, for example, why some code parts

are similar. Consequently, moss script provides the user with the ability to view the

parts of the code that Moss considers as similar and then to choose about whether it

comes to plagiarism or not.

In conclusion, it is a misuse of Moss to be based only on the similarity scores. These
scores are surely very helpful in order to determine, to some extent, whether some
code pairs are same or not, but that is not enough to prove that it comes to
plagiarism. We present some moss results in subsection 5.4.4.4 Moss Plagiarism on
Figure 40. [6]

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 17:09:12 EEST - 137.108.70.13

30

2.3.1 Languages

Moss provides scripts that allowed to be used in a lot of programming languages. It

can detect code plagiarism in the following languages:

C, C++, Java, C#, Python, Visual Basic, JavaScript, FORTRAN, ML, Haskell, Lisp,
Scheme, Pascal, Modula2, Ada, Perl, TCL, Matlab, VHDL, Verilog, Spice, MIPS
assembly, a8086 assembly, a8086 assembly, MIPS assembly, HCL2.

2.3.2 An Internet Service

Moss script is able to be used as a part of a web application, as it is being provided as

a web service. Moss can be run as a simple web request, which produces HTML

pages listing pairs of programs with similar code. Moss provides the user with the

opportunity to compare similar or same files, as it notices same texts in programs.

Moreover, Moss is able to pass by matches to code, that the user has defined as

shared. [6]

2.3.3 Moss Script Versions and Usage

Moss script is provided thanks to Community Contributions and it is available in

many languages, which all have the same functionality. First of all, a user can run

moss script both on Linux System using Java programming language and PHP

language and on Windows System using C# Programming Language.

The only precondition before a user utilizes the Moss script, is to obtain a moss
account. Then he can use the moss script using the provided moss key.

2.4 SQL

SQL is an indispensable part when it comes to data base applications. Using its
queries, a user can easily create, first of all, the database, its tables and its table
relations. Afterwards, the user can not only insert but also view, update and delete
tables' data. A great number of programming languages are characterized by a
variety of functions, which can execute such queries and get data from the database
or even set data to it. [4]

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 17:09:12 EEST - 137.108.70.13

31

2.5 Cygwin

"Cygwin is UNIX environment working on Microsoft Windows OS, for simulation
environment." [5].

Needless to say, this environment can be easily installed on each and every version

of Microsoft Windows as it is a free and open source software. After its installation,

the user is able to execute Linux Commands, in the same way that he executes them

on a Linux Console. In this thesis, we have mainly used it in order to execute Linux

Commands, such as a gcc command for c file compilation. On the figure (Figure 3),

we display a simple cygwin screen from our computer.

2.6 Development Tools

In this thesis, Visual Studio 2013 is being used so that a web application can be
implemented. In this case, as we have described in previous chapter, MVC 5 is being
used by Visual Studio, due to the fact that it is the latest version of MVC
architectures. We also use SQL Management Studio 2012, in order to create and
manage databases and their contents. This software can be easily connected with
other software, (for example with Microsoft Visual Studio), so that data can be easily
transmitted from one another.

Figure 3. Cygwin window

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 17:09:12 EEST - 137.108.70.13

32

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 17:09:12 EEST - 137.108.70.13

33

3 Requirements' Analysis

Ιn this chapter, we describe the functionality of our web platform. We also display

some UML Diagrams, which we have created using Visual Paradigm software.

The main goal of this application is to simplify the whole functionality of

programming courses administration. First of all, using this platform, administrators

will be able to administer users in different ways. They can simply create a user, or

upload users in groups. Then, they have the ability to view users and edit their data.

Additionally, when they create a new user, his password is saved on the database

using hash code for security reasons. Moreover, this platform make it easier for

professors administer their courses and their content. Using it, professors will be

able to create and administer courses and as a result, their homeworks and labs.

Particularly, professors can create labs and homeworks, where they can also add

new public or private cases, as well as view students' submissions, compilation

results and results of the test cases execution, after the specified deadline. They will

also be able to check each lab and homework in order to be certain whether there is

any plagiarism or not, and then to get and save all submissions. Afterwards,

professors can assign each submission to a grader for grading and commenting. As

for graders, there are also advantages, as they do not have to search the submissions

that have been assigned to them. After entering the platform, they will be able to

view for each homework or lab, only their assigned submissions. They can also see

the grading instructions and afterwards grade their submissions. What is more,

students will have the ability to enroll to courses and view their available homeworks

and labs. They can also choose a partner, and submit their tasks online and within

the deadline, set by professors, without sending their tasks in emails and late.

Afterwards, students will be able to view compilation and test cases results, as well

as submission files. Last but not least, students can check the submission file that

they have sent, and if it is not correct, they can submit it again and view the new

results. In this way, they will be totally sure about their submission without doubting

whether they have submitted the right file or not.

On the next figure (Figure 4), we intend to present a UML Sequence diagram which

depicts the life of a Homework. First, we can see 3 actors (Professor, Grader,

Student) and the Homework object. As we can also observe, each actor sends

messages to the object. In some cases the Homework returns a message to the actor

or sends a message to itself.

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 17:09:12 EEST - 137.108.70.13

34

We would like to mention that this platform has 4 different kinds of users:

ADMINISTRATOR, ASSISTANT or GRADER, PROFESSOR and STUDENT. Every user has

its own functionality and as a result, can perform different actions. What is more,

each user should have his personal username and password, so as to have access to

the platform. On the next sections, we intent to present separately these kinds of

users. All users should first log in on the web application so as to have access to its

functionality.

Figure 4. The Life of a Homework - UML Sequence Diagram

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 17:09:12 EEST - 137.108.70.13

35

3.1 Administrator

First, an administrator has the most powerful role of the application, as he is able to

perform whichever functionality is available on it. In particular, an Administrator can

administer Users, Courses, Labs and Homeworks.

On the next figure (Figure 5), we can see a UML Use Case diagram of administrator.

First of all, we can see the available use cases for him. As we can observe, there are 5

main use cases, and for each and every one of them, there are other use cases,

which extend the main use cases. Particularly, we notice the 5 main use cases, which

are Log In, User Administration, Course Administration, Lab Administration and

Homework Administration. For the second one, for example, we have some

extended use cases, whose names are Create Simple User, Create & Edit Users as

well as, Enable & Disable Users. These actions (use cases) are optional, which means

that an administrator is not obliged to perform them.

Figure 5. Administrator - UML Use Case Diagram

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 17:09:12 EEST - 137.108.70.13

36

3.1.1 User Administration

This kind of user, is able to administer all application users. First of all, not only can

he add a simple user but also Assistants, Professors and Students in groups from .csv

files. Moreover, an administrator has the ability to view and edit users, as well as to

enroll users or unenroll them from the platform. Additionally, due to the fact that a

student can also become an assistant, an administrator is also able to add the

student as an assistant.

3.1.2 Course Administration

A user, who has this role, can create, view, edit and delete courses and their

contents. Furthermore, an administrator can enroll assistants to courses. Afterwards,

he can also view and edit enrolled assistants, professors and students. Last but not

least, such a user can also get and save a course backup.

3.1.3 Lab Administration

An administrator can not only create, view, edit, enable, disable and delete a Lab,

but also, a Lab Section. For each Lab Section he can create, view and delete Test

Cases (Public & Private), which will run after every compilation of a student's

submission. Additionally, an administrator, is able to view and save submissions,

appoint graders for the student submissions, grade and comment submissions and

save or publish in groups grades and comments on .csv or .pdf files. We have made

the decision that submissions should be saved as .zip files, which contain all

submissions and compilation files. Last but not least, an administrator can run moss

script and view its results. Consequently, he will have the ability to view, whether

there are any copied submissions or not. If there are, the administrator is even able

to check the similarities between these submissions.

3.1.4 Homework Administration

Due to the fact that a Homework has the same functionality as a Lab Section, an

administrator can make things here that are exactly similar to the works described in

Lab Administration.

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 17:09:12 EEST - 137.108.70.13

37

3.2 Professor

A Professor has the second most significant role after the Administrator, as both of

them have the same functionality, except for User Administration. As a result, a

professor can administer Courses, Labs and Homeworks.

On the next figure (Figure 6), we can see a UML Use Case diagram of a professor.

First of all, we observe the available use cases for a professor. As we can see, there

are 4 main use cases, which are the same as the 4 of the administrator's use case

diagram. There are also other use cases, which extend the main use cases.

Particularly, we can see the 4 main use cases, which are Log In, Course

Administration, Lab Administration and Homework Administration. For the fourth

one, for example, we have some extended use cases, whose names are Set Graders

to HW Submissions, View & Save Homework Submissions as well as, Create / Edit /

Delete / Enable Homeworks & Test Cases. These actions (use cases) are optional,

which means that a professor is not obliged to perform them. What is also to notice

on the next figure, is that the Lab Administration use case is almost the same as the

Homework Administration use case. This fact does not surprise us, as both of them

perform the same actions.

Figure 6. Professor - UML Use Case Diagram

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 17:09:12 EEST - 137.108.70.13

38

3.2.1 Course Administration

A professor, can create, view, edit and delete courses and their contents.

Furthermore, he can enroll assistants to courses, as well as view and edit enrolled

assistants, professors and students. Last but not least, such a user can also get and

save a course backup.

3.2.2 Lab Administration

A professor can not only create, view, edit, enable, disable and delete a Lab, but

also, a Lab Section. For each Lab Section he can create, view and delete Test Cases

(Public & Private), which will run after each student submission compilation.

Additionally, a user who has the role of a professor is able to view and save

submissions, set graders to submissions, grade and comment submissions and save

or publish, in groups, grades and comments on .csv or .pdf files. We save

submissions on .zip files, which contain all submissions and compilation files. Last but

not least, a professor can run and view moss script and its results. Consequently, he

has the ability to check, whether there are any copied submissions or not. If there

are, the professor is able to view the similarities between the submissions.

3.2.3 Homework Administration

Due to the fact that a Homework has the same functionality as a Lab Section, a

professor can follow the same steps and perform the same works as described in the

chapter of Lab Administration.

3.3 Assistant

An Assistant has the less powerful role of the application, as he can only do minor

works on it. In particular, an Assistant can administer Courses, Labs and Homeworks.

On the next figure (Figure 7), we can see a UML Use Case diagram of assistant. First

of all, we can see the available use cases for an assistant. As we observe, here there

are 4 main use cases, and for each one of them, there are one or two other use

cases, which extend the main use cases. Particularly, we can see the 4 main use

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 17:09:12 EEST - 137.108.70.13

39

cases, which are Log In, Course Administration, Lab Administration and Homework

Administration. For the third one, for example, we have 2 extended use cases, whose

names are View Labs and View/Grade/Save Lab Submissions. It is quite important to

mention once again that these actions (use cases) are optional, which means that an

assistant is not obliged to perform them.

3.3.1 Course Administration

This kind of user can only view the courses he is enrolled in by professors. An

assistant cannot edit any information of the courses, in which he is enrolled, as there

is no need of doing it.

3.3.2 Lab Administration

First of all, such a user, can firstly view Labs, Lab Submissions as well as save, grade

and comment submissions, which are assigned by course professors.

Figure 7. Assistant - UML Use Case Diagram

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 17:09:12 EEST - 137.108.70.13

40

3.3.3 Homework Administration

As we have also mentioned in the part dedicated to the administrator's role, due to

the fact that a Homework has the same functionality as a Lab, an assistant can

perform the same actions as in Lab Administration.

3.4 Student

A Student has a role which is as significant as the role of a Professor. A Student can

view enrolled Courses and participate in Labs and Homeworks.

3.4.1 View Enrolled Courses

A Student can enroll to courses only if he knows the course password. He can also

unenroll from a course as well as view the courses that he has selected.

3.4.2 Lab Participation

The most important fact about this kind of user is that he can view Labs and enabled

Lab Sections. Afterwards, he has to enroll to a section and then to choose a Partner

among the enrolled to the lab section students. Moreover, he can upload his

submission, which will be compiled after uploading, and then view the compilation

and the test cases results. Furthermore, when the course professors publish lab

grades, students are also able to view the submission grade and comments.

3.4.3 Homework Participation

Due to the fact that a Homework has the same functionality as a Lab Section, a

student can perform the exactly same actions as in Lab Participation, apart from

enrolling to a homework, as it is not necessary.

On the next figure (Figure 8), we can see a UML Use Case diagram of a student. First

of all, we can easily observe the available use cases for a student. As we notice, there

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 17:09:12 EEST - 137.108.70.13

41

are 4 main use cases. There are also other use cases, which extend the main use

cases. Particularly, we can see the 4 main use cases, which are Log In, View Courses,

Lab Participation and Homework Participation. For the second one, for example, we

have some extended use cases, whose names are Enroll to Courses & Unenroll from

Courses as well as, View Enrolled Courses. These actions (use cases) are optional,

which means that a student is not obliged to perform them.

Figure 8. Student - UML Use Case Diagram

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 17:09:12 EEST - 137.108.70.13

42

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 17:09:12 EEST - 137.108.70.13

43

4 Design and Implementation

In this chapter, we intend to present the design and the implementation of our

platform. First of all, we will describe the database of the application. Afterwards, we

will discuss the whole structure and implementation of our platform with the help of

figures and code parts.

4.1 Application Database

As it has already been mentioned in previous chapters, we had to develop a

database for our application. The database should be correctly designed and

developed, since our aim is a functional and rapid database without bugs. As we

described in the 2.6 Development Tools paragraph, we use Microsoft SQL Server

Management Studio 2012 for the development of the database, which is really easy

to install. This software is accessible on the website of Microsoft [10] [11].

First of all, the database of our platform contains 33 tables, which are related to

each other. We had to alter these tables a lot of times, as new facts occurred, which

were not previously calculated, while designing the main database structure. This

database was developed from scratch, using SQL queries, in order to create the

tables, the primary and foreign keys and the relations between tables. Additionally,

there are relations between the tables for safety and speed reasons. Not only a

SELECT * ... query is much more quick to run, but also a DELETE ... or UPDATE ...

query is much more safe when table relations exist.

Last but not least, due to the fact that a server is required to have access to the

database, localhost is being used, as it will also be necessary for the implementation

of the web application. Furthermore, we have created for web application needs a

user, whose name is dimimach. On the next figure (Figure 9), we can view these

database tables.

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 17:09:12 EEST - 137.108.70.13

http://www.microsoft.com/en-us/download/details.aspx?id=8961

44

Figure 9. Database Tables

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 17:09:12 EEST - 137.108.70.13

45

4.1.1 Database Schema

A database schema is in fact, a diagram, which depicts application tables, tables

attributes and tables relations. A diagram of our database schema is displayed on

Figure 56, in Appendix B.

4.2 Web Application Implementation

As we have said in previous chapters, we have used Microsoft Visual Studio 2013

Professional in order to implement our web application. This software is available for

downloading on the Microsoft Developer Network website. [12]

4.2.1 Internet Information Services Manager

IIS (Internet Information Services) Manager should be available and enabled on the

operation system or to the server, where the application runs. The next figure

(Figure 10) presents the necessary enabled features, on which IIS Manager runs.

 Figure 10. Internet Information Services

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 17:09:12 EEST - 137.108.70.13

http://msdn.microsoft.com/en-us/library/dd831853.aspx

46

In order to enable IIS Manager, we have to search it in the Control Panel and then to

check all contents from the Internet Information Services folder. After typing and

running IIS on windows search, the result of next figure (Figure 11) is displayed.

Using IIS Manager, a user is mainly able to view its functionality, to restart it and to

view its websites. For the time being, there is only one website, which is the website

of our platform. It is also possible to go through the existed and connected web

applications to web browsers, such as Firefox, Google Chrome and Internet Explorer.

4.2.2 Web Application & Database Connection

After installing Microsoft Visual Studio 2013, the first we have to do in order to

develop the application is to create a new MVC 5 web project. As it comes to a web

project we have to define its url. Using the software (whose function we analyzed in

previous subsection), it is quite simple to define the url and the port on which the

application runs. In our application, the main url is (locally):

http://localhost/UniversityOfThessaly-ProgrammingCourses. The next we have to do,

is to enable the essential plug-ins according to the application needs. [13] We would

also like to mention, that we use many plug-ins and one of the most basic is the

Microsoft ASP.NET Identity Framework. In order to use it, we have to execute

enable-migration command on Nuget Console. Then, after the first user registration,

AspNet membership system tables and models are automatically created.

Figure 11. Internet Information Services (IIS) Manager

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 17:09:12 EEST - 137.108.70.13

http://www.asp.net/identity

47

Afterwards, we have to initialize the connection between the database and the

application. [14] In order to achieve that, we need to find and open web.config file in

our project, so as to create a successful connection. This file is an xml file which

contains xml tags. Among these tags, there is the connectionStrings tag, which

contains the available database connection strings of our application. Consequently,

we have to add our database connection string inside connectionStrings tag. We

would also like to notice that the connection string attribute specifies the following

attributes:

 Data Source: Information for the using SQL Server (in this case is localhost, as

it was mentioned in 4.1 Application Database).

 Initial Catalog: Name of Application Database.

 User id and password: Information of a user, who has full access on the

corresponding database.

 ProviderName: Information for the using Server Type.

As we can see on the next table (Table 1), there are two add-tags inside tag

connectionStrings. The former of the two, is the default one, and the latter of the

two is the new one that we have added. Moreover, DefaultConnection should always

exist, as it is used for Microsoft Identity plug in, not only when its connection string is

same to another already existed but also when it is not. It is also important to say

that, connectionStrings tag can have more than one different connections to

different databases and on different servers. Consequently, the web application is

able, first of all, to connect and then execute different SQL queries on data located in

different databases. In this application, one connection string is enough (except for

the DefaultConnection connectionstring) , as we use only one database for the web

platform.

Table 1. Database Connection String

<connectionStrings>
 <add name="DefaultConnection" connectionString="Data Source=localhost;Initial
Catalog=UniversityOfThessaly; user id=dimimach; password = pass"
providerName="System.Data.SqlClient" />
 <add name="UniversityOfThessaly" connectionString="Data
Source=localhost;Initial Catalog=UniversityOfThessaly; user id=dimimach; password =
pass" providerName="System.Data.SqlClient" />
 </connectionStrings>

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 17:09:12 EEST - 137.108.70.13

48

4.2.3 Application Models

After enabling the connection between application database and application web

platform, the next we have to do, is to develop the appropriate Models, which

represent the database structure. As it has been discussed in previous chapters,

Models, Views and Controllers are connected to each other if a web application is to

have a valid functionality. As a result, a number of classes had to be initialized with

the corresponding database tables and table relations.

A model class has by default, always, the same structure. First, we create a public

class, which has usually the same or similar name to the corresponding database

table. Inside this class, we create the class structure and then we write the class

attributes. Moreover, the corresponding constructors will be developed inside this

class. For example, a model Grade, which represents a Submission Grade, has class

attributes like: ID, GradeValue, Comments, SubmID, GraderID e.t.c.

Apart from this class, we also need to create another class in the model. This class

should be a partial class and should contain the corresponding methods, which do

execute the SQL Queries. Inside these methods, there are a lot of checks, according

to the validity of the result that the query returns. Last but not least, a Controller

which uses the database data, will be able to have access to them, only using these

model methods.

First of all, we have to initialize a connection between the connection string that we

have displayed on Table 1, and our web application. We can see the function that

initializes the connection, on the next table (Table 2).

public static SqlConnection CreateConnectionCalc()
{
 return new
SqlConnection(WebConfigurationManager.ConnectionStrings["UniversityOfThessaly"].Con
nectionString);
}

Table 2. Database Connection Function

Moreover, in a lot of parts of this application, we use many existed model functions

from models, which are installed by default on MVC 5. On the next tables (Table 3

and Table 4), we intend to display some code parts of Grade Model.

public class Grade
 {
 public int ID { get; set; }

 public string GradeValue { get; set; }

 [AllowHtml]

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 17:09:12 EEST - 137.108.70.13

49

Table 3. Grade Model - Attributes

On the previous table, we presented some attributes of the Grade model. On the

next one, we will present a method, which, using an INSERT INTO... SQL Query,

inserts a row in the GRADE table. As we have previously described, we have to

create a partial class, and inside this class we will write the AddGrade function.

public Grade AddGrade(Grade grade, int student1, int student2, int labid)
{
 using (SqlConnection cnn = Manager.CreateConnectionCalc())
 {
 cnn.Open();
 using (var trans = cnn.BeginTransaction())
 {
 try
 {
 SqlCommand cmd = cnn.CreateCommand();
 cmd.Transaction = trans;
 cmd.Parameters.Clear();
 cmd.CommandType = CommandType.Text;
 cmd.Parameters.Clear();
 string sql = string.Empty;
 /*Content Grade*/
 sql = " INSERT INTO GRADES ";
 sql += " (GRADE , COMMENTS , SUBID , GRADERID , ISPUBLISHED , STUDENT1
, STUDENT2 , LABID) ";
 sql += " VALUES ";
 sql += " ('' , '', @subid , @graderid , 0 , @student1 , @student2 ,
@labid) ";
 sql += " SELECT cast(scope_identity() AS int) ";
 cmd.Parameters.Add("@subid", SqlDbType.Int);
 cmd.Parameters["@subid"].Value = grade.SubmID;
 cmd.Parameters.Add("@graderid", SqlDbType.Int);
 cmd.Parameters["@graderid"].Value = grade.GraderID;
 cmd.Parameters.Add("@student1", SqlDbType.Int);
 cmd.Parameters["@student1"].Value = student1;
 cmd.Parameters.Add("@student2", SqlDbType.Int);
 cmd.Parameters["@student2"].Value = student2;
 cmd.Parameters.Add("@labid", SqlDbType.Int);
 cmd.Parameters["@labid"].Value = labid;
 cmd.CommandText = sql;
 SqlDataReader sdr = null;
 int newID = -1;
 sdr = cmd.ExecuteReader();

 if (sdr.Read())
 {
 newID = (int)sdr[0];
 }
 sdr.Close();
 grade.ID = newID;
 if (newID == -1)

 public string Comments { get; set; }

 public int SubmID { get; set; }

 public int GraderID { get; set; }

 }

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 17:09:12 EEST - 137.108.70.13

50

 {
 return null;
 }
 trans.Commit();
 }
 catch (Exception ex)
 {
 grade.ID = -1;
 trans.Rollback();
 }
 }
 }
 return grade;
}

Table 4. AddGrade Model Function

On the previous table, we observe how we can execute a sql query. First of all, we

initialize a connection to the database using the function CreateConnectionCalc(),

which we have already created. Afterwards, we define the parameters for the SQL

query, and then we execute it. We use try...catch functionality, so as to find out

whether there are any exceptions or not and if there are, how to handle them.

We have also created functions for SELECT, UPDATE and DELETE queries, which use

JOIN functionality to a great extend. We will present our application models on the

next figure (Figure 12).

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 17:09:12 EEST - 137.108.70.13

51

4.2.4 Application Controllers

In order to use model functions, we have to create Controllers according to the

models that we have created. For the creation of controllers, we use only C#

programming language, as they are characterized by methods, which can get data

from html pages or set data on them. These functions are called ActionResult

methods and they can mirror Views or simple functions, which have no Views. Inside

these functions, we create model objects and we use their attributes and their

functions so as to return application data on html pages. As we have already noticed,

on controllers, we can both get and set data, not only from Models but also from

html pages (Views). For example, there are a lot of times, that we get data from html

Figure 12. Application Models

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 17:09:12 EEST - 137.108.70.13

52

forms and then we post it to ActionResult methods. These methods may call other

functions, which we have initialized on application models. On the next table (Table

5), we can see a Post ActionResult method, which adds a new grade on the database.

[HttpPost]
[ValidateInput(false)]
[Authorize(Roles = "ADMIN, ASSISTANT,PROFESSOR")]
public ActionResult AddGrade(Grade grade, FormCollection formcollection)
{
 Grade newGrade = new Grade();
 int gradeid = Convert.ToInt16(formcollection["gradeid"]);
 int labid = Convert.ToInt16(formcollection["labid"]);
 grade.ID = gradeid;
 newGrade = m.UpdateGrade(grade);
 if (newGrade.ID != -1)
 {
 ViewBag.Success = "You have successfully graded your submission";
 }
 else
 {
 ViewBag.Success = "Something was wrong.";
 }

 ViewBag.LabID = labid;
 ViewBag.Gradeid = gradeid;
 return View(grade);
}

Table 5. AddGrade ActionResult Method

On the previous table, we can see AddGrade Action Result and some C# objects,

which we need in order to insert the grade on the database. It is also obvious, that

this method can only be used by the ADMIN, ASSISTANT and PROFESSOR roles. We

can also see, that the return type of this ActionResult is a View(), and inside this

return type, we return a Grade object. This means, that we must declare the model

on the corresponding view. On the next figure (Figure 13), are displayed the

application Controllers.

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 17:09:12 EEST - 137.108.70.13

53

Furthermore, we have paid much attention to the controllers functionality, as we

use a lot of functions which create and edit files, folders, processes and relative

paths. For example, in order to fulfill the whole compilation and moss functionality,

we had to create and write the appropriate commands on batch files. We intend to

analyze the Compilation functionality in 4.2.6 Compilation & Testing Functionality

and the Moss functionality in 4.2.7 Moss Functionality.

Figure 13. Application Controllers

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 17:09:12 EEST - 137.108.70.13

54

4.2.5 Application Views

An ActionResult Method has usually one corresponding View, which displays

whatever the ActionResult function returns. If this method returns a view, which has

a model object as parameter, then we must declare it at the beginning of the View

file. As a result, we will be able to use the returning data of C# on the view page,

which is an html page. Consequently, we will be able to write C# code on html code.

In Appendix A, we can see the code of the AddGrade View.

On the next figure (Figure 14), we present the folders, which contain the application

Views.

Figure 14. Application Views

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 17:09:12 EEST - 137.108.70.13

55

4.2.6 Compilation & Testing Functionality - Security Considerations

The compilation functionality is a very significant part of our web platform. In

particular, we write the gcc command with its appropriate parameters, which will

compile the submission file for errors and warnings, whose results we write in a .txt

file. If the compiled file has no errors, we get the executable file, and for every public

and private case, we write an executable command using the corresponding

command line. Moreover, we also write test case results in .txt files. In order to

check the similarity of the results between the output files that the professor has

given while uploading the test case and the files, where we have saved the results of

the submission test cases, we use diff Linux command. Using this command, we are

able to view, whether the results are the same or not. After saving these commands

in the batch file, we run it using a C# process and then we get the corresponding

results. Last but not least, due to the fact that we do not know what kind of code we

compile and run, we follow some security rules for the whole compilation

functionality. In order for our application to be safe from runtime errors, we compile

each submission on a specific folder, which is out of our application folders.

Afterwards, as it comes to executable files from other users, and we are not able to

know whether they are dangerous for the functionality of our platform or not, we

create a jail directory for the executables, so that they do not have access outside it.

Additionally, we enforce file size quotas, so that the execution does not fill the disk.

There is also a watchdog timer that kills the process if it runs for too long. Then, if

everything is all right, we copy the compilation files from this folder to our

application folders, so as for professors, graders and students to have access to their

results.

4.2.7 Moss Functionality

The moss functionality is another very significant part of our web platform. First, we

execute moss script, which we have already saved on a specific folder of our

platform. Then, we save the url, that the command returns, in a .txt file. Afterwards,

we rip Moss site, using wget command, with its parameters and the url, written on

the previous .txt file. In conclusion, we save moss results on our platform, as they are

available online only for 20 days, and then, they are deleted.

On the next table (Table 6), we can see how we start a process, which runs a batch

file. The batch file contains either compilation or moss commands.

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 17:09:12 EEST - 137.108.70.13

56

System.Diagnostics.Process process = new System.Diagnostics.Process();
System.Diagnostics.ProcessStartInfo startInfo = new
System.Diagnostics.ProcessStartInfo();
startInfo.WindowStyle=System.Diagnostics.ProcessWindowStyle.Hidden;

... we write here code for the batch file

startInfo.FileName = "compilationfile.bat";
startInfo.WorkingDirectory = path;
process.StartInfo = startInfo;
process.Start();

Table 6. Process Run

As we can see, we must first create the batch file, then write in it what is necessary

and afterwards, set the relative path, where the server must run this file. After

starting the process, which executes the batch file, we have to check when the

process exits and then to see the results.

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 17:09:12 EEST - 137.108.70.13

57

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 17:09:12 EEST - 137.108.70.13

58

5 Deployment and Results

In this chapter we intend to discuss the deployment and the results of our web

platform, as a user guide.

5.1 User Interface Model

First, the screen of our platform is divided into 2 panels. On the left panel, we have

the user's menu and on the right panel we have the user's main work area.

Moreover, we follow a systematic color coding on our buttons. A yellow button

means that the user should do something (should click on it), a green button means

that the user has already done it and a gray button means that the user is not

permitted to perform an action.

5.2 User Login

First, a user should log in on the web application so as to have access to the

functionality of his role. So he must log in using his credentials, which were given by

the web application administrator. On the next figure (Figure 15), we can see how a

user can log in on our web application, using the log in form.

Figure 15. Log In - Form

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 17:09:12 EEST - 137.108.70.13

59

What we can easily notice on the previous figure is that the user should choose a

category so as to log in on the application. If the user gives wrong credentials, or if

he does not choose the correct category, an error message will be immediately

displayed on his screen.

5.3 Administrator's Panel

On this section we present the administrator's functionality. We start right on with

the administrator's home page.

5.3.1 Administrator's Home Page

After an administrator user logs in on this web application, he will see the

administrator's home page, which is displayed on the next figure (Figure 16).

Figure 16. Administrator's Home Page

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 17:09:12 EEST - 137.108.70.13

60

On this page, an administrator can see lists of the available actions according to his

role. On the left side of the screen, there is a menu presenting his role's available

actions. As we can see on the top menu panel, an administrator also has the

opportunity to change his password.

5.3.2 Create User

An administrator can create a new application user. First, he has to give the

username and the password of the user, afterwards to choose the user's role and at

the end to fill in the user's personal data. In case that a username already exists, an

error message informs the administrator so that he can change it. On the next

figures (Figure 17, Figure 18 and Figure 19) we can see how an administrator can add

a new user.

On the previous figure, we had already a user with the name dimimach, so we had to

change the username. Consequently, after filling in the new data and clicking on the

Figure 17. User Registration

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 17:09:12 EEST - 137.108.70.13

61

Register button, the administrator gets the results of Figure 18, and he can choose

the role of the user.

After choosing the role, the administrator has to enter the user's personal data, as it

is presented on the next figure (Figure 19).

If there are no exceptions, after registering, the new user has successfully enrolled in

our application, and a success message is immediately displayed on the

administrator's screen.

Figure 18. Role Choice

Figure 19. User's Personal Data

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 17:09:12 EEST - 137.108.70.13

62

5.3.3 Create Assistants, Professors and Students in Groups

Due to the fact that an administrator is not able to save new entries one by one, an

Administrator can add all users (Assistants, Professors, Students) either individually

or in groups, using .csv files. When it comes to groups, he must follow the

instructions concerning the file structure. On the next figure (Figure 20), we can see

such a .csv file, which includes the professors' data, and on Figure 21 how an

administrator can upload professors on our web application.

Figure 20. Professors' Data .csv File

Figure 21. Upload Professors using .csv File

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 17:09:12 EEST - 137.108.70.13

63

Additionally, we would like to mention that we always check the content of the file

before adding users on our platform. For example, if some same usernames have

been chosen, we display to the administrator a message with the already existing

usernames. If everything is ok, the administrator will be redirected to the View Users

page, where he will be able to view and edit the user's information and roles. We

can see the View Users page on next figure (Figure 22).

Last but not least, due to the fact that a professor can administer courses, labs and

homeworks the same way an administrator does, we display their functionality in 5.4

Professor's Panel.

5.4 Professor's Panel

On this section we will present the professor's functionality. This functionality can

also be performed by an administrator. We start with professor's home page.

Figure 22. Application Users

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 17:09:12 EEST - 137.108.70.13

64

5.4.1 Professor's Home Page

After a professor user logs in on the web application, he will see the professor's

home page, which is displayed on the next figure (Figure 23).

On this page, a professor can see lists of the available actions for him according to

his role. On the left side of the screen, there is a menu displaying the role's available

actions. As we can see on the top menu panel, the professor user can also change his

password.

5.4.2 Create Course and Edit Course Information

A professor can create and edit courses. He should first give some information about

the course, such as a Name, a Code and a Password. On the next figure (Figure 24),

we can see how a professor fills in the information during the creation of the course .

Figure 23. Professor's Home Page

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 17:09:12 EEST - 137.108.70.13

65

After the creation of the course, the professor will be redirected to the View Courses

page, where he can see which courses he manages. Furthermore, on this page the

professor can edit course information as well as the information of enrolled

assistants, professors and students. He is not only able to add new labs or

homeworks for the course, but he can also retract the course or even delete it. But if

a professor is not the creator of the course, he cannot edit either the course

information or the professors who manage it and of course, he cannot delete the

course. On the next figure (Figure 25), we can see the courses list of a professor.

The corresponding options for each course are being presented in each table row.

First, as we have previously mentioned, a professor is able to edit the professors

who manage the course. On the next figure (Figure 26), we will display this

procedure.

Figure 24. Course Creation

Figure 25. Professor's Course List

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 17:09:12 EEST - 137.108.70.13

66

A professor is able to edit in the same way enrolled assistants and students. He is

also able to change the course information, as we can see on the next figure (Figure

27).

Figure 26. Edit Professors

Figure 27. Edit Course Information

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 17:09:12 EEST - 137.108.70.13

67

Such a user can also delete the course as well as add and edit new labs and

homeworks. He can also get a course backup as a zip file, as can be seen on the next

figure (Figure 28).

5.4.3 Create Labs and Homeworks

On this section we will present the labs and homeworks administration. Due to the

fact that both of them have the same functionality, we will present it at the same

time.

First of all, professors should first choose the course and then fill in some

information about the lab or the homework. On the next figure (Figure 29), we can

see how professors can fill in information about a lab.

Figure 28. Get Course Back Up

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 17:09:12 EEST - 137.108.70.13

68

5.4.3.1 Lab Section Creation

After entering the information concerning the lab, the professor has to create some

sections for the week labs. The user is not obliged to do the same when it comes to

homeworks. On the next figure (Figure 30), we present the creation of a course lab

section.

Figure 29. Create Course Lab

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 17:09:12 EEST - 137.108.70.13

69

After saving the changes, the professor has the opportunity to create another lab

section and view all of them together. On the next figure (Figure 31), we can view a

list of the sections of a lab.

Figure 30. Lab Section Creation

Figure 31. Lab Sections List

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 17:09:12 EEST - 137.108.70.13

70

As we can see on the previous figure, we can view, edit, delete, enable the section,

as well as add and view private and public test cases. As can also be seen, each

section has its own public and private cases. A student is able to view the public

cases, only after they are enabled by the professor.

5.4.3.2 Lab Section Enabling

First of all, a Professor has to enable the lab sections of every lab and afterwards the

whole lab. Each lab section will be visible to enrolled students, for the time that the

professor has defined while creating it, and only if both lab and lab section are also

enabled. In order to enable a lab section, the professor has to press the icon that

looks like a yellow eye. We can easily notice it on the previous figure (Figure 31).

After enabling it, the eye will turn green. A Professor has to follow exactly the same

steps for the corresponding lab.

5.4.3.3 Public and Private Test Case Creation

On the next figure (Figure 32), we can see how a professor can add a new public

case.

Figure 32. Create Public Test Case

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 17:09:12 EEST - 137.108.70.13

71

As can be seen, we give instructions to professors on how to write command line

and also the ability, whether to make it visible for students to have access on the

output file or not. We can create another test case like on lab sections, or view the

public test cases for these sections and edit them. Last but not least, we make

exactly the same actions, when it comes to a private test case, apart from the

visibility of output file. Lab section private cases and its contents, are not visible to

students as public cases. On the next figure (Figure 33), we display a list with public

test cases and their options.

5.4.4 Lab and Homework Administration

Course professors have the ability to edit and delete labs and homeworks the same

way that they edit and delete courses. They can also create and view lab sections

and their contents, get grades as .csv and .pdf files, view and get submissions as .zip

files, set graders to submissions, publish grades to students and run moss script. On

the next figure (Figure 34), we present a list of labs and their actions.

Figure 33. Public Test Cases List

Figure 34. Labs List

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 17:09:12 EEST - 137.108.70.13

72

5.4.4.1 Get Submissions

As we said before, professors are able to get submissions on .zip files. On the next

figure (Figure 35), we can see how the user gets submissions, simply by pressing the

download button.

Figure 35. Get Submissions on .zip File

5.4.4.2 Assign Graders to Submissions

Professor can also view the submissions one by one and set a grader for them. He

can achieve it by pressing submissions button. On the next figure (Figure 36), we can

see a submission list.

Figure 36. Lab Submissions List

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 17:09:12 EEST - 137.108.70.13

73

On this list, the professor can see whether the compilation has been successful or

not, since the results are being displayed beside the download button. He can also

download every submission, as well as set a grader, simply by clicking on the head

button. He can also see whether the grader has graded the submission or not. On

the next figures (Figure 37 and Figure 38), we can see how a professor chooses a

grader, and how he can view grader's grades and comments.

Last, a professor is also able to edit the submissions grades and comments before

publishing them.

Figure 37. Grader Choice

Figure 38. Submission Grade and Comments

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 17:09:12 EEST - 137.108.70.13

74

5.4.4.3 Publish and Get Grades

Professors must at first, publish lab grades and afterwards, get grades on files. They

can publish grades by pressing tick button. When grades are not published, this

button is yellow, otherwise is green. On the next figure (Figure 39), we present some

lab grades on a .pdf file.

5.4.4.4 Moss Plagiarism

As we have analyzed in previous chapters, the professors should also be able to

detect any plagiarism, running moss script. After having run it, we save and present

the moss results on another browser tab. Moreover, the professors can run moss

script simply by pressing the play button, after the corresponding submissions

deadline. On the next figure (Figure 40), we can see some moss results of a lab.

Figure 39. Lab Grades and Comments

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 17:09:12 EEST - 137.108.70.13

75

Similarly, professors can perform exactly the same actions for homeworks and get

the corresponding results. On the next section, we will describe how graders can

administer our platform.

5.5 Assistant's Panel

On this section we will present the assistant's functionality. We start with the

presentation of an assistant's home page.

5.5.1 Assistant's Home Page

After an assistant logs in on the web application, he will see the assistant's home

page, which is being displayed on the next figure (Figure 41).

Figure 40. Moss Results

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 17:09:12 EEST - 137.108.70.13

76

As we can see, an assistant can view courses, as well as view and grade lab and

homework submissions.

5.5.2 Enrolled Courses

Only the course professors can enroll an assistant in a course or unenroll him. On the

next figure (Figure 42), we can see an assistant course list.

In this list, an assistant can view the lab or homework submissions, which he must

grade.

5.5.3 Lab and Homework Administration

An assistant is able to view only the lists of labs and homeworks of the courses in

which he is enrolled. Due to the fact that the lab administration is the same as the

homework administration, we have reached the decision to present them together.

On the next figure (Figure 43), we can see the list of course labs and on figure (Figure

44) the list of the submissions, that the assistant has to grade. Assistants are also

able to see whether the submission has compilation errors or not, to download

submission files and to see the instruction file, which the course professors have

certainly uploaded while creating the corresponding lab.

Figure 41. Assistant's Home Page

Figure 42. Assistant's Course List

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 17:09:12 EEST - 137.108.70.13

77

5.6 Student's Panel

On this section we will present the student's functionality. We start with the

student's home page.

5.6.1 Student's Home Page

After a student logs in on the web application, he will see the student's home page,

which is being displayed on the next figure (Figure 45).

Figure 43. Assistant's Labs List

Figure 44. Assistant's Labs Submissions

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 17:09:12 EEST - 137.108.70.13

78

We can easily notice that a student can view courses and enroll to them, as well as

view and submit lab and homework assignments.

5.6.2 Course Enrollment

Students are able to enroll to courses and unenroll from them. In order for a student

to enroll to a course, he has to know the course password, which is provided by

course professors. On the next figure (Figure 46), we can see the list of the courses,

in which a student can enroll or unenroll from.

If a student wants to enroll to a course, he should click on the option "Enroll to

Course" for the corresponding course. Then he must insert the course password, as

we can observe on next figure (Figure 47).

Figure 45. Student's Home Page

Figure 46. Student's Course List

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 17:09:12 EEST - 137.108.70.13

79

If the student gives a wrong password, an error message will be immediately

displayed on his screen. Otherwise, he will be redirected to his View My Enrolled

Courses page. We can see this page on the next figure (Figure 48).

Figure 47. Course Enrollment

Figure 48. View My Enrolled Courses Page

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 17:09:12 EEST - 137.108.70.13

80

5.6.3 Assignment Submission

After enrolling in a course, students are able to view the course labs and

homeworks. On the next figure (Figure 49), a list of homeworks is being displayed.

The students can choose and view one lab or homework from the previous list. It is

vital that they enroll to an available section, when it comes to a lab . Even if they

simply want to view the available homeworks and the corresponding task, these are

options which must be enabled by the professor. Afterwards, if they have to work in

pairs, they have to choose a partner, solve and submit their tasks, and view the

compilation results of their assignment. Additionally, they certainly have the ability

to view the test cases' results.

On the next figure (Figure 50), we can see how a lab or homework task looks like and

how a student can get information about its task.

Figure 49. List of Homeworks

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 17:09:12 EEST - 137.108.70.13

81

As we can see, students can see not only the tasks, but also the available public test

cases. By clicking on the face button, they are able to see all the available partners

and choose one. On the next figure (Figure 51), we can see how a student can send a

request to another enrolled student in order for them to become partners. When it

comes to lab sections, both of them, should be enrolled in the same section.

Figure 50. Homework Task

Figure 51. Partner's Choice

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 17:09:12 EEST - 137.108.70.13

82

The student who receives a request can accept or reject it. We actually have to

notice that there are 3 available status for this case: Accepted, Rejected and Pending.

The Accepted status means that the latter of the two has accepted the request that

the former has sent and that they have become partners. Moreover, the Rejected

status means that the students have not become partners, since the receiver has

rejected the request. Furthermore, the Pending status means that the student has

not yet accepted or rejected the request. On the next figures (Figure 52 and Figure

53), we can see a Pending status and how the status changes when the student

accepts the request.

After accepting the request, one of the two partners must submit their assignment.

Moreover, the students can replace the task that they have submitted simply by

submitting a new one on the deadline. Last but not least, each time that they submit

their assignment, the old one is deleted. On the next figure (Figure 54), we can see a

submission page with results, after the submission of an assignment.

Figure 52. Pending Status

Figure 53. Accepted Status

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 17:09:12 EEST - 137.108.70.13

83

After submitting their assignments, the students are able to see and download the

results of their submission and the results of the test cases.

Figure 54. Compilation Results

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 17:09:12 EEST - 137.108.70.13

84

5.6.4 Submission Grade and Comments

When the deadline is over, the graders grade and comment on the students

submissions. Then the professors publish grades and as a result, the students can

view their grades and comments. Due to the fact that they have no access to the

submission page, since the deadline is already over, they can see the submission file

and the results on another page, which is called Homework or Lab Submissions. On

the next figure (Figure 55), we view how students can see their grades. By clicking on

the comments button, they can also see the submission comments.

Figure 55. Submissions List of Homeworks

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 17:09:12 EEST - 137.108.70.13

85

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 17:09:12 EEST - 137.108.70.13

86

6 Related Work

In this chapter, we present some indicative works, which are related to ours. We

divide these works into 4 main categories: e-learning platforms, plagiarism detection

systems online, compilation tools and automated testing systems.

6.1 E-learning Platforms

Universities often use e-learning platforms, which are complete course management

systems that support asynchronous eLearning services using a simple web browser.

The goal of such platforms is the incorporation and the constructive use of the

Internet and web technologies in the teaching and learning process. They support

the electronic management, storage and presentation of teaching material. Such

systems operate independently of the spatial and time limiting factors of

conventional teaching and as a result they create the necessary conditions for a

dynamic teaching environment. [15]

Despite the fact that such applications provide a variety of functionality, they are not

customized for programming assignments. On such platforms, for example,

professors are able to create new courses and assign new homeworks or

laboratories to their students, but they cannot upload programming tasks, whose

submissions will be compiled online. As a result, when it comes to programming

assignments, in order for professors to test them, they have to compile them one by

one. Furthermore, these e-learning platforms do not allow the professors to view

any plagiarism reports concerning similar or same submissions. Consequently,

professors must collect all the submissions and save them in a local folder, which

they then have to check for any same or similar code parts, by running, for example,

moss script. Such platforms are, for example, e-class [15] and Blackboard [16]. On

both of them, professors can grade students' submissions and write some feedback

about them, which the students can directly view. Even though the professors have

the ability to easily grade and comment, these platforms do not provide them the

option of choosing for each submission a grader, who would grade and comment the

submission. As a consequence, they have to grade all submissions by themselves.

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 17:09:12 EEST - 137.108.70.13

87

6.2 Plagiarism Detection Systems

A great number of Plagiarism Detection tools are available online. Some of them are

free but the most of them are commercial. These systems are able to detect

plagiarism among uploaded files, as well as between uploaded files and the web.

The most of them provide a plagiarism percentage number.

First of all, Chimpsky [17], is a system, which can detect either plagiarism between

text documents (DOC, DOCX, WPD, RTF, ODT e.t.c.) and content which is available

online on the web, or among uploaded documents, which can be not only

documents, but also programs in C, Java, Pascal, Modula-2, Miranda, and Lisp. This

tool uses SIM, which is a similarity tester software for uploaded documents, and

Google ajax api, when it comes to content which is available online on the web. This

tool is free and a user can use it after creating a free account. The user is also able to

upload a template file, whose content will not be checked for plagiarism. Although

Chimpsky allows the users to upload all files as a .zip file, some browsers do not

support it. Furthermore, this tool does not support files, that contain more than

5000 words. We should also mention that the number of tasks for each user is also

limited.

Another plagiarism detection system is seesources.com [18]. This tool detects

plagiarism between text documents and content which is available online on the

web. Users are able to use it for free, and in addition, the program does not need to

be installed in their computer. The maximum number of words per document is

1000 and the size of the document must be less than 300MB. The users can only

upload one document at a time, and if it is a bit big, the functionality of the system is

too slow. The Plagiarism Checker has a functionality quite similar to seesources.com.

PlagTracker [19] is another significant plagiarism system. It is actually a commercial

tool which has 4 available user roles: Students, Teachers, Publishers and Site Owners.

This system is quite fast and easy to use, but a user can use it only after obtaining a

license. First, students are able to detect cases of plagiarism, so as for their tasks to

be safe. They can also check if there are any syntax and grammar mistakes so they

can correct them. Moreover, teachers are able to find out whether there are any

problems concerning their students' tasks or not while publishers can check if their

files are ready and safe before publishing them. Additionally, the site owners can

check if the written material on their web site is unique or if somebody have copied

them.

Another very useful commercial tool is Turnitin [20]. This tool not only manages

submissions but also evaluates the students' papers online. It also provides its users

the ability to detect plagiarism. What is more, users are also able to get an originality

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 17:09:12 EEST - 137.108.70.13

88

report, that is being immediately generated, and to grade online. As we have already

mentioned, due to the fact that it comes to a commercial tool, a user must always

have an account in order to use it.

Last but not least, Ephorus [21] is another commercial web system for plagiarism
detection, that requires no installation. This system allows its user to upload and
check a great number of documents at the same time. Afterwards, it sends a report
to the user via email. Ephorus can rapidly detect any similarities between uploaded
files and content which is available online on the web or works previously submitted
on the system. It can also detect similarities between the user's files and files that
other enrolled users have submitted. This tool is also suitable for teachers who want
to check their students' submissions for plagiarism however they have no free time
to check them one by one. Additionally, Ephorus can also be used for examination
boards, directors and ICT workers.

6.3 Online Compilation Tools

Apart from e-learning platforms, there is a also plenty of tools, which provide the

ability to their users to check whether their program has any compilation warnings

and errors or not. Needless to say on these tools, users have to write their code on

an editor and then press the compilation button in order to view whether there are

any compilation warnings and errors or not. Such tools, for example, are

compileonline.com [22], onlinecompiler.net [23], ideone.com [24] and codepad [25].

Most of them provide their users the ability to choose from a wide variety of

programming languages, the one that they used while programming. As a result, the

program will be compiled according to the data of the programming language. It

should be mentioned that most of these systems enable their users to write some

input test cases, as well as to get the source code file and the executable one.

6.4 Automated Testing Systems

Online automated testing systems check whether the results between the output

files of the test cases and the output files of the user test cases results are the

desirable or not. One significant automated testing system is ATS [26]. ATS is a

Python-based tool which is used for automating the running of tests of an

application. This tool runs the available tests, and afterwards, it creates a log file,

which describes the corresponding results. Moreover, this system is free and a user

is able to download and use it from its web page.

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 17:09:12 EEST - 137.108.70.13

89

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 17:09:12 EEST - 137.108.70.13

90

7 Conclusions

In this thesis we have tried to develop an interactive web platform, which can

support programming assignments (in C programming language) in university

courses. As the number of university students is rapidly increasing, the whole

procedure of the submissions management is getting much more difficult. The

already existing old-fashioned tools such as email, are not so efficient any more.

Moreover, since it is a rather common phenomenon that many students try to cheat

and copy from each other, it is vital that professors use a kind of plagiarism system,

which will detect the same code parts. This procedure is very difficult when it comes

to a large number of submissions.

We have spent a lot of time using moodle [7], however, we have found out that this

software was not actually helpful as it was quite away from the customization of our

platform. As a result, and since our first try failed, we had to start the web

application development from scratch. This means, that we had to be much more

cautious, while we were searching for an appropriate development software for our

application. We finally chose the MVC 5 architecture [2] [1]. MVC 5 has actually been

proved much more efficient and helped us develop our platform, as it has much

more benefits in comparison to moodle software.

So, to cut a long story short, we managed to develop a web platform, where there

are 4 kinds of users: Administrator, Professor, Assistant or Grader and Student. Each

kind of user can administer courses, labs and homeworks in his own way, apart from

the administrator, who can also administer users. In this version, we have developed

the platform so as to run only for C programming language. Moreover, by using our

platform, not only professors but also graders will have less workload concerning

submissions management, as they can check their students submissions much

easier. Furthermore, professors can also view any cases of plagiarism by pressing

only one button, and without even organizing the students submissions in folders.

Additionally, graders can see only their assigned submissions without wasting their

time searching among all submissions. Students can view compilation and test cases

results right after submitting their assignments and as a result, they are able to check

whether they have sent the right submission or not. Last but not least, a future plan

is to make this platform also run and for other programming languages, such as C++,

Java or C#, which a professor will select when he creates a new course.

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 17:09:12 EEST - 137.108.70.13

91

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 17:09:12 EEST - 137.108.70.13

92

Bibliography

[1] "A brief history of Asp.Net MVC framework," Dot Net Tricks, [Online]. Available:

http://www.dotnet-tricks.com/Tutorial/mvc/XWX7210713-A-brief-history-of-

Asp.Net-MVC-framework.html.

[2] A. Leff and J. Rayfield, "Web-application development using the

Model/View/Controller design pattern," in Proceedings of the EDOC '01. Fifth

IEEE International in Enterprise Distributed Object Computing Conference,

Seattle, WA, 2001.

[3] "Bootstrap," Mark Otto (mdo) & Jacov (fat), [Online]. Available:

http://getbootstrap.com/.

[4] F. Ju, L. Guoliang and Z. Lizhu, "Interactive SQL query suggestion: Making

databases user-friendly," in Proceedings of the 2011 IEEE 27th International

Conference in Data Engineering (ICDE), Hannover, 2011.

[5] A. Yoshizaki and N. Shimizu, "Development of educational material for real-time

operating system," in Proceedings of the 2012 International Conference in

Computing, Electronics and Electrical Technologies (ICCEET), Kumaracoil, 2012.

[6] "A System for Detecting Software Plagiarism," Moss - Stanford University,

[Online]. Available: http://theory.stanford.edu/~aiken/moss/.

[7] "About Moodle," Moodle, [Online]. Available:

https://docs.moodle.org/27/en/About_Moodle.

[8] "Benefits of MVC pattern," CareerRide.COM, [Online]. Available:

http://www.careerride.com/MVC-benefits.aspx.

[9] S. Schleimer, D. Wilkerson and A. Aiken, "Winnowing: Local Algorithms for

Document Fingerprinting," in Proceedings of the 2003 ACM SIGMOD

international conference on Management of data, San Diego, 2003.

[10] "Microsoft SQL Server Management Studio Express," Microsoft Download

Center, [Online]. Available: http://www.microsoft.com/en-

us/download/details.aspx?id=8961.

[11] "How to install SQL Server 2012 Management Studio Express on Windows 7 PC

and Create a Local SQL Server Database," Perficient, [Online]. Available:

http://blogs.perficient.com/ibm/2012/11/02/how-to-install-sql-server-2012-

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 17:09:12 EEST - 137.108.70.13

93

management-studio-express-on-windows-7-pc-and-create-a-local-sql-server-

database/.

[12] "Welcome to Visual Studio 2013.," Microsoft Developer Network, [Online].

Available: http://msdn.microsoft.com/en-us/library/dd831853.aspx.

[13] "Deploy a Secure ASP.NET MVC 5 app with Membership, OAuth, and SQL

Database to an Azure Website.," Microsoft Azure, [Online]. Available:

http://azure.microsoft.com/en-us/documentation/articles/web-sites-dotnet-

deploy-aspnet-mvc-app-membership-oauth-sql-database/.

[14] R. Pranav, R. Anderson, T. Dykstra and J. Galloway, "Introduction to ASP.NET

Identity.," 2013.

[15] "Open eClass - Asynchronous eLearning Platform," [Online]. Available:

http://eclass.chios.aegean.gr/.

[16] "Blackboard," Blackboard, [Online]. Available:

http://uki.blackboard.com/sites/international/globalmaster/.

[17] M. Palmer, "Chimpsky plagiarism detection," University of Waterloo, [Online].

Available: http://chimpsky.uwaterloo.ca/.

[18] "Seesources.com," PlagScan, [Online]. Available:

http://www.plagscan.com/seesources/.

[19] "PLAG TRACKER," [Online]. Available: http://www.plagtracker.com/.

[20] "Turnitin," [Online]. Available: http://turnitin.com/.

[21] "Ephorus," [Online]. Available: https://www.ephorus.com/.

[22] "compile online com," [Online]. Available: http://compileonline.com/.

[23] "Online Compiler .net," [Online]. Available: http://www.onlinecompiler.net/.

[24] "ideone.com," [Online]. Available: http://ideone.com/.

[25] "codepad," [Online]. Available: http://codepad.org/.

[26] "Automated Testing System (ATS)," Google Project Hosting, [Online]. Available:

https://code.google.com/p/ats/.

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 17:09:12 EEST - 137.108.70.13

94

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 17:09:12 EEST - 137.108.70.13

95

Appendices

Appendix A

On this appendix, we present and describe a table (Table 7) which presents a view.

@model UniversityOfThessaly.Models.Grade

@{
 ViewBag.Title = "Add Grade";
}

<div class="row">
 <div class="col-sm-3">
 @Html.Partial("_Menus")

 </div>
 <div class="col-sm-9">
 @if (string.IsNullOrEmpty(ViewBag.Success))
 {
 Please enter grade and comments for the
submission.
 using (Html.BeginForm("AddGrade", "labs", null, FormMethod.Post, new {
id = "AddGrade" }))
 {
 @Html.Hidden("gradeid", (int)ViewBag.Gradeid)
 @Html.Hidden("labid", (int)ViewBag.LabID)

 <div class="row form-group marTop20">
 <div class="col-sm-12 row form-group">

 <label for="LabName" class="col-md-2 control-
label">Grade:</label>

 <div class="col-md-10">
 @Html.TextBoxFor(m => m.GradeValue, new { style =
"width:100%", @class = "GradeValue form-control" })
 </div>

 </div>

 <div class="col-sm-12 row form-group">

 <label for="Instructions" class="col-md-2 control-
label">Comments:</label>

 <div class="col-md-10">
 @Html.TextAreaFor(m => m.Comments, new { style =
"width:100%", @class = "Comments form-control ckeditor", rows = 10 })
 </div>

 </div>

 <div class="col-sm-11 marTop10 text-right">
 <button type="submit" class="btn btn-blue btn-lg clearfix">
 <div class="fs20 text-center"><p class="fs20 marBottom0

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 17:09:12 EEST - 137.108.70.13

96

marLeft5">Grade</p></div>
 </button>
 </div>
 </div>
 <div class="row">
 <div class="col-sm-12">
 @if (!string.IsNullOrEmpty(ViewBag.Error))
 {
 @ViewBag.Error
 }
 </div>
 </div>

 }
 }
 else
 {
 <div class="row">
 <div class="col-sm-12">
 @ViewBag.Success

 @if (User.IsInRole("ASSISTANT"))
 {
 Please click <a
href="@Url.Action("viewmylabassigments", "labs", new { labid = (int)ViewBag.LabID
})"> here to see your assignments.
 }
 @if (User.IsInRole("PROFESSOR"))
 {
 Please click <a
href="@Url.Action("viewmylabsubmissions", "labs", new { labid = (int)ViewBag.LabID
})"> here to see your submissions.

 }
 </div>
 </div>
 }
 </div>
</div>

Table 7. Add Grade View

On the previous table, we can see the View code, which is, in fact, a combination

between Html and C# programming language. Needless to say, we declare on the

first line, the model that we get as returning parameter from the controller. We also

use some C# features, for example, @Hmtl.Partial() function, which is used so as to

call a Partial View. Such views, contain code which is used on many places on the

web platform, and they help, in order not to repeat the same code on different

places on the web platform.

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 17:09:12 EEST - 137.108.70.13

97

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 17:09:12 EEST - 137.108.70.13

98

Appendix B

On the next figure (Figure 56), we present the whole database schema, which we

have described on 4.1.1 Database Schema. Needless to say, we have created this

database schema, using SQL Server Management Studio 2012.

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 17:09:12 EEST - 137.108.70.13

Figure 56. Database Schema

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 17:09:12 EEST - 137.108.70.13

