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Abstract 

The growth of renewable energy - especially photovoltaic energy worldwide, and –more 

specifically- in Greece, is remarkable. There exist numerous grid-connected PV systems 

in Greek territory which have already completed ten years of operation. A challenging 

task for these systems is performance analysis, investigation of possible degradation in 

system’s efficiency, formulation of a detailed solar potential record for each region and 

the study of factors which affect PV efficiency in each region. Furthermore, their 

inspection and maintenance needs are increasing fast. Thus, it becomes necessary to 

systematically characterize and classify the more important types of defects and 

correlate them to possible causes. This study has set five objectives which have been 

investigated through specific experimental and test set-ups. These set-ups comprise 

grid-connected PV installations in Thessaly and one off-grid experimental set-up in the 

University of Thessaly.  

The first objective was to present real-world efficiency data for photovoltaic panels and 

photovoltaic parks, as function of air mass and environmental conditions. The 

experimental set-up consisted of a 2MWp grid-connected system as well as a single PV 

panel. The PV efficiency is observed to deteriorate quickly when the solar altitude is less 

than 45 degrees, or the solar insolation drops below 200 W/m2.  

The second objective was to attempt a systematic compilation of defects and devise a 

simple procedure to spot them by means of optical inspection, infrared inspection and 

electrical inspection. The experimental set-up consisted of five grid-connected 99,84kWp 

PV systems and one 9,88kWp rooftop installation. A methodology and guide for on-site 

PV inspection has been developed that may also be employed for screening newly 

installed PV panels on site. 

The third objective was the formulation of an evaluation procedure for the photovoltaic 

plant’s performance, based on routinely collected, real world system monitoring data. 

The role of air mass and clearness index variations in this context is well established and 

the analysis is conducted with the aid of these factors. The experimental set-up consists 

of a 99,84kWp grid connected PV system in Central Greece. The analysis has been 

carried out according to the following three directions:  (i) evaluation of three existing 

models, (ii) performance ratio calculation and (iii) the formulation of an evaluation 

procedure based on normalization to Standard Reporting Conditions. A 10% fluctuation 

in yearly energy production was observed for the period 2013–2015. This fluctuation 

was investigated by means of performance ratio analysis, normalization procedure and 

model comparison. All results pointed to a decrease in PV panel’s efficiency from the 

first year of operation. However, this was a small decrease covered by the terms of the 

manufacturer’s warranty. 

The fourth objective was to analyze the performance of a grid-connected 12,84 kWp PV 

system in central Greece for a six year period of operation. The analysis methodology 

was based on three axes: (i) calculation of the daily PR and yearly PR and their 

comparison for the 6 years of operation. The daily PR is further correlated with the 

averaged clearness index in order to assess the atmospheric effect on the PV 

performance. (ii) Application of a mathematic model, which describes PV power, to the 

available data. Computed values act as the reference values and deviation of the 

measured values thereof hint to probable changes in PV system performance. (iii) 

Computation of normalized efficiency to STC conditions. This included the computation 

of DC power from available AC data and inverters’ efficiency, temperature 

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 17:50:21 EEST - 137.108.70.13



Elias Roumpakias 

 

8 

normalization according to the temperature coefficients of manufacturer and 

comparison of efficiency at various weather conditions and computation of yearly 

average values, respectively, with Air mass. The analysis results hint to a small 

performance deterioration over the years, with degradation rates ranging from 1 to 4%. 

The fifth objective was the performance analysis of a grid-connected PV system with 

focus on the effects of dust accumulation on PV panels surface and aerosol mass 

concentration in Central Greece. The methodology of analysis developed in the previous 

objective is employed in combination with aerosol measurements. The results show that 

only heavily soiled surfaces have significant impact on PV performance and particularly 

a decrease of 5,6%. On the other hand, light or medium soiling have negligible impact 

on PV performance. As far as aerosol mass concentration is concerned, it does not 

significantly influence PV normalized efficiency in clear sky conditions.   
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Nomenclature 

PAC measured AC power [W] 

PDC computed DC power [W] 

PSTC maximum DC power on STC [W] 

PDC25 DC power normalized at 25°C [W] 

G measured irradiance  [W/m2] 

GSTC irradiance on STC [W/m2] 

Gextra extraterrestrial radiation on the plane normal to radiation on the nth day of year 

[W/m2] 

G Measured irradiance [W/m2] 

G0 Extra-terrestrial solar intensity 1367 [W/m2] 

k Irradiance factor [ ] 

Kt Clearness index [ ] 

TC measured module temperature [K] 

TSTC measured module temperature [K] 

Ta ambient temperature [C°] 

a temperature coefficient of P [%/ °C ] 

AM Optical path in air [relative air mass] 

nINV  inverter efficiency [%] 

nPV  array performance [%] 

ηSTC PV array performance on STC [%] 

ηDC25  PV array performance normalized at 25°C 

E Energy [kWh] 

H Total in plane irradiance[(Wh/m2 )/ (W/m2)]  

YF Specific yield factor [kWh/kW] 

YR Reference yield [kWh/kW] 

RD Degradation Rate [%] 

A Photovoltaic Panel surface area [m2] 

P  Local air pressure 

P0 Sea level air pressure 

h  Altitude of place [m] 

ZS Zenith angle [°] 

Et Equation of time 

LLOC Geographic Longitude 
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LSTD Time-zone of the location  

tSOL Solar time 

tSTD Standard time 

WS Wind speed 

Yf System Yield [kWh/kWp]  

Yr Reference system Yield [kWh/kWp] 

fPV Photovoltaic panel derate factor 

fDC DC power derate factor 

fAC AC interconnection factor 

fAGE Age derate factor 

fEXT External derate factor 

as Solar altitude angle[°] 

β Slope of photovoltaic surface[°] 

γ Solar azimuth surface[°] 

γs Solar azimuth of sun[°] 

δ Declination angle [°] 

θz solar zenith angle [°] 

φ Latitude 

ω Hour angle 

 

Abbreviations 

EN European Norm 

MPP Maximum Power Point 

NOCT Normal operating cell temperature 

STC Standard Test Conditions 

PV Photovoltaic 

IV    Current- Voltage curve 

PR Performance Ratio 

CF Capacity Factor 

GHI Global Horizontal Irradiation 

ΑΜ Airmass 

AM 1.5 Airmass 1.5 spectrum 

AOI Angle of incidence 

PID Potential Induced Degradation 
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PPC Public Power Corporation 

DER Distributes energy resources 

EPS Electrical power systems 
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1 Introduction 

Renewable energy plays a central role in world energy production during the last 

decade, helping to attain ambitious legislated targets for CO2 emission reduction and 

abatement of fossil fuel combustion. Solar power generation is one of the most common 

categories of renewable energy. Solar systems were expensive investments in the past, 

because of high costs of Photovoltaic cells. Government policies worldwide after year 

2000 actively supported PV technologies by subsidization, feed in tariff systems, loans 

with small interest rates etc. Support of PV energy generation in combination with PV 

panels’ technology evolution, reduced significantly the cost of initial investment. 

Another important factor that supported the growth of photovoltaic generation, 

especially in Europe, was European Union goals set for the energy sector. The first goal 

by 2020 was to reduce its greenhouse gas emissions by at least 20%, increase the share of 

renewable energy to at least 20% of consumption, and achieve energy savings of 20% or 

more. All EU countries must also achieve a 10% share of renewable energy in their 

transport sector [1]. Later, in October 2014, a new initiative was introduced with key 

targets: at least 40% cuts in greenhouse gas emissions (with reference to the 1990 levels), 

at least 32% share for renewable energy, at least 32.5% improvement in energy 

efficiency. 

 

Figure 1 : Net power generating capacity added in 2018 by main technology  [2] 

Solar power plants exist both as standalone and grid-connected systems. Grid connected 

systems operate either as feed-in tariff or feed-in premium systems, according to the 

mode of transferring the electricity generated to the grid. Another popular policy is the 

net-metering, where part of the electrical consumption of residential and commercial 

clients is covered by solar generation and the rest from the grid, depending on the daily 

consumption and energy generation profiles. Finally, there are stand-alone PV systems, 

which operate in combination with energy storage systems to fully cover the electricity 

demand in remote places. For all these categories, it is important to appropriately size 

the PV installation, employ performance monitoring and performance evaluation. 

Appropriate sizing of the system, especially in net-metering and stand-alone 

applications, demands a very good knowledge of the region’s solar potential. There are 

different models for estimating the solar potential using solar geometry and there exist 

specialized databases as PVGIS [3]. 

PV systems’ installations in Greece expanded significantly during the last decade, 

profiting from the favorable feed-in tariff legislation. The Feed-in-Tariff (FiT) is a source 

of tariffs that implies the obligation on the part of a distribution company to buy the 

electricity generated by renewable energy (RE) producers in their service area . The price 

of this energy is set by energy policy and will be guaranteed for a determined period of 
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time[4].This includes not only PV park installations (2146 MWp total ) but also building-

top installations (351 MWp total) until 2018 [5]. Significant growth rates were observed 

until the end of 2013, when a correction of the legislated feed-in tariff was initiated.  

During the last three years, PV market priorities are shifting to net-metering, recently 

legislated in Greece, as well as to the maintenance and performance monitoring of 

existing PV parks. Due to the decrease in tariffs, depreciation of the investment cost of a 

PV park in a sensible period of time requires electricity generation with no significant 

deviations below the nominal production, which determined the initial sizing of the 

park, based on the expected average irradiance levels for its location. 

The next step from net- metering was to keep the feed in tariff system for small scale PV 

installation and introduce feed in premium system through power auctions. The 

Premium tariffs or feed-in Premium (FiP) is a system of support for renewable energy 

that establishes a premium on the existing market electricity price. Thus, it generates 

two sources of income for the producers: one with the sale of energy in the electricity 

market and the other with the receipt of the premium. The premium varies based on the 

criteria applied in each country, energy source or technology used, size of the plant, 

electricity generation costs [6]. 

All of these support schemes and the reduction of initial cost of investment helped grid 

parity to be achieved quickly. Grid parity has emerged as a key indicator of the 

competitiveness of renewable electricity generation technologies. The term can generally 

be defined as the time point at which the decreasing cost of electricity from a renewable 

energy technology due to its technological advances intersects the cost of electricity 

generated from conventional fuels, such as coal and natural gas, and it is generally 

thought that, without any subsidies, a renewable energy technology will have cost-

competitiveness [7]. 

In summary, solar energy is an important kind of renewable energy and especially for 

countries with adequate solar potential. The big growth observed during the last decade 

in this sector is expected to continue. Solar parks are capital intensive investments and it 

is very important to achieve a small payback time. This will be secured by the flawless 

operation of these system. In that context, a valid performance analysis is essential in 

order to check if PV manufacturers’ warranties are met. This Phd thesis aims to 

formulate a methodology for performance analysis of grid-connected photovoltaic 

system under real world operating conditions. 

1.1 Photovoltaic systems 

1.1.1 Off-grid systems 

Off-grid photovoltaic systems are usually combined with energy storage technology, but 

there are also systems that directly consume the energy produced. In cases of off-grid 

systems, a second source of energy is also used as back-up such as a wind turbine or a 

diesel generator. A typical stand-alone system consists of PV generators, an inverter, a 

charge regulator, batteries and electrical equipment for protection and control. 
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Figure 2 : Stand-alone PV system with battery back-up for residential building [8] 

Off-grid systems provide significant solutions in cases where no public grid exists. Most 

often these systems are used in special applications to power antennas or isolated 

residential buildings. An appropriate energy scheduling is necessary in order to use 

electrical devices whenever sufficient electrical energy exists. D. Cho et al, propose a 

model for this purpose which is tested on four scenarios based on region and season [8]. 

An important factor for the appropriate sizing of these systems is a good knowledge of 

solar potential and other environmental variables affecting PV energy generation. The 

same type of information is important in cases with Hydrogen employed as back-up 

storage medium. C. Marino et al, study a stand-alone photovoltaic system with storage 

realized using electrolytic hydrogen, being converted to electricity in fuel cells. In this 

type of application it is important to achieve a positive annual balance between 

hydrogen production and consumption; moreover, the storage must meet periods with 

low production, such as winter. In addition, both the photovoltaic generator and storage 

tank must be adequately sized to avoid large production surplus that cannot be 

converted into hydrogen due to tank or battery capacity limitations [9]. 

1.1.2 Grid-connected PV systems 

Grid-connected PV systems provide energy to the grid and are installed either on the 

ground or on rooftops. The main parts of these systems are the PV panels, inverter(s), 

And the distribution panel with the protection and control devices and the monitoring 

system (Figure 3). There are also solar tracking systems, able  to follow the sun’s path, by 

employing one-axis or two-axis tracking systems. 

There are different types of PV cells, inverters and tracking systems which are analyzed 

in the following sections. Several factors, environmental, technical, sizing, faults, affect 

the PV system performance. Rao et al, summarize the factors that affect performance of 

grid-connected photovoltaic systems (Figure 4). 
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Figure 3 : Grid connected photovoltaic system[10] 

  

Figure 4 : Factors affecting PV performance [11] 
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1.1.3 Photovoltaic conversion 

Specific semiconductors have the capacity to absorb light and deliver a portion of the 

energy of the absorbed photons to carriers of electrical current – electrons and holes. A 

semiconductor diode is formed when a p-type semiconductor and a n-type 

semiconductor are brought together to form a junction. These types of semiconductors 

are doped with specific impurities deliberately introduced in the crystalline lattice. The 

doping atoms may be Boron or Aluminium for p-type semiconductors and Phosphorus, 

Arsenic for n-type semiconductors. 

 

 

Figure 5: Crystalline silicon solar cell  [12] 

The junction of the two types of semiconductor create a region with free charge carriers. 

At this junction (Figure 5), electrons from the n-type semiconductor diffuse into the p-

type, creating a zone (P+) of positively charged carriers (holes) in the n-type layer, and 

holes from the p-type semiconductor diffuse into the n-type, creating a zone (N+) of 

negatively charged carriers in the p-type layer. An electrical field is created that opposes 

the movement of the charge carriers. When the junction is exposed to light, photons are 

absorbed by valence electrons which acquire enough energy to break away from their 

atoms and leave behind a respective number of holes. Photons with sufficient energy 

create an electron–hole pair, that is, those with energy greater than the semiconductor 

band gap (EG), will contribute to the energy conversion process.  Then, electrons are 

moved into the n-region by the electrical field and holes are moved in the opposite 

direction of the junction, respectively. This carrier movement generates a current which 

is called the photovoltaic effect. 

Solar cells are, usually, p-n semiconductors that operate under sunlight. However, there 

exist also solar cells made of n-p semiconductors, which present differences in ageing 

characteristics. Sunlight is composed of photons, which carry specific amounts of energy 

according to their frequency, determined by the spectral properties of their source. 

Photons also exhibit a wavelike character with the wavelength, λ, being related to the 

photon energy, Eλ, by  

𝛦𝜆 =   
ℎ 𝑐

𝜆
 

(1-1) 
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where h is Plank’s constant and c is the speed of light. 

 

Figure 6 : Band gap energy of semiconductors [13] 

1.1.4 Types of Photovoltaic technology 

The most important semiconductor used for the manufacturing of PV cells is Silicon, 

which is the second most abundant element in the earth after oxygen. The two main 

forms of PV elements are wafers and thin films. The wafer-based PV elements are 

crystalline and divided into monocrystalline (mono) and polycrystalline (poly-si). Thin 

film PV technology includes amorphous silicon (a-si), microform silicon (m-si), (CIS), 

(CdTe), and dyes.  

 

Figure 7 : Types of PV cells [14] 

Figure 7  presents types of PV cells which are in the market and other types that are 
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under research and development studies. The most common PV types employed in 

commercial and residential applications are presented below. 

Crystalline silicon [15] 

Crystalline silicon solar cells and modules have dominated photovoltaic (PV) technology 

from the beginning, with more than 85% market share today. One of the reasons for this 

dominant position is the role of advances in microelectronics  in silicon technology. The 

PV community has extensively benefited from the accumulated knowledge but also 

silicon feedstock and second-hand equipment have been acquired at reasonable prices. 

Conversely, Microelectronics has taken advantage of some innovations and 

developments proposed in Photovoltaics. For several decades, the terrestrial PV market 

has been dominated by p-type Czochralski silicon substrates. Continuous improvements 

in performance, yields and reliability have allowed important cost reductions and the 

subsequent expansion of the PV market. 

The main categories of crystalline silicon are mono-si and poly-si solar cells. 

Monocrystalline solar cells attain a 15-18% energy conversion efficiency. Their shape 

may be square, circular or semicircular. Typical sizes of cells are 10x10cm2, 12.5x12.5 

cm2, 15x15 cm2 with typical thickness between 0,2-0,3 mm. The cells’ color is black or 

deep blue. Polycrystalline solar cells usually attain 13-16% efficiency and their shape is 

square. Typical sizes of cells are 10x10cm2, 12.5x12.5cm2, 15x15cm2, 15.6x15.6cm2, 21x21 

cm2, with thickness 0.24-0.3mm. The cells’ color is blue [16]. 

 

Figure 8 : Conventional crystalline cell [17] 

Amorphous silicon(a-si)  

 

 

Figure 9 : Typical a-si solar cell [17] 

 Amorphous  silicon is the most common  thin film technology, with cell efficiencies in 

the range of  5–7% and double and triple-junction (Figure 10) designs, with enhanced 
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efficiency up to 8–10%. Some of the varieties of amorphous silicon are amorphous silicon 

carbide (a-SiC), amorphous silicon germanium (a-SiGe), microcrystalline silicon (c-Si), 

and amorphous silicon-nitride (a-SiN )[18]. 

 

Figure 10 : Structures of a-si PV panels. Single, double and triple junction [19] 

Two of the most important advantages of a-si PV panels are low cost and small 

temperature coefficients; however, this technology has low efficiency. 

CIS 

Of all the thin film materials, cells and modules made from alloys of copper indium 

diselenide (CIS) have achieved the highest efficiencies and have demonstrated long term 

outdoor stability. (This material can be alloyed with gallium and/or sulfur, resulting in a 

family of materials with the general formula of Cu(In,Ga)(Se,S)2, all of which will be 

referred to in this paper as CIS or CIS-based absorbers) [20]. 

 

Figure11: Structure of CIS PV panels [13] 
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 CdTe   

CdTe PV cells are grown on a glass substrate with a transparent conduction layer made 

from indium tin oxide as the front contact. This is initially coated with an  n-type CdS 

window layer before being coated with the p-type CdTe layer. CdTe has the lowest 

production cost among the thin-film PV cells [16]. 

CdTe PV cells are included in the thin film category and their performance is currently 

between 15-17%[21].  Research shows that they may achieve over 20% efficiency [22]. A 

typical structure of a CdTe PV panel is shown in Figure 12. 

 

Figure 12: CdTe thin film PV cell [23] 

Hybrid solar cells (HIT: heterojunction with intrinsic thin layer)  

HIT solar cell is a combination of a crystalline and thin film solar cell. This comprises c-si 

and a-si  that is bonded with an additional un-doped thin film (intrinsic layer). A mono-

si wafer forms the core of the HIT cell and is coated on both sides with a thin layer of 

amorphous silicon. As intermediate layer, an ultra-thin undoped intrinsic layer made 

from a-si bonds the c-si wafer with each a-si layer. A p-doped a-si layer is deposited on 

the front side, which forms the p-n junction with the n-doped mono-si wafer. While in 

other crystalline technologies the same semiconductor is doped differently in order to 

create the p-n junction, HIT technology achieves it with two structurally different 

semiconductors [16].   

 

Figure 13: Hybrid (HIT) PV cells [24] 

Table 1 presents commercial PV panels of various technologies. It can be observed that 

high efficiency rates are achieved for most technologies. 

 

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 17:50:21 EEST - 137.108.70.13



Elias Roumpakias 

 

27 

Table 1 : Performance of commercial PV panels 

PV panel Power 

(W) 

Efficiency 

(%) 

Manufacturer Technology Reference 

ALEO P19 290-300 17.6-18.3 Aleo Mono-si [25] 

ALEO S19 300-310 18.3-18.9 Aleo Mono-si [25] 

CS6K-290-305-MS-FG 290-305 17.72-18.54 Canadian Solar Mono-si [26] 

CS6K-290-305-MS-FG 300-315 18.33-19.24 Canadian Solar Mono-si [26] 

CS6K-270-280P 270-280 16.5-17.11 Canadian Solar Poly-si [26] 

CS6K-285-295-P-FG 285-295 17.33-17.94 Canadian Solar Poly-si [26] 

LG340N1C-V5 345 19,8 LG Mono-si [27] 

Ν-PEAK SERIES 310-300 18.6-19.8 REC Mono-si [28] 

ECO LINE M60/300 - 320W 300-320 17.78-18.93 Luxor Mono-si [29] 

ECO LINE P60/270 – 290W 270-290 16.21-17.49 Luxor Poly-si [29] 

HiA-S300RG 300 18.44 Hyundai solar Mono-si [30] 

HiA-S360RG 360 18.55 Hyundai solar Mono-si [30] 

Maxeon 360 340-360 19.2-20.4 Sunpower Mono-si [31] 

STP22524/Vfw-STP335 24/Vfw 325-335 16.7-17.2 Suntech Poly-si [32] 

STP340- 24/Vfw-STP350- 

24/Vfw 

340-350 17.5-18.0 Suntech Poly-si [32] 

VBHN335KJ01 335 19.7 Panasonic HIT [33] 

Q.PEAK BLK-G4.1 285-295 285-295 17.1-17.7 Qcells-Hanwha Mono-si [34] 

Q.PEAKG4.1 290-305 290-305 17.4-18.3 Qcells-Hanwha Mono-si [34] 

Q.POWER L-G5 315-335 315-335 16.2-17.2 Qcells-Hanwha Poly-si [34] 

COE-280P60L 280 17,21 Trienergia Poly-si [35] 

TRIxxxBC-WB 320-330 19,7-20,3 Trienergia Mono-si [35] 

SFK185S 185 15.06% Solar frontier CIS [36] 

YGE 72 CELL SERIES 2 HSF 

SMART 

320-345 16.1-17.4 Yingli Solar Poly-si [37] 

YLM 60 CELL 285-315 17.4-19.2 Yingli Solar Mono-si [37] 

ND-AK Series 270-275 16.6-16.9 Sharp solar Poly-si [38] 

NU-AK Series 300 18.4 Sharp solar Mono-si [38] 

FIRST SOLAR SERIES 6™ 420-445 17-18% First Solar CdTe [39] 

U-EA TYPE 100-120 8.2-9.8% Kaneka a-si-μc-si [40] 

 

 

A large number of researchers investigate the performance behavior of different PV 

technologies. There exist several studies comparing the performance of various panels 

from each different technology. These comparisons are based either on real time 

operation systems or on off-grid experimental set-ups. 
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Figure 14 : Performance, Power, Solar irradiance of a PV system based on a-si, poly-si and 

Hybrid PV cells [41] 

 

 

Figure 15 : Temperature, Power, Solar radiation of PV system which is consisted of a-si, poly-si 

and Hybrid PV cells [41] 

Figure 14 and Figure 15 present a daily performance comparison of poly-si, a-si and 

hydrid type panels as function of temperature and solar radiation.  Sasitharanuwat et al, 

observe that a-si PV cells performed better than poly-si and hybrid. As far as 

temperature is concerned, hybrid panels are heated less than poly-si and a-si PV cells 

[41]. S. Silvestre et al., studied performance and degradation rate of three different 

crystalline silicon-based photovoltaic (PV) modules mc-Si (multi-crystalline), c-Si (mono-

crystalline, back contacted) and HIT (heterojunction with intrinsic thin-layer)  in the 

Saharan environment after years of exposure. The results show a 6% total power 

reduction for the HIT PV module, while for the same period, the reduction of power 

observed in the c-Si PV module was 4.2% and  mc-Si PV module has lower power 

reduction trend [42]. Tossa et al, conducted performance analysis between one 

monocrystalline PV panel, two polycrystalline and one PV panel of tandem structure 
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(micromorph) and observed that the micromorph panel presents the best performance 

on the site with an average performance ratio of 92% while  monocrystalline and 

polycrystalline had averaged performance ratio of 84% and the fourth polycrystalline 

has the worst (an average performance ratio of 80%). According to this study the main 

reason of good performance of the micromorph was based on low temperature 

coefficients [43]. S. Kichou et al., studied the behavior of three different PV modules 

based on cadmium telluride (CdTe), monocrystalline (c-Si) and multicrystalline silicon 

(mc-Si) technologies deployed outdoor in a humid continental climate. The results show 

that the evolution of the calculated performance ratios (PR) of the three different PV 

module technologies confirm the stability of c-Si and mc-Si PV modules. The effects of 

the seasonal changes could be also observed in the trend of PR of crystalline silicon PV 

modules. It could be concluded that c-Si and mc-Si PV modules perform better in winter 

months rather than in summer months due to their high power temperature coefficient. 

In addition, if c-Si and mc-Si PV modules perform better than CdTe ones in winter, this 

fact can be related to their different tilt angles [44]. 

 

1.1.5 Characteristics of PV panels 

The efficiency of PV panels is measured in the Laboratory with a standard solar 

simulator, according to ASTM Standard E 948 [45] and an associated bundle of 

standards.  

The standard conditions refer to    

• A panel temperature of 25° C 

• A solar insolation of 1000 W/m2  

• An air mass AM = 1.5 (ASTM G173 [46]) 

 

 

Figure 16 : Reference spectral irradiances for AM1.5, AM0 [47] 
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The main electrical characteristics of PV cell are short-circuit current, open circuit 

voltage, maximum current, maximum voltage and maximum power. Furthermore, PV 

panels manufacturers provide information in relation with temperature coefficients of 

maximum power, short-circuit current, and open circuit voltage. Another important 

information is irradiance reduction factor, typically denoted by k, which reflects the 

efficiency reduction with irradiance from 1000W/m2 to 200W/m2. However, this factor is 

not provided by all manufacturers in technical datasheets. Finally, several 

manufacturers provide spectral responses of their PV panels.  

 

1.2 Performance of grid-connected Photovoltaic systems 

Performance of grid-connected photovoltaic systems is affected by several factors. The 

main parts of a system are the photovoltaic  panels, inverter and mounting system. Each 

of these parts affects the total PV systems performance. The aim of this study is the 

analysis of systems’ performance and focus on PV panels performance. It is important to 

investigate how several factors influence performance. Thus, this section presents the 

main factors that affect PV panels performance and other parts of a PV system. 

According to PV panels characteristics (Section 1.1.5) the main factors that have direct 

impact in PV performance is solar radiation, spectrum and temperature. These factors 

are influenced by other indirect factors which are related to problems of each 

installation. Such factors are dust, shading, humidity that are related to characteristics of 

installations’ location. Furthermore, inverter efficiency or type of mounting or tracking 

system influence the total PV systems’ efficiency. All of these factors are analyzed in the 

following sections. 

1.2.1 Solar radiation 

As regards the effect of solar irradiance level, the manufacturers’ data usually present 

efficiency values down to an insolation of 200 W/m2. A significant drop in efficiency is 

reported when insolation drops from 1000 to 200 W/m2 (about 6 efficiency percentage 

units’ reduction). Obviously, this drop is non-linear with insolation levels and increases 

as we move to lower levels. It is mainly due to the effect of air mass increase which leads 

to a decrease in insolation under clear sky conditions. Thus, the effect of air mass is 

lumped inside the above figure of efficiency drop. For this reason, no separate reference 

exists in the manufacturers’ datasheets on the effect of the air mass. 

Silicon solar cells are not very sensitive to certain, low wavelength portions of the solar 

spectrum that are scattered in the atmosphere. The resulting spectrum at the Earth's 

surface matches more closely the band gap of silicon. For this reason, silicon solar cells 

are more efficient at Air Mass 1 than Air Mass 0 (extraterrestrial radiation spectrum). 

However, even though the efficiency is lower at AM 0, the total output for a typical solar 

cell is still highest at AM 0. On the other hand, the shape of the spectrum changes with 

further increases in atmospheric thickness, and hence cell efficiency drops for AM 

numbers significantly higher than 1.5. The light scattering mechanism by particles much 

smaller than the wavelength of light was first studied by Lord Rayleigh [48]. This was 

followed by Mie which formulated a more general approach based on the scattering of 

electromagnetic radiation by spherical particles of various sizes [49]. 

Analysis of monitoring data from a PV park in Greece during 2010 [50] indicates that 

16% of the yearly electricity is produced before 10:00 and after 18:00. That is, a 

significant part of electricity is generated during the early morning and late afternoon 
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hours, at high air mass (and thus low insolation) conditions. For this reason, it is 

interesting to investigate in more detail the effect of air mass on the efficiency of PV 

panels. This investigation could also cover the effect of different atmospheric conditions. 

Radiometric instrumentation is a crucial parameter in PV application as solar irradiance 

is a factor that affect PV performance either with absolute a values or with spectral 

content. Radiometers are divided in broadband instruments and spectral instruments. 

Broadband instruments measure in certain band and spectrally-integrating radiation 

from all wavelengths it contains, while spectral measure radiation at certain 

wavelengths. Broadband instruments contain pyranometers, pyrheliometers, 

pyrgeometers, UV meters, rotating shadow band radiometers and albedometers. 

Spectral instruments include scanning filter photometers (SFP) or sky scanners, sun-

photometers, multi-filter rotating shadow band radiometers (MFRSR), rotating shadow 

band spectrometers (RSS), spectro-radiometers, interferometers and grating 

spectrometers [51]. 

1.2.2 Temperature 

The electrical performance is primarily influenced by the type of PV used. A typical PV 

module converts 6-20% of the incident solar radiation into electricity, depending upon 

the type of solar cells and climatic conditions. The rest of the incident solar radiation is 

converted into heat, which significantly increases the temperature of the PV module and 

reduces the PV efficiency of the module [52]. As module temperature increases, the band 

gap of PV panels usually decreases, resulting in the absorption of longer wavelength 

photons, and the minority carrier lifetime generally increases. These factors slightly 

increase the light-generated current (Isc) but lead to a reduction in the cell's open circuit 

voltage (Voc), which results in PV panels’ fill factor overall reduction [53]. 

 

Figure 17 : Temperature effect on different types of photovoltaic technology  [54]  

Figure 17 presents the variation of PV panels performance as a function of operating 

temperature. The difference in behavior of each PV panel is expressed by a different 

slope of the curve. It is clear that a-si PV panels have smaller temperature losses. 

As regards the effect of PV panel temperature, the manufacturers’ data sheets usually 

give an efficiency reduction coefficient. Skoplaki and Palyvos [55] reviewed literature 

correlations of cell temperature with weather variables and material/ system-dependent 

properties. Alonso-Garcia and Balenzategui presented results of the application of 

existing international standards for the simulation of crystalline and thin-film module 

temperature from Nominal Operation Cell Temperature (NOCT), to different types of 
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PV modules [56]. Cueto studied the performance behavior of different PV technologies 

and observe that efficiency was strongly temperature-dependent and negative for c-Si, 

poly-c-Si, and CIS module types, while for a-Si temperature dependence is much 

weaker, and positive. Furthermore, efficiency for CdTe is not a simple function of 

temperature, and more likely a complicated function that includes spectral and low-light 

level effects in conjunction with temperature [57]. 

Table 2 : Temperature Coefficients of commercial PV panels  

PV panel Technology Temperature 

coefficient of P 

Temperature 

coefficient of I 

Temperature 

coefficient of V 

Reference 

Aleo Mono-si -0.4%[%/K] 0.05%[%/K] -0.29%[%/K] [25] 

Canadian solar Mono-si -0.39%[%/K] 0.05%[%/K] -0.29%[%/K] [26] 

Canadian solar Poly-si -0.40%[%/K] 0.05%[%/K] -0.29%[%/K] [26] 

Hyundai solar Mono-si -0.41[%/C°] 0.058[%/C°] -0.33[%/C°] [30] 

LG Mono-si -0.30%[%/K] 0.037%[%/K] -0.24%[%/K] [27]  

Luxor Mono-si -0.40%[%/K] 0.06%[%/K] -0.30%[%/K] [29] 

Luxor Poly-si -0.41%[%/K] 0.05%[%/K] -0.30%[%/K] [29] 

REC Solar Mono-si -0.37%[%/K] 0.04%[%/K] -0.28%[%/K] [28] 

Sunpower Mono-si -0.36%[%/K] 0.05%[%/K] -0.29%[%/K] [31] 

Suntech Poly-si -0.41%[%/K] 0.067%[%/K] -0.33%[%/K] [32] 

Panasonic HIT -0.258%[%/K] 0.055%[%/K] -0.235%[%/K] [33] 

Qcells-Hanwha Poly-si -0.40%[%/K] 0.04%[%/K] -0.29%[%/K] [34] 

Qcells-Hanwha Mono-si -0.40%[%/K] 0.05%[%/K] -0.31%[%/K] [34] 

Trienergia  Poly-si -0.41%[%/K] 0.05%[%/K] -0.31%[%/K] [35] 

Trienergia Mono-si -0.375%[%/K] 0.0405%[%/K] -0.294%[%/K] [35] 

Solar forntier CIS -0.33%[%/K] 0.01%[%/K] -0.27%[%/K] [36] 

Yingli Mono-si -0.38%[%/K] 0.04%[%/K] -0.30%[%/K] [37] 

Sharp solar Poly-si -0.4%[%/K] 0.05%[%/K] -0.29%[%/K] [38] 

Sharp solar Mono-si -0.41%[%/K] 0.055%[%/K] -0.33%[%/K] [38] 

First solar CdTe -0.32%[%/K] 0.04%[%/K] -0.28%[%/K] [39] 

Kaneka a-si-μc-si -0.35%[%/K] 0.056%[%/K] -0.39%[%/K] [40] 

Table 2 shows temperature coefficients of commercial PV modules. It is remarkable that 

the lowest power temperature coefficients belongs to HIT technology , then CIS and 

CdTe modules.  

1.2.3 Spectral response of PV panels 

The spectral response of a solar cell permits an examination of how photons of different 

wavelengths contribute to the short-circuit current. The spectral response is defined as 

the short-circuit current, ISC(λ), resulting from a single wavelength of light normalized 

by the maximum possible current [13]. Spectral response of PV is a characteristic curve 

which shows behavior of PV in each wavelength. Figure 18 shows the spectral response 

of various PV technologies. 

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 17:50:21 EEST - 137.108.70.13



Elias Roumpakias 

 

33 

 

Figure 18 : Spectral response of different Photovoltaic technologies [58] 

Spectral variation due to weather conditions or pollution is accounted for by means of 

the clearness Index Kt, defined as the ratio of the horizontal global irradiance to the 

corresponding extraterrestrial irradiance multiplied by the sinus of the sun height [59, 

60]. Kt usually varies in the range 0.6-0.8 (clear weather conditions) [61, 62]. 

Therefore the Clearness Index Kt may be considered as an attenuation factor of the 

atmosphere. The influences of clearness index and air mass on the outdoor performance 

of single crystalline and amorphous-Si PV modules were analyzed by Nakada et al. in 

[63]. It was found that Average Photon Energy (APE) increases with decreasing the Kt 

and AM, with stronger effect on APE on the amorphous-Si PV modules. The overall 

performance of PV panels at high air mass conditions is complicated by the shape of the 

solar spectral response curve of the specific module type. Consequently it is useful to 

select a metric that is independent of the spectral response of any particular technology. 

Average Photon Energy (APE) is a metric for describing the spectral quality of solar 

irradiance. This is analogous to an average wavelength value  but instead, it represents 

the average energy of all the photons impinging upon a target surface [64]. APE is 

calculated by the following equation: 

𝐴𝑃𝐸 =
1

𝑞
  

∫ 𝐸𝜆𝑑𝜆

∫ 𝛷𝜆𝑑𝜆
 

(1-2) 

Where q [eV] is the electron charge, Eλ[W m-2nm-1] is the spectral irradiance at 

wavelength λ, and Φλ is the photon flux density at wavelength λ, calculated by the 

following equation. 

𝛷𝜆 =
1

𝑞
  

𝐸𝜆

ℎ𝑐/𝜆
 

(1-3) 

Solar spectral response of the various types and designs of PV modules is routinely 

included in specialized publications, in the form of external quantum efficiency plots 

versus wavelength, either absolute values or normalized to the peak measured value 
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[65]. 

Perez-Lopez et al. presented results of solar spectral irradiance measurements 

performed in Madrid in the wavelength range 250–2500 nm (extending the spectral 

range far away from the wavelengths where PV semiconductors are active), during 

selected clear days covering the four seasons of the year [66]. 

 

Figure 19 : Spectral response of PVcells a-si, μ-si, crystalline-si, CIS [67] 

 

 

 

 

Figure 20: Spectral response of different type of PV cells in comparison with spect ral irradiance 

[68] 
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1.2.4 Photovoltaic mounting systems 

PV panels are based on aluminum or galvanized iron systems and are either fixed or 

tracking. Fixed systems are based on reinforced concrete bases, galvanized iron piles, or 

screwed foundations. The two main characteristics that affect performance of fixed 

systems are their slope and azimuth angle. The ideal values for the two angles depend 

on the location of the installation. Angle of tilt is related with latitude and consequently 

its optimization is related with the location. The optimal azimuthal angle for the 

northern hemisphere is zero (south orientation) while for the south is 180 degrees (north 

orientation). In case of installations where optimal orientation is not possible, the 

installation is placed with losses at another tilt angle, something that is happened in roof 

systems.  

Tracking systems have the ability to move in one or two axles. Single axis systems can be 

driven as a pre-azimuth angle or frame angle. The first essentially follows the daylight 

trajectory and achieves up to 25% of the output of a fixed system in the same location. 

The latter simply optimize the tilt angle some times a year. However, higher yields are 

achieved by the two-axis systems, ie the azimuth angle and tilt angle. Control of tracking 

systems is done either by using an astronomical algorithm that gives the suns’ path and 

drive the PV arrays in accordance with it. However, there are systems that receive solar 

radiation to find the optimum position that the PV array must have and constantly 

correct their position. Sensor-based systems can achieve higher yields because in days 

with high cloudiness they can switch properly and make better use of diffuse radiation. 

Here is a diagram Figure 21 showing the extra energy generated  by various types of 

mounting systems. Specifically, these are 7 different types of systems. Koussa et al, 

investigate the effect of using different sun tracking mechanisms on the flat plate 

photovoltaic system performances and the main parameters affecting the amount of 

their electrical energy output as well as those affecting their gains compared to the 

traditional fixed photovoltaic systems. The used systems are : FY fixed panel and its 

surface inclined at the yearly optimum slope, FS fixed panel and its surface inclined at 

the seasonal optimum slope, OVY single vertical rotating axis sun tracking system, 

where the panel surface is inclined at the yearly optimum slope, OVS single vertical 

rotating axis sun tracking system, where the panel surface is inclined at the seasonal 

optimum slope, OIY single inclined rotating axis sun tracking system, where the panel 

surface is inclined at the yearly optimum slope, OIS single inclined rotating axis sun 

tracking system, where the panel surface is inclined at the seasonal optimum slope, DT 

two-axis sun tracking system. Figure 21 shows the additional power output from each 

type of tracking system, as compared against the fixed system, during a clear sky day. It 

is found that for a completely clear day, the highest obtained gains are associated with 

two-axis sun tracker systems. For the partially clear days, the amount of gain depends 

on the clearness index and on the seasonal variation of day length Finally on a 

completely cloudy day, the results show that all considered systems produced around 

the same electrical energy [69]. 
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Figure 21 : Additional electrical power output of the tracked PV panel to that fixed Panel clear 

sky state [69]. 

Koussa et al, obtained similar results for cloudy days in a case study in an arid and hot 

climate. The performance of tracking systems shows significant increase when 

compared against fixed systems during clear sky days, while on cloudy days  it 

fluctuated around the same levels [70]. Sidek et al. study the performance of a 

photovoltaic system based on a dual axis tracking system which is controlled with a 

Micro controller unit and Global positions system. This system is able to achieve 26,9% 

higher power than the fixed-systems under clear conditions. On the other hand, the 

system achieves 12,8% higher power under cloudy conditions [71]. 

1.2.5 Environmental conditions - Shading 

Significant role in the performance of a PV plant plays the microclimate of the 

installation area. In particular, there are significant differences in systems that are 

installed in urban environments and those installed in rural areas. Higher temperatures 

and pollution are observed in systems installed in urban which means a reduction in 

system performance.  

 

Figure 22 : Ambient temperature and air velocity in urban and rural environment during a year  

[72] 

Besides ambient temperatures, PV panels’ temperature is also affected by the air of the 
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area as it can help to temperature reduction. It is observed that levels of wind in the 

rural areas are higher than the urban ones. Something that positively affects the 

performance of systems installed in the countryside. Also, lower radiation values have 

been observed in the urban environment than in the countryside. 

 

Figure 23 : Solar radiation and PV power output on rural and urban area [72] 

In addition to meteorological factors affecting the performance of systems installed in 

urban environments, shading plays an important role too. Shading can be a negative 

factor in both systems’ performance and degradation. Especially partial shading is a 

condition where, the panels in a photovoltaic (PV) array do not receive irradiation on 

whole surface. Shading causes mismatch in the electrical characteristics of the panels 

composing the PV array and  results in significant reduction in the energy yield [73].  

Because of the fact that PV cells are connected in different configurations, shading of one 

affects others and thus significantly reduces systems’ performance. Possible 

configurations that are referred in literature are Series (S), Parallel (P), Series-Parallel 

(SP), Total-Cross-Tied (TCT), Bridged-Linked (BL), and Honey-Comb (HC) [74].  

 

Figure 24 : Different configurations. (a) Series-Parallel (SP), (b)Bridge-Linked (BL), (c) Total 

Cross Tied (TCT). Schematic diagram of a 3x3 PV array[75] 

Shading is an important factor for photovoltaic system efficiency, however its 

quantification is a difficult task that is analyzed by several researchers. Satpathy et al, 

studied partial shading for different configurations and shading conditions and 

observed that the array with SP configuration generated the lowest power output 

during all shading cases followed by BL and TCT [75]. 
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Figure 25 : Shading, partial shading, and misleading losses for a photovoltaic array [76] 

 

Partial shading (PS) causes power losses through different mechanisms, the most severe 

one being the incoherence of the array’s maximum power point (MPP) with the 

modules’ MPPs [76]. Furthermore, partial shading for long time periods can cause  

temperature increase  and  possibly create a hot spot which leads to a faster degradation. 

Shading basically changes PV cells I-V curve, as shown in the figure below, so this can 

negatively affect maximum power point of inverter MPP tracker, something that affects 

negatively the inverters’ performance and consequently total systems’ performance. 

 

 

Figure 26: Impact of shading on I-V curve [77]. 
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1.2.6 Inverter - sizing 

The inverter is one of the most important parts affecting photovoltaic systems efficiency 

either for grid-connected applications or for off-grid systems. Inverters for grid-

connected application have to meet a number of requirements, which concern levels of 

voltage, frequency and anti-islanding protection, in order to be connected to public 

grids. 

One of the most important concerns in utilizing PVs in power system is islanding. 

Islanding happens when a line is disconnected and is energized by one (or multiple) 

DERs (distributed energy resources), whilst that section of the EPS(electric power 

systems) is electrically cut off from the remainder of the EPS. If this situation is not 

discovered quickly, it may deteriorate safety conditions. During unintentional islanding, 

the DER shall have the means to recognize the accidental island and discontinue to 

energize the EPS in less than two seconds of the island’s creation [78]. 

There are four types of inverters for Grid-connected PV systems: (a) module, (b) string, 

(c) multi-string, and (d) central inverter [79]. Central inverters are usually used in large  

scale PV arrays  which consist of PV modules divided into series connections known as 

strings to generate high voltage. These strings are connected in parallel, through string 

diodes, to generate high power. In string inverter, usually one single PV string is 

coupled to one inverter. The input voltage may be high enough to avoid voltage 

amplification. This topology has the minimum losses due to which it has the advantage 

of increased energy yield and enhanced supply reliability. Multi-string inverters are 

connected to several strings which are interfaced with their own DC-DC converter to a 

common DC-AC inverter. Every string can be controlled individually. The application 

area of the multi-string inverter covers PV plants of 3–10 kW. The module integrated 

inverter is used when  an AC module consisting of a single solar PV panel and its own 

inverter is connected to the utility grid. It removes the mismatch losses between PV 

modules, as well as supports optimal adjustment between the PV module and the 

inverter. A control design for the module integrated PV and converter units under 

partial shading conditions is proposed [80]. 

Inverter sizing plays an important role in the performance of a photovoltaic system.  

Inverters’ performance is related to its size. Moreover, appropriate sizing of the inverter 

expands its lifetime. Sangwongwanich et al, study the impacts of array sizing in 

inverters’ lifetime and the results show a considerable impact of the PV array sizing on 

the reliability and lifetime of the PV inverter installed in Denmark, where the PV 

inverter thermal loading increases considerably with the oversized PV arrays.[81] 

 Operation of inverter based on MPP tracker algorithms and each manufacturer uses 

each algorithm. Maximum Power Point corresponds to the pair of current and voltage 

values on an I-V curve where power has its maximum value. The concept of MPP 

tracker operation is based on checking the voltage fluctuation from the maximum power 

point. 
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Figure 27 : I-V curve and maximum power point in Power curve  [82] 

As the MPP keeps on changing according to the varying irradiation levels, a MPPT method 

is used to track the MPP of the system. Various types of MPPT methods have been 

developed and implemented over the years which are categorized on the basis of many 

features including solar efficiency, dynamic response, convergence speed, sensors 

requirement, cost, complexity [83]. 

 

Figure 28: Typical performance curve of Inverter  [84] 

The optimal sizing of an inverter with respect to the peak power of the PV array rating 

at Standard Test Conditions (STC) depends on the local climate. It has been shown that 

the optimal sizing values are different for every month based on solar irradiation, and 

temperature received at this location [85]. However, according to inverters’ efficiency 

curve and climatic conditions, the size of the inverter should be selected in order to 

achieve maximum performance during the year. In certain cases, because of low 

radiation levels and temperature conditions, a small under sizing or oversizing of the 

inverter power is desirable. Another important parameter is the cost of installation, as 

over-sizing of an inverter may reduce significantly the total cost for inverter installation. 
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Figure 29 : Advantages of an oversized and undersized inverter [86] 

An important parameter that defines the oversizing or undersizing is the sizing ratio 

which is defined as the ratio of the PV array capacity at standard test conditions (STC) to 

the rated inverter input DC power given and is described by the following equation [87]  

: 

𝑆𝑖𝑧𝑖𝑛𝑔 𝑟𝑎𝑡𝑖𝑜 =   
𝑃𝑃𝑉𝑅𝐴𝑇𝐸𝐷

𝑃𝐼𝑁𝑉𝑅𝐴𝑇𝐸𝐷

 
(1-4) 

where, P PV,rated and Pinv,rated represent rated PV capacity   and   rated   inverter   input   

power, respectively [87]. 

There are many studies that discuss optimal sizing of inverter according to site 

parameters as temperature and irradiance conditions. Luoma et al, observed that with 

sizing ratio 0.81 and 0.87 in San Diego, California, up to 6.5% of the monthly energy 

generation from a PV array and inverter system was lost due to inverter saturation [84]. 

Rodrigo et al,  studied the operation of two grid-connected systems in Central Mexico in 

order to draw results for inverter sizing ratio based on climatic conditions, type of 

inverter and PV panel. The results showed that for optimally oriented systems, the 

recommended array-to-inverter power sizing ratio is 1.05 for c-Si and 0.95 for CdTe 

independently of the chosen inverter [88]. 

When designing PV installations, it is necessary to take into account the non-uniformity 

of the PV panels’ connected in series in order to avoid losses of up to 4%. In order to 

mitigate this problem, sorting the PV panels according to power from flash reports is 

suggested. Whenever several strings are connected in parallel to form an array,  due to 

the effect of the serial and parallel interconnection, power output of each module in an 

array will be affected by the weakest modules. The diagram of Figure 30 demonstrates 

how the performance of a string is affected by the presence of a bypass diode. The 

problematic operation of a PV panel may be due to shading or a defective or aged panel. 
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Figure 30 : Behavior of a string with a weak panel [89] 

Finally, another factor that may affect the performance of photovoltaic systems is the 

appropriate sizing of DC and AC cables in order to reduce ohmic losses. 

1.2.7 Dust and aerosol effects 

The effect of dust accumulation is related to environmental conditions, size distribution 

of dust particles and tilt angles of the PV panels’ surfaces. Several researchers study the 

effect of dust accumulation on energy generation in places with varying environmental 

conditions. Kaldellis et al, studied the effect in urban environment of Athens with 

systematic measurements on roof-top PV panels which were left exposed to natural air 

pollution for  certain time periods and subsequently cleaned in order to be compare the 

panels’ performance. The results showed a 6.5% drop in energy generation of the dusty 

panels [90]. The climate of each location affects the dust accumulation effect; in wet 

climate, rainfall, wind and gravity help cleaning of the panels’ surface. In dry climate, on 

the other hand, accumulated dust is an important problem [91]. Ullah et al, studied the 

effect of soiling on energy production in Pakistan and showed that a lightly soiled panel 

had a 10% performance reduction, whereas a heavily soiled one could have a 40% 

reduction [92]. Several studies investigated the dust effect in desert areas with severe 

environmental conditions. Saidan et al, studied the dust effect on PV panels with direct 

exposure to weather conditions. The dusted panels were exposed indoors to solar 

simulator side-by-side with cleaned ones, in order to investigate the effect. The results 

show degradation of 6.24-18.74% depending on the exposure period [93]. Ramli et al, 

investigated dust effect in Indonesia using an experimental set up and a rule-based 

model to identify different experimental conditions. Results showed a 10.8% reduction 

in outdoor exposure [94]. The ground type of the site plays an important role in this 

process. Especially in desert areas this effect is stronger. Massi Pavan et al, studied the 

soiling effect using regression models and results show a 6.9% loss in a sandy site while 

losses of similar panels on a compact ground were 1.1% [95]. Pulipaka et al, studied 

effect of soiling on irradiance and observe that that soiling on a panel can decrease the 
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amount of horizontal irradiance received by the panel by causing angular losses ranging 

from 22% to 52% [96]. Beattie et al, proposed models of sand and dust particle 

accumulation on photovoltaic panels based on laboratory investigations on a glass 

surface. The results qualitatively describe existing field data and account for field 

conditions, including the effects of photovoltaic module tilt, humidity and wind speed 

[97]. Javed et al. studied the dust effect using artificial neural networks which indicate 

that the two most important environmental factors for PV soiling are wind speed and 

relative humidity [98].  

The size distribution of the accumulated dust particles and their composition 

significantly affect the photovoltaic panels’ efficiency. Abderrezek et al, investigated the 

effect of several types of dust (size and type) by employing a microscope, a 

spectrophotometer, an I-V photovoltaic modules analyzer and thermocouples. The 

results show that the dust material, its light transmissivity and the glazing temperature 

affect photovoltaic performance [99]. Adıgüzel et al., investigated the effect of size and 

weight of particles on the performance of PV modules, measuring voltage, current and 

power variation. The results show that the power loss increases with the weight of 

accumulated dust, assuming that average particle size remains the same. On the other 

hand with the assumption that particle weight remains the same, the power loss 

decreases as average particle size increases [100]. 

 

Figure 31 : Impact of soiling on PV efficiency [101] 

 

Figure 32: Impact of different kind of soiling on PV production 19  [102] 
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As referred above, significant role plays the type of dust. Dust contents are a mixture of 

different pollutants and many studies investigate the effect of each type outdoors and 

indoors. The pollutants which have remarkable impact according to literature are 

limestone, ash, red soil, calcium carbonate, silica, and sand [91]. Kaldelis et al, 

investigated the effect of different pollutants in PV efficiency in Figure 32. Experimental 

data concerning the effect of three representative air pollutants (i.e. redsoil, limestone 

and carbonaceousfly-ash particles) on the energy performance of PV installations are 

analyzed [102].  

Another factor that possibly affects PV efficiency is aerosols. Spectral distribution can 

vary depending on the content of the atmosphere, thus different gases, humidity, 

particles or atmospheric pressure can have an impact on the spectrum of light reaching 

the ground [103]. Aerosols modify microphysical and radiative properties of clouds 

(aerosol indirect effect), but they also scatter and absorb radiation (aerosol direct effect), 

altering the radiative balance of the Earth-atmosphere system. The level of reduction  is 

determined by absorption and scattering processes [104]. There are many studies which 

are focused on investigation of aerosol effect in PV performance. Gutiérrez et al, studied 

the impact of aerosols in PV production from seasonal to multi-decadal time scales The 

analysis based on aerosol and climate simulations and the results show significant 

differences in the average annual productivity from 12-16% depending the installation 

typology [105]. Neher et al, investigated the impacts of aerosols on PV production using 

an atmospheric radiative transfer and a PV power model. The study concerns a Sub-

Saharan region and the results show reduction on PV yields from 2-48% [106].  

Aerosols interact with clouds and modify their microphysical and radiative properties 

(aerosol indirect effect), but they also scatter and absorb radiation (aerosol direct effect), 

altering the radiative balance of the Earth-atmosphere system. The reduction in the 

intensity of a direct solar beam during its propagation through the atmosphere is 

determined by absorption and scattering processes. 

1.2.8 Photovoltaic panels deterioration 

Degradation in PV modules means a gradual deterioration of the component or system 

characteristics that can affect the ability to operate within the allowed tolerances. 

Manufacturers’ quality assurance procedures usually consider a PV module as 

degraded, whenever its output power falls below 80% of nominal value [107]. PV 

modules’ performance can be compromised by several factors, such as temperature, 

humidity, radiation and mechanical shock [108]. Each of these factors can cause various 

types of degradation. The IEC 61215 standard establishes the parameters for 

determining the modules degradation and performance. The tests include visual 

detection of defects in insulation and leakage currents [109]. It has been stated that the 

degradation rate of PV systems is less than 1% per year on the majority of the 

systems[110]. However there is a lack of adequate documentation about the effects of 

local climates on PV systems as the degradation rate may vary from region to region. 

Jordan et al reported that degradation rates for all types of PV modules average 0.8% per 

year while for crystalline silicon modules were 0.7% per year and for thin film modules 

were 1.5% per year [110]. Limmanee et al, measured an average degradation rate of 6,1% 

per year for thin film modules compared to other technologies  ranging between 1.2 - 

1.8% per year [111]. On the other hand, Rajput et al, found that the rate of degradation of 

PMAX of monocrystalline photovoltaic panels was 1.9% per year during 22 years of 

outdoor exposure in India [112]. Hun et al, observed that the median power degradation 
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of a PV system of 110 kWp, consisting of monocrystalline PV panels, was 1.54% per year 

[113]. 

1.2.9 Main types of faults in PV panels 

Inspection of PV panels is a quality assurance procedure that is increasingly employed, 

in various forms, by several PV panel manufacturers, before the lamination process 

takes place. These inspection procedures are completed in less than 1 minute and spot 

the existence of micro cracks, cell edge deterioration, electrically inactive parts of cells, 

low generation cell areas, low generation cells (for mismatch), irregular distance 

between cells, crystal defect, ribbon misalignment etc. In case of spotting defects that 

exceed the performance limits set, the panel may be readily repaired before proceeding 

to the lamination. 

On the other hand, an inspection procedure for the PV panels and electrical installation 

of in-use PV parks should be also embedded in a PV park monitoring process. This 

inspection process may lead to the detection of a number of faults that may be 

categorized as follows: 

1. Damage to the PV panel or panel covers, of the following types:  

• Breakage of the glass protective surface  

• Bubbles and/or tears to the polymer (Tedlar) cover of the backsheet 

• Corrosion of metallic frames 

• Damage to the panel insulation   

• Failed solder bonds of the PV cells 

2. Hot spots to the panel surface, which are observable by infrared thermography. 

A hot spot is a PV cell or a group of cells being at significantly higher temperature than 

the rest of the cells of the panel, because it behaves as an ohmic load, draining energy 

produced by the neighboring series - connected cells. This behavior could be due to the 

following reasons: 

• Deterioration of the PV current due to dust or dirt accumulated on its surface 

• Damaged or broken up cells (mechanical damage, break of protective layers) 

• Partially shaded cells (usually met in residential installations) 

• shunt resistance problems 

• resistive heating due to improper cell interconnect 

3. Errors in the laying out of the electrical installation – bypass diode  

4. PID effect (Potential Induced Degradation) 

This phenomenon, first observed in the seventies, leads to a sudden decrease of PV 

panel efficiency. The general mechanism of PID is that voltage bias related with leakage 

currents pass from silicon active layer  through the glass to the grounded module frame 

[114]. Module leakage current to the ground increases with ambient temperature and 

relative humidity [114]. PID degradation depends on polarity and potential difference 

between cell and ground [115]. The most common test to detect PID is 

electroluminescence imaging, thermal (IR) imaging, measurements of open-circuit and 

operating voltage, IV curves and dark IV curves [116]. There exist recovery methods for 

affected panels[116], therefore it is important to inspect the panels. 
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Figure 33 : Different faults in PV panels in correlation with years [117] 

Factors that are able to decrease energy generation are described below: Grid faults of 

grid that most of the times happened because of PPC grid faults. PV panel’s degradation 

(corrosion, discoloration, delamination breakage and cracking cells [107]. Faults of this 

category are not readily diagnosed. PID- affected cells is a common problem in cases 

with transformer-less inverters, that could lead to significant decrease in energy 

generation. Dust effects could be also a problem for particular locations, reported to 

cause up to 6.5% reduction in urban areas  according to a specific study. Power loss due 

to partial shading and dust accumulation were investigated in a desert environment 

[118]. These problems can be avoided by optical inspections, monitoring, I-V 

measurements and IR thermography [119]. The respective standards and guidelines are 

discussed in [120]. 

The above facts point to the importance of a monitoring system that would cooperate 

with a mathematical model to diagnose faults in time, allowing the timely solution of 

the problems. The system should operate with a grid connected PV park, without loss in 

energy generation. Such a monitoring system is also important in evaluating 

conformance to the terms of manufacturer’s warranty. Most manufacturers’ warranties 

terms allow for a degradation of power output to 90% for the first 10 years and 80% for 

25 years. The power output of every PV panel is defined and tested at STC Conditions 

(1000W/m2, 25° C PV panel temperature, AM1.5 spectrum) and NOCT (800W/m2, 20° 

ambient temperature, 1 m/s wind speed) conditions. Performance at these conditions 

allows measurement comparisons between different laboratories and different PV 

modules however it is not representative for outdoor conditions [121]. Thus, 

manufacturers data do not define the expected energy generation of PV panels under 

real insolation conditions [122]. The correlation of irradiance and panel temperature 

effects is feasible because of the existence of many mathematical models and adequate 

technical data from manufacturers. Especially, there are several correlations for panel 

temperature for various applications, so it is important to choose the most suitable for 

each case [55]. However, checking the third parameter, namely STC conditions 

performance, is a challenging task, as it involves spectral measurements and information 

about spectral response of PV panels, something that is not always provided in technical 

datasheets. Tian et al. discuss the effect of spectral distribution of irradiance, especially 

in urban areas [72].  
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1.3 Measurement equipment 

Typical measurement equipment that can be used to evaluate a PV plant performance 

includes a irradiance sensor, an ambient temperature measurement sensor, a 

temperature sensor of the back panel surface, and a speed measuring sensor of the wind. 

Apart from the sensors for measuring the climatic data, some measuring instruments 

such as electrical voltages, electric currents and power are also required. Typically, 

important information can be obtained from the installation inverter. 

1.3.1 Standard measurement systems 

Measurement standards are described in standards below [123]: 

• IEC 60904-1 “Photovoltaic devices – Part 1: Measurement of photovoltaic 

current-voltage characteristics” 

• IEC 61724 “Photovoltaic System Performance Monitoring – Guidelines for 

Measurement, Data Exchange and Analysis”  

• IEC 61829 “Crystalline Silicon Photovoltaic array – On-site Measurement of I-V 

Characteristics”  

• ASTM E1036 “Standard Test Methods for Electrical Performance of Non 

concentrator Terrestrial Photovoltaic Modules and Arrays Using Reference 

Cells” 

• ASTM E2527 “Standard Test Method for Electrical Performance of Concentrator 

Terrestrial Photovoltaic Modules and Systems Under Natural Sunlight”  

• ASTM WK22009 “Reporting Photovoltaic Non-Concentrator System 

Performance “ Sources of Uncertainty NREL’s Approach 

General Information of Standards [123] 

IEC 60904-1 

• Voltage and current measured with ±0.2 % uncertainty in open circuit voltage 

and short-circuit current 

• Test and reference device coplanar within ±2° and normal to the sun within ±5° 

• Reference cell and test device temperature measured with ±1 °C uncertainty 

• Optionally test device temperature determined via equivalent cell temperature 

method (IEC 60904-5) 

• Spectral mismatch error correction if matched reference cell not used (IEC 

60904-7) 

• If reference cell >2 °C from calibration temperature corrections applied 

• Use IEC 60891 to translate for temperature and irradiance IEC 

ASTM  E1036 

• Voltage and Current measured with ±0.1 % Uncertainty and 0.05% Resolution 

for open-circuit voltage and short-circuit current.  

• Test and Reference device coplanar within ±2° and normal to the sun within 

±10° or report incidence angle 

• Reference cell and test device temperature measured with ±1 °C uncertainty, 0.1 

°C resolution. 

• Spectral mismatch error correction applied (ASTM E973) 

• Temperature and irradiance corrections applied if temperature more than 2°C 

from reference temperature or irradiance > 5% from reference irradiance correct 

using bilinear method. Otherwise current corrected to constant irradiance. 
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• Average Wind speed for 5 min prior to test. 

IEC 61724 

Meteorology 

• Total irradiance, in the plane of the array 

• Ambient air temperature 

• Wind speed 

Photovoltaic array 

• Output voltage 

• Output current 

• Output power 

• Module temperature 

• Mounting / tracker characteristics 

Load 

• Load voltage 

• Load current 

• Load power 

Energy storage 

• Operating voltage 

• Current to/from storage 

• Power to/from storage 

Utility grid 

• Utility voltage 

• Each phase - Current to/from utility grid 

• Power to/from utility grid 

Back-up sources 

• Output voltage 

• Output current 

• Output power 

Total Irradiance  

• Measured in plane of array 

• Uncertainty including Instrumentation < 5% 

Pyranometer 

• Reference cell or cell in Module Package or Module (IEC 60904-2) 

• Ambient Temperature –  

• Representative of Array Location 

• Uncertainty including Instrumentation < 1°C 

Wind Speed 

• Measured at Height and Location Representative of Array 

• Uncertainty including Instrumentation < 0.5 m/s for Speeds < 5 m/s, and <10 % 

of the reading for Speeds > 5 m/s 

Module Temperature  
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• Measured on back of 1 or more modules in representative of location 

• Uncertainty including Instrumentation < 1°C 

• location on module given in IEC 61829 method A (center of back surface of 

module in center of array field) 

• Based upon Voc and equivalent Cell temperature (IEC 60904-5) 

Voltage and Current  

• AC and or DC 

• Uncertainty including Instrumentation < 1% of reading 

Power 

• DC Calculated based upon instantaneous and not averaged readings or directly 

measured with wattmeter 

• AC power accounts for power factor and harmonic distortion 

• Uncertainty including Instrumentation < 2% 

Huld et al, proposed specific requirements for energy rating of photovoltaic modules. 

The minimum requirements for a meteorological data set for energy rating should 

contain broadband irradiance and air temperature. The current proposal of standard 

data sets consisting of “typical days” do not give realistic estimates of PV performance 

and thus is not sufficient as a rating standard. A dataset compromising between being 

significant for any location but not consisting of too much data is required. A method to 

generate such a dataset is presented, meeting  all the requirements of an international 

standard while being sufficiently accurate to differentiate between different devices of 

different manufacturers. It is suggested to work with annual data-sets for specific 

climatic zones, and compare devices based on their module performance ratio [124]. 

1.4 Monitoring systems 

1.4.1 1.1 Monitoring of PV parks 

In the case of utility scale PV plants, monitoring typically serves for comparison of 

current plant performance with an initial energy yield assessment. To distinguish 

performance, one should filter the significant variability of insolation. Thus, monitoring 

should always include both the energy generated and the incoming irradiation. For 

electricity yield measurements, energy meters or true-rms power meters should be used. 

The inverter-integrated measurements are usually not sufficiently precise. Nevertheless 

they are useful for identifying relative changes over time. Figure 34 - Figure 36 show 

three different monitoring systems with measurement equipment and data recording 

systems.
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Figure 34  : Measurement equipment for photovoltaic installation of  NREL[123] 

 

 

 

 

 

Figure 35: Monitoring System of a  142,5KWp PV system [125] 
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Figure 36: Monitoring system using LABVIEW [126] 

1.4.2 Commercial monitoring systems 

Typical measurement equipment which is provided by Inverters’ manufacturers are 

irradiance sensors (calibrated reference cells), ambient or back panel temperature 

sensors, air velocity, recording system and a data set of inverters’ inlet measurements. 

These measurements concern AC voltage, power and total energy, DC voltages and 

some of manufacturers provide DC current and power. These sets may differ for each 

manufacturer. In this section are presented equipment of typical monitoring systems of 

Inverters’ manufacturers. 

Fronius accompany its inverters with the Fronius sensorbox , irradiance, temperature 

and air velocity sensors, ambient temperature sensor with large range of measurement 

in order to cover ambient measurements. 

 

Figure 37  Fronius Ambient temperature sensor 

Table 3 : Fronius Ambient temperature sensor 

Sensor PT1000 

Measuring range -40°C to +180°C; -40 F to 356 F; 

Accuracy  

Design Sensor in a cylindrical housing of stainless steel 
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Dimensions Length 50mm, 6mm 

Cable 3m Cu-cable, 2x0,5 mm, silicon isolated, ferrules, 

UV-resistant 

Max cable length  20m 

PV panels temperature sensor 

An adhesive sensor which measures PV panels temperature  

 

Figure 38 : Temperature sensor on back panel surface 

Table 4 : Fronius Temperature sensor  

Sensor PT1000 

Measuring range -4° F to +302° F 

Accuracy ± 0,45°C (im Bereich -20°C bis 150°C) 

0,81° F (in the range –4° F to 302° F) 

Design Sensor on an adhesive film for measurement 

on surfaces 

Dimensios 32x32mm 

Cable 5m Cu, 

Max cable length  20m 

Solar irradiance sensor 

It is a sensor that measures solar radiation and is positioned in the same slope as the 

inclination of the PV panels. The sensor is a small monocrystalline cell and its output 

gives an electrical voltage. The sensor is calibrated in order to measure solar irradiance. 

 

Figure 39: Fronius Solar irradiance sensor  
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Table 5 :  Fronius Solar irradiance sensor 

Sensor Mono crystalline Si-Sensor 

Sensor voltage approx. 75mV at 1000W/m2 

(exact calibration voltage is written on the 

sensor) 

Accuracy ± 5% (average over a year) 

Ambient temperature -40°C to +85°C; -40° F to 185° F 

Design Sensor is mounted on Z-shaped aluminium 

profile 

Dimensions l x w x h = 55 x 55 x 10 mm 

Cable 3m Cu-cable; ferrules, UV-resistant 

Cable Max. cable length (distance: 

Sensor 

Card/Box – sensor) 

30m 

 

 

 

Figure 40 :  Fronius Air velocity sensor  

Table 6 :  Fronius Anemometer characteristics  

Sensor Cup Anemometer 

Output signal Rectangle Low ≤ 0,5V / High ≥3,5V 

Calibration factor 5,22 Hz = 1km/h 

18,79 Hz = 1m/s 

Threshold 2,5m/s wind speed 

Resolution 1m/s; 1km/h 

Accuracy ± 5% at wind speed≥5m/s 

Degree of protection IP54 

Ambient temperature -20°C to +60°C; -4 F to 140 F 

Dimensions 85 x 93 x 115 mm 

Cable 2m Cu-cable; ferrules, UV-resistant 

Max. cable length (distance: Sensor 

Card/Box – sensor) 

30m 

 

Another monitoring equipment set, which is provided by Kostal Piko inverters, consists 

of a irradiance sensor and a temperature sensor for back PV panel surface. 

Characteristics of this sensor set are presented in Figure 41, Table 7, Table 8. 
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Table 7 : Kostal irradiance sensor 

Sensor Mono crystalline Si-Sensor 

Voltage range 0-3,125V 

Range 0-1500W/m2 

Accuracy ± 5% (average over a year) 

Calibration Solar simulator solar constant 1200,ISE 

Table 8 : Kostal temperature sensor 

Sensor PT1000 

Measuring range -4° F to +302° F 

Accuracy ± 0,45°C (im Bereich -20°C bis 150°C) 

0,81° F (in the range –4° F to 302° F) 

Design Sensor on an adhesive film for measurement 

on surfaces 

Dimensions 32x32mm 

Cable 5m Cu, 

Max cable length  20m 

 

Figure 41: Typical set of monitoring devices of PIKO inverters. 1 : inverter 2: PV panels 3: back 

surface temperature sensor 4: irradiance sensor [127] 

SMA provides another monitoring system for installation with SMA inverters. Sunny 

sensor box consists of an irradiance sensor, an ambient sensor(PT 100) and a back panel 

surface sensor (PT  100) [128]. 
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Figure 42 : SMA sensorbox [128] 

Table 9: SMA irradiance sensor [128] 

Sensor amorphous 

Range 0-1500W/m2 

Accuracy ± 8%  

Divestiture 1 W/m2 

Table 10 :  SMA temperature sensor [128] 

Sensor PT 100 

Measuring range -20-110°C 

Accuracy ± 0,5°C  

Divestiture 0.1 °C 

Analogue system provide ABB with ABB monitoring and communications VSN800 

Weather Station. However ABB weather station provides one more irradiance sensor 

which is attached in horizontal inclination. 

 

Figure 43 : ABB weather station VSN800 

Table 11 : ABB irradiance sensor 

Range 0-1750W/m2 

Accuracy ± 5%  

Temperature range -25 to 55°C 

Table 12 : ABB temperature sensor 

Measuring range -40-80°C 

Accuracy 0,3°C  

 

It is observed that all of the manufacturers provide similar equipment and monitoring 

system sets. In this work the available datasets are provided by grid-connected systems 

which use Fronius inverters and monitoring system. 
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1.5 Aim and innovative features of this work 

• Formulation of a methodology to manipulate datasets from grid-connected 

photovoltaic systems for performance evaluation and fault diagnosis without 

interruption in PV plant operation  and without off-grid IV measurements. The 

aid of IR thermography to this diagnostic procedure is also examined in this 

work, aiming to further assist O&M procedures.  

• Investigation of deviations of PV panels performance from STC values in order 

to check if PV manufacturers’ warranties are met using real time data. 

• Manipulation of big data time series of grid-connected PV system  in order to 

give information of solar potential. 

• Investigation of Airmass and clearness index impact on real time PV efficiency. 

• Investigation of aerosol impact on real time PV efficiency using aerosol mass 

concentration, rainfall data, irradiance, temperature and electrical power of PV 

system. 

• Investigation of dust accumulation effect in PV performance using real time 

data of grid-connected PV systems, aerosols mass concentration and rainfall 

data. 

• Study degradation of PV systems by a long term analysis methodology which 

calculates performance metrics  in order to check its evolution over time. 

 

 

 

 

Figure 44 : Analysis objectives and respective experimental set-ups for this study 
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Effect of Airmass -
Clearness Index

Grid-connected 2MWp 
Central Greece, Singe PV 

device off-grid

Formulation of 
Methodology

Grid-connected 
99,84KWp Central 

Greece

Degradation 
analysis

Grid-connected 12,48 
kWp Central Greece

IR Thermography

Four Grid-connected 
100kWp systems in 
Central Greece and 
one roof top 10kWp 

Ssytem

Dust Effect soiling

Grid-connected 12,48 
kWp Central Greece

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 17:50:21 EEST - 137.108.70.13



Elias Roumpakias 

 

57 

 

2 Literature Review 

Performance analysis of grid-connected photovoltaic systems is a challenging task which 

is investigated by a significant number of researchers worldwide. Performance analysis 

applied vary widely according to its objectives, as well as the method of analysis. There 

are many researchers who study the prediction of photovoltaic systems energy 

generation and others the evaluation of systems’ performance. The main researchers’ 

objectives are study of the potential of a site [129, 130], economic assessment [131], 

comparisons between different types of PV technology, study of the effects of 

environmental conditions like humidity and dust accumulation and degradation of PV 

systems [111-113, 132-138]. 

2.1 Performance analysis of Photovoltaic systems 

Estimation of solar potential has already been investigated by many researchers. 

Hafeznia et al, proposed a framework to estimate the solar potential for utility scale 

installations using spatial planning and performance simulation [139]. A challenging 

task is the exploitation of measurements of grid-connected PV parks in  assessing solar 

potential or energy generation potential. In Greece, there exist many PV parks scattered 

across the country, and systematic data collection could create an inclusive and useful 

solar database. The majority of PV parks employ a typical set of sensors which collect in 

- plane irradiance, module temperature and power data from the inverter’s inlet side. 

Processing of these data can be used as a tool for weather prediction and electricity 

generation forecasting. Several studies exploit datasets from grid connected  systems for 

forecasting, performance evaluation and estimation of solar potential. Mellit et al, use 

measurements of irradiance and air temperature from a grid-connected system and with 

the aid of MLP network  forecast 24 h ahead of solar irradiance [140]. Nespoli et al 

proposed a method for estimating global horizontal irradiance from AC measurements 

of one or more PV plants [141]. Graditi et al, used a large data set and three models, 

based on a neural network, a regression approach and a physical model, to forecast 

energy production [142]. Cervone et al, propose also an artificial neural network using a 

numerical weather prediction model and computed astronomical variables and the 

results were tested in PV stations in Italy [143]. Another example of exploitation of solar 

measurements in order to provide knowledge about the solar potential is a study in 

eastern Iran by Maleki et al.. Particularly, a geographical information system module is 

developed first to determine the suitable location and capacity for a stand-alone PV 

system in rural areas, taking into account the technical, environmental and socio-

economic criteria affecting the site selection process of stand-alone PV systems [144]. On 

the other hand, a significant challenge is the contribution of renewable energy in 

buildings. To that point it is important to determine the optimal integration of solar 

energy in urban areas. Optimal sizing demands very good knowledge of solar potential 

and local environmental factors that affect photovoltaic production. Mavromatidis et al, 

study solar potential of a village in order to exploit solar energy using photovoltaic 

systems. Particularly, they proposed a model which uses Digital Elevation Models 

(DEM) in order to create solar availability profiles for each building examined, taking 

into account the different surface orientations, the neighbouring structures, but also the 

surrounding topography [145]. This work aims to give feedback for solar and PV 

production from grid connected photovoltaic systems in real conditions. The fact that 

this feedback concerns PV parks in real conditions gives more realistic information as 
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includes all type of losses and describes behavior of systems’ in different environmental 

conditions. Furthermore, there are many approaches that study performance analysis 

with experimental set-ups that are not grid-connected, however operation of PV 

modules in MPP is a task that needs simulation. Application of the proposed 

methodology in combination with a GIS system and access to a large number of 

scattered PV parks is going to create a useful tool for sizing, forecasting of electrical 

loads and comparison of different technologies. 

Dust accumulation is another important factor which is analyzed in 1.2.7. From a 

techno-economic aspect, it is important to determine whether its effect necessitates 

cleaning processes for PV panels. This issue is related to region characteristics and 

weather conditions. Hachicha et al., study the effect in a desert area and observed that 

rainfall contributed to improve the PV performance and decreased dust density. 

However, due to cementation process some dust particles tend to stick on the PV surface 

and could not be removed. Moreover, cleaning of PV modules cannot rely on occasional 

rain and it should be planned based on the regular density accumulated [146].  

Triki-Lahiani et al. divide the methods of analysis in five main categories, namely 

electrical circuit simulation, statistical analysis, electrical signal approaches, artificial 

intelligence, predictive models and comparison with real models [147]. However, these 

categories may be combined. An important difference for each approach is the 

experimental set-up. Many studies based on outdoor set-ups which are PV parks in 

actual grid-tied operation, while other experimental set-ups are not in grid-connected 

operation. Other studies are based on indoors experiments, or simulation procedures. In 

each method of analysis, the parameters considered are the available inputs and -

depending on the methodology- also the computed outputs. The selection of inputs and 

outputs are up to each researchers’ choice and the same holds for the method of 

analysis, however, the available standards as IEC 61724 are employed to [120]. As far as 

environmental conditions are concerned , the recommended inputs by IEC61853 are 

irradiance in plane of array,  effective irradiance, directionally resolved radiance, air 

temperature and wind speed [124]. 

As already mentioned, an important objective under investigation is PV modules 

degradation. Performance degradation analysis is classified as indoor and outdoor 

analysis. Phinikarides et al. presented a classification of methodologies for degradation 

analysis according to these categories. Outdoor analysis includes the calculation of PV 

performance metrics, IV characterization, regression modeling, normalized and scaled 

ratings, measurement qualifications and filtering, statistical analysis and uncertainties. 

Indoor analysis involves the calculation of degradation rates for PV modules subjected 

to accelerated aging based on weathering and PID acceleration with the aid of 

appropriate test conditions [148]. However, under real outdoor exposure radiation, 

temperature, humidity, wind and operating voltage act together, whereas under 

accelerated tests these parameters are varied according to a predetermined sequence 

which is not quite representative in order to observe the same defects [132]. Huang et al. 

presented a method to study the degradation process of PV models with the help of a 

circuit-based model of PV electrical characteristics. It was observed that the main reason 

of power loss was optical degradation of the PV modules, which tends to increase 

through time, depending on PV technology and climates [149]. Ozden et al, conducted 

long term outdoor testing of three different PV technologies  under the same climatic 

conditions and calculated degradation rates from monthly efficiencies in the range 0,4 - 

10,6%[150]. The term degradation rate, RD, is defined as the rate of maximum 

performance reduction over time [148]. Rajput et al. studied PV degradation using 
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visual inspection, thermal imaging, IV and insulation resistance measurements and 

calculated degradation using the following formula [112]: 

Rate of Degradation(Rd ) =
Initial data − Final data

Final data
 x 100 

(2-1) 

To sum up, methods of analysis are mainly based on mathematical models, on the 

calculation of standards’ metrics IEC 61724 , the use of models of the PVUSA type [151], 

the use of neural networks , and the use of simulation models. Another type of analysis 

is based on normalization procedures [152-154]. All of the types of analysis are 

presented in the follow sections. 

2.2 Mathematical Models 

There are several models and methods of PV performance analysis in recent literature. 

The differences between models are related to the kind of input parameters, types of 

measurement equipment and type of operation, grid-connected or not. There exist three 

main categories for evaluation and prediction of PV performance: (i) based on real time 

operation data, (ii) based on off-grid measurements, and (iii) based on simulation.  

Mathematical models which are described below concern either PV power or PV 

efficiency however calculation of PV efficiency based on PV power stems from equation 

(2-4).[155] 

𝑛 =
𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑎𝑙 𝑃𝑜𝑤𝑒𝑟

𝐴𝑟𝑒𝑎 𝑥  𝐼𝑟𝑟𝑑𝑖𝑎𝑛𝑐𝑒
=

𝑃𝑆𝑇𝐶

𝐴𝐺𝑆𝑇𝐶

 
(2-2) 

A mathematical function to compute PV efficiency for a given set of irradiance and 

temperature levels, proposed by Evans [156] for prediction of the PV output with a 

simplified procedure is the following: 

𝑛(𝑇𝐶 , 𝐺) = 𝑛𝑆𝑇𝐶[1 + 𝑎(𝑇𝐶 − 𝑇𝑆𝑇𝐶) + 𝑘 log10 𝐺] (2-3) 

where nstc denotes the PV efficiency on STC, a denotes the panel temperature coefficient 

of power, TC denotes the temperature of PV panel, TSTC denotes the temperature of PV 

panel according to STC conditions (25°C), G denotes the irradiance on panel’s surface, k 

the solar radiation coefficient. A simplified application of the above equation without 

the logarithmic term has also been proposed. 

𝑛(𝑇𝐶 , 𝐺) = 𝑛𝑆𝑇𝐶[1 + 𝑎(𝑇𝐶 − 𝑇𝑆𝑇𝐶)] (2-4) 

Many researchers describe models based on this equation, using different factors each, 

depending on the type of model application. 

Ramli et al. describe a model to study the effect of dust accumulation carrying out 

measurements with an experimental off-grid system and using the equation below: 

𝑃 = 𝑃𝑆𝑇𝐶𝑓𝑃𝑉

 𝐺

𝐺𝑆𝑇𝐶

[1 + 𝑎(𝑇𝐶 − 𝑇𝑆𝑇𝐶)] 
(2-5) 

Where PSTC is PV power at STC conditions, fPV is a derate factor of PV, G is total 

irradiance, GSTC is irradiance at STC conditions (1000W/m2), a is power temperature 

coefficient (%/°C), TC is the panel temperature and TSTC is panels’ temperature at STC 
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conditions(25°C) [94]. PV panels exposed outdoor in off-grid operation using a 

microcontroller, a load, an ambient temperature sensor, geographical data and a global 

horizontal irradiance model. Results reveal that local environmental conditions, dust, 

rain and partial cloud, significantly reduce PV power output. 

On the other hand, Nacer et al propose a model of grid-connected photovoltaic systems 

in family farms for electricity generation in rural areas. This model is described below. 

𝑃 = 𝑛𝑆𝑇𝐶𝑛𝐼𝑁𝑉𝐴 𝑓𝐷𝐶𝑓𝐴𝐶𝑓𝐴𝐺𝐸𝑓𝐸𝑋𝑇

 𝐺

𝐺𝑆𝑇𝐶

[1 + 𝑎(𝑇𝐶 − 𝑇𝑆𝑇𝐶)] 
(2-6) 

Where nSTC is PV performance at STC conditions, nINV is inverters’ performance, fDC is a 

derate factor (typical value of 0.955), fAC is a AC interconnection derate factor (typical 

value  0.99), fAGE is a derate factor for the loss in system performance with ageing, fEXT is 

a derate factor for external reason like dust accumulation, shading effects or snow cover, 

G is the total irradiance, GSTC is irradiance at STC conditions (1000 W/m2), a is the power 

temperature coefficient (%/°C), TC is the panels’ temperature and TSTC is the panels’ 

temperature at STC conditions (25°C) [157]. The proposed model aids in the optimal 

sizing of the system and verifying the economic feasibility in applications like farms. 

 It is well known from manufacturers’ tests that an efficiency drop happens at low 

irradiance levels. This is observed either from grid-connected PV systems [158] or from 

off –grid experimental PV systems that at small solar altitudes and consequently large 

values of AM there is a decrease in efficiency [159]. Thus, correlation between irradiance 

and power may be improved at low irradiance levels with the following two models 

reported in the literature[160]: 

The first one is the PV form model: 

𝑃 =
𝐺

𝐺𝑆𝑇𝐶

𝑃𝑆𝑇𝐶[1 + 𝑎(𝑇𝐶 − 𝑇𝑆𝑇𝐶)] 
(2-7) 

For G < 125W/m2: 

𝑃 =
 0.008𝐺2

𝐺𝑆𝑇𝐶

𝑃𝑆𝑇𝐶[1 + 𝑎(𝑇𝐶 − 𝑇𝑆𝑇𝐶)] 
(2-8) 

The PV form model differentiates the power computation for low irradiance levels, by 

employing as  inputs irradiance (G) and panel’s temperature (TC) in combination with 

the following PV panel’s technical characteristics: nominal power (PSTC) and temperature 

coefficient (a) as well as the reference values GSTC, TSTC (1000 W/m2, 25°C).  A similar 

approach is the improved bilinear interpolation model which employs a different 

expression for the low irradiance limit, as well as one additional coefficient, the 

irradiance factor k.  

The improved Bilinear interpolation model takes the following form[160]: 

G > 200 W/m2:    

𝑃 = 𝑃𝑆𝑇𝐶  [
 𝐺

𝐺𝑆𝑇𝐶

[1 + 𝑎(𝑇𝐶 − 𝑇𝑆𝑇𝐶)] − 𝑘
 𝐺𝑆𝑇𝐶 − 𝐺

𝐺𝑆𝑇𝐶 − 200
] 

(2-9) 

G <200 W/m2:    
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𝑃 = 𝑃𝑆𝑇𝐶  [
 𝐺

𝐺𝑆𝑇𝐶

[1 + 𝑎(𝑇𝐶 − 𝑇𝑆𝑇𝐶)] − 𝑘[1 − (1 −
 𝐺

200
)

4

]] 
(2-10) 

Where PSTC, GSTC, TSTC are reference parameters, k an irradiance factor and a the panel 

temperature coefficient described by the manufacturer. Tc and G are measured 

parameters. Irradiance factor k is provided by manufacturers as a percentage reduction 

in efficiency at low irradiance levels (200 W/m2). However, this factor may be computed, 

by conducting further characterization measurements by use of low irradiance models.  

Another important model which stresses the temperature effect is described by Skoplaki 

et al. Skoplaki et al, propose a simple empirical expression for the electrical efficiency of 

a typical crystalline silicon PV cell [161]: 

  𝑛 = 0,12[1 − 0,004 (𝛵𝛢𝛭𝛣 + 𝜔
0.32

8.91 + 2𝑉𝑓

𝐺 − 25)] 
(2-11) 

Where TAMB is ambient temperature, ω is defined as mounting coefficient and correlates 

type each mounting system with free standing(ω= type of mounting system/free-

standing where values are free standing system=1, flat roof=1,2, sloped roof=1,8, façade 

integrated =2,4) .Vf=(VW+0,5)/0,68 where VW  is wind speed, G is irradiance. 

Akhsassi et al. proposed a mathematic model in order to evaluate PV performance of a 

grid connected system.  

𝑛𝑃𝑉  = 𝑛𝑆𝑇𝐶[1 + 𝑎(𝑇𝐶 − 𝑇𝑆𝑇𝐶)][1 + 𝛾 ln
 𝐺

𝐺𝑆𝑇𝐶

] 
(2-12) 

Where ηSTC and α are the module efficiency and the temperature coefficient of maximum 

power, TSTC and GSTC are the reference temperature and reference solar irradiance (25 °C 

and 1000 W/m2, respectively). γ is a dimensionless coefficient which is between 0.03 and 

0.12 for single crystalline silicon. The experimental set up consists of  32 Sunpower (SPR-

225-WHT) monocrystalline silicon panels 225 Wp. The PV power plant and its 

meteorological station are fitted up with  sensors to monitor irradiance, wind speed, 

ambient and module temperatures. The meteorological parameters are recorded by a 

Sunny Boy Control Plus (SMA) data logger which communicates with the Sunny Sensor 

Box [162].  

As mentioned above, most models concern real time data in grid-connected operation, 

on the other hand there exist models concerning off – grid operation. The two model 

categories have advantages and disadvantages which depend on the kind of application. 

In all cases a usual problem is the lack of measurements for different levels of panel 

temperature, irradiance and spectral distribution of radiation. In such cases, the use of 

appropriate models may improve prediction accuracy. A characteristic example is the 

lack of panel’s temperature which may be substituted by use of meteorological data 

based on the following expression, proposed by Mavromatakis et al. [129]: 

𝑇𝐶 = 𝑇𝑎 +
𝐺

𝐺𝑆𝑇𝐶

(𝑇1𝐸𝑋𝑃(𝐵 𝑊𝑆) + 𝑇2 + 𝛥𝛩) 
(2-13) 

where T1, T2, B, Δθ are empirical coefficients (T1=19.6° C,T2=11.6° C,B=-0.223, Δθ=3° C) 

and TC, Ta are the cell’s and ambient temperatures respectively and WS the wind speed.  
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2.3 Performance ratio and metrics 

An important performance index for a PV park is the performance ratio (PR), which is 

the global system efficiency with respect to the nominal installed power. Monitoring of 

PR of a grid-connected system correct underperforming system and reduces economic 

losses due to operational problems [163].  PR values are typically reported on a monthly 

or yearly basis. The comparison of yearly PR allows for an indicative assessment of PV 

park performance, although it does not account for the effect of panel temperatures and 

the existence of possible periods with  the park disconnected from the grid. 

Nevertheless, PR ratio is useful to identify problems as faults in inverter operation, 

shading, diode failures and soiling [164]. PR was introduced by the JRC (European Joint 

Research Center) in order to facilitate comparisons between several PV installations and 

is adopted by many researchers. It is described in the IEC EN 61724 standard [120]. It 

can be seen as the ratio of parameters Yf and Yr (system yield and reference system yield, 

respectively), defined as follows:  

𝑌𝑓 =
𝐸

𝑃𝑆𝑇𝐶
    (kWh/kW) (2-14) 

Where E is the net energy output and PSTC is the installed power at STC conditions 

𝑌𝑅   = 
 𝐻

 𝐺𝑆𝑇𝐶
  (kWh/kW) (2-15) 

Where H is the total in plane solar radiation and GSTC is irradiance at STC conditions 

(1000W/m2). It represents an equivalent number of hours at the reference irradiance. 

This is the ideal energy produced if the system was always running at the STC 

efficiency. 

PR =  
𝑌𝑓

𝑌𝑟
 (2-16) 

CF = 
𝑌𝑓

8760
 (2-17) 

As already mentioned, the panel temperature effects are not included in the above 

equations. Other researchers propose the use of temperature - corrected Υr [165], defined 

as follows: 

𝑌𝑐𝑟  =  𝑌𝑟(1 + 𝑎(𝑇𝐶 − 𝑇𝑆𝑇𝐶)) (2-18) 

Where Yr is computed from equation (2-15) , a is the panel temperature coefficient, Tc is 

the panel temperature and TSTC is the reference temperature at STC conditions. 

PR analysis is focused on long term analysis, however, it is important sometimes to 

model the power output in real time as an index of PV performance. 

Kymakis et al. applied PR and capacity factor (CF) in monitoring a PV park on the island 

of Crete, to draw conclusions for long term PV performance [166]. The experimental set 

up of this work is a grid-connected 171,36kWp PV system in Sitia Crete. The PV park 

supplied 229 MW h to the grid during 2007, ranging from 335.48 to 869.68 kWh. The 

final yield (Yf) ranged from 1.96 to 5.07 h/d, and the performance ratio (PR) ranged from 

58 to 73%, giving an annual PR of 67.36%. This work provide important information for 

potential of the site, however does not provide information for PV panels performance. 
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Dabou et al. presented a performance analysis of a 1.75 kWp grid connected 

photovoltaic installation in South Algeria using PR  and efficiency of PV modules, 

system and inverter in order to study the relationship between performance and climate 

parameters, aging and pollution. The experimental results show that the lowest values 

of the system efficiency and performance ratio (10.29% and 76.5% respectively) caused 

by the high module temperature equal to 41.1°C in the clear day, and the fast-changing 

of the solar irradiance is caused by variation of clouds cover or dust storm affects the 

energy generated and stability of the PV system [167]. 

De lima et al. presented a performance analysis of a 2.2 kWp PV system in Brazil using 

system efficiency, performance ratio and capacity factor in order to evaluate the 

potential of producing electricity through photovoltaic systems in this region of Brazil. 

The grid connected PV system used in the present study is installed in Ceará, (latitude 

3.40°S and longitude 38.33°W). The system consists of 18 modules covering a total area 

of 29 m2 with an installed capacity of 4.4 kWp. The installed PV panels are Canadian 

Solar CS6P-245P of 245 Wp. The SMA Sunny Boy SB 2500-HF-30 inverter was used [168]. 

Calculation of daily average reference, array and final yields, the array capture, system 

and overall losses, the array, system and inverter efficiencies, the performance ratio and 

the capacity factor varied provide important information for systems’ efficiency 

although factors as temperature are not examined. Consequently, the calculated 

performance figures of the PV panels are influenced by the panels temperature.  

Congedo et al. analyzed the performance of a 960 kWp grid connected PV system in 

South-eastern Italy using performance ratio and the other performance indices such as 

AC power output and instantaneous efficiency. The study gives an aspect of how is the 

real performances of a PV system installed in South-eastern Italy and how the climatic 

conditions influence PV energy and provides a base for the comparison with other ones 

in different locations [169]. However, this study does not give clear conclusion about PV 

device performance. 

Another data on a 2 kW (rooftop) solar PV plant installed in Niš (Republic of Serbia) and 

the equipment for the estimation of its performance and energy efficiency depending on 

the real climate conditions (inverter, communication system, automatic meteorological 

station) is studied by Milosavljevic et al. using performance ratio to investigate the solar 

potential in Serbia [130]. This study gives important conclusions for solar potential of 

Serbia where the integration of solar energy  into the transmission network was 

considered satisfactory according to the study. The research results show that PV system 

works efficiently in Serbia [130]. However, this study does not draw conclusions in 

relation to PV panels’ efficiency as the metrics used are influenced by temperature.  

On the other hand, a large-scale 15MWp PV system in Mauritania was evaluated with 

the use of PR, CF and other factors. Elhadj et al., analyzed the performance of the plant 

under the meteorological conditions of region and compared their results with other 

studies in other regions [165].  

Martín-Martínez et al, study PV performance under real conditions based on PR and its 

evolution over the time. The experimental set-up is based on 5 large plants in Spain and 

the analysis in the seasonal fluctuation in monthly PR. As far as temperature effects are 

concerned, a PR ambient temperature coefficient is calculated. This coefficient stemmed 

from the correlation of ambient temperature with PR [170].  

Necaibia et al, conducted a performance analysis of a small grid connected system in a 

desert area using  standard metrics, namely, performance ratio (PR), yield factor (YF), 
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reference yield (YR), capacity factor (CF) and array capture losses (LC) in order to 

quantify the effect of environmental parameters on system’s performance, allowing 

comparison with other installations. The experimental  set up consists of a grid-

connected PV system, installed on the rooftop, with 10 modules. The PV cells technology 

used is mono-crystalline silicon model SM-250Wp from the Korean manufacturer S-

Energy. The modules have been tilted at a fixed angle of 28.88° and oriented northward 

at an azimuth angle of 12°. The analysis based on seasonal and annual performance 

parameters and its performance have been compared with other similar grid-connected 

PV systems sited at different location around the world. Research results are related 

with temperature effects on summer season, when the performance is decreased,  and 

the solar potential of region [171]. However, this study does not use a metric or a 

procedure which defines PV performance independently of the factors that affect it. 

S. Seme et al. used PR metrics in order to investigate Slovenia Photovoltaic energy 

potential and compare with other places around the world. The results in this paper 

show that the performance of photovoltaic systems primarily depends on the proper 

inclination and azimuth angle of the photovoltaic modules, shadings, and snow barrier 

[172]. It is clear that PR ratio is an important critical factor for real world grid-connected 

PV systems efficiency, that is independent of the systems’ location and scale. However, 

PR is influenced by the PV panels temperature and the calculation of temperature 

corrected ratio is proposed. 

Aste et al, used PR in order to compare different types of PV technologies and the 

analysis is conducted in seasonal basis in order to correlate performance with climate 

conditions. The experimental set up of this study consists of selected PV technologies. In 

mounting structures characterized by a variable tilt angle and oriented with an azimuth 

angle of 0°. All devices are connected to a central data-logging system that stores the 

measurements. The DC/AC conversion is operated by a transformerless micro-inverter 

with MPPT tracker, that allows to monitor each PV module separately. The analysis was 

focused on the three different PV technologies ,PV cells (c-Si), micromorphous cells (a-

Si/lc-Si) and hetero-junction with intrinsic thin layer (HIT).  The analysis based on PR 

comparison of the three PV types [173]. 

Performance ratio is also used in experimental set-ups that are not grid-connected. 

Ustun et al, used numerous panels of different technologies and manufacturers in order 

to compare their efficiencies. PR is calculated for each technology and because of the fact 

that PV panels are in the same place with same environmental conditions, comparison is 

able to provide important conclusions for each technology. Particularly, technologies 

which are compared are c-si, mc-si, c-si(HJ), a-si/μc-si, CIGS. The results showed in 

Figure 45 where CIGS has the higher PR and then mc-si, c-si(HJ) are in the same levels 

[174]. 

Guerra et al, conducted a comparative analysis of grid-connected photovoltaic systems 

with different PV technologies based on PR metrics. Particularly, they propose 

calculation of PR AC according to the following equation: 

𝑃𝑅𝐴𝐶 =
𝑌𝑅 − 𝐿𝐶 − 𝐿𝐵𝑂𝑆

𝑌𝑅

 
(2-19) 

Where YR  is  Reference yield , LC is  Capture losses (shadows, dirt, temperature, 

spectral, angular, mismatch, loss of power due to degradation, maximum power point 

delay, wiring, etc.), LBOS is Losses in inverter, wiring and electrical connections. The 

photovoltaic system study is installed in Madrid on a flat roof well exposed to solar 
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radiation with shading of nearby buildings reduced to positions of the sun just after 

sunrise and before sunset. The site has a continental climate with cold winters and hot 

summers. The compared technologies are mc-Si, pc-Si, a-Si/μc-Si tandem, CdTe/CdS, 

CIS and mc-dc-si mounted on weighted fixed tilt structures. All the modules of the 

different technologies are coplanar with a tilt of 30° and azimuth of 19° east to optimize 

the spatial distribution according to the architectural requirements of the roof. Global 

solar irradiation data is captured by means of a thermoelectric pyranometer and a 

calibrated reference cell  of polycrystalline silicon, module temperature is measured 

with a PT-1000 thermocouple sensor fixed to the backsheet of a central cell, ambient 

temperature and relative humidity are measured with a thermohygrometer, wind speed 

uses an anemometer. The results show that mc-si, p-si, CIS and mc-cd-Si technologies 

reach an average value of PRAC above 80%, while  a-si/μc-si and CdTe/CdS remain at 

74.5% and 64.3%, respectively. Furthermore, conventional technologies mc-Si and pc-Si 

displayed very similar thermal and energy behavior [175]. 

 

 

Figure 45 : Performance ratio of different technologies in Fukoshima [174]  

Edalati et al, investigate performance analysis of a 11.04 kWp grid-connected 

photovoltaic PV system. PV system consists of 5.52 kWp common crystalline PV 

technology with almost similar characteristics and is established in an industrial sector 

of  Iran. PV panels are monocrystalline silicon (mc-si) and polycrystalline silicon (p-Si) 

and period of analysis concern July 2013 to June 2014. Inverters are selected from SMA, 

model Sunny Boy 5000TL in combinations with a fully monitored with a SMA Sunny 

WebBox data logger integrated to a meteorological station and inverters. The available 

data are global solar radiation, ambient and back temperature of PV panels, DC array 

output power and AC array output, humidity, wind speed, and produced power in each 

array are recorded by the data logger and saved on a daily basis. Performance analysis is 

based on calculation of metrics that are referred above as performance ratio and capacity 

factor. Because the fact that these metrics are influenced by weather conditions and 

especially temperature, the use of temperature corrected PR according to NREL 

definition is proposed [176].  

Weather corrected PR according to NREL is described by the following equation [177]: 

𝑃𝑅 =
∑ 𝑃𝐴𝐶,𝑖𝑖

∑ [𝑃𝑆𝑇𝐶  (
𝐺𝑖

𝐺𝑆𝑇𝐶
)(1 − 𝑎(𝑇𝑐𝑒𝑙𝑙_𝑡𝑦𝑝_𝑎𝑣𝑔 − 𝑇𝑐𝑒𝑙𝑙,𝑖))]𝑖

 
(2-20) 

Where PRcorr is corrected performance ratio (unitless), PAC is measured AC electrical 

generation (kW), PSTC is summation of installed modules’ power rating from flash test 

data (kW), Gi is measured plane of array irradiance (kW/m2), i = a given point in time, 

GSTC  is irradiance at standard test conditions (1000 W/m2), Tcell is cells’ temperature 
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computed from measured meteorological data (°C), Tcell_typ_avg is average cell temperature 

computed from one year of weather data using the project weather file (°C), a is 

temperature coefficient for power (%/°C, negative in sign) that corresponds to the 

installed modules. 

Sometimes, the system yield in correlation with capacity factor may be used as an 

indicator of decreased performance for further diagnosis [178]. In that context, 

mathematical models that correlate the power output of PV panels with irradiance, 

panel temperature, AM spectrum and other factors are quite useful. Several models of 

this type exist in the literature, as summarized in the following paragraphs. 

2.4 Neural Networks 

Another way to evaluate PV park performance is by employing models with neural 

networks. ANN models are used in engineering analysis and predictions. The concept of 

ANNs is based on the learning processes of a human brain. ANN operates like a “black 

box” model, requiring no detailed information about the system, however it learns the 

relationship between the input parameters and the controlled and uncontrolled 

variables by studying previously recorded data, similar to the way a non-linear 

regression might perform [179].  

 

Figure 46 : Artificial network formulation [179] 

The differences from all these methods are mainly related to the required number of 

inputs. Most of them refer to outdoor exposure of PV panels that are off- grid. Rodrigo 

proposed a model based on the calculation of angular, spectral and low irradiance 

losses. This method demands only two inputs: global irradiance on the plane of 

generator and PV cell temperature. It uses an artificial neural network model in 

combination with the Osterwald model. Both models are integrated in a single structure 

[180].  

Vellila et al. on the other hand, proposed a neural network with one more input 

parameter, namely, relative humidity, which plays a significant role to PV performance . 

Experimental results are presented from monitoring the electrical power after exposure 

to external weather conditions of two different solar modules technologies, one of them 

a mono-crystalline 55 W silicon and the other a flexible organic solar module of 12.4 W. 

During the observation period the temperature, relative humidity, and irradiance were 
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monitored [181]. This model is employed as a prediction tool and for comparison 

between different technologies however this model is not able to apply in grid-

connected photovoltaic systems as its experimental setup  based on off-grid 

measurements.  

Touati et al. used long term-data of PV systems in Qatar in order to investigate the effect 

of environment factors on PV power output and to find empirical models for PV power 

output using linear regression and tree decision algorithms. These empirical models 

confirmed that the most important parameters for PV efficiency are irradiance, 

accumulated dust, relative humidity, ambient temperature and panel back surface 

temperature [182].  

Tahri et al, study the evaluation four grid-connected photovoltaic systems with different 

PV panel technologies. The type of technology are two  mc-Si and two copper indium 

selenium: CIS PV panels. The analysis based on PR  calculation and temperature losses, 

however, it is proposed a regression technique in order to correlate daily AC energy 

output generated by each PV power plant at given daily irradiation and daily average 

module temperature. The mathematical model obtained by applying a multivariable 

linear least square fitting is expressed as follow : 

𝐸𝐴𝐶 = 𝑎 + 𝑏𝐻𝑀𝐸𝐴𝑆 + 𝑐𝑇𝑀  (2-21) 

Where, EAC is the daily AC energy output (expressed in kWh), Hmeas is the daily 

irradiation in kWh/m2,Tm is the daily average module temperature in °C, a is the 

intercept expressed in kWh, b and c are the coefficients of the multivariable regression 

and they are expressed in m2 and kWh/°C respectively [183]. 

Rosell and Ibanez proposed a model that correlates the maximum generated power with 

irradiance and PV panel’s temperature:  

𝑃𝑀𝑃𝑃 = 𝐷1𝐺 + 𝐷2𝑇 + 𝐷3(ln 𝐺)𝑚 + 𝐷4𝑇(ln 𝐺)𝑚 (2-22) 

where PMPP denotes maximum power point of IV curve, T denotes panel’s temperature 

and G the irradiance in plane of array. The coefficients D1, D2 , D3 , D4 , m stem from a set 

of measurements that is fitted by a multivariable regression equation [184].  

Kazem et al. proposed four  different neural computing techniques aiming to predict the 

energy generation of a small grid-connected photovoltaic system [185]. 

Dias et al, propose a model which combines irradiance and ambient temperature in 

mathematical equation. The available data are trained 

𝑃 = 𝑎𝐺 + 𝑏(
𝐺

𝑇𝐴𝑀𝐵

)2 + 𝑐𝐺𝑇𝐴𝑀𝐵 
(2-23) 

where: P is power system output in W, G i irradiance in W/m2; TAMB is ambient 

temperature in C; a, b and c are regression coefficients. The data set, developed to 

estimate the performance of photovoltaic systems connected to the grid and mounted in 

opened racks without mutual shading, is related with values of power generated by the 

system after its conversion into AC and information from the site environment [186].  

Osterwald et al. proposed a model that uses solar radiation data from a hemispherical 

pyranometer that are corrected by Air mass functions f(AM) (a correction with absolute 

airmass, pressure-corrected) [187]. Air mass functions are of the following type: 
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𝑓(𝐴𝑀) =   

𝑃

𝐺
| 𝐴𝑀

𝑃𝑆𝑇𝐶

𝐺𝑆𝑇𝐶
| 𝐴𝑀 = 1.5

= 𝑎0 + 𝑎1𝐴𝑀 + 𝑎2𝐴𝑀2 + 𝑎3𝐴𝑀3 + 𝑎4𝐴𝑀4 
(2-24) 

These empirical functions are determined from outdoor measurements with test 

modules mounted on two-axis solar trackers and then calculated from plots of 

normalized calibration value (short-circuit current divided by total irradiance) versus 

optical Air mass. It is important to note that these functions are related to the specific 

location, time and are particular to each different type of PV panel [187]. 

 

2.5 Simulation 

As far as simulation is concerned, several studies can be found in the literature. 

Simulation based on mathematical models which are used in standard simulations tools 

as Pspice and Matlab Simulink. The aim of these studies is either formulation of model 

for forecasting or for performance evaluation. Performance evaluations based on 

comparison of simulated values with measured values of real grid-connected system. 

Another goal of simulations is comparison of different PV technologies characteristics. 

Anoun et al, describe four different models for simulation of PV device with accordingly 

different parameters. The proposed models are seven parameter model, five parameter, 

four parameter and ideal circuit (Figure 47). The ideal circuit  is described by the 

following equation: 

𝐼 = 𝐼𝑝ℎ − 𝐼01 [𝑒𝑥𝑝 (
𝑞𝑉

𝛾𝑘𝑇
) − 1] 

(2-25) 

Where Iph  is photocurrent which associated to the photo-generation of electrone-hole 

pairs and equals the short-circuit current I01  are saturation current by diffusion and by 

recombination respectively, k  the Boltzmann constant, T the cell temperature, q the 

electron charge, γ1 and the ideality factor of diode (1). This model does not account for 

the actual behavior of a photovoltaic cell. The four parameters circuit (γ, Iph, I0, and Rs) 

(Figure 47c) is described by the following equation: 

𝐼 = 𝐼𝑝ℎ − 𝐼01 [𝑒𝑥𝑝 (
𝑞(𝑉 + 𝐼𝑅𝑆 )

𝛾1𝑘𝑇
) − 1] 

(2-26) 

The most common model which is used by many researchers in PV modeling is One-

diode model (5-parameter model) (Figure 48) and is described by the following 

equation: 

𝐼 = 𝐼𝑝ℎ − 𝐼0 [𝑒𝑥𝑝 (
𝑞(𝑉 + 𝐼𝑅𝑆 )

𝑎𝑘𝑇
) − 1] −

𝑉 + 𝐼𝑅𝑆

𝑅𝑆𝐻

 
(2-27) 

Where Iph (A) is the photocurrent associated to the photo-generation of electron-hole 

pairs and equals the short-circuit current if the parasitic resistances are neglected, Io is 

the reverse saturation or leakage current of the diode. Furthermore, series and parallel 

electrical resistances are usually included in the model to represent internal losses, q is 

the electron charge (1.60217646 x10-19 C), k is the Boltzmann constant (1.3806503x10-23 

J/K), T (K) is the temperature of the p-n junction, and a is the diode ideality factor, RS (Ω) 
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is the series resistance, Rsh (Ω) is the shunt resistance[188]. 

The seven-parameter (two-diode) model: describes the diffusion and recombination 

characteristics of the charge carriers in the material and in the space charge zone. Models 

parameters are Iph, I01, I02, γ1, γ2, Rs, and Rsh. The current–voltage characteristic is 

described by the following equation: 

𝐼 = 𝐼𝑝ℎ − 𝐼01 [𝑒𝑥𝑝 (
𝑞(𝑉 + 𝐼𝑅𝑆 )

𝛾1 𝑘𝑇𝐶 

) − 1] − 𝐼02 [𝑒𝑥𝑝 (
𝑞(𝑉 + 𝐼𝑅𝑆 )

𝛾2 𝑘𝑇𝐶 

) − 1] −
𝑉 + 𝐼𝑅𝑆

𝑅𝑠ℎ

 (2-28) 

Where I01  and I02 are saturation current by diffusion and by recombination respectively, 

k (J/K) the Boltzmann constant, Tc (K) the cell temperature, q (C) the electron charge, γ1 

and γ2 the ideality factor of diode (1) and diode (2) respectively, Rsh (Ω) shunt resistance 

characterizing the leakage currents of the junction and Rs (Ω) the series resistance 

representing the various resistances of the metal contacts, ohmic losses in the front 

surface of the cell, impurity concentrations, and junction depth [189]. 

 

Figure 47 : a: seven parameters model, b: five parameters model, c: four parameters model d: 

ideal circuit [189] 

Chouder et al, based on the one diode model in order to compare monitored and 

measured variables, and then a decision is made about the normality/abnormality of the 

process behavior. Inputs of  the system are the measured irradiance and cell temperature 

which are applied to the model. The authors propose as metric for the comparison of 

measured values with simulated capture losses which are divided in the thermal capture 

and miscellaneous capture losses. 

𝐿𝑐𝑡_𝑠𝑖𝑚 = 𝑌𝑎𝑠𝑖𝑚
(𝐺, 25°𝐶) − 𝑌𝑎𝑠𝑖𝑚

(𝐺, 𝑇𝐶) (2-29) 

𝐿𝐶_𝑠𝑖𝑚 = 𝑌𝑅(𝐺, 𝑇𝐶) − 𝑌𝑎𝑠𝑖𝑚
(𝐺, 𝑇𝐶) (2-30) 

𝐿𝑐𝑚_𝑠𝑖𝑚 = 𝐿𝐶_𝑠𝑖𝑚 − 𝐿𝑐𝑡_𝑠𝑖𝑚 (2-31) 

where Lct_sim are the simulated thermal losses, Ya_sim (G, 25°C) is the normalized energy 

yield at real working irradiance and 25°C of temperature, and Ya_sim (G, Tc) is the array 

yield at real working irradiance and real module temperature Tc, LC_sim are the capture 

losses, Yr (G, Tc) is the measured reference yield. Capture losses are calculated according 

to the measured energy yields and those calculated according to the simulated yields in 

order to check for possible faults [190]. 

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 17:50:21 EEST - 137.108.70.13



Elias Roumpakias 

 

70 

Cuce et al. proposed a mathematical model to simulate I-V and P-V curves, to be 

compared with manufacturers’ performance data. The considered model in this research 

is based on an one-diode five parameter model (Figure 48) which comprises of a solar 

intensity dependent current source, a p-n junction diode and two resistances (RS and 

RSH). The results show that energy efficiency, power conversion efficiency, and exergy 

efficiency logarithmically increase with increasing solar intensity and educe linearly 

with increasing PV cell temperature [191]. However use of this procedure does not 

provide conclusions for grid-connected condition and outdoor in real time operation. 

 

Figure 48 : Electrical circuit for simulation PV cell  (one-diode model) [191] 

Boutana et al, propose an explicit model to describe the behavior of PV modules which 

is based on a simple mathematical equation relating the current to the voltage (I-V). The 

model requires the estimation of ,open circuit voltage, short circuit current (ISC) and a 

shape parameter(S). The model validation has been performed through experimental 

measurements for four different PV modules technologies (mono-si, multi-si, CIS,CdTe) 

at two different locations. The  model is described by the following equations[192]: 

𝐼 = 𝐼𝑆𝐶   (1 − (
𝑉

𝑉𝑂𝐶

)
𝑆

) 
(2-32) 

Gupta et al. created a model to simulate PV performance under varying real time 

climatic conditions: irradiation level, wind speed, temperature, humidity level and dust 

accumulation. Particularly, two electrical equivalent circuit are used, a single diode and 

double diode model. The simulation based on real time climatic models. The results 

show that the solar irradiation and dust accumulation have the most advantageous and 

disadvantageous effect on the output of PV power [193]. 

Faba et al. propose an one-diode model with five parameters for simulation the 

photovoltaic device. The purpose of this model is investigation of photovoltaic module 

degradation over time. The procedure based on continuous comparison with models 

values. The behavior of the device starts to diverge from models’ behavior when 

degradation of panel occurs[194]. 

Piliougine et al. proposed a neural network using five inputs: irradiance, temperature, 

angle of incidence and normalized  clearness index; to generate IV curves which were 

compared to other models, IEC 60891 procedure and measured values. Models for the 

grid inverter and the generator must be provided, and their outputs must be combined. 

The connection between both models is related to the maximum power point of the 

generator and how it is tracked by the inverter. That maximum power point under 

specific conditions of irradiance and module temperature is determined by the I–V 

curve of the module, which must be simulated under those conditions. Algebraic 
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procedures were used to simulate the I–V curve [195]. 

As a conclusion performance analysis which is based on simulation is able to provide 

information in relation with the effect of different factors on PV performance. However, 

these conclusions do not refer to actual conditions and grid-connected operation.  

2.6 Off-grid I-V measurements 

Many researchers studied the performance of PV systems conducting off-grid 

measurements under outdoor conditions. These measurements in most cases concern I-

V, P-V curves. Furthermore , there are off-grid approaches that combine I-V curves with 

PR computation. This category of analysis is a comparative analysis between different 

technologies to study the effects of dust or other environmental factors. This section 

presents studies which belong to this category. 

Gaglia et al. conducted off-grid measurements in order to compare outdoor operating 

conditions with laboratory STC conditions. The experimental set-up consists of e PV 

system consists of two arrays, each with four multi-crystalline PV panels. The total 

collecting surface is 3.5 m2 and the total power output 392Wp. The PV system is oriented 

to the south with a fixed inclination of 20°. The PVs' output power, voltage and current 

were measured with a Hewlett Packard HP44701A digital multi-meter and digitally 

recorded.  Significant deviations have been found between laboratory an STC conditions 

and outdoor exposure [196]. This study gives results at real outdoor conditions. 

However, the array does not operate grid-connected, lacking an MPP tracker attached to 

the inverter. 

Tahri et al, study performance analysis of thin film PV panels under long term outdoor 

exposure in semi-arid climate in Saida city located in Algeria. The monitoring system 

was set to scan electrical and meteorological parameters. The electrical parameters of the 

PV modules were obtained by I-V curves using a system based on capacitor load. The 

analysis based on calculation of effective power according to equations below: 

𝑃𝑀
∗ =

𝐺𝑃𝐷𝐶

𝐺
𝑇𝑓  

(2-33) 

𝑇𝑓 =
1

1 − 𝑎(𝑇𝑀 − 𝑇𝑀
∗ )

 
(2-34) 

Where PDC, G and G∗ are the DC output power of the PV module, the irradiance, and 

irradiance at STC respectively, where Tm is the PV module temperature, Tm∗ is the 

module temperature at STC and a is the power temperature coefficient of the PV 

modules [197]. 

Carr et al, used I-V measurements and computation of PR in order to compare 

performance and degradation of five different photovoltaic technologies. The types of 

modules examined in this study are: crystalline silicon (c-Si), laser grooved buried 

contact (LGBC) c-Si, polycrystalline silicon (p-Si), triple junction amorphous silicon (3j a-

Si) and copper indium diselenide (CIS).  Researchers conducted indoor and outdoor 

tests. Indoor tests concern exposure in a solar simulator in order to measure STC 

characteristics , while outdoor tests include I-V measurements with the aid of MPP 

trackers. The parameters that are recorded in outdoor tests are module output power, 

both the plane of array (POA) and the horizontal global irradiance, back of module 

temperature, ambient temperature and wind speed. After the outdoor exposure 

conducted indoor tests in order to compare the results. During outdoor exposure PR in 
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yearly and monthly basis are calculated [198]. Although the method gives important 

results about the degradation of modules after a long period over a year, it is not easy to 

apply to grid-connected PV systems. 

Bouraiou et al. created an experimental set up and carried out measurements in order to 

study the effect of climatic conditions on a desert environment and particularly the 

effect of partial shading and deposition of sand. The outdoor PV module performance 

evaluation is carried out in this work using the software and hardware of EKO 

instruments (MP-160I–V tracer). This tool is used for the field measurement of the IV 

characteristic curves and main characteristic parameters of an individual solar cell.  

Measured parameters voltage and current, incident solar irradiance and temperature 

using a pyranometer and a thermocouple. The evaluation of measurements was based 

on I-V and P-V characteristics and optical inspections [118]. This study draws results in 

outdoor  desert and shading conditions which is the main goal of the study, however the  

inspected PV is a single ISOFOTON panel that does not operate in grid-connected 

operation with an MPP tracker and inverter as required for grid connection. 

Guenounou et al. conducted off-grid measurements to compare yearly performance of 

four different PV modules in a coastal region of Algeria. The experimental set up 

consists of powerful electronic load from the PV-ENGINEERING company 

‘‘PVPM1000C40” that allows plot and the data saving of the I–V characteristic of a PV 

panel, a reference solar cell for measuring solar irradiance and cell temperature, 

temperature sensor is available for measuring temperature at the back of the PV. The 

four panel technologies studied are micromorph silicon (μ-Si), monocrystalline 

silicon(Mοno-Si), amorphous silicon (a-Si) and polycrystalline silicon (Poly-Si). The 

parameters of evaluation were PMAX, ISC, VOC, FF, n, IMAX,VMAX and are compared with 

datasheet values. Furthermore, is proposed calculation of PR. The experimental data 

when normalized to STC conditions and results showed significant deviations of STC 

values from measurements [199]. This study gives results for four different PV 

technologies in outdoor conditions in Algeria. However, the inspected PV panels do not 

operate grid-connected with an MPP tracker attached to the inverter. Instead, the study 

employs an electronic load, which is not equivalent to the MPP tracker of the grid-

connected inverters. 

Sanchez-Friera et al. conducted outdoor I-V measurements and IR thermography in 

order to study the degradation of crystalline silicon  PV panels of an installation of 2 

kWp after 12 years of exposure in Malaga, Spain. I–V curves were measured outdoors at 

the monitoring station of the Photovoltaic Laboratory of the University of Malaga, 

following the recommendations from the standard IEC 60904-1. The measurements 

conducted with commercial instruments. Digital multimeters are used to measure 

voltage and current ,  RTD Pt100 thermal sensors with appropriate thermal coupling to 

measure back panels surface, global irradiance is measured with a Kipp & Zonen 

pyranometer, calibrated. Conditions of measurements were global irradiance higher 

than 800 W/m2; diffuse fraction lower than 10%, maximum fluctuation of irradiance 

during time of measurement lower than 1% and wind speed lower than 1 m/s. I-V 

curves were then fitted to a one-diode. Thus, the parameters for evaluation were values 

of the series (Rs) and shunt (Rsh), short-circuit current (Isc), open-circuit, voltage (Voc), fill 

factor (FF) and maximum power point current (IMPP), voltage (VMPP) and power (PMPP). 

Furthermore, visual inspection were correlated with I-V curves results and infrared 

thermography. The results showed  that peak power loss of the installation was 11.5% 

[200]. This study proposes a procedure, according to IEC standards, which gives 

significant results about degradation and other defects however conduction of IV 
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measurements in each PV panel demands break of operation of PV systems and thus 

results are not online with operation. 

2.7 Other approaches of analysis 

Another approach to evaluate PV performance at outdoor conditions is the use of 

contour maps of PR of PV panels in correlation with AM and clearness index. Nakada et 

al. analyzed the influence of clearness index and airmass on the sunlight and the 

outdoor PV performance. The experimental set-up consists of a 5kW c-Si and a 2kW a-Si 

PV system, facing due south with a tilt angle of 15.3°. The system is grid-connected 

through inverter. The measured values are direct-current output and output voltage, 

solar spectrum with the wavelength range of 350–1050 nm by a spectro-radiometer. 

Analysis based on contour maps of the spectral irradiance distribution and outdoor 

performance of the PV modules as a function of AM and Kt. Another metric which is 

used in analysis is APE (Average photon energy of solar radiation) and is calculated 

from measurements of spectral irradiance by dividing the irradiation by the integrated 

photon flux density, yielding the average energy per photon. Results show that PR of 

the a-Si PV panels increases with increasing APE, while that of the sc-Si PV panels 

increases with decreasing Tamb [158].  

The performance analysis of a PV system may be a combination of the methods of 

sections above. Sharma et al, study the degradation of photovoltaic systems by the 

following techniques: (i) Visual inspection of the modules, (ii) Infra-red thermal 

imaging, (iii) I–V curve measurement of all modules and comparison with the initial 

measurements. The experimental set up consists of a roof top system which is located in 

the western Himalayan region of Himachal Pradesh (Latitude 31.49 N, Longitude 76.52 

E, altitude is 875 m above mean sea level). The array consists of 10 modules of 100 Wp 

rating each connected in series, modules are mounted on a steel rack facing south and an 

inclination of 31 from the horizontal, a battery storage bank, and used to meet the load. 

The results led to significant conclusions, such as: some of the modules had serious 

defects in 2,5 years operation, the average annual degradation rate per year calculated 

from STC measurements before and after the outdoor exposure was found to be 0.51%, 

visual inspection and thermal imaging techniques were found to be quite effective for 

identifying hot spots, the method is an important tool to identify causes of degradation 

or failures of PV modules under actual outdoor conditions [136]. 

Further, there exist models based on infrared thermography during on–grid operation. 

Overheating of PV modules is an important factor that decreases system’s efficiency. 

Aste et al. proposed the use of infrared cameras to identify systems’ failure in building 

integrated systems in Italy. The experimental setup consists of selected PV 

technologies(a-si, c-si, HIT) , mounting structures characterized by a variable tilt angle 

and oriented with an azimuth angle of 0°. The available sensors measure irradiance on 

module plane and on horizontal plane, mean surface temperature, external temperature 

and electrical power. The DC/AC conversion is operated by a transformer-less micro-

inverter with MPPT tracker. The analysis based on the evaluation of the modules 

performance in relation to the seasonal variation and PR calculation. The results of 

seasonal analysis show that   c-Si and HIT PV panels is rather stable and predictable, 

while a-Si l presents widely variable seasonal performance. As far as PR is concerned, 

average annual PR is 96% for HIT technology  and lower values for the c-Si (93%) and a-

Si modules (91%) [173].  

In that context, Kaden et al. proposed a model that assesses power loss based on the IR 
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images of panels. In this work, PID affected panels are investigated. The procedure 

except from IR imaging includes I-V measurements and EL imaging. The concept of the 

procedure is based on the analysis of the temperature difference ΔTPID, which is the 

temperature difference of a PID affected PV panels and a non-affected PV panels. For 

the needs of the study, artificial PID damage was generated on different monocrystalline 

and multicrystalline silicon PV panels. In each PV panel IV measurements and EL 

imaging was conducted. IR imaging was conducted under irradiance levels of 500-

1050W/m2 . PV panels were kept in operation near the maximum power point. The 

measurements were accomplished by determining individual cell temperatures with 

thermocouples on the backside of PV panels. ΔTPID, is the only input value of the 

procedure [201]. Estimation of power loss is described by the eq.(2-35). 

𝛥𝑃[%] =   
𝛥𝑃𝛭𝛢𝛸

1 + exp (−𝑘𝛥𝑃𝛭𝛢𝛸𝛥𝑇𝑃𝐼𝐷)(
𝛥𝑃𝛭𝛢𝛸

𝛥𝑃0
− 1)

 
(2-35) 

ΔP is the power loss, ΔPmax the saturation power loss, ΔP0 the power loss for ΔTPID=0 and k is 

a parameter describing the steepness of the curve. The parameter k depends on the level of 

irradiation as well as on the type of PV panels, i.e. mono- or multi-crystalline silicon [201]. 

Another analysis approach at outdoor conditions and on grid operation was applied to a 

PV system in Northern Italy. Micheli et al., proposed a procedure to convert the actual 

performance of the system to standard conditions, based on the filtering of data with 

respect to incidence angle and AM values, calculation of temperature coefficients and 

normalization of the data on STC values [202]. 

Herteleer et al, propose normalized efficiency and its long - term average for 

monitoring, system analysis and comparison of systems with different power ratings. 

The software used to program and interface with the sensors and meters is LabVIEW, 

with power and weather DC voltage, current. Three inverters are currently used from 

where measurements as voltage, current, power. Twelve PV modules are connected 

using SolarEdge 3.0 kW inverter, one standard mono-crystalline PV module, is 

connected to an ABB mini-inverter, twelve poly-crystalline silicon Solarex MSX-120 PV 

modules are connected to a Sungrow 3.0 kW inverter. In this study the equation below 

was proposed in order to compute the normalized efficiency: 

 

𝑛𝑛𝑚𝑜𝑑 = (1 +  𝑘1 ln(
𝐺

𝐺𝑆𝑇𝐶

) + 𝑘2[ln(
𝐺

𝐺𝑆𝑇𝐶

)]2)𝛾𝑠𝑦𝑠𝑡𝛥𝛵𝑆𝑇𝐶 (1 +  𝑘1 ln(
𝐺

𝐺𝑆𝑇𝐶

)  𝑘2[ln(
𝐺

𝐺𝑆𝑇𝐶

)]2) 
         

(2-36) 

Where G, GSTC are irradiance, ΔΤSTC is the difference of measured temperature from the 

STC value, γsyst= γmodule+γ BOS (γmodule is the PV panels temperature coefficient and γ BOS a 

mathematical Balance-of-Systems (BOS) temperature coefficient). To calculate the 

normalised efficiency for monitoring purposes, an evaluation of the corresponding 

benefits and disadvantages with the chosen irradiance sensor is required. Normalized 

efficiency is similar  to the Performance Ratio [152]. This approach of analysis is 

significant as it is applied in grid-connected systems and takes into account temperature 

effects. 

Another approach involves a comparison between the measured and theoretical power 

[134, 153].  Malvoni et al, observed an increasing trend in the difference of measured and 
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theoretical power during the years, something that indicates a degradation in PV 

system, estimated at 1.12% per year. The PV 960 kWp system consists of 3000 

monocrystalline silicon PV modules (Sunpower E19/320). PV panels are South-east 

oriented with an azimuth angle of10°and inclined at a tilt angle of 3°. There are solar 

irradiance sensors, PT100 type temperature sensors to measure the PV module 

temperature and the ambient temperature. A  method  to  assess  the  degradation  of  

the  system  is  to  determinate  the  difference  between  the  measured  output  power 

and the theoretical output power. The  theoretical  model  is  provided  by  PVsyst which 

uses  the  one-diode model  to  describe the operating of a PV module, takes  into  

account  also  the  thermal  behavior  of  the  PV  array  that  depends  on  the  ambient  

temperature  and  the  incident irradiance [134]. 

It becomes apparent from the above presentation that performance analysis of PV 

systems is discussed by many researchers in the recent literature. Most of the studies 

referred-to above, focus on grid-connected systems and employ PR calculations from 

monitoring system data to draw important conclusions for local solar potential or, in 

other cases, to study the dust effect. Nevertheless, this type of analysis is not employed 

to draw conclusions about PV performance deterioration through the years and 

correlation with STC conditions. On the other hand, researchers who carried out 

experimental off-grid test procedures, draw results about the correlation of outdoor 

exposure with STC conditions, while other researchers who used simulation models, 

draw similar results.  
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3 Correlation of actual efficiency with Air mass 

(Case Study 1)1 

In this chapter, the effect of air mass on the efficiency of PV panels is investigated in 

more detail. This investigation could also cover the effect of different atmospheric 

conditions. In the present chapter, real-world efficiency data for photovoltaic panels and 

photovoltaic parks are correlated with the solar altitude angle (air mass) and 

environmental conditions. 

𝑛 =
𝑃

𝐺𝐴
 

 

(3-1) 

3.1 Experimental setup 

3.1.1 Monitoring efficiency of a single PV panel 

In the framework of a previous research work , a single PV module was tested outdoors 

in vertical, south-facing position, under actual insolation conditions in Volos, Greece 

(Lat 39.3604N, Long 22.9299E). Solar irradiation reaching the vertical panel surface was 

measured with a CMP 3e Kipp & Zonen pyranometer, placed in a vertical position, in 

the upper left corner of the PV panel. PV voltage and power output were controlled 

close to the maximum power point (MPP), by deploying a PID controller on NI Labview 

software [159]. 

Table 13 : Kyocera KD205GH-2P PV panel characteristics 

PV Module Type KD205GH-2P 

Cell Technology   Multicrystalline, 54 cells per module 

Performance at 1000 W/m2(Standard Test Conditions: Air Mass 1.5 , cell temp. 25 oC) 

Maximum Power [W] 205 

Maximum Power Voltage [V] 26.6 

Maximum Power Current [A] 7.71 

Open Circuit Voltage (Voc) [V] 33.2 

Short Circuit Current (Isc) [A] 8.36 

At 800 W/m2(Normal Conditions: AM 1.5, wind speed 1 m/s, ambient temp. 20 oC) 

Maximum Power [W] 145 

Maximum Power Voltage [V] 23.5 

Maximum Power Current [A] 6.17 

Open Circuit Voltage (Voc) [V] 29.9 

Short Circuit Current (Isc) [A] 6.82 

NOCT [°C] 49 

Power Tolerance [%] +5/-5 

 
1 A part of this chapter has been published as: Roumpakias, E., O. Zogou, and A. Stamatelos, 
Correlation of actual efficiency of photovoltaic panels with air mass. Renewable Energy, 2015. 

74(0): p. 70-77. 
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Temperature Coefficient of Voc [V/°C] -1.20x10-1 

Temperature Coefficient of Isc [A/°C] 5.02x10-3 

Temperature Coefficient of Max. Power [W/°C] -9.43x10-1 

Reduction of Efficiency (from 1000 to 200 W/m2) [%] 6.0 

Length [mm] 1500 (±2.5) 

Width [mm] 990 (±2.5) 

Weight [kg] 18.5 
   

 

3.1.2 Monitoring of a 2 MW PV installation 

Another set of test data were collected from monitoring the year- round performance 

and efficiency of a 2MW PV installation in Argos, Southern Greece (Lat 37.6500N, Long 

22.65222E). This installation comprises 558 strings of 13 PV panels, that is, a total of 3393 

panels of 270 Wp and 3861 panels of 280 Wp. These strings are connected with 186 

inverters SMA SMC11000TL. Three strings (of 13 PV panels each) are connected to each 

inverter. The technical data of the panels employed are presented in Table 14. 

 

Table 14 : Suntech STP280-24Vd, STP270-24Vd, PV panel characteristics 

PV Module Type  STP280-24Vd STP270-24Vd 

Electrical Characteristics 

Open-Circuit Voltage (VOC) 44.8V 44.5V 

Optimum Operating Voltage (VMPP) 35.2V 35V 

Short-Circuit Currents (ISC) 7.95A 7.71A 

Optimum Operating Current (IMPP) 7.95A 7.71A 

Maximun Power at STC (PMAX) 280Wp 270Wp 

Operating Temperature -40°C to+85°C -40°C to+85°C 

Maximun System Voltage 1000V DC 1000V DC 

Power Tolerance ±3% ±3% 

STC : Irradiance 1000W/m2 ,  Module Temperature 25°C ,  AM=1.5 

Mechanical Characteristics   

Solar Cell Polycrystalline, 156x156mm 

No of Cells 72 (6x12)  

Dimensions 1956x992x50mm  

Weight 27Kg  

Temperature Coefficients   

Nominal Operating Cell Temperature (NOCT) 45±2°C 

Temperature Coefficient of PMAX  -(0.47±0.05)%/ 

°C 
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Temperature Coefficient of VOC  -(0.34±0.01)%/ 

°C 

Temperature Coefficient of ISC  (0.055±0.01)%/ 

°C 

 

3.2 Results of efficiency measurements 

3.2.1 Efficiency measurements with a single PV panel 

Recordings of the variation of solar radiation measured by the pyranometer placed on 

the vertical, south-facing panel surface are shown in Figure 49 for several hours during 

the following days: 23, 24,26 of August, 1, 7, 8, 9, 13, and 16 September 2010 (that is, 

close to the Autumnal equinox). At midday (12:00-16:00), the incoming radiation to the 

vertical plane with clear sky varies between 400 and 570 W/m2. 

 

Figure 49 : Daily variation of total irradiation falling on a vertical south-facing surface during 

several days in August- September 2010 (Lat 39.3604, Long 22.9299E).  

As regards the PV panel's efficiency, the experiments show a clear correlation with the 

panel temperature that is in line with the manufacturer's characteristics. On the other 

hand, the deterioration of panel efficiency with the drop in solar radiation seems more 

difficult to correlate. The above-mentioned tests indicate that sometimes the PV panel's 

efficiency is higher than predicted by the manufacturer's correlation with incoming solar 

irradiation (around noon) and sometimes is lower (late afternoon). 
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Figure 50 : Measured PV panel efficiency versus the solar altitude angle for seve ral days of 

recordings in August - September 2010, Volos, Greece (Lat 39.3604N, Long 22.9299E) 

A clear dependence of the panel's efficiency on solar time can be seen by a plot the 

measured PV panel efficiency versus the sun's altitude angle of each measurement. 

Following the methodology presented in Refs.[203], we calculate the solar altitude angle, 

as using the equation: 

sin 𝛼𝑆 = cos 𝜃𝑧 = cos 𝜑 cos δ 𝑐𝑜𝑠𝜔 + sin 𝜑 sin δ (3-2) 

Where d is the declination angle 23.45< d < 23.45, positive declination is west of south), 4 

is the latitude (39.3604N), ω is the hour angle (morning negative, afternoon positive). If 

we plot the measured PV panel efficiency versus the solar altitude angle, (as) for several 

days of experiments, we get the graph of Figure 50. 

Although the graph is somewhat noisy, the trend is clearly observed. It seems that the 

difference in real air mass associated with differences in solar altitude and the aerosol 

present in the atmosphere, may lead to a better correlation for the efficiency drop at low 

incoming solar radiation levels. It should be mentioned here that the solar radiation 

during the morning passes through the lower layer of the troposphere above the city of 

Volos, and during the late afternoon it passes through the lower layer of the troposphere 

which is above the Volos industrial area. 

 

3.2.2 Solar radiation and efficiency monitoring data of the 2 

MWP PV installation 

The results from the monitoring of the 2 MW PV park require a certain degree of 

processing, in order to estimate the DC power generated by the PV panels. Certain 

assumptions have been made in this context, regarding the efficiency of the power 

electronics, as well as the effect of panel temperature on efficiency [204]. The DC power 

generated was estimated based on the following formula: 
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𝑃𝐷𝐶(𝐺, 𝑇) = 𝑃𝐷𝐶𝑆𝑇𝐶 ∗
𝐺

1000
(1 − 𝑎 ∗ (𝑇 − 25)) 

(3-3) 

where: 

PDC(G,T): Computed DC power 

PDCSTC : Maximum DC power on STC 

G: Measured irradiance 

a: Temperature coefficient of PMAΧ 

T: Measured module temperature 

At this stage, we assume that PV panel efficiency is independent from solar irradiance 

(or air mass). 

Table 15 : Assumptions on loss coefficients for various components of the 2 MW PV park  

Type of losses  respective efficiency factor 

PV panels’ power tolerance 0,96 

AC transformer  0,97 

AC cable  0,99 

DC cable losses 0,99 

By pass diode  0,99 

Inverter  0<P<250W: n(P)=0,00032P+0.84 

 
0<P<1000W: n(P)=0,0000007P+0.9 

 
1000<P<2000W: n(P)=0,0000007P+0.966 

 
2000<P<4000W: n(P)=0,98 

 
4000<P<11000W: n(P)=0,000001P+0.982 

Dust effect 0,95 

 

The respective AC power may be calculated from the respective DC power by taking 

into account an additional inversion efficiency factor n, which may be estimated 

according to Table 15. 

𝑃𝐴𝐶 = 𝜂 ∗ 𝑃𝐷𝐶(𝐺, 𝑇) (3-4) 

Based on the above-mentioned calculations, the following graphs were produced 

presenting the theoretical performance of the specific PV park on a daily basis. On each 

graph, we compare the computed and measured performance, along with the irradiance 

variation.  
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Figure 51 : Computed and measured daily performance of the PV park on February 4. 

It should be mentioned here that at low insolation values, the impact of the inverter 

efficiency is crucial. However, inverter efficiency has been approximated as function of 

inverter power by means of the simplified expression of Table 15 and one should be 

cautious in the interpretation of the results. 

A comparison between calculated (based on the measured irradiance values) and 

measured power produced by the park on February 4th 2010, are presented in Figure 51. 

February is the month with the lowest average air temperature and absolute humidity, 

and clear skies (outside the urban areas of course). 

 

Figure 52 : Computed and measured daily performance of the PV park on May 20.  

Additional graphs with comparison of calculated (based on the measured irradiance) 

and measured power produced by the park on characteristic days in May, August and 

December 2010, are presented in Figure 52 - Figure 54 respectively. Obviously, there 
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exist upward and downward deviations that may be attributed to the following factors: 

• Irradiance measurement errors 

• Power variation from MPP due to electronics 

• Errors in data logging 

• Other effects not included in the formulas for theoretical calculation of 

performance (e.g. air mass). 

 

Figure 53 : Computed and measured daily performance of the PV park on August 19. 

 

Figure 54 : Computed and measured daily performance of the PV park on December 16.  
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However, the most remarkable deviations between calculated and measured efficiency 

are observed during early morning and late afternoon Figure 51 - Figure 53. These hours 

are associated with high air mass and we have not yet included in our theoretical 

efficiency model any influence of the air mass. In order to better understand the effect of 

this factor, we plot in Figure 55 the PV park efficiency as function of solar altitude angle 

for typical clear days spanning all four seasons. 

 

Figure 55 : PV park efficiency as function of solar alti tude as for the days indicated 

In this graph the PV park efficiency is seen to significantly deteriorate for solar altitude 

angles lower than 15 (that is, during the early morning and late afternoon hours). Less 

significant efficiency deterioration is observed for solar altitude angles up to 30 for 

specific days. These cases should be partially attributed to a lower clearness index of the 

atmosphere. In the following section an attempt is made to improve the modeling of PV 

efficiency for lower solar altitude angles and leave only the deviation that is due to a 

lower clearness index. 

 

3.3 Discussion of results 

During the theoretical power calculation process and its comparison with the measured 

power presented in the previous section, significant deviations were observed at low 

irradiance values. 

To further understand the effect on the yearly efficiency, Figure 56 presents a 

comparison of the annual electricity produced by the PV park in the six solar irradiance 

classes selected: 10-200, 200-400, 400-600, 600-800, 800-1000, 1000-1200 W/m2. For each 

class, the theoretically calculated value is also presented for comparison, as well as the 

total insolation falling on the panels. 
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Figure 56 : Comparison of the annual electricity produced by the PV park in the six solar 

irradiance classes selected. For each class, the theoretically calculated va lue is also presented for 

comparison, as well as the total solar radiation  falling on the panels . 

It becomes apparent from Figure 56 that the most significant deviations occur in the 10-

200 W/m2 and 200-400 W/m2 solar irradiance classes 19.1% and 7.8% respectively. Thus, 

the total electrical energy produced in these classes is significantly (Table 16) 

overestimated based on the technical data of PV performance that ignored the effect of 

air mass. Of course, the available measurement data do not extend to the DC part of the 

installation and specific assumptions had to be made regarding the power loss 

coefficients in the wiring and the inverter part. 

Table 16 : Deviation between computed and measured energy in different irradiance classes  

Irradiance Classes[W/m2] Deviation[%] 

0-200 19,1 

200-400 7,8 

400-600 2,7 

600-800 1,5 

800-1000 2,0 

1000-1100 3,5 

 

In the solar irradiance ranges exceeding 400 W/m2, where Air mass is close to 1.5 the 

deviations between theoretical calculation and measured performance were minor. 

Thus, the effect of the air mass can be studied by decoupling PV park efficiency from the 

Air mass aided by an improved theoretical calculation model. 

The correlation presented in Figure 57 is based on data from sunny days without clouds, 

as this can be inferred from insolation data. Theoretical and measured performance of 
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the PV panels is compared, as function of the solar altitude angle (in an analogous 

manner with the calculations presented in the context of Figure 50). In this diagram, the 

performance based on the measured electrical power produced (that is, including 

inverter and wiring losses) is displayed for comparison. 

The effect of panel temperature has already been taken into account in the theoretical 

calculation, whereas the effects of insolation and air mass are not yet included. 

 

 

Figure 57 : Overall comparison of measured efficiency of the 2 MW PV park as function of solar 

altitude, with the one calculated based on the panels' technical data.  

From the comparison of the calculated and measured efficiency values it can be seen 

that a significant overestimation of PV efficiency is done starting from 25 solar altitude 

and below. Moreover, the lower the solar altitude, the higher is the discrepancy between 

theoretical and measured efficiency. This comparison confirms the findings presented in 

Figure 54, as well as those of other researchers [205]. Furthermore, we observe that the 

PV panel temperature affects significantly electric power at high irradiance levels, which 

produces a negative slope in the efficiency curve at those levels. In the following section, 

an effort is made to further understand and model the high air mass discrepancy based 

on air mass calculations. 

3.3.1 Detailed effect of the air mass 

In this section, the effect of solar altitude and air mass on the efficiency of the panels is 

further investigated and an empirical model is formulated in this respect. As already 

mentioned, the standard Air mass of 1.5 corresponds to a solar altitude of 48°.The 

intensity of light traveled through the atmosphere is described by the Beer-Lambert law: 

𝐼(𝜆) = 𝛪0(𝜆) ∗ 𝑒𝑥𝑝(−𝜏(𝜆) ∗ 𝛢𝛭(𝑧)) (3-5) 

where the quantity τ(λ) is called the characteristic optical depth of the atmosphere, 

AM(z) is the optical path in air measured in relative air mass and proportional to the 
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path traveled by light in the atmosphere, and z is the solar zenith angle. 

If one focuses on Rayleigh scattering, the Rayleigh optical depth needs to be considered, 

which is approximated by the expression: 

𝜏(𝜆) = 0.008569/𝜆4 (3-6) 

Where λ is in mm. This law means that shorter wavelengths are more readily scattered 

than longer wavelengths, i.e. blue light is scattered more than red light by gas molecules. 

Modeling the atmosphere as a simple spherical shell provides a reasonable 

approximation of Air Mass as function of solar zenith angle and the ratio of the Earth's 

radius to the effective height of the atmosphere: 

𝛢𝛭 = √(𝑟𝑐𝑜𝑠𝑧)2 + 2𝑟 + 1 − 𝑟𝑐𝑜𝑠𝑧 (3-7) 

where the radius of the Earth RE= 6371 km, the effective height of the atmosphere Yatm ≈9 

km, and their ratio r = RE/Yatm≈708. That is, for the purposes of insolation calculations, 

the atmosphere can be considered to be effectively concentrated into around the bottom 

half (9 km) of the Troposphere [206]. 

Solar irradiance at the collector level is reduced non-linearly with increasing air mass. 

This dependence is further complicated due to the complex and variable atmospheric 

factors involved. Most high energy radiation is attenuated in the upper part of the 

atmosphere, that is, as we move from AM0 to AM1. For this reason, efficiency drop from 

AM1 to AM2 is not very significant. Furthermore significant variability is observed in 

atmospheric factors contributing to attenuation, e.g. water vapor, aerosol, photochemical 

smog. One approximate model for solar intensity versus air mass is given by: 

𝐼 = 1.1 ∗ 𝐼0 ∗ 0.7(𝐴𝑀)(0.678)
 (3-8) 

where solar radiation intensity external to the Earth's atmosphere I0 = 1.353 kW/m2, and 

the factor of 1.1 is derived assuming that the diffuse component is 10% of the direct 

component. Since solar radiation is further attenuated by aerosol present in the 

atmosphere that can reach high concentrations in urban areas, variations of this formula 

exist for clean and polluted air, with respective modifications of the base and the 

exponent of the air mass. 

In Figure 58, Air Mass is correlated to Solar Elevation, based on the above-mentioned 

approximation and also to solar intensity as theoretically calculated based on the 

expression for clear sky conditions. 

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 17:50:21 EEST - 137.108.70.13



Elias Roumpakias 

 

87 

 

Figure 58 : Air Mass and solar intensity calculated by approximate model as function of solar 

altitude angle (clear sky conditions).  

Obviously, the air mass increases non-linearly to very high values, when the solar 

altitude angle drops below 25. This observation is in line with the non-linear increase of 

the discrepancy between measured and calculated efficiency, when the solar altitude 

angle drops below 25 (see Figure 57 above). For the same day, the correlation between 

measured power and computed power with solar altitude is shown in Figure 59. 

 

Figure 59 : Computed and measured (P real) power, irradiance versus solar altitude angle on 3 

April 2011. 
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We can observe that when the irradiance levels lie below the line of 400W/m2 the solar 

altitude angle is below 25. In this range, the computed power is again, significantly 

overestimated compared to the measured one. 

The main reason for the lower PV performance in lower solar altitude angles are 

absorption or scattering in a particular range of solar spectrum (particular high energy 

wavelengths), from atmospherical aerosol and air pollution. As an example, Figure 60 

(adapted from Ref. [207]) presents irradiance measurements at different hours during 

one clear day of May 2009 in Italy. 

 

Figure 60 : Solar spectral irradiance measured at different hours on a clear day of May2009 in 

Italy [207] 

Obviously, the attenuation in the left part of the spectrum is higher during the early 

morning and the late afternoon. This means that the high energy spectrum that is mainly 

employed by the band gap of the silicon solar cell is more severely attenuated than the 

average, thus leading to an apparent drop in PV panel efficiency. 

These effects are further enhanced by the presence of aerosol in the troposphere in urban 

areas [208]. 

Based on the above observations, it would be interesting to model the influence of air 

mass on the efficiency of the module in clear sky conditions, and employ a tuning 

parameter to match further deviations that are due to the presence of aerosol. 

As a starting point, one can model the efficiency drop due to the air mass by reducing 

the “effective” radiation intensity by means of the following relation: 

𝐼𝑐𝑜𝑟𝑟 = 𝐼0 ∗ 𝑀𝑢 ∗ 𝑒𝑥𝑝(𝐴𝑀 ∗ 𝐸𝑥) (3-9) 

A comparison between predicted (with the additional consideration of the effect of Air 

Mass) and measured efficiency as function of air mass is presented in Figure 61, where 

the multiplier Mu is set to 0.004 and the exponent Ex is set to 0.15. 
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Figure 61 : A comparison with Fig. 9 shows an improved accuracy in predicting efficiency at low 

Solar Altitude Angles (high Air mass).  

In order to check with the manufacturer's data, we take into account that the efficiency 

drop between 1000 and 200 W/m2 insolation is stated to be 6% in Table 13 (see the 

respective point in the Figure, for AM=25 or solar altitude angle=10°). Obviously, there 

exists significant variability in efficiency drop that should be correlated to variable 

atmospheric conditions. This subject deserves further investigation. 

3.4 Conclusions of case study 

• Studies by other researchers point to the fact that PV panel efficiency drops 

below the values stated in the manufacturers' technical data sheets, for 

insolation levels below 400 W/m2. 

• This paper investigates the effect of the solar altitude angle on the efficiency of 

PV panels, based on experimental data with a single panel, as well as on data 

from monitoring a 2 MWp installation. 

• From the analysis presented, it is concluded that there exists a non-linear 

reduction of efficiency in the solar irradiance range between 0 and 400 W/m2. 

The observed, systematic, deviations were correlated to the effect of air mass at 

low solar altitude angles. The remaining discrepancy could be correlated to the 

ambient amount of particulate matter (aerosol). 

• The non-linear reduction of efficiency from the values predicted from the PV 

panels' manufacturer's curves results in an overestimation of the yearly 

electricity produced by the PV park, which was of the order of 2% for the 

specific installation. This percentage is by no means negligible since it affects the 

payback period of the installation. 
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4 IR Diagnostics (Case Study 2)2 

The main objective of this chapter is to investigate optically and by IR thermography - 

observable faults in PV installations. A significant number of normal photographs along 

with the respective infrared thermographs were compiled from regions of possible 

faults, aiming to correlate the measured temperature field on the panel surface with 

optical and electrical findings. The data were extensively compared and correlated and 

typical results are presented here. The hot-spots that were observable at the infrared 

spectrum are correlated with the normal photographs of the same parts of the panels. A 

second objective of this work is to quantitatively assess the effect of the observed hot-

spots to the electricity produced by the PV installation, as a next step towards a 

workable inspection methodology. Hot spots have been addressed in a number of 

previous studies [114], [115]. They fall into two broad categories: a) “light hot-spot” 

when power losses are about 4% due to a 10°C temperature difference in the cell’s 

surface, b) “strong hot-spot” when power losses are about 10% due to a 18°C 

temperature difference in the cell’s surface. 

Measurements gathered from PV plants comprise power output data at the inverters’ 

level and environmental data (solar irradiance, outside temperature, air velocity). 

However there is no way to spot defects occurring during PV operation other than those 

found during on-site inspections of the plants. There are a few methods that can be 

employed to check for damage on a panel such as electroluminescence (EL), 

photoluminescence (PL), IR imaging and others. Out of them, infrared thermography is 

the one not requiring dismounting and disconnecting of the panel from the array to be 

checked for defects. Through the use of IR imaging, faults and damage that are 

otherwise invisible to the naked eye can be seen in the form of hot-spots. The origin of 

hot-spots may vary and an attempt to correlate defects found during the optical and 

thermographic inspection of PV parks with the power output is presented in this 

chapter.      

4.1 Experimental setup 

Inspection of five PV installations was carried out. (Four PV parks of 100 kW peak 

power each, along with an additional roof top PV installation of 10 kW power). A FLIR 

Thermacam S45 camera was employed in the measurements. The camera is connected to 

a laptop PC by means of a firewire cable. The infrared photographs are processed by the 

specialized software “Thermacam Researcher”[209]. The measurements were carried out 

in the period from November 2014 to April 2015 in the greater area of Larissa (4 sites) 

and Trikala (1 site), all located in Central Greece. Measurements were carried out in a 

variety of meteorological conditions, comprising days with low, high and average 

insolation conditions. 

4.2 Routine inspection procedures 

A routine PV installation inspection should comprise the following 3 stages: 

• Optical inspection 

• Inspection by infrared thermography 

 
2 Parts of this chapter have been published as: E. Roumpakias, F. Bouroutzikas, A. Stamatelos 

(2016) On-site Inspection of PV Panels, Aided by Infrared Thermography. Advances in 

Applied Sciences, 2016; 1(3): 53-62 
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• Electrical inspection 

 

4.2.1 Optical inspection 

Optical inspection of PV installations is a useful tool that can give us a quick view of the 

general condition of the installation, focusing attention to possible fault regions. 

Significant effort has been made in the past, aiming at the compilation of an inclusive 

catalog of the PV system faults that are observable by optical inspection[210-212]. 

Moreover, specific procedures in the form of questionnaires have been compiled. One 

should mentioned as an example, the NREL technical report TP-5200-56154[213] which 

includes a detailed questionnaire for the recording of all types of problems that could be 

met during an optical inspection. The most usual problems observed are the following: 

• Yellowing. 

• Delamination. 

• Bubbles. 

• Cracks in the cells 

• Defects in the anti-reflective coating 

• Burnt cells 

4.2.2 Inspection by infrared thermography, suggestions and 

guidelines 

Inspection by use of infrared thermography is more powerful, because in the infrared 

spectrum one can observe certain faults that are not visible to the naked eye[114]. 

Infrared thermography makes visible a temperature representation of the installed 

panel’s surface, without any need of disassembly or placement of probes. Regions of 

higher panel surface temperature that are readily observable at infrared (hot spots), are 

candidate places of faults.  

The manufacturers of thermography equipment have developed technical guides for 

thermographic inspection, to avoid faults in the procedure that could spoil the results of 

the inspection[210, 213, 214]. According to these guidelines, the measurements should be 

made in good insolation conditions in the range of 500 – 700 W/m2, clear sky conditions 

to avoid cloud shading during shooting. Measurements in calm weather conditions are 

required for the temperature field not to be affected by enhanced convection. The 

camera maybe aimed to the front or the back of the PV panel. Infrared recordings from 

the front of the PV panel exploit the fact that the protective glass cover has an emissivity 

of ε=0.85-0.90 at the wavelength range of 8-14 μm (long wave) where most of the panel’s 

emitted power occurs. Thus the temperature field of the panel surface becomes more 

readable. The reflections from the sun or surrounding objects on the glass may spoil the 

overall infrared image. For this reason, the shooting should be done not directly 

perpendicular to the panel, but at 5-6° angles as shown in Figure 62. On the contrary, 

infrared images taken from the back of the panel take advantage of the absence of 

reflections, without compromising image quality, because of the fact that the tedlar 

polymer material of the backsheet has a high emissivity at the range of interest (ε=0.90). 

Shooting from the back has the disadvantage of the blocking of the view by the metallic 

supporting frame members, making certain parts not accessible to thermography. Due 

to the above reasons, shooting from the front and the back faces of the PV panel are 

combined, selecting the necessary viewing angles and field of view to extract useful 

information and avoid the problem of “false hotspots”.  
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Figure 62: Correct viewing angles of PV panels during thermographic inspection proposed by 

manufacturing companies of thermographic equipment  

The minimum requirements for installation and monitoring of a PV system are 

presented in the guideline  IEC62446 [215]. This document includes a chapter devoted to 

thermographic inspection. Insolation conditions exceeding the 400 W/m2 level are 

required, (ideally 600 W/m2) and steady clear sky conditions required for the 

temperature field to be clearly observable. Infrared shooting should be done from both 

sides. All PV panel arrays must be checked, with special attention to junction boxes and 

all electrical connections. 

 

4.3 Electrical Inspection 

Electrical inspection includes measurements with clip-on multimeters, general 

multimeters, PV analyzers and special equipment. Electrical inspection measurements 

provide an equivalent degree of performance and safety. In order to check that the PV 

installation works safely, it is demanded to check: 

• continuity of protective earthing 

• polarity of all DC cables 

• insulation resistance of DC circuits 

PV analyzers are able to measure the I-V curve of PV modules and string in order to 

compare with the I-V curve of the manufacturer’s datasheet. Multimeters are able to 

measure the string’s open circuit voltage and short circuit current. It is also useful to 

measure solar irradiance and panel temperature in order to compare with STC and 

NOCT conditions using thermal characteristics and the equations below 

𝐼𝑆𝐶 = 𝐼𝑆𝐶(𝑆𝑇𝐶)(1 + 𝛼𝑖𝑠𝑐(𝛵 − 25)) (4-1) 

𝑉𝑂𝐶 = 𝑉𝑂𝐶(𝑆𝑇𝐶)(1 + 𝛽𝑣𝑜𝑐(𝛵 − 25)) (4-2) 

4.4 Study of characteristic type of faults 

4.4.1 Cell mismatching 

An example of this type of fault can be seen in Figure 62. This photo was taken on a 2-

year-old PV panel. As seen in Figure 63, some cells are very dark-colored compared to 

the rest of the panel’s cells. Infrared thermography shows that these cells have also 

higher temperature than the rest of the cells. The faulty region is shown on the left of 

Figure 63 and the respective thermogram with the hot spot on the right. The 

temperature diagram produced from the processing software (bottom of Figure 64) 
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indicates a temperature difference of 5°C between the faulty region and the neighboring 

cells. The thermogram was taken from the back of the PV panel. According to the 

literature, the most probable cause of a hotspot is the installation of PV cells with 

different characteristics on the same panel [216],[217]. During the 24-month operation of 

the PV park to-date, no significant deterioration in the efficiency was observed. Thus, 

one cannot conclude if the observed difference is due to a malfunctioning of the PV 

panel or to an initially darker color of the cell, or even to the onset of a hot spot. 

 

 

Figure 63:  Normal take of a PV panel (left) and the corresponding thermography (right) taken 

from the back side. The cells with different color can be clearly seen and the corresponding 

hotspot that appears. 

 

Figure 64: Temperature profiles along the two parallel, oblique lines shown on the thermogram 

of Figure 63 EVA membrane color discoloration (yellowing)  

An observable difference in the external surface color of certain PV cells was observed in 

a number of panels. It should be mentioned that these are PV panels of the same 

manufacturer and the same age with the above-mentioned. This fault is due to the 

discoloration of the protective EVA (ethylene vinyl acetate) membrane, which is placed 

in-between the cells and the protective glass. A certain degree of discoloration 

(yellowing) is observed in the photo at the left of Figure 65. This yellowing of the 

membrane is observed in a large part of the panel’s surface. According to other 

researchers [107, 132, 218] this phenomenon is caused by a change in the membrane’s 
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chemical composition due to the effect of UV radiation and  high temperatures. Several 

cells with increased temperature can be seen in the respective thermogram to the right. 

The temperature difference varies in the range from 4.5°C (cell #1) to 2.5°C (cells # 2, 3). 

The thermogram was taken from the front of the panel, because shooting from the back 

was hindered by the frame. It is possible that other regions exist with increased 

temperature. Moreover, the temperature difference could be higher than the above 

mentioned. This is a typical fault observed in several PV panels in this installation. 

 

Figure 65: Normal take of a PV panel (left) and the corresponding thermography (right). The 

cells affected by discoloration (yellowing) can be clearly seen and the corresponding hotspots 

that appear. 

 

Figure 66: Temperature profiles along the six parallel lines shown on the thermogram of Figure 

65 

4.4.2 Mechanical damage (breakage of protective glass) 

A PV panel with apparent breakage of its protective glass was spotted in the same 

installation. A photograph is presented in Figure 67. The protective cover has broken in 

two places and cracks propagated to cover most of the panel’s surface. This resulted in 

the intrusion of humidity inside the panel structure. The results from infrared 

thermography revealed three hot spots with significantly higher temperature than the 
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neighboring cells. The temperature difference varies from 22 to 40°C (Figure 69). The 

image was taken from the front, in order to show a panoramic view of the panel. Closer 

thermograms taken from the back, revealed significantly higher temperature differences 

of the order of 50°C. This difference could be attributed in part to errors due to diffuse 

radiation from the background, during the front shootings. Moreover, the closer 

thermograms reveal a more detailed temperature distribution inside the cell, with 

regions of different temperatures in the same cell, with differences as big as 35°C. These 

could be due to the existence of cracks at the cell’s surface, a fact that could not be 

confirmed due to the specific position of the panel at the highest horizontal line that was 

not easily accessible. The specific thermal behavior is explained in the literature [132].  

 

Figure 67: PV panel with mechanical damage (protective glass) in two areas highlighted by 

arrows. 

 

 

Figure 68 :  Thermographic view taken from the front of the problematic PV panel with the 

cracked glass on the left. Close up view taken from the rear  side of the same panel on the right 

where areas with different temperature are shown. 
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Figure 69 : Thermographic profiles of the back side of Figure 67-Figure 68 

 

Figure 70 : Thermographic profiles of the back side of the panel of Figure 67- Figure 68 

 

4.4.3 PID effect on PV cells 

According to the findings of other researchers [116], it is possible to observe and record 

the phenomenon of PID by means of infrared thermography. A series of measurements 

were carried out in a roof-top PV installation to confirm these findings. Optical 

inspection of the installation did not reveal any possible faults. However, the results of 
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the infrared thermograms showed that a significant percentage of the installed PV 

panels suffered from PID. Some of the findings are observable in Figure 71. The 

phenomenon is especially observable with the cells that are closer to the metallic frame. 

The temperature difference is in the range of 3 to 4°C. Infrared thermograms were 

received also from the back side for confirmation. Again the processing of the 

thermograms indicated a temperature difference of 3°C. The same type of fault is shown 

in Figure 71-Figure 72. 

 

Figure 71 : Thermographs of PID affected panel. Takes from the front (left) and back side (right). 

 

 

Figure 72: Temperature profiles of the front side of the PID affected panel shown on Figure 71 
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Figure 73 : Temperature profiles of the back side of the PID affected panel shown on Figure 71 

 

4.4.4 Observable hotspots linked to no apparent optical fault 

Several hot spots were found during inspection in two different PV installations, in cells 

with no visible faults (Figure 74, Figure 76). The temperature differences observed were 

of the order of 3°C (Figure 75, Figure 77, Figure 78). It is not yet confirmed if the 

observed hot spots point to a fault in its initial stages that is not yet visibly apparent, or 

if the specific type of fault is not visible to the naked eye.  

 

 

Figure 74: Hotspots appearing on a thermograph (right) of cells with no visible damage (left).  
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Figure 75 : Temperature profiles of the two parallel lines seen on the thermograph of Figure 74. 

 

 

 

 

Figure 76 :Thermographs taken from the front (left) and back side (right) of a PV cell with no 

visible damage. 
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Figure 77 : Temperature profiles of the two parallel lines seen on the thermograph of Figure 76 

 

Figure 78 : Temperature profiles of the two parallel lines seen on the thermograph of Figure 76 

Another case with a remarkable temperature difference without apparent optical fault is 

the image of Figure 79. In the specific PV panel, most of the cells have similar 

temperatures except for one cell that has a temperature of 80° C. However, no 

performance decrease is observed yet. Monitoring of this hot spot could lead to future 

results. 
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Figure 79 : IR images of PV panel that has not optical fault , however it has  a cell with 

remarkable temperature difference.  

 

4.5 Impact of faults on electricity generation 

Monitoring data from the operation of the inverters installed on the PV park #1 (in 

which the faults presented in Figure 64, Figure 66, and Figure 75 were spotted) were 

collected and processed. The specific PV panel shown in Figure 80 is installed in the 

same series connected to Inv1. This specific inverter produces 5% less electric power 

than the rest of the inverters in this installation. This should be attributed to the faulty 

performance of the specific panel, because no deviation was observed in the past with 

these inverters. According to the above mentioned classification of hot spots, a 

temperature difference of 18°C may result in a 10% power loss. In the specific case, 

temperature differences exceed 35°C, however, the observed power losses are only 5%. 

This could be attributed to overproduction of the other panels in the string. Further 

investigation is needed. Moreover, another inverter, namely, Inv6 which is connected to 

PV panels shown in Figure 64, Figure 75, generates 1% less electric power compared 

with the rest of the inverters (apart from the above-mentioned Inv1). This slightly 

reduced electricity production from this series could be due to the fact that several 

panels from this series present a yellowing of the EVA membrane. The diagram 

presented in Figure 80 shows the electricity generation during the 3rd of March 2015, 

which was the specific day when the inspection with thermography took place. During 

the time interval from 11.00-13.00 where the infrared thermograms were received, it is 

apparent that the inverters Inv1, Inv6 produce less power. In order to confirm that this is 

a systematic deviation in performance, Figure 81 presents a diagram of the electricity 

produced during the first 10 days of March. The trend is clearly observable for all days. 
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Figure 80 :  Graph of daily electricity generation of a 100 kW PV plant and solar insolation on 

March 3rd, 2015 

 

 

Figure 81 : Electricity generation of the same PV plant in the period from 1 to 10 March 2015. 

4.6 Development of a draft diagnostics procedure 

The experience gained from the carrying out of inspections, led to specific suggestions 

for an optimal way to schedule and carry out the respective measurements. Several 

standards are in preparation related to the necessary steps that should be followed 

during an inspection of a PV installation by infrared thermography. A “Standard for 

Infrared Inspection of Installed Photovoltaic (PV) Systems” was issued in 2014 by the 

Infraspection Institute [219]. Two additional standards are at the development stage, 

from the International Solar Energy Society, German Section [220] and from the 

International Electrotechnical Commission (IEC) [117], respectively. An optimal 

inspection procedure should converge on the following points: 
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Based on the PV panel manufacturers’ suggestions, sufficient insolation conditions 

should prevail, between a minimum of 500 W/m2 and an optimal level of 700 W/m2. This 

was confirmed by our experience, since the faults were not observable during clouded 

days. Even in days with insolation close to the minimum of 500 W/m2 several problems 

were met with the measurements.    

• Good quality measurements were succeeded during conditions of low wind 

speed, where convection coefficients are lower and temperature differences 

more enhanced. 

• The inspection must be carried out in closed circuit conditions (regular 

operating conditions), because the faults are only observable with electrical 

load. 

• It is necessary to control the measurement errors whenever the 

measurement takes place from the PV panel’s front. It should be mentioned 

that this type of measurement offers a panoramic view of the PV panel’s 

surface, a fact that cannot be attained by a measurement from the back. 

However, front measurement induces a significant error due to the effect of 

diffuse radiation that should be carefully corrected by taking duplicate 

measurements in the respective places from the back. Measurements from 

different angles and different distances are very useful because their 

combined processing further increases resolution and the detection 

capability of the various faults. 

This diagnostic procedure may also be employed for a pre-check of newly installed PV 

panels at the installation site. This is increasingly requested by several clients, because of 

the fact that the panels could suffer damages during shipment from the factory to the 

installation site. 

 

4.7 Conclusions of the case study 

• Infrared thermography supported by optical inspection was extensively applied 

to fault detection in 4 PV parks and 1 roof-top PV installation.  

• An attempt is made to correlate observable defects on installed PV panels with 

hotspots appearing in IR images of the same panels.  

• In most cases there is indeed a connection between observable faults and 

hotspots however in a few occasions such a connection cannot be made since 

there aren’t any observable defects.  

• Monitoring data from the operation of the inverters installed on one PV park 

were collected and processed to quantify the observable hotspots with losses in 

electricity production. It is found that two inverters out of six produce 5% and 

1% less electric power respectively. However this is something that needs to be 

more extensively examined.  

• The resulting experience is employed in the development of a procedure that 

could be routinely applied to the health monitoring of PV installations.  

• This procedure may also be employed for a pre-check of newly installed PV 

panels on site, which is increasingly requested by the clients. 
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5 Methodology (Case Study 3)3 

In this chapter, the proposed methodology for performance analysis of grid-connected 

PV systems in actual operating conditions is described. In contrast to the previous 

studies, this study aims to drawing results for PV efficiency deterioration and deviations 

from STC conditions, by exploiting data from the operation of grid connected PV plants. 

In particular, the current study focuses on a PV park’s performance validation of a grid-

connected 99.84 kWp PV park in Central Greece, monitored over a three year period 

from 2013 to 2015. This PV park presented significant variations in energy production 

observed from year to year. The analysis procedure has three objectives. The first is the 

calculation of PR, which is an important parameter for PV performance. The second is a 

comparative performance analysis of several of the above – mentioned models. Finally, 

the third objective is the application of a proposed analysis procedure to evaluate on-

grid PV performance in order to explain the variations in yearly energy production and 

distinguish whether these variations are stemming from irradiance levels’ variation or 

panel efficiency deterioration This has an important context in the claim of 25-years’ 

warranties supplied by the panel manufacturers and deserves more attention in order to 

secure the economic results of PV parks. 

5.1 Experimental setup 

In this section, the available data for the PV park are presented, including location and 

orientation, technical data of equipment, measurement equipment and connections of 

the PV panels. 

The specific PV park, located in Larissa (Latitude: 39.513, Longitude: 22.312), Greece, 

comprises 416 PV panels of 240Wp each (YL240P-29b, technical data in Table 17), 

connected to 8 inverters ( Fronius IG Plus-150, technical data in Table 18). Four groups of 

13 string series - connected panels each, are connected in parallel to each inverter (52 

panels in total for each inverter, Figure 82). Photovoltaic arrays are mounted in a steady 

(non-tracking) mounting system with south facing orientation (surface azimuth angle 

γ=0°) and a tilt angle of β=30°. 

 

 
3  This chapter has been published as: Roumpakias, E. and A. Stamatelos (2017). 
"Comparative performance analysis of grid-connected photovoltaic system by use of existing 

performance models." Energy Conversion and Management 150: 14-25. 
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Figure 82 : The PV park in Larissa: Basic equipment and electrical connection mode.  

In order to analyze the performance of PV park, it is necessary to know of the main 

technical characteristics of PV panels and the inverters’ efficiency data. These are 

presented in Table 17, Table 18 for the specific case study. An important element for the 

analysis procedure is the inverters’ performance curve Figure 83, according to 

manufacturers’ data. 

Table 17 :  Technical Data of the PV Modules 

Yingli  60 cell YGE SERIES 

Module type  YL240P-29b 

  STC NOCT 

Power Output W 240 174.3 

Module efficiency % 14.7 13.3 

Voltage at Pmax W 29.5 26.6 

Current at Pmax A 8.14 6.56 

Open-circuit voltage V 37.5 34.2 

Short-circuit current A 8.65 7.01 

Normal operating cell temperature (NOCT) °C 46+/-2 

Temperature coefficient of Pmax %/°C -0.45 

Temperature coefficient of Voc %/°C -0.33 

Temperature coefficient of Isc %/°C 0.06 

Temperature coefficient of Vmpp %/ °C -0.45 

Dimensions( L / W / H ) Mm 1650/990/40 

STC : 1000 W/m2 irradiance , 25°C cell temperature, AM1.5 G spectrum according to EN 60904-3  

Average relative efficiency reduction of 5% at 200W/m2  according to EN 60904-3 

NOCT: open-circuit module operation temperature at 800W/m2 irradiance, 20°C ambient 

temperature, 1m/s wind speed 

Table 18 :  Inverter Technical Data  

Fronius IG plus 150V-3   

PDC,MAX W 12770 

IDC,MAX A 55.5 

UDC,MIN V 230 

UDC,START V 260 

UDC,R V 370 

UDC,MAX V 600 

PAC,R W 12000 

IAC,MAX A 17.4 

UAC,R V 3-NPE 400/230 

Maximum efficiency ninv % 95.9 

ninv at 5% PAC,R    (230V/370V/500V) % 91.8/92.5/91.1 

ninv at 10% PAC,R    (230V/370V/500V) % 91.0/94.3/93.2 

ninv at 20% PAC,R    (230V/370V/500V) % 94.7/95.1/94.6 

ninv at 25% PAC,R    (230V/370V/500V) % 95.1/95.3/94.7 

ninv at 30% PAC,R    (230V/370V/500V) % 95.1/95.3/94.9 

ninv at 50% PAC,R    (230V/370V/500V) % 95.3/95.9/95.3 

ninv at 75% PAC,R    (230V/370V/500V) % 94.7/95.6/95.4 

ninv at 100% PAC,R    (230V/370V/500V) % 94.0/95.2/95.1 

PDC,MAX W 12770 

IDC,MAX A 55.5 

UDC,MIN V 230 

UDC,START V 260 
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Figure 83 : Inverter performance curves at different DC voltages 

Basic measurement equipment is always present in any existing PV park installation. In 

the specific case, there exists a thermocouple sensor whose characteristics are presented 

in Table 19 and an irradiance sensor, in the form of a mono-crystalline reference cell 

with characteristics presented in Table 20. The use of a reference cell allows better 

accuracy in the performance ratio evaluation than the use of pyranometers, because 

spectral and angular corrections are not necessary [221]. Several researchers observed 

faults or other performance problems using this basic equipment and the data recorded 

by the inverter. Yahyaoui et al. used these kind of data for fault detection and 

particularly, proposed a practical technique for monitoring and fault detection using 

data provided by the inverter and solar radiation sensor [222]. Furthermore, ElhadjSidi 

et al. employed this kind of data from inverters, irradiance sensors, ambient and module 

temperature sensors in order to analyze performance of grid-connected large scale 

photovoltaic system and particularly a 15 MWp system in Mauritania  [165]. 

Table 19 : Temperature measurement equipment 

Sensor PT 100 

Measuring Range -40°C to +188°C 

Accuracy ±0,8°C ( in the range -40°C to +100°C) 

Design Sensor on an adhesive film for measurements on surfaces 

Dimensions 32x32mm 

FroniusArt.Nr. 43,0001,1190 

 

Table 20 :  Irradiance measurement equipment 

Sensor Mono-crystalline Si-sensor 

Sensor voltage  75mV at 1000 W/m2 

(exact calibration voltage written on sensor) 

Accuracy ±5% (average of a year) 

Ambient temperature -40°C to +85°C 

Design Sensor mounted on z-shaped aluminum profile 
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Dimensions L x W x H = 55 x 55 x 10 mm 

Fronius Product Nr. 43,0001,1189 

Finally, measurements from sensors and inverter inlet are recorded in a data logger with 

a recording interval of 15 min (Table 21). 

Table 21 : Main characteristics of the monitoring dataset  

Recording frequency 15min 

Recording period  1/1/2013 – 31/12/2015   

Recorded quantities Irradiance (W/m2) , Electric Power (W), DC Voltage (V), 

Ambient Temperature (°C) , Back surface Temperature 

(°C), AC Voltages L1,L2,L3 (V) 

5.2 Analysis procedure – parameters 

The performance analysis has three objectives which are described in this section. The 

first is the calculation of performance ratio, based on equation below which are 

described in 2.3, using available data from three years’ operation. 

  

YF =  
E

PSTC

   (
kWh

kW
) 

(5-1) 

YR =  
H

GSTC

   (
kWh

kW
) 

(5-2) 

PR =  
YF

YR

 
(5-3) 

 

The second objective is the application of PV form model, the improved bilinear 

interpolation model and the Evans model which are described in section 2. Available 

data are used as inputs to the models in order to estimate the produced power. 

Particularly, all of these models use in-plane total irradiance and panels’ temperature. 

The third objective is the formulation and testing of a proposed, improved procedure 

which uses irradiance, panels’ temperature and data from inverter inlet, in particular AC 

power and DC voltage. Furthermore, this procedure takes into account the sun’s 

position and atmospheric conditions. The procedure is described in this section. 

The available datasets comprise insolation (W/m2), measured at 30° tilt angle, electric 

power measured at the inverter, the temperature of a typical PV panel and the DC 

voltage at the inverter inlet. Electric power data from each inverter are recorded, 

however, no significant differences exist between inverters. For this reason, it suffices to 

model a typical inverter in the data processing.  

 

5.2.1 PV efficiency 

𝑛 =
𝑃

𝐺𝐴
 

(5-4) 

 

The definition of PV efficiency is defined as the ratio of power produced to the product 
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of irradiance times surface area [223]. 

The efficiency can be computed either for AC or for DC power. 

5.2.2 DC power calculation 

An important factor affecting PV park performance is the efficiency of the inverter. 

Inverter efficiency was not measured directly in the present study. Instead, available 

efficiency data for the specific inverter type, as supplied by the manufacturer, was used. 

This suffices to convert the measured AC power to DC. The inverter performance data 

employed in these calculations are presented in Figure 83 and Table 18, respectively. It is 

important to mention that the irradiance was measured by an irradiance sensor. 

According to the above relationships, calculations are done for each line of the 

measurements’ data set, with the exclusion of specific outliers in order to reduce 

measurement faults. 

DC power is calculated from AC power based on the equation [224]: 

𝑃𝐷𝐶 =
𝑃𝐴𝐶

𝑛𝑖𝑛𝑣

 
(5-5) 

5.2.3 Temperature normalization 

Another significant parameter affecting PV panel’s efficiency is the operating 

temperature of the cell. Electrical efficiency of the cell and power output depend linearly 

on the operating temperature, decreasing with TC. However, since the effect of panel 

temperature is not the subject of the present paper, power is normalized to 25°C (STC) 

panel temperature (TC), taking into account the temperature coefficient (a) supplied by 

the PV panel manufacturer, as follows [205]: 

𝑃𝐷𝐶25 =
𝑃𝐷𝐶

1 + 𝑎( 𝑇𝐶 − 25)
 

(5-6) 

Similarly, a normalized efficiency ηDC25 can be computed using temperature normalized 

power with the aid of eq.(5-5). 

5.2.4 Air mass – Clearness index 

In addition to a specific panel temperature, STC conditions refer to a specific irradiance 

level and an Air mass of 1.5. Air mass, which is an important factor describing the 

atmospheric depth crossed by solar radiation, is calculated based on the time and date 

data recorded from the installation’s data-logger and typical solar geometry equations 

[203]. The geographic coordinates of the PV park are additionally employed in this 

calculation. Clearness index, which is another important parameter characterizing 

optical quality of the atmosphere defined below, is also employed in the analysis 

procedure. Wang et al use this factor in their analysis procedure for grid-connected PV 

parks [225]. 

Air mass and Clearness index calculation is carried out as follows: 

The declination angle δ is calculated from the expression: 

𝛿 = 23.45 𝑠𝑖𝑛[(284 + 𝑛)
360

365
] 

(5-7) 

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 17:50:21 EEST - 137.108.70.13



Elias Roumpakias 

 

109 

 

The equation of time is employed to calculate time: 

𝐸𝑡 = 2.292(0.0075 + 0.1868𝑐𝑜𝑠𝐵 − 3.2077𝑠𝑖𝑛𝐵   − 1.4615𝑐𝑜𝑠2𝐵 − 4.089𝑠𝑖𝑛2𝐵 (5-8) 

Where 

𝐵 = (𝑛 − 1)
360

365
 

(5-9 

and n denotes the day of year 1≤n≤365 

𝑡𝑆𝑂𝐿 =   𝑡𝑆𝑇𝐷 +
𝐿𝐿𝑂𝐶 − 𝐿𝑆𝑇𝐷

15°/ℎ
 +

𝐸𝑡

60/ℎ
 

(5-10) 

where local time tSTD as recorded by the data-logger, geographic longitude LLOC of the PV 

installation’s location, the time-zone of the location LSTD, equation of time Et, as 

calculated above equation (5-8) .  

𝜔 = (𝑡𝑆𝑂𝐿 − 12) 15 (5-11) 

𝑠𝑖𝑛 𝑎𝑠 = 𝑐𝑜𝑠𝜃𝛧 = 𝑐𝑜𝑠𝜑 𝑐𝑜𝑠𝛿 𝑐𝑜𝑠𝜔 + 𝑠𝑖𝑛𝜑 𝑠𝑖𝑛𝛿 (5-12) 

 

φ is the latitude 39.513Ν, ω is the hour angle, calculated based on equation (5-12). 

Air mass is defined as the ratio of the mass of the atmosphere through which beam 

radiation passes at a specific location, day and time, to the mass it would pass through if 

the sun was at zenith. At sea level we define AM=1 when the sun is at zenith and AM=2 

at θz=60°. For a zenith angle from 0 to 70° at sea level, air mass may be given to close 

approximation by the following expression: 

𝛢𝛭 =    
1

𝑐𝑜𝑠𝜃𝑧

 
(5-13) 

A more accurate expression for AM in different zenith angles is the following: 

𝛢𝛭 = √(𝑟 𝑐𝑜𝑠𝜃 𝑧)2 + 2 𝑟 + 1 − 𝑟𝑐𝑜𝑠𝜃 𝑧 (5-14) 

where the radius of the Earth  RE = 6371 km, the effective height of the atmosphere  Yatm≈ 

9 km, and their ratio r = RE / Yatm ≈ 708. That is, for the purpose of insolation calculations, 

the atmosphere can be considered to be effectively concentrated into the bottom half (9 

km) of the Troposphere[206]. 

Angle of incidence (AOI) is another important factor for PV efficiency. This is related to 

the reflection losses [195]. STC conditions in combination with irradiance 1000 W/m2, 

AM1.5 spectrum and is implied AOI=0 [226]. AOI also affects the irradiance sensor’s 

response. However, this effect is not examined in this study, since sensor and PV 

modules all have the same inclination. 
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cos(𝐴𝑂𝐼) = cos 𝜃𝑧 cos 𝜔 + sin 𝜃𝑧 sin 𝜔 cos(𝛾𝑠 − 𝛾) (5-15) 

 

where irradiance G measured by the PV park monitoring system (tilt angle 30°), Gextra 

extraterrestrial radiation on the plane normal to radiation on the nth day of year, angle 

of incidence AOI for orientation.  

Clearness index is an indicator of relative clearness of atmosphere [227] and is calculated 

hourly, daily or seasonally. Seasonal variations of solar irradiance can be predicted from 

astronomical equations. However, it is additionally affected by stochastic parameters as 

ground albedo, water vapor concentration, cloud optical properties and atmospheric 

turbidity. The effect of these stochastic parameters can be avoided with the use of the 

instantaneous clearness index. Calculation of clearness index is done based on the 

following relation: 

𝐾𝑡 =
𝐺 

  𝐺𝑒𝑥𝑡𝑟𝑎  𝑐𝑜𝑠𝐴𝑂𝐼  
 

(5-16) 

where irradiance G measured by the PV park monitoring system (tilt angle 30°), Gextra 

extraterrestrial radiation on the plane normal to radiation on the nth day of year, angle 

of incidence AOI for orientation.  

Extraterrestrial radiation on the nth day of the year is given by the equation: 

 

𝐺𝑒𝑥𝑡𝑟𝑎 =   𝐺𝑆𝐶  (1 + 0.033 𝑐𝑜𝑠  (
360𝑛

365
 ) 

(5-17) 

based on the solar constant GSC= 1367 W/m2, and n the number of days of the year. 

The computations are carried out with the available data of years 2013-2015. The results 

are presented in the following sections of this study, in the form of energy production, 

actual power and temperature - normalized efficiency. These results are compared with 

performance ratio results as well as with the results produced by application of other 

models. Computations of performance ratio are carried out  and data from inverter’s 

inlet and irradiance sensor’s signal. 

5.3 Results 

Datasets from the monitoring of operation of a PV park for a period of three full years 

(2013-15), are processed and discussed in this study. This park demonstrated a 

significant difference in the energy produced during these three years (Figure 84). Table 

6 presents the yearly energy production for 2013-2015 and the deviation from their 

average value. The energy production for 2015 is very close to the average value, while 

that for 2013 is about 7% higher and the respective for 2014 is about 7% lower than the 

average value. Overall, a significant decrease of 13% is observed from the first to the 

second year of operation. It is important to distinguish how much of this is the effect of 

atmospheric conditions or a decrease in efficiency, respectively. 
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Figure 84 : Variation of monthly Energy production of the PV Park for the three year period 

 

It was shown in Figure 82 that this PV park comprises 8 inverters with the same nominal 

power and with the same number of PV panels connected. For the purpose of this study, 

the analysis was focused to inverter 8 (Figure 85). Thus, Figure 85 and Table 22 below 

present the energy production to AC side for each month for the period of three years. 

 

Figure 85 : Monthly Energy production of Inverter #8 for the three year period  
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Table 22 : Energy production and variation during the 3 - year period 

Year 2013 2014 2015 

Energy production (KWh ) 20829 18192 19455 

Energy production per Nominal power KWh/KWp/year 1669.0 1457.7 1558.9 

Deviation from three years averaged production (%) 6.86 -6.67 -0.19 

 

It is important to classify the energy production with Air mass in order to focus on the 

band of Air mass values that have significant effect on energy generation. From the 

diagram of Figure 86 it is clear that 90% of the annual production was effected with Air 

mass values in the range from 1 to 3. However, one should keep in mind that STC 

conditions (AM1.5) for which test data are available by all panels manufacturers, 

inherently include also spectral contribution differentiation and not only the sun’s 

position effect, as defined by the Air Mass value. 

 

Figure 86 : Distribution of Inverter’s electricity production in the various Air Mass classes  

Figure 87 presents the distribution of the PV park’s energy production among the 

various irradiance classes.  Only 2% of the electricity is generated at irradiance above 

1000 W/m2. 
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Figure 87 : Distribution of energy production in the various irradiance classes  

Figure 88 presents the distribution of energy production in the various panel 

temperature classes. Only 6% of the electricity is produced at panels’ temperatures 

exceeding 60°C. It is also remarkable that 10-15% of the electricity production took place 

at panels’ temperature levels around the value of 25°C (STC conditions). 

 

Figure 88 : Distribution of energy production in the various panel temperature classes  

Figure 86 - Figure 88 show the correlation of energy production with the three 

parameters of STC conditions (1000W/m2, 25° C PV panel temperature, AM1.5 

spectrum). It is clear that real world conditions have significant differences from STC 

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 17:50:21 EEST - 137.108.70.13



Elias Roumpakias 

 

114 

conditions. Apart from energy production, it is important to investigate also PV 

performance correlation with these factors, presented Figure 89. The diagram of Figure 

89 shows the total efficiency of the PV park in correlation with irradiance and panel 

temperature. Obviously, this diagram is not able to provide clear information about PV 

panel efficiency because of several factors affecting it, including inverter’s efficiency, 

panel temperatures and measurement systems’ faults.  

 

Figure 89 : Actual performance of the PV park (2013) correlated to irradiance levels  and panel 

temperature levels during 2013. 

Figure 89 shows the PV park performance which is computed from (eq. (5-4)) and is 

correlated with irradiance and panels’ temperature. It is clear from the above diagram 

that the PV park’s efficiency stays at acceptable levels, as the nominal efficiency at STC 

conditions is 14.7% according to the manufacturer’s technical specifications (Table 17), 

however the comparison with nominal efficiency has to be conducted with normalized 

values. From Figure 88 and Figure 89, it becomes apparent that panel temperature plays 

a central role to efficiency, thus it is useful to normalize efficiency to a panel temperature 

of 25°C (STC conditions) in order to decouple thermal effects. It is observed in Figure 89 

that real conditions are significantly different from STC conditions, except for a few 

points on the diagram. This fact makes the normalization and correlation with AM and 

clearness index mandatory.  

5.4 Comparison of PV Park Performance Models 

In this section, three performance models are selected for application and comparison in 

the specific PV park. The comparison is limited for AM < 10, based on the observation on 

the energy production diagram (Figure 86) that values of AM exceeding 10 have no 

significant impact on the production. The comparison is going to be conducted in terms 

of actual power and yearly energy production. 

One of the models compared is the Evans model, described in the first section 2.2. 
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𝑛(𝑇𝐶 , 𝐺) = 𝑛𝑆𝑇𝐶[1 + 𝑎(𝑇𝐶 − 𝑇𝑆𝑇𝐶) + 𝑘 log10 𝐺] (5-18) 

 

 This model proposes a correlation for the efficiency. Now, using a mathematical 

equation between efficiency and actual power (eq.(5-4)), the equation for efficiency is 

converted to an equation for actual power.  

The second model is PV Form as described in section 2.2 

 

𝑃 =
𝐺

𝐺𝑆𝑇𝐶

𝑃𝑆𝑇𝐶[1 + 𝑎(𝑇𝐶 − 𝑇𝑆𝑇𝐶)] 
(5-19) 

For G < 125W/m2: 

𝑃 =
 0.008𝐺2

𝐺𝑆𝑇𝐶

𝑃𝑆𝑇𝐶[1 + 𝑎(𝑇𝐶 − 𝑇𝑆𝑇𝐶)] 
(5-20) 

 

The third model is an improved bilinear interpolation model as described in section 2.2 . 

G > 200 W/m2:    

 

𝑃 = 𝑃𝑆𝑇𝐶  [
 𝐺

𝐺𝑆𝑇𝐶

[1 + 𝑎(𝑇𝐶 − 𝑇𝑆𝑇𝐶)] − 𝑘
 𝐺𝑆𝑇𝐶 − 𝐺

𝐺𝑆𝑇𝐶 − 200
] 

(5-21) 

G <200 W/m2:    

 

𝑃 = 𝑃𝑆𝑇𝐶  [
 𝐺

𝐺𝑆𝑇𝐶

[1 + 𝑎(𝑇𝐶 − 𝑇𝑆𝑇𝐶)] − 𝑘[1 − (1 −
 𝐺

200
)

4

]] 
(5-22) 

 

 As far as measured power is concerned, the DC power is calculated as described in the 

third section 5.2.2 (equation (5-5)). It is important to observe the model’s behavior at 

different types of days as related to the clearness of the atmosphere. First the behavior of 

models at actual power is presented and afterwards a comparison in terms of energy 

production takes place.  

The following Figures present the model’s behavior in terms of actual power. As a 

starting point, a clear sky day is selected (Figure 90). The mean and standard deviation 

of irradiance is 560 W/m2 and 374 W/m2 respectively, whereas average clearness index is 

0.57. During, this day there were no significant fluctuations in cloud cover or 

atmospheric clearness. Evans model fits better with measured compared with the other 

models during all day, however models have similar behavior for irradiances below 

600W/m2. 
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Figure 90 : Comparison of actual DC power on a day with clear sky conditions (27 May 2013).  

Next, a day with significant fluctuations in atmospheric condition is selected (Figure 91). 

The mean and standard deviation of irradiance 374 and 281 W/m2 respectively, whereas 

averaged clearness index is 0.34. During this day all models have similar behavior for 

irradiances below 600W/m2, however PV form and improved bilinear interpolation 

model fit better during all day. 

 

 

Figure 91 : Comparison of actual DC power on a day with significant irradiance fluctuations (2 

October 2013).  

Finally, a cloudy day is presented (Figure 92). The mean and standard deviation of 

irradiance is 94 and 58 W/m2 respectively, whereas averaged clearness index is 0.09. 

During this day, there were significant fluctuations in cloud cover and low irradiance 
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levels. Models have relatively similar behavior during a cloudy day with an exception to 

irradiances between 125-200 W/m2 where there is differentiation to the limits of 

irradiance levels which is posed by each model. 

 

Figure 92 : Actual DC power comparison of the three models with measured power on a cloudy 

day (26 December 2013).  

A comparison of Figure 90 - Figure 92 indicates that the Evans’ model generally 

overestimates actual power, something that becomes also clear from the monthly energy 

production, Figure 93 - Figure 95. Another observation is that the PV form model and 

the improved bilinear interpolation model have similar behavior with exception lower 

irradiances levels of cloudy day as it is commented above and approximate measured 

performance except from irradiances over 500 W/m2, something that justifies the 

constant difference in monthly energy production between the measured production 

and the one computed from these two models, as shown in Figure 93 - Figure 95. 

Figure 93 - Figure 95 present monthly energy production as computed from the three 

models during the specific three - year period. 

These Figures present the behavior of computed actual power compared to the 

measured one, during characteristic days of different kind, which are selected randomly. 

In order to quantify the differences in predictions between models, it is useful to 

compute the respective statistical errors in the form of the root-mean-square-error 

(RMSE), mean-bias-error (MBE) and (mean-absolute-error) according to the following 

equations [160]. 

𝑅𝑀𝑆𝐸 = 100% ∙
[

1

𝑛
 ∑ (𝑦𝑖 − 𝑥𝑖)2𝑛

𝑖=1 ]1/2

1

𝑛
 ∑ 𝑥𝑖

𝑛
𝑖=1

 
(5-23) 

𝑀𝐵𝐸 = 100% ∙

1

𝑛
 ∑ (𝑦𝑖 − 𝑥𝑖)

𝑛
𝑖=1

1

𝑛
 ∑ 𝑥𝑖

𝑛
𝑖=1

 
(5-24) 
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𝑀𝐴𝐸 = 100% ∙

1

𝑛
 ∑ |𝑦𝑖 − 𝑥𝑖|

𝑛
𝑖=1

1

𝑛
 ∑ 𝑥𝑖

𝑛
𝑖=1

 
(5-25) 

 

Where y is the modeled value and x is the measured value. 

Table 23 : Statistical Parameters for Actual power computed by models  

  PV Form Improved Model Evans Model 

RMSE(%) 9.5 9.8 8.3 

MBE(%) -5.2 -5.6 2.3 

MAE (%) 6.0 6.4 3.5 

  

Table 23 presents the deviations between computed and measured values of actual 

power of the first year of operation. The computations concern 14386 data points in 

which the Air mass values were AM<5. It is clear that there exist significant deviations 

for all models. The main difference is that the Evans model overestimates while the 

other two models underestimate the actual power. Furthermore, it is important to 

compare the three models’ predictions for the yearly energy production. These are 

presented in Figure 93, Figure 94, Figure 95, compared with the respective measured 

power. 

 

Figure 93: Monthly Energy production (DC side) computed with the three models, in comparison 

with the measured values for 2013. 
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Figure 94 : Monthly Energy production (DC side) computed with the three models in comparison 

with the measured values for 2014 

 

 

Figure 95 : Monthly Energy production (DC side) computed with the three models in comparison 

with the measured values for 2015 

Table 24 summarizes the behavior of the three models in energy production during the 

3-year period. It is clear that estimation of energy production with the aid of models is 

not quite accurate but there is a different deviation mode observed with each model. It 
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would be expected that this deviation remains constant with the passage of time. 

However, it is observed that the deviation of measured power for every model is not 

constant over the years. This fact points to a drop in efficiency as years passed. In 

particular, Evans model shows an overestimation of energy generation for all years, 

however this overestimation has an increasing trend. On the other hand, the PV form 

and improved bilinear models show an underestimation of energy production for  all 

years with a decreasing trend. The deviation is computed by the equation below and it is 

presented in Table 24. 

𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 = 100%
𝐸𝐶 − 𝐸𝑀

𝐸𝑀

 
(5-26) 

where EC (kWh) is the yearly energy production which is computed for each model 

using the available irradiance and temperature data. EM (kWh) is measured data from 

inverter inlet. 

Table 24 : Deviation of proposed models to energy production over this period  

  Year  PV FORM (%) Improved bilinear model (%) Evans (%) 

Deviation from 

measured 

values 

2013 -5.3 -5.5 2.5 

2014 -5.1 -4.9 3.4 

2015 -3.0 -3.1 5.2 

The comparison of the three models’ predictions with the measured data for the specific 

time period does not reveal any model to be superior to the rest in matching overall the 

measured values. All models present significant deviations from measured values, 

however, the application of models can bring to the foreground the general trend for the 

energy production and may be used as an indicator of a possible fault in system. The 

first two models show a lower deviation as the PV plant yield decreases from year to 

year. The opposite holds for the Evans model. 

 Finally, it is clear that the implementation of models to this kind of data does not 

achieve adequately fitting with measured values, however this implementation is useful 

as reference value and the deviation from this value indicates a fluctuation in PV 

performance. 

5.5 Comparison of yearly PV performance 

This section discusses the significant differences in yearly energy production which are 

presented at Table 22. The presentation of data in Section 5.3 shows that it is not clear 

from AC measurements if there is a drop in PV panel efficiency. In order to investigate 

the reasons for these differences, the results of the PR calculation(equations(5-1)-(5-3)) 

and normalization to STC conditions described in Section  5.2 are presented below. The 

results of these two procedures are going to be correlated with the results of models’ 

application.  

The aim of the normalization is the calculation of yearly averaged efficiency in particular 

AM classes whose impact to energy production is shown in Figure 86. The results of 

calculation for each year are shown in Figure 96. Furthermore, the correlation of 

normalized efficiency with irradiance for random clear sky days is presented. 
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Figure 96 : Averaged normalized yearly performance distributed in the various air mass classes  

 

Figure 96 shows that the normalized efficiency is higher than STC efficiency (14.7%), for 

all years, for the range 1<AM<3 where 90% of energy is produced, as shown in Figure 

86. An exception is observed only with the year 2015 at 1<AM<1.5. This year, a 

discrepancy from the general trend is observed for the Air-mass class 1-1.5: according to 

the theory, efficiency should be always higher with lower Air Mass. This small 

discrepancy is understandable, since the normalization employed in the processing of 

the results and the monitoring measurements themselves are not perfect. On the other 

hand, Figure 96 shows a general decrease trend in normalized efficiency as the years 

passed. This conclusion is confirmed by the comparative analysis with the three models 

referred-to in section 5.6. The estimation of yearly energy production by use of the three 

models is shown in Figure 97, where it is compared with the measured yearly energy 

production. It can be additionally observed in this Figure that normalized efficiency 

decreases for higher values of air mass, independent of the year. Figure 96 is the essence 

of the proposed normalization procedure. It presents temperature - normalized 

efficiency in correlation with Air mass. This gives a clear picture of the averaged actual 

efficiency all over the year, independent of season or time of day. 
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Figure 97 : Comparison of PV yearly energy production of years 2013-2015, computed with 

proposed models  

 

Finally, the results of implementation of the analysis procedures described in section 5.3 

are compared with the results of PR calculation. The synopsis of PR calculation is 

presented in  

Table 25, where it is shown that PR decreases with the years. This decrease is confirmed 

in Figure 96 where the averaged normalized efficiency is shown to decrease with the 

years, with an exception for 7-10 Air mass class of the year 2014. Both methods converge 

to the conclusion that there is a decreasing trend in PV efficiency. 

 

Table 25 : Performance ratio calculation 

 
2013 2014 2015 

Yf (kWh/Kw) 1638.5 1454.5 1532.9 

Yr(kWh/Kw) 1840.6 1648.8 1765.5 

PR 0.89 0.88 0.87 

In addition to the above comparisons, which concern all the available data without 

differentiation according to atmospheric conditions, Figure 98 shows the behavior of 

normalized efficiency in correlation with irradiance during clear sky days of all years. 
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Figure 98 : Comparison of PV array performance normalized to 25°C of during clear -sky days of 

2013-2015 

The comparison concerns specific days selected from the dataset, based on the 

inspection of the daily irradiance profiles. In particular, the days selected demonstrate a 

smooth sinusoidal - shaped solar radiation profile without vertical perturbations 

indicating the presence of clouds [94]. The selected days have averaged daily clearness 

index between 0.5–0.65 and averaged daily irradiance ranging between 550-650 W/m2. 

Inspection of the diagram of Figure 98 shows that the PV panel temperature - corrected 

efficiency during clear - sky days is nearly constant for irradiance levels up to 400 W/m2 

and lies in the range between 15 – 16 %. The efficiency demonstrates significant 

fluctuation for lower irradiance levels between 100 - 400 W/m2. At even lower irradiance 

levels (< 100 W/m2) there is a remarkable decrease, which is in line with what is reported 

in the technical datasheets (Table 17). A fact that is not quite clear from this diagram is 

that for irradiances greater than 400 W/m2 normalized efficiency during 2015 is smaller 

than in the other years, a fact that converges with the conclusions of performance ratio 

analysis, comparative models analysis and normalization procedure (Figure 96). 

 

5.6 Conclusions of the case study 

Processing monitoring data from a grid-connected PV park using existing models and 

application of a proposed analysis procedure, points to a small PV performance decrease 

during the three year period 2013-2015. The available data included only in-plane total 

irradiance data and panel’s temperature measured with a conventional irradiance and 

temperature sensor, respectively, in combination with inverters’ electrical performance 

data.  

The first objective of the analysis procedure was performance ratio calculation, which 

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 17:50:21 EEST - 137.108.70.13



Elias Roumpakias 

 

124 

pointed to a small drop in yearly PR from 2013 to 2015. The second objective was the 

application of three existing models to the available data. A comparison of the three 

models’ computed values and the measured values shows significant deviations for all 

models. In terms of energy production, it was found that the PV form and the improved 

bilinear model underestimate the production, in contrast with Evans model. On the 

other hand, an agreement of all three models was observed to an efficiency decrease 

during the third year. Deviation between measured production and models’ prediction 

was nearly constant for the years 2013 and 2014. However this deviation decreased for 

the year 2015. Thus, the application of models to this kind of data is able to give only 

general conclusions for the trend of the yearly energy production.  

The third objective was the application of a proposed procedure which normalizes data 

to STC conditions. Using this procedure, the efficiency was found higher than STC 

conditions for the first two years, whereas during the third year a small efficiency drop 

from STC conditions was recorded. Despite the fact that the second year’s efficiency 

remains higher than STC conditions, a small efficiency drop is observed compared to the 

first year. 

The main problem to be solved was the explanation of fluctuations in yearly energy 

production by the use of conventional measurement equipment. This study approaches 

this problem by three parallel procedures and concludes that an over 10% fluctuation in 

yearly energy production observed during the first two years is mainly due to irradiance 

levels variation, whereas a very small decrease in PV performance is probable for the 

third year. 

 A convergence is observed between performance ratio analysis, normalization 

procedure and models’ comparison to the fact that a small decrease in PV panel’s 

efficiency right from the first year of operation is recorded. However, this decrease is 

covered by the terms of the manufacturer’s warranty. The main advantage of the 

proposed comparative procedure is that it allows drawing conclusions on the PV park’s 

performance by employing basic monitoring equipment. From now on, a challenging 

task arises in the study of the aging effect in older PV panels. 
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6 Performance analysis – Degradation4 

As mentioned above, the majority of PV parks employ a typical set of sensors which 

collect in - plane irradiance, module temperature and power data from the inverter’s 

inlet side. In this chapter the experimental setup included a grid-connected system of 

99,84kWp which is performance monitored and analyzed. Aim of the proposed 

methodology is the performance analysis of a grid-connected system based on the 

values collected from a typical set of sensors. The innovative aspect of this methodology 

is based on the fact that it can be conveniently applied to numerous dispersed grid-

connected systems and give useful results regarding solar potential, comparisons 

between different technologies and behavior of systems with time. An additional 

advantage of this type of analysis is that a systems operation shutdown is not necessary. 

 

6.1 Experimental setup 

The system studied is a grid-connected photovoltaic system of 99.84 kWp in central 

Greece. The system consists of 8 Inverters and 416 PV panels on the park. The technical 

characteristics of equipment are presented in 5.1 The available measurements are in the 

form of plane irradiance, back panel temperature and AC power from inverter inlet and 

concern  6 years (01-01-2013 – 12-31-2018) of operation. Photovoltaic systems are 

mounted in a fixed south facing position with 30° degrees tilt angles. The monitored 

performance parameters of the PV installation are recorded in a data logger at 15 

minutes intervals. The main technical characteristics of the PV system are shown in 5.1. 

Another important element for this system is the lack of a cleaning system for the 

panels’ surface, because its inclination in combination with frequent rainfalls allow self-

cleaning. It should be mentioned additionally that during the 6-year period of analysis, 

there existed a certain time interval when the PV panels were covered by snow for 

several days. 

 

6.2 Methodology 

The analysis methodology is based on long term monitoring of several different 

performance metrics with time and follows three axes. 

The first axis is the calculation of the daily PR and yearly PR and their comparison for 

the 6 years of operation. Daily PR is additionally correlated with averaged clearness 

index in order to investigate the atmospheric effect on PV performance. 

YF =  
E

PSTC

(
kWh

kW
) 

(6-1) 

YR =  
H

GSTC

   (
kWh

kW
) 

(6-2) 

PR =  
YF

YR

 
(6-3) 

 
4 This chapter has been published as: Roumpakias, E. and A. Stamatelos (2019). 
"Performance analysis of a grid-connected Photovoltaic park after 6 years of operation." 

Renewable Energy 141 (2019) 368-378 
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The second axis is the use of a mathematical model, which calculates the PV power 

generation, to the available data. Computed values act as reference values. The deviation 

of measured data from the reference values hints to possible changes in PV system’s 

performance. The model is described by the following equations: 

Improved Bilinear interpolation model [160] 

G > 200 W/m2 : 

Pc = PSTC [
 G

GSTC

[1 + a(TC − TSTC)] − k
GSTC − G

GSTC − 200
] 

(6-4) 

G < 200 W/m2: 

Pc = PSTC [
 G

GSTC

[1 + a(TC − TSTC)] − k[1 − (1 −
 G

200
)

4

]] 
(6-5) 

 

Where PSTC, GSTC, TSTC are reference parameters, k an irradiance factor and a panel 

temperature coefficient as stated in the manufacturer’s datasheet. Tc and G are measured 

parameters. Irradiance factor k is provided by manufacturers as a percentage reduction 

in efficiency at low irradiance levels (200 W/m2). The computed values are compared 

with the measured ones and deviation is calculated as follows: 

                                                   Deviation = 100%
PC−PDC

PC
  (6-6) 

The third axis is the computation of normalized efficiency to STC conditions 

(GSTC=1000W/m2, TSTC=25°C,). This procedure is described in [153] and includes the 

following three basic steps: 

• Computation of DC power from available AC data from inverters’ inlet based 

on inverters efficiency section [5.1].  

• Temperature normalization according to temperature coefficients supplied by 

the manufacturer of the PV panels. 

• The last step is the comparison of efficiency at various weather conditions and 

the computation of yearly average values classified with respect to Air mass 

[158]. 

The definition of weather conditions as far as clear sky is concerned, was studied by 

several researchers. Malvoni et al , classified days as sunny and cloudy using the 

clearness index and particularly, values of clearness index higher than 0.5 are considered 

sunny while values lower than 0.5 as cloudy days [228]. Marion, defines clear sky days 

as smooth sinusoidal- shaped solar radiation without vertical perturbations indicating 

the presence of clouds[229]. Larraneta et al, define five criteria for clear sky 

characterization, namely, the mean value of GHI, maximum value of GHI, line length of 

irradiance vs time curve, standard deviation of rate change in GHI and maximum 

difference between changes in GHI and clear sky time series[230]. 

The definition of clearness index and AM is stated below: 

  Kt =
G 

  Gextra  cosAOI  
   [195] (6-7) 
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AM = COS(  zs )
−1

P 

  P0 

 
(6-8) 

P

  P0 

= exp(−0.0001184h) 
(6-9) 

zs sun’s zenith angle 

P local air pressure 

P0 sea level air pressure 

h altitude of place [225]. 

The results of each one of the three axes are compared and discussed in the following 

section. These results are presented by means of figures and summary tables in the 

following section. 

6.3 Results and discussion 

Performance analysis of the specific PV system gave significant results for PV operation 

during the six year period. First of all, the results give an indication of the solar potential 

of central Greece: In particular, yearly energy production shows a maximum deviation 

of 13% from the average value. This deviation could be attributed to weather conditions, 

faults or fluctuations in PV systems’ performance. Table 26 presents the calculation of 

yearly PR, energy production and specific yield of the PV system. As far as PR is 

concerned, we observe a small yearly decrease over the years, something that is not clear 

from the specific yield and energy production values.     

 

Table 26 : Summary results from the 6-year period performance analysis: Yearly PR, Degradation 

of PR, Energy production at inverters’ inlet and Energy yield  

Year PR RD (%) Energy Production (kWh) kWh/kWp 

2013 0.90 - 20904 1675.0 

2014 0.89 1.12 18317 1467.7 

2015 0.88 2.27 20709 1659.4 

2016 0.87 3.45 19344 1550.0 

2017 0.87 3.45 19485 1590.1 

2018 0.87 3.45 18131 1549.6 

 

More specific details from the analysis procedure are presented below in order to 

explain the observed performance fluctuations. It is significant to investigate which 

levels of irradiance and Air mass respectively, play an important role in energy 

production. The air mass factor quantifies the length of trail of the Sun’s beams as they 

cross the atmosphere [195]. The value of air mass is calculated as described in 6.2. To this 

end, the percentages of energy produced in each AM class are presented in Figure 99, for 

all years of operation.  
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Figure 99 : Yearly energy distribution among the five AM classes in the period 1/1/2013 - 

31/12/2018 

This diagram indicates that approximately 90% of the total yearly energy production 

was recorded at Air mass values in the range between 1 - 3. As regards the correlation 

with irradiance values, 90% of total yearly energy production was recorded when 

irradiance values were between 200-1000W/m2 as shown in Figure 101. Another 

important observation is that approximately 75-80% of energy production is generated 

in the period from March to October as shown in Figure 99. It is also remarkable that, for 

the specific site, irradiance exceeds the limit of 1000 W/m2 only for small periods over 

the year, something that is observed from the energy production in this class of 

irradiance which fluctuates between 2-3% for all of the years according to Figure 100. 

 

Figure 100 : Monthly energy production distribution for each year for the period 1/1/2013- 
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31/12/2018 

 

Figure 101 :Yearly energy production distribution per irradiance class for the period 1/1/2013- 

31/12/2018 

Another important metric referenced above is the array yield which is a useful metric for 

the sizing of PV systems. In particular, knowledge of monthly energy array yield for 

several years assists the optimal sizing in off-grid systems with energy storage or in 

grid-connected systems with net-metering. Figure 102 shows the monthly array yields 

for the total monitoring period of six years. It is observed that the highest energy yield 

took place in September of the first year of operation (185.95 kWh/kWp), whereas the 

smallest value was recorded at 50kWh/kWp during January 2017. However, the smallest 

production was due to heavy snowfall that had covered the surface of PV panels with 

snow for five days.  

 

Figure 102:  Monthly Energy yield in the period 1/1/2013- 31/12/2018 

Array yield is a metric that cannot provide conclusions for systems’ efficiency, as it does 

not take account of the parameters that have effect on PV systems efficiency; however it 
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gives an indicative view of the site’s energy production potential. Efficiency is further 

affected by other parameters as irradiance, panels’ temperature, inverters’ efficiency and 

cleanliness of the panels’ surface. Thus, the next step of analysis is the use of metrics that 

take into account the effect of these additional parameters. Figure 103 presents the 

evolution of monthly averaged back panel surface temperatures for the 6-year period. It 

is obvious from Figure 103 that in the period from April to October, the averaged back-

surface temperature is higher than STC conditions. On the other hand, as already 

observed in Figure 100, 70% of the total yearly energy production is produced in these 

months. It is clear that temperature has a strong impact on systems’ performance, 

therefore the use of these metrics is of significant importance.      

 

Figure 103: Monthly averaged temperatures of back panel surface  for the period 1/1/2013- 

31/12/2018  

 

Performance ratio is a more indicative metric for PV efficiency and its behavior in long-

term analysis can provide useful conclusions. However its calculation does not include 

the temperature effect, which is a key variable for photovoltaic conversion process [55], 

and other related parameters. Figure 104 shows the correlation of PR with the clearness 

index during the 6 years of system’s operation. The daily PR for all years fluctuated 

between 0.8 – 1, independently of the clearness index. Nevertheless, the yearly PR, as 

shown in Figure 104 and Table 26, presented a small decrease between 0 - 1.16% per year 

and a total decrease of 4.65% for the 6-year period. 
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Figure 104 : Correlation of performance ratio with clearness index for each one of the 6 years of 

analysis. 

 

This small decreasing trend in yearly performance ratio deserves to be examined in 

more detail. Thus, the second step in this analysis is the use of a mathematical model to 

correlate the power produced with recorded values of temperature and irradiance as 

described in the previous section. Table 27 presents the results as difference between 

computed and measured power generation as calculated by equations (6-4)-(6-6). Values 

of deviation are averaged in the defined AM classes for every year and presented in 

Figure 100. The evolution of deviation for all AM classes has a decreasing trend, a fact 

that hints to degradation, however this trend is not constant. 

 

Table 27 : Deviation between measured and computed by improved bilinear model for each year 

in five AM classes 

Year Deviation (%) Deviation (%) Deviation (%) Deviation (%) Deviation (%) 

 AM:1-2 AM:2-3 AM:3-4 AM:4-5 AM:5-10 

2013 -4.03 -6.66 -17.12 -11.36 1.52 

2014 -3.18 -3.37 -3.43 -2.6 4.4 

2015 0.22 -2.68 -3.28 -0.99 6.74 

2016 -0.75 -0.28 -0.39 -0.48 6.63 

2017 -1.53 2.41 0.97 2.47 8.03 

2018 0.02 -1.64 -1.84 -0.72 3.15 
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Figure 105 : Deviation between measured and computed power generation by the improved 

bilinear model for each year, as distributed in the five AM classes  

Table 27 and Figure 105 show that values of AM in the range between 1 – 5 are 

underestimated whereas AM values in the range higher than 5 are overestimated. This 

trend is important to be examined in the future in order to observe fluctuation and 

particularly for the 1<AM<2, 2<AM<3 classes, in which 90% of the total yearly 

production takes place according to Figure 99. 

The final step in this analysis is the calculation of normalized efficiency in terms of 

averaged values and the study of PV systems’ efficiency in clear sky conditions. Figure 

106 shows the monthly averaged values of normalized efficiency for the 6-year period. 

The values fall in the range between 13-15%. A seasonality is observed as regards the 

normalized efficiency, since the winter months from November to February 

demonstrate efficiency lower than 14% for all years.  
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Figure 106 : Monthly averaged normalized efficiency for the period 1/1/2013- 31/12/2018 

Next, normalized efficiency is inspected for clear sky days. These days meet the 

requirements already stated in the previous section. In particular, daily clearness index 

is set to not exceed 0.5 and the curve of irradiance must be smooth, sinusoidal - shaped. 

The number of these days found for each year is presented in Table 28. It is clear that 

2014 and 2016 have significantly fewer days than the other years. An exception is also 

observed for 2018 . 

Table 28 : Number of clear sky days 

Year Number of Clear Sky Days 

2013 40 

2014 28 

2015 40 

2016 23 

2017 45 

2018 30 

 

 Figure 107 : Evolution of normalized efficiency for the clear sky days found in the period 

1/1/2013- 31/12/2018 

This diagram shows an average decreasing trend, as well as a seasonality during each 

year. Higher performance is observed in 2014 and –to a lesser extent- in 2013. Averaged 

daily normalized efficiency drops below the value of 14% during months with lower 

levels of irradiance and in particular for the period from November to February. 

Efficiency dropped below 15% during the years 2015-2018. This is to be compared to the 

years’ 2013 and 2014 behavior. Highest efficiencies were observed during the last days 

of March 2014. It should be noted that this period coincides with the maximum solar 

activity of cycle #24, which occurred in April 2014 [231].  The evolution of the respective 

solar cycle is shown in Figure 108 and Figure 109. 
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Figure 108 : Recording of the three last solar cycles (number 22, 23, 24) [231] 

 

 

Figure 109 : Evolution of solar cycle 24. Monthly group sunspots (black curve denotes 

observed sunspots) [232].  

Figure 110 shows averaged values of normalized efficiency for the five AM classes 

selected. A decreasing trend in normalized efficiency (albeit not constant) is clearly 

noticeable for every class of AM. However, this decrease trend is more intense for the 

years 2015, 2016 compared to 2017 for the first class of AM, which corresponds to 70% of 

total yearly energy production. Especially, the decrease for this class is remarkable for 

year 2015, where a degradation rate of 4.37% was reported (Table 29), which is the 

highest of all years for the class with 1<AM<2. It is clear that the observed decrease over 

the years is not the same for every class. It is remarkable that for the majority of the 

cases, the observed degradation rates are higher than STC value.  
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Figure 110 : Averaged normalized efficiency in five AM classes during 1/1/2013- 31/12/2018 

The Air Mass classes with important effect on electricity generation are 1<AM<2, 

2<AM<3 as already discussed. For these classes, the observed trend is decreasing, albeit 

at different rates. The degradation rate fluctuates in the range between 1.28 - 6.92%. 

Another important result is that for the year 2014, despite the fact that it had the lowest 

energy production (Table 26) and the second lower number of clear sky days (Table 28, 

demonstrated the lowest degradation rates. Also, year 2014 demonstrated the highest 

efficiency during clear sky days. This fact demonstrates the usefulness of this method in 

attributing the lower energy production either to weather conditions or to other causes. 

 

Table 29 : Degradation rates of normalized efficiency with reference to the first year of 

operation 

 
RD % RD % RD % RD % RD % 

AM 2014 2015 2016 2017 2018 

1-2 1.28 4.37 2.96 2.04 4.10 

2-3 2.01 2.47 3.64 6.92 3.31 

3-4 2.26 2.29 3.59 5.79 3.44 

4-5 1.46 2.54 3.18 4.65 3.50 

5-10 -0.44 4.47 3.91 4.55 3.13 
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Figure 111 : Degradation rate of normalized efficiency from the first year of operation, as 

distributed in the five AM classes  

All of the methods employed in this analysis agree to a decreasing trend in systems’ 

efficiency (Table 30). It is not yet clear from the analysis why this decrease is not 

constant but it fluctuates. A characteristic example is for the class 1<AM<2 of year 2017, 

where the degradation rate is the lowest after that of the year 2014 (2.04%). This fact 

should be attributed to the soiling effect, which covers the PV modules’ surface with 

dust. This effect cannot be taken into account by the analysis methodology, because the 

reference cell employed for irradiance measurements is subjected to the same levels of 

soiling. Furthermore, optical inspection showed that the surface of panels is cleaned by 

the rain, since the inclination is 30°. However, in the beginning of the specific year as 

reported above, the PV panels’ surface had been covered by snow and the subsequent 

melting of the snow resulted in an effective cleaning of the panels’ surface. 

Table 30 : Concentrating results of the three axes of the proposed method 

Year PR 

Averaged 

normalized 

efficiency AM: 1-2 

(%) 

Averaged deviation 

from models 

reference value  

AM:1-2 (%) 

Averaged 

normalized 

efficiency AM: 2-

3(%) 

Averaged deviation 

from models 

reference value  

AM:2-3 ( %) 

2013 0.90 15.03 -4.03 14.85 -6.66 

2014 0.89 14.82 -3.18 14.50 -3.37 

2015 0.88 14.38 0.22 14.44 -2.68 

2016 0.87 14.58 -0.75 14.27 -0.28 

2017 0.87 14.71 -1.53 13.83 2.41 

2018 0.87 14.41 0.02 14.30 -1.64 

 

Table 30 shows concentrating results of each of three axes. Particularly, shows the 

evolution of PR during 6 years (first axis). The results of second and third axis are 
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focused on the AM classes which have important impact on energy production 

according to Figure 99. All of the metrics of each axis have the same decreasing trend 

compared with first year of operation. 

 

6.4 Concluding remarks 

The performance behavior of a grid-connected photovoltaic system is analyzed in this 

paper, by using recorded monitoring data for in - plane irradiance, AC power, PV 

panels’ temperature and DC voltage. The methodology of analysis is based on PR 

metrics, a comparison with a mathematical model and calculation of normalized 

efficiency to STC conditions. The period of analysis concerns six years, 2013-2018. 

During these years, the AC energy yield varied in the range between 1467.7 – 1675.0 

kWh/ kWp, AC wiring losses not included. Yearly performance ratio varied in the range 

0.87 – 0.9, with a decreasing trend. When the measured values of power produced were 

compared with those computed by the improved bilinear model, it was observed that 

the deviation from the reference value had a decreasing trend over the years. This fact 

confirms the conclusion of PR analysis. 

The final step in the analysis methodology included the calculation of normalized 

efficiency, the calculation of its degradation and the study of behavior in clear sky 

conditions. The analysis for clear sky conditions shows that normalized efficiency has a 

decreasing trend and a seasonality during the year. Remarkable efficiencies were 

recorded in some clear sky days during the end of March of 2014, a fact that could be 

correlated with the solar maximum of solar cycle #24. The decreasing trend over the 

years is validated by the final step of analysis which involves the calculation of 

normalized efficiency for each one of the five defined AM classes. The degradation rates 

of normalized efficiency for the first two AM classes, which have the highest impact on 

total energy production, varied in the range 1.28% - 6.92%.   

The results from all three axes of the proposed methodology converge to the fact that 

there is a decreasing trend in PV panels’ efficiency, based on the assumption that the 

panels’ surface is cleaned by rain and snow. Soiling effects are excluded by the analysis 

because they equally affect the irradiance sensor. However, it is a challenging task for 

future investigation to monitor the PV panels surface in order to correlate with possible 

efficiency reduction. This would allow decoupling the effect of soiling from the 

remaining factors influencing PV efficiency. Correlation of normalized efficiency - 

especially at clear sky days - with optical inspections on PV panels and sensors surface, 

combined with IR imaging, could provide important conclusions for soiling.  

The methodology employs simple measuring equipment to give a valid assessment of 

the PV system performance and produce useful performance data related to the 

prevailing irradiance levels, temperatures, sky conditions and energy potential of this 

site. An important future objective is to apply this methodology to other systems with 

different technologies and in different geographical regions in Greece.  
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7 Surface dust and Aerosol effects on the 

performance of Photovoltaic grid-connected 

systems 

 

7.1 Introduction 

The present study focuses on the impact of dust accumulation and atmospheric aerosols 

on PV performance. The analysis procedure is based on optical images of PV surfaces 

and measurements of aerosol concentration. PV performance is calculated based on 

monitoring data sets from a grid-connected PV installation. The main objective is to 

understand and qualitatively describe correlations among these factors and PV 

performance. The innovative aspect of this work is related to the specific application on 

a grid-connected PV installation in real world operation. Expanding application to a 

variety of grid-connected PV sites in different countries, is expected to add to our 

understanding of the dust and aerosols effect on PV panels’ performance. 

 

7.2  Materials and Methods  

7.2.1 Experimental setup of PV system monitoring 

The system studied is a 99.84 kWp grid-connected photovoltaic system located in central 

Greece. The installation consists of 8 inverters and a total of 416 PV panels. The technical 

characteristics of equipment are summarized in 5.1. Available monitoring data are in the 

form of plane irradiance, back panel temperature and AC power from inverter inlet and 

concern 6 years of operation (01-01-2013 – 04-30-2019). Additionally, a Dusttrak 8530 

aerosol monitor is installed on site, in a special environmental enclosure. Photovoltaic 

systems are mounted in a fixed south facing position with 30 degrees tilt angle. The 

monitored performance parameters of the PV installation are recorded in a data logger 

at 15 minutes’ intervals. The specific PV installation lacks a cleaning system for the 

panels’ surfaces, because it is assumed that the panels tilt angle in combination with 

frequent rainfalls allow for self-cleaning. It should be mentioned additionally that 

during the 6-year period of analysis, an instance was observed when the PV panels were 

covered by snow for several days. Additionally, daily rainfall data from October 2018 to 

August 2019 were made available from meteorological stations in the vicinity. 

Furthermore, optical inspections were conducted in the period from September 2018 to 

August 2019 in order to assess the accumulated dust levels on the photovoltaic panels’ 

surface. 

 

7.2.2 Ambient PM10 concentration measurement setup 

Previous experience with an optical particle counter, (Figure 112) TSI DustTrak 8530 

[233, 234], indicated that this relatively low-cost instrument could give a very good 

proxy measurement of PM10, based on a measured particle count and a calibration from 

counts to mass for the particular aerosol of the site. This is confirmed by experience from 

other researchers [235, 236]. This instrument is capable of continuous measurement. It 

provides estimates of PM1, PM2.5 and PM10, depending on which inlet diffuser is 

employed. Optical particle counters tend to be more sensitive to smaller particle, due to 
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the nature of light scattering from aerosols [237].  One possible confounding signal that 

arises when using optical scattering methods is the presence of high-humidity in the 

sample air, with the most extreme case being fog.  

The instrument was placed in an environmental enclosure (Figure 112) and requires 

only basic maintenance to operate under automatic control for long intervals with low 

total power consumption and a small footprint (main technical characteristics in Table 

A4, 5.1).  

 

Figure 112 PM10 monitoring Instrument (Dusttrak 8530) placed inside its environmental 

enclosure. 

7.3 Method of analysis  

Aim of these measurements was the correlation between  

• PV performance – ambient aerosol concentration and  

• PV performance – dust accumulation on PV panels’ surface 

Based on the monitoring data of the grid-connected operation. Of course, PV 

performance is influenced by other factors as solar radiation, temperature and inverter 

efficiency. For this reason, an analysis procedure was adopted, which is based on the use 

of metrics, mathematical models and a normalization procedure to STC (1000W/m2, 

25°C, AM1.5 spectrum). The analysis procedure is described in detail in [153] and [238]. 

The analysis is based on three axes: 

1. Daily Performance ratio calculation according to EN 61724 

2. Use of bilinear model as reference value 

3. Calculation of normalized to STC efficiency 

Computation of normalized efficiency was based on irradiance and panel surface 

temperature measurements. Normalized efficiency is compared among days where the 

level of dust accumulation on the panels’ surface were markedly different according to 

the inspections.  Furthermore, normalized efficiency is compared with measured aerosol 

mass concentrations in order to observe possible correlations. 

This first axis of the method which concern performance ratio, includes computation for 

days with different cleanliness of PV panels’ surface. The computation is based on 

equations below [164]: 
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YF =  
E

PSTC

   (
kWh

kW
) 

(7-1) 

YR =  
H

GSTC

   (
kWh

kW
) 

(7-2) 

PR =  
YF

YR

 
(7-3) 

where E is the net energy output, PSTC is the installed power at STC conditions, H is the 

total in plane solar radiation and GSTC is irradiance at STC conditions (1000W/m2). 

However, performance ratio calculation is influenced by the effect of the panel’s 

temperature and its seasonal variations [164].Thus it is important to use additional 

models for the analysis procedure.   

The second axis is the use of a mathematical model (improved bilinear models), which 

calculates the PV power generation, based on the available monitoring data. Computed 

values act as reference values. The deviation of measured data from the reference values 

hints to possible changes in PV system’s performance. The model is described by the 

following equations [160]: 

G > 200 W/m2: 

Pc = PSTC [
 G

GSTC

[1 + a(TC − TSTC)] − k
 GSTC − G

GSTC − 200
] 

(7-4) 

  

G < 200 W/m2: 

Pc = PSTC  [
 G

GSTC

[1 + a(TC − TSTC)] − k[1 − (1 −
 G

200
)

4

]] 
(7-5) 

Where PSTC, GSTC, TSTC are reference parameters, k an irradiance factor and a panels’ 

temperature coefficient described by the manufacturer. Tc and G are measured 

parameters. The irradiance factor k is provided by manufacturers as a percentage 

reduction in efficiency at low irradiance levels (200 W/m2).  

The third axis which is described in [153, 238] includes the computation of normalized 

efficiency which is not influenced from temperature and solar radiation. This is a metric 

capable of investigating other factors as dust, ageing effect or ambient aerosol 

concentration effect. The computation of normalized efficiency based on steps below: 

DC power calculation 

Computation of DC power from available AC data from inverters’ inlet based on 

inverters efficiency in section 5.1 is based on equation [171]: 

PDC =
PAC

ninv

 
(7-6) 

Temperature normalization 

Temperature normalization according to temperature coefficients supplied by the 
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manufacturer of the Photovoltaic panel [section 5.1] panels based on equation: 

PDC25 =
PDC

1 + a( TC − 25)
 

(7-7) 

PV efficiency is calculated by equation (8) [171] based on the calculation of normalized 

PV power from equation (7). 

n =
P

G A
 

(7-8) 

Normalized efficiency in different test conditions is useful to be correlated with 

Clearness Index and Airmass. The clearness index Kt may be considered as an 

attenuation factor of the atmosphere. On the other hand Air mass defines the direct 

optical path length through the Earth's atmosphere, and consequently aids performance 

comparison in different times and seasons of the year. 

Clearness Index is defined as follows [195]: 

  Kt =
G 

  Gextra  cosAOI  
 

(7-9) 

 

The definition of AM [225] is stated below: 

AM = COS(  zs )
−1

P 

  P0   
 

(7-10) 

P

  P0   
= exp(−0.0001184h) 

(7-11) 

Where, zs is the sun’s zenith angle, P is the local air pressure, P0 the sea level air pressure 

and h the place’s altitude.       

7.4 Results and Discussion  

The available datasets span a six-year operation of the grid connected system which is 

described in section 2. However, more intensive optical inspections in order to take 

pictures of PV panels’ surface were conducted in the period from September of 2018 to 

April of 2019 while measurements of ambient aerosol concentrations were conducted 

during the same period. Two periods were found in which the PV panels’ surfaces were 

heavily soiled. Furthermore, the PV panels’ surfaces remained totally covered by snow 

during a whole week in January 2019. This fact significantly helped self - cleaning of the 

panels’ surfaces. The following pictures present conditions on a clean surface, a lightly 

soiled, a medium soiled and a heavily soiled one.   

7.4.1 Effect of dust accumulation on panel’s surface 

Comparative results of normalized efficiency in correlation with the soiling of the 

panel’s surfaces are presented in this section. The comparisons concern conditions with 

different levels of soiling (based on optical inspection). For each condition, two PV cells 

are compared, one cleaned cell and one cell with a specific grade of soiling. The first 

comparison concerns clean surface conditions which act as reference regarding the 

behavior of normalized efficiency during a day. Figure 113 shows two clean PV cells on 
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18.03.2019 and two clean PV cells on 20.02.2019. 

 

  
(a)  (b) 

Figure 113 Dust accumulation on PV panels’ surface (a) Clean surface on 18.03.2019 (b) Clean 

surface on 20.02.2019 

Figure 114 presents a comparison in normalized efficiency for the conditions of Figure 

113. The diagram is completed by application of the third step of the analysis procedure 

described in section 2.2. Normalized efficiency is presented in correlation with time (a) 

and air mass (b); because air mass is not influenced by the season of year.  

 
(a) 

 
 (b) 

Figure 114 Comparison in normalized efficiency between clean surface on 18.03.2019 and clean 

surface on 20.02.2019 - reference condition. (a) Normalized efficiency as function of time of day 

(b) Normalized efficiency as function of air mass.  

No significant differences in normalized efficiency are observed. A deviation of -0.75% 

in averaged normalized efficiency is observed for 1<AM<3. Daily performance ratio for 

18.03.2019 is 0.869 in comparison with reference condition 0.892.     

The second comparison concerns a lightly soiled surface on 29.04.2019 compared to the 

clean surface reference conditions of 20.02.2019. Figure 115 shows two PV cells without 

cleaning on 29.04.2019 and the two reference PV cells on 20.02.2019. 

 
(a) 

 
(b) 

Figure 115 Dust accumulation on PV panels’ surface (a) Lightly soiled surface on 29.04.2019 (b) 

Clean PV panels’ surface on 20.02.2019  
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(a) 

 

  
(b) 

Figure 116 Comparison of normalized efficiency between clean surface on 29.04.2019 and clean 

surface on 20.02.2019 reference condition. (a) Normalized efficiency with time of day (b) 

Normalized efficiency with air mass.  

No significant differences in normalized efficiency are observable in Figure 116. A 

deviation of 0.47% in averaged normalized efficiency is observed for 1<AM<3. Daily 

performance ratio for 29.04.2019 was 0.866 in comparison with reference condition 0.892. 

The third comparison concerns a medium soiled surface on 23.08.2018 compared to the 

clean reference conditions on 20.02.2019. Figure 117 shows two PV cells without 

cleaning on 23.08.2018 and the two clean PV cells on 20.02.2019. 

 
(a) 

  
(b) 

Figure 117 Dust accumulation on PV panels’ surface (a) Medium soiled on 23.08.2018 (b) Clean 

PV panels’ surface on 20.02.2019  

 
(a) 

 

 
 (b) 

Figure 118 Comparison in normalized efficiency between a medium soiled sur face on 23.08.2018 

and a clean surface on 20.02.2019.  

No significant differences in normalized efficiency are observed in Figure 118. A 

deviation of -0.47% in averaged normalized efficiency is observed for 1<AM<3. Daily 
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performance ratio for 23.08.2019 was 0.853 in comparison with 0.892 at reference 

conditions. The last comparison concerns a heavily soiled surface on 24.04.2019 

compared to the clean surface reference conditions of 20.02.2019. Figure 119 shows two 

PV cells without cleaning on 24.04.2019 and the two clean PV cells on 20.02.2019. 

 

 
(a) 

 
(b) 

Figure 119 Dust accumulation on PV panels’ surface (a) Heavily soiled on 24.04.2019 (b) 

Clean PV panels’ surface on 20.02.2019 

 
(a)   

(b) 

Figure 120 Comparison in normalized efficiency between a heavily soiled surface on 24.04.2019 

and the reference clean surface on 20.02.2019 

Again, no significant differences in normalized efficiency are observed in Figure 120. A 

deviation of -5.6 % in averaged normalized efficiency is observed for 1<AM<3. The daily 

performance ratio on 29.04.2019 was 0.856 compared to 0.892 at reference conditions. 

Table 31 summarizes the results for different levels of soiling for the three steps of the 

proposed methodology. It is clear that 

Table 31 Performance metrics for five days with different level of soiling 

PV panel surface PR 
Averaged Deviation from 

reference value 1<AM<3 (%) 

Mean of normalized efficiency 

for the range 1<AM<3 (%) 

Clean, 20-02-2019 0.892 -2.26 14.76 

Clean, 18-03-2019 0.869 -1.45 14.65 

Lightly Soiled, 29-04-2019 0.866 -3.2 14.83 

Medium Soiled, 23-08-2018 0.853 -2.32 14.69 

Heavily soiled, 24-04-2019 0.856 2.25 13.92 

It is observed that conditions of medium and light soiling of the panels’ surface have 

negligible impact on normalized efficiency, in contrast to heavy soiling which resulted 
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to a decrease of 5.6% on 24.04.2019. The effect of soiling on performance ratio does not 

show a particular trend in Table 31, however the largest value is at the reference 

conditions (20-02-2019), when the panels’ temperatures are lower, (because PR depends 

on the panel’s temperature). On the other hand, its comparison with the reference value 

(based on the mathematical model described) indicates a different behavior during the 

day with a heavily soiled surface (Table 31, last line), which is confirmed by the 

remarkable difference in normalized efficiency.  

In order to observe the dust accumulation effect on the PV panel’s efficiency and the 

effect of rainfall on the self-cleaning of PV panels, it is important to correlate daily 

rainfall (in mm) with normalized efficiency as shown in Figure 121. 

 
(a)   

(b) 

 
(c) 

 
(d) 

 

 
(e) 

  
(f) 

  

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 17:50:21 EEST - 137.108.70.13



Elias Roumpakias 

 

146 

Figure 121 : Daily mm of precipitation (rainfall) in relation to the daily averaged normalized 

efficiency 

 

Figure 122 : Daily mm of rainfall related to daily averaged aerosol concentration \ 

 

7.4.2 Effect of ambient aerosol concentrations 

Correlations among the normalized efficiency, irradiance, clearness index and aerosol 

concentration are attempted in this section. Three periods with recorded values of 

ambient aerosol concentration are examined (Figure 123). 

As a starting point, the correlation between irradiance and ambient aerosol 

concentration is presented in Figure 123 for the specific periods: Several peaks of aerosol 

concentrations are recorded during the night, due to the effect of water vapor 

condensation in these nights [234]. Very low aerosol concentration is recorded during 

rainy days (Figure 122), (which obviously have very low irradiance levels), due to the 

nucleation and washing of particulate by the rain drops. Also, low aerosol concentration 

is observed in some cloudy days. The above remarks explain the lack of a 

straightforward correlation between irradiance and aerosol concentration. Another 

interesting phenomenon that is observed in these recordings is the transport of African 

dust in the period from 15-4-2019 to 28-4-2019, depicted in Figure 124Figure 123 (d) with 

an increasing trend in ambient PM10 concentration. Again, in this case, there is no 

obvious correlation of ambient PM10 concentration with irradiance levels. 
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a) 

 

(b) 

 

(c) 

 

(d) 

 

 

(e) 
  

(f) 

Figure 123 Aerosol concentration in comparison with Normalized efficiency (a), (b), (c) 08 -02-

2019 -18-03-2019. (d), (e),(f) 27-03-2019-02-05-2019  

A more rational approach would be to correlate ambient aerosol concentration with 

clearness index, since it is possible that a portion of the particulate matter would diffuse 

short wavelengths of solar radiation that activate the PV panels. The same periods of study 

are analyzed in Figure 124-Figure 126, by presenting normalized PV efficiency as function of 

atmospheric aerosol concentration (PM10) with clearness index as additional parameter. 
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Figure 124 Correlation between PV normalized efficiency, aerosol concentration and clearness 

index for the period 03.12.2018-02.01.2019. 

Figure 124 presents a correlation for the winter season 2018-19. As expected, high 

normalized efficiency figures are associated with high values of clearness index. They 

are generally associated with PM10 concentrations below the levels of 40 μg/m3. Higher 

PM10 concentrations do not coincide with high normalized efficiency. 

 
Figure 125 Correlation between PV normalized efficiency, aerosol concentration and clearness 

index from 07.02.2019-18.03.2019 

Figure 125 presents a correlation for the beginning of spring 2019. Again, high 

normalized efficiency figures are associated with high values of clearness index, but the 

highest efficiency values occur with moderate values of clearness index. They are 

generally associated with PM10 concentrations below the levels in the range 10-50 μg/m3. 

Higher PM10 concentrations were not observed for this period. 
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Figure 126 Correlation between PV normalized efficiency, aerosol concentration and clearness 

index from 27.03.2019-02.05.2019.  

Figure 126 presents a correlation for the spring of 2019. High normalized efficiency 

figures are generally associated with high values of clearness index, but also occur with 

moderate values of clearness index. They are generally associated with PM10 

concentrations below 50 μg/m3. However, high normalized efficiency figures are also 

observed during the days with highest transport of African dust. 

7.5 Conclusions 

This paper studied the effect of dust accumulation and ambient aerosol concentration 

levels on the performance of a grid-connected photovoltaic system. The method of 

analysis is based on three axis: calculation of PR, use of a bilinear model as reference 

value and calculation of normalized efficiency. The amounts of dust accumulated on the 

panels were not measured, thus the results are only qualitative. There are photographs 

which show the dust on PV panels’ surface comparing with a reference situation in 

which surface was clean. The results show that dust accumulation has remarkable 

impact on efficiency. When the PV panels’ surface was heavily soiled, a decrease of 5.6% 

in normalized efficiency was estimated. During the specific period the transport of large 

quantities of African dust was observed in the region. On the other hand, the impact of 

ambient aerosol concentration levels on PV efficiency is more complex and requires 

further study. Aerosol scattering of different wavelengths is possible to affect PV 

efficiency, however this fact may be related to the specific spectral response of PV cells.  

High normalized efficiency figures in general coincide with PM10 concentration not 

exceeding 50 μg/m3. On the other hand, lower clearness index is more directly correlated 

with lower normalized efficiency. Further investigation is necessary with spectral 

irradiance measurements in order to be able to correlate absorption or scattering in 

particular ranges of solar spectrum from atmospheric aerosols.     
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8 Concluding Remarks 

  

From the analysis presented, it is concluded that there exists a non-linear reduction of 

efficiency in the solar irradiance range between 0 and 400 W/m2. The observed, 

systematic, deviations were correlated to the effect of air mass at low solar altitude 

angles. The remaining discrepancy could be correlated to the ambient amount of 

particulate matter (aerosol). The non-linear reduction of efficiency from the values 

predicted from the PV panels' manufacturer's curves results in an overestimation of the 

yearly electricity produced by the PV park, which was of the order of 2% for the specific 

installation. This percentage is by no means negligible since it affects the payback period 

of the installation. 

Monitoring data from the operation of the inverters installed on one PV park were 

collected and processed to quantify the observable hotspots with losses in electricity 

production. It is found that two inverters out of six produce 5% and 1% less electric 

power respectively. However this is something that needs to be more extensively 

examined.  

A comparison of the three models’ computed values and the measured values shows 

significant deviations for all models. In terms of energy production, it was found that 

the PV form and the improved bilinear model underestimate the production, in contrast 

with Evans model. On the other hand, an agreement of all three models was observed to 

an efficiency decrease during the third year. Deviation between measured production 

and models’ prediction was nearly constant for the years 2013 and 2014. However this 

deviation decreased for the year 2015. Thus, the application of models to this kind of 

data is able to give only general conclusions for the trend of the yearly energy 

production.  

The main problem to be solved was the explanation of fluctuations in yearly energy 

production by the use of conventional measurement equipment. This study approaches 

this problem by three parallel procedures and concludes that an over 10% fluctuation in 

yearly energy production observed during the first two years is mainly due to irradiance 

levels variation, whereas a very small decrease in PV performance is probable for the 

third year. 

A convergence is observed between performance ratio analysis, normalization 

procedure and models’ comparison to the fact that a small decrease in PV panel’s 

efficiency right from the first year of operation is recorded. However, this decrease is 

covered by the terms of the manufacturer’s warranty. The main advantage of the 

proposed comparative procedure is that it allows drawing conclusions on the PV park’s 

performance by employing basic monitoring equipment. From now on, a challenging 

task arises in the study of the aging effect in older PV panels.  

The period of analysis concerns six years, 2013-2018. During these years, the AC energy 

yield varied in the range between 1467.7 – 1675.0 kWh/ kWp, AC wiring losses not 

included. Yearly performance ratio varied in the range 0.87 – 0.9, with a decreasing 

trend. When the measured values of power produced were compared with those 

computed by the improved bilinear model, it was observed that the deviation from the 

reference value had a decreasing trend over the years. This fact confirms the conclusion 

of PR analysis. 

The analysis for clear sky conditions shows that normalized efficiency has a decreasing 
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trend and a seasonality during the year. Remarkable efficiencies were recorded in some 

clear sky days during the end of March of 2014, a fact that could be correlated with the 

solar maximum of solar cycle #24. The decreasing trend over the years is validated by 

the final step of analysis which involves the calculation of normalized efficiency for each 

one of the five defined AM classes. The degradation rates of normalized efficiency for 

the first two AM classes, which have the highest impact on total energy production, 

varied in the range 1.28% - 6.92%.   

The results show that dust have remarkable impact when PV panels’ surface was 

heavily soiled and estimated a decrease of 5.6% in normalized efficiency. It should be 

mentioned that significant African dust transport was observed in the region during this 

period. 

Aerosol concentration do not have a direct impact on PV efficiency. However lower 

clearness index is correlated with lower normalized efficiency.  This fact needs further 

investigation with spectral irradiance measurements in order to correlate performance 

with absorption or scattering in a particular range of solar spectrum from aerosols.     

The results from all three axes of the proposed methodology converge to the fact that 

there is a decreasing trend in PV panels’ efficiency, based on the assumption that the 

panels’ surface is cleaned by rain and snow. Soiling effects are excluded from the 

analysis because they equally affect the irradiance sensor. However, it is a challenging 

task for future investigation to monitor the PV panels surface in order to correlate with 

possible efficiency reduction. This would allow decoupling the effect of soiling from the 

remaining factors influencing PV efficiency. Correlation of normalized efficiency - 

especially on clear sky days - with optical inspections on PV panels and sensors surface, 

combined with IR imaging, could provide important conclusions for soiling. 

The resulting experience is employed in the development of a procedure that could be 

routinely applied to the health monitoring of PV installations. This procedure may also 

be employed for a pre-check of newly installed PV panels on site, which is increasingly 

requested by the clients. In combination with IR thermography the analysis procedure 

which is presented in sections 5, 6 is proposed in order to evaluate systems’ 

performance, observe faults and draw conclusions for Photovoltaic performance under 

real world operation. 

A challenging task is the application of methodology in different PV installations in 

Greek Territory in order to draw conclusions for the solar potential, PV behavior, 

degradation analysis. There are many PV grid-connected parks which are equipped with 

measurement devices that are described in this work and consequently only the 

application of the proposed methodology is required. This could be a useful GIS tool for 

PV technology. 
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