University of Thessaly
School of engineering

Department of Mechanical engineering

FLOW THROUGH FLEXIBLE PIPES IN HUMAN
RESPIRATORY SYSTEM

Konstantinos Kyriakos
Nikolaos Vlastos

Volos, January 2020

This thesis is submitted for the partial fulfillment of the requirements for the Degree of Diploma in

Mechanical Engineering



© 2020 Konstantinos Kyriakos and Nikolaos Vlastos

All rights reserved.

The approval of the Diploma Thesis by the Department of Mechanical Engineering of the
University of Thessaly does not imply acceptance of the author's opinions. (Law 5343/32,

article 202, paragraph 2).



Certified by the members of the Thesis Committee:

15t Member: Dr. Bontozoglou Vassilios
(Supervisor) Professor, Department of Mechanical Engineering

University of Thessaly

2"4 Member: Dr. Andritsos Nikolaos
Professor, Department of Mechanical Engineering

University of Thessaly

39 Member: Dr. Valougeorgis Dimitrios
Professor, Department of Mechanical Engineering

University of Thessaly



Acknowledgments

We would like to express our gratitude to Dr. Bontozoglou Vassilios for his patience and guidance
he showed in this thesis. Our collaboration was expectably interesting as we always appreciated his
talent and passion in teaching. Without his support this thesis would have not been produced and we
feel honored we worked together.

Moreover, we would like to thank the members of the thesis committee i.e. Dr. Andritsos Nikolaos
and Dr. Valougeorgis Dimitrios, for the time they spent to examine our thesis and evaluate our
research.



Hepiinyn

H pon evdg pevotod péca og vav aymyd pe EAACTIK] GCOUTEPLPOPE EPPVILETAL GE £V EVPL PAGLLOL
Bopnyovikav aArd ko Broroyikav epapuoydv. To avBpomvo copo evidocetol otnyv TeAevTAiN
Katnyopio koBmg amoteAeiton omd TOAAOVS €AOGTIKOVS Oy®YOUG . XTNV TOPOVGH OUTAMUOTIKY
eetalovpe Vv ddikacio avamvong cuvovdloviog v BempnTikn avdAvon pe £vo VTOAOYIGTIKO
LOVTEAO TO OTLO10 TPOPAETEL TNV GUUTEPIPOPA EVOC TUTIKOV EAAGTIKOD AEPAY®YOV 0 000G PpiokeTan
HEGO OTOVG TVEDHOVEG GE JLOPOPETIKEG Kataotdoels. H €pguva pog emkevipmveral, Kupiwg, 6To
eowopevo g PePraocuévne exmvonig (forced expiration) to onoio mapovotdlel Kamoa evalopEPOvVTOL

Kol cOVOETO OMOTELEGLOTO TOV TPOCTAONGOLE VO EPUNVEDGOVLLE.

Apyikd, meptypayope KATOES 0md TIG EPOPUOYES OOV YPTCLOTOOVVTOL EAUCTIKOT GCOANVES Kol
avarto&ape TS Pacikéc eEIGOCELG TOV TEPTYPAPOVY TNV KATAGTUGT TWV COAVAOV YPTCILOTOLDVTOG
EVVOlEG amd TNV UNYOVIKN TOV VAKOV. Metd amd avtiv v YeVIKN TPOGEYYIoN, €GTIALOVUE GTNV
TEPIMTMOOT TOV AVOPOTIVOL TVELLOVO O 0TTO10G amoTEAEITON AT £Vl STKTVO KVAVOPIKMV AEPAYDYDV.
"Emetra, mapovcidleton por cHvVTOUN cUVOYN TOL avOP®OTIVOL TVEVUOVA KOl TOV EAAGTIKAOV 1010THTOV
TOVL KOl GTNV CLVEXEW Qapuoletol £vo amlomomuévo HovTEAO mov vrdpyel otV PipAoypagio
KaTookeLALoVTag To amd TNV apy| Paciopuévol 6Tovg BepeMmdIES VOLOLS TG pELCTOUNYOVIKNG. To
HOVTEAO OVAPEPETAL GE POT} EVOG COANVO KO TPOLYLOTOTO0VVTAL Ol TOPAS0YES TNG HOVOOIACTOTNG,
YELOO-UOVIUNG Kol acvumieotng pong. Ot vmoAoyiopol exktelovvron pécwm tg Fortran xoi ta

amoteAéopaTa Tov AeOnKav Tapovcldloviol 6 SIPOPES KAUTOAES TAPOYNG-TITAOGCT TIEGNC.

Télog, N avdlvon odnyeiton oty dlEPEdINGCT TOV PAVOUEVOL TOVL TEPLoptopod ¢ pong (flow
limitation) kot v didpketa g Pefracuévng ekmvong 10 omoio cvufaivel oTNV TEPITTOOT TOV N
TayOTNTO TOL aépa Tpoceyyilel TNV TaydTNTO 014000MG TOV EANCTIKOD KOUOTOG. ATO TOV AETTOUEPT
VTOAOYIGUO TOV TPpAyHaTOmOmOnke Yoo TV UETOPOAN TNG TEONG KOTA UNKOG TOL Oy®mYov,
amodelydnke 611 T0 cLYKEKPEVO HovTéELD kabioTaton avoakpiBEg Yo va 1o amoturndcel. Ot mbavég
TPOTOTOWCELS OV UTOPOVV VO GUUTEPIANPHOVV HEAAOVTIKA Yol TNV OKPPECTEPT TPOGEYYIOT TOV
npoPAiuatog givon (i) N amokdAANGN TG PONG GTO GNUEID TNG UEYIOTNG GTEVMGNG (TEPLoyn Adiov)
7oL 00N YEL 68 avopOIOpHOpPia 6T dloropn PoNg (oYNUOTICUOC dEouNg Kot avakvkAo@opudv) (i) un-

HOVIHLOL PavOpEVa OTTMG 1 TOAGVTOGN ToV Toty®potog kat (i) 1 Katdppevon Thg KUKAIKNAG S10To NG,



Abstract

The flow of a fluid throughout a pipe with elastic behavior is involved in a wide range of industrial
applications and biological systems. The human body is one of the latter as it consists of many elastic
tubes. This thesis examines the breathing procedure, combining a theoretical analysis of the
phenomenon with a computational model which predicts the behavior of a typical lung airway for
different inflation states. Our research has been, mainly, focused on the problem of forced expiration
which presents some interesting and complicated results that we tried to interpret.

At the beginning, we outline some of the applications of elastic pipes and construct the basic
equations that describe the state of tubes in different cases using the concepts of material mechanics.
After this general approach we specialize in the case of the human lung which consists of a complicated
network of cylindrical airways. A brief synopsis of the human lung and its elastic properties is
presented and then we implement a simplified model from the literature starting from the fundamental
laws of fluid mechanics. The model simulates the flow through a single airway of a lung, assuming
one dimensional, quasi-steady and incompressible flow. The computations were performed using
Fortran and the results we received are presented in several curves of flow rate as a function of pressure

drop.

The investigation focused on the phenomenon of “flow limitation” during forced expiration, which
is associated with the singular behavior that occurs when air velocity approaches the propagation speed
of elastic waves on the wall. By detailed computation of the variation of pressure along the airway, it
was shown that the steady, one-dimensional model becomes inaccurate. Potential modifications, to be
included in the model in future work, are (i) flow separation at the location of maximum constriction
that results in jet flow, (ii) time-dependent phenomena such as wall fluttering and (iii) collapse of

cross-section area.
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1. Introduction-Applications

Transportation of fluids is an everyday phenomenon that exists in nature and engineering. Fluid
dynamics is a subcategory of fluid mechanics that describes the flow of fluids (liquids and gases). To
achieve this fluid flow or the transportation from one point to another it is necessary to form a path for
it. The most common way is to use tubes with a round cross-section but are not the only ones.

Rectangular, square, triangle or elliptical shapes are also used depending on the application each time.

Figure 1.1: Variety of rigid and deformable tubes with different cross-sectional area

Except from the different shapes of cross-sectional area, tubes can be divided more extensively into
deformable and non-deformable, based on their construction material (significance level of
deformation that takes place). There are these called non elastic-non deformable tubes in which the
tube wall is rigid and deformation is negligible. Can be found at plenty applications such as in cooling
or heating systems, in distribution of water at household units or at internal combustion engines. On
the other hand, flexible tubes, which will be the type of tubes this analysis will examine, can be found

in a wide range of applications as in oil and gas industries till biomechanics and biological systems.



In the following paragraphs, we choose some of the endless applications of flexible tubes that we find

interesting and are worth to be mentioned.

Applications

Oil and gas industries use flexible tubes to transport the fluid from high pressure or high temperature
environments to sea surface, if it’s offshore (off land), or at the earth surface, if it’s onshore (on land)
(Qiang Bai, Yong Bai, Ruan,2017) . They can be applied in water depths up to 2.400 m., pressures up
to 680 atm, high temperatures above 65,5 °C and can resist large vessel motions whenever the weather
conditions are difficult. Flexible pipes which are used in these kinds of applications are classified into
two categories based on the operating pressure and the reinforcement material: metal based and
composite based flexible pipes (Qiang Bai, Yong Bai, Ruan,2017). Metal based flexible pipes are
designed to withstand high loads such as high internal, external pressure or large axial tension.
Oppositely, composite based flexible pipes, also called FCP (Flexible Composite Pipes), have a more
simple structure from metal based pipes and lower functional requirements. Both categories can be
divided further in two groups based on their construction: bonded or unbonded. The difference between
them is the existence of a flexible polymer matrix, usually an elastomer which contains the
reinforcement. So, in bonded tubes the reinforcement is embedded at this polymer matrix while at the

unbonded is independent of the matrix.

Figure 1.2: Offshore gas industry in which flexible pipes are used

Flexible tubes can be found, also, in a specific category of pumps called peristaltic pumps

(https://en.wikipedia.org/wiki/Peristaltic pump). At first, pumps are devices that are used widely in



https://en.wikipedia.org/wiki/Peristaltic_pump

applications which contain fluid transfer and are responsible for providing extra energy to the fluid in
order to complete this transportation. Depending on the operating principle that follow they can be
divided into categories. Peristaltic pump belongs to positive displacement which means that the fluid
volume is enclosed and moves mechanically through the system until the discharge pipe. This
enclosure is achieved because the fluid is trapped between the pump’s motor head (rotor) and the
stationary area of the pump (stator). Specifically in peristaltic pump, the fluid passes through the
flexible tube, and then the rotor’s head, which can be “rollers”, “shoes”, “wipers” or “lobes”, increases
the external pressure causing the partial compression of the fluid inside. As the rotor turns, the part of
tube which is under compression collapses and the fluid moves with the motion of rotor, through the
tube, until the discharge pipe. Most commonly they are used to pump clean/sterile or aggressive fluids
(are referred to these fluids which react with the surrounding materials). For example:

e Are applied in heart-lung machines to circulate blood during a bypass surgery.

e In hemodialysis systems which help removing excess water, solutes and toxins from the
blood.

e Pumping aggressive chemicals, high solids slurries and other materials where they should
not come into contact with the environment.

e The rollers of peristaltic pumps are suited for abrasive and high viscosity fluids. So, there

are used in agriculture as they are well constructed for pumping agricultural chemicals.

Figure 1.3: Inside view of peristaltic pump

Moreover, an important tool that used widely in medicine and presents elastic behavior is catheter.
Catheters are thin deformable tubes which are inserted into the human body in order to treat diseases
or perform surgical procedures. It has been discovered that the earliest invention of catheter was 3000

years ago from Syrians and it’s use was to relieve them from urinary retention



(https://www.urotoday.com/urinary-catheters-home/history-of-urinary-catheters.html). In  those times

Syrians were using straws, palm leaves, hollow top of onions as well as gold, silver, copper, brass and
lead to construct a hollow catheter. The first flexible catheters were developed in the 11" century using
as basic material silver because it could be formatted in different shapes and were considered that have
an antiseptic action. Much later, during 18" century, Benjamin Franklin designed a more modern
catheter to help his brother, who suffered from bladder stones. He constructed a catheter of silver metal
with segments, hinged together with a wire enclosed to provide rigidity during insertion. Nowadays,
catheters, Figure 1.4, are thin flexible tubes which can be made from a range of polymers such as
silicone rubber, nylon, polyurethane, latex and thermoplastic elastomers. Depending on the operation,
stiffness and size of catheters differ and they can be, either temporarily or permanently, inside the

human body. Inserting a catheter into the body allows:

e Urinary catherization in which urine is draining from the urinary bladder via urethra checking,
this way, the condition of the bladder.

e Drainage of air at the pleural space between lung and chest wall (pneumothorax) which causes
chest pain and shortness of breath.

e To widen narrowed or obstructed arteries or veins (angioplasty) with the inflation of a balloon
that is attached to the catheter (balloon catheter) inside the body and a stent to ensure that the
vessel remains open.

e Measurement of blood pressure when it is important to define quickly changes of blood
pressure.

This is accomplished with the insertion of a catheter into the artery or vein which is connected

with a pressure transducer. Otherwise, in normal conditions sphygmomanometer is used.

Figure 1.4: A modern typical Catheter
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In agriculture and specifically, at low cost drip-irrigation systems where low pumping power is needed
an innovative device of a deformable tube called ‘’Starling Resistor’” (Wang, Ruo-Qian, Teresa Lin,
Pulkit Shamshery, Amos G. Winter,2016, http://hdl.handle.net/1721.1/109244) can be applied. Before
explaining it in more detail, it is crucial to understand the operation of drip irrigation in order to find
out which type of water distributor can Starling resistor replace.

We define drip irrigation as an irrigation method in which, the water drips into the soil and slowly into
the roots of plants. Due to this, it’s one of the most efficient methods because water is applied only
there which is necessary preventing losses from evaporation. For the release of water droplets in each
plant and the reduction of pressure, emitters are applied. They are divided into two categories: pressure
compensating (PC) and non-compensating emitters (NPC). The difference between them is that PC
emitters maintain the same flow rate for different inlet water pressures while NPC emitters giving
different outputs for different inlet water pressures. NPC emitters are applied in lands without big
slopes (hills, changes of terrain) or long rows so the pressure differences consider to be small. For
difficult topographical conditions, PC emitters are used. Although, the current PC emitters require high
pumping pressure in order to achieve flow stability, which means high cost in pumping machines and
power systems, making them inefficient. Starling resistor is considered to be able to replace this kind

of emitters.

Starling resistor is an experimental device which consists of a needle valve, a static pressure chamber

and a collapsible elastic tube inside which is attached in two O-rings sealed caps, Figure 1.5.
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Figure 1.5: Experimental setup of Starling Resistor



The basic mechanism that takes place is called *’flow limitation’’ or “’pressure compensation’” and is
similar to the phenomenon which occurs in human lungs during forced expiration. According to this,
after reaching a critical point of pressure (activation pressure) a further increase in driving pressure (

AP =P, — P, : pressure difference between inlet and outlet of elastic tube) will not affect the flow rate.

To achieve this, the fluid, in our case water, has to pass from different parts inside the chamber. It
starts flowing from pressure tank until it meets T-junction, as it is shown in Figure 1.5, in which it is
divided into two different flows. The one part supplies the chamber, outside the tube, in order to exploit

its static pressure (P,). The second part passes a needle valve which decreases its lateral pressure from

P or P, to P, before entering the tube. In this way, the steady external pressure narrows the cross-

section area as its value is greater than inlet pressure. As the fluid keeps flowing inside the elastic tube

it loses further energy due to friction. This leads to further narrowing of the cross section area which
will cause a rapid increase in flow resistance (Flow resistance =8uL /7 R*[Hagen-Poiseuille

equation]) and a conversion of lateral pressure to dynamic pressure. At some point the velocity of
water is equal to the wave propagation speed. This condition is critical for achieving flow limitation
(E.A. Elliott, S.V. Dawson, 1977) because if satisfied the tube narrows the most, flow limits and the

flowrate gets the maximum value @, which cannot be exceeded. Increasing pressure difference after

you reach these conditions will not cause an increase in flowrate. Comparing with current PC emitters,
experimental measurements showed that Starling resistor is more efficient as it requires lower pumping
power in order to keep flowrate constant (Wang, Ruo-Qian, Teresa Lin, Pulkit Shamshery, Amos G.
Winter,2016, http://hdl.handle.net/1721.1/109244).

Except from the applications mentioned above which are artificial constructions, the phenomenon of
fluid transportation inside a deformable path appears also in natural systems. The human body is one
of these systems in which many elastic paths exist to ensure the transportation of necessary substances
such as proteins, carbohydrates, vitamins, lipids and oxygen. For this purpose, responsible are arteries
as they carry blood with oxygen (except pulmonary arteries which carry de-oxygenated blood) and
nutrients from the heart to the entire body. When this procedure finishes, the opposite flow of blood
begins and is accomplished with the contribution of less muscular elastic tubes called veins. Veins
transport low-oxygenated and high-carbon dioxide blood (except pulmonary veins which carry
oxygenated blood), from the human organs and tissues to the heart. Afterward, the heart pumps and

forces blood to move inside the lungs to remove carbon dioxide.



Figure 1.6: The network of arteries (red) and veins (blue) inside human body

Inside the lungs, we can find a network of thin elastic airways, in various sizes, called bronchioles
which have an important role in breathing. During the process of inspiration, the air passes through the
bronchioles’ tree until it reaches an airway elastic sack called alveoli. When the air reaches alveoli a
gas exchange procedure takes place between the capillaries and alveoli. Oxygen passes two thin layers
of wall, first the wall of alveoli and then the capillary wall. After that, oxygen diffuses into the blood,
inside the capillaries, and is transferred to the heart through pulmonary vein. Simultaneously with
oxidation of blood, carbon dioxide, which is transported through the pulmonary arteries, passes the
capillary wall and then the alveoli wall. In this way, diffuses into the air and it is removed from the

human body through the air of expiration.

Figure 1.7: Gas exchange between alveoli and capillary

All these applications and many more, justify the need of a model that predicts the behavior of the
flow through such systems. Our main goal is to examine a specific model for the flow of a fluid in a
single deformable tube in different tension states. This is the basic component for many simulations

that describe a variety of phenomena, some of which are mentioned in this chapter.



2. Material mechanics of rigid and flexible tubes

The equations that determine the state of a tube under tension are a key component of the problem this
thesis examines. Thus, we need to build them starting from the basics. At first, we review some of the
major concepts from material science, such as deformation and conservation laws, and then step by
step apply them on a thin-shell cylindrical pipe to create a simplified model that describes the
relationship between diameter of the cylinder and transmural pressure acting on it. Eventually, more
complicated models will be presented, as well as an experimental one for the elastic compliance of
lung airways proposed by Lambert (1982). His model will be used for the computations in the

following chapters.

2.1 Basics of material mechanics

In this paragraph we do a shallow dive in the vast field of material mechanics and introducing its
fundamental concepts and equations. This is an attempt to figure out the complexity that is related to

our problem, rather than try solving the material model that arises here.

Mechanics of material is the field of science that describes and predicts the behavior of solid objects

under external load. For this purpose, the properties of material need to be considered too.

When a force acts on a solid structure, energy is added to the system and, due to conservation of energy,
the state of material has to change. So, either a kinetic change or deformation (or both simultaneous)
will occur, depending on the environmental conditions and the assumptions. We will analyze only the
second effect independently, by assuming that the body is always fixed in place (static). In this case

the entire external energy is transformed into deformation.

Deformation can be plastic (permanent change of shape) or elastic (reversible change). Almost every

material deforms elastically at low loads and after a certain value of tension (yield stress o ) plastic

deformation begins.

For this analysis, we are interested only in the first region of deformation, the elastic part of it. In

science of materials, the most characteristic property that measures the elasticity is Young’s modulus

E. It is defined as E=2  which is the ratio of uniaxial stress o over strain (proportional
&



deformation) & and has units of pressure. A typical graph o —¢& of a material, which results from

tensile test, is presented next.

Figure 2.1.1:1n tensile test a sample (of some material) with a cross-sectional area A is subjected
. . . F : . Al
to a continuously growing tension o = > and the consequential deformation & = n is measured.
0
Then, with this data we can plot the function ofa(g) in a diagram. This graph represents the

behavior of this material under tension and as a consequence some of the basic properties of it can

be determined.

Most solid industrial materials appear to have a constant E in the elastic region, which means the
deformation changes linearly to the applied stress. However, there are materials, also, which have non-
linear behavior. In very elastic materials (non-metallic, polymers, biomaterials, etc.) the elastic region

is significantly bigger and thus the divergence from linearity is more common.

Another aspect of material mechanics, which has to be mentioned here, is that stress and strain are
tensors. This means they consist of 9 components each, in general case. So at any point of the material
we have to determine 9 values for each of those 2 quantities. Fortunately, some values of these tensors

are negligible and can be ignored almost at any problem.



Boundary value problem

In order to continue with the solution of any problem in mechanics of material, we have to introduce
first the fundamental equations and principles of this field. The basic equations that govern any
material problem derive from 3 major principles and laws (N. Aravas, 2014):

e Newton’s laws of motion (mechanical equilibrium): Equations that derive from the balance

between net and inertial forces acting on a body.

e Constitutive model: The relation between the applied load (stresso) and the behavior of the
object in terms of deformation & that characterizes the material.

e Compatibility of the medium: Equations that describe the necessary and sufficient conditions
under which a displacement field, that corresponds to a specific deformation input (strain &), can

exist.
These are the field equations of any problem that needs to be satisfied inside the material’s body.
For example, the field equations that describe a linear elastic material in a compact form are:
e V.o+pb=0, (3 equilibrium equations)
e o=L:g (6 constitutive equations)
. g=%(u?+Vu), (6 compatibility equations)
where U is the displacement vector, & the infinitesimal strain tensor, o the stress tensor, p the

density of the material, b the vector of the body forces and L the elastic tensor of the material.

Finally, we have to add the material-environment interaction to completely define the problem.
Boundary equations are necessary to fully describe the problem and have a strong impact on the solving

method and the resulting solution of the problem.

The field equations coupled with the boundary conditions are called the boundary value problem and

its solution determines the values of U, & and o at every point of the body.

10



2.2 Constitutive equations for a thin-shell cylinder

The problem we examine here, consists of a thin cylindrical tube (thickness<<length), a fluid inside
with variable pressure along length axis and an external uniform pressure field acting on the outside
shell of the tube.

y,
S N

Figure 2.2.1: A thin cylindrical tube with external and internal load

According to the above paragraph 2.1, the set of equations with a linearly elastic approximation, that
fully describes the static state of the tube, consists of 15 in total equations (9 partial differential and 6
algebraic) coupled with the boundary conditions. Such a problem requires a lot of parameters to be
evaluated and the solution almost certainly will be computational (e.g. Finite Element Method). For
the purposes of this study, such a model is not feasible so we will use a different approach. This

approach exploits the cylindrical symmetry of the tube and the small thickness of its wall.

At first, we examine the forces acting on a small radial portion of the circular cross-section which is

shown below in Figure 2.2.2:

11



Figure 2.2.2: The direction of internal and external forces in a differential de portion of a thin

cylindrical tube

The radial differential force dF acting on an infinitesimal de portion of the cylinder can be expressed

as:

dFr:dFin_dFout=PindAn_PoutdAbut=PinRinLd0_P R I-dez(F)inRin_P R )Lde

out " “out out " “out

:>dFr:(PinRin_P R )Lde (1)'

out " ‘out

where P, =P, (x) is the pressure of fluid at x, P

i out

the external pressure andR, ,R,,, L the

geometrical characteristics of the tube (inside radius, outside radius, length).

Next we analyze the equilibrium of forces on the upper half-cylinder that derives from a section at x-

z plane.
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Figure 2.2.3: A cross sectional view of the upper half-cylinder with the acting forces

The vertical component of the force at y-axis, dF,, can be calculated geometrically.

Figure 2.2.4: The vertical componentdF, of radial differential force dF,.

In"’in out” “out

dF
sme—ﬁz dF, =dF, sing= sin@(P,R, — P, Ry, ) LdAO

r

After replacing, we can calculate the total vertical force F, , acting on the upper shell, by integrating:

F, = _TdF jsme PRy — PRy ) LdO =[—c0sO(P,R, PR, )L] =
0

in” tin out " “out 0

:(PinRin Pout out L I: in |n POUt OUt L:Ij

=F, =2L(P,R, ~PyRy) (2)

in" tin out” “out
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Since cylinder is stationary, mechanical equilibrium at y-axis can be written:

’F,=0= F,-F,=0= F,-0-2hL =0
So, the net force acting on the half-cylinder (due to the difference in pressures) must be canceled out
from the internal wall tension of the pipe.

To calculate this tension, we need to consider a constitutive model that will allow us to relate ¢ with
the deformation e, considering also the material properties. We will start by using the simplest model

which is the linear one, also referred as Hooke’s Law.

.__1 R-R,
(1) R

oc=E-¢

Now we are ready to combine all the above and result in an equation that correlates diameter D with

pressure B, (=P, —P,).

F,—o-2hL=0 = 2LR(P,—P

out

)=c-2Lh= PR,R=¢-E-h

1 RR g 1 R-R . __Eh [R_
- P““R_(l—vz) R, Eh= Fo (1-v*)R R, Eh=Fo (1—v2)R[ 1J )

2E-h (D 2EhD
- Rm(D)z(l—vz)D(E_lj o P(Rn) =25 p (1—0v2)D
tm 0

2.3 Analytical tube models

The Equation (3) which was obtained as a result of Hooke’s Law, is the general form which

corresponds in every tube with elastic behavior. By applying some extra assumptions, it is possible to

derive new relations between pressure and diameter as shown in table 1:
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Table 1: Linear and non-linear Pressure-Area relations (https://hal.archives-ouvertes.fr/hal-
01807385/document)

Considering that Poisson’s ratio is equal to zero v=0 (materials such as cork) and assuming , also,
R A . . . : .
— =— which is acceptable only for small deformations the equation (3) will become similar to

Ro A

Rammos equation in table 1. In Olufsen equation a more accurate and valid relation between radius

R
and surface is obtained R_:T while Poisson’s ratio gets maximum value v=0.5 (perfect
0

incompressible isotropic material as Rubber). The last two equations have an important difference
from the previous ones. They include an extra assumption about the variation of wall thickness. In
these relations, the wall thickness was considered to remain constant h, and equal to the value

*

R
h, = R which is derived from an area conservation equilibrium 2zRh=27zRh,. In first relations
0

the wall thickness change for every different value of P,, . Furthermore, observing more carefully the

Sherwin and Urquiza equations we will see that Urquiza’s relation is a specific case of general
Sherwin’s form and emanates from the fact that the value of Poisson’s ratio was replaced with zero
v=0.
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2.4 Lambert’s experimental model for lung airways

The above analysis constitutes a general overview of the behavior of deformable tubes. Specifying and
deepening this analysis to the objectives and targets of this thesis, we are focusing on the behavior of
elastic tubes inside the human lungs. Thus, we consider more extensively the lung’s structure and the

model that corresponds to this.

As mentioned also in introduction, each human lung consists of many short in length and small in
diameter elastic paths (bronchioles) which are responsible to transport the air from the outside
environment and mouth to the air sacs (alveoli). To understand this better, it’s necessary to illustrate
these components and the general anatomy of the lung. In this thesis, we present the simplest structural
model which was developed by Lambert et al. (Lambert, Wilson, Hyatt, Rodarte, 1982) and relies on
Weibel’s tracheobronchial tree model (Weibel, 1963) as shown in Figure 2.4.1.

Figure 2.4.1: Weibel’s Tracheobronchial tree model

Due to the complexity of lung structure, Lambert’s model separates the bronchioles into classes
according to common mechanical properties. More specifically, are classified into 17 different
generations starting from the trachea (generation z=0) and ending up in bronchioles that are leading

to alveoli (generation z=16).

In previous analysis the relations that have been extracted were analyticals functions. In this case the

equations between D —P,, are obtained by experimental process. The parametres and the mechanical
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properties which are necessary to apply in equations are received ,also, from measurements made on

them. The results are presented in the table 2 below :

E ) . gy ", Fiy A, o’ L, em
0 0.5882 URLLLINN 0,50 10,00 2.37 12.00
1 D882 0000011 0.50 10,040 2,37 4,76
2 0.686 0000051 060 1000 2.80 1.90
3 0.b46 EL L] .60 10,00 3.50) iL7H
4 0. 450 D0 1 0D 0,70 10,00 4.50 1.27
] 0.370 0000125 080 L0, 5,30 1.07
(3] 0.310 0000142 0.5 10,00 .50 0,54
7 0.255 0,000 1 589 L0 10,00 8,00 0.76
H 0,213 HELL R E LW} LMD 100200 ih64
9 0,184 00184 1.0 10,048 12.70 .54

10 0,153 0,00 ] S0 1.00 10,00 15.94 0.47

11 0.125 0. 0208 1.0 0. 20,70 (0.35
12 (0, 10 0000218 1.0 .00 28,80 0.33
1:4 IRV L UHM226 1.(H) H (M) 44.51) (.27
14 0.057 0.3 1.04) .00 69,40 023
15 0.045 0239 1.0MD T.000 113.04 0.20
16 0039 0,243 1.0 700 180,04 017

Table 2: Lambert’s parameters of bronchial mechanical properties

n*D?
The second column @, =% expresses the ratio of surface A= 1 at point P, =0 to the maximal
: A z*D? . - . . _
surface of current bronchiole A .= N in a specific generation (N, =2°, Z:

total

number of generation) while the derivative of this ratio at the same point is demonstrated by the

: a
variable a, :F

tm

.The variables n,n, are exponential parameters and L is the length of
Ptm:()

bronchiole.

The branch experimental function which relates the pressure and diameter is expressed by two

rectangular hyperbolae matching at point P, =0

/ P . .
¢ D(Ptm)szax ao(l_%) b if Ptm <0
1

° D(P(m) = Dmax\/:I'_(:I'_a‘o)(l_%)n2 if I:?[m >0
2

where P =a,n /a,and P,=-n,(1-a,)/a,
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These state laws of Lambert can be applied in every generation ,Figure 2.4.2. , to predict the diameter

D(PR,,) for afixed value of pressure B, =P, —P, or the inverse.

pleural

Figure 2.4.2: A demonstration of the basic’s variables in a single bronchiole

2

o . da
= > and derivative a8 =——
An Jlbronc Dmax d Ptm

variates , we have produced the following graphs ,using Excel ,for different values of P, . The range

To have a more clear view of the way that the ratio a=

of transmural pressure that considered was from —-12 ¢cmH,0 to 23 cmH,0.
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Figure 2.4.3: The variation of surface ratio (a) as transmural pressure ( P, ) changes for each

generation (z=0-16)

The intersection points between the curves and the y-axis, where B, =0, are given by table 1. Before

and after this point we can notice the 2 different curvature hyperbolae. For a range of transmural

pressure between—7 cmH,0 and 8 cmH,0, all curves present larger slopes which means greater

variations in surface area. So, we can infer that the change in diameter within this range of pressure

will be greater than which would occur at values outside this range.

. . . ., da
Figure 2.4.4: The relation between the derivative of surface ratio (2 =——) and transmural

tm

pressure (P, ) for each generation (z=0-16)

The above curves have absolute maximum at P,, =0 which means that the slope of a— P, curves will

become maximum at this point for every generation. According to this and comparing the values of

derivative at B, =0, we understand that the bronchioles become more flexible at higher generations,

i.e. deeper in the lung.
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3. Airflow in a single bronchiole

Case study: Airflow in a single airway

In this chapter we develop the equations which model the flow of air through an elastic tube. We
examined the constitutive equation of the pipe in terms of D(P,,) from previous chapter and now are
ready to build a model for the inner flow of air using principles from fluid mechanics. The key
assumption of the analysis that follows is that of steady state. This means that all parameters of the
problem (i.e. tube diameter, air flow rate etc) remain temporally constant, though they may vary
spacially, and in particular in the axial direction.

Conservation laws are axioms that derive from observations in nature. They are used as fundamental
tools of science to build more complicated laws that predict the behavior of other natural systems.
Conservation of energy and mass are two examples of axioms since they cannot be proved but they
accurately describe everything we have observed around us until today. Starting from those two basic

principles we present a model for airflow in an airway.

3.1 Bernoulli’s principle

3.1.1 Mass and energy equilibrium

In open systems, where mass is flowing in and out from the boundaries of the system, the conservation

laws of mass and energy can be expressed as the following equilibriums.

Figure 3.1.1: Mass and Energy equilibrium in an open system
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Total mass equilibrium [ka/s]:

Accumulating mass = Inflow mass — Outflow mass

or in mathematical terms:

dm | .
a =My =My, = (Doutp _(Dinp

Assumptions:
e steady state: Z—T =0

Next, we apply the assumptions to get:

dm
—=0=d_.p  —D p =0, _
dt out Mout inin — (I)Out = cDin =const=® (1)

Incompressible flow: p,, = p,, = p

The resulting relation (1) confirms the intuition that the mass entering the system is equal to the outflow

mass, since there is no accumulation and mass can neither be created or vanished.

Total energy equilibrium [J/s]:

Accumulating energy = Inflow energy — Outflow energy + Work — Heat

or in mathematical terms:

dE . . .
—=E -E_ +0-W
dt in out Q
:>d—E:d>O(P+1pu2+pgzj —@X(P+1pu2+pgzj +Q-W
dt 2 . 2 )
Assumptions:
[ ] W :0
L m® Pa . - .
. Qz—ICD(S) f (s)ds| =——m=Watt |, where f (x) is the friction losses per unit distance [=Pa/m]
. s m
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e 1D: U =u(x)e,

0

tot

e Solve for steady state % E

e Incompressible flow
¢ pgz negligible

Applying these assumptions in the energy equations to get:
1 . 1 o) |

@0(P+Epu j —(I)X(P+Epu j —I@(S)f(S)dS:O (2)
0 X 0

Finally, we combine the equations (1) and (2):

0 X
(2):®(P+%pu2j —®[P+%pu2j —@J.f(s)ds=0
0 X

0

=B+ 2 U P (X) -2 pu(x) - [ £ (s)ds =0 (3)

0

3.1.2 The term f(x)

It is important to choose carefully the function f(x). Previous researches [Lambert] suggest the model

of Reynolds (1982) derived from experimental data:

f(x):;éi’ﬁ’) (a+bRe(x))- pgeosd

= f(x)= ;gﬁﬁ)) (a+bRe(x))

The first term in the equation above refers to viscous pressure loses for a Poiseuille flow. The scaling
factor a accounts for increased friction due to the short airway (deviation from fully developed
flow/unsteady conditions). For an infinite straight pipe a should be 1 as the velocity profile will have
enough time to be developed. The second term refers to turbulent pressure dissipation which occurs in
higher velocities. Based on Reynolds, (Reynolds,1982) these factors in the case of human lungs are
a=15and b=0.0035.
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Equation (3) is Bernoulli’s equation, augmented with the term which represent friction losses. We
could stop and solve here, although because f(x) depends on D and we lack the information about the
profile of D versus X, it is preferable to differentiate (3) in respect to x and try to solve the differential

that arises. This procedure follows the analysis of Filoche and Florens (2011).

3.2 The differential equation of pressure gradient
To avoid misunderstandings in calculations we considered: P =P (x), D=D(P(x)), u=u(P(x))

We start by differentiate eq. (3) along x-direction:

dx
dq 1 dr, B
:‘;—z+2%pu%[u]+f(x):0 (4) ,Whereu(x)=%=ﬂ[j'(qj()2

The derivative of U can be calculated next:

.i[u]_i{‘@} d dP[4®}_4<de d[l}_ﬂ)dP[—ZdD}
dx' ' dx| zD?

:ﬁ& zD? 7 dx dP| D? T & Eﬁ
40 1 dP -2dD 1 dP dD d 1 dP dD
TRl W - RN ) T
7 D°dx D dP D dx dP dx D dx dP

Then we can replace the derivative in (4):

ap ——pu{—Zuid—Pd—D}— f(x) u? L dP db f(x)

ax D dx dP D dx dP
dP ,1dD
Tl 2pr =2 = f
:dx{ P de} (x)
dP -f(x) —f(x) _—f(x)
dx , 1 ,1dD u?
1-2pu% = 1-2pu2 =2 U
AU D PED P 1
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Eventually, we get the following differential equation derived from Bernoulli equation (3):

dP —f(x)
&_1_5 (5)

2

¢ DdP| m*mPa \m s | 2p (dD/dP)

The equation (5) is an expression of the gradient of pressure across the tube.

A closer observation at (5) can give us insights of this phenomenon and a better understanding of some

interesting natural limits that arise.

3.2.1 The wave propagation speed ¢

. . L . . |m
Firstly, we have to give some meaning into the parameter C . It has units of veIouty[;} and depends

on the tube’s geometry and properties. Therefore, ¢ is a characteristic velocity referred to the tube.

More specifically, C is a function of density p, diameter D and 3—5 derivative. Thez—g term

contains information about the change in diameter as a result of pressure change and we can derive
that depends on the elasticity of the wall. So, we can infer that the wave propagation speed expresses

the speed of pressure disturbance along the tube.

3.3 The final algebraic equation

The analytical or numerical way of solving the differential equation can be avoided by transforming it
to algebraic equation with some clever manipulations proposed by Filloche and Florence (2011). To
solve this equation for calculating the flow of air @, which is constant at any point throughout the

tube, we can integrate (5) from A to B (full length of the tube), where P4, Pg are given values.

_ 2
a _f ()9 - D“[l—u—zjd—P:—D“f (x)
dx u c” ) dx
1-=
c

(. u?)dP A
:>ID [1—C—2]&dx:j—o f(x)dx  (6)

A A

24



dD T 1607
D 4p—h(P,)-h(P,)-[2 dD =
(Dzde (R)-h(P)-] 20775

320? o 3200? (D
— ah? =222 (D) ]° =Ah§——zln[D—ij

; dP 1 ,dD
. J;D“(l—u—zjdxdx J.D (1——]dP jD [1 2p5u2¥jdpz
B
J
A

Dll—‘

A

T A T

B

—D*(x) f (x)dx:j—D“

A

B:x=L 8
:_1287@( J‘ adx+IbRe %) dx j:_128”®(aL+bJ‘Re(x)dX]
A

T A:x=0 4

128n®

( ) 128nd

[
> Sy 0

A

We can rewrite the equation (6) as,

Ahf—32p,:,b2 In(&Jz—lz&ﬂ)L [a+b(Re)| (7)

V4 D, T
B
jRe(x)dx 12 40 4p0® 1 4p0
with (Re) = Re, e =2 == dx === - = (Re)=
average L L 4 77D(x) nzL 4 D

0" pELy
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4. Computations in a single airway

This chapter consists of our computations and efforts that we carry out to analyze how accurately that
model simulates the flow of air inside one human lung airway. At first, we introduce the parameters
and a modified version of the equation (7) that we are going to solve. A first sample of solutions is
derived and then a systematic parametric analysis follows. Next we calculate the profile of pressure in
a single tube by using two computational methods and we got some interesting results about the model
of Filoche and Florence. The chapter continues with a suggestion of a different computational flow
model and ends with a comparison between the two models that have been applied. In conclusion, the
structure of the whole chapter follows the path we took chronologically to get into the details and the
difficulties we faced as we deepen our understanding

4.1 Computation of flow rate

4.1.1 Computational process

We start from the written equation that has been mathematically proved in the previous chapter and

after some arrangements at (7), we can get an expression for flow @.

(7)= h(P,, ) (P, ) 222 In(&}—m’m arh— PP

R e ey
2
2 2
— Ahp = 320P° ,n(&} 1287L0a _ 1024Lbyd>
D, g 4 (DA+DB)
1024Lbp —32p(D, + D, ) In| 2=
D,) ., 128ylLa .
= O+ @ +Ah; =0

7?(D,+Dg) r

=kd* + jd+1=0,

D
1024Lbp —32p (D, + D, ) In| —&
p=320(D,+ D) (DA] . 128La .
, )= , | =Ah,

herek =
Where 72 (D, + Dg) T

26



. >
:>q):—j+\/j — 4kl (8)

2k

This is an algebraic non-linear (quadratic polynomial) equation in respect to® . Given as inputs the

pressures (P,, Py, P,..) Of the system we can easily calculate the two solutions using the
discriminant. Due to natural restrictions the negative solution is rejected and only the positive one is

accepted (8) For this purpose a programming code in Fortran was written.

Since this flow is constant, as we already mentioned, we can calculate other variables at every point
of the tube (such as velocity and diameter profiles) for this calculated®. Adding some extra
subroutines on the previous code, we compute the diameter profile, the ratio of speeds u/c, local

Reynolds number too.

4.1.2 Results

In the beginning, we start solving the equation (8) for a single airway tube with specific parameters

z, P, Py, Py 10 get the flow rate @ through it. Some tests are presented in the Table 3 below.
Test | Gen. z L(z)[m] | P.[Pa] P, [Pa] Poewrar [P2] ® P}
# S
1. 0 0.1200 1000 500 0 5.026
2. 0 0.1200 1000 200 0 6.190
3. 0 0.1200 1000 500 200 4.928
4. 0 0.1200 1000 500 1500 4.108
S. 3 0.0076 1000 500 0 1.578
6. 3 0.0076 1000 500 1500 0.381
7. 6 0.0090 1000 500 200 0.196
8. 9 0.0054 1000 500 0 0.052

Table 3: Values of flowrates @ for a different couple of parameters z,L,P,, Py, P

Some primal results can be concluded here from Table 1, even if the sample of tests is very small.
A crucial notation that needs to be reminded is that every generation has a unique constitutive wall
behavior. So, there is a hidden parameter that lies under the generation z value, which must be taken

into consideration too.
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e Agreater AP =P, —P; increases the airflow @, since it is the driving force of the flow.

e Abigger P

pleural

strangles the pipe and reduces the ® flow.

These results also agree with the intuition. However, as we will see in a more detailed examination

next, they are not valid for every case.

Parametric analysis

To get a more precise picture, we solve the equation (8) parametrically for P, and P with the

pleural
addition of an extra subroutine (Parametric_analysis) at the basic code. The results are condensed in
one diagram that is presented next.

Figure 4.1.1: ®-AP(P, —P,) graph

As the title of the graph suggests, these results refer to a pipe with constant parameters P, = 2000 Pa

and for generation z = 6. This is the general and representative picture of the diagrams we got for other

P, and Z values too, which were only differentiated quantitatively. Thus, the analysis that follows

below can be expanded and apply to other cases.
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The values of B, stats from 0 to and P

pleural

Is given the discrete values

{O, 500, 1000, 1500, 2000, 2500, 3000}. It is worth mentioning that although P, remains constant, the

transmural pressure P, varies.

tm,A

will change, since P

pleural

The first observation we can make immediately from the way that curves are stacking, is about the
Low P

pleural

dependence of ®in respect to P

pleural *

, curves are above the higher once for each

AP(= P, —PB;) . We can confirm now that an increase in P, leads to a decrease in the airflow @.

pleural

A more interesting behavior appears when we examine the shape of the curves. First we can see that

there are 2 types of curves. The curves for P, ., {0,500,1000,1500} that have a maximum value @

and the curves for P

pleura

, {2000, 2500} that increase at the start and then remain almost constant. More

specifically, an example for each case will be examined next.

The curve for P

ewrar =1000 has a maximum at AP =540 Pa with a flow rate of @ =0.244L/s
and after that point the airflow decreases and eventually at AP >1400 Pa, ® remains almost constant

and independent of AP.

The curve for P = 2000 rises fast to a flow rate of ® =0.025L/s and then remains constant

pleural

around this value for the whole range of AP . This means that after a certain value of P the airflow

pleural

® is independent from the effort AP that we apply.

This is a very interesting and important result, which agrees with tests on human expiratory flow that

was made (spirometry) and the same flow limiting phenomenon appeared.

An alternative view of the previous graph is the 3D diagram:
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0.000
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0.1140
0.1520
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0.2280
0.2660
0.3040
0.3420
0.3800

0.4180
0.4560

Figure 4.1.2: Parametric analysis in a 3-D graph

4.2 Calculation of Profile

A very intriguing question that arises next is what is happening along one of those tubes, especially

those where flow limitation is observed. With that in mind, we try to calculate the profiles of P(x),

u(x) and other parameters across x —axisthat will give us more insights of the flow limiting

phenomenon.

The basic principle under which we create the algorithms for those profiles is the fact that flow rate ®
stays constant across the whole path of the pipe. (Although, we already explain in the construction of

the model at Chapter I11, that constant flow is an assumption and the flow of mass is 1D.)
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4.2.1 First algorithm

At first, in order to compute the profiles we create the Profile_1 subroutine. This subroutine uses an

iterative convergence method that guesses the outlet pressure P, until & converges. The Figure
contains a schematic diagram of the algorithm. In more detail, we start by calculate the flow @,

through a pipe from equation (7) with parameters P,, Py, P, L . Then, we solve again the same

leural ?

equation but with parametersP,, P>, P

x ! pleural ?

X . We discrete the L length into N -dx so that each

space-iteration ihas a length of x =i-dx. Forevery X, by giving an initial estimation of outlet pressure

P we calculate a new @ _ and simply try to converge that @ to the desirable @, by changing

est est

40 :
P, After convergence occurs P, =P , D, =D(P,) and U, = —— can be determined.

Ty

To sum up, this method functions as if it is computing the outlet pressures P, of N tubes, each one of

them has resulted from an internal iteration process until its @, becomes the same as the flow @,

est

(from the tube with length L).

Results of Profile_1

The curves that were calculated are realistic and acceptable for a sufficient range of values in which

they were tested. In the following Figures, profiles of P(x)and D(x) are plotted.
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Figure 4.2.1 - 4.2.2: Profile of D(x)and P(x) with a set of inputs{P, =9 cmH,O , P, =8cmH,0,

P

pleural

=10cmH, O , L =0.009 m}

On the other hand, there were cases of unnatural and infeasible solutions. An example is presented

next.
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P(A)= 5.00 [cmH20] P(B)= 0.00 [cmH20] Pple ural= 0.00 [emH20]
PtmA= 5.00 [cmH20] PtmB= 0.00 [cmH20] Q0=  0.104510908 [L/s]
PROFILE 1 PROFILE 2
X P (x) u(x) D(x) Loops Q(x) Error RE(x) «clx) X P (x) u(x) D(x) Loops Q(x) Error RE(x) clx) L

P(x)

7

4 ——PROFILE1
——PROFILE2
x=0

R

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016

Figure 4.2.3: Problematic solution of Profile_1 of P(x) with a set of {P, =5cmH,0,

P,=0cmH,O,P =0cmH,O ,L =0.009 m}

v pleural

The problem may not be clear at first here, but with a closer look we can see that the pressure at

X=L=0.009m differs from the pressure we give as an input. Initially we calculate the flow

Q=0.105L/s for a AP=P,—P,=5-0, and then the profile results with a total

AP =P, —P, =5-3.8 only.

This was not a unique case, but under some circumstances this problem continues to appear. For this

reason, we resort to another approach of the profile’s calculation.

4.2.2 Second algorithm

In this case, instead of using the algebraic equation (7) we start from its differential form (5) which is:

P —f
&: 02 (5)
-z

The idea behind this approach lies in the definition of the local derivative ((jj—P
X
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The right-hand side of equation (5) consists of:

« f= fAz%(aerReA)

A

u=u,= !
AoaD?
oo [P L
* \2p(dD/dP),

Subsequently, the parameters that depend on the position, x, are:

_4p®

e Re= Re,=

., 4o — dad = a D(pt:]\)
P dP|, dP
.. dP , . dD d A
As we can see the derivative o can be computed for a given P, , since P =¥D(Ptm) and
X A

D (Pm’j) are constitutive properties. So by starting from P, we can compute the local derivative at A.

After that we choose a sufficiently small AP step (so that AP =dP) and solve for the required dx

step from x, =0, or in mathematical terms:

P —f

bl =M,
dx 1 u
o
where M is the local value of the derivative.
dP dP
dX=—= X, =X, +—
M

Finally, the process is repeated with the new starting point being B, =P, +dP.
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This way of calculating the profile is more efficient, since no convergence method is required. Another
important difference between the 2 algorithms is that on the one hand Profile_1 discretes the length
Lat N-dx and returns the resulting pressure P, on the other hand Profile_2 discretes the pressure

distance into smaller steps of dP and the result is the distance x from the inlet of tube.

Results of Profile 2

The main focus of Profile_2 is to check if its solution differs from the Profile_1, especially for the
problematic cases we analyze previously. For this purpose, we present the solution for the same

parameters as in Profile 1’s example. The new solution is plotted on Figure 4.2.4

P(A)= 5.00 [cmH20] P(B}= 0.00[cmH20] Pple ural= 0.00 [emH20]
PtmA= 5.00 [cmH20] PtmB= 0.00 [cmH20] Q0=  0.104510908 [L/s]
PROFILE 1 PROFILE 2
X P (x) u(x) D(x) Loops Q(x) Error RE(x) c(x) X P (x) u(x) D(x) Loops Q(x) Error RE(x) c(x)

7

a

To—] ——PROFILE1

———PROFILE 2
| \)
1

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016

x=0

x=L
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Figure 4.2.4: Problematic solution of Profile_2 of P(x) with a set of {P, =5cmH,0,

P, =0cmH,0,P,,, =0cmH,0 , L=0.009 m} ,. The blue line of Profile 1 is under the red line of

Profile 2.

This profile is also problematic but reveals more about the explanations of this error. To begin with,

the solutions of both Profile 1 and 2 are identical in the range x (O, L= 0.009).

For x> L it is irrational to get any values of pressure, but Profile_2 does. Since we determine the
pressure P as input and calculate the distance X with this method, we force the pressure curve to be

continuous from 5 to 0cmH,O. This exposes the inability of the model to give us feasible solution

for some cases, via irregularities of x. A behavior like this suggests that the solution is not unique

because for a given x (bigger than L) we have 2 values of P at that point.

At some point (X ~0.016) the curve changes direction and continues backwards, so the local dx is

negative. The last but the most crucial observation is hiding in the differential we solve.

2
5) = P_ = _ dx:d_P[l_“_z]

dx . u? —f C
==

Because, we know that dP <0, f >0, u>0 and ¢ >0, we can continue and calculate the conditions

under whichdx > 0.

2 dP<0 2 2
= d—P 1—u—2 <0 = 1—u—2 <0 :{Ej >1:>E>1
f c ta0 c C c

=u>cC

The equation (5) seems to have a mathematical limit of < <1 that needs to be explored further. But
c

firstly, we have to examine the values of that ratio for more cases. Again we solve parametrically (by

. : . u
changing the quantities P, and P, ) but this time the computations are made for ratios c_A and
A

u ) :
—2 at the inlet and outlet respectively of every tube.
B
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Figures 4.2.5 - 4.2.6 : Variation of velocity rate at point A and point B with a set of {
P, =2000 Pa, P, =2000-0 Pa}

It becomes clear from these 2 graphs, that the condition of Y <1 is violated only at the exit point B
c

of some tubes and there are lots of cases that this violation occurs.
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Next, those data lead us to test a number of profiles. We check the profiles for some cases with a

Ug L U . _ _

— <1 and some others with c_>l' The results showed that there is a relationship between
B B

problematic profile behaviors and the ratio of velocities at B. More specifically, when u; >c; the

profile fails.

4.3 The correction ®=cA

Considering the above, we tried to find out a solution which will be able to give us answers when the

[

ratio —= >1. The correction that arises as a solution, comes from the enforcement of the air velocity to

CB
not exceed the wave propagation speed along the tube. As we already explain, this is a reasonable
assumption mathematically. The velocity of air gets a maximum value equal to wave propagation
speed at every point. From this restriction, we can calculate a maximum limit for @ inside a tube. The
flow rate at any point of the tube have to be equal to ® =u- A. According to the above, the condition
Uu=c results in the maximum restriction of the flow &, =c-A, where c=c(D) and

zD?

A= A(D) = . This is a limit that cannot be exceeded at any point of the flow. But at the same

time the airflow must be constant through the whole tube, due to the conservation of mass.
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Figure 4.3.1: A plot of flow rate @ versus H(x) across a tube with parameters P, =2000 Pa,
c

P, =500Pa,P, ., =0Pa ,L=0009m.

v * pleural

In Figure 4.3.1, we can observe the change of the restrictive @, along the tube for a case where the

Y _ 1 was reached at some point X . The blue line represents the constant flow @ that comes from the
c
equation (8) (Filoche’s model). After the point the two lines intersect, the limit of maximum airflow
is violated, since @ is higher than @ __ . The function of ®__ (x) is strictly decreasing in every set of

parameters. So the lowest value of @, (x) always appears in the outlet of the tube (at point B).

A proposal that partially solves the problems is to satisfy simultaneously those 2 restrictions (® < ®,__,
and @(x) =® = constant) by changing the computational model with a condition. When a calculated

flow exceeds the flow restriction @& <® . at any point (and consequently at outlet B) we will

X

recalculate the flow as ®=®__ (B) =c,- A, since it is the lowest feasible value (® at Figure 4.3.1),

but otherwise @ remains the same (equation (8)).

The relation for @ that applies with the modified model is:

KZ—4jl -k
gy=y* ~*I~*%
o-|®="3; e (10)

O)-cohy . i (8>,

In other words, the resulting @ from equation (8) (Filoche’s model) is checked for the case that @
exceeds @, (B). When this violation occurs the @ is again computed from the simplified equation

(9). In a way, this model forces the flow to get maximum speed C always at point B and because the
ratio = strictly increases along the tube we are not getting ratios Y'> 1 before point B.

c c
It is worth noting that equation (9) is a very simplified model and the pressure P, is the only

unknown variable to determine the @ value, since Cg = C(Ptm,B) and A; = A(Ptm,B) .

Results
This correction is added to the computational process and then a new parametric analysis was made.

The previous and new results are merged in a single diagram for comparison between the 2 approaches.
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Figure 4.3.2: Graph ® — AP - parametrically for P

pleural ?

where the dotted lines corresponds to the

initial model from equation (8) and the continuous lines to the modified model from equation (10)

As a quick reminder, the concept of the parametric analysis is to present with a condensed way the
resulting flow rate for many different pressure scenarios on the boundaries of a tube. Each curve is
defined from a specific external pressure field and each point on it has a different driving force AP

across the channel.

The new curves which are created provide different results above the maximum point ®max in each
generation. The next question that arises is which of the two models approach more accurately the

actual behavior of the tube.

It’s easy to observe that the curves afterward applying the correction ® =cA, converge into the same
minimum value &, without affected by the size of pleural pressure. This result, however, doesn’t
correspond to our intuition, as we expected the tubes with greater external pressure to provide smaller
amounts of flowrates by setting the same pressure drop. Bearing this in mind and comparing the two
models and their curves, we realized that the first determination of Filoche confirms the above thought

which leads us to consider that Filoche’s model is more acceptable.
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5. The mechanism of flow limitation

It has been clear that whenever the velocity of air approaches the wave propagation speed the model
of Filoche isn’t able to predict the behavior of the tube. According, also, to S.V. Dawson and E.A.
Elliott (1977) this condition leads to a phenomenon which appears only in elastic tubes and is known
as “’flow limitation”’. It has been referred also in chapter 1 as the basic mechanism of Starling Resistor.
So, in this chapter we are trying to describe in more detail this mechanism and giving explanations
about the relation between human forced expiration. The chapter ends presenting a more explicit and

alternative depiction of flow limitation as a waterfall.

5.1 Introduction to flow limitation

In rigid and fixed diameter tubes, the value of flowrate variates proportionally with pressure drop (

(D—\/E ). This, however, doesn’t happen in tubes with deformable walls such as bronchioles. Due to
constant drop of airway pressure and the act of external pleural pressure, the cross-section area
narrows. Especially, in deeper and more compliant generations this variation is more intense. As a
result, the velocity of air gets increasingly greater values in order to balance the value of flowrate and
satisfy the equilibrium of mass. According to this, it is possible in some point the air velocity to
increase so much that reaches the wave propagation speed. There, the flow becomes limited causing

the partial collapse of tube wall Figure 5.1.1

Figure 5.1.1: The collapse of bronchiole (http://rc.rciournal.com/content/62/9/1212/tab-figures-data)

The narrowest point where flow limitation occurs is called “’choke point’” and defines the critical

pressure drop in which flowrate gets the maximum value (@, ). Above that point the flowrate remains
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constant despite possible increases in driving pressure. This effect has been observed from the curves
we got in chapter 4, solving parametrically the Bernoulli equation in which after a specific point, an

increase in pressure drop (P, — P, ) didn’t affect the value of flowrate Figure 5.1.2.

Figure 5.1.2: “’Flow limitation’’ is more clearly in the curves which have greater pleural pressure

(P, =2000,2500,3000) where after a small pressure drop the value of flowrate is constant.

5.2 Forced expiration

This phenomenon is observed also in forced expiration. At first, forced expiration is an exhalation
procedure that is accomplished with a fast and strong release of air that preceded by deep inspiration
from nose or mouth. In medicine, this value of forced flowrate can be measured and is extremely useful

in pulmonary function tests (spirometry) as it checks the condition of the lungs, Figure 5.2
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Figure 5.2: A Comparison between normal and obstructive lung (https://geekymedics.com/spirometry-
interpretation/)

During forced expiration the contraction of expiratory muscles increase pleural pressure P, . This

causes two opposing effects:

e Itincreases the upstream driving pressure P, inside alveoli which tend to increase flowrate

e |t leads bronchioles to narrow even more increasing this way the resistance of the flow due to

friction forces.

According to Bernoulli’s principle and Lambert notes the total energy of air in some point before choke

point is determined from the total energy in alveoli P, +% pu,’ reduced by the total friction losses

j f (y)dy . As the airway narrows the term of friction losses increases and a part of lateral pressure (P
0

. : 1 : . -
) converts into dynamic pressure ( 3 pu? ). The interaction between these two components (friction

losses and dynamic pressure) lead to strong loses of lateral pressure and as soon as air velocity reaches
the wave propagation speed flow limitation is produced (World Congress of Medical Physics and
Biomedical Engineering 2006). Further increases in effort (i.e. blowing more forcefully) will not affect
the value of flowrate cause the narrowing depends on the surrounding pleural pressure Ppl. The

transmural pressure will not be affected because the intra-airway pressure is increased by the same
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amount of pleural pressure does. So, the difference between inside and outside pressure will be the
same as before.

5.3 The analogy of waterfall

This independent relation between pressure drop-flowrate and in general the flow limitation
mechanism present similar behavior as a flow in a waterfall (Wagner,1994), Figure 5.3

Figure 5.3 : Flow limitation as a waterfall (https://www.researchgate.net/publication/7570845_Auto-

positive end-expiratory pressure Mechanisms _and_treatment)

The flowrate in a waterfall depends on the altitude difference between upstream pressure and the edge
of waterfall. The downstream pressure which is determined from the height of waterfall can’t affect
the flowrate at the top. This parallels the case of flow limitation where the pressure difference between
alveoli and airway pressure ends cannot influence the flowrate. In other words, the airflow is
determined from the gradient of alveolar pressure and critical pressure (“’choke point’”) and not from
downstream pressure. So, increasing the pressure drop (effort) is even as increasing the height of the

waterfall.
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6. Outline of more detailed modeling

As we are trying to explore further the model of Filoche and Florence and its limits, we realize that
whenever the mechanism of flow limitation occurs the prediction of pressure along the tube is not so
simple. The reason seems to be that the basic assumptions which have been made in Filoche’s model,
cease to exist affecting critically the flow and the general results of Bernoulli’s principle. In this section
we discuss these assumptions and how they may be relaxed as flow limitation develops. More
specifically, we touch on three issues: multi-dimensional effects, non-cylindrical tube collapse and

time-varying phenomena.

The analysis of Filoche and the simplification of it, is based remarkably on the assumption of one-
dimensional flow. More specifically, the value of velocity and pressure in all numerical processes was
depended only on the position along the tube. Even though this assumption is reasonable in most cases
and leads to physically acceptable results, in the case of flow limitation the behavior becomes more
complicated. Considering as known the geometry of bronchiole, the general effect is similar to the

flow in a rigid tube with a converging and a diverging section, Figure 6.1.

Figure 6.1: The velocity profile U (x) in a nozzle-diffuser configuration

As we can notice, before the throat area, the flow is uniform and the boundary layer doesn’t separate.
The reason is because the direction of the flow agrees to the decrease of static pressure (favorable

gradient). However, as the air passes the throat the expanding area forces a constant deacceleration,
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increasing this way its static pressure (unfavorable gradient or adverse pressure gradient). If the
diffuser’s angle is too large it increases the disturbed flow and leads to a more evident boundary layer
separation. This detachment forms backflows which increase energy losses and they have to be
included in overall analysis. The above scenario could lead to a throat that moves towards the inlet

with increasing air flow rate.

A consequence of flow limitation, which referred also in previous chapter, is the collapse of the elastic
tube. Due to the prevailing conditions inside and outside, the tube wall isn’t able to hold a circular
cross-section area. The shape of airway varies in a different way (Grotberg, Jensen ,2014) Figure 6.2.

Figure 6.2: Different shapes of cross section area as the transmural pressure drops

Experiments which made in Starling resistor showed the above views of surface. For B,, =P —-P, >0

the tube is fully inflated and the area circular. As the transmural pressure becomes slightly negative
the elastic tube tend to form an elliptical cross section area depending on tube stiffness. If the
transmural pressure drops even more the tube collapses and it can lead to the contact of opposite walls.
In lungs this complete collapse of the walls can occur in smaller diameter and thicker walled

bronchioles (Bertran, 1987). So, in choke point and above it, this phenomenon is more intense and a

consideration of circular cross section A=z*D?/4 seems to lead to inaccuracies.

Moreover, self-excited oscillations which can be observed in the flutter of flags in the wind or in the
wings of airplane whenever a critical speed is exceeded appear also in forced expiration. Experimental
studies (Luo, Pedley, 1996) have shown that flows with high Reynolds number and large deformations

of elastic tube wall can cause large amplitude self-exited oscillations. They arise from the energy
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transfer of the fluid into the elastic wall which is accompanied with an expansion of it. These
oscillations influence the analysis and the equations that govern it, demonstrating that the time
dependent terms cannot be neglected.

A one-dimensional model that describes these unsteady conditions for the case of blood flow has been

described by Larson, Bowman, Papadimitriou, Koumoutsakos, Matzavinos (2019).:

Figure 6.3: Schematic of one-dimensional and time-varying artery

The partial differential equations that have been produced are derived from the conservation of mass

and momentum/Navier-Stokes, assuming viscous, incompressible and 1-D axial direction flow:

Here, p is the flow density and K, is a parameter representing viscous resistance per unit length,

given by K, =—-22u interms of the viscosity « of blood and the chosen velocity profile.
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Conclusions

This paper achieved some of its primary goals. More specifically:

the presentation of interesting biological and industrial systems where flexible pipes are applied
the development of constitutive equations which relate the transmural pressure to the diameter
and the mechanical properties of elastic tubes

the construction process of Filoche’s model explaining it and building it from the general mass
and energy equilibrium in an open system

the calculation of flowrate for a different set of parameters and the production of curves that
reflect not only this variation but, also, the phenomenon of “’flow limitation®’

our effort to extend the analysis in order to provide detailed results about the pressure drop in
a tube, and the problems we faced with un-realistic solutions due to flow limitation

a more detailed description of flow limitation and the consideration of effects that were
neglected in the analysis

Recommendations for future work

This thesis stigmatized from a sort of issues that took a lot of time to understand and it would be

interesting, despite the complexity, to be presented in a future research:

a research for a different model that corresponds to flow limitation and the effects that follow,
in order to receive acceptable results for the variation of pressure in a single airway

a further investigation about the results of this thesis, each one has its own interest, to explain
more clearly the consequences of flow limitation

a calculation of airflow using analytical tube models as presented in table 1 and a comparison

between Lambert’s model
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Appendix: Program (Elastic_tube) for the calculation of airflow ® and the pressure profile P(x)
during the breathing procedure using Lambert’s parameters.

Depending on the value of variable Option, the main part of program can call 3 basic subroutines
(Parametric_analysis, Profile_1, Profile_2) in order to calculate the flowrate or the profile. The
algorithm of the main part is given below:

1 EProgram Elastic_tube
2 !**x***J-cit*Jki(**H***x***ﬁ**x#**!***i**H***x***iﬂk*J-cie**HJ&**H**H***H***X**!#**K***k**!***H***X**H#**K***k*!#**
3 |[!This program simulates the air flow throught a cylindrical elastic pipe with external pressure,
4 | using the Lambert's model as constitutive egquation for the walls that describes the deformation
5 |!  of human lung airwais under tension. It can run with 2 different options, depending on the value
6 [! of variable "option™:
7 |!* Option=1 : For a given range of P(B) and P_pleural, computes the flow rate Q for every combination
& |!  of P(B) and P_pleural and types it on file "Prametric_analysis.txt" (Subroutine Parametric_analysis).
9 | !* option=2 : In this option, P(A),P(B) and P_pleural are the inputs, and the resulting flow rate Q is
18 |! calculated (Subroutine "PressureFlow"). After that with a converging process the profile along x-axis
11 | ! of diameter, velocity and pressure is computed.
12 !**KR**:-ciit*Jkit**H#**HR**K**KR**H***H**H#**x***iﬂk*KR**H***H**H#**!***iﬁk*m&**K***H**H#**H***X**!R**KR**H*KR**
13
14 implicit none
15
16 integer z, x_nodes, suml, sum2, n, i, option
17 real*8, parameter :: pi=dacos(-1.08)
18 real*s P_A, P B, P_pl, PtmA, PtmB, D A, D B, a A, a B, h A, h B, L, 2@, ad_, nl, n2, Am, Dmax, P1, P2
19 real*8 A, B, C, Delta, alpha, beta, Re, Re_A, Re_B, Q, Q_2, Qmax, u_A, u_B, R_aver, x, dx, diff
28 real*3 dp_@, dP_B, P_B_max, P_8 max, PB, Ppl, Q@ Pois, Q max, p, N_t, P_ave, Ru, T, ro, ita, ni
21 real*8 PtmX, start, finish, Dk, Lk, u_cA, u_cB
22 real*s T_a8(17), T_a@_(17), T_nl(17), T_n2(17), T_Am(17), T_L(17), T_Dk(17), T_Lk(17)
23
24 ! -Open necessary files
25 open(18,File="Data.txt", Status="01d")
26 open(11,File="Airuay_curves.txt"”, Status="Unknown")
27 open(12,File="Results.txt", Status="Unknown")
28 open(28,File="Profile 1.txt", Status="Unknown™)
29 open(38,File="Profile_2.txt", Status="Unknoun™)
3@ open(48,File="Parametric_analysis.txt", Status="Unknown™)
31 open(5@,File="Ratios.txt", Status="Unknown")
32
33 !-Calculates CPU running time
34 call cpu_time(start)
35 write(*, ' ("Loading...")")
36
37 !Option= {1:for parametric analysis, 2:for profile}
38 option=2
39
40 !-Input trasmural pressures. For parametric analysis subroutine, this values are the starting ones.
41 P_pl= 1a.de ![=cm H20]
42 P A= 9.de I[=cm H20]
43 P B= 8.de I[=cm H20]
44
45 I-Tputs for parametric analysis: Range of P(B) and Ppl.
46 dP_B= 9.1de
47 dP_B= 5.de
43 P_B_max= P_A
49 P_@ max= 38.de
ta
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t1
52
53
54
55
56
57
58
59
68
61
62
63
64
65
66
67
68
69
78
71
72
73
74
75
76
77
78
79
80
81
82

! -Read model parameters of bronchial mechanics from "Data.txt" file.
read(1@,*) T_a@, T_ae_, T_nl, T_n2, T_Am, T_L, T Dk, T_Lk

I-Calculation of parameters related to D{Ptm) and h(Ptm).

=6
N_t=2.de**z ; a@=T_a@(z+l) , ab_=T_a® (z+1) ; nl=T_nl(z+1l); n2=T_n2(z+1) ; Am=T_Am{z+l); L=T_L(z+1)
L=L*1.d-2 I[=m]

PtmA=P_A-P_pl  ![=cm H20]
PtmB=P_B-P_pl ![=cm H20]

!-Solving only for the chosen option.
if (option==1) then
!'-Create Q - (P(A)-P(B)) graphs for different Ppl values
call Parametric_analysis(P_B,P_B_max,dP_B,P _pl,P_& max,dP_8)
else if (option==2) then
I-Ptm(a), Ptm(B) and L are the inputs, and the resulting flow rate Q is calculated.
call PressureFlow(PtmA,PtmB,L)
I-For this specific solution [from PressureFlow] the profiles of wvelocity and pressure
! across the tube is computed with 2 different ways.
call pProfile_1
call Profile 2
end if

!-Recreation of Lambert's diagrams [a=A(Ptm)/&max - Ptm for each generation z].
call Curves

I-Computing the total running time of the code.

call cpu_time(finish)

write(®, ' ("CPU running time [s] =",f16.8,/,"Press enter to close...”)") finish-start
read*
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Subroutine Parametric_analysis calls iteratively the subroutine PressureFlow calculating the airflow
® for a range of P(B) and Ppieural. AlS0, writes the results into the “’Parametric_analysis.txt’’ file:

83 Contains

24 !**J-c***:-c***X**H#**x***!**x***H***X**x***x***X**H***J-c***)(**H***H#**X**H***H***H**H***HB**X**H***K***X*H#*#
85

86 O Subroutine Parametric_analysis(P_B,P_B_max,dP_B,P_pl,P_8_max,dP_8)
a7 !**H***H******H***H******H***H***8**H***H******H***H***$*$H***H******H***H******H***H******H***H*H***
88 !For given Ppleural and P(B) ranges as inputs, this subroutine calculates the flow rate [=L/s]
80 land saves the results on "Parametric_analysis.txt” file.
ag !**H***H******H***H******H***H***8**#***H******H***H***3**H***H******H***H******H***H******H***H*H***
91

92 real*s P_B, P_B_max, dP_B, P_pl, P_@& max, dP_@

93 integer pB_node, pB_node_max, p@_node, p@_node_max, j

94

a5 pB_node_max= int( (P_B_max-P_B)/dP_B )

96 pe_node_max= int( (P_8 _max-P_pl)/dP_8 )

97

93 write(4e, " ("P(A)=",f6.2,", Generation z=",12,", Q: L/s, Pressures: cmH28")') P_A,z
99 write(48,*)

1@e

181 |do j=1,3

182 if (j==1) then

183 write(4e, (" ",38x,"Flow Q [=1/5]")")

104 else if (j==2) then

1685 write(4e, (" ",38x,"Ratio u/c at A")")

186 else

187 write(d4e, (" ",38x,"Ratio u/c at B")")

188 end if

1a9

118 write(4@," ("P(4)-P(B)|Ppl: "L

111

112 do pb_node=1,p8_node_max+1

113 Ppl=P_pl+(p6_node-1)*dP_@&

114 write(4e,'(f8.2," "\)') Ppl*98.e665d@

115 end do

116 write(48,*)

117

118 do pB_node=pB_node_max+1,1,-1

119

128 PBE=P_B+(pB_node-1)*dP_B

121 write(48,'(f8.2,7x," ",\)') (P_A-PB)*98.0665d@

122

123 !-Loops for 8 values of Ppl

124 do pe_node=1,p@_node_max+l

125

126 Ppl=P_pl+{p@_node-1)*dP_g

127

128 !-Find mass flow rate for given pressure

129 PtmA=P_A-Ppl | [=cmH20]

130 PtmB=PB-Ppl 1[=cmH20]

131

132 call PressureFlow(PtmA,PtmB,L)

133

134 lcall Prints

135 if (j==1) then

136 write(4e, ' (\,f108.6," ")') 18%¥3%Q

137 else if (j==2) then

138 write(4e, (\,f1e.6,” "}") u_cA

139 else

148 write(40, (\,f1e8.6," ")) wu_cB

141 end if

142

143

144 end do

145 write(4e,*)

146

147 end do

148 write(48,%*)

149

158 |end do

151

152 | End subroutine
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Subroutine PressureFlow calculates for a given pressure difference and length, the value of flowrate:

153

154

155 Subroutine PressureFlow(PtmA,PtmB,L)

156 !**H***H******H***H******H***H******H***H******H***H******H***H******H***H******H***H******H***H*H***
157 IThis subroutine computes the air flow rate for a cylindrical tube with lenght L and
158 Ipressure difference PtmB-PtmA across it.

159 1 s e e e sl b ke ok ok s ook o ol 8 ke e b e ok s e e s sl s ok ke ok ok oo oo ke b o e ok o oo e ol ok ok kol Rk koo ok kol ook ok kol ook ko ok
16@

161 real*8 PtmA, PtmB, L, M, c_A, c_B

162

163 D_A= D(PtmA)

164 D_B= D(PtmB)

165 h_A= h(Ptma)

166 h_B= h(PtmB)

167

168 I-Properties of air

169 P_ave=1.dS I[=Pa]

178 Ru= 287.@58de 1[=1/kg/K]

171 T= 25.de+273.de 1[=Kelvin]

172 ro= P_ave/Ru/T I[=kg/m3]

173 ita =18.37d-6 I[=Pa*s]

174 ni=ita/ro [=m2/s]

175 alpha= 1.5d@

176 beta= 8.8835d@

177

178 !-2nd Order Equation of Q [=m3/s]

179 A=1824.de*L*ro*beta/( (pi**2)*(D_A+D B) ) -22*ro*log(D B/D_A)/(pi®*2)

188 B=128.d@*ita*L*alpha/pi

181 c=h_B-h_a

132

183 !-Solutions

134 Delta=B**2-4.de*A*C

185 Q=(-B+dsgrt(Delta))/(2*A) I[=m3/s] The positive (accepted) root
186 Q_2=(-B-dsgrt(Delta))/(2*A) ![=m3/s] The negative (rejected) root
187

138 velocity [=m/s] at the outlet x=L

189 u_B=4*Q/pi/(D_B**2) '[mfs]

198 ICritical velocity at x=L

191 M=2*ro*dD(PtmB)/(98.0665de*D_B)

192 c_B=dsqrt(1l.de/Mm)

193

194 Q_max=c_B*pi*(D_B**2)/4.de

195 if (u_B>c_B) then

196 10=0_max

197 !print*, PtmB

198 !read*

199 end if

286

281 !Velocity [=m/s] at the inlet x=@ and outlet x=L

2082 u_A=4*Q/pi/(D_A**2)

283 u_B=4*Q/pi/(D_B**2)

204 !Critical velocity at x=0

285 M=2%ro*dD(PtmA)/(98.0665d8*D_A)

2086 c_A=dsgrt(l.de/m) '[m/s]

287 ICritical velocity at x=L

288 M=2*ro*dD(PtmB)/(98.0665d8*D_B)

289 c_B=dsgrt(l.de/Mm) '[m/s]

218 !Ratio u/c at points A and B

211 u_cA=u_A/c_A ; wu_cB=u_B/c_B

212

213

214 !Reynolds numbers: at the inlet x=8, outlet x=L, and for the average diameter of D(x)
215 Re=(4*Q)/(ita*pi*(D_A+D_B)/2.de)

216 Re_A=ro®u_A*D_A/ita

217 Re_B=ro*u_B*D_B/ita

218

219 !-Ideal maximun flow rate (Poiseuille flow)

228 R_aver=(D_A+D_B)/4.de

221 Qmax=dsqgrt(2.de*(98.8665de* (PtmA-PtmB))/ro) * ( R_aver®*2 )*pi 1[=m3/s]
222 Q_Pois=-( (98.8665d0*(PtmB-PtmA))*pi*(R_aver)**4 ) / (8*ita*L) 1[=m3/s]
223

224 call Prints

225

226 End subroutine
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Functions D(P), dD(P), h(Ptm) compute the diameter of the elastic tube, the derivative of diameter
and the integral of D*(Pwm) which are necessary variables for the calculations:

227

228

229 [ Real*8 function D(P)

238 !**H***H******H***H******H***H******H***H******H***H******H***H******H***H******H***H******H***H*H***
231 !This function computes the diameter of the pipe for a given transural (internal-pleural) pressure
232 lusing Lambert’'s model arising from experimental data that describes the deformation of lung airways.
233 !**H***H***H**H***H******H***H***H**H***H******H***H***H**H***H******H***H***H**H***H******H***H*H***
234

235 real*8 P,alfa,A

236

237 ! -Parameters of D(Ptm) and h{Ptm)

238 Dmax=2.d@*dsqrt(Am/(N_t*pi)) I[=cm]

230 Dmax=Dmax*1.d-2 ! [=m]

248 Pl=a@*nl/a@_ ! [=cmH2@]

241 P2=-n2*(1-a@)/ab_ ! [=cmH2@]

242

243 If (P<=8.de) then

244 alfa=a6*(1.de-P/P1)**(-n1)

245 else

246 alfa=1.d@-(1.d8-a8)*(1.de-P/P2)**(-n2)

247 end if

248 A=alfa*am/N_t

249 D=Dmax*dsqrt(alfa)

258

251 End function

252 |

253

254 [ Real*8 function dD(P)

255 !**H***H******H***H******H***H******H***H******H***H******H***H******H***H******H***H******H***H*H***
256 !This function calculates the derivative dD(P)/dP, using a second order central numerical method.

257 !**H***H***H**H***H******H***H***H**H***H******H***H***H**H***H******H***H***H**H***H******H***H*H***
258 real*s dp, P_r, P_1, P, P_2r, P_21

259

268 dP= 8.1de

261 P_r= P+dP

262 P_2r=P+2*dP

263 P_1= P-dP

264 P_21=P-2*dP

265 dD=( -D(P_2r)+8*D(P_r)-8*D(P_1)+D(P_21) }/(12*dP)

266

267 End function

268

269

278 E Real*8 function h{Ptm)

271 !**H***H******H***H******H***H******H***H******H***H***8**H***H******H***H******H***H******H***H*H***
272 !Parameter h [=N*m2] is a function of Ptm and equal to h(P)=integral of[D(P)"4]dp from & to P.

273 !The integration is calculated numerically using the simplest method, the trapezoid rule.

274 !**H***H***H**H***H***E**H***H******H***H***H**H***H***8**H***H******H***H***H**H***H***E**H***H*HH**
275

276 real*8 ptm, dh, f_p, p, diff, n, i, sum

277

278 !-Numerical integration

279 n=1868

288 dh=(Ptm-8)/n

281 sum=8.da

282

283 do i=e,n

284 p=i*dh

285 f_p=(D{p))**4

286

287 if (i==8 .or. i==n) then

288 sum=sum+f_p

289 else

298 sum=sum+2*f_p

291 endif

292 end do

293 h=98.8665de* (Ptm-8)*sum/(2*n)

204

295 End function

55



Subroutine Curves calculates for each generation (z=0-16) and for a specific range of transmural
pressure (Pwm) the surface ratio (o):

2096 [

297

298 © Subroutine Curves

209 !**H***H******H***H******H***H***8**!***H******H***H******H***H******H***H******H***H******H***H*H***
388 IThis subroutine re-creates the graphs of Lambert's model that describes the dependance of
381 !dimensionless parameter alpha a=A(Ptm)/Amax with transmural pressure.
382 !**J-clk**J-clk*****J-c***J-t***#*JO(J-HK**H***3**!***!***#**!***!***3**K***K******H***H******K***K******H***H*H***
383

384 integer 1

385 real*8 P,alfa

386

387 write(11, " (" Ptm \ Generation z:"\)")

388 do i=8,16

389 write(11, " (i1e,%)") i

318 end do

311 write(11,*)

312

313 do P=-12,24,8.36

314 write(11, " (fo.4,18x," ",\)') P

315

316 do i=1,17

317 z=1i-1

318 N_t=2.de**z

319 L=T_L{i) I[=cm]
320 L=L*1.d-2 1[=m]
321 aB=T_ad(i)

322 ae_=T_ae_ (i)

323 n1=T_ni(i)

324 n2=T_n2(i)

325 Am=T_Am(1i) I[=cm2]
326

327 Dmax=2.de*dsqrt(am/(N_t*pi)) I[=cm]
328 Dmax=Dmax*1.d-2 1 [=m]
329 Pl=a@*nl/a@_

33@ P2=-n2*(1-20)/a8@_

331

332 alfa=( D(P)/Dmax )**2

333 write(11, " (f7.4,2x" ",\)") alfa

334 end do

335

336 write(11,*)

337 end do

338

339 End subroutine
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Subroutine Profile_1 calculates the variation of diameter D(x) and pressure P(x) along the cylindrical
elastic tube using an iterative method:

346

341

342 [ Subroutine Profile_1

343 1 ok s e b ofe s s obeobe s ofe o e e s o oo o e ofe o sk e obeofe e ofe il o s sl o e oo s e ofeofe s b s o ok e o sbe o st e s o ok s b ok sl e ook il o sl sl s ok o o ok e o ok ol ke
344 IThis subroutine, for a pressure difference PtmA-PtmB across the tube that creates a flow rate Q,

345 'computes the profile of diameter D(x) and pressure Ptm(x) along the x-axis. For this purpose a

46 !'numerical iterative method is required.

A7 !**x***x**Jk*Jk*:-c*Jk*J-t******J-c***J-c*Jk*#*JkJ-c***J-c******x***!***Jit*JltJ-t***H****Jk*K*Jk*K******H***H******H***H*H***
48 integer digits

49 real*s Q @, c, M

de n=1,x_nodes

call PressureFlow(Ptmd,PtmX,x)
diff=abs(Q-Q_8)
suml=8
do while (diff»8.d-4/(1e**digits))
suml=suml+1
if (Q«Q_e) then
PtmX=PtmX-7.d-4

3

3

E

3

356

351 Q e=0

352 do digits=8,18

353 if (Q e*(1e**digits)>=1) exit

354 end do

355

356 write(28, "("P(A)=",f6.2," [kPa]",5x,"P(B)=",f6.2," [kPa]",6x,"Ppleural=",f6.2," [kPa]") )&
357 & P_A*98.@665d6/1808, P_B*28.8665de/18e8, P_pl*98.a665d8/18688

358 write(2e, '("Ptma=",f6.2," [kPa]",5x,"PtmB=",6.2," [kPa]",6x,"Qe=",f12.9," [L/s]")")&
359 & PtmA*9B.@665d8/1e8e, PtmB*08.@665de/1808, 1888*Q

36@ write(208,*)

361 write(2e, " (" x",18x,"P  (x) u(x) D(x)",7x, " "Loops",7x,"Q(x)",9x, "Error”, 11x, "RE(x)" ,5x, "c(x)"),/")
362

6 suml=@

6 x_nodes=10@

6 dx=(L-8.de)/x_nodes

6 x=dx

6 'Initial guess of Ptm(x) at A

6 PtmX=PtmA

6
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else
2 PtmX=PtmX+7.1d-4
8 end if
3 call PressureFlow(PtmA,PtmX,x)
3 diff=abs(Q-Q_8)
8 end do
8
8 M=2*ro*dD(PtmxX)/(98.0665de*D(PtmX))
8 c=dsqrt(1.de/M)
8
g write(2e,'(f9.6,2x,f9.4,2x,6.3,2x,f9.6,2x,18,2x,f13.9,2x,e14.8,4x,f6.1, 3x,f6.2)")&
g & x, (PtmX+P_pl)*98.8665d0/1600, u_B, D_B, suml, 18688*Q, diff, Re_B, c
o] print*, n, x, suml
9 X=x+dx
9 end do
2]
9

End subroutine
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Subroutine Profile_2 calculates, also, the variation of diameter D(x) and pressure P(x) using a
numerical method:

3986

397

398 [ Subroutine Profile_2
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468 !This subroutine, for a pressure difference PtmA-PtmB across the tube that creates a flow rate Q,
481 lcomputes the profile of diameter D(x) and pressure Ptm(x) along the x-axis. In this algorithm, the
482 !profiles derive from an alternative equation (differantial form of Filoche's model), by solving
483 'numerically for the derivative dP/dx.

484 !**H***x***3**H***H******J-t*JltJkJ-ch*JkJitJk*J-c*Jk*H******H***H******K***H***#**K***K***#**H***K******H***H*K***
485

486 integer n, P_nodes

487 real*s Q @, K, M, ¢, u, f, x, Ptm_ave, dP, dx, Ptml, Ptm2, D_ave, Re

488

489 Q_@=Q I[m3/s]

418 write(3@, ' (" x",18x, "P(x)",6x, "Ptm({x) ", 3x, "u(x)",6x, "D{x) ", 7x,&

411 &"RE()", 20, "ux) S (x)", 22, e ()", T, Q" , 5, " _max" ), /")

412

413 P_nodes=18@

414 dP=(P_A-P_B)/P_nodes

415 x=8_de

416 !Initial guess

417 Ptml=PtmA

418 Ptm2=PtmA-dpP

419

428 Re=4*ro*Q_8/(ita*pi*(D(Ptm1)))

421 u=4*Q_@/pi/(D(Ptml)**2) I[m/s]

422 M=2*ro*dD(Ptm1)/(98.8665d8*D(Ptm1))

423 c=dsqgrt(1l.de /M)

424 Q_max=c*pi*(D(Ptm2)**2)/4.d8

425

426 write(30,'(f9.6,2x,19.4,2x,9.4,2x,6.3,2x,f9.6,4x,16.1,3x,16.4,3x,16.2,2x,18.6,2x,f8.6) " )&

427 & x, (Ptml+P_pl)*08.@665d8/16@8, (Ptml)*02.8665d0/160@, u, D(Ptml), Re, u/c, c, 18@8%Q, 1@@8*Q max
428

429 do n=1,P_nodes

438

431 Ptm_ave=(Ptml+Ptm2)/2.de

432 D_ave=D({Ptm_ave)

433

434 Re=4*ro*Q_8/(ita*pi*(D_ave))

435

436 f=128*ita*Q_e*(alpha+beta®Re)/pi/(D_ave**4) [[Pa/m]

437 u=4%Q_8/pi/(D_ave**2) '[mfs]

438 M=2*ro*dD(Ptm_ave)/(98.8665d8*D_ave)

430 c=dsqrt(1.de/m) [m/s]

448

441 K=-F/ (1-((u/c)**2))/08.0665d0 ![ cmH20/m]

442 dx=-dP/K

443 K=x+dx

444 Q_max=c*pi*(D(Ptm2)**2)/4.de@

445

446 write(3@, (f9.6,2x,19.4,2x,f0.4,2x,f6.3,2x%,19.6,4x,16.1,3x,76.4,3x,f6.2,2x,f8.6,2x,T8.6)")&

447 & x, (Ptm2+P_pl)*02.0665d8/1008, (Ptm2)*02.8665d8/188@, u,D(Ptm2),Re, u/c, ¢, 1808*Q, 188@*Q_max
448

449 Ptml=Ptm2

458 Ptm2=Ptm2-dP

451 end do

452

453 | End subroutine
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Subroutine Prints write the results into the <’Result.txt’’ file:

454

455

456 H Subroutine Prints

458 !This subroutine compresses the typing proccess of the results.

4668

461 write(12,'(/,"------- INPUTS------- ",/,"Generation z=",1i2,/,"L=",f7.5," [m]")") z, L

462 write(12, ' ("Ptm(B)=",f11.2," [Pa]")") P_pl*o8.@665de

463 write(12, ' ("Ptm(A)=",f11.2," [Pa]")’) PtmA*02.@665d8

464 write(12, ' ("Ptm(B)=",f11.2," [Pa]")’) PtmB*02.@665d8

465 write(12, ' ("------ RESULTS------ "))

466 write(12,'("D(A)=",e9.3," [m]",/,"D(B)=",e9.32," [m]",/,"Dmax=",e9.3," [m]")") D_A, D_B, Dmax
467 write(12,'("Q=",8.4," [1/5]")") 18**3*Q

468 write(12, ' ("Q_tot=",f8.4," [1/5]")") 1@**3*Q*N_t

469 write(12,'("Ideal maximun flow rate (Poiseuille flow) through tube is:",/," Qmax = ",f11.4,&
47@ &" [1/s]",/," Q_Poiseuille = ",f11.4," [1/s]")") 1@**3*Qmax, 10**3*Q_Pois

471

472 | End subroutine

473

474

475 | End program
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