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Περίληψη 

   Η ροή ενός ρευστού μέσα σε έναν αγωγό με ελαστική συμπεριφορά εμφανίζεται σε ένα ευρύ φάσμα 

βιομηχανικών αλλά και βιολογικών εφαρμογών. Το ανθρώπινο σώμα εντάσσεται στην τελευταία 

κατηγορία καθώς αποτελείται από πολλούς ελαστικούς αγωγούς . Στην παρούσα διπλωματική 

εξετάζουμε την διαδικασία αναπνοής συνδυάζοντας την θεωρητική ανάλυση με ένα υπολογιστικό 

μοντέλο το οποίο προβλέπει την συμπεριφορά ενός τυπικού ελαστικού αεραγωγού ο οποίος βρίσκεται 

μέσα στους πνεύμονες σε διαφορετικές καταστάσεις. Η έρευνα μας επικεντρώνεται, κυρίως, στο 

φαινόμενο της βεβιασμένης εκπνοής (forced expiration) το οποίο παρουσιάζει κάποια ενδιαφέροντα 

και σύνθετα αποτελέσματα που προσπαθήσαμε να ερμηνεύσουμε. 

   Αρχικά, περιγράψαμε κάποιες από τις εφαρμογές όπου χρησιμοποιούνται ελαστικοί σωλήνες και 

αναπτύξαμε τις βασικές εξισώσεις που περιγράφουν την κατάσταση των σωλήνων χρησιμοποιώντας 

έννοιες από την μηχανική των υλικών. Μετά από αυτήν την γενική προσέγγιση, εστιάζουμε στην 

περίπτωση του ανθρώπινου πνεύμονα ο οποίος αποτελείται από ένα δίκτυο κυλινδρικών αεραγωγών. 

Έπειτα, παρουσιάζεται μια σύντομη σύνοψη του ανθρώπινου πνεύμονα και των ελαστικών ιδιοτήτων 

του και στην συνέχεια εφαρμόζεται ένα απλοποιημένο μοντέλο που υπάρχει στην βιβλιογραφία 

κατασκευάζοντας το από την αρχή βασισμένοι στους θεμελιώδεις νόμους της ρευστομηχανικής. Το 

μοντέλο αναφέρεται σε ροή ενός σωλήνα και πραγματοποιούνται οι παραδοχές της μονοδιάστατης, 

ψευδο-μόνιμης και ασυμπίεστης ροής. Οι υπολογισμοί εκτελούνται μέσω της Fortran και τα 

αποτελέσματα που λήφθηκαν παρουσιάζονται σε διάφορες καμπύλες παροχής-πτώση πίεσης. 

   Τέλος, η ανάλυση οδηγείται στην διερεύνησή του φαινόμενου του περιορισμού της ροής (flow 

limitation) κατά την διάρκεια της βεβιασμένης εκπνοής το οποίο συμβαίνει στην περίπτωση που η 

ταχύτητα του αέρα προσεγγίζει την ταχύτητα διάδοσης του ελαστικού κύματος. Από τον λεπτομερή 

υπολογισμό που πραγματοποιήθηκε για την μεταβολή της πίεσης κατά μήκος του αγωγού, 

αποδείχθηκε ότι το συγκεκριμένο μοντέλο καθίσταται ανακριβές για να το αποτυπώσει. Οι πιθανές 

τροποποιήσεις που μπορούν να συμπεριληφθούν μελλοντικά για την ακριβέστερη προσέγγιση του 

προβλήματος είναι (i) η αποκόλληση της ροής στο σημείο της μέγιστης στένωσης (περιοχή λαιμού) 

που οδηγεί σε ανομοιομορφία στη διατομή ροής (σχηματισμός δέσμης και ανακυκλοφοριών) (ii) μη-

μόνιμα φαινόμενα όπως η ταλάντωση του τοιχώματος και (iii) η κατάρρευση της κυκλικής διατομής.  

 

    

 

 

 



 
 

Abstract 

   The flow of a fluid throughout a pipe with elastic behavior is involved in a wide range of industrial 

applications and biological systems. The human body is one of the latter as it consists of many elastic 

tubes. This thesis examines the breathing procedure, combining a theoretical analysis of the 

phenomenon with a computational model which predicts the behavior of a typical lung airway for 

different inflation states. Our research has been, mainly, focused on the problem of forced expiration 

which presents some interesting and complicated results that we tried to interpret. 

   At the beginning, we outline some of the applications of elastic pipes and construct the basic 

equations that describe the state of tubes in different cases using the concepts of material mechanics. 

After this general approach we specialize in the case of the human lung which consists of a complicated 

network of cylindrical airways. A brief synopsis of the human lung and its elastic properties is 

presented and then we implement a simplified model from the literature starting from the fundamental 

laws of fluid mechanics. The model simulates the flow through a single airway of a lung, assuming 

one dimensional, quasi-steady and incompressible flow. The computations were performed using 

Fortran and the results we received are presented in several curves of flow rate as a function of pressure 

drop. 

   The investigation focused on the phenomenon of “flow limitation” during forced expiration, which 

is associated with the singular behavior that occurs when air velocity approaches the propagation speed 

of elastic waves on the wall. By detailed computation of the variation of pressure along the airway, it 

was shown that the steady, one-dimensional model becomes inaccurate. Potential modifications, to be 

included in the model in future work, are (i) flow separation at the location of maximum constriction 

that results in jet flow, (ii) time-dependent phenomena such as wall fluttering and (iii) collapse of 

cross-section area. 
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1. Introduction-Applications 

Transportation of fluids is an everyday phenomenon that exists in nature and engineering. Fluid 

dynamics is a subcategory of fluid mechanics that describes the flow of fluids (liquids and gases). To 

achieve this fluid flow or the transportation from one point to another it is necessary to form a path for 

it. The most common way is to use tubes with a round cross-section but are not the only ones. 

Rectangular, square, triangle or elliptical shapes are also used depending on the application each time. 

 

 

Figure 1.1: Variety of rigid and deformable tubes with different cross-sectional area 

Except from the different shapes of cross-sectional area, tubes can be divided more extensively into 

deformable and non-deformable, based on their construction material (significance level of 

deformation that takes place). There are these called non elastic-non deformable tubes in which the 

tube wall is rigid and deformation is negligible. Can be found at plenty applications such as in cooling 

or heating systems, in distribution of water at household units or at internal combustion engines. On 

the other hand, flexible tubes, which will be the type of tubes this analysis will examine, can be found 

in a wide range of applications as in oil and gas industries till biomechanics and biological systems. 
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In the following paragraphs, we choose some of the endless applications of flexible tubes that we find 

interesting and are worth to be mentioned.  

 

Applications 

Oil and gas industries use flexible tubes to transport the fluid from high pressure or high temperature 

environments to sea surface, if it’s offshore (off land), or at the earth surface, if it’s onshore (on land) 

(Qiang Bai, Yong Bai, Ruan,2017) . They can be applied in water depths up to 2.400 m., pressures up 

to 680 atm, high temperatures above 65,5 °C and can resist large vessel motions whenever the weather 

conditions are difficult. Flexible pipes which are used in these kinds of applications are classified into 

two categories based on the operating pressure and the reinforcement material: metal based and 

composite based flexible pipes (Qiang Bai, Yong Bai, Ruan,2017). Metal based flexible pipes are 

designed to withstand high loads such as high internal, external pressure or large axial tension. 

Oppositely, composite based flexible pipes, also called FCP (Flexible Composite Pipes), have a more 

simple structure from metal based pipes and lower functional requirements. Both categories can be 

divided further in two groups based on their construction: bonded or unbonded. The difference between 

them is the existence of a flexible polymer matrix, usually an elastomer which contains the 

reinforcement. So, in bonded tubes the reinforcement is embedded at this polymer matrix while at the 

unbonded is independent of the matrix. 

 

Figure 1.2: Offshore gas industry in which flexible pipes are used 

Flexible tubes can be found, also, in a specific category of pumps called peristaltic pumps 

(https://en.wikipedia.org/wiki/Peristaltic_pump). At first, pumps are devices that are used widely in 

https://en.wikipedia.org/wiki/Peristaltic_pump
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applications which contain fluid transfer and are responsible for providing extra energy to the fluid in 

order to complete this transportation. Depending on the operating principle that follow they can be 

divided into categories. Peristaltic pump belongs to positive displacement which means that the fluid 

volume is enclosed and moves mechanically through the system until the discharge pipe. This 

enclosure is achieved because the fluid is trapped between the pump’s motor head (rotor) and the 

stationary area of the pump (stator). Specifically in peristaltic pump, the fluid passes through the 

flexible tube, and then the rotor’s head, which can be “rollers”, “shoes”, “wipers” or “lobes”, increases 

the external pressure causing the partial compression of the fluid inside. As the rotor turns, the part of 

tube which is under compression collapses and the fluid moves with the motion of rotor, through the 

tube, until the discharge pipe. Most commonly they are used to pump clean/sterile or aggressive fluids 

(are referred to these fluids which react with the surrounding materials). For example:  

 Are applied in heart-lung machines to circulate blood during a bypass surgery. 

 In hemodialysis systems which help removing excess water, solutes and toxins from the 

blood. 

 Pumping aggressive chemicals, high solids slurries and other materials where they should 

not come into contact with the environment. 

 The rollers of peristaltic pumps are suited for abrasive and high viscosity fluids. So, there 

are used in agriculture as they are well constructed for pumping agricultural chemicals. 

 

Figure 1.3: Inside view of peristaltic pump 

Moreover, an important tool that used widely in medicine and presents elastic behavior is catheter. 

Catheters are thin deformable tubes which are inserted into the human body in order to treat diseases 

or perform surgical procedures. It has been discovered that the earliest invention of catheter was 3000 

years ago from Syrians and it’s use was to relieve them from urinary retention 
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(https://www.urotoday.com/urinary-catheters-home/history-of-urinary-catheters.html). In those times 

Syrians were using straws, palm leaves, hollow top of onions as well as gold, silver, copper, brass and 

lead to construct a hollow catheter. The first flexible catheters were developed in the 11th century using 

as basic material silver because it could be formatted in different shapes and were considered that have 

an antiseptic action. Much later, during 18th century, Benjamin Franklin designed a more modern 

catheter to help his brother, who suffered from bladder stones. He constructed a catheter of silver metal 

with segments, hinged together with a wire enclosed to provide rigidity during insertion. Nowadays, 

catheters, Figure 1.4, are thin flexible tubes which can be made from a range of polymers such as 

silicone rubber, nylon, polyurethane, latex and thermoplastic elastomers. Depending on the operation, 

stiffness and size of catheters differ and they can be, either temporarily or permanently, inside the 

human body. Inserting a catheter into the body allows: 

 Urinary catherization in which urine is draining from the urinary bladder via urethra checking, 

this way, the condition of the bladder. 

 Drainage of air at the pleural space between lung and chest wall (pneumothorax) which causes 

chest pain and shortness of breath. 

 To widen narrowed or obstructed arteries or veins (angioplasty) with the inflation of a balloon 

that is attached to the catheter (balloon catheter) inside the body and a stent to ensure that the 

vessel remains open. 

 Measurement of blood pressure when it is important to define quickly changes of blood 

pressure.  

This is accomplished with the insertion of a catheter into the artery or vein which is connected 

with a pressure transducer. Otherwise, in normal conditions sphygmomanometer is used. 

 

Figure 1.4:  A modern typical Catheter 

https://www.urotoday.com/urinary-catheters-home/history-of-urinary-catheters.html
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In agriculture and specifically, at low cost drip-irrigation systems where low pumping power is needed 

an innovative device of a deformable tube called ‘’Starling Resistor’’ (Wang, Ruo-Qian, Teresa Lin, 

Pulkit Shamshery, Amos G. Winter,2016, http://hdl.handle.net/1721.1/109244) can be applied. Βefore 

explaining it in more detail, it is crucial to understand the operation of drip irrigation in order to find 

out which type of water distributor can Starling resistor replace. 

We define drip irrigation as an irrigation method in which, the water drips into the soil and slowly into 

the roots of plants. Due to this, it’s one of the most efficient methods because water is applied only 

there which is necessary preventing losses from evaporation. For the release of water droplets in each 

plant and the reduction of pressure, emitters are applied. They are divided into two categories: pressure 

compensating (PC) and non-compensating emitters (NPC). The difference between them is that PC 

emitters maintain the same flow rate for different inlet water pressures while NPC emitters giving 

different outputs for different inlet water pressures. NPC emitters are applied in lands without big 

slopes (hills, changes of terrain) or long rows so the pressure differences consider to be small. For 

difficult topographical conditions, PC emitters are used. Although, the current PC emitters require high 

pumping pressure in order to achieve flow stability, which means high cost in pumping machines and 

power systems, making them inefficient. Starling resistor is considered to be able to replace this kind 

of emitters. 

Starling resistor is an experimental device which consists of a needle valve, a static pressure chamber 

and a collapsible elastic tube inside which is attached in two O-rings sealed caps, Figure 1.5. 

 

Figure 1.5: Experimental setup of Starling Resistor 
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The basic mechanism that takes place is called ‘’flow limitation’’ or ‘’pressure compensation’’ and is 

similar to the phenomenon which occurs in human lungs during forced expiration. According to this, 

after reaching a critical point of pressure (activation pressure) a further increase in driving pressure (

1 2P P P    : pressure difference between inlet and outlet of elastic tube) will not affect the flow rate.  

To achieve this, the fluid, in our case water, has to pass from different parts inside the chamber. It 

starts flowing from pressure tank until it meets T-junction, as it is shown in Figure 1.5, in which it is 

divided into two different flows. The one part supplies the chamber, outside the tube, in order to exploit 

its static pressure ( eP ). The second part passes a needle valve which decreases its lateral pressure from 

oP  or 
eP  to 

1P  before entering the tube. In this way, the steady external pressure narrows the cross-

section area as its value is greater than inlet pressure. As the fluid keeps flowing inside the elastic tube 

it loses further energy due to friction. This leads to further narrowing of the cross section area which 

will cause a rapid increase in flow resistance (Flow resistance 48 / RL  [Hagen-Poiseuille 

equation]) and a conversion of lateral pressure to dynamic pressure. At some point the velocity of 

water is equal to the wave propagation speed. This condition is critical for achieving flow limitation 

(E.A. Elliott, S.V. Dawson, 1977) because if satisfied the tube narrows the most, flow limits and the 

flowrate gets the maximum value max which cannot be exceeded. Increasing pressure difference after 

you reach these conditions will not cause an increase in flowrate. Comparing with current PC emitters, 

experimental measurements showed that Starling resistor is more efficient as it requires lower pumping 

power in order to keep flowrate constant (Wang, Ruo-Qian, Teresa Lin, Pulkit Shamshery, Amos G. 

Winter,2016, http://hdl.handle.net/1721.1/109244). 

Except from the applications mentioned above which are artificial constructions, the phenomenon of 

fluid transportation inside a deformable path appears also in natural systems. The human body is one 

of these systems in which many elastic paths exist to ensure the transportation of necessary substances 

such as proteins, carbohydrates, vitamins, lipids and oxygen. For this purpose, responsible are arteries 

as they carry blood with oxygen (except pulmonary arteries which carry de-oxygenated blood) and 

nutrients from the heart to the entire body. When this procedure finishes, the opposite flow of blood 

begins and is accomplished with the contribution of less muscular elastic tubes called veins. Veins 

transport low-oxygenated and high-carbon dioxide blood (except pulmonary veins which carry 

oxygenated blood), from the human organs and tissues to the heart. Afterward, the heart pumps and 

forces blood to move inside the lungs to remove carbon dioxide. 
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Figure 1.6: The network of arteries (red) and veins (blue) inside human body 

Inside the lungs, we can find a network of thin elastic airways, in various sizes, called bronchioles 

which have an important role in breathing. During the process of inspiration, the air passes through the 

bronchioles’ tree until it reaches an airway elastic sack called alveoli. When the air reaches alveoli a 

gas exchange procedure takes place between the capillaries and alveoli. Oxygen passes two thin layers 

of wall, first the wall of alveoli and then the capillary wall. After that, oxygen diffuses into the blood, 

inside the capillaries, and is transferred to the heart through pulmonary vein. Simultaneously with 

oxidation of blood, carbon dioxide, which is transported through the pulmonary arteries, passes the 

capillary wall and then the alveoli wall. In this way, diffuses into the air and it is removed from the 

human body through the air of expiration. 

 

Figure 1.7: Gas exchange between alveoli and capillary 

All these applications and many more, justify the need of a model that predicts the behavior of the 

flow through such systems. Our main goal is to examine a specific model for the flow of a fluid in a 

single deformable tube in different tension states. This is the basic component for many simulations 

that describe a variety of phenomena, some of which are mentioned in this chapter. 
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2. Material mechanics of rigid and flexible tubes 

The equations that determine the state of a tube under tension are a key component of the problem this 

thesis examines. Thus, we need to build them starting from the basics. At first, we review some of the 

major concepts from material science, such as deformation and conservation laws, and then step by 

step apply them on a thin-shell cylindrical pipe to create a simplified model that describes the 

relationship between diameter of the cylinder and transmural pressure acting on it. Eventually, more 

complicated models will be presented, as well as an experimental one for the elastic compliance of 

lung airways proposed by Lambert (1982). His model will be used for the computations in the 

following chapters. 

 

2.1 Basics of material mechanics 

In this paragraph we do a shallow dive in the vast field of material mechanics and introducing its 

fundamental concepts and equations. This is an attempt to figure out the complexity that is related to 

our problem, rather than try solving the material model that arises here. 

Mechanics of material is the field of science that describes and predicts the behavior of solid objects 

under external load. For this purpose, the properties of material need to be considered too.  

When a force acts on a solid structure, energy is added to the system and, due to conservation of energy, 

the state of material has to change. So, either a kinetic change or deformation (or both simultaneous) 

will occur, depending on the environmental conditions and the assumptions. We will analyze only the 

second effect independently, by assuming that the body is always fixed in place (static). In this case 

the entire external energy is transformed into deformation.  

Deformation can be plastic (permanent change of shape) or elastic (reversible change). Almost every 

material deforms elastically at low loads and after a certain value of tension (yield stress
y ) plastic 

deformation begins. 

For this analysis, we are interested only in the first region of deformation, the elastic part of it. In 

science of materials, the most characteristic property that measures the elasticity is Young’s modulus

E . It is defined as E



   which is the ratio of uniaxial stress   over strain (proportional 
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deformation)   and has units of pressure. A typical graph    of a material, which results from 

tensile test, is presented next.  

 

Figure 2.1.1:In tensile test a sample (of some material) with a cross-sectional area A   is subjected 

to a continuously growing tension 
F

A
   and the consequential deformation 

0

l

l



  is measured. 

Then, with this data we can plot the function of     in a diagram. This graph represents the 

behavior of this material under tension and as a consequence some of the basic properties of it can 

be determined. 

Most solid industrial materials appear to have a constant E in the elastic region, which means the 

deformation changes linearly to the applied stress. However, there are materials, also, which have non-

linear behavior. In very elastic materials (non-metallic, polymers, biomaterials, etc.) the elastic region 

is significantly bigger and thus the divergence from linearity is more common. 

Another aspect of material mechanics, which has to be mentioned here, is that stress and strain are 

tensors. This means they consist of 9 components each, in general case. So at any point of the material 

we have to determine 9 values for each of those 2 quantities. Fortunately, some values of these tensors 

are negligible and can be ignored almost at any problem. 
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Boundary value problem 

In order to continue with the solution of any problem in mechanics of material, we have to introduce 

first the fundamental equations and principles of this field. The basic equations that govern any 

material problem derive from 3 major principles and laws (N. Aravas, 2014): 

 Newton’s laws of motion (mechanical equilibrium): Equations that derive from the balance 

between net and inertial forces acting on a body. 

 Constitutive model: The relation between the applied load (stress ) and the behavior of the 

object in terms of deformation   that characterizes the material. 

 Compatibility of the medium:  Equations that describe the necessary and sufficient conditions 

under which a displacement field, that corresponds to a specific deformation input (strain  ), can 

exist. 

These are the field equations of any problem that needs to be satisfied inside the material’s body. 

For example, the field equations that describe a linear elastic material in a compact form are: 

 0,b      (3 equilibrium equations) 

 : , L    (6 constitutive equations) 

  
1

,
2

u u      (6 compatibility equations) 

where u  is the displacement vector,   the infinitesimal strain tensor,   the stress tensor,   the 

density of the material, b  the vector of the body forces and L  the elastic tensor of the material. 

Finally, we have to add the material-environment interaction to completely define the problem. 

Boundary equations are necessary to fully describe the problem and have a strong impact on the solving 

method and the resulting solution of the problem. 

The field equations coupled with the boundary conditions are called the boundary value problem and 

its solution determines the values of u ,   and   at every point of the body. 
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2.2 Constitutive equations for a thin-shell cylinder 

The problem we examine here, consists of a thin cylindrical tube (thickness<<length), a fluid inside 

with variable pressure along length axis and an external uniform pressure field acting on the outside 

shell of the tube. 

 

Figure 2.2.1: A thin cylindrical tube with external and internal load 

According to the above paragraph 2.1, the set of equations with a linearly elastic approximation, that 

fully describes the static state of the tube, consists of 15 in total equations (9 partial differential and 6 

algebraic) coupled with the boundary conditions. Such a problem requires a lot of parameters to be 

evaluated and the solution almost certainly will be computational (e.g. Finite Element Method). For 

the purposes of this study, such a model is not feasible so we will use a different approach. This 

approach exploits the cylindrical symmetry of the tube and the small thickness of its wall. 

At first, we examine the forces acting on a small radial portion of the circular cross-section which is 

shown below in Figure 2.2.2: 
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Figure 2.2.2: The direction of internal and external forces in a differential d portion of a thin 

cylindrical tube 

The radial differential force rdF acting on an infinitesimal d portion of the cylinder can be expressed 

as: 

 r in out in in out out in in out out in in out outdF dF dF P dA P dA P R Ld P R Ld P R P R Ld           

   1r in in out outdF P R P R Ld   , 

where  in inP P x  is the pressure of fluid at x, outP  the external pressure and inR , outR , L the 

geometrical characteristics of the tube (inside radius, outside radius, length). 

Next we analyze the equilibrium of forces on the upper half-cylinder that derives from a section at x-

z plane.  
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Figure 2.2.3: A cross sectional view of the upper half-cylinder with the acting forces 

The vertical component of the force at y-axis, 
ydF , can be calculated geometrically. 

 

Figure 2.2.4: The vertical component
ydF  of radial differential force 

rdF . 

 sin sin sin
y

y r in in out out

r

dF
dF dF P R P R Ld

dF
         

After replacing, we can calculate the total vertical force
yF , acting on the upper shell, by integrating: 

   

   

0
0 0

sin cosy y in in out out in in out out

in in out out in in out out

F dF P R P R Ld P R P R L

P R P R L P R P R L

 


          

       

 
 

   2 2y in in out outF L P R P R    
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Since cylinder is stationary, mechanical equilibrium at y-axis can be written: 

0 0 2 0y y yF F F F hL           

So, the net force acting on the half-cylinder (due to the difference in pressures) must be canceled out 

from the internal wall tension of the pipe. 

To calculate this tension, we need to consider a constitutive model that will allow us to relate σ with 

the deformation ε, considering also the material properties. We will start by using the simplest model 

which is the linear one, also referred as Hooke’s Law. 

      
 

0

2

0

1
,

1

R R

R








 

Now we are ready to combine all the above and result in an equation that correlates diameter D  with 

pressure  tm in outP P P  . 

 2 0 2 2y in out tmF hL LR P P Lh P R h             

     
 0 0

2 2 2
0 0 0

1 1
1 3

1 1 1
tm tm tm

R R R R h R
P R h P h P

R R RR R  

   
           

    
 

 
 

 
 

0

2 2
0 0

22
1

1 2 1
tm tm

tm

EhDh D
P D or D P

DD Eh P D 

  
     

   
 

 

2.3 Analytical tube models 

The Equation  3 , which was obtained as a result of Hooke’s Law, is the general form which 

corresponds in every tube with elastic behavior. By applying some extra assumptions, it is possible to 

derive new relations between pressure and diameter as shown in table 1:  
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Table 1: Linear and non-linear Pressure-Area relations (https://hal.archives-ouvertes.fr/hal-

01807385/document) 

Considering that Poisson’s ratio is equal to zero 0v   (materials such as cork) and assuming , also, 

0 0

R A

R A
  which is acceptable only for small deformations the equation  3  will become similar to 

Rammos equation in table 1. In Olufsen equation a more accurate and valid relation between radius 

and surface is obtained 
0 0

R A

R A
  while Poisson’s ratio gets maximum value 0.5v   (perfect 

incompressible isotropic material as Rubber). The last two equations have an important difference 

from the previous ones. They include an extra assumption about the variation of wall thickness. In 

these relations, the wall thickness was considered to remain constant 0h  and equal to the value 

0

0

*h R
h

R
  which is derived from an area conservation equilibrium 0 02 2Rh R h  . In first relations 

the wall thickness change for every different value of tmP . Furthermore, observing more carefully the 

Sherwin and Urquiza equations we will see that Urquiza’s relation is a specific case of general 

Sherwin’s form and emanates from the fact that the value of Poisson’s ratio was replaced with zero 

0v   .      

 

 

https://hal.archives-ouvertes.fr/hal-01807385/document
https://hal.archives-ouvertes.fr/hal-01807385/document
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2.4 Lambert’s experimental model for lung airways 

The above analysis constitutes a general overview of the behavior of deformable tubes. Specifying and 

deepening this analysis to the objectives and targets of this thesis, we are focusing on the behavior of 

elastic tubes inside the human lungs. Thus, we consider more extensively the lung’s structure and the 

model that corresponds to this.   

As mentioned also in introduction, each human lung consists of many short in length and small in 

diameter elastic paths (bronchioles) which are responsible to transport the air from the outside 

environment and mouth to the air sacs (alveoli). To understand this better, it’s necessary to illustrate 

these components and the general anatomy of the lung. In this thesis, we present the simplest structural 

model which was developed by Lambert et al.  (Lambert, Wilson, Hyatt, Rodarte, 1982) and relies on 

Weibel’s tracheobronchial tree model (Weibel, 1963) as shown in Figure 2.4.1. 

 

 

Figure 2.4.1: Weibel’s Tracheobronchial tree model 

Due to the complexity of lung structure, Lambert’s model separates the bronchioles into classes 

according to common mechanical properties. More specifically, are classified into 17 different 

generations starting from the trachea (generation z=0)  and ending up in bronchioles that are leading 

to alveoli (generation z=16).  

In previous analysis the relations that have been extracted were analyticals functions. In this case the 

equations between tmD P  are obtained by experimental process. The parametres and the mechanical 
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properties which are necessary to apply in equations are received ,also, from measurements made on 

them. The results are presented in the table 2 below : 

 

Table 2: Lambert’s parameters of bronchial mechanical properties 

The second column 
0

0

m

A
a

A
  expresses the ratio of surface 

2*

4

D
A


  at point 0tmP    to the maximal 

surface of current bronchiole 
2

max
,1

*

4

m
m bronc

total

A D
A

N


   in a specific generation ( 2z

totalN  , z : 

number of generation) while the derivative of this ratio at the same point is demonstrated by the 

variable 
'

0

0tm
tm P

da
a

dP


 .The variables 1 2,n n  are exponential parameters and L  is the length of 

bronchiole. 

The branch experimental function which relates the pressure and diameter is expressed by two 

rectangular hyperbolae matching at point 0tmP  : 

   1

max 0

1

(1 ) ntm
tm

P
D P D a

P

                              if    0tmP   

   2

max 0

2

1 (1 )(1 ) ntm
tm

P
D P D a

P

                 if    0tmP   

where '

1 0 1 0/P a n a and  '

2 2 0 0(1 ) /P n a a    
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These state laws of Lambert can be applied in every generation ,Figure 2.4.2. , to predict the diameter 

 tmD P  for a fixed value of pressure  
tm in pleuralP P P   or the inverse. 

 

Figure 2.4.2: A demonstration of the basic’s variables in a single bronchiole 

To have a more clear view of the way that the ratio 

2

2

,1 maxm bronc

A D
a

A D
   and derivative '

tm

da
a

dP
  

variates , we have produced the following graphs ,using Excel ,for different values of tmP . The range 

of transmural pressure that considered was from 212 0cmH  to 223 0cmH . 
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Figure 2.4.3: The variation of surface ratio ( a ) as transmural pressure (
tmP ) changes for each 

generation ( 0 16z   ) 

The intersection points between the curves and the y-axis, where 0tmP  , are given by table 1. Before 

and after this point we can notice the 2 different curvature hyperbolae. For a range of transmural 

pressure between
27 0cmH  and 

28 0cmH , all curves present larger slopes which means greater 

variations in surface area. So, we can infer that the change in diameter within this range of pressure 

will be greater than which would occur at values outside this range. 

 

Figure 2.4.4: The relation between the derivative of surface ratio (
tm

da
a

dP
  ) and transmural 

pressure ( tmP ) for each generation ( 0 16z   ) 

The above curves have absolute maximum at 0tmP   which means that the slope of tma P  curves will 

become maximum at this point for every generation. According to this and comparing the values of 

derivative at 0tmP  , we understand that the bronchioles become more flexible at higher generations, 

i.e. deeper in the lung.    
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3. Airflow in a single bronchiole 

Case study: Airflow in a single airway  

In this chapter we develop the equations which model the flow of air through an elastic tube. We 

examined the constitutive equation of the pipe in terms of ( )tmD P  from previous chapter and now are 

ready to build a model for the inner flow of air using principles from fluid mechanics. The key 

assumption of the analysis that follows is that of steady state. This means that all parameters of the 

problem (i.e. tube diameter, air flow rate etc) remain temporally constant, though they may vary 

spacially, and in particular in the axial direction. 

Conservation laws are axioms that derive from observations in nature. They are used as fundamental 

tools of science to build more complicated laws that predict the behavior of other natural systems. 

Conservation of energy and mass are two examples of axioms since they cannot be proved but they 

accurately describe everything we have observed around us until today. Starting from those two basic 

principles we present a model for airflow in an airway. 

 

3.1 Bernoulli’s principle  

3.1.1 Mass and energy equilibrium 

In open systems, where mass is flowing in and out from the boundaries of the system, the conservation 

laws of mass and energy can be expressed as the following equilibriums.  

 

Figure 3.1.1: Mass and Energy equilibrium in an open system 
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Total mass equilibrium [kg/s]: 

       Accumulating mass Inflow mass Outflow mass   

or in mathematical terms: 

out in out in

dm
m m

dt
       

Assumptions: 

: 0
dm

steady state
dt

   

Next, we apply the assumptions to get: 

 
0 0,

1

:

out out in in

out in

out in

dm

constdt

Incompressible flow

 

  


    

    
  

 

The resulting relation (1) confirms the intuition that the mass entering the system is equal to the outflow 

mass, since there is no accumulation and mass can neither be created or vanished. 

Total energy equilibrium [J/s]: 

           Accumulating energy Inflow energy Outflow energy Work Heat     

or in mathematical terms: 

2 2

0

0

1 1

2 2

in out

x

x

dE
E E Q W

dt

dE
P u gz P u gz Q W

dt
   

   

   
            

   

 

Assumptions: 

       
3

0

  

0

,        /

x

where f x is the frict

W

m Pa
Q s f s ds m ion losses per unit distanWatt ce Pa

m
m

s

 

 
      

 
  
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1 : ( )e

0

x

tot

D u u x

d
Solve for steady state E

dt

Incompressible flow

gz negligible

 

 





 

Applying these assumptions in the energy equations to get: 

   2 2

0

0 0

1 1
0 (2)

2 2

x

x

x

P u P u s f s ds 
   

         
   

  

Finally, we combine the equations (1) and (2): 

 
 

 

       

1
2 2

0 0

22

0 0

0

1 1
2 0

2 2

1 1
0 3

2 2

x

x

x

P u P u f s ds

P u P x u x f s ds

 

 

   
        

   

     





 

 

3.1.2 The term f(x) 

It is important to choose carefully the function f(x). Previous researches [Lambert] suggest the model 

of Reynolds (1982) derived from experimental data: 

 
 

  4

128
Re cosf x a b x g

D x


 




    

 
 

  4

128
Ref x a b x

D x






    

The first term in the equation above refers to viscous pressure loses for a Poiseuille flow. The scaling 

factor a  accounts for increased friction due to the short airway (deviation from fully developed 

flow/unsteady conditions). For an infinite straight pipe a  should be 1 as the velocity profile will have 

enough time to be developed. The second term refers to turbulent pressure dissipation which occurs in 

higher velocities. Based on Reynolds, (Reynolds,1982) these factors in the case of human lungs are 

1.5a  and 0.0035b  . 
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Equation (3) is Bernoulli’s equation, augmented with the term which represent friction losses. We 

could stop and solve here, although because f(x) depends on D and we lack the information about the 

profile of D versus x, it is preferable to differentiate (3) in respect to x and try to solve the differential 

that arises. This procedure follows the analysis of Filoche and Florens (2011). 

 

3.2 The differential equation of pressure gradient 

To avoid misunderstandings in calculations we considered:        , ,P P x D D P x u u P x    

We start by differentiate eq. (3) along x-direction: 

 

   

     
 

2 2

0 0

0

2

2

1 1
0

2 2

1
0

2

1 4
2 0 (4) ,

2

x
d

P u P u f s ds
dx

d d
P u f x

dx dx

dP d
u u f x where u x

dx dx A D x

 






 
     

 

      

 
     



 

The derivative of u can be calculated next: 

 

 

2 2 2 3

2

4 4 4 1 4 2

4 1 2 1 1
2 2

d d d dP dP d dP dD
u

dx dx D dP dx D dx dP D dx D dP

dP dD dP dD d dP dD
u u u

D dx D dP D dx dP dx D dx dP

   



           
            

       

 
     

 

Then we can replace the derivative in (4) : 

   

 

     

2

2

2
2 2

2

1 1
2 2

1
1 2

1 1
1 2 1 2 1

dP dP dD dP dD
u u f x u f x

dx D dx dP D dx dP

dP dD
u f x

dx D dP

f x f x f xdP

dD udx
u u

D D dP c

 



 

 
      

 

 
    

 

  
   

  
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Eventually, we get the following differential equation derived from Bernoulli equation (3):  

 
 2

2

5

1

f xdP

udx

c






 

where 

2

2 3

1 2 1
,

dD kg m s m
c

c D dP m m Pa m s

   
      

     
1

2 /

D
c

dD dP
  

The equation (5) is an expression of the gradient of pressure across the tube. 

A closer observation at (5) can give us insights of this phenomenon and a better understanding of some 

interesting natural limits that arise. 

3.2.1 The wave propagation speed c 

Firstly, we have to give some meaning into the parameter c . It has units of velocity
m

s

 
  

 and depends 

on the tube’s geometry and properties. Therefore, c is a characteristic velocity referred to the tube. 

More specifically, c  is a function of density  , diameter D  and 
dD

dP
 derivative. The

dD

dP
 term 

contains information about the change in diameter as a result of pressure change and we can derive 

that depends on the elasticity of the wall. So, we can infer that the wave propagation speed expresses 

the speed of pressure disturbance along the tube. 

 

3.3 The final algebraic equation 

The analytical or numerical way of solving the differential equation can be avoided by transforming it 

to algebraic equation with some clever manipulations proposed by Filloche and Florence (2011). To 

solve this equation for calculating the flow of air  , which is constant at any point throughout the 

tube, we can integrate (5) from A to B (full length of the tube), where PA, PB are given values. 

 
 

2
4 4

2 2

2

2
4 4

2

1

1

1 ( ) (6)

B B

A A

f xdP u dP
D D f x

udx c dx

c

u dP
D dx D f x dx

c dx

  
     

 

 
    

 
 
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 
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4 4 4 2
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c dx c D dP
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D dP D dP h P P dD
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D



 
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 

 

 

 

     
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    

  
      

 

  
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  
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We can rewrite the equation (6) as, 
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4. Computations in a single airway 

This chapter consists of our computations and efforts that we carry out to analyze how accurately that 

model simulates the flow of air inside one human lung airway. At first, we introduce the parameters 

and a modified version of the equation (7) that we are going to solve. A first sample of solutions is 

derived and then a systematic parametric analysis follows. Next we calculate the profile of pressure in 

a single tube by using two computational methods and we got some interesting results about the model 

of Filoche and Florence. The chapter continues with a suggestion of a different computational flow 

model and ends with a comparison between the two models that have been applied. In conclusion, the 

structure of the whole chapter follows the path we took chronologically to get into the details and the 

difficulties we faced as we deepen our understanding 

 

4.1 Computation of flow rate 

4.1.1 Computational process 

We start from the written equation that has been mathematically proved in the previous chapter and 

after some arrangements at (7), we can get an expression for flow  .      
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 
2 4

8
2

j j kl

k

  
   

This is an algebraic non-linear (quadratic polynomial) equation in respect to . Given as inputs the 

pressures ( , ,A B pleuralP P P ) of the system we can easily calculate the two solutions using the 

discriminant. Due to natural restrictions the negative solution is rejected and only the positive one is 

accepted  8 . For this purpose a programming code in Fortran was written.  

Since this flow is constant, as we already mentioned, we can calculate other variables at every point 

of the tube (such as velocity and diameter profiles) for this calculated .  Adding some extra 

subroutines on the previous code, we compute the diameter profile, the ratio of speeds /u c , local 

Reynolds number too. 

4.1.2 Results 

In the beginning, we start solving the equation (8) for a single airway tube with specific parameters

, , ,A B pleuralz P P P to get the flow rate   through it. Some tests are presented in the Table 3 below. 

Test

#  

.Gen z     L z m   AP Pa   BP Pa   pleuralP Pa  l

s

 
   

 

1. 0 0.1200 1000 500 0 5.026 

2. 0 0.1200 1000 200 0 6.190 

3. 0 0.1200 1000 500 200 4.928 

4. 0 0.1200 1000 500 1500 4.108 

5. 3 0.0076 1000 500 0 1.578 

6. 3 0.0076 1000 500 1500 0.381 

7. 6 0.0090 1000 500 200 0.196 

8. 9 0.0054 1000 500 0 0.052 

 

Table 3: Values of flowrates   for a different couple of parameters , , P , ,A B pleuralz L P P  

Some primal results can be concluded here from Table 1, even if the sample of tests is very small. 

A crucial notation that needs to be reminded is that every generation has a unique constitutive wall 

behavior. So, there is a hidden parameter that lies under the generation z value, which must be taken 

into consideration too.  
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 A greater 
A BP P P    increases the airflow  , since it is the driving force of the flow. 

 A bigger 
pleuralP  strangles the pipe and reduces the   flow. 

These results also agree with the intuition. However, as we will see in a more detailed examination 

next, they are not valid for every case. 

Parametric analysis 

To get a more precise picture, we solve the equation (8) parametrically for 
BP  and 

pleuralP  with the 

addition of an extra subroutine (Parametric_analysis) at the basic code. The results are condensed in 

one diagram that is presented next. 

 

Figure 4.1.1:   -  A BP P P   graph 

As the title of the graph suggests, these results refer to a pipe with constant parameters 2000AP Pa  

and for generation 6z  . This is the general and representative picture of the diagrams we got for other 

AP  and z  values too, which were only differentiated quantitatively. Thus, the analysis that follows 

below can be expanded and apply to other cases. 
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The values of 
BP  starts from 0  to and 

pleuralP  is given the discrete values

 0, 500,1000,1500, 2000, 2500, 3000 . It is worth mentioning that although 
AP  remains constant, the 

transmural pressure 
,tm AP  will change, since 

pleuralP  varies. 

The first observation we can make immediately from the way that curves are stacking, is about the 

dependence of  in respect to 
pleuralP . Low pleuralP  curves are above the higher once for each

( )A BP P P   . We can confirm now that an increase in pleuralP  leads to a decrease in the airflow  .  

A more interesting behavior appears when we examine the shape of the curves. First we can see that 

there are 2 types of curves. The curves for
pleuralP {0,500,1000,1500}  that have a maximum value max  

and the curves for
pleuralP {2000, 2500}  that increase at the start and then remain almost constant. More 

specifically, an example for each case will be examined next.  

The curve for 1000pleuralP   has a maximum at 540 Pa   with a flow rate of max 0.244 L/ s   

and after that point the airflow decreases and eventually at 1400 Pa  ,   remains almost constant 

and independent of  .  

The curve for 2000pleuralP   rises fast to a flow rate of 0.025 L/ s   and then remains constant 

around this value for the whole range of  . This means that after a certain value of 
pleuralP  the airflow 

  is independent from the effort   that we apply. 

This is a very interesting and important result, which agrees with tests on human expiratory flow that 

was made (spirometry) and the same flow limiting phenomenon appeared. 

An alternative view of the previous graph is the 3D diagram: 
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Figure 4.1.2: Parametric analysis in a 3-D graph 

 

4.2 Calculation of Profile 

A very intriguing question that arises next is what is happening along one of those tubes, especially 

those where flow limitation is observed. With that in mind, we try to calculate the profiles of  P x , 

 u x  and other parameters across x axis that will give us more insights of the flow limiting 

phenomenon. 

The basic principle under which we create the algorithms for those profiles is the fact that flow rate   

stays constant across the whole path of the pipe. (Although, we already explain in the construction of 

the model at Chapter III, that constant flow is an assumption and the flow of mass is 1D.) 
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4.2.1 First algorithm 

At first, in order to compute the profiles we create the Profile_1 subroutine. This subroutine uses an 

iterative convergence method that guesses the outlet pressure 
xP  until    converges. The Figure 

contains a schematic diagram of the algorithm. In more detail, we start by calculate the flow 
0  

through a pipe from equation (7) with parameters 
AP , 

BP , 
pleuralP , L . Then, we solve again the same 

equation but with parameters
AP , est

xP , 
pleuralP , x . We discrete the L  length into N dx  so that each 

space-iteration i has a length of x i dx  . For every x , by giving an initial estimation of outlet pressure 

est

xP  we calculate a new est and simply try to converge that est to the desirable 
0  by changing 

est

xP . After convergence occurs est

x xP P  ,  x xD D P  and 
0

2

4
x

x

u
D


  can be determined.  

 

To sum up, this method functions as if it is computing the outlet pressures xP  of N tubes, each one of 

them has resulted from an internal iteration process until its est  becomes the same as the flow 0  

(from the tube with length L ). 

Results of Profile_1  

The curves that were calculated are realistic and acceptable for a sufficient range of values in which 

they were tested. In the following Figures, profiles of  P x and  D x  are plotted. 
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Figure 4.2.1 - 4.2.2: Profile of  D x and  P x  with a set of inputs 2{ 9AP cmH O , 28BP cmH O ,

210pleuralP cmH O  , 0.009 }L m  

On the other hand, there were cases of unnatural and infeasible solutions. An example is presented 

next. 
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Figure 4.2.3: Problematic solution of Profile_1 of  P x  with a set of 2{ 5AP cmH O ,

20BP cmH O , 20pleuralP cmH O  , 0.009 }L m  

The problem may not be clear at first here, but with a closer look we can see that the pressure at 

0.009x L m   differs from the pressure we give as an input. Initially we calculate the flow 

0.105 /Q L s  for a 5 0A BP P P     , and then the profile results with a total 

5 3.8A BP P P      only. 

This was not a unique case, but under some circumstances this problem continues to appear. For this 

reason, we resort to another approach of the profile’s calculation.   

 

4.2.2 Second algorithm 

In this case, instead of using the algebraic equation (7) we start from its differential form (5) which is: 

 2

2

5

1

dP f

udx

c






 

The idea behind this approach lies in the definition of the local derivative 
dP

dx
.  
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The right-hand side of equation  5  consists of: 

 f  
4

128
ReA A

A

f a b
D






    

 u 0

2

4
A

A

u
D


   

 c  
 

1

2 /

A
A

A

D
c

dD dP
   

Subsequently, the parameters that depend on the position, x, are: 

 Re 
4

Re

2

A

AD








 
 
 

 

 D   A

A tmD D P  

 
dD

dP
  A

tm

A

dD d
D P

dP dP
  

As we can see the derivative 
dP

dx
 can be computed for a given tmP , since  A

tm

A

dD d
D P

dP dP
  and  

 A

tmD P  are constitutive properties. So by starting from AP  we can compute the local derivative at A . 

After that we choose a sufficiently small P  step (so that P dP  ) and solve for the required dx  

step from 0Ax  , or in mathematical terms: 

2

2

,

1

dP f
M

udx

c


 



 

where M  is the local value of the derivative. 

1 A

dP dP
dx x x

M M
     

Finally, the process is repeated with the new starting point being 1 AP P dP  . 
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This way of calculating the profile is more efficient, since no convergence method is required. Another 

important difference between the 2 algorithms is that on the one hand Profile_1 discretes the length 

L at N dx  and returns the resulting pressure P , on the other hand Profile_2 discretes the pressure 

distance into smaller steps of dP  and the result is the distance x  from the inlet of tube. 

 

Results of Profile_2 

The main focus of Profile_2 is to check if its solution differs from the Profile_1, especially for the 

problematic cases we analyze previously. For this purpose, we present the solution for the same 

parameters as in Profile_1’s example. The new solution is plotted on Figure 4.2.4  
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Figure 4.2.4: Problematic solution of Profile_2 of  P x  with a set of 
2{ 5AP cmH O ,

20BP cmH O , 20pleuralP cmH O  , 0.009 }L m  ,. The blue line of Profile 1 is under the red line of 

Profile 2. 

This profile is also problematic but reveals more about the explanations of this error. To begin with, 

the solutions of both Profile 1 and 2 are identical in the range  0, 0.009x L  .  

For x L  it is irrational to get any values of pressure, but Profile_2 does. Since we determine the 

pressure P as input and calculate the distance x  with this method, we force the pressure curve to be 

continuous from 5  to 20 cmH O . This exposes the inability of the model to give us feasible solution 

for some cases, via irregularities of x . A behavior like this suggests that the solution is not unique 

because for a given x (bigger than L ) we have 2 values of P  at that point.  

At some point ( 0.016x  ) the curve changes direction and continues backwards, so the local dx  is 

negative. The last but the most crucial observation is hiding in the differential we solve.  

 
2

2 2

2

5 1

1

dP f dP u
dx

udx f c

c

 
     

  

 

Because, we know that 0dP  , 0f  , 0u   and 0c  , we can continue and calculate the conditions 

under which 0dx  . 

202 2

2 2

0

1 0 1 0 1 1

dP

f

dP u u u u

f c c c c





     
             

     
  

u c   

The equation  5  seems to have a mathematical limit of  1
u

c
  that needs to be explored further. But 

firstly, we have to examine the values of that ratio for more cases. Again we solve parametrically (by 

changing the quantities BP  and 
pleuralP ) but this time the computations are made for ratios 

A

A

u

c
 and 

B

B

u

c
 at the inlet and outlet respectively of every tube. 
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Figures 4.2.5 -  4.2.6 : Variation of velocity rate at point A and point B with a set of  {

2000AP Pa , 2000 0BP Pa  } 

It becomes clear from these 2 graphs, that the condition of 1
u

c
  is violated only at the exit point B  

of some tubes and there are lots of cases that this violation occurs. 
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Next, those data lead us to test a number of profiles. We check the profiles for some cases with a 

1B

B

u

c
  and some others with 1B

B

u

c
 .  The results showed that there is a relationship between 

problematic profile behaviors and the ratio of velocities at B . More specifically, when 
B Bu c  the 

profile fails.  

 

4.3 The correction Φ=cA 

Considering the above, we tried to find out a solution which will be able to give us answers when the 

ratio 1B

B

u

c
 . The correction that arises as a solution, comes from the enforcement of the air velocity to 

not exceed the wave propagation speed along the tube. As we already explain, this is a reasonable 

assumption mathematically. The velocity of air gets a maximum value equal to wave propagation 

speed at every point. From this restriction, we can calculate a maximum limit for   inside a tube. The 

flow rate at any point of the tube have to be equal to u A  . According to the above, the condition 

u c  results in the maximum restriction of the flow max c A   , where ( )c c D  and  

 
2

4

D
A A D


  . This is a limit that cannot be exceeded at any point of the flow. But at the same 

time the airflow must be constant through the whole tube, due to the conservation of mass. 
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Figure 4.3.1: A plot of flow rate   versus  
u

x
c

 across a tube with parameters 2000AP Pa ,

500BP Pa , 0pleuralP Pa  , 0.009L m . 

In Figure 4.3.1 , we can observe the change of the restrictive max along the tube for a case where the 

1
u

c
 was reached at some point x . The blue line represents the constant flow   that comes from the 

equation (8) (Filoche’s model). After the point the two lines intersect, the limit of maximum airflow 

is violated, since   is higher than 
max . The function of 

max ( )x  is strictly decreasing in every set of 

parameters. So the lowest value of 
max ( )x  always appears in the outlet of the tube (at point B ).  

A proposal that partially solves the problems is to satisfy simultaneously those 2 restrictions ( max 

and ( )x constant   )  by changing the computational model with a condition. When a calculated 

flow exceeds the flow restriction  max   at any point (and consequently at outlet B ) we will 

recalculate the flow as  max (B) cB BA     since it is the lowest feasible value (
' at Figure 4.3.1), 

but otherwise   remains the same (equation (8)). 

The relation for   that applies with the modified model is: 

   

   

 

2

max

max

4
8 , 8

102

9 , 8B B

k jl k
if

j

c A if

  
  

  


   

 

In other words, the resulting   from equation (8)  (Filoche’s model) is checked for the case that   

exceeds max (B) . When this violation occurs the   is again computed from the simplified equation 

(9) . In a way, this model forces the flow to get maximum speed c always at point B  and because the 

ratio 
u

c
  strictly increases along the tube we are not getting ratios 1

u

c
  before point B . 

It is worth noting that equation (9)  is a very simplified model and the pressure ,tm BP  is the only 

unknown variable to determine the   value, since  ,B tm Bc c P  and  ,B tm BA A P . 

Results 

This correction is added to the computational process and then a new parametric analysis was made. 

The previous and new results are merged in a single diagram for comparison between the 2 approaches. 
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Figure 4.3.2: Graph P - parametrically for 
pleuralP , where the dotted lines corresponds to the 

initial model from equation (8)  and the continuous lines to the modified model  from equation (10)  

As a quick reminder, the concept of the parametric analysis is to present with a condensed way the 

resulting flow rate for many different pressure scenarios on the boundaries of a tube. Each curve is 

defined from a specific external pressure field and each point on it has a different driving force P  

across the channel. 

The new curves which are created provide different results above the maximum point Φmax in each 

generation. The next question that arises is which of the two models approach more accurately the 

actual behavior of the tube. 

It’s easy to observe that the curves afterward applying the correction cA , converge into the same 

minimum value min without affected by the size of pleural pressure. This result, however, doesn’t 

correspond to our intuition, as we expected the tubes with greater external pressure to provide smaller 

amounts of flowrates by setting the same pressure drop. Bearing this in mind and comparing the two 

models and their curves, we realized that the first determination of Filoche confirms the above thought 

which leads us to consider that Filoche’s model is more acceptable. 
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5. The mechanism of flow limitation 

It has been clear that whenever the velocity of air approaches the wave propagation speed the model 

of Filoche isn’t able to predict the behavior of the tube. According, also, to S.V. Dawson and E.A. 

Elliott (1977) this condition leads to a phenomenon which appears only in elastic tubes and is known 

as ‘’flow limitation’’. It has been referred also in chapter 1 as the basic mechanism of Starling Resistor. 

So, in this chapter we are trying to describe in more detail this mechanism and giving explanations 

about the relation between human forced expiration. The chapter ends presenting a more explicit and 

alternative depiction of flow limitation as a waterfall.  

 

5.1 Introduction to flow limitation  

In rigid and fixed diameter tubes, the value of flowrate variates proportionally with pressure drop (

P  ). This, however, doesn’t happen in tubes with deformable walls such as bronchioles. Due to 

constant drop of airway pressure and the act of external pleural pressure, the cross-section area 

narrows. Especially, in deeper and more compliant generations this variation is more intense. As a 

result, the velocity of air gets increasingly greater values in order to balance the value of flowrate and 

satisfy the equilibrium of mass. According to this, it is possible in some point the air velocity to 

increase so much that reaches the wave propagation speed. There, the flow becomes limited causing 

the partial collapse of tube wall Figure 5.1.1 

 

Figure 5.1.1: The collapse of bronchiole (http://rc.rcjournal.com/content/62/9/1212/tab-figures-data) 

The narrowest point where flow limitation occurs is called ‘’choke point’’ and defines the critical 

pressure drop in which flowrate gets the maximum value ( max ). Above that point the flowrate remains 

http://rc.rcjournal.com/content/62/9/1212/tab-figures-data
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constant despite possible increases in driving pressure. This effect has been observed from the curves 

we got in chapter 4, solving parametrically the Bernoulli equation in which after a specific point, an 

increase in pressure drop (
A BP P )  didn’t affect the value of flowrate Figure 5.1.2.  

 

Figure 5.1.2: ‘’Flow limitation’’ is more clearly in the curves which have greater pleural pressure 

( 2000,2500,3000)plP   where after a small pressure drop the value of flowrate is constant. 

 

5.2 Forced expiration 

This phenomenon is observed also in forced expiration. At first, forced expiration is an exhalation 

procedure that is accomplished with a fast and strong release of air that preceded by deep inspiration 

from nose or mouth. In medicine, this value of forced flowrate can be measured and is extremely useful 

in pulmonary function tests (spirometry) as it checks the condition of the lungs, Figure 5.2  
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Figure 5.2: A Comparison between normal and obstructive lung (https://geekymedics.com/spirometry-

interpretation/) 

During forced expiration the contraction of expiratory muscles increase pleural pressure plP . This 

causes two opposing effects: 

 It increases the upstream driving pressure AP  inside alveoli which tend to increase flowrate 

 It leads bronchioles to narrow even more increasing this way the resistance of the flow due to 

friction forces.  

According to Bernoulli’s principle and Lambert notes the total energy of air in some point before choke 

point is determined from the total energy in alveoli 21

2
A AP u  reduced by the total friction losses 

0

(y)

x

f dy . As the airway narrows the term of friction losses increases and a part of lateral pressure ( P

) converts into dynamic pressure ( 
21

2
u  ). The interaction between these two components (friction 

losses and dynamic pressure) lead to strong loses of lateral pressure and as soon as air velocity reaches 

the wave propagation speed flow limitation is produced (World Congress of Medical Physics and 

Biomedical Engineering 2006). Further increases in effort (i.e. blowing more forcefully) will not affect 

the value of flowrate cause the narrowing depends on the surrounding pleural pressure Ppl. The 

transmural pressure will not be affected because the intra-airway pressure is increased by the same 

https://geekymedics.com/spirometry-interpretation/
https://geekymedics.com/spirometry-interpretation/
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amount of pleural pressure does. So, the difference between inside and outside pressure will be the 

same as before. 

 

5.3 The analogy of waterfall 

This independent relation between pressure drop-flowrate and in general the flow limitation 

mechanism present similar behavior as a flow in a waterfall (Wagner,1994), Figure 5.3 

 

Figure 5.3 : Flow limitation as a waterfall (https://www.researchgate.net/publication/7570845_Auto-

positive_end-expiratory_pressure_Mechanisms_and_treatment) 

The flowrate in a waterfall depends on the altitude difference between upstream pressure and the edge 

of waterfall. The downstream pressure which is determined from the height of waterfall can’t affect 

the flowrate at the top. This parallels the case of flow limitation where the pressure difference between 

alveoli and airway pressure ends cannot influence the flowrate. In other words, the airflow is 

determined from the gradient of alveolar pressure and critical pressure (‘’choke point’’) and not from 

downstream pressure. So, increasing the pressure drop (effort) is even as increasing the height of the 

waterfall. 

 

 

https://www.researchgate.net/publication/7570845_Auto-positive_end-expiratory_pressure_Mechanisms_and_treatment
https://www.researchgate.net/publication/7570845_Auto-positive_end-expiratory_pressure_Mechanisms_and_treatment
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6. Outline of more detailed modeling 

As we are trying to explore further the model of Filoche and Florence and its limits, we realize that 

whenever the mechanism of flow limitation occurs the prediction of pressure along the tube is not so 

simple. The reason seems to be that the basic assumptions which have been made in Filoche’s model, 

cease to exist affecting critically the flow and the general results of Bernoulli’s principle. In this section 

we discuss these assumptions and how they may be relaxed as flow limitation develops. More 

specifically, we touch on three issues: multi-dimensional effects, non-cylindrical tube collapse and 

time-varying phenomena. 

The analysis of Filoche and the simplification of it, is based remarkably οn the assumption of one-

dimensional flow. More specifically, the value of velocity and pressure in all numerical processes was 

depended only on the position along the tube. Even though this assumption is reasonable in most cases 

and leads to physically acceptable results, in the case of flow limitation the behavior becomes more 

complicated. Considering as known the geometry of bronchiole, the general effect is similar to the 

flow in a rigid tube with a converging and a diverging section, Figure 6.1. 

 

Figure 6.1: The velocity profile  U x  in a nozzle-diffuser configuration 

As we can notice, before the throat area, the flow is uniform and the boundary layer doesn’t separate. 

The reason is because the direction of the flow agrees to the decrease of static pressure (favorable 

gradient). However, as the air passes the throat the expanding area forces a constant deacceleration, 
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increasing this way its static pressure (unfavorable gradient or adverse pressure gradient). If the 

diffuser’s angle is too large it increases the disturbed flow and leads to a more evident boundary layer 

separation. This detachment forms backflows which increase energy losses and they have to be 

included in overall analysis. The above scenario could lead to a throat that moves towards the inlet 

with increasing air flow rate. 

A consequence of flow limitation, which referred also in previous chapter, is the collapse of the elastic 

tube. Due to the prevailing conditions inside and outside, the tube wall isn’t able to hold a circular 

cross-section area. The shape of airway varies in a different way (Grotberg, Jensen ,2014) Figure 6.2. 

 

Figure 6.2: Different shapes of cross section area as the transmural pressure drops 

Experiments which made in Starling resistor showed the above views of surface. For 0tm eP P P  

the tube is fully inflated and the area circular. As the transmural pressure becomes slightly negative 

the elastic tube tend to form an elliptical cross section area depending on tube stiffness. If the 

transmural pressure drops even more the tube collapses and it can lead to the contact of opposite walls. 

In lungs this complete collapse of the walls can occur in smaller diameter and thicker walled 

bronchioles (Bertran, 1987). So, in choke point and above it, this phenomenon is more intense and a 

consideration of circular cross section 2* / 4A D  seems to lead to inaccuracies.  

Moreover, self-excited oscillations which can be observed in the flutter of flags in the wind or in the 

wings of airplane whenever a critical speed is exceeded appear also in forced expiration. Experimental 

studies (Luo, Pedley, 1996) have shown that flows with high Reynolds number and large deformations 

of elastic tube wall can cause large amplitude self-exited oscillations. They arise from the energy 
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transfer of the fluid into the elastic wall which is accompanied with an expansion of it. These 

oscillations influence the analysis and the equations that govern it, demonstrating that the time 

dependent terms cannot be neglected.  

A one-dimensional model that describes these unsteady conditions for the case of blood flow has been 

described by Larson, Bowman, Papadimitriou, Koumoutsakos, Matzavinos (2019).: 

 

Figure 6.3: Schematic of one-dimensional and time-varying artery 

The partial differential equations that have been produced are derived from the conservation of mass 

and momentum/Navier-Stokes, assuming viscous, incompressible and 1-D axial direction flow:  

 

Here,   is the flow density and rK is a parameter representing viscous resistance per unit length, 

given by  22rK    in terms of the viscosity   of blood and the chosen velocity profile. 
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Conclusions 

This paper achieved some of its primary goals. More specifically: 

 the presentation of interesting biological and industrial systems where flexible pipes are applied  

 the development of constitutive equations which relate the transmural pressure to the diameter 

and the mechanical properties of elastic tubes 

 the construction process of Filoche’s model explaining it and building it from the general mass 

and energy equilibrium in an open system 

 the calculation of flowrate for a different set of parameters and the production of curves that 

reflect not only this variation but, also, the phenomenon of ‘’flow limitation’’ 

 our effort to extend the analysis in order to provide detailed results about the pressure drop in 

a tube, and the problems we faced with un-realistic solutions due to flow limitation  

 a more detailed description of flow limitation and the consideration of effects that were 

neglected in the analysis 

 

 

 

 

 

Recommendations for future work 

This thesis stigmatized from a sort of issues that took a lot of time to understand and it would be 

interesting, despite the complexity, to be presented in a future research: 

 a research for a different model that corresponds to flow limitation and the effects that follow, 

in order to receive acceptable results for the variation of pressure in a single airway 

 a further investigation about the results of this thesis, each one has its own interest, to explain 

more clearly the consequences of flow limitation 

 a calculation of airflow using analytical tube models as presented in table 1 and a comparison 

between Lambert’s model 
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Appendix: Program (Elastic_tube) for the calculation of airflow Φ and the pressure profile P(x) 

during the breathing procedure using Lambert’s parameters. 

Depending on the value of variable Option, the main part of program can call 3 basic subroutines 

(Parametric_analysis, Profile_1, Profile_2) in order to calculate the flowrate or the profile. The 

algorithm of the main part is given below:  
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Subroutine Parametric_analysis calls iteratively the subroutine PressureFlow calculating the airflow 

Φ for a range of P(B) and Ppleural. Also, writes the results into the ‘’Parametric_analysis.txt’’ file: 
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Subroutine PressureFlow calculates for a given pressure difference and length, the value of flowrate: 
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Functions D(P), dD(P), h(Ptm) compute the diameter of the elastic tube, the derivative of diameter 

and the integral of D4(Ptm) which are necessary variables for the calculations: 
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Subroutine Curves calculates for each generation (z=0-16) and for a specific range of transmural 

pressure (Ptm) the surface ratio (α): 
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Subroutine Profile_1 calculates the variation of diameter D(x) and pressure P(x) along the cylindrical 

elastic tube using an iterative method: 
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Subroutine Profile_2 calculates, also, the variation of diameter D(x) and pressure P(x) using a 

numerical method: 
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Subroutine Prints write the results into the ‘’Result.txt’’ file:   

 


