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Abstract

This study presents an efficient numerical implementation of the bounding-
surface cyclic-plasticity model in a finite element environment, suitable for simulating
the structural behavior of metal components subjected to strong cyclic loading. The
model is based on the Dafalias-Popov “bounding surface” concept, equipped with
appropriate enhancements that allow for efficient simulation of repeated, alternate
inelastic deformation. In the first part of the present study, the numerical
implementation of the “bounding surface” model is presented. The numerical
implementation is performed using an efficient elastic-predictor/plastic-corrector
method. Special features of the model are examined, focusing on the influence of several
material parameters on cyclic material response. The model is also employed for
simulating laboratory physical experiments. First, stress-controlled and strain-
controlled small scale experiments are simulated, in strip specimens made of regular
(mild) steel and high-strength steel. Upon appropriate calibration from the small-scale
tests, the model is employed for predicting the mechanical response of a large-scale
physical experiment.

In the second part of the present study, the mechanical behavior of steel pipe bends
(elbows), subjected to strong cyclic loading conditions, is presented. The elbows are
modeled with finite elements, which account for the measured elbow geometry and for
the actual properties of steel elbow material. To simulate material response under
repeated inelastic deformation, the cyclic-plasticity material model, discussed in the

first part of the study, is employed, based on the bounding-surface concept. Very good
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comparison has been obtained in terms of global load-displacement response, as well as
in terms of local strains and their accumulation over the loading cycles (ratcheting
rate) at specific elbow locations. The good comparison between tests and numerical
results indicates that the bounding-surface model can be an efficient tool for predicting
accurately the mechanical response of piping components under severe cyclic loading
conditions. Using the validated numerical models, extensive results are obtained on the
effect of internal pressure on strain and deformation accumulation at different locations
of the elbow outer surface, for different values of pipe thickness.

In the third part of the present study, the mechanical behavior of fillet-welded steel
joints is examined numerically and experimentally. It is motivated by the seismic
response of unanchored steel liquid storage tanks that exhibit repeated uplifting of the
base plate, leading to low-cycle fatigue failure of the fillet-welded connection of the
tank base plate with the tank shell. Low-cycle fatigue experiments on small-scale fillet-
welded joints are performed, representing the connection of the base plate with the
tank shell. Material tests have been conducted prior to fatigue tests, to identify the
mechanical properties of the base plate material, whereas the weld is examined with
stereo optical microscopy and micro-hardness measurements. The fatigue experiments
aim at determining the relationship between the strain developed at the welded
connection and the corresponding number of cycles to failure. Inspection of the failed
specimens determined the “zone” size at the upper and the bottom surface in which
microcracks occurred. Numerical simulations are also performed, to elucidate special
features of joint behavior, complementing the experimental results and observations.
The main conclusion is that the fillet-welded connections under consideration are
capable of sustaining a substantial strain levels for a significant number of cycles, before
low-cycle fatigue failure occurs. Furthermore, a strain-based fatigue curve is developed,

which can be used for the seismic design of liquid storage tanks.
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AOMIKH XYMIIEPI®OPA METAAAIKQN MEAQN YIIO IXXYPH
KYKAIKH ®OPTIXH

I'TANNOYAA XATZOIIOYAOY

[Mavemompto Oeooariag, Tpnpa Mnxavoldywv Mnyavikwv, 2019

EmtBAénwv KaBnyntg: Ap. Zmupidwv Kapapavog, KaBnyntig YmoAoylotikwy

MeBodwv-Ilemepaopéva Etoxela Twv Kataokevwv

Mepidnym

Itnv mapovca epyocio mapoucltaletal n  aplBpuntiky oAokAfpwon  evog
KQTOLOTATIKOU [LOVTEAOU KUKALKNG TIAQLOTLKOTNTAG «OPLAKNG ETLPAVELOG» OE UTIOAOYLOTIKO
TePPAAAOV TIEMEPACPEVWY OTOLXELWVY, KATAAANAO yla tnv Tpooopoiwon TnG SOoptkng
oupTePLdOPAG PETOAAKWY OTOLKElWV, TIOU UTIOKEWTAL O LOXUpr KUKALk ¢option. To
povtélo Baoiletal otnv Wea tng “oplakng emudpavelag” npotewopevo anod toug Dafalias-
Popov, kat gpmloutiletal pe ta KATAAANAQ XOPOKINPLOTIKA, WOTE VO TIPOCOLOLWVETOL
KaAUTepa N €AAOTOMAAOTIKA cupTEPLPOPd TOU UAWKOU O€ KUKALKH ¢$OpTLon. ZTO MPWTO
AP aUTAG TNG SlatpBrig ToPoUCLAlETAL TO KOTAOTOTIKO pOVIEAO Kkal Sivovtal
AemtopEPeLeG yla OAa Ta epyaleia mou €lonxBnoav oTo LOVIEAO WOTE va TO EVLOXUOOUV.
Eniong mpooopowwBnkav newpdapata pikpng kKAipakag umo KUKALA ¢option, eAEyxoviag Tnv
eniBaAropevn moapopopdwon kat tnv tdon. Mepattépw, e TN XPAON TWV TEPOPATWY
pwikpnG KAlpakag ywa tn Pabpovopnon TOU KATOOTATIKOU [LOVIEAOU TPOCOopoLwonkav
TIELPALATO LEYAANG KALLOKAG.

Ito bevutepo pEPog G SlatplPrg, TaApoucldlETOL N PNXOQVIKA oupTepLdopd
HETOAIKWY KopMUAwWY cwAnvwtwv otolkelwv (elbows), mou umoPdaAlovtal oe Loxupn
KUKAKR ¢option. OL kopmUAoL CWANAVEG TPOCOROLWONKAV |LE TEMEPACUEVO OTOLXELQL
AapBavopévwy umoPly NG Yewpetpiag kat Twv WOOTATWY ToUu UAWkou. Tl tnv
TPOCOPOLWaoN XPNOYLOTOLONKE TO TIPOTELVOLEVO KOTAOTATLKO [LOVTEAO KaL N CUYKPLON TWV
0POUNTIKWY QMOTEAECPATWY [E TA TEpapaTikd Sdedopéva eivat moAl koA 1660 oTO
«OAKO» eminebo SUvapnG-peTATONIONG 000 KOl OTO «TOTUKO» emimedo mou adopd
OUCCWPEUOT TAQOTIKWV Ttapapopdwoewv. Me tn xprion Twv dlwv apBpnNTIKWY PLOVTEAWV

TIPOY|LOTOTIOLONKE ETIUTAEOV [LLOL TIOPOLETPLKN HEAETN YLl TNV EMUPPON TNG ECWTEPLKAG

viii

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 16:19:01 EEST - 137.108.70.13



nieong Kal Tou TAXOUG TOU KOPTUAOU PETAAALKOU TUAPATOG OTN CUCCWPEUON TIAQCTIKWV
ToPopopdWoEWV.

210 tpito pé€POG TNG mapovoag SLOTPLPAG TOPOUCLATETAL N WNXAVLKY) CUpTEPLDOPA
ouvykoMntwv (fillet-welded) petalikwv ouvdéoewv. To kivnTpo autng tng LEAETNG elval
n Soptkn ocupmepldopd N ayKUPpWHEVWY RETAAAKWY Se§apevwy, oL onoieg umoBdailovtatl
oe enavalopBavopevo avaonkwpo tg Baong tng defapevng, To onoio odnyel oe oAyo-
KUKALKNA Komwon  A0yw  emavoAapBovOopevwy  TAACTIKWYV — TOPOLOPOWOEWV.
MpaypatomoBnkayv mePAAto UAKOU WOTE VO IPOCGSLOPLOTOUV OL LBLOTNTEG TOU UALKOU
KOl TLELPApLOTA O PLETOAAIKEG CUYKOAANTEG OUVEEDELG WOTE VA IPOCSLOPLOTEL N OXEON TWV
QVOTTTUCCOPEVWY TAPApOPPWOEWY KOVIA oTtov moda Tng oUyKOAANoNG AOYw KUKALKAG
bopTIoNnG Kal Tou aplBpol Twv KUKAWV pEXPL TNV actoxia. MEeTA To MEPAG TWV TELPAPATWY
npaypotomnolBnke avtodio ota Sokipla, WoTe va MPoobLlopLloTeL N {wvn TWV PWYRLWV 0TV
TMAVW Kal TNV KATw TAgUpd tnG Pdong tou Sokyiiou. MpaypotomoiBOnkav oplBpnTIkES
TIPOCOPOLWOELG PWE OKOTIO TOV UTIOAOYLOWO TOPOjLopWOEWY OE ONnpelol OTIOU TIELPALOTLKA
Sdev Atav Suvatdv va petpnBolv, aAd KoL ylo TNV EMEKTOON TWV TELPOLOTIKWY
QMOTEAEOPATWY. To BACLKO CUNTIEPACILO TNG LEAETNG TWV PLETAAAIKWY CUVEETEWV Elval OTL
UIopoUV va UTtooTtoUV TIOAAOUG KUKAOUG |LE peYAAeg apapopdwoelg. TENoG pe Bdon ta
QmoTEAEOpLATA TIPOTAONKE Lot KApPTUAN KOTWongG, n omola pnopet va xpnoyLomotnOel ya

TOV OELOWLLKO OXESLOONO [N OYKUPWHEVWY SEEQPEVWV.
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Chapter 1 - Introduction

An efficient numerical implementation of the bounding-surface cyclic-plasticity model
in a finite element environment, suitable for simulating the structural behavior of metal
components subjected to strong cyclic loading, is presented in the present dissertation.
The model is based on the Dafalias-Popov “bounding surface” concept, equipped with
appropriate enhancements that allow for efficient simulation of repeated, alternate
inelastic deformation. In the first part of the present study, the numerical implementation
of the “bounding surface” model is presented. In the second part of the present study, the
mechanical behavior of steel pipe bends (elbows), subjected to strong cyclic loading
conditions, is presented using the present material model. Finally, in the third part of the
present study, using the present material model, the mechanical behavior of fillet-welded

steel joints is examined numerically and experimentally.
1.1 Constitutive models for cyclic plasticity

Cyclic plasticity constitutive models have been motivated by the need to describe the
mechanical behavior of metals in the inelastic range under repeated loading conditions.
Metal components of structural and mechanical systems are often subjected to severe
cyclic loading, beyond the elastic regime. As a result, the accurate description of metal
cyclic behavior in the inelastic range through simple, efficient and computationally robust
cyclic plasticity models is necessary. The earthquake response of structural steel members
[1], or the mechanical response of process/power piping systems under seismic or shutdown
conditions [2], are typical examples of this type of loading. Furthermore, severe cyclic
plastic deformation is also induced in steel pipelines during their installation in deep
offshore locations using the reeling method [3]|[4]. Those repeated excursions into the
inelastic range of the metal material could lead to excessive accumulation of plastic
deformation and, with the combination of other parameters, such as geometrical
imperfections, this may lead to structural failure.

Under repeated loading conditions, the mechanical response of the metal material is
well within its inelastic regime and it is characterized by several unique features. A first
feature refers to cyclic hardening or softening of the metal material, which may occur

under strain-controlled loading conditions. Experimental results have shown that carbon
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steels exhibit cyclic softening, whereas cyclic hardening characterizes the cyclic response
of stainless steels [5]. Furthermore, when a metal is subjected to non-symmetric stress-
controlled cycles (non-zero mean stress), it undergoes progressive increase of strain in the
direction of mean strain, a phenomenon often referred to as “ratcheting” [6]. In this case,
each hysteresis loop is translated with respect to the previous one because there exists a
residual deformation and the stress-strain loop does not close. Structural steels are
characterized by the presence of a plastic plateau during initial yielding of the material,
followed by the Bauschinger effect upon reverse plastic loading, so that plastic
deformation begins at a stress level significantly lower than initial yield, associated with
a gradual decrease of the plastic modulus of the material [7]. All the above phenomena
need to be accounted for towards reliable prediction of the structural response of steel
components.

To describe the mechanical behavior of metal materials under cyclic loading, significant
research effort has been devoted in formulating phenomenological plasticity models. The
existing literature on this subject is boundless and impossible to cover within this brief
introduction. Nevertheless, some notable publications are identified and categorized
herein, mainly with respect to the definition of the hardening modulus, which has a
paramount effect on cyclic material behavior. In the first category, the hardening modulus
is defined indirectly, by imposing the consistency condition on the yield surface, which
couples the hardening modulus with the kinematic hardening rule. Those models are often
referred to as “coupled models” [6], and may be considered as a direct extension of the
classical linear kinematic hardening models [8]. The model introduced by Armstrong and
Frederick [9], by adding a non-linear term, referred to as “recovery term”, in the evolution
equation of the back-stress tensor. Guionnet [10] proposed an enhanced version of the
Armstrong-Frederick model [9], where the recovery term is a function of both
instantaneous and accumulated inelastic strain, reproducing more accurately the
experimental ratcheting rate observed in experiments. In a series of publications,
Chaboche and his co-workers [11]-[14] enhanced the nonlinear kinematic hardening rule
proposed in [9] considering several superimposed hardening rules, for the purpose of
representing cyclic material behavior more accurately. The Ohno-Wang model [15] is also
a superposition of several kinematic hardening rules, where each hardening rule is a linear
up to critical value. Ohno and Wang [15] had also proposed a slight nonlinearity for each

rule at the transition from linear hardening to the stabilized critical state. Hassan and
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Rahman [16] and Islam and Hassan [17] discussed the effectiveness of the above models
and proposed further advancements for better description of the ratcheting response of
pipe elbows. Dafalias et al. [18] propose a multiplicative Armstrong and Frederick
kinematic hardening model and present comparisons of simulations and experimental data
in uniaxial cyclic loading which includes also ratcheting. A modification of the
aforementioned model was presented by Agius [19] in order to improve the modeling under
uniaxial constant and variable amplitude loading. A useful improvement of the nonlinear
kinematic hardening model [9] has been proposed by Ucak and Tsopelas [20][21],
accounting for the yield plateau in structural steels upon initial yielding, a concept also
followed by Chatzopoulou et al. [22] for simulating the cold-forming fabrication process of
longitudinally-welded pipes. A model which is capable to describe the yield plateau, the
cyclic softening and hardening and the Bauschinger effect is also presented by Hu et al.
[23], and the calibration of the constitutive model and the simulation of members
connections and frames made of structural steels with yield plateau is presented in Hu et
al. [24]. Moreover, there is a great interest to simulate the ratcheting of straight pipes
subjected to internal pressure combined with structural loading. Lee et al. in [25] present
the comparison of experimental with numerical results and present a constitutive model
which adopts combined hardening (isotropic/kinematic), and the kinematic part changes
between Chaboche/Burlet and Cailletaud [26] rule. The results are adequately but the
transition from elastic part to plastic is not smooth enough in stress strain response. Ohno
and Wang model has been used in [27] in order to simulate pressurized pipelines subjected
to axial loading. The comparison of the simulation with the experimental results for
ratcheting rate in both axial and hoop direction is adequate. Foroutan et al. in [28] has
simulated pressurized steel elbow pipes under cyclic bending having used the
Ahmadzadeh-Varvani model [29] which is a modified Armstrong & Frederick model.
The multi-surface plasticity model, introduced by Mroz [30] and Iwan [31], is another
extension of linear kinematic hardening [8], in an attempt to simulate the Bauschinger
effect and the smooth transition from elastic to elastic-plastic behavior of metals under
reverse loading. This model consists of several nested yield surfaces, where each surface is
activated when contact with its corresponding inner surface is established. An appropriate
kinematic hardening rule of the back stress has been proposed in [30], to ensure that the
inner surface will always remain inside its outer surface. However, the multi-surface

plasticity model may not simulate the ratcheting response of metals.
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The second category of cyclic plasticity models comprises the so-called “uncoupled”
models [32]. The main feature in those models is the direct definition of the plastic
modulus through an appropriate function, so that the plastic modulus is influenced only
indirectly by the kinematic hardening rule. Major early contributions in “uncoupled”
cyclic plasticity modeling have been reported by Dafalias and Popov [33], and
independently by Krieg [34], introducing the concept of “bounding-surface” or “two-
surface” plasticity, apparently motivated by the multi-surface plasticity models in [30]
and [31]. In this concept, in addition to the yield surface, an outer surface called “bounding
surface” is considered, which obeys kinematic hardening and the value of the hardening
modulus is a function of the distance between two surfaces. Drucker and Palgen [35] also
proposed a cyclic plasticity model in which the plastic modulus is assumed to be a function
of the second invariant of the deviatoric stress tensor. Furthermore, Tseng and Lee [36]
developed a two-surface model, where the outer surface, referred to as “memory surface”,
remains always centered at the origin and hardens isotropically every time its stress level
is exceeded, representing the biggest state of stress developed throughout the loading
history. A uniaxial two-surface model which can treat the cyclic behavior of the structural
steels within the yield plateau developed by Shen et al [37] and it generalized to a
multiaxial two-surface model by Shen et al [38]. Hassan and Kyriakides [5] and Hassan et
al. [39] used the above uncoupled models to show the advantages and disadvantages in
the state of the modeling of ratcheting phenomena, and compared with experimental data
from uni-axially and bi-axially loaded metal specimens. In subsequent publications,
Hassan and Kyriakides [40] [41] have presented enhancement of “uncoupled” models for
simulating ratcheting in cyclically hardening and softening materials, under uniaxial and
multiaxial loading. The concept of bounding surface models has also been adopted in order
to simulate geotechnical problems. Indicatively, Andrianopoulos et al. [42], and
Papadimitriou et al. [43] have used the bounding surface concept in order to investigate
geotechnical problems.

The numerical implementation of cyclic-plasticity models in a finite element
environment for nonlinear elastic-plastic analysis imposes several challenges. Numerical
integration schemes for “coupled” models have been reported in previous publications [44]
[45], and relevant integration algorithms have been incorporated in commercial finite
element packages [46] [47]. Several attempts have also been reported on the numerical

implementation of multi-surface plasticity, as reported by Montans [48]-[50] and Khoei
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and Jamali [51]. On the other hand, the numerical implementation of “bounding-surface”
models has received much less attention. A relevant numerical work was reported by
Varelis [52], who presented an implementation of the Tseng-Lee model [36] in ABAQUS,
in the form of a material user-subroutine, for simulating steel tubular members and piping
components under several cyclic loading. The major advantage of the uncoupled model
compared with the coupled is that because of the explicit definition of the hardening
modulus, and with an efficient calibration, an uncoupled model can take into account all
the features, appeared when the material is well within its inelastic regime, while the

coupled models do not have this advantage.
1.2 The mechanical behavior of metal components

In the present study, two applications are under consideration in order to comprehend
the aspects of cyclic plasticity which may appear due to cyclic loading. Each application
refers to different phenomena of cyclic plasticity.

The first application refers to the steel pipe elbows (also called pipe “bends”), which
are essential components of industrial piping systems in chemical, petrochemical, power
plants or energy terminals They can accommodate thermal expansions, and absorb other
externally-induced loading, and are considered as critical components for the structural
integrity of piping systems. In particular, their performance under strong cyclic loading is
of paramount importance for the structural integrity of industrial facilities. Pipe elbows
are very flexible with respect to straight pipes of the same cross-section, and their response
is characterized by higher stresses and strains at critical locations, a feature associated
with cross sectional ovalization. Under strong cyclic loading, elbows may exhibit
significant accumulation of plastic strain (“ratcheting”), which may accelerate failure due
to plastic collapse or low-cycle fatigue.

The second application examined in the present study refers to fillet-welded plate
connections, which constitute a quick and efficient method to tie steel plates and are
widely used in civil engineering applications, such as buildings or bridges, as well as in
marine structural systems such as stiffeners in ships and other floating systems. In several
cases, those welded connections are subjected to repeated loading which may lead to
fatigue failure. A specific application of fillet welds refers to unanchored liquid storage
tanks and, in particular, to the connection of the tank base plate with the tank shell.

When this connection is subjected to strong seismic motion, the overturning moment,
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caused mainly, by the oscillating liquid containment, and the relevant hydrodynamic
pressure on the tank wall may cause repeated uplift of the tank base plate. Under these
strong cyclic loading conditions, the connection of the tank base plate with the tank shell
is subjected to cyclic plastic strain.

Both aforementioned applications are of paramount importance for the industry. For
this reason, an efficient cyclic plasticity model is vital to describe accurately the
mechanical behavior of metals in the inelastic range under repeated loading conditions,
and to predict accurately the accumulation of plastic strain (“ratcheting”) and the plastic

strain with constant amplitude.
1.3 Scope of the present dissertation

The present dissertation aims at developing numerical tools for accurate and efficient
simulation of the cyclic inelastic response of metal components. The key feature of this
study is the numerical implementation of the “two-surface” model, initially proposed by
Dafalias-Popov [33] model, with appropriate enhancement of the hardening function, for
improving its ratcheting predictions. The constitutive equations are integrated
numerically using a simple and efficient method, outlined in Chapter 2, suitable for
implementation in a finite element environment, towards performing structural (large-
scale) calculations.

The effectiveness of the numerical model is shown in terms of its predicting
capabilities of physical experiments. First, stress-control (ratcheting) and strain-controlled
tests for regular and high-strength steels are simulated for the purpose of calibrating the
model and defining its parameters. Upon calibration, the model is employed to simulate
large-scale tests, in an attempt to demonstrate the numerical efficiency of the material
model discussed in Chapter 2 and its capability of predicting the structural response of
metal components under severe cyclic loading. It should be noticed that the use of
uncoupled plasticity models in predicting the structural response of metal components
under strong cyclic loading is novel, given that, almost exclusively, such simulations are
performed with coupled models. Therefore, the present study is aimed at offering an
efficient simulation tool. Its main characteristic refers to the explicit definition of
hardening modulus as a function of the distance between the two surfaces. However,

monitoring the relative position of the two surfaces, which obey mixed hardening,
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throughout the deformation history, imposes several numerical challenges, which are
accounted for in the implementation of the model, also described in Chapter 2.

Two engineering applications are considered in order to show the efficiency and
accuracy of the numerical model. The first application is presented in Chapter 3, and
refers to the structural response of steel pipe bends, also referred to as elbows, examined
experimentally in [53][54]. Those metal components are simulated rigorously using finite
elements and the “two-surface” plasticity model, calibrated from small scale strain and
stress-controlled tests. The numerical results are compared with experimental data in
terms of both global response (force-displacement) and local strains at the critical location,
which emphasis on ratcheting. In addition, using the validated models, the effects of
internal pressure and pipe-wall thickness on local strain at various locations are examined.

The second application is the low-cycle fatigue of L-shape fillet-welded steel plated
joints, presented in Chapter 4, motivated by the seismic response of unanchored
(uplifting) liquid storage tank. In the course of the present study, both experimental
testing and numerical simulations have been performed on fillet-welded L-joints subjected
to strong cyclic loading, representing the uplifting base plate of the tank. Furthermore,
small-scale tests have been performed, so that the “two-surface” plasticity model is
properly calibrated. The experimental data are compared with numerical results for the
purpose of demonstrating the effectiveness of the numerical model.

The main contribution of the present study refers to the efficient numerical
implementation of the “two-surface plasticity model” in a user material subroutine
(UMAT), accounting for all the features (plastic plateau, Bauschinger effect, ratcheting
etc.) appeared when the material is well within its inelastic regime, while the coupled
models do not have this advantage. The capabilities of the proposed enhanced model, are
demonstrated through the accurate simulation of the accumulation of strains (ratcheting)
of steel pipe elbows, subjected to strong cyclic loading and the prediction of the level of

strains, induced at a L-joint connection subjected to low cyclic fatigue.
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Chapter 2 - Numerical Implementation of Bounding-

Surface Model

An efficient numerical implementation of the bounding-surface cyclic-plasticity
model in a finite element environment, suitable for simulating the structural behavior of
metal components subjected to strong cyclic loading presented in this chapter. The model
is based on the Dafalias-Popov “bounding surface” concept, equipped with appropriate
enhancements that allow for efficient simulation of repeated, alternate inelastic
deformation. The numerical implementation is performed using an efficient elastic-
predictor /plastic-corrector method. Special features of the model are examined, focusing

on the influence of several material parameters on cyclic material response.
2.1 Description of the cyclic plasticity model

The plasticity model is based on the “bounding surface” or “two-surface” concept,
initially proposed by Dafalias and Popov [33], enhanced for the purpose of the present
study. The main feature of this model is the outer surface, referred to as “Bounding
Surface” and denoted as BS, which plays the role of a bound for the yield surface, denoted
as YS (Figure 1). Both the yield (inner) surface and the bounding (outer) surface can
harden by translating and changing size, obeying a mixed hardening rule under the
restriction that the entire yield surface must always remain within the bounding surface.
Hardening depends on the distance between the two surfaces, to be defined at a later
stage in this section.

During initial plastic loading, the flow rule is controlled by the yield surface. Upon
reaching the bounding surface, the two surfaces stay together at the specific stress point,
and the flow rule is controlled by the bounding surface. The two surfaces lose contact
when reverse plastic loading occurs. The expressions describing the yield surface and the

bounding surface are

F=%(s—a)~(s—a)—k—2=0 (1)
- 1 _ k?
F:E(s—b)-(s-b)-?_o (2)
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respectively, where § is the deviatoric stress tensor defined as S=6—P1 (o is the stress
tensor, P isthe mean stress and 1 is the identity second-order tensor), § is the deviatoric
stress on the bounding surface, a and bare the back-stress tensors associated with the
yield and the bounding surface respectively, whereas k and k are functions of the
equivalent plastic strain &, to be defined below, and define the size of the yield and the
bounding surface respectively. Additionally, the radii of the yield and the bounding surface
in the deviatoric space, denoted as R and R (Figure 1), are equal to \/% k and ,/2/3k
respectively. Furthermore, the following exponential function for k is adopted, which

describes the change of the size of the yield surface, due to Bauschinger effect:

k=0, +Q(-e"") (3)

where o, is the initial yield stress of the material, and @ and b are material parameters.
Without being restrictive, a similar function can be also assumed for the size of the outer
surface Kk .

The flow rule is expressed by the following equation:

£ =%(N~¢)N (4)

where H is the hardening modulus, N is a tensor normal to the yield surface,

3 1
=, /-——(s—-a )
2 |s—a|( ) (5)
and || is the Euclidian norm of a tensor. Furthermore, the rate of equivalent plastic

strain is defined as follows:

¢, =.|%8 2 (6)

whereas the hardening modulus H is defined directly through an appropriate function of
the "distance" O in stress space between points A and B shown in Figure 1. Point A
represents the current stress state on the yield surface “loading” point, while point B is
referred to as the “congruent point” of A, on the bounding surface, which has the same

outward normal vector N, as shown in Figure 1 (N =N ). Therefore,
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(s-a) (7)

bl

The following expression for function H has been proposed in [33],

- o
H(5,5,)=H+h 8
=i 2] ’
where H is the modulus of the bounding surface upon the two surfaces establish contact,
h is an important parameter to be discussed extensively in the subsequent sections, d,, is
the initial distance between the two surfaces and O is the current distance between the

two surfaces:

5=(5-5)-(5-9) (9)

A kinematic hardening rule is adopted for the motion of the yield surface during a plastic
loading increment. Among several existing rules, in the present study the rule proposed

by Mroz [30] is adopted:
a=pav (10)

where V is a unit tensor (V-v=1) along the direction of segment AB in the deviatoric

stress space, as shown in Figure 1:

v=‘§i_s|(§—s) (11)

and g is a scalar quantity evaluated from the consistency condition at the yield surface.

The translational motion of the bounding surface is coupled with the hardening of the
yield surface. There exist two possibilities depending on whether two surfaces are in
contact or not, which are examined below. One should keep in mind that the development
of plastic deformation is always associated with the motion of both surfaces, independent
of whether the two surfaces are in contact or not. This feature of the model affects directly
the relative distance between the two surfaces and the value of the hardening modulus,
as well as the stage at which contact of the two surfaces occurs, imposing a computational

challenge to be discussed in detail in section 2.2.

10
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Figure 1. Schematic representation of the two-surface plasticity model in the deviatoric

stress plane.

(a) YS and BS are not in contact

In this case, the evolution equation of the back-stress of the bounding surface is
b=a-Mv (12)

where M is defined by the application of the consistency condition for both yield and
bounding surfaces. From eq. (1), the consistency condition gives:

oF . oF . oF ok .
_.G+_.a+_—gq:O (13)
06 oa ok ¢,

Setting n the unit outward normal tensor to the yield surface and using eq. (4), one

readily obtains

6-n:\/§Héq (14)

11
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Inner multiplication with tensor V, and after some mathematical manipulations, eq. (13)

results in

1, 2k &
(n_v)(c-n)v—a—\ga(n.v)V—O (15)

Considering the bounding surface expressed in eq. (2), application of the consistency

condition and some mathematical manipulations result in:

1 . - [2dk &
niv)(c.n)v—b—\/;a(n.v)V—O 16)

and similar to eq. (14), one readily obtains:

-n:\/gl-_lg'q (17)

Combination of egs. (14) and (17) yields

—_~

Ql:

6-n=%(6-n) (18)

Furthermore, using eq. (18), eq. (16) can be written in the following form

1 H . [2dk €
— (. _b_ N 9 :0 ]_
I A AR EF Py e 19)

and finally, combining egs. (15) and (19) one obtains

.. 1. 1 H. (2 dk ) & 2( dk | &,
P e e E(TJWHTJH 20

From egs. (20) and (12), one can readily express scalar quantity M as follows:

M:{l_ﬂ}(d.n)_ 2 1 {dk_dl?]é 1)

H(n-v) V3(n-v){dg deg |*

q q

12
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(b)YS and BS are in contact

In this case, the evolution of back-stress b is controlled by the motion of the outer

surface
b=¢&m (22)

where m is the unit tensor (m-m=1) normal to the outer surface:

(s-Db) (23)

and & is a scalar parameter evaluated imposing the consistency condition at the bounding
(outer) surface. In this case, S=s (i.e. the loading point coincides with the congruent
point) and the back stress tensor a can be readily calculated from the following equation,

which comes directly from eq. (7):

§—b=%@—a) (24)

Finally, defining &=s—a, the fourth-order elastoplastic rigidity tensor D® is written as

follows:

9G?

b¥=D- kZ(H+3G)(a ) 2

where ® denotes the fourth-order tensor product of two second-order tensors, and G is

the shear modulus.
2.2 Numerical implementation of the constitutive model

The numerical implementation of the model follows an “elastic predictor — plastic
corrector” scheme. The incremental problem can be stated as follows: given the stress
state, the plastic definition (6,,a,,b,,&,); the current distance J, between the two
surfaces, and their initial distance d,, (to be discussed extensively in section 2.3) at stage
N, calculate for a given strain increment Ag, the new state parameters (6,,,,2,,5,b,.;,q.1)
, and the new distance J,,, of the two surfaces at stage n+1.

The elastic prediction (trial) stress ¢® is computed first

¢ =6, +DAs (26)

13
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where D is the fourth-order elastic rigidity tensor. If the deviatoric trial stress tensor
s® falls within the yield surface, i.e.

k2
F:%(S(E)_an)'(S(E)_an)_yso (27)

the elastic stress prediction is valid and the increment is elastic so that the final stress is

(e) )

equal to the trial stress (6,,=6""), whereas the other state parameters remain
unchanged within this increment (a,,=a,, b,,,=b, and ¢, =¢, ). If not, one should
proceed to the plastic-corrector process, described below.

Plastic correction starts with the calculation of factor y, (0<y<1), defined as the
fraction of the total strain increment Ag, so that the yield surface is reached. This strain
increment yAg is associated with elastic behavior, so that the corresponding stress on the

yield surface is
6" =c,+D(yAe) (28)

Considering that s", the deviatoric part of 6", is on the yield surface, the value of y is

readily calculated by inserting eq. (28) into eq. (1):

(&, .As)+\/(gn -As)2+(As-As)-(§k2—(§n-én)j

(As-As)

Y= (29)

where §, =S, —a, and As= s® =S, . Subsequently the distance between the two surfaces

is calculated from s" and its congruent point §°:

5= \/[(g“ —50) (57 -2 )} (30)

Clearly, from eq. (7), §°

n

and s” are related as follows:

§YS _b —

n

=~ |:?¢|

(s*°-a,) (31)

n
Furthermore, using the value of & from eq. (30), the value of the hardening modulus H
is computed from eq. (8). Subsequently, the remaining part of the strain increment,

Ag' = (l—y)As , is applied in order to complete the increment from s* to s_,. To proceed

n+l°

14
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with the calculation, it is necessary at this point to identify whether the trial stress state
s®falls inside or outside the bounding surface. It is underlined that in the present model
when plastic deformation occurs, the outer surface hardens as well, independent of
whether it is in contact with the yield surface, and this feature should be taken into

account in the numerical implementation.
2.2.1  Case 1: Trial stress state inside the bounding surface

If the trial stress state s is inside the bounding surface (as shown schematically in
Figure 2), this is expressed as follows:

_ k?
F:%(S(E)_bn)'(S(E)_bn)_%go (32)

and implies that the two surfaces will not be in contact in the present increment. In this
case, the equations refer to paragraph “YS and BS are not in contact” (section 2.1), and

should be considered as follows:

Figure 2. Schematic representation of the two-surface model in the deviatoric stress

space for the case of trial stress state s®inside the bounding surface (BS,)
The final stress can be computed by

S, =S —2G AeP (33)
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Integrating eq. (4) using an Euler-forward scheme, one obtains
AgP = i[Nn ®ON,](Sp.—5") (34)
H

where in the above equation

N, :\/g;(sYS -a,) (35)

‘SYS —a,

Inserting eq. (34) into eq. (33), one obtains the following expression for the final deviatoric

stress S,,;:
s+l=s“)—ze-l{N ®N Ks+1—s“) (36)
n H n n n
or equivalently
1 () 1 ¥s
I+26ﬁ[Nn®Nn] S.,, =S +ZGH[NH®NH]S (37)

where | is the fourth-order identity tensor.

Therefore, the final stress is calculated as follows:

S, =A"Z (38)
where

A=1 +%(NH®NH) (39)
and

z=s® +§(Nn ®N,)s* (40)

It is possible to obtain the inverse tensor A™ in a closed form expression which allows

for an explicit expression of the final stress in eq. (38). One may write:

A=1+B (41)
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where

B=§(

N ® N) (42)

Equivalently, using the definition of N in eq. (5), tensor B can be written as follows

Bzw(n®n) (43)

where N is the unit tensor outward normal to the yield surface and @ = 3G/H . Tt is
straightforward to show that

B* = BB = wB (44)
And, using eq. (44), one can readily verify that
At=1 Lt B (45)
l+w

Using (45), eq. (38) can be written in the following explicit form:

1
Spy =S + |1 - B, | As,, 46
1 [ 1+ o, J Ag ( )

where AS,. is the deviatoric part of Ae,, and

Ao, = DA€ (47)

Upon calculation of the final stress at stage n+1, the increment of plastic strain is
obtained by integrating eq. (6):

Ag, = /%Aap -AgP (48)

where Ag’is given by eq.(34), and the equivalent plastic strain is updated:

Eqnaa = Eqn TAE, (49)

Furthermore, the back-stress tensor a,,, defining the position of the yield surface center

at stage N+1, is obtained by integrating expression (10) with an Euler-forward scheme:

17
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a,,=a +Auv, (50)

where

1 <YS _ YS
v =—"-"—(5" -5 (51)
n ‘gvs _SYS|( )
In addition, the scalar quantity Au is calculated from the consistency condition of the

yield surface

F:l(s —a,,) (5., —a )—k”2+1=0 (52)
2 n+1 n+1 n+1 n+1 3

Inserting eq. (50) into eq. (52) one obtains

Ap = (Sn+1 -4, ) Vo — \/I:(Sml —a, ) Vi :|2 - |:(Sn+1 —a, ) ’ (Sn+1 —a, )] + % knz+1 (53)

The new back-stress tensor b ,, of the bounding surface, defining the position of the

bounding surface center at stage N+1, is obtained by integrating expression (12):
b,.,=b,+Auv,—AM v, (54)

where

HY (,.,—s®)-n" 2 1 dk  dk
AM =] 1- 2 || Boa e - 55
( Hj( v, -n" 3 (vn.an) de, de “a (55)

q

Finally, following eq.(7) the stress at the new congruent point S, on the bounding

surface is computed as follows:

_ Kk
S = bn+l + kn_ﬂ(sml _an+1) (56>

n+1

and the new distance between the two surfaces in the deviatoric stress space is

§n+l = \/(§n+1 _Sn+1) ’ (§n+1 _Sn+l) (57)
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2.2.2 Case 2: Trial stress state outside the bounding surface

If the trial stress state s® falls outside the bounding surface, it may not be possible
to conclude a priori whether the two surfaces will establish contact during this increment
or not. This depends mainly on the hardening of the outer surface. Therefore, the following
procedure is adopted: the calculation starts with the integration process exactly as
described in Case 1 above, and a “hypothetical” state of stress at n +1 is computed using

eq. (38). At the end of this calculation, the following check should be performed:

Spn—a | < ‘g ne1 At (58>

n+l

If the above inequality is satisfied, there is no overlapping of the two surfaces. This implies
that the two surfaces remain at a distance during the entire increment and, hence, the
calculation process is completed.

On the other hand, if inequality (58) is not satisfied, this means that the two surfaces
establish contact during the increment under consideration. In such a case, the increment
should be divided in two sub increments, an idea also employed in [48] for the case of
“nested” yield surfaces. The main difference of the present formulation with [48] refers to
the hardening of the outer surface, which should be accounted for to compute the stage
at which the two surfaces get together. More specifically, it is necessary to calculate the
value factor y , which defines the fraction of the total strain increment necessary for the
yield surface to reach the bounding surface. Therefore, the total strain increment Ag' is
divided in two parts: the first part is y Ag' until contact of the two surfaces is established
(first sub-increment), and (1-y)Ae' is the remaining part, where the two surfaces move
together (second sub- increment).

Flirst sub-increment

con

The deviatoric stress s, at which contact with the bounding surface is achieved, can

be expressed as follows (Figure 3).
s =s* +yAs,, —2G Ag’ (59)

where As,, is the deviatoric part of Ae,, given by eq.(47). From the flow rule of eq.
(4), eq. (59) is written
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s =5" +yAs, - 2G %[Nn ®N, (s -s") (60)

Rearranging, (60) one obtains :

{I +2G %[Nn ® Nn]}s“’“ :{I +2G ﬁ[Nn ®Nn]}sYS +YAS,,. (61)
Setting

A=1+2G %[Nn ®N, ] (62)
and

x=A"As,, (63)

con

the stress s at the contact point is expressed as follows

con

s =5 +yx (64)

Equivalently, using eqs. (41)—(45), eq. (64) can be written in the following form:

s =" + [I - Bn] wAS,, (65)

1+ o,

Therefore, the value of y should be determined. Towards this purpose, the flow rule of

eq. (4), can be written in the following form:
1
Asp:ﬁy/(NnQ@Nn)x (66)

and the equivalent plastic strain, using eq. (48), is expressed as follows:

Ag, :%yx\/%[(Nn@an)x]-[(Nn®Nn)x] (67)

con

The back-stress tensor a®", corresponding to the yield surface at the stage where the two

surfaces establish contact, is given by integrating eq. (10):

a“"=a, +Auv, (68)
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where

1

v, = ‘gYSTYS‘(EYS —sYS) (69)

YS

5% and s are computed by eqgs. (28) and (31) respectively, and the scalar quantity Au

is calculated using the consistency condition at the final stage of the sub-increment:

l con con con con kCZOn
Fzz(s —a™")-(s*" -a )—?:0 (70)

Inserting eq. (68) into eq. (70) one obtains

Au=(s""-a,)-v, —\/[(s""“ -a,)-v, T —[(s""” -a,)(s"" -a, )]+§kfon (71)

Furthermore, the back-stress tensor b*", which expresses the position of the bounding

surface center at the contact point, is given by the following equation:

bcon — a.con _\/g(lzcon _ kcon) r]con (72)

where

1
con — (Scon _ acon) (73)
Scon _ acon

Finally, the value of the unknown parameter y can be determined by applying the

consistency condition on the bounding surface

=2
kcon

- 1 con con con con
F:E(S -b )(s -b ) 3

=0 (74)

con con
,b

In equation (74), the unknown parameter y which is included in tensors s and in

K., - Its solution can be performed using iterative (local) Newton — Raphson scheme:

_ -1
— dF
Vi =W — F (W(i))(d_J (75)

Y=V
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The expressions for F(y) and for its derivative :—F are offered in Box 1. Upon
7

at which contact is established between the yield and

computation of y , the stress s*"

the bounding surface can be readily calculated from eq.(65).

Second sub-increment

Upon completion of the first sub-increment, the two surfaces are in contact and for
the remaining part of strain increment, which is equal to (1—y)Ag', they move together
as shown in Figure 4. In this remaining part of the strain increment, the final deviatoric

stress s, ,,is given by the following expression:

5., =5 +(1-y)As, . —2G %[N " ON” ](sn+1 —s%") (76)
Setting
A=1+2G i[N“” ®N°°”} (77)
H
and
W=5""+(1-p)s,, +2G %[N QN }s“’” (78)

one readily obtains

=AW (79)
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Figure 3. Schematic representation of the two-surface model in the case where the trial

stress state falls outside the bounding surface, before the two surfaces get together.

Equivalently, eq. (79) can also be written as follows:

1

1— Bconj ASAs’

S,y =S+ (1- I -
n+1 ( lr//)( +w

(80)

Combining egs.(80) and (65), an explicit expression for the final stress is obtained
in terms of the initial stress at plastic loading, for the case where the two surfaces get in

contact within the increment under consideration:

S

n+ n

1+ow 1+w

n con

y 1-y
L =8° +As,, + ( B, + —— anj As,,
(81)
The total increment of equivalent plastic strain Ag,, from stage n to stage n+1,
is the sum of the relevant quantities calculated in the two sub- increments: (a) during the
first sub- increment, the yield surface reaches the bounding surface and (b) during the

second sub- increment, the two surfaces remain in contact and move together.

From eq. (22), the back stress tensor b, , of the bounding surface at the final

state n+1 is calculated from the following equation:

bn+1 = bn +A9Zmn+l (82)
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where

1

m,, = (Scon _bcon)
Scon _ bCOn
(83)
and A& is calculated by imposing the consistency condition at the bounding
surface:
=2
= 1 k
F==(S,1—Dn.1) (Sps—DPpy)——=0
2( n+l n+1) ( n+1 n+1) 3 (84)

In this case, S,,, =S,.,, so that the back stress tensor a,,, of the yield surface is

calculated from the following expression, which comes directly from eq. (7):

n+1 ( 85)
2.2.3 Elastoplastic rigidity

Defining &,., =s,., —a,.;, and using eq.(25), the tangent fourth-order elastoplastic

rigidity tensor D% is written as follows:

9G?

D¥ =D - 5 (5 ®&,
kn+1(H+BG)( ) (86)

The consistent tangent fourth-order elastoplastic rigidity tensor D® can be
obtained by differentiation of eqs. (46) or (81), depending on whether contact between
the yield and the bounding surface has occurred within the increment under consideration
or not. For the non-contact case, the final stress ¢,,, is obtained by adding the hydrostatic
part of stress tensor at the end of the increment to the deviatoric part, which expressed

in eq. (46):

6, =A(1®1)Ae+2G 1A +s"

| —ZG( L BJ(As—%(l@l)Asj

1+,

(87)
where 4 is the first Lamé constant. Differentiation of (87) gives:
D — % =D _[12G B”J
€ + o, (88)

24

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 16:19:01 EEST - 137.108.70.13



where B, = o, (nn ® nn), or equivalently

9G?

D*=D- m(ﬁn ®¢,) (89)

For the case where contact of the two surfaces occurs adding the hydrostatic part to the

deviatoric final stress in eq. (81) results in

6, = A(1®1)Ae+2G1Ae+s" +| ——B, + “V g, |ae (90)
1+ o, 1+ o,

Differentiation of the above equation gives

pr=%m_p_| ¥ g 17V 5 (91)
OAe 1+ o, 1+ w,,

where B = w_ (nn ® n”) and B, =ow_ (nm ® nw").Eequivalently,

con

VP — D) — L -
D* =D l//knz(H+3G)(§n ) ( l//)kz (H 3G)(§con con) (92)

con

where & =s,—a, and &, =8, —a,,. A summary of the algorithm is offered in Box 2.

5@

]
]
1
1
1
1
1
1
\

Figure 4. Schematic representation of the two-surface model in the case where the trial

stress state falls outside the bounding surface, after the two surfaces establish contact.
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Box 1. Equations for F and S—F in eq. (74)
W

(a) Function F :
F=Cy+Cuy?-CyAu+C,Au+CAu*+C, =0

2Econ - k Y8 2Econ - k
o[ B )

con con

ZEcon -k
T [( - (X'X)]
(ZECO” — kcon)
k

con

C,=(x-v,)

C,= —(SVS -vn)—(ZKwnk_ Ken) +(v,-a, )—(ZKCOn ~Hen)

con con

 (2Keon —Ko,)

C
° 2kCOﬂ
Ce — (ka” _kcon) ((SYS ,SYS )+(an .an ))_M(SYS -an)—lkconkcon +lkczon
2k(:on kcon 3 3
where

kcon _ (fy n Q(l— efb(é‘qn+AW))

A:%\/g[(Nn ®N,)x]-[(N,®N,)x]

Ay:((sYS —an)-vn)ﬂ//(x-vn)—c7

2

C, =\/{|:(SYS _an)-vn]+l/l(x-vn)}2_(svs —an)~(SYS —an)—2l//|:(SYS _an)'X]—l/lz(x-x)sz&?
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(b) Derivative d—F:
dy
S—F =C,+ 2C2l//—C3A,u—C3l//w+dﬂC4 + 2C5Aﬂmﬂ+
dC, .dC, dC, , dC, dc, , dGs , -
- A+ A —2A
Ty Ty Ty Ty My Ty
dc IZc,on |(con —Rcon kc’on ¥ Eéon kCO” —Rcon k‘;O"
vl K (87 x) -2 (x-a,)
dC Izéonkcon —Econ kc’on
dl//z = k2 (X.X)
dC izéon kcon — Rcon kc’on
ay "2
dC vs Ec’on |(r:on _RCO“ kc’on EC’O” kCO“ — Rcon kC’O”
dl; B _2(5 ‘vn) kczon " 2(vﬂ .an) kczon
dCS _ izr;onkcon —Econkéon
dy Keon
dC lzéon kcon — Econ kéon 5o s
O A
+ (_glzc'onkcon %RCO“kéon +§kc0nkc’onj
and
Wﬂ:(x.\,n)_dc7
dy dy
2 2 4 ,
B A e (T ey
dy 2 \/Cj
iy = = QAE 7 )
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Box 2. Integration algorithm of the constitutive model

Material parameters: F, o, Q, b, H ,a, d, n, m, 0,, Q,, b, c.

Input at stage n: ¢,,a,,b,, &,,9,, d,, and As.

1: compute the trial stress state ¢ from eqs.(26) and (27).
2: check ¢ for yielding:
e if yes, the elastic prediction is valid, update o, , =6, EXIT
e if no, GOTO 3.
3: calculate:
ylea-(29)], & [ea.(30))
check if J, needs update:

for the 1* plastic loading increment n_=n"ands, =6

for the subsequent increments Check :
if n,,-n® >0 > n,=n,and &, =6,

if n,,-n® <0 - n,=n"and §,=4

then calculate: H(5,8,)[eq (8)]; ™ [eq.(28)]5" and [eq.(31)];

Ny [eq.(35)], Aoy, [eq.(47)], B [eq.(42)], Vy [eq.(51)].

4: calculate:

Sna[€d.(46)], Ae” [eq.(34)], Ag, [eq.(48)] and update &, = &, +Asg, .

gn+l —

Then calculate:
Apleq.(53)], @y, [eq.(50)], AM [eq.(55)], b,,;[eq.(54)]
S [€d.(56)]

5: examine whether trial stress ¢®© falls inside or outside the bounding surface from
inequality eq (32)
e if trial stress state ¢ is inside the bounding surface, GOTO 8
e if trial stress state is outside the bounding surface, check eq. (58),
o if eq. (58) is satisfied, GOTO 8

0 else two sub-increments are necessary, proceed to 6
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6: First sub-increment

calculate:
A [eq.(62)]; x [eq.(63)];

calculate y [solution of eq. (74), see Box 1]

calculate:

s leq.(64) or eq.(65)]; Ae” [eq.(66)]; Ag, [eq.(67)]

7 Second sub- increment

Calculate:
A [eq.(T7)]; W [eq.(78)];

Sper €. (79) or eq. (81)]; b, [eq.(82)];
m,..[eq. (83)]; A& [eq.(84)]; a,,, [eq.(85)]

8 update the variables :

GnJrl_s + pl

“Yna

update the state variables a_,,b_,,& .,0

n+1 =+l “gn+l 2 Yin
calculate the elastoplastic rigidity tensor D® [eq.(86)]; tangent or
eqs.[(89),(90)]; consistent.
EXIT
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2.3 Special features on the implementation of the model

In this section, some special features of the constitutive model are discussed, in terms
of numerical implementation and simulation capabilities. These features can be very
helpful for the purpose of describing accurately metal material behavior, and in particular
for calibrating the model, towards predicting the mechanical response of metal
components, to be discussed in the next section for the case of a physical experiment.

A first issue refers to the proper definition of the initial distance J,, between the yield
surface and the bounding surface at every “plastic loading process”. During a cyclic
loading with alternate excursions into the inelastic range, a “plastic loading process” starts
when inelastic deformation initiates after elastic behavior and ends when the stress path
is reversed and elastic behavior occurs again. In the beginning of this “plastic loading
process”, an update of ¢, and the corresponding unit normal to the yield surface n,,
should be performed, using the current distance ¢ and the corresponding outward normal
tensor n* respectively. In general, those values should remain constant until the end of
the plastic loading process. Nevertheless, to account for a possible abrupt change of a
loading direction in the stress space, in the present model, at every increment, the inner
product between n, and the current n* is monitored; if this product is positive, the
values of J,, and n, remain unaltered, whereas if the inner product is negative, this
implies that an abrupt change of direction of the stress path has occurred, and the values
of 6, and n,, are updated with current values of § and n*. Such an abrupt change of a
loading direction in the stress space may occur at the onset of structural instability
(buckling) or another type of bifurcation.

Another interesting feature of the model refers to the hardening rule of the outer
(bounding) surface, as expressed in eq. (21). In order to improve the capabilities of the
model to describe accurately the accumulation of plastic deformation in a stress-controlled
loading scheme, the bounding surface hardening modulus H in the first bracket of eq.

(21) is replaced by the modified modulus H , expressed as follows
H=H+c[(b-b)"*~b-n] (93)

where c is the so-called ratcheting parameter, to be defined by stress-controlled material
experiments. The modification has been suggested initially by Seyed-Ranjbari [55], and
subsequently by Hassan & Kyriakides [40] [41].
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Carbon steels are characterized by an abrupt change of slope in the stress—strain
curve after initial yielding, associated with very low hardening, referred to as “plastic
plateau”, shown in Figure 5a. To model the “plastic plateau”, the initial size of the YS is
assumed the same as the size of the BS, and a low hardening modulus is employed for the
BS. Therefore, during the first plastic loading (stages 1 — 2 in Figure 5b), the plastic
deformation makes the YS shrink, according to eq. (3), while the B.S. hardens by a very
small amount. During reverse plastic loading (stages 3 — 4 in Figure 5b), the two surfaces
have a distance &, the hardening function of eq. (8) is activated, and the Bauschinger
effect is modelled.

A final issue, refers to the hardening modulus function, which is expressed by eq.
(8) in the original version of the model [33]. A key constituent of the hardening modulus
function is parameter h, which may have an important role in material cyclic response,
affecting both the shape of the inelastic loop and, most importantly, the ratcheting rate.
In the original version of the model [33], parameter h was proposed to be as a function of
the ratio of the initial distance o,, between the yield and the bounding surfaces at the
current “plastic loading step” and the size of the bounding surface k , expressed by the

following equation:

h= a

m

1+d % —
(24273 )k 01

where a , d, m are material parameters calibrated from cyclic stress-strain response

obtained from material testing.
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Figure 5. Schematic representation of the two-surface model implementation for modelling
the “plastic plateau” of structural steels at initial yielding and the subsequent Bauschinger

effect; initially (at stage 0) the yield surface YS coincides with the bounding surface BS.

In the present study, for improving the simulation capabilities of the present model,
especially for stress-controlled loading schemes, a new expression is proposed for h, as

follows:

L +d57'

(24273 )k (2 2/n3)|Z

In eq.(95) the above expression the value of h also depends on the ratio of the

(95)

initial distance J;, between the yield and bounding surfaces (as the previous case) at the
current stress state, but also on the current distance ¢ between the two surfaces, and the
size of the yield surface. Parameters a, d, m, and n in eq.(95) are material constants,
which should be calibrated on the basis of experimental stress-strain cyclic response. In
an attempt to show the effect of h on cyclic inelastic behavior of a typical steel material,
and the sensitivity of parameters a, d, m, n, a short parametric study is conducted focusing
mainly on the ratcheting rate. In Table 1, material parameters corresponding to a 355
grade steel are presented. Figure 6 depicts the influence of the four hardening parameters

on stress-strain response. The results show that increasing the value of a, n, and m, the

32

Institutional Repository - Library & Information Centre - University of Thessaly
07/06/2020 16:19:01 EEST - 137.108.70.13



“steepness” of the hardening modulus function increases, while an increase of the value of
d has opposite effects on the hardening modulus.

Furthermore, the value of hardening modulus affects the ratcheting rate. Figure 7
illustrates the effect of parameter a on ratcheting; an increase of the ratcheting rate of
strain accumulation occurs as the value of a increases, while the value of d has opposite
effect. Finally, the influence of the relaxation parameter ¢, introduced in eq.(93), on the

ratcheting rate is also shown in Figure 8.

Table 1. Summary of basic set of material parameters used in the analyses presented in

section 2.3.

o,(MPa) 280

Isotropic hardening
) @ (MPa) -30

parameters [yield surface]

b 80
Isotropic hardening o, (MPa) 400
parameters [bounding Q, (MPa) 70
surface] by 30

H (MPa) 2,000

a (MPa) 56,000
Hardening function

d 4
parameters

n 0.4

m 2
relaxation coefficient c 10
parameter
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Figure 6. Influence of material parameters a, d, m, and nin eq. (95) on material hardening.
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Figure 7. Influence of material parameters a and d in eq. (95) on ratcheting rate.
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Figure 8. Influence of relaxation parameter c in eq. (93) on ratcheting rate.

2.4 Numerical simulation of small-scale experiments

Cyclic tests on small-scale steel strips from of two types of carbon steel (a high-strength
steel and a mild steel) are simulated using the present model. The first material test data
set considered in the present study refers to TS590 high-strength steel grade specimens,
tested by Centro Sviluppo Materiali, (now RINA), Rome, Italy, in the course of a
European research program on the structural behavior of tubular structural members [56].
The material yield and ultimate stress were measured equal to 735 MPa and 812 MPa
respectively. Three strip specimens from this material are considered, one cyclic stress-

= 74 MPa) and stress amplitude (o, =

a

controlled test with nonzero mean stress (0,
660.8 MPa) and two strain-controlled tests at strain amplitude + 0.96% and + 1.128%
respectively. The main target of this analysis is the simulation of both stress-controlled
and strain-controlled controlled tests, using the same material parameters.

Accurate description of these small-scale tests also requires that the “plastic plateau”
is taken into consideration, following the procedure described in detail in Section 2.3.
Different approaches for defining parameter h have been considered. In the first approach,
equation (94) is adopted as proposed by Dafalias and Popov [33]; the second approach
employs the value of h defined by eq. (95) as proposed by the author; finally, in the third
approach a constant value of h, equal to a in eq. (94), is used (in that case b equal to
zero). It is important to emphasize that the values of the other material parameters are
the same for all these cases, and equal to those presented in Table 2.

The results show that the value of h has a decisive role in simulating stress-controlled

tests, whereas the simulation of strain-controlled tests is less sensitive to the value of h.
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The graphs in Figure 9 to Figure 11 show that, for the strain-controlled tests, all three
expressions for the value of h can predict rather satisfactory the stress-strain response,
while the value of h has significant effect on stress-controlled test as shown in Figure 12.
Using eq. (94) it was not possible to describe adequately both the stress-controlled tests
and the strain-controlled tests, despite the fact that numerous attempts were conducted
over a wide range of values for the material parameters. On the other hand, the use of eq.
(95) improves significantly the simulation capabilities of the model, with respect to the
small-scale tests allowing for more accurate description of both stress-controlled and strain
controlled tests. Finally, the third approach, which uses a constant value for h, shows a
poor performance.

The second set of material test data refers to strips from P355N steel (mild steel of
grade 355, according to EN 10216), widely used in industrial piping components. The
tests have also been performed by CSM, Rome, Italy in the course of 