

APS - European Centre for Mechatronics (Germany)

RWTH Aachen (Germany)

University of Minho (Portugal)

Integrated Masters at Electronics and Computers Engineering

Thesis Work
Academic year: 2007/2008

<<February, 2008>>

 Filipe Campos Meira Castro

Mobile robot electronic system
with a network and micro-
controller based interface

<<February, 2008>>

 Filipe Campos Meira Castro

Mobile robot electronic system
with a network and micro-
controller based interface

0

Acknowledgements

Special regards own to all persons who made this project possible:

The director of the European Centre for Mechatronics: Prof. Dr.-Ing. P. Drews.

Special thanks to the project supervisor: Prof. Dr.-Ing. Günther Starke who

always believed in the capacity to fulfil the work.

Special thanks to the project supervisor: Dipl.-Ing. Christoph Dreyer due his

mentoring, guidance and kindness in all good and difficult moments of the

process.

Special thanks to the supervisor: Prof. Dr. Fernando Ribeiro who always

cleared doubts and uncertainties even from abroad. His advices were also

essential to show a path and his availability was very kind.

1

Table of contents

Acknowledgements 0

Table of contents 1

1. Introduction and Goals 3

1.1. Thesis structure 4

2. State of the Art 6

2.1. iRobot Create™ Programmable Robot 8

2.2. MobileRobots's P-series 10

2.3. SWORDS 13

2.4. Talon robot soldiers shipped to Iraq 14

2.5. Termibot 15

2.6. 914 PC-Bot 17

3. Presentation and Implementation architecture 18

3.1. The robot 18

3.2. Block Diagram 19

4. Detailed working method 21

4.1. D.C. Motor 21

4.1.1 Composition of a D.C. motor 21

4.1.2 Principle of operation 22

4.1.3 Robot motors characteristics 23

4.2. PWM 24

4.3. Gearheads 25

4.4. Drivers 26

4.5. Encoder 29

4.6. Batteries 32

4.7. Step-Down Switching Regulator 34

4.8. AVR Programmer 35

4.9. I2C - TWI 36

5. Microcontroller Unit 41

5.1. Introduction 41

5.2. Header Files Structure 43

5.3. PIN List 44

5.4. Files 45

2

5.4.1 atmega16.c 46

5.4.2 error_support.c 46

5.4.3 external_interrupt.c 47

5.4.4 generics.c 48

5.4.5 lcd.c 49

5.4.6 motor.c 50

5.4.7 timer.c 51

5.4.8 twimaster.c 52

5.4.9 usart.c 53

• “Old Version Protocol” to the communication from the Server Computer to

Atmega16 and Problems about it 56

• Protocol of communication from the Server Computer to Atmega16 57

• Protocol of communication from the Atmega16 to the Server Computer 60

6. Desktop Processing – C++ 65

6.1. Introduction 65

6.2. The Client 67

6.3. Class Client 67

6.4. Interface and applications 69

6.5. The Server 71

6.6. Class Server 72

6.7. Serial Port 72

6.8. Setup Window and Log Window 73

6.9. Interface and applications 74

6.10. Identical interface components between Server and Client 77

7. Schematic, Proto-board, Strip-board, PCB and hardware connections 79

7.1. Control hardware schematic 79

7.2. Proto-board and Strip-Board 80

7.3. PCB Schematic 83

7.4. 3D PCB 84

7.5. Hardware Connections 84

8. Software and Hardware considerations 86

9. Moot Points 88

10. Conclusion / Further work 92

Bibliography and WWW References 93

Table of figures 99

Table of tables 101

Table of flowcharts 102

Table of abbreviations 103

Attachments – Motor Specifications 104

Attachments – CD Contents 106

3

1. Introduction and Goals

Nowadays mobile robots are expected to be a desire at several services to

afford man facilities and increase safety in any kind of duties.

Mobility is a key issue in robotics and a challenging subject for any research

and development. It combines cognitive capabilities focused on sensorial input

and human interaction with intelligent control of the drive systems and requires

real mechatronics engineering solutions to enable robust and reliable operation.

In the European Centre for Mechatronics [W1] mobile robots have been

research subjects for years. A mobile platform with semi-autonomous

functionality has been developed years ago. It has been used as a

demonstration and test platform to study mobility and cognitive control.

In the University of Minho [W3] and RWTH University [W2] that kind of research

is also important and the industry support gives a solid development sign to the

institutions.

As the control system capacity on board of the vehicle has reached limits, a

new system architecture with more powerful controller elements was planned to

replace the old one.

In this context the key objective of the project was to design and develop a new

embedded system capable of controlling the mobile platform drives using

ATMega microcontroller technology.

 To meet this goal a number of tasks were to consider:

4

• Introduction to vehicle system architecture and drives functionality

• Introduction to microcontroller technology

• Development of a microcontroller hardware platform

• Development of a concept to control the drives and to enable driving

modes

• Development of controller software

• Development of a user interface for remote control

• Integration and functionality test

• Documentation

The work was performed in the labs of the APS - European Centre for

Mechatronics.

The duration of the project was 5 months.

Technical assistance was provided by the APS project engineer Christoph

Dreyer.

Supervisor in Germany is Prof. Günther Starke, Head of Research at the APS.

Technical assistance and Supervisor in Portugal was provided by Prof. Dr.

Fernando Ribeiro.

1.1. Thesis structure

This report is organized in the following order:

• The State of the Art will be presented

• The Robot will be presented as well as respective block diagram of the

system implemented

• An introduction of theory to D.C. Motors as well PWM signals,

Gearheads, Motors Drivers and Encoders, Power regulators and

Microcontroller programmers as well the I2C protocol will be done.

• Details of the Microcontroller unit will be presented next.

• The desktop programming (Server/Client) and (Server/Microcontroller) is

presented.

5

• The schematics, Proto-board, Strip-board, PCB and hardware

connections are shown as well.

• A chapter about software and hardware considerations is presented.

• Finally the conclusions are presented.

6

2. State of the Art

Robots are more and more available for research and commercial applications.

This robot is under research phase of development, as well as the control

structure of the system.

The market shows some solutions of robots that are either autonomous or

remote-controlled but robots with some autonomous capabilities are more

common.

Remote-controlled robots can be found widely in military robots but service but

tactical or service robots are usually autonomous.

Some chassis with only motors and without any control can also be find but

comparing them to this one can lay to misunderstood since this robot has also

software to the client and server and hardware like the microcontroller system

and sensors.

Since this robot was developed under 5 month and is still under a development

stage, it is not fair to make a direct comparison with other already finish robots.

Even through the state of the art compares this work with most relevant similar

projects.

Usually, preceding the autonomous development, a solid mechanic structure

and control system is designed as well as low level programming to drive the

motors and to make use of sensors. In this robot system those things were

tested and the I2C communication support was included as well of serial and

TCP/IP. The robot is remote control and has feedback regards to temperature,

current, speed and position. The robot next development stage is to apply

autonomous algorithms but that is overtaking within this thesis.

7

The proposed robot system has not, in the concern of this thesis, a specific

application, even so, due to its powerful motor power, size and mechanicals

part it can be compared with military device and also because this robot is, as

many military robots, remote controlled but not yet autonomous.

This thesis was done in a 5month research, testing and production. The

products below were done in a lot of years and probably with bigger team

works, reason why probably these products are often provided with more

sensors and automatisms controls as well as they are already in the market.

The existing robots are usually expensive and with lack of automations, reason

why several approaches of a robotic platform are being devolved in several

companies regarding the specific needs as size, cost, automatisms, simplicity.

Old robots platforms were design to a specific robot, and a change in the

hardware implies a hard work wither in programming as in physical

attachments. The system proposed is applied to this specific but can easily, at

least some components, be connected to other mobile systems.

The proposed robot used I2C to avoid complexity at hardware and software

level, the robot can easily grow with new hardware with only 2 wires, for

communications with the controller, which decrease the complexity of adding

new components. At the same time, the platform independent server computer

can easily be equipped with USB components with “plug and play” capabilities.

8

2.1. iRobot Create™ Programmable Robot

Figure 1 shows the iRobot,

Figure 1 – iRobot [W24]

According to [W24], iRobot is, since at least 15 years, a global leader in

robotics, it has platforms for technological development and it is software is

meat to developers to perform network based robotic behaviour.

As the robot system proposed in this thesis the low-level software infrastructure

is done and future used need to project high level behaviours, loggers and

debugging tools are also provided in both but the iRobot itself, as shown in

figure 1, it is a small robot with upgrade capabilities as shown in figure 2 but to

get this type of applications, is obvious that lot of software as well as

mechanical and electrical hardware were developed in out of the iRobot

package concern.

Like this proposed method, the iRobot Command Module also used the same

family of the micro-controller, it used the ATMega168.

9

Figure 2 – iRobot pack [W24]

Figure 3 – the iRobot Packbot in Iraq [W25]

One of the examples of applications is the iRobot Packbot in Iraq as shown in

figure 3.

“April 24, 2007 - The remarkable success of robots in Iraq and Afghanistan is

now well documented. UAVs have proven invaluable at every level and robotic

ground systems, primarily iRobot’s Packbot, have performed tens of thousands

of missions and saved countless lives from the dreaded Improvised Explosive

Device (IED).” [W25]

10

2.2. MobileRobots's P-series

Pioneers, PeopleBots, PowerBots and PatrolBots are physically different robots,

from the MobileRobots's P-series, but with the same standard core architecture.

[W26]

“Since 1995, Mobile Robots platforms have contained all of the basic

components for sensing and navigation in a real-world environment, including

battery power, drive motors and wheels, position / speed encoders, and

integrated sensors and accessories. They are all managed via an onboard

microcontroller and mobile-robot server software.” [W26]

Differently than the proposed platform independent system, these robots are

called “Embedding Linux in a Mobile Robot”.

Figure 4 shows the Pioneer 2-DX picture and bloc diagram, which has

similarities in the bloc diagram even so in a primitive way.

Figure 4 – ActivMedia Mobile Robot Pioneer 2-DX [W26]

Figure 5 shows the Pioneer 3-AT that is an evolution of the Pioneer 2-DX and it

is rated at a 6,995$ cost.

11

Figure 5 – ActivMedia Mobile Robot - PIONEER 3-AT [W26]

“Pioneer 3AT is a mobile robotic skid-steer base with 4 drive wheels,

microcontroller, motors, encoders, 1 battery, std. Pioneer software & no sonar,

OS, ARIA, ARNetworking, MobileEyes, MobileSim, Mapper Basic & manuals;

charger & ethernet or laptop connector not included.” [W26]

The bare P3-AT base with included ARIA software has the ability to:

Drive controlled by keys or joystick, plan paths with gradient navigation, display

a map of its sonar and/or laser readings, localize using sonar (with optional

laser upgrade), communicate sensor & control information relating sonar, motor

encoder, motor controls, user I/O, and battery charge data, test activities quickly

with ARIA API from C++ programs, simulate behaviors offline with the simulator

that accompanies each development environment. [W26]

As the proposed robot, this one can communicate with a client computer

through a “robot-to-laptop connector” but the microcontroller used is an ARCOS

instead of the wise known AVR Atmega.

Technical specifications:

“The rugged P3-AT 50cm x 49cm x 26cm aluminum body with 21.5cm dia, drive

wheels loves to run outdoors. The four motors use 38.3:1 gear ratios and

contain 100-tick encoders. This skid-steer platform is holonomic and can rotate

12

in place moving both wheels, or it can move wheels on one side only to form a

circle of 40cm radius.” [W26]

“A small proprietary ARCOS transfers sonar readings, motor encoder

information and other I/O via packets to the PC client and returns control

commands. Users can run the robot from the client or design their own

programs under RedHat Linux with Motif or under WIN32 using their favorite

C/C++ compiler. Our robotics development environments supply library

functions to handle navigation, path planning and many other robotic tasks.”

[W26]

13

2.3. SWORDS

Figure 6 shows the Swords, one of the tested, applications to remote control

robots

Figure 6 – Principle of operation [W22]

http://www.gizmag.com/go/5098/

Swords, aka Special Weapons Observation Remote Direct-Action System, is a

military robot system developed to a combat scene, it was finish in January

2006.

“The diminutive remote-controlled US$230,000 SWORDS machine shares the

same base as the Explosive Ordnance Disposal (EOD) Talon robots which

have been deployed in Bosnia, Afghanistan and Iraq. Unlike many of it is flying

robotic (UAV) brethren, the weaponised Talon is not autonomous, being under

the direct control of a soldier watching from up to a mile away through an array

of cameras which can include both night and thermal vision.” [W22]

It makes use of AC power or lithium batteries and the control is deal over two

joysticks, one for the robot platform and the other to the weapon.

To provide security over the communications a 40 bit encryption is

implemented.

Up to five firing systems can be deal with this system. [W22]

14

2.4. Talon robot soldiers shipped to Iraq

Figure 7 shows the Talon Robot

Figure 7 – Principle of operation [W22]

http://www.gizmag.com/go/3550/

US Army launch to Iraq and Afghanistan one hundred of TALON robots at the

end of 2004. Those robots are equipped with off-the-shelf chemical, gas,

temperature, and radiation sensors.

TALON robots can be used in missions as clearing live grenades to neutralizing

mines in shallow water, and can be adapted for small mobile weapons systems

for military purposes. [W22]

 “The TALON is a general-purpose modular robot with a versatile 64-inch pincer

arm. It is controlled through RF or a fibre optic link from an attaché-sized

operator control unit (OCU) or wearable OCU. On the ground the TALON can

reach a vehicle speed of 6.6 km/h and last a four-hour run time. Mounted on the

TALON robot are:

• Smiths APD 2000 advanced portable chemical agent detector.

• Draeger Multiwarn II gas detector.

• Raytek Raynger MX4+ temperature sensor.

• Thermo FH40GL radiation detector.” [W22]

15

2.5. Termibot

Termibot, as shown in figure 8, is a remote-controlled robot that makes use of

thermal imaging to detect and eradicate termites.

Figure 8 – Termibot [W28]

Termibot was release in May,2007 to reach places where human pest

controllers can't go. [W28]

“When a telltale heat or moisture signature is detected, Termicam breaks

termite nests open to confirm the infestation, then pumps pest control chemicals

directly into the source. It is an ingenious non-invasive pest control device - but

its appeal won't be limited to exterminators.

"It is basically a remote controlled robot that can fit into confined spaces," says

Rice, "it carries a video camera and lights so the operator can see where it is

going and steer it around obstacles. It can go over on a fairly good angle and

right itself if necessary." When the thermal or moisture signature of a termite

hotspot is detected on one of the device's two LCD screens, the Termibot uses

a probe to break open the termite nest, exposing and video recording the

insects as they scuttle to repair the breach. The operator is then able to inject

pest control poisons directly into the termite colony, an effective eradication

16

leaving minimal toxic chemicals around the area in comparison to spraying.”

[W28]

"It is currently controlled via a long cable," Rice tells us, "but we'll have it fully

remote once we've finished further testing. We're currently field testing it under

houses, it is available to all our franchises but because we're busy expanding

and franchising around the world, it won't be ready to go to market until later in

the year." [W28]

“Rice says he's already had several enquiries from outside the pest control

industry; the remote control thermal camera will be of interest to anyone who

needs to use thermal imaging in confined spaces. Once client in Brunei is

looking at having it lightly modified to act as an air conditioning duct cleaner,

and Rice sees applications for the Termibot in sewage and water tunnel

investigations, electrical equipment testing, military and bomb disposal

applications, and even search and rescue to detect the heat signatures of

people trapped under snow or rubble.” [W28]

17

2.6. 914 PC-Bot

Figure 9 – 914 PC-Bot [W27]

Figure 9 shows the 914PC-Bot, it is a $5,000 robot.

“The 914 can serve as a "networked, mobile sensor platform for RFID readers,

hazmat detectors, and access management devices." The company suggests,

"Now you can move the sensor, vs. the asset."

The 914 stands 21-inches tall, and weighs about 55 pounds (25kg). It has a

two-wheel drive train with two "caster ball" wheels, each powered by a DC

stepper motor. Other sensors include a camera in the head unit, and a sensor

array comprising eight IR sensors, presumably used for obstacle avoidance.

The 914 is powered by twin 12-volt lead-acid batteries, and comes with a

charger.

“Since the 914 is really just a standard PC trapped in a robot's body, it can run

any standard PC operating system. WhiteBox Robotics supports Linux on the

device, as well as Microsoft's Robotics Studio. When used with Linux, the

company also appears to support the open source Player/Stage robot and

sensor programming library.” “[W27]

18

3. Presentation and Implementation architecture

This chapter will present the robot and its block diagram to provide an

understanding of the general structure of the robot system architecture and the

robot components.

3.1. The robot

The figure 10 shows the robot: it is a solid multi terrain tank style robot and it

can be seen the two chosen motor drivers, a DC converter, the microcontroller

display and the batteries that provide power to the microcontroller system as

well as to the motors. The motors and the encoders can also be seen.

Figure 10 – The Robot

19

The tank is a Remote Operated Vehicle (ROV) and it is in the process of being

converted into an autonomous robot.

3.2. Block Diagram

The block diagram is shown in figure 11 displays the way the several

components are connected.

Figure 11 – Block Diagram

As shown, the system is based in multiprocessor, it is composed by two

computers, one is the Client and the other one is the Server, a microcontroller

as well as the drivers, encoders and a display.

20

Client and Server based architecture of this robot inherits that its

interconnection is provide through a wireless network to make the robot control

without any wires.

Tasks that are likely to be critical to performance and safety are implemented in

a micro-controller. The system robustness is this way increased comparing to

robot systems based only in computers [B2].

The atmega16 microcontroller is the center of the hardware of the robot: the

display connected to it gives feedback of the microcontroller states and has an

important duty about diagnose, repair and maintenance of the robot. For

example, if a miss to connection of the motor drivers to the I2C bus occurs, it

will show a message saying “Motor Left: Error, Motor Right: Error”.

Status monitoring of the system parameters during an operation cycle can be

also archived with the display.

The Server connects to the Atmega16 microcontroller over RS232 protocol.

Atmega16 microcontroller code was written in C language but C++ language is

used to Server and Client computer code.

The connection between the DC regulator and the Atmega16 microcontroller

and the encoders and the power side of the motor drivers is not represented in

the pictures to avoid confusing mesh of wires in the schematic.

The physical picture of the robot and the interconnections of the several

components of the robot system were briefly presented in the block diagram as

well as the communications protocols between them.

21

4. Detailed working method

This chapter will present the electronic and mechanical components of the robot

system as well of theory used to deal with them.

4.1. D.C. Motor

D.C. motors are used rather than other designs because they are smaller and

have high efficiency. Furthermore, the D.C. motor has a very high start-up

torque and they absorb sudden rises in load easily [W22].

DC motors are also simple to control; even so they are heavier and less efficient

than induction motors.

The use of this type of motors is also efficient in this case because the robot is

powered by batteries which provide the same type of current that these motors

need, so power converters are avoided and the consequent loss of efficiency is

spare.

4.1.1 Composition of a D.C. motor

The figure 12 shows the composition of the D.C. motor.

22

Figure 12 – Composition of a D.C. motor [W22].

The motor used by this robot has this composition [W22] and has an additional

gearbox at the shaft.

The stator has the cover of the motor as well as the magnets that create the

stator magnetic filed [W22].

The rotor is mainly formed by a metal carcass carrying coils and the

commutator that selects the coil through the electric current will flow. The

commutator has the duty of transforming the induced altering tension into a

continuous tension [W22].

4.1.2 Principle of operation

The principle of operation of a D.C. motor is based on rules of electromagnetic

attraction [W22].

The rotor is energised to act as an electromagnet with the polarity given by the

current flow direction [W22].

The figure 13 shows that D.C. motors have two magnets fields, one of them is

fixed(stator) and the other one is physically movable [W22].

23

Figure 13 – Principle of operation [W22]

A torque is created to make the poles of the rotor align to the poles of the stator.

This attraction and repulsion between the magnetic fields makes the rotor,

which is the movable part, spin, and then the brushes are constantly breaking

and making contact with the commutator [W22].

The maximum torque is achieved when the axis between the poles of the stator

is perpendicular of the poles of the rotor [W22].

“The rotor coils are then energised and de-energised in such a way that as the

rotor turns, the axis of a new pole of the rotor is always perpendicular to that of

the stator. Because of the way the commutator is arranged, the rotor is in

constant motion, no matter what its position. Fluctuation of the resultant torque

is reduced by increasing the number of commutator segments, thereby giving

smoother rotation.”

[W22]

To change the spinning direction of the motor one of the magnetic fields must

exchange, since the stator has permanent magnets, the way is to invert the

rotor magnetic field. This can easily be done by changing the polarity of the

tension applied to the rotor coils, the direction of the current will this way be

reversed as well as the rotation direction [W22].

4.1.3 Robot motors characteristics

The robot has two motors provided from the manufacture ENGEL, the series is

GNM5480E and the motors are typed “Permanent Magnets, Direct Current”

24

they are coupled with gear-heads and the main characteristics can be seen at

table 1.

Full table of characteristics can be find in the attachment “Motor Specifications”

as well as the dimensions.

Nominal voltage UN 24 Volt

Nominal output power P2 250 W

Efficiency η max 85 %

No-load speed no 3,267 rpm

No-load current Io 1,435 mA

Speed constant kn 137 rpm/V

Nominal speed 3,000 rpm

Motor operating temperature range –20 to 100 °C

Table 1 – Robot motor characteristics

4.2. PWM

A powerful and common method to control D.C. Motors over a microcontroller is

by using of Pulse Width Modulation (PWM) signal [B1].

The PWM signal consists in a square wave and varying its duty cycle will

provide a varying mean power applied to the D.C. motor [B1].

The figure 14 shows respectively a 10%, 50% and 90% of duty cycle.

25

Figure 14 – PWM signals of varying duty cycles [B1].

4.3. Gearheads

In applications, when high speed is not as important as the involved torques, it

is usual connected a gearhead to the motor [W21].

With a gearbox the motor binary can increase and the startup effort is soften.

To avoid degradation and damage of the gear/pinion several gears are used

instead of only one, this way the forces are distributed and the material of which

they are done can be “soften”. The lubrification degradation is also archived this

way. [W21]

To make a description of what and by what is composed a gearhead is

necessary to say that it has satellite gears and an annular gear. This one

usually forms the gearhead case on the outside and has gear teeth cut in the

inside diameter. The satellite gears are carrier plates with pins that fit the inside

diameters of the satellite gears. Figure 15 illustrates a single-stage planetary

gearhead having three satellite gears. [W21]

Figure 15 – Gearheads [W21]

The gear shaft is attached directly to the motor shaft and then a bearing couples

the driven load.

The gearbox is selected depending on the maximum required torque and the

duty cycle [W21].

26

The direction of rotation of this gearhead output shaft is the same as the input

one. One of the disadvantages of this gearhead is the high noise but, besides

that, they are relatively smaller than other types found in the market to the same

operation conditions. [W21]

It increases also loss of efficiency and weight to the system, which could be a

problem in a platform feed by batteries.

The lengthening of the annular gear/case and multiple stages stacking can

allow high gear ratios. [W21]

The gearheads series are “G6.1” and they are of planetary type; it is rated at a

16.8:1 ratio and 70% of efficiency at either clockwise or counterclockwise

direction, the torque is 11Nm.

4.4. Drivers

The medium/high current motors of the robot must be able to run in both

directions and in variable speed, to archive that, either an H-bridge should be

projected or, to reduce the time to market, a solid driver should be chosen.

Because the actual markets provides a reasonable range of driver solution to

different applications and are price competitive, the conclusion is that the best s

solution is to acquire one. It spares time because that kind of project, involving

high currents, from the practical point of view would increase the number of

difficulties which wouldn’t provide enough time to take the project this far.

There are three drivers pondered:

One of them is shown in figure 16, the RN-VNH2:

27

Figure 16 – RN-VNH2 Driver [picture provided by the manufacturer datasheet]

This driver [16] does not provide the necessary 250W, the motors need. But it

was used for testing and experimenting, using a smaller motor.

The atmega16 was programmed to provide the PWM signal [Chappter 4.2.] to

the driver. The direction, speed and acceleration ramps were made and tests

about controlling those values with computer were made as well, those tests

involve the use of the USART (Universal Synchronous Asynchronous Receiver

Transmitter) to perform communication between atmega16 and one computer.

The work before described was ponder later because, within the project, when

doing research about drivers and robot controls technologies a protocol called

I2C came up.

The protocol will be explained later on another chapter [chapter 4.9.], but the

choices about the driver were now about two divergent drivers: one from

Sabertooth [17] or the MD03.

The “Sabertooth 2x10” is a driver capable of driving the robot motors with the

software that was done and tested with RN-VNH2 Driver.

28

Figure 17 – Sabertooth Driver [W12]

The MD03 is the driver shown at figure 18 and it is a driver capable of “talking”

I2C and up to eight MD03 modules can be connected (switch selectable

addresses) to a system [W23].

The MD03 was chosen because the I2C capabilities matched the project

intention of a modular system design and has the power capabilities that the

system requires.

Figure 18 – MD03 Driver [W23]

In this robot the addresses were chosen with no specific criteria and they can

be seen at table 2.

 Motor Right Motor Left

Adresses 0xB0 0xB2

Table 2 – MD03 addresses of left and right motor

29

“I2C communication protocol with the MD03 module is the same as popular

eeprom's such as the 24C04.” [W23]

The MD03 has 8 registers numbered 0 to 7.

The reading operation of the registers is done in the following order:

1. sending a start bit

2. sending the module address with the read/write bit low

3. sending the register number to be read

4. sending then a repeated start

5. sending the module address again with the read/write bit high

[W23]

4.5. Encoder

Nowadays to make possible the use of modern motion control techniques,

values representing the locations of the robot are needed. To do that, the spin

of each motor of this robot must be log.

Devices, that provide the knowledge of where the robot motors are, make

possible to synchronize the movements of the robot and at same time gives

feedback to the control system, to act if some kind of behavior is not reached.

This robot has two incremental encoders that are used to precise how much is

each motor running and they provide the speed of each motor after some

computation.

The system of an incremental encoder is usually based on

transmitting/reception method:

One disk with holes is in the middle of the transmitter and the receiver.

The transmitter has a stationary light source and the receiver has two stationary

light detectors,

30

The disk is mounted at the shaft. As the disk rotates, the holes in it make the

receivers to get the light each time the hole is aligned with the light transmitter.

Figure 19 can illustrate this process:

Figure 19 – Encoders signals [W20]

The outputs of this system are two square wave signals representing the

number of holes that are reached between the transmitter/receptor, typically

one output is called channel A and the other one is channel B and an extra

channel usually called channel Z is often included to detect the “once per

revolution index mark”.

A visual perspective of the signals above described can be seen in figure 20.

Figure 20 – Encoders signals [W19]

“The position of the two detectors is important. As one senses a change from

dark to light, the other will not sense a change or transition. Because of this

physical arrangement, two detectors give four transitions per division on the

disk and each transition occurs at a unique angular position on the shaft. By

31

counting the transitions, it effectively multiplies the line count by four, hence the

name quadrature (X4) multiplication. “ [W18]

To sense the direction of rotation the encoders have two channels 90 electrical

degrees out of phase. A rising edge of the square wave indicates one direction,

and the falling edge of the square senses the other direction.

To get the direction, each encoder, as shown in figure 21, was also coupled to a

D type flip-flop. With channel A as flip-flop clock input (clk) signal and channel B

as the input data (D) signal is possible, using the combination of these two

signals, to obtain the output of the flip-flop (Q) representing the direction of

rotation. This output (Q) is connected to an input pin of atmega16 so the

microcontroller can know if pulses are to be increased (Output of the flip-flop is

0) or decreased (Output of the flip-flop is 1).

Combination:

Q signal B low at signal A is rising edge

/Q signal B high at signal A is rising edge

To make use of these sensors, a connection between channels A of each

encoder was connected to an external interrupt of atmega16 which is

programmed to catch rising edges and make the digital count of the pulses.

Figure 21 – Encoders Flip-Flops [W19]

The both encoders of the robot can be seen on figure 22.

32

Figure 22 – Robot encoders

4.6. Batteries

The batteries used in this robot are Lead Acid batteries, they are popular

because they are easy available, rechargeable and inexpensive.

The problem is they are very heavy and large but, in this case, that is not a

huge problem because the tank is powerful and big enough to carry them, even

so that is a problem to equation if the robot goes on the market or in further

improvements.

Another problem is the loose of charge even if they aren’t in use and high

discharge rates will be translated in a short time battery life.

There are three existing main types of lead acid batteries: Wet Cell, Gel Cell,

and Absorbed Glass Mat (AGM). They are mainly distinguished by the price,

degrade, and deep cycle needs.

The Gel Cell batteries were chosen and they are best used in very deep cycle

applications even so the AGM batteries provide a greater life cycle. They don’t

need maintenance and don’t flow out acid.

33

“80% of all battery failure is related to sulfating build-up. This build-up occurs

when the sulfur molecules in the electrolyte (battery acid) become so deeply

discharged that they begin to coat the battery's lead plates. The buildup will

become so bad that the battery will die.” [W13]

It is important to know and have in mind some things about lead acid batteries

this way preventing battery failure:

• The first point to remember is not to make a partial recharge of the

batteries, all charges should be integral done to its full potential.

[W13]

• A second point, and also a very important one, is to recharge

them often because without being used for a long time these

batteries will slowly discharge internally. [W13]

These robot batteries are serial connected to make a 24V power supply, that

connection can be seen on Figure 23.

The type is Exide and they are rated as gel cells which are a maintenance-free

motive power batteries technology as well as they are robust, safe and reliable

Low self discharge is also archived by those.

Figure 23 – Serial Connection between two Exide batteries

34

4.7. Step-Down Switching Regulator

A regulator was needed to convert the 24V from the batteries to a regulated 5V

to feed the microcontroller, encoders and the other components.

The regulator component is a LT1076 that is rated at 2A, is a monolithic bipolar

switching regulator and requires only a few external parts for normal operation.

It has built-in power switch, oscillator, control circuitry, and all current limit

components.

The classic positive “buck” configuration was adopted and the switch output is

specified to swing 40V below ground which is perfect to the 24V of the robot

because it is in the middle of the rated range.

The schematic of the regulator can be seen in the figure 24 and the board in

figure 25.

Figure 24 – Regulator Schematic [LT1074 datasheet]

35

Figure 25 – Regulator Board

4.8. AVR Programmer

To flash the microcontroller with applications, a programmer is needed.

The microcontroller chosen for the project is part of AVR family.

At chapter 5. the microcontroller will be explained but, in this one, only the

programmer will be discussed.

The circuit presented on figure 26 and PonyProg flash program [W6] was

chosen because it is very cheap and can be easily hand-made done.

The problem of this circuit is that it needs to be use together PonyProg [W6] to

enable flashing the microcontroller and PonyProg can use RS232 but “USB to

RS232” adapters often don't work or are very slow (more than 10 minutes to

program) to avoid USB adapter the solution to a laptop could be a PCMCIA or a

PCI adapter that native emulate a COM port but a PCMCIA card was tested and

even so it was very slow.

So, to flash the microcontroller with this programmer, a desktop computer, with

native COM port, was used. This approach will not allow a remotely

programming of the microcontroller of the robot and beside that JTAG and AVR

Studio integrations are not possible.

In the future, to provide a fast remote programming of the microcontrollers the

“Atmel AVRISP MK2” or “AVR Dragon” programmer would provide better

36

results as well as other advantages as the AVR Studio Integration, USB Serial

In-System Programming and the JTAG Support (“Hardware debug” with “AVR

Studio” in real time, which means that the instructions done with AVR Studio

debugger can automatically be seen on the hardware)

The board can be seen on figure 27:

Figure 26 – “SI-Prog” Programmer Schematic

Figure 27 – Programmer Board

4.9. I2C - TWI

One of problems of the robots is that to provide more intelligence to them more

and more sensors are added and that implies more and more wires.

To minimize that, I2C (Inter Integrated Circuit) also known as TWI (Two Wire

Interface) [W15] is the communication protocol chosen because it can easily

link multiple devices together with only two wires each. [W17]

37

The devices have a built-in addressing scheme to be distinguished and avoid

the need for chip select or arbitration logic which can provide simplicity to the

system as well as less money spent in extra hardware such as multiplexers and

logic chips.

Standard I2C devices operate up to 100Kbps but fast-mode devices operate at

up to 400Kbps and 3.4Mbps can be reached with the version 2.0 high speed

mode.

Almost all available I2C devices can operate at speeds up to 400Kbps.

I2C provides good support for communication with various devices. On-board

peripheral devices can be accessed intermittently; it is a simple, low-bandwidth,

short-distance protocol.

Philips originally developed I2C for communication and due patent concerns

Atmel use the name TWI (Two Wire Interface) instead of I2C.

Several I2C-compatible devices are manufactured by several companies and

can be found in embedded systems. Some example are eeproms, thermal

sensors, and real-time clocks, video decoders and encoders, audio processors,

displays, motor driver, etc.

The figure 28 shows the typically I2C interconnection system:

Figure 28 – I2C typically interconnection system [W14]

38

Below, the figure 29 shows the specific interconnections with the I2C bus: the

microcontroller is the master of the I2C Bus and both drivers are I2C slave

devices.

The two resistors are called “pull-up resistors”, they need to be present on the

clock line (SCL) and on the data line (SDA). They are used to do the interface

between different types of logic devices and they ensure that the circuit

assumes the default value when no other component forces the line input state.

Since the chips are design often open-collector, the chip can only pull the lines

low and they float to VDD otherwise; this way, the master can sense if a

simultaneously transmitting is happening, letting the pin float and sensing the

line, if the line is still at VDD, probably, no transmission is being done from other

device. [W17]

The programming of atmega16 master software is described at chapter 5.4.8

Figure 29 – Robot I2C interconnection system

The two I2C signals are Serial Data (SDA) and Serial Clock (SCL).

I2C matches the Master/Slave topology.

I2C

SDA

SCL

39

The I2C Master is the device that can start and stop communications and has

usually the duty of controlling the clock.

An I2C Slave is a device that is addressed by the master. When the master

asks a slave for data, the slave has the possibility to hold off the master in the

middle of a transaction using “clock stretching” [W17] (the slave keeps SCL

pulled low until it is ready to continue). This makes synchronism of slow slave

devices possible but most I2C slave devices don't use this feature.

It is duty of every I2C Slave to monitoring the bus and responding only to its

own address.

The I2C protocol supports multiple masters and multiple slaves.

The transmitting protocol inherits the data sending of each byte, start with the

MSB (most significative byte).

Figure 30 shows a typically communication between a master issuing the start

condition (S) followed by a 7-bit slave device address to start a communication

with a Slave.

The eighth bit after the start (read/not-write) is used to signal the slave if the

master will send more instructions (Slave will receive more data) or if the master

is ready to receive data (Slave can transmit data).

After each byte sent by the Master, the Slave must reply with an ACK bit to

signal the reception of the previous byte.

This 9-bit pattern is repeated if more bytes need to be transmitted.

Figure 30 – I2C Packages [W14]

40

The issue of the stop condition (P) is done instead of the ACK at the end of a

master reading transaction (slave transmitting).

If a master write transaction (slave receiving) is being performed, the master

issue the stop condition (P) when it receives the last ACK of the data sent.

This chapter presented the electronics, some mechanical components were

also presented as well of characteristics of the drivers and I2C.

41

5. Microcontroller Unit

In this chapter the microcontroller software is about to be presented in order to

provide understanding about the microcontroller unit and its duties.

The protocol of communications used from the server to the microcontroller and

from the microcontroller to the server will also be presented.

5.1. Introduction

There is a large variety of microcontrollers on the market. The Atmega16

belongs to AVR family and was the microcontroller chosen to make a new

embeddable system capable to control the I2C motor drive system, to read the

encoders and to give local feedback through a display and to perform

communications with the server.

Other microcontroller family could be chosen to the robot system but the cost of

the device programming must not get high as well of the compilers that must be

freely available. 8051, Microchip PIC®, and Atmel AVR® were possibilities that

matches the criterion.

The traditional 8051 has a simple architecture and it is familiar to most

embedded engineers. The amount and quality of tools and sample source code

available is ample but it is common that each manufacturer provides proprietary

features and migration from one variant to another usually implies new

programmers. The typical architecture of some models are standard for several

manufacturers but those don’t have engrossing stuff like A/D and D/A

converters, I2C, In-circuit programming, etc. [B2] That lack of standardization

42

makes and the problems with upgrading do not meet to the project objectives so

it was placed apart.

A PIC microcontroller were considered an expensive solution that the Atmel

AVR (The PIC official programmer(PICstart Plus) cost 3 times more than the

AVR one(STK500) [B2]).

AVR microcontroller is manufactured from Atmel [W4] and its family is largely

used worldwide so it is easy to get access to libraries or fragmented source

codes all over the internet [W10] and its versatility makes possible to make use

of several different features and to perform simple future migration of the source

code within microcontrollers of the same family and it is possible to use different

compilers and different programming languages.

Atmega16 has a number of features which make it very good to this project. It

has 3 Timers, 4 PWM channels, I2C also known as TWI(Two wire interface), 8

ADC’s, USART, SPI and 32 I/O ports [W9]. The pinout can be seen of figure

31.

Figure 31 – Atmega16 pinout [W9]

The editor and debugger used was “AVR Studio” that is freeware and has a

very good and powerful debug mode and simulator [W11] .

43

The language used is C, the medium level rate of this language makes a good

power/control ratio which makes the robot programming flexible.

The way the program was made intended to have modularity and an easy to

use structure for future programmer who will improve the robot.

The modularity was made by using of many files, each one giving its own main

functions, even so they can depend on the others, for example: the USART

(Universal Synchronous Asynchronous Receiver Transmitter) functions uses

the MOTOR functions after decoding a command sent by the computer Server

program.

Each file can be compiled separately and then linked together. This provides a

saving of time since it is not necessary to recompile the complete application

when making a single change but only the file that contains it.

A systematic way of writing the program was chosen to provide an easy reading

of it.

 All include files that some file needs is specified at the header file (.h)

 The main variables and the external ones are also included at the header

file (.h)

Only the local variables are at respective “.Cpp” file

This chapter will present each one of the several “.Cpp” files and flowcharts of

some functions.

5.2. Header Files Structure

The organization makes possible a fast access of functions, variables, etc.

44

So each header file has the same template layout which consist in define, at

first include files, follow by constant definitions and variables used, at last, the

functions prototypes are declared.

5.3. PIN List

The list of all currently used PIN’s as well as a description is presented at table

3, even so, some might be described during this chapter.

PIN Variable Name

Description

PIN

DDR

PORT

error_led1_PIN LED signal of error nr. 1, 7 DDRA PORTA

error_led2_PIN LED signal of error nr. 2 7 DDRD PORTD

encoder0_direction_PIN Encoder right Direction

Signal,

Set this pin high means

running forward and set this

pin low means running

backward.

4 DDRD PORTD

encoder1_direction_PIN Encoder left Direction

Signal,

Set this pin high means

running forward and set this

pin low means running

backward.

5 DDRD PORTD

INT0 Encoder right Channel

Signal,

Used to count pulses from

the encoder

2 DDRD PORTD

INT1 Encoder left Channel

Signal,

3 DDRD PORTD

45

Used to count pulses from

the encoder

LCD_DATA0_PIN Pin for 4bit data bit 0 (Least

Significant Data Bit)

0 DDRA PORTA

LCD_DATA1_PIN Pin for 4bit data bit 1 1 DDRA PORTA

LCD_DATA2_PIN Pin for 4bit data bit 2 2 DDRA PORTA

LCD_DATA3_PIN Pin for 4bit data bit 3 (Most

Significant Data Bit)

3 DDRA PORTA

LCD_RS_PIN Pin for RS(Register Select)

line

This pin determines

whether the data you're

about to write is a

command or a data byte

4 DDRA PORTA

LCD_RW_PIN Pin for RW(Read/Write)

line

Set this pin high to read

from the display. Set this

pin low to write to it.

5 DDRA PORTA

LCD_E_PIN Pin for Enable line,

This line works to clock in

data and commands.

6 DDRA PORTA

SDA I2C/TWI Data line 1 DDRC PORTC

SCL I2C/TWI Clock line, It is

used to synchronize all

data transfers over the I2C

bus

0 DDRC PORTC

Table 3 – All Pin List

5.4. Files

The files that compose the atmega16 applications will be presented below:

46

5.4.1 atmega16.c

Atmega.c is the main file of whole microcontroller application.

The initializations of the modules (error support, usart, lcd, encoder, i2c, timers,

interrupts and motor drivers) are done at the main file (atmega16.c), reason why

atmega16 header file connects all needed modules, as shown in figure 32.

After all initializations, the program will run in an infinite loop waiting for any

command sent over the serial port and waiting for the timer to perform some

computation (Virtual Heart Beat, Sending Sensors Data).

5.4.2 error_support.c

This module is used to help the programmer at the debug stage.

The features provided are the basic turn on and turn off of leds.

At the moment two LED’s are defined:

Figure 32 – atmega16.h interconnections

47

 LED Number 1: PORTA.7

 LED Number 2: PORTD.7

It is very easy to include this file in any other and give them this debug

capability and to increase the number of leds or change its port connections!

The functions provide are:

void error_support_init(void);

Initialization of the ports (output).

void error_on(int led_number);

Turn a LED On.

void error_off(int led_number);

Turn a LED Off.

5.4.3 external_interrupt.c

This module is used for the encoders.

The robot has two quadruped encoders, each one is connected to an External

Interrupt and each time a transition is made by any encoder the microcontroller

will count it.

Derived from the asynchronous and unpredicted pulse occurrence, an external

interrupt was configured, this way this “time-critical” operation is separate from

the main program execution [B1].

Generically, two main types of external interrupts could be implemented:

The Figure 33 plots those types of signals.

48

Figure 33 – Level- and edge-sensitive interrupt signals [B1]

Level-sensitive interrupts are attended at either a low-level or high-level [B1].

Edge-sensitive interrupts are attended at a transition that can be defined to be

rising edge or falling edge sensitive interrupt [B1].

A edge-sensitive approach was chosen because even if, in theory, a pulse is

skipped when a subsequent interrupt occurs [B1] (practically the test with both

robot wheels running at same speed shown that the processor catch all pulses);

an approach with level-sensitive would certainty provide worth results because

the Level sensitive interrupt suspends other processing during all level time [B1]

and pulses would be missed if both wheels were running at same speed.

Another PIN is defined, for each encoder, at the header file and the purpose is

to know whenever the encoder is running forward or backwards and so the

microcontroller knows if it has pulses to be increased or decreased respectively.

The way those PINs gets its state was detailed described at chapter 4.5.

5.4.4 generics.c

This module provides two functions:

void delay_ms(unsigned short ms);
Used for make a variable delay

49

void wait_until_key_pressed(void);
Used to read a switch, actually is define to read PIND.2.

5.4.5 lcd.c

This module implements a free to use HD44780U LCD library; the author is

Peter Fleury [W16], after changes of the PINs options and adjustments to use 4

PIN data transfer and after prepare it to a 20x4 LCD, it looks just perfect to

communicate with the LCD.

The main functions are:

void lcd_init(uint8_t dispAttr);
Initialize the display and select the type of cursor.

void lcd_clrscr(void);
Clear the display and set cursor to home position.

void lcd_gotoxy(uint8_t x, uint8_t y);
Set cursor to specified position.

lcd_puts(const char *s);
Display string without auto linefeed.

A function to display number was also added:

void lcd_puti(int int_value);
Display int value.

As an example of application, the following commands:

lcd_gotoxy(0,2);
lcd_puts("MD03 Right = OK!!");

Are used, (after the lcd inicialization) at the start of the main program, inside of

a function to test the communication to the motor drivers

50

(motor_drivers_init_test();) and the result is the display writes "MD03 Right =

OK!!” at the 1st column and 2nd line, providing that feedback to the user of the

robot.

5.4.6 motor.c

This module functions respect to the motor drivers, the main functions are

below described and interconnections can be seen at figure 34:

void motor_drivers_init_test(void)

It is used to make initial test to the motor drivers. Basically it tests the I2C

communication, and updates the variable motor_driver_error with the result of

the test. That variable is also useful to avoid sending commands to the driver

when it is not connected, that way the microcontroller doesn’t halt trying to send

commands to a disconnected motor driver and so tests with others sensors and

the computer can be made without these drivers. A feedback is also archived

through the lcd.

void break_motor(void)

It is used to provide a simple a fast way to break the motors.

Figure 34 – motor.h interconnections

51

5.4.7 timer.c

The functions related to the timers are implemented in timer.c / timer.h files.

As usual at embedded systems [B1], when the timer is activated, the program

will change its flow to the function SIGNAL(SIG_OVERFLOW1) and when it is

completed it returns to the place where it was before.

(SIG_OVERFLOW1 is the address of the interruption vector respect to the

timer/counter 1 overflow)

At figure 35 the interconnections with this module can be seen, the purpose of

the timer is to:

• Calculate the speed of each motor of the robot.

• Deal with the “Virtual Heart Beat” a.k.a. “emergency ping”.

• Automatically send the sensor data to the Server.

void starttimer1(void);
Is used to start timer1.

void stoptimer1(void);

Is used to stop the timer1.

A “Virtual Heart Beat”, is identified at the code as an “emergency ping”, was

created between Server/Client and Server/Microcontroller to avoid loss of

control to the robot. In the microcontroller concern, it can be described as a

command that is sent to Server every 2 seconds.

The Server when receives it has the duty to resends that command.

If, after four seconds, no acknowledge of the previous ping was received then a

command to stop the motors is sent by the microcontroller to avoid damages

caused by an uncontrolled robot.

52

5.4.8 twimaster.c

This module implements a free to use I2C library and the author is Peter Fleury

[W16].

It is used to provide functions to communicate with the I2C devices.

The main functions provided in this library are:

void i2c_init(void);
Initialize the I2C master interface. Need to be called only once for each device.

void i2c_stop(void);
Terminates the data transfer and releases the I2C bus.

unsigned char i2c_start(unsigned char addr);
brief Issues a start condition and sends the address and transfer direction;

returns 0 if the device is accessible or 1 if failed to access device.

unsigned char i2c_rep_start(unsigned char addr);

Figure 35 – timer.h interconnections

53

Issues a repeated start condition and sends the address and transfer direction;

returns 0 if the device is accessible or 1 if failed to access device.

void i2c_start_wait(unsigned char addr);
Issues a start condition and sends address and transfer direction.

unsigned char i2c_write(unsigned char data);
Sends one byte to I2C device; returns 0 if the writing was successful or 1 if the

writing process fails.

unsigned char i2c_readAck(void);
reads one byte from the I2C device, requests more data from device and

returns that byte read from I2C device.

unsigned char i2c_readNak(void);
reads one byte from the I2C device; the reading is followed by a stop condition

and returns the byte reading from I2C device.

As an example of application, the following commands:

i2c_start_wait (MD03_l+I2C_WRITE); // set device addr. & write mode

i2c_write(addr_direction); // write address

i2c_write(0); // ret=0 -> Ok, ret=1 -> no ACK

i2c_stop();
Write to the left motor driver a clockwise direction (0).

5.4.9 usart.c

This module is used to interact with the USART (Universal Synchronous and

Asynchronous serial Receiver and Transmitter).

To connect the RS-232 to the atmega16 USART a line drive is need [Max232

Datasheet] is show in figure 36.

54

Figure 36 – Atmega16 and RS-232 connection

Table 4 specifies the connections made:

Atmega16 Max232 Max232
USB-RS232
converter

Pin 14 (PD0/RX) Pin 12 (R1Out) Pin 13 (R1IN) Pin 3 (TX)

Pin 15 (PD1/TX) Pin 11 (T1IN) Pin 14 (T1OUT) Pin 2 (RX)

Pin 31 (GND) Pin 15 (GND) Pin 15 (GND) Pin 5 (GND)

Table 4 – Pin connections between server and atmega16

This module provides the communication system between atmega16 and the

server program located on a laptop.

It also does the interpretation, followed by correspondent action, of any

commands provided from the server and is able to send commands provided

from other modules of the atmega16 (timers [chapter 5.4.7]) to the server.

The constant Baud Rate is calculated at the header file, it is just need to put the

oscillator frequency (F_OSC) and the desired baud rate (UART_BAUD_RATE),

so, it is easy to change the crystal oscillator because no extra maths need to be

USB RS232

Converter

55

done, only constant F_OSC has to be change in that case. Similarly, changes of

baud rates only need an update of the respective constant.

The actual baud-rate, data bits, parity, number of stop bits and flux control type

can be seen at table 5 and are specified at the server and at the atmega16.

Baudrate 38400 bps

Databits 8 bits

Parity None

Stopbits 1bit

Fluxcontrol none

Table 5 – Connection between server and atmega16 through RS-232

The communication between the Serial Ports is dealt with the following

functions:

void usart_putc(unsigned char c);

Send a character via USART.

void usart_puts (char *s);

Send a string via USART.

void USART_init(void);

Make the initializations of atmega16 USART.

Figure 37 show interconnections within the timer module.

A protocol of communication was developed to get an understanding between

atmega16 and Server program; two versions were experimented because

problems occur with the first one.

The initializations of the protocol are done with the following function:

void USART_init_variables(void);

56

After a command interpreting, the following function is called to provide it

execution:

void UsartExeCmd(void);

Others functions were implemented:

void Send_Sensor_data_with_Usart(void);
Sends the sensors data to the USART (relatively to each motor, sends position,

velocity, current and temperature)

void Send_Emergency_Ping_with_Usart(void);
Sends the “Virtual Heart Beat“, also known as, “emergency ping” to the Server.

• “Old Version Protocol” to the communication from the
Server Computer to Atmega16 and Problems about it

Each command received by the atmega16 usart must have three bytes to

define a command, following by three bytes defining a value and all of them in

ascii format.

Figure 37 – usart.h interconnections

57

At the table 6 is shown the word composition layout.

Word Composition nr.
1

……. Word Composition nr.
n

Function Value ……. Function Value

3bytes 3bytes …… 3bytes 3bytes

Table 6 – Word Composition (Old Version)

This approach worked well for some time but, from time to time, a loss of control

with the robot occurs because the command sent to the microcontroller stops to

be interpreted because synchronisations were lost every time an error occurred

and an overcome couldn’t be reached without a microcontroller reset.

A simple lesson was learned: The commands with a fixed number a bytes as

well as the respective values weren’t a good choice due to the

resynchronizations problems.

• Protocol of communication from the Server Computer to
Atmega16

Each command receive by the atmega16 usart, to be well interpreted, must

have at least one alphanumeric byte followed by at least one numerical value

and a ‘Z’ character to flag the end of each command/value frame.

All characters must be in ascii format.

At the table 7 is shown the word composition layout.

Word Composition nr. 1 ……. Word Composition nr. n

Function Value ‘Z’ ……. Function Value ‘Z’

x bytes y bytes 1 byte …… u bytes v bytes 1 byte

Table 7 – Word Composition

58

With this work the stability of the communication is improved because if a lack

of communication occurs, the command is misunderstood but at least

synchronism loss is avoided.

The flexibility was also improved by this method because commands and

values can have different sizes.

An example of a shared command from the Server to the Atmega16 can be

seen at table 8, at line one, the frame is sent over RS232 to set the acceleration

of the left motor to a value of 215; at line two the acceleration is set to 8.

M L A 2 1 5 Z

M L A 8 Z

Table 8 – Examples of shared commands from Server to Atmega16

A function:

QString conv_double_QString(double value_input)
Is used to brief convert a double integer value to a QString because the values

are sent in the ascii format.

59

START: Atmega16
Serial Interruption

rec

LastUsartValue

LastUsartValue_str

LastUsartCmd

Char variable type that has the last character received over USART

Integer variable that is build to have the last value received over USART

String variable that is build to have the last value received over USART

String variable that is build to have the last command received over
USART

END

 rec >= ‘A’

 rec == ‘Z’

 It is the last char. The command must be executed.
LastUsartValue=atoi(LastUsartValue_str) Adjust the type of the values.

Usart_Exe_Cmd()

Execute the command and reinitializates the

variables to a new command.

 It is a command. Build the full command
LastUsartCmd[n_char_received_4this_cmd++]=rec; . Build the full command

 It is a value. Build the full value
LastUsartValue_str[n_char_received_4this_val++]=rec; . Build the full value

Yes

No

Yes

No

Flowchart 1 – Atmega16 Serial Interruption

60

• Protocol of communication from the Atmega16 to the
Server Computer

The protocol of sending data from atmeg16 to server computer is different from

the opposite direction.

The server wants either all sensors data either a considerable amount of data

and not only a specific value, so, instead of sending an extra character (as the

‘Z’ character in the communication from server to the atmega16) to signal the

end of a specific frame, the process is implemented to validate a frame each

time a new alphanumeric character appears. This way, to process the last

received frame, the server must received an extra frame: that last frame its

“END0” and does nothing except handling the possibility to the server know that

previous value received has been completed.

The “END0” frame is, in reality, an undefined command/value by the server and

so it can be replaced by any other appearance as “E0” or any other undefined

command/value.

After a command/value is identified another function is called to execute.

Resuming, atmega16 can send several sets of commands and values with

different size and when server receives the command/value “END0” it

guarantees the process of the last command/value.

To ensure a correct explanation of the whole process of this communication, its

need to keep in mind that inherent the serial port process, the operating system

gets a variable amount of data from the serial port buffer and the server

applications gets that frame which can contain several sets of commands/value.

To deal with all amount and unpredictable data, every time the server gets data,

a copy to a new variable is done and it is executed a reset of the old buffer to a

null value and starts the process of indentifying commands/values. This way the

buffer does not get to long and the process of indentifying commands/values

61

has a static data within the process (the buffer update is in other thread, reason

why it has a dynamic growth)

An example of a shared command from the Atmega16 to the Server can be

seen at table 9, at line one, the frame is sent over RS232 to set the position of

the right encoder to a value of 6459; at line, it can be seen a frame to set the

encoder right position to 210 and the velocity to 5; at line three it can be seen

an usually shared command that is the “Virtual Heart Beat” aka “Emergency

Ping”.

E R P 6 4 5 9 E N D 0

E R P 2 1 0 E R V 5 E N D 0

E M P 0 E N D 0

Table 9 – Examples of shared commands from Atmega16 to the Server

62

START: Server
Serial Interruption

command=""

value=""

processing_string_input

S_SP_Received_from_Serial

QString variable type that has the last command received over
USART

QString variable that is build to have the last value received over
USART

QString variable that is used to have a copy of the USART buffer.

QString variable that represents the USART buffer

I Integer variable that ……….asdfasdfasfgbsaertgqaerger

 processing_string_input.length()>=i++

processing_string_input.at(i-1)<'A')

value+=processing_string_input.at(i-1); It is a part of a value (number)

it is a new command, so lets execute this one!!

S_SP_Command_input(command,atoi(value))

Yes

No

Yes

No

value.length()>0

 // Reinicialize to prepare another command
value="";
command="";

command+=processing_string_input.at(i‐1);

Yes

No

 // Reinicialize to prepare another command
processing_string_input="";
value="";
command="";

Verify sent to
client

63

Verify sent to client

END

Send the values from the serial por directly to the client

Robot_Server_Send_Command_to_Client();

slider_server_Auto_send_sensor_to_client-

>value()==1 OR

send_data_from_serial_back_to_client==1

 // Reinicialize to prepare another command
send_data_from_serial_back_to_client=0;

Yes

No

Flowchart 2 – Server Serial Interruption

64

The microcontroller unit was presented as well as the developed software, and

the protocol of communications used between the server and the

microcontroller.

65

6. Desktop Processing – C++

This chapter will fall upon the server and the client programming, the interface

to the robot user and system configurations.

6.1. Introduction

The system proposed used two computers based at a server-client architecture,

The client computer is not critical but the server used is, at the moment, a

common laptop but later it will be replaced with an industrial and low-power

consumption one.

Since the QT libraries are used, this system is platform independent, which

means that the software platform can be use in a Windows, Windows CE, MAC,

LINUX or an embedded Linux environment.

The use of a computer in the system was made because the computer can

archive plug and play updates through USB ports, can make some parallel

computation and the space of a laptop in the robot is no critical because the

robot is big and a lot of space is still free for other components.

The language used for the desktop processing is C++ and QT libraries and

tools were widely used.

“Qt sets the standard for high-performance, cross-platform application

development. It includes a C++ class library and tools for cross-platform

development and internationalization”

 [W5]

66

The figure 38 shows the block diagram of QT framework.

Figure 38 – Qt Block Diagram [W5]

The Qt uses a work philosophy of based in objects and uses directives of

Signal/Slots which can be connected with each others.

The idea of a desktop program is to provide high level processing and to

provide users to work remotely with the robot.

Two programs were made:

The “Server” and the “Client” which connect each other by the use of TCP/IP

protocol.

A “Virtual Heart Beat”, is identified at the code as an “emergency ping”, was

created between Server/Client and Server/Microcontroller to avoid loss of

control to the robot. In the Client/Server concern, it can be described as a

command that is sent from the Server to the Client every 2 seconds.

The Client when receives it has the duty to resends that command.

67

If, after four seconds, no acknowledge of the previous ping was received then a

command to stop the motors is sent from the server to the microcontroller to

avoid damages caused by an uncontrolled robot.

6.2. The Client

The client is used to transfer the values of the user interface directly to the

server and is able to interpret incoming commands proceeding from the server

to provide users to know the values of Temperature and Current of each motor

drives and also the Position and Velocity of each motor.

It needs also to interpret the “Virtual Heart Beat” (“emergency ping”) between

the server and the client to avoid a loss of control of the robot derived from a

lack of energy that could turn off the wireless router or even the client computer.

6.3. Class Client

The class “Client” makes possible to create a client based on an IP address and

a port:

The constructor is shown below:

Client(const QString &host, Q_UINT16 port);

The function SendStrToServer(QString texto); makes possible to send a

QString to the server and activates a Signal called logSentText to provide a

way to log the data communications done by the client.

The client has a socket to receive data: the Signal readyRead() is connected to

the Slot socketReadyRead(), this Slot also provides a way to log the data

communications activating the Signal logRecText()

68

An example of interconnection of those signals/slots is shown below, the syntax

is flexible but the first argument is always a QObject, and then the signal/slots

are specified.

If the signals/slots are proceeding from the same QObject, it can be specified

just once.

connect(client, SIGNAL(logSentText(const QString&)),cliente_log_sent,
SLOT(append(const QString&)));

connect(socket, SIGNAL(readyRead()), SLOT(socketReadyRead()));

Others private Slots of each Client can be used:

• closeConnection();

• sendToServer();

• socketReadyRead();

• socketConnected();

• socketConnectionClosed();

• socketClosed();

• socketError(int e);

69

6.4. Interface and applications

Figure 39 shows the interface of the Client program and some description can

also be seen under chapter 6.10. .

Figure 39 – Client Interface

The Client needs to interact with the Server in order to send commands that the

user wants the robot to have.

The Client needs to listen to data from the Server, that data can be provided

from the robot sensors but it is the server that transmits it (if the Server options

are defined to).

The interface includes a QgroupBox named “Client” which has Qbuttons to

connect to an IP address that can be chosen through a QlineEdit.

70

The data is sent as ascii format and the protocol adopted for command

exchanged between the server and the client is the same as from atmega16 to

the server:

Several sets of commands and values with different size are being

concatenated every time a character is received and when the word “END”

appears the processing starts.

The client will interpret all commands / data it received and send it, one by one,

to a function that will execute those commands; that function is

Client_Interpret_Command_Receive_from_Server(QString command, int
value).

The commands that are currently being used are shown in the table 10:

TD Turn Spinbox (Turn Direction)

TV Turn Velocity

TA Turn Acelaration

MRA Motor Right Aceleration

MRV Motor Right Velocity

MLA Motor Left Aceleration

MLV Motor Left Velocity

RAD0 Read All Data

Table 10 – Commands that are currently being used

Examples of shared command between Server and Client can be seen at table

11: at line one it is a command example of setting velocity of the right motor to a

value of 50 and at line two it is a command example to a sensors reading and to

set the velocity of both motors to a value of 68.

M L V 0 5 0 E N D 0

Table 11 – Examples of shared commands between Server and Client

T V 0 6 8 R A D 0 R A D 0

71

The Client has a QButton, as shown in figure 40, to signal to the Server that the

Client commands should automatically be sent to the robot:

Figure 40 – Automatic send command to robot

To do that, every time any slider is released, it will check if “automatic send

option” is active, and if so, it will call the function associated with the “Send

Button “

(pushButton_Robot_Client_Send_Command_to_Server_clicked())

Independent of the “Automatic send command to Robot” option, Qbuttons can

be used to send to the server, data from velocity, acceleration and direction

through “Send to Robot”, to read temperature, current, velocity, acceleration

through “Read Robot Sensors” and to put zero velocity to both motors through

“Stop Robot”.

6.5. The Server

The Server is used to interpret data from the client, to communicate with the

microcontroller and is able to operate the robot in a standalone mode (without

the Client)

It has a copy of the Client interface and once it receives a command of the

Client, it interprets it and adjusts the values of the sliders at the Server side.

It can send commands to provide the client with values of Temperature and

Current of the each motor driver and also the Position and Velocity of each

motor.

72

6.6. Class Server

The class “Server” makes possible to create a server based on a TCP/IP port:

The data transmission from the Server to the Client is identically as the Client

from the Server, the only difference is the behavior to the interpreted

commands.

The function data_recived_over_network(const QString& str_input) is called

each time the server receives data from a client.

When the “END” word appears all the commands will be interpreted, one by

one, by the function S_Command_received_from_client (QString command,
int value).

The function Robot_Server_Send_Command_to_Client() is used to send the

robot sensors data to the client.

6.7. Serial Port

With the SerialPort Class is possible to have control of the Server computer

Serial Port.

Several Slots can be used:

• openPort();

• closePort();

• saveBaudrate(QString);

• sendToPort(QByteArray);

• end();

The slot saveBaudrate(QString) is useful to make that setup options need to

be made only once per computer.

73

The following Signals are useful to get/send data from/to the serial port as well

of to signal the results of the connections.

• sConnected(QString);

• sDisconnected();

• sSerialError(int);

• sDataWritten(QByteArray);

• sDataRead(QByteArray);

The function S_SP_Analise_Data_input() is used to interpret the data from the

serial port and when a command/value is interpreted it calls

S_SP_Command_input (QString command, int value) to deal with the data

of the sensors of the robot and can follow that values to the client and update

servers interface.

The protocol of communications between atmega16 and server can be seen of

chapter 5.4.9

6.8. Setup Window and Log Window

The Server has a menu where the Setup Window (Figure 41) can be reached.

The Setup is used to allow the choosing of settings either of the Com Port as

the Network.

Last settings are remembered between sessions.

74

Figure 41 – Setup: Serial Com Port and Network settings

A Log window can be reached from this menu too (Figure 42)

This is a very useful window that shows every data that is shared through the

Serial Port and is useful for debug proposes.

Figure 42 – Logging Serial Port

6.9. Interface and applications

The server main interface in shown at figure 43 and some description can also

be seen under chapter 6.10. .

75

Figure 43 – Server Main Interface

The Server has a Button (Figure 44) to provide that the commands are

automatically sent to the robot.

Figure 44 – Automatic send command to Robot

The behavior is the same as described in a similar button on the Client side

(Figure 40):

Each time any slider is released, it will check if automatic send option is active,

and if so, it will call the function associated with the “send Button“

(pushButton_Robot_Server_Send_Command_To_Serial_clicked()).

Independent of the “Automatic send command to Robot” option, Qbuttons can

be used to send to the robot, through RS232, data from velocity, acceleration

and direction through “Send to Robot”, to read temperature, current, velocity,

76

acceleration through “Read Robot Sensors” and to put zero velocity to both

motors through “Stop Robot”.

The server has also a Qbutton, as shown in figure 45, to provide the data from

the robot sensors to be automatic sent to the client.

Figure 45 – Automatic send sensor data to Client

To do that, every time the server interprets the sensors data from the Serial

Port, it will forward those values to the client if this option is enabled.

Data transfers between Server and the Serial Port can be seen through two

QtextEdit, as shown in figure46, regards to “Received over Serial Port” and

“Sent over Serial Port”. Qbuttons to reserve/release the COM Port to the server

are also provided and the state of the port can be seen through a QlineEdit.

It is also possible to sent command directly though a QlineEdit “Send to Serial

Port” and the Qbutton “send”.

Figure 46 – “Send over serial Port” - QbuttonGroup

77

6.10. Identical interface components between Server
and Client

The interface shown at figure 47 is identical between the server and the client

even through the internal behavior is different because at the server side, the

commands are interpret and sent over rs232 to the robot but at the client side

the command are directly sent to the server over TCP/IP.

Figure 47 – Identical interface components between Server and Client

QbuttonGroups “Motor Left” and “Motor Right” are used to control the motors

individually and the “Turn” QbuttonGroup is used to do the control both motors

at once. Each one has Qsliders with connected CspinBox to provide interface of

the desire velocity and acceleration of the motors.

Near each individual motor controls, “Sensor Readings” QbuttonGroup are used

to give feedback of temperature, current, position and velocity respectively by

use of QlineEdit widget.

78

In an operation that the control are done setting the velocity and acceleration of

the robot (instead of individually control of each motor), a Qdial widget is used

to set the turn direction of the robot, as well as a Qbutton to easily put the robot

running in front.

Debug facilities are archived through two Qbuttons and two QtextEdit, as shown

in figure 48, with simple functions it is possible to get feedback of some

behaviour that can be useful to identify possible problems that might occur

during the programming stage.

Figure 48 – Debug facilities widgets

Data transfers between Server and Client can be seen through two QtextEdit,

as shown in figure 49, regards to “Received over the network” and “Sent over

the Network”.

Figure 49 – Data transfers between Server and Client - QtextEdit

Some programming done and examples, the interface and the user options

were discussed at this chapter.

79

7. Schematic, Proto-board, Strip-board, PCB and
hardware connections

This chapter will show the physical connections and interfaces to the

microcontroller as well of the schematics and the developed PCB’s of the

control unit.

7.1. Control hardware schematic

The control unit schematic, as shown in figure 50, was designed in Eagle [W7].

Eagle, that is a pcb and schematic design software, which has a freeware

version which makes it desirable to learn and to use it.

Even through Eagle could be more “user friendly”, it has an easy startup

learning stage.

It is very popular software which means that is relatively easy to get new parts.

80

Figure 50 – Controller unit schematic

7.2. Proto-board and Strip-Board

On a first stage all of this hardware was on a proto-board (figure 51), and even

so a strip-board (figure 52) was made.

The proto-board is still usable and it is probably preferable in future

improvements of the system since it is easy to connect more hardware to it and

change the place of components. Even so it is not as solid as the strip-board

81

and even the organization of the Proto-board was a concern at its developing

stage, a strip-board can be even more organized and compact.

The figure 51 shows the board and below it is a legend to help future workers of

the project to use it.

1 2
3

4 5 6 7
 9
 8 10
 11 12 13
14

 15

Figure 51 – Proto-Board

The figure 52 shows the strip-board that is more robust and much smaller than

the proto-board but is not so flexible, even so more I2C devices are easily

82

connected to it; below it is also a legend to help future workers of the project to

use it.

 1 3 5 7 10

 9 12 13
 14
 8 11
 6

Figure 52 – Strip-Board

Figure 51 and figure 52 legends:
1) Power connectors (The red color of the cable correspond to the +5V and

the Black one to the ground).

2) Programmer (In the figure, the red color of the flat cable needs to be

respected).

3) Power on LED used to signal if the board is powered.

4) Proto-board connection of the Programmer (In the figure, the red color of

the flat cable needs to be respected).

5) Reset tactile button used to reset the micro-controller.

6) I2C Bus, all I2C components are connected to this bus.

 The first column/line is the SDA and has blue wires.

 The second column/line is SCL and has orange wires.

 (The wires of SDA and SCL from the motor driver have correspondent

colors).

83

7) LCD Connector

8) Atmega16 Microcontroller and 16 MHz Crystal

9) Resistors to control the backlight intensity and the contrast of the display

10) Error LEDs to debug. (Matching error(1) and error(2) at debug software)

The upper one is being used when the motor driver initialization wasn’t

ok.

The bottom one is used when the microcontroller looses the connections

with the server. This Led is turned ON and commands to stop motor are

sent to the drivers.

11) RS232-TTL converter.

12) Flip-Flop D to help the microcontroller to know the direction of the

encoders.

13) Encoders connectors.

14) RS232 connector.

15) USB/RS232 converter to interconnect the server and the microcontroller.

7.3. PCB Schematic

The PCB schematic was also done at Eagle, Figure 53 shows it.

Figure 53 – PCB

84

7.4. 3D PCB

The 3D PCB, as shown in figure 54, was made with help of a freeware add-on

to the Eagle [W8] as well as POV-Ray that is a freeware tool to design 3D.

Figure 54 – 3D PCB

7.5. Hardware Connections

The figure 55 shows the D.C. regulator as well as the motor drivers their fuses

and capacitors as well as the display used in the robot and below it is a legend

to help future workers of the project to use it.

85

 1 2 3 4 5 6

 7 8

Figure 55 – Components – D.C. Regulator, Motor Drivers, Fuses and Display

Figure 55 legend:
1) DC 5V regulator (They have write with a pen, the polarity and tension of

each side).

2) Fuse to left driver.

3) Driver left.

4) Driver right.

5) Display.

6) Fuse to right driver.

7,8) 10n Capacitors to avoid electrical noise.

The schematics and the developed PCB’s of the control unit were presented.

86

8. Software and Hardware considerations

This chapter will present the interconnections process between components as

well as the debug troubleshoots and adopted solutions to them.

One of the points with difficult expression on a report is the hardware and

software debug phase.

This process consists in connecting all the hardware and software components

being successfully tested individually,

What concern hardware, tests were carried out with a small motor and with

small power supply. After that, the robot motors were tested with a 24V battery

and the microcontroller was fed by the fixed power supply, now all the power is

provided through the batteries.

Software debug can be spitted into the Desktop and the Microcontroller parts.

First the USART was implemented and then the PWM signals followed by

debug LEDs.

Communication between the server and serial port was tested followed by the

communication between server/client.

Everything was connected together as well the I2C communications with the

drivers.

One of the motor characteristic is the electromagnetic brake; it needs to feed

with 24V to release the motor. The breaks are constantly open in what this

project concern, but, to archive low power consumption, a relay will be added

further to possibility the control of it through the microcontroller.

87

Sometimes the motor control driver would crash and leave the motors running.

This problem was sorted out by adding a 10n to each motor to avoid noise as

well as a rewriting the applications with a better programming philosophy.

A “Virtual Heart Beat” was created between Server/Client and

Server/Microcontroller to avoid loss of control to the robot. It consist of a ping

every 2 seconds

This chapter presented some of the problems that occurs as well as the

adopted solutions.

88

9. Moot Points

Issues that can cause some discussion will be presented at this chapter.

1. Why does not any velocity control have been implemented on the
robot?
It was planned to use PID control when the robot shows needs for it.

The robot shows it can go through a straight line at any speed within all

practical experiments. All terrain tests were not performed, but then it will

need that control to increase accuracy in that environment.

2. Why does the robot make use of a Server computer instead of only
a microcontroller or a small board package like the “FOX Board”
that can run a real Linux operating system with the size of only 66 x
72 mm?
The purpose of the system was the flexibility. To invest in specific

hardware was avoided because the robot has not a practical finality at

the moment. That way a laptop was used because it was cheap and

flexible.

Multi-platform capabilities were developed, so, whenever it makes sense

to invest in low-power or smaller Server, the software is prepared to that.

3. The robot makes use of I2C and UART communications. Which
other choices were pondered?
I2C and SMBus are popular 2-wire protocols where data transfer makes

use of only two wires. These protocols reduce circuit complexity to a

system where multiple devices are intended to be added and controlled.

The most significative differences between I2C and SMBus are relative

to timeout, minimum clock speed, voltage levels and current levels.

89

I2C can be more than 30 times faster and slave devices have no timeout,

which means that slaves can be slower in performance. [W29]

1-WIRE bus makes use of only one wire for addressing and data transfer

but archives lower data rates and distance range, reason why it is

typically used to communicate with small inexpensive devices. [W31]

These buses and even more with the 1-WIRE bus, increase the

overhead at addressing and acknowledge stages, that overhead can be

reduced by using more wires to address the devices.

CAN (Controller Area Network) is an advanced communication protocol,

it makes use of 2 or 4 wires to data transfer and archives a 40 meters

bus instead of only 4 meter of the I2C but CAN operates only at 1Mbps

instead of the 3.4Mbps of the I2C.

SPI (Serial Peripheral Interface) is based in an 8-bit serial shift register

and a programmable shift clock. It has the advantage of a better noise

immunity comparing to I2C. Addressing SPI devices is made by adding

an extra wire to each device, reason why this protocol increases circuit

complexity as the number of devices rise in a system. At top speed SPI

is 3 times slower than I2C. [W30]

I2C is used at industry at small systems (smaller than 4 meters) and

meet the complexity and speed that this robot system is intended.

4. Why PCB was projected but not implemented?
The PCB was supposed to do instead the Proto-Board, but due to time-

limitations at the ending of this thesis it was put aside.

Priorities/Facilities ratio had importance at this point.

5. How was the 10n capacitor of each motor chosen?
That was a value chosen by the motor driver manufacture and it is

specified at the MD03 datasheet.

90

6. In a remote or hard access environment reconnecting the server
could be an issue. What if some communication problem happens,
how is the reconnection made?
“Virtual Heart Beat” handles this situation; it stops the robot when no ping

is received at the specified time but whenever it receives a ping from the

micro-controller or the Client, the process relaunch again.

7. If several I2C master are connected to the system, what happens

when two of them communicate at the same time?
At the moment only one I2C master is implemented but if, for some

reason, another master makes sense they can interact each other by

making use of arbitration logic and the “Bus busy detection” theory.

[W32]

8. Besides the critical duty of stopping the robot when the “virtual
heart beat” processes indicate, which other critical duties has the
microcontroller?
It has the duty of calculate the speed and position of the robot by sensing

of each motor with accuracy and has the duty to be the I2C Master

(generating the clock signal and addressing the slave when it needs to)

9. Does the robot have some proximity sensor or any device to sense
external environment?
Not at the moment. It will have within next improvements and the

continuation of this project.

10. Does the robot have any reference point when inserted in one
environment?
The reference is done when the robot is turned on.

At the start all variables are set to zero and values relative of how much

each motor run are relative to that start moment.

By adding other sensor to the system, the philosophies of setting the

reference can the different than the actual.

91

11. Why has the server a graphic interface? Could the graphic
programming language be implemented only at the Client side?
That was made that way to make possible “Access Restrictions”.

The Server can have the full control of the robot, but the Client is able

only to ask data to the Server, and it is the Server who decides what the

Client can do.

At developing stage, the Server can be programmed to do anything and

a “Remote Desktop Environment” can be used to control the robot

without any restrictions.

92

10. Conclusion / Further work

A final and informal presentation was done at the APS.

As main conclusions it can be said that the robot showed high stability with

either fast or smooth control. The commands sent by the client are correctly

interpreted and technical problems (as loss of internet connection) were

successfully passed.

The system was built from the scratch except of the mechanical structure and

all the problems that occurred during the developing phase were sorted out

which gave the solid and confident characteristic to the robot.

The mobile robot was developed, with communications parts between all

components.

The use of I2C gives a proof of efficiency, fast and expansible concept.

The software made at desktop level by use of qt libraries makes the system

portable and flexible and the low level developed software at the microcontroller

unit makes de system fast at duties as calculation the position, speed and

acceleration of the robot and I2C communication leaving the desktop free for

other duties.

Working abroad was a grateful experience, which allowed me to know people,

other institutions, to meet different cultures and to get more technical

acknowledgement and working skills.

93

Bibliography and WWW References

• Bibliography

[B1] Michael Barr, Anthony Massa, ” Programming Embedded Systems”,

O'Reilly, ISBN: 0-596-00983-6, cp8, cp9, cp13

Here you can have an approach of embedded systems processing.

Different types of Interruption handling on a microcontroller as showed

A PWM tutorial with and some simple examples are showed.

A brief I2C explanation is presented.

[B2] Lewin A.R.W. Edwards, ” Open-Source Robotics and Process Control

Cookbook - Designing and Building Robust,Dependable Real-Time

Systems”, Newnes, ISBN: 0-7506-7778-3

• References WWW

[W1] http://www.aps-mechatronik.de/

Main page of APS - European Centre for Mechatronics

Here it is possible to find information referring members of the center,

investigation developing projects, etc.

(Accessed on March, 2008).

[W2] http://www.fb6.rwth-aachen.de/en/1.php

Main page of Faculty of Electrical Engineering and Information

Technology of RWTH University.

94

Here it is possible to find information referring members of the

department, teaching activities and investigation developing projects,

etc.

(Accessed on March, 2008).

[W3] www.dei.uminho.pt

Main page of Industrial Electronics and Computers department of

University of Minho. Here it is possible to find information referring

members of the department, teaching activities and investigation

developing projects, etc.

(Accessed on March, 2008).

[W4] http://www.atmel.com
Page of Atmel.

Here you can find information about microcontrollers and the

datasheet about atmega16, debuggers (AVRStudio) and other Atmel

product.

 (Accessed on March, 2008).

[W5] http://trolltech.com/products/qt
http://trolltech.com/products/qt/features

Page of QT.

Here you can find information about QT, help documentation with

libraries specifications and features.

(Accessed on March, 2008).

[W6] http://www.lancos.com/prog.html
Page of PonyProg flash programmer.

Here it is possible to find the newest version of the software as well as

different solutions to the programmer hardware.

(Accessed on March, 2008).

[W7] http://www.cadsoft.de/
Page of Eagle

95

Here you can download the freeware version of Eagle as well as many

libraries of components

(Accessed on March, 2008).

[W8] http://www.matwei.de/doku.php?id=en:eagle3d:eagle3d
Page of Eagle 3D

Here you can download the freeware and open source version of

Eagle 3D add-on as well of documentations about to use it.

 (Accessed on March, 2008).

[W9] http://www.atmel.com/dyn/resources/prod_documents/doc2466.pdf
Datasheet of the microcontroller atmega16 provided by the

manufacturer Atmel.

Here you can find information about the microcontroller atmega16 and

some example code.

(Accessed on March, 2008).

[W10] http://www.AVRfreaks.net
Here you can find a large collection of projects suitable to learn you

more about the AVR.

(Accessed on March, 2008).

[W11] http://www.atmel.com/dyn/resources/prod_documents/doc2466.pdf
AVR Studio

(Accessed on March, 2008).

[W12] http://www.dimensionengineering.com/Sabertooth2X10.htm
Here it is possible to find Sabertooth specifications
(Accessed on March, 2008).

[W13] http://societyofrobots.com/batteries.shtml
Page of Society of Robots.

Here you can find information about robots and how they are made

and a nice tutorial about the different types of batteries

96

(Accessed on March, 2008).

[W14] http://www.embedded.com/story/OEG20010718S0073
Page of Embedded Systems Design,

Here you can find a nice tutorial about I2C functions.

(Accessed on March, 2008).

[W15] http://www.nxp.com/acrobat_download/applicationnotes/AN102161.pdf
Phillips manual about I2C.

(Accessed on March, 2008).

[W16] http://jump.to/fleury
Page of Peter Fleury

Here you can find libraries to use I2C and LCD with the atmega16

microcontroller

(Accessed on March, 2008).

[W17] http://en.wikipedia.org/wiki/I2C
Page of Wikipedia.

Here you can find nice tutorial about I2C functions.

(Accessed on March, 2008).

[W18] http://www.ormec.com/mktdocs/encres.htm
Page of ORMEC’s - Motion control solutions

Here you can find nice tutorial about encoders.

(Accessed on March, 2008).

[W19] http://lab.artematrix.org/papers/Homebrew_Shaft_Encoder.pdf
Encoder

(Accessed on March, 2008).

[W20] ftp://ftp.ni.com/pub/devzone/pdf/tut_4623.pdf
Page of the national instruments with some principles of encoders

(Accessed on March, 2008).

97

[W21] http://www.faulhaber-group.com/n390840/n.html
Page of the manufacturer of this robot gearheads.

This you can find a nice tutorial about choosing the gearheads and

how are they composed.

(Accessed on March, 2008).

[W22] www.crouzet.com/catalogue_web/pdf/ENG/ndb12_eng.pdf

Brief Description about D.C. motors

(Accessed on March, 2008).

[W23] www.robotstorehk.com/md03tech.pdf
Motor driver MD03 Datasheet

(Accessed on March, 2008).

[W24] www.irobot.com
iRobot Homepage

(Accessed on March, 2008).

[W25] http://www.gizmag.com/go/7151/
iRobot in Iraq

(Accessed on March, 2008).

[W26] http://www.linuxdevices.com/articles/AT3782871866.html
http://www.activrobots.com/ROBOTS/p2at.html

2008, MobileRobots Inc. (Accessed on March, 2008).

ActivMedia Mobile Robot (Pioneer and other types of robots)

[W27] http://linuxdevices.com/news/NS8152651349.html
914 PC-Bot

(Accessed on March, 2008).

98

[W28] http://www.gizmag.com/go/7208/
Remote-controlled robot uses thermal imaging to detect and eradicate

termites.

(Accessed on March, 2008).

[W29] http://www.maxim-ic.com/appnotes.cfm/an_pk/476
I2C and SMBus comparing.

(Accessed on March, 2008).

[W30] http://www.ucpros.com/work%20samples/Microcontroller%20Communi

cation%20Interfaces%201.htm
I2C and SPI comparing

(Accessed on March, 2008).

[W31] http://en.wikipedia.org/wiki/1-Wire
1-Wire Interface specifications

(Accessed on March, 2008).

[W32] http://www.i2c-bus.org/multimaster/

I2C Multi-Master Environment.

(Accessed on March, 2008).

99

Table of figures

Figure 1 – iRobot [W24] 8

Figure 2 – iRobot pack [W24] 9

Figure 3 – the iRobot Packbot in Iraq [W25] 9

Figure 4 – ActivMedia Mobile Robot Pioneer 2-DX [W26] 10

Figure 5 – ActivMedia Mobile Robot - PIONEER 3-AT [W26] 11

Figure 6 – Principle of operation [W22] 13

Figure 7 – Principle of operation [W22] 14

Figure 8 – Termibot [W28] 15

Figure 9 – 914 PC-Bot [W27] 17

Figure 10 – The Robot 18

Figure 11 – Block Diagram 19

Figure 12 – Composition of a D.C. motor [W22]. 22

Figure 13 – Principle of operation [W22] 23

Figure 14 – PWM signals of varying duty cycles [B1]. 25

Figure 15 – Gearheads [W21] 25

Figure 16 – RN-VNH2 Driver [picture provided by the manufacturer datasheet] 27

Figure 17 – Sabertooth Driver [W12] 28

Figure 18 – MD03 Driver [W23] 28

Figure 19 – Encoders signals [W20] 30

Figure 20 – Encoders signals [W19] 30

Figure 21 – Encoders Flip-Flops [W19] 31

Figure 22 – Robot encoders 32

Figure 23 – Serial Connection between two Exide batteries 33

Figure 24 – Regulator Schematic [LT1074 datasheet] 34

Figure 25 – Regulator Board 35

Figure 26 – “SI-Prog” Programmer Schematic 36

Figure 27 – Programmer Board 36

Figure 28 – I2C typically interconnection system [W14] 37

Figure 29 – Robot I2C interconnection system 38

Figure 30 – I2C Packages [W14] 39

Figure 31 – Atmega16 pinout [W9] 42

100

Figure 32 – atmega16.h interconnections 46

Figure 33 – Level- and edge-sensitive interrupt signals [B1] 48

Figure 34 – motor.h interconnections 50

Figure 35 – timer.h interconnections 52

Figure 36 – Atmega16 and RS-232 connection 54

Figure 37 – usart.h interconnections 56

Figure 38 – Qt Block Diagram [W5] 66

Figure 39 – Client Interface 69

Figure 40 – Automatic send command to robot 71

Figure 41 – Setup: Serial Com Port and Network settings 74

Figure 42 – Logging Serial Port 74

Figure 43 – Server Main Interface 75

Figure 44 – Automatic send command to Robot 75

Figure 45 – Automatic send sensor data to Client 76

Figure 46 – “Send over serial Port” - QbuttonGroup 76

Figure 47 – Identical interface components between Server and Client 77

Figure 48 – Debug facilities widgets 78

Figure 49 – Data transfers between Server and Client - QtextEdit 78

Figure 50 – Controller unit schematic 80

Figure 51 – Proto-Board 81

Figure 52 – Strip-Board 82

Figure 53 – PCB 83

Figure 54 – 3D PCB 84

Figure 55 – Components – D.C. Regulator, Motor Drivers, Fuses and Display 85

Figure 56 – Motor Dimensions 105

101

Table of tables

Table 1 – Robot motor characteristics 24

Table 2 – MD03 addresses of left and right motor 28

Table 3 – All Pin List 45

Table 4 – Pin connections between server and atmega16 54

Table 5 – Connection between server and atmega16 through RS-232 55

Table 6 – Word Composition (Old Version) 57

Table 7 – Word Composition 57

Table 8 – Examples of shared commands from Server to Atmega16 58

Table 9 – Examples of shared commands from Atmega16 to the Server 61

Table 10 – Commands that are currently being used 70

Table 11 – Examples of shared commands between Server and Client 70

Table 12 – Robot motor characteristics 105

102

Table of flowcharts

Flowchart 1 – Atmega16 Serial Interruption 59

Flowchart 2 – Server Serial Interruption 63

103

Table of abbreviations

I/O Input / Output

TCP/IP Transmission Control Protocol / Internet Protocol

I2C Inter-Integrated Circuit

TWI Two Wire Interface

DC Direct Current

PWM Pulse-width modulation

USART Universal Synchronous Asynchronous Receiver

Transmitter

APS European Centre for Mechatronics

DDR Data Direction Register

ASCII American Standard Code for Information Interchange

A.K.A. Also Known As

AGM Absorbed Glass Mat

104

Attachments – Motor Specifications

The robot has two motors provided from the manufacture ENGEL, the series is

GNM5480E and the motors are typed “Permanent Magnets, Direct Current”

they are coupled with gear-heads and the characteristics can be seen at table 1

and the dimensions at figure Error! Reference source not found..

Nominal voltage UN 24 Volt

Armature resistance R 0.106 Ω

Nominal output power P2 250 W

Efficiency η max 85 %

No-load speed no 3,267 rpm

No-load current Io 1,435 mA

Stall torque MH 1,005 oz-in

Friction torque MR 14.16 oz-in

Speed constant kn 137 rpm/V

Back-EMF constant kE 7.30 mV/rpm

Torque constant kM 9.87 oz-in/A

Maximum peak current kI 115 Amps

Rotor inductance L 0.33 mH

Nominal speed 3,000 rpm

Nominal torque 112.71 oz-in

Mechanical time constant Ƭm 11.6 ms

Rotor inertia J 52.4 x10-3oz-in-sec2

Thermal resistance
Rth1/

Rth 2
1.8 °C/W

Thermal time constant τ w 40 minutes

105

Motor weight lbs.

Maximum ambient temperature 40 (104) °C (°F)

Motor operating temperature range
–20 to 100

(–4 to 212)
°C (°F)

Table 12 – Robot motor characteristics

Figure 56 – Motor Dimensions

106

Attachments – CD Contents

The source code of the atmega16, the server and the client are provided in a

CD and below the contents and description of the directory layout of the CD will

be presented:

Root,

Document source of this thesis in .doc and .pdf formats.

Datasheets,

Contains the component data sheets used for design of this project and

application and design notes used.

Schematics,

Contains the schematics of both control circuits in Eagle and also

contains the PCB’s.

Miscellaneous,

The miscellaneous specifications and application documents used

designing the circuits.

Code Embedded,

The embedded C code used to create the drivers for the motor driver

design.

Code desktop,

 The desktop C/Qt code used to the client and the server design.

