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ABSTRACT:  

Since the 1990s, fishing production has stagnated and aquaculture has experienced an exponential 

growth thanks to the production on an industrial scale. One of the major challenges facing 

aquaculture companies is the management of breeding activity affected by biological, technical, 

environmental and economic factors. In recent years, decision-making has also become 

increasingly complex due to the need for managers to consider aspects other than economic ones, 

such as product quality or environmental sustainability. In this context, there is an increasing need 

for expert systems applied to decision-making processes that maximize economic efficiency of the 

operational process. One of the production planning decisions more affected by these changes is 

the feeding strategy. The selection of the feed determines the growth of the fish, but also 

generates the greatest impact of the activity on the environment and determines the quality of the 

product. In addition, feed is the main production cost in finfish aquaculture. In order to address all 

these problems, the present work integrates a multiple-criteria methodology with a genetic 

algorithm that allows determining the best sequence of feeds to be used throughout the fattening 

period, depending on multiple optimization objectives. Results show its utility to generate and 

evaluate different alternatives and fulfill the initial hypothesis, demonstrating that the combination 

of several feeds at precise times may improve the results obtained by one feed strategies. 

Keywords: aquaculture management; operational research; genetic algorithms; multiple-criteria; 

decision-making; feeding strategies;  

1. Introduction 

The exponential and uncontrolled growth of fisheries in the second half of the previous century 

put the sustainability of fish stocks at risk. Since the 1990s, fishing production has stagnated and 

there has been an exponential growth of aquaculture. Traditionally, marine fish farming was 

practiced extensively, mainly in lagoons and coastal ponds. However, production and consumption 

patterns have changed over time and, nowadays, intensive production is the most used method 

thanks to the development of new technologies. This change to intensive farming has led to the 

rapid development of the aquaculture industry, becoming a relevant industry around the world 

that is able to meet the demand for fish. In this context, sea cage farming has increased its 

importance in the aquaculture sector in which it has a major comparative and competitive 

advantage at global level: the cost reduction, with no energy costs for pumping, aeration, or post-

rearing water treatment. In contrast, similar to other areas of the primary sector, fish farms 

management is complex due to the broad range of internal and external factors that influence the 

decision-making process. In this way, main decisions throughout the breeding process are affected 

by the interactions of technical, biological, environmental and economic factors.  



Over the last decades, operational research (OR) experts have already developed management 

tools and Decision Support Systems (DSSs) in order to respond to producers’ demands on the 

automation and optimization of many strategic and operational decisions. In this regard, main 

company decisions have been also widely analysed in many OR studies, such as site selection 

(Stagnitti, 1997), facilities design (Ernst et al., 2000) or hatchery management (Schulstad, 1997). 

Most of these OR models applied in aquaculture have been traditionally based on accumulated 

experience in fishing and other primary sector activities, such as agriculture or forestry, to increase 

the efficiency and profitability of fish farming on an industrial scale (Bjørndal et al. 2004). These 

tools provide expert information in an easy-to-use manner to end users and, with the 

technological advance in Big Data and Artificial Intelligence, they have managed to improve 

aquaculture companies’ capacity to make decisions and develop control systems (Zhou et al., 

2018).  

Among those decisions stands out the selection of the most suitable feeding strategy, since feed is 

the main operational cost in in finfish aquaculture, which can achieve 30%–60% of total 

production costs (Goddard, 1996). In this regard, great research efforts have been made to 

determine, from the manufacturer's point of view, the ingredients that would form the optimal 

feed formulation. For example, several researchers have analysed feed formulations assessing the 

efficiency of diet formulations based on the results of a feeding trial on laying hens (Criste et al., 

2016), measuring the effect of feed formulation in productivity (Abayomi et al., 2015) or applying 

optimization techniques to design an optimal diet composition with the objective to ensure the 

maximal survival rate and (Hormiga et al., 2010). However, in practice, most producers do not 

produce their own feed, but rather acquire the feed already formulated by the industry. This, in 

conjunction with the fact that there are a wide range of feeds in the market, implies that feeding 

strategies are a complex set of selections of different feeds for the fattening period, also called 

feeding paths, and, therefore, the number of potential possibilities is extensive and the results of 

those aspects can vary hugely depending on the final decision. 

The central objective of this work is to provide decision makers with a model to address that 

combinatorial optimization problem. To this end, on the basis that feed selection depends on 

different factors at the precise moment at which feed is used and it is chosen among a finite set of 

alternatives provided by specialized manufacturers, metaheuristic techniques stand out as the 

best alternative to provide a solution. These techniques sacrifice the guarantee to find the optimal 

solution for the sake of getting good solutions in a significantly reduced amount of time (Blum and 

Roli 2003) compared to classic optimization techniques, many of whom are not applicable in these 

problems or lead to computation times too long for practical purposes. For these reasons, the 

present work applies a genetic algorithm (GA) methodology, a metaheuristic search and 

optimization technique based on principles present in natural evolution, to feeding decisions in 

order to generate and evaluate different feeding paths based on a fitness function. 

GAs are one of the most popular heuristic approaches for optimization with application to many 

decision areas focused on process and product design, operations planning and control, and 



operations improvement, as stated in the bibliographical review carried out by Lee (2018). With 

regard to aquaculture, genetic algorithms have already been used successfully in different 

optimization problems, as well. Atia et al. (2012) used them to optimally design solar water 

heating systems and Liu et al. (2011) addressed the water quality prediction using a hybrid 

approach based on support vector regression and GAs. In this context, there are different 

applications that have integrated ecological factors in the optimization processes too, such as the 

prediction of the potential distribution of invader species (Chen et al. 2006), or the prediction of 

fish distributions (D’Angelo et al. 1995). Lastly, other nature-inspired metaheuristics have been 

also used successfully in various practical problems related to aquaculture, such as the 

determination of the production strategies that maximize the present profits of the farming 

process considering as decision variables the fingerlings size, seeding times and harvesting weights 

(Cobo et al. 2018). However, despite its application to different aspects of the activity, the 

enormous potential of these techniques to contribute to the improvement of the efficiency of the 

feeding decision-making process has still not been adequately exploited. 

However, there are still other challenges to be faced. Nowadays, producers should also attend to 

stakeholders’ demands not only in terms of profitability or cost efficiency, but also in terms of 

environmental responsibility or product quality, aspects that they can sometimes find 

contradictory. This has led to a lack of management capacity due to the increasing complexity of 

those decisions and the need for extremely large amounts of data. Consequently, more and more 

producers demand for expert’s systems that take into account the news ways of production, such 

as cleaner production (CP) alternatives, integrating all these criteria to combine the efficient use of 

natural resources and the generation of economic benefits (Canal Vieira and Gonçalves Amaral, 

2016). 

In this respect, the present study integrates a multiple-criteria decision-making (MCDM) 

methodology to formulate the fitness function that the genetic algorithm uses to evolve to a near-

optimal solution. This methodology enables producers to condition their decisions to many criteria 

involved in the production process, such as economic, product quality or environmental 

sustainability ones. Furthermore, these techniques are ideal for this sector since they allow 

producers to weight each, different and very often opposed, criterion based on the subjective 

perception of the relative importance of them with the goal of combining several objective 

functions into a fitness function in order to prioritize the feeding alternatives. Some research 

studies, such as Ishizaka et al. (2011), have already shown the benefits of these methods in 

establishing rankings of alternatives through various experimental analysis and the emergence of 

new ways of production has led to the development of various MCDM tools applied to some 

problems of aquaculture, such as site selection (Dapueto et al. 2015; Shih, 2017), planning of 

regional aquaculture development (El-Gayar and Leung, 2001) 

The methodology developed in this work represents an innovation in aquaculture since it manages 

to integrate the use of different optimization criteria, crucial for the development of new ways of 

production, and the possibility of having a variable feeding path throughout the fattening process 



in the finfish-feeding decision-making process. After this introduction, the paper is structured as 

follows. First, section 3 describes the methodological approach, combining MCDM techniques and 

GA. Then, although the developed methodology could be applied to the culture of many 

aquaculture species, it is tested in the case of gilthead seabream farming in sea cages in section 4. 

Lastly, the conclusions and future research lines are given in section 5. 

2. Materials and methods 

To address this problem, the MCDM+GA optimization methodology designed has been 

implemented in a tool that combines all the techniques required in order to carry out the 

collection of real data and the simulation of the main management issues of the farm and the 

search for useful solutions with a population-based metaheuristic optimization algorithm, which 

allow farmers to try with different feeds throughout the production period rather than choosing 

only one, in the optimal way possible.  

Prior to developing the described methodology, the vast amount of data needed and their 

complex relations makes necessary to develops a relational database and to clarify the problem. 

The structure of the database consists of four groups of tables: First, a central axis to identify the 

aquaculture farm and its main characteristics. Then, two groups representing the uncontrollable 

variables, such as the water temperature or salinity, which cannot be manipulated by the decision 

maker, but do affect the system performance, and therefore are required for forming a reliable 

decision (Casini et al. 2015). Lastly, five tables containing the information about the current status 

of each cage and the specific feeding, growth and loss rates according to the available feeds. 

The development of an appropriate database is crucial to allow the tool to easily use specific 

information but it also assists in the clarification of the problem by gaining a detailed 

understanding of the different relationship between variables. In this regard, it is possible to 

define the problem as a combinatorial optimization problem, in which the producer has a finite set 

of feed {F1,F2,…,Fm} and the objective is to select the feed to be used in each week of the 

fattening period of the selected cage. The decision variables xi ϵ{1,2,…,m} represent the feed used 

in week i, for i=1,2,…,n and a feeding path X is a vector Xϵ{1,2,…,m}n. Results obtained for each 

feeding path are estimated based on the explanatory variables included in the bio-economic 

model, which will be explained later.  

Once the decision problem has been clarified, the methodology is structured as follows (Fig. 1): 

a. The first step to perform this process is to establish the criteria to be taken into account 

and weight each one based on the preferences of the farmer using MCDM techniques.  

b. Secondly, prior to the process of optimization, the development of a bio-economic model 

is needed to reasonably simulate the results for each feeding strategy.  

c. Lastly, an optimization process is developed based on a multiple-criteria fitness function 

according to which the initial population of feeding alternatives evolve, with the use of 

GA’s crossover and mutation operators, until finding a useful solution.  



 
Fig 1. Software architecture according to the methodological approach. 

2.1. Criteria selection and weighting 

Within the supply of feed for the fattening of sea bream, there are notable differences in terms of 

prices, estimated fattening rates and nutritional composition. Furthermore, the choice of the most 

suitable feed can be conditioned by other factors, such us the environmental conditions of the 

farm or even the market.  

This section presents three groups of criteria (economic, environmental sustainability, and product 

quality) used for choosing the most suitable feed and the method used to weight their subjective 

importance. In practice, this methodology allows decision makers to choose some of these factors 

for consideration or add new criteria before ranking them according to their individual needs. 

2.1.1 Proposed criteria 

From a conventional economic point of view, the main objective of aquaculture enterprises is 

profit maximization. In this respect, an economic sub-model has been included to estimate the 

operational profit by taking into account the costs incurred in the feeding process and the 

revenue obtained from the sales, calculated as a function of the average mass, its expected 

dispersion, and the market price in dollars per kg. The total weight in the cage is directly 

influenced by the growth, dispersion and mortality rates, so it will depend on the selected feed 

and the variations inherent to the fish source and species. Market prices considered are based on 

commercial classes, seasonal price and type of production (e.g. conventional or organic). This 

study considers only the feeding costs, making the assumption that others are not influenced by 

the chosen feed. 

On the other hand, as an alternative to that conventional point of view, sustainable and organic 

procedures aim to reduce the negative environmental impacts of aquaculture production. In this 

regard, sharing best practices and their application in aquaculture companies throughout the 

breeding process is a key determinant as well as the appropriate selection of feed producers, as 

they also use energy and emits carbon dioxide (Boyd, 2015). In this regard, we have divided the 

environmental sustainability criteria into three sub-categories: 

- Official ecolabels have been designed to certify organic products from a trusted third 

party. The Commission Regulation (EC) No 889/2008 of 5 September 2008 have set 

specific rules on feeds for carnivorous aquaculture animals. They shall be sourced by 



products from: organic aquaculture, fisheries certified as sustainable or organic feed 

materials of plant origin (60% maximum). Furthermore, the maximum stocking density is 

15 kg/m3 for sea bass and seabream. This labels involves a disadvantage for the high cost 

of certification. 

- In contrast, many consumers and producers prefer other strategies related to the 

environment surrounding aquaculture farms. Lembo et al. (2018) showed that in order to 

minimize the environmental impact of aquaculture, stakeholders placed the highest value 

on the prevention of chemical waste, namely nitrogen and phosphorus, and on the 

increase of feed efficiency in terms of fish meal and oil used. 

- Along these lines, prior to the arrival to the farm, feed production has also an 

environmental impact that is commonly measured by the energy use (MJ equiv.), and the 

global warming potential impact (CO2 equiv.) of the greenhouse gas emissions, among 

others (Abdou et al., 2017). 

Lastly, fish products quality is easily perceived by the appearance, odor, flavor, and texture but it is 

still very difficult to contemplate objective criteria in this area. As Shahidi (2011) explained, fatty 

acids, particularly omega-3, are considered as health-promoting dietary components so some feed 

producers present an approximate amount of omega-3 transmitted with the use of their feed 

during the whole fattening process based on their own empirical studies. Besides that, Grigorakis 

(2011) has showed that re-feeding fish that previously received plant oil with diets containing fish 

oil over a period of 90 days could be adequate to almost fully restore the initial muscle fatty acids 

in both gilthead seabream and sea bass. These two criteria have been included as an approach to 

two different points of view about the maximization of the fish quality. 

Once selected, the corresponding criteria are organized into a hierarchical structure (Fig 2) which 

will facilitate the evaluation of their relative importance. 



 
Fig. 2 Criteria hierarchy – tree structure: Highlighted boxes correspond to finally included criteria (Luna et al., 2019)1 

2.1.2 Weighting method 

The developed methodology uses the Analytic Hierarchy Process (Saaty, 1980) to turn human 

judgements, comparing the importance of each criterion with the others in the same level by pairs 

(table 1), in numerical values that will be easily integrated in a final weight for each criterion.   

Table 1: AHP Marks Interpretation - Saaty (1987) 

To address that process, an application of the AHP has been developed based on Cabral et al. 

(2016). It creates a matrix where the pairwise comparison values are stored associated with each 

                                                        
1 The Fish-in Fish-out ratio represents the feed efficiency, measuring the amount of fish based feed needed to 
produce a unit weight of the cultured species. 

Criteria

Economic
Operational 

Profit

Environmental

Sustainability

Organic label
% Feed from 
sustainable 
exploitation

Sustainable 
Production

Fish-in Fish-out

Nitrogen

Phosphorus

Feed Production 
Impact 

Energy Use

Global Warming 
Potential

Quality

% Fish Feed

Omega 3

Intensity Importance of one over another Explanation 

1 Equal Importance 
Two activities contribute equally to the 

objective 

3 Moderate importance 
Experience or judgement slightly favour one criterion 

over another 

5 Essential or strong importance 
Experience or judgement strongly favour one 

criterion over another 

7 Very strong important 
An activity is strongly favoured and its dominance 

demonstrated in practice 

9 Extreme importance 
The evidence favouring one activity over 

another is of the highest possible order of 
affirmation 

2,4,6,8 Intermediate values When compromise is needed 



hierarchical level of criteria. In such way, each entry ajk represents the importance of the jth 

criterion relative to the kth criterion (1).   

 

 

(1) 

As simultaneously optimizing all the criteria is impossible, it is necessary to group these subjective 

judgments of the decision-maker on the importance of the criteria and from there define a 

heuristic process of searching for good solutions. In this regard, the developed methodology 

aggregates the values to form a vector of relative weights for each criterion considered in the 

matrix. In the present case, the weight vector is estimates as the normalized components of 

eigenvector corresponding to the largest eigenvalue of the matrix, according to the Saaty‘s 

approach.  Furthermore, it also estimates a measure of the consistency in the decision maker’s 

judgements (Wang et al., 2007) 

2.2. Bio-economic simulation 

In order to simulate the fattening process for each alternative of feeding and estimate its results 

or consequences, a bio-economic model has been developed. In this regard, the bio-economic 

model of the process of farming in sea cages integrated in the present work is based on the model 

proposed by Llorente and Luna (2013, 2014) and Cobo et al. (2015).   

Initially, that model consisted in a biological sub-model of the process of farming in sea cages, 

which considers feed and growth rates as a percentage of the weight of the fish depending on the 

weight and environmental conditions, and an economic sub-model that quantifies the revenue 

and costs involved. However, MCDM techniques explore new factors, such as those related to 

environmental sustainability or product quality, that affect the decision-making process in 

aquaculture. As a consequence, the bio-economic model has gone one step further to estimate 

every important factor, based on the characteristics of each feed, while the biological process is 

simulated.  In this regard, it also takes the assumption that producers cannot address the control 

of any of the abiotic factors affecting the growth process, for example, temperature, light, salinity, 

and oxygen, in an economically efficient way (Brett, 1979). Neither is it possible to choose the 

maximum biomass density, which is equal to the maximum insurable biomass density (Luna, 2002) 

or to the maximum allowed density in the case of organic labelled production. 

However, some different assumptions have been taken. First of all, now it is possible to change the 

feed during the fattening process in order to reach the farmer goals. In this way, some farmers use 

a different feed during the colder months trying to maintain the growth and mortality rates or to 

reduce costs. On the other hand, the model considers only one a time investment, in which 

producers will take the harvesting time decision attending to their economic needs or agreements, 

so harvesting weight will be slightly different for each feeding strategy. Nevertheless, this 

methodology is also adaptable to a different model that considers an infinite series of investments 



or time-dependent harvesting.  In addition, the developed methodology allows decision-makers to 

consider, when such data is available, specific functions based on empirical findings in aspects 

such us feeding, growth, loss or dispersion. 

Thus, feed composition and quality are considered crucial variables, dependent on the feed 

selected by the producer and the total amount consumed, since they will be used to simulate the 

economic, environmental and quality factors of each alternative in a daily basis. Finally, they are 

summed for the whole period getting as much values for each criterion as alternatives are 

generated in the optimization process.  

2.3. Optimizing feeding strategies 

Genetic algorithms are search algorithms based on the mechanics of natural selection and natural 

genetics. GAs starts with a random population of strings, known as chromosomes, and thereafter 

successive populations are generated. To perform an effective search for better and better 

structures, they first require payoff values (objective function values) associated with individual 

strings (Goldberg, 2012). 

In this regard, there are also different evolutionary metaheuristic techniques that can be used to 

address multiple-criteria problems, some of them using genetic algorithms such as NSGA-II (Deb et 

al., 2002). These techniques are mainly oriented to obtain a well distributed set of non-dominated 

solutions that approximate the Pareto front in practical problems in a great variety of fields. In 

fact, evolutionary multi-objetive optimization is one of the most active fields of research within 

evolutionary computation (Abraham et al., 2005). 

However, evolutionary multi-objetive algorithms usually require working with a small number of 

objectives, because when this number grows there is an exponential increase in the number of 

non-dominated solutions found by the algorithms, which blocks the mechanism they have to reach 

the solutions of the Pareto front (Ishibuchi et al., 2008). In practice, these evolutionary algorithms 

are not very useful for the resolution of problems with more than three objective functions, so in 

the present work, we have chosen to combine the objectives in a fitness function with an MCDM 

technique and thus approach the problem with GAs. 

2.3.1. Evaluation function 

Genetic algorithms require an optimization objective according to which the population evolves. 

The fulfillment of this objective is measured by the fitness function F(X), which assigns a fitness 

value to each individual based on the parameters derived from its chromosome. In the present 

study, that function is built for each feeding path taking the Technique of Order Preference by 

Similarity to Ideal Solution (TOPSIS) as a reference (Hwang and Yoon, 1981). 

Traditionally, TOPSIS considers two hypothetical alternatives: one with the best values for 

all the attributes (the positive-ideal) and one with the worst values for all the attributes 

(the negative-ideal), to later apply the fitness function for each alternative. Based on the 

definition of those ideal solutions, depending on each producer’s profile, it is possible 



to obtain a ranking of alternatives. The ranking of alternatives depends on the 

attainment of relative proximity indexes using a TOPSIS approach which allows us to 

construct the relative proximity intervals. 

Later, the fitness function is applied for each alternative. This function is defined as the relative 

closeness to the ideal solution (2) 

 𝐹(𝑋) =
𝑑−(𝑋)

𝑑−(𝑋) + 𝑑+(𝑋)
 (2) 

 

where d-(X) and d+(X) represents the separation of criteria values of X from the negative 

ideal and positive ideal solutions, respectively. This ratio varies between 0 and 1 and 

alternatives with a ratio closer to 1 would be preferred. Accordingly, and from the best 

alternatives, the optimization algorithm continues generating new solutions in order to 

evolve to a near-optimal one (Lamata et al., 2018). 

In the present study, a TOPSIS has been integrated in an evolutionary methodology. 

This causes that there are not a fixed number of combination or alternatives, but they 

are generated sequentially. In order to overcome this problem, two hypothetical ideal 

alternatives, positive and negative, are generated from an initial step where only one 

feed can be used during the whole period. This enables to estimate the initial values 

for each criterion, as many as feeds are available, and to generate the hypothetical 

alternatives with the best and worst values with a supplement of ±75%, assuming that 

a combination of different feeds will achieve better results than the utilization of only 

one. The only exception is the criterion of organic production feed ratio, whose ideal 

value is considered 1 and the anti-ideal value 0. 

2.3.2. Evolving process 

Once the fitness function has been fixed, the process continues with the generation of a random 

set (population) of feeding paths (individuals) and an estimation of their fitness according to that 

evaluation function. The second step of the GA methodology is to improve the initial population 

sequentially. This algorithm receives three operators to guide the algorithm towards a solution to 

the given problem:  

a. Selection: The selection process determines which individuals participate in reproduction 

to generate the next population according to their fitness values. In general, this process 

takes advantage of the fittest solutions by giving them greater weight when selecting the 

next generation and hence leads to better solutions to the problem (Siriwardene and 

Perera, 2006) 

The developed methodology includes an elitism factor. Elitist selection strategies ensure 

that a percentage of the fittest alternatives continue to the next generation without any 

crossover or mutation. Once again, the disadvantage is the possibility of genetic 



convergence but some studies have proven that elitism appears to be an important factor 

to improve evolutionary multiple-objective optimization (Parks, 1996; Zitzler et al., 2000) 

b. Crossover: the classic genetic crossover is performed using a random crossing point to 

create new individuals for the next generation by taking more than one parent solutions 

and combining them into a child solution. A high crossover rate encourages good mixing 

and the genetic algorithm is more likely to create a better solution. 

c. Mutation operators. The mutation randomly changes the feed of a week encouraging 

genetic diversity amongst solutions. High mutation rates prevent GA of converging to 

a local minimum but it could destroy good solutions.  

Furthermore, to initiate the process it is necessary to assign the value of certain parameters, such 

as the crossover and mutation probabilities or the size of the population. The population size is 

the number of individuals that form part of each set generated. More individual means more cost, 

in time, but also increase the population diversity. 

During this process, each solution, therefore, needs to be awarded a score, to indicate how close it 

came to meeting the overall specification of the desired solution, by applying the fitness function 

(2). This score, allow the process to decide the optimum moment to stop, by a stopping criterion, 

instead of continue during a fixed number of generations. The stopping criterion is settled as a 

number of generations without any improvement and when it is met, the algorithm provides the 

final set of feeding strategies.  

Finally, the ranking of the alternatives is presented with information about the feed to be used 

each week and the values of each criterion in the final alternatives is provided to the decision 

maker. 

3. Application to gilthead seabream feeding strategies. 

In order to test the developed methodology, several theoretical scenarios on decision-maker 

preferences are considered for the election of an optimum feeding strategy. They will be applied 

for the feeding decision-making process in a gilthead seabream farm in the Mediterranean during 

a period of 52 weeks and with the possibility of using three different feeds currently available in 

the market. As will be explained below, information used comes from real sources, such as 

oceanographic buoys, feed manufacturers or other research studies- the planning in a farm.  

This process starts with the collection of relevant data, both from the farm and from external 

factors, and the estimation of the final weights for all the criteria in each scenario. Secondly, an 

objective function is calculated with the bio-economic model. Then, the process of optimization is 

developed with the generation and evaluation of alternative feeding paths in order to find an 

optimum strategy. Lastly, as a discussion of the utility of this methodology, results are compared 

with the alternative of using only the most adequate feed for each scenario. 

3.1. Farm information 



First of all, the specific characteristics of one farm of gilthead seabream have been simulated 

(Table 2) based on common characteristics of Mediterranean farms in Spain. In this way, the 

problem to optimize would be the performance of a unique sea cage of Gilthead seabream with 

juveniles of 30g during a year. The maximum biomass density depends on the type of production 

as the regulation requires, generally being 20 Kg/m3 unless in the case of organic production 

where would decrease to 15 kg/m3. 

External factors included in the database are the water temperature and the characteristics of the 

available feeds. Information on sea temperature has been collected from the oceanographic 

buoys network of the Spanish Port Authority, that covers the principal locations of marine 

aquaculture in Spain. In the present study, only the data registered during 2017 by the 

buoy placed at the simulated location, in the Mediterranean Sea near Tarragona (Fig. 2), 

have been used.   

 

Parameter  Value 

Seeding Date 15/06/2018 

Harvesting Date 15/06/2019 

Time horizon  52 weeks  

Cage production 
capacity 

200 m3 

Juvenile weights 30 g 

Feasible harvest sizes (300, 1000) g 

Location Tarragona (2720) 

 
Table 2: Farm Characteristics Fig. 4: Avg Temperature - Port Buoy 2720 

In respect of feeding alternatives, the main rates and characteristics have been estimated based 

on the information provided directly by the feed production (table 3). However, there is one 

exception: feed production criteria have been estimated based on the study conducted by 

Pelletier and Tyedmers (2007). In that study, the approximate the value for both “feed production 

impact criteria” depending on the feed ingredients as the aggregated impact in raw material 

production, processing and transportation stages. All this data has been obtained for three 

different feeds:  

- Feed 1 (F1) represent the more commonly used feed since they function well under 

normal circumstances and some of them are available at a very competitive price.  

- Feed 2 (F2) have an increased percentage of fish protein so, although it has a higher price, 

growth rates are good even in unfavourable weather conditions.  

- Feed 3 (F3) is a high quality and price feed, entirely made with products from organic 

fisheries/production. This feed present always better results, especially in warm 

conditions. 

Feed Info F1 F2 F3 



Price USD/Kg 1.11 1.19 1.49 

% Fish origin feed 25.0% 38.0% 55.0% 

% Plant origin feed 50% 62% 45% 

% Poultry origin feed 25.0% 0% 0% 

% Organic Feed 0.0% 0.0% 100.0% 

Total Nitrogen (g per kg of feed) 77.5 73.6 99 

Total Phosphorus (g per kg of feed) 16.30 16.80 17.50 

Energy Use (MJ equiv. per kg of feed) 19,451 9,422 24,815 
Global Warming (kg CO2 equiv. per kg of 
feed) 

1,665 0,800 1,705 

Omega-3 (g per kg of fish growth) 10.2 14.9 17.3 
Table 3: Feeds info 

 

3.2. Theoretical scenarios of producer’s preferences. 

Once the main conditions have been specified, two theoretical scenarios of producer preferences 

have been simulated for such farm. To estimate the final weights in each scenario, criteria are 

compared by pairs, scoring the importance of each criterion related with another one.  

In the present study, two conflicting tendencies have been analysed with respect to fish 

production: the traditional production procedures with the only objective of maximizing the 

annual profit and the organic production trend commonly used to differentiate the product with 

an organic label, which constitute an alternative to conventional aquaculture.  

The scoring process follows a hierarchical structure, starting from the three groups of criteria and 

ending on the disaggregated criteria. This system reduces the number of evaluations just to the 

numbers under the main diagonal inasmuch as the others are deducted by the property of 

reciprocity (aji=1/aij). 

First of all, when comparing the three groups of criteria (table 4), the economic criterion is 

evaluated with the highest value in the first scenario, while the group formed by the 

environmental sustainability criteria is the most important in the second one. 

Scenario 1 Scenario 2 

  
Economic 
Criterion 

Environmental 
Criteria 

Quality 
Criteria 

Economic 
Criteria 

1 9 9 

Environmental 
Criteria 

1/9 1 1 

Quality Criteria 1/9 1 1 
 

  
Economic 
Criterion 

Environmental 
Criteria 

Quality 
Criteria 

Economic 
Criteria 

1 1/9 ½ 

Environmental 
Criteria 

9 1 4 

Quality Criteria 2 1/4  1 
 

Table 4: Pairwise judgements – main groups 

Secondly, the environmental sustainability criteria have been evaluated in both scenarios. In the 

first one all the environmental criteria have low importance and only the fish-in:fish-out stands 

out inasmuch as it represents an efficiency ratio.  On the other hand, the criterion that has a more 

prominent weight in the second scenario is the proportion of feed produced by organic production 

as requires the European Commission Regulation for the labelling of organic products (table 5). 



Scenario 1 Scenario 2 

 
Organic 

Feed 
Fish-in 

Fish-out 
Total N 

(g) 
Total P 

(g) 
Energy 

Use 
Global 

Warming 

Organic 
Feed (%) 

1 1/9 1/3 1/3 1/6 1/6 

Fish-in 
Fish-out 

9 1 3 3 2 2 

Total 
Nitrogen 

(g) 
3 1/3 1 1 1/2 1/2 

Total 
Phosphoru

s (g) 
3 1/3 1 1 1/2 1/2 

Energy Use 
(MJ equiv.) 

6 1/2 2 2 1 1 

Global 
Warming 
(kg CO2 
equiv.) 

6 1/2 2 2 1 1 

 

 
Organic 

Feed 
Fish-in 

Fish-out 
Total N 

(g) 
Total P 

(g) 
Energy 

Use 
Global 

Warming 

Organic 
Feed (%) 

1 9 9 9 9 9 

Fish-in 
Fish-out 

1/9 1 1 1 1 1 

Total 
Nitrogen 

(g) 
1/9 1 1 1 1 1 

Total 
Phosphoru

s (g) 
1/9 1 1 1 1 1 

Energy Use 
(MJ equiv.) 

1/9 1 1 1 1 1 

Global 
Warming 
(kg CO2 
equiv.) 

1/9 1 1 1 1 1 

 

Table 5: Pairwise judgements – environmental sustainability criteria 

Lastly, although a minimum quality is always required when selling fish products, quality criteria 
are more important under the circumstances of differentiation of the second scenario (table 6). 

Scenario 1 Scenario 2 

  % Fish origin Omega 3 (g) 

% Fish origin 
feed 

1 1/9 

Omega 3 (g) 9 1  
 

  % Fish origin Omega 3 (g) 

% Fish origin 
feed 

1 1/8 

Omega 3 (g) 8 1 
 

Table 6: Pairwise judgements – product quality criteria 

After applying the AHP methodology, the weights associated with each criterion in each scenario 

are those shown in Table 7. As can be observed, the distribution of weights perfectly fulfils the 

perception of relative importance of the criteria in the proposed scenarios. This greatly facilitates 

an evaluation work that could be very difficult to do directly on all of the criteria.  

 

Criterion scenario 1 scenario 2 

Economic Criteria 81.8% 8.3% 
Profit 81.8% 8.3% 

Environmental Criteria 9.1% 75.0% 
% Organic Feed 0.3% 48.2% 

Fish-in Fish-out Ratio 3.2% 5.4% 
Total Nitrogen 1.0% 5.4% 

Total Phosphorus 1,0% 5.4% 
Energy Use 1.8% 5.4% 

Global Warming 
Potential  1.8% 5.4% 

Quality Criteria 9.1% 16.7% 
% Fish origin feed 0.9% 1.9% 

Omega 3 8.2% 14.8% 
Table 7. AHP weights in both scenarios considered. 



 

3.3. Objective Function 

In order to carry out the optimization process successfully, a fitness function, which evaluates how 

close a given solution is to the objective solution, is needed. In this regard, the objective function 

is the business goal of the selected farm, in mathematical terms, of multiple and competing 

criteria combined. 

Both the process of estimation of the results for one feed alternatives in order to find the 

objective function and the evaluation of each alternative generated by the genetic algorithm, 

involves two steps where the bio-economic model takes action. In the first instance, it estimates 

the growth reached and the feeding amount needed in a daily basis. Then, the value of each 

criterion is calculated from that data. 

In economic terms, profit is quantified both in unitary and aggregated terms, by the revenue and 

costs involved. Cost varies as a function of the used feeds, due to its different feeding amount and 

price. Meanwhile, revenue depends on the reached growth, its dispersion if available and the 

selling price, which relies on the type of production. For classical aquaculture, weekly selling prices 

correspond to the main Spanish wholesale market prices for the commercial classes of Seabream 

(300–400g, 400–600g, 600–1000g) in 2018. The prices are reduced by the average wholesale-

producer margin as stated by MAPAMA (2012) and used as a proxy of the ex-farm price. In the 

case of organic aquaculture, Zander and Feucht (2018) have showed that the willingness to pay 

varies between 7% and almost 20%, depending on attribute and country. Therefore, the used price 

is on average a 15% higher than in classical aquaculture for the same period. 

In the case of all other additional criteria mentioned above, grouped as environmental 

sustainability and product quality criteria, they can be estimated based on the information 

provided by the different feed producers as a percentage of the amount used of each feed.  

As a result of this process, the main values for each alternative are estimated. Data shown in table 

8 for the first scenario provides an idea of importance of choosing an adequate feeding path, 

being able to distinguish clearly different results for each criterion. This confirms the 

characteristics of the three different feed mentioned above. In the case of positive-ideal and 

negative-ideal, they are multiplied by ±75% setting the objective functions. On the other hand, 

scenario two shows similar results with a reduction due to the smaller number of fishes seeded to 

meet the organic regulation requirements. 

Criterion Obj F1 F2 F3 + Ideal - ideal 

Economic Criteria 
      Profit ($) MAX 9,921.03 9,613.06 8,067.96 17,361 2,016 

Environmental Criteria 
      Organic Feed (%) MAX 0% 0% 100% 1 0 

Fish-in Fish-out Ratio MIN 52% 77% 105% 13% 183% 



Total N (g) MIN 650,069.23 604,280.52 567,337.66 157,912 1,585,360 

Total P (g) MIN 136,724.24 137,933.60 100,286.96 34,181 280,240 

Energy Use (MJ equiv.) MIN 163,154,800 80,861,140 227,074,800 2.02E+07 3.97E+14 
Global Warming (kg CO2 

equiv.) 
MIN 13,966,000 6,865,731 15,601,950 

1.72E+06 2.73E+13 

Quality Criteria 
      % Fish origin feed MAX 25% 38% 55% 96% 6% 

Omega 3 (%) MAX 1.02% 1.49% 1.73% 3.50% 0.25% 

Table 8: hypothetical ideal alternatives for scenario 1. 

 
Then, as stated in the methodological approach, the fitness is calculated as the relative closeness 

to those ideal solutions (2). 

3.4. Search for useful solutions 

Once the objective function and the method responsible for evaluating each alternative of the 

feeding strategy have been determined, the genetic optimization process begins with the search 

of useful solutions, based on the generation of alternatives and the evolution till the point where a 

better solution is not found in a determined number of generations. For the evolving process, 

the following parameters have been considered: population size of 30, crossover 

probability of 0.8, mutation probability of 0.03 and a limit of 15 generations without any 

improvement to stop the process. Furthermore, the best individual is always included in 

the next generation. 

After applying the genetic algorithm with the parameter defined above a set of 30 potential 

solutions is obtained for each generation, which means that more than 1900 alternatives 

for each scenario have been evaluated. This means that, in most cases.  

  
Figure 5. Evolution of the average fitness for scenario 1 and 2 respectively. 

Furthermore, one of the problems faced by this type of tools is the computational cost, measured 

as the time needed to finish the process. This results have been obtained using an Intel Core i7 

2.81GHz processor and 16 Gb SDRAM, and the average execution time was 290 seconds (table 9)., 

what does not seem too much.   



Scenario Generations Number of alternatives Execution Time (seconds) 

First 61 1830 273.25 

Second 63 1890 303.65 

Table 9. Simulation numbers. 

Finally, the algorithm provides the decision maker with a set of 30 potential solutions obtained 

and the best feeding strategy generated during the iterative process. The fact of offering to the 

decision-maker a set (population) of good alternatives or near-optimal schedules facilitates the 

final decision and allows considering new factors not initially included in the model. For each 

considered scenarios, the best solutions are those shown in table 10. 

Scenario Best solution – Feeding path Fitness 

First 
F3, F3, F3, F3, F3, F3, F3, F3, F3, F3, F3, F1, F3, F1, F3, F1, F3, F2, 

F1, F1, F1, F1, F1, F3, F2, F2, F1, F1, F1, F1, F1, F1, F1, F1, F2, F1, 

F2, F2, F2, F2, F2, F2, F2, F2, F2, F2, F2, F2, F2, F2, F2, F2 
0.54218 

Second 
F3, F3, F3, F3, F3, F3, F3, F3, F3, F3, F3, F3, F3, F3, F3, F3, F3, F3, 

F1, F3, F3, F3, F3, F3, F3, F3, F2, F3, F3, F3, F1, F3, F3, F3, F3, F3, 

F3, F3, F3, F3, F3, F3, F3, F3, F3, F3, F3, F3, F3, F3, F3, F3 
0. 8028 

Table 10. Best solutions for both scenarios. 

Figure 6 shows the evolution of the temperature of the water over the 52 weeks and the 

recommended feed for each week for the final feeding strategy proposed by the algorithm in both 

scenarios. As can be seen, in scenario 2 the algorithm mainly recommends the use of F3 but in 

specific weeks it considers more appropriate the use of the other two feed. In scenario 1, 

however, we observe how the algorithm recommends first the F3 feed, probably due to its better 

growth rates in warm conditions, but it changes to F2 feed, which have similar results under cold 

conditions, when the water temperature decreases. In the mid-term it recommends the other 

one. 

  

Fig 6. Selected feed and weekly temperature 
 

These results confirm that the methodology developed is useful when setting a production 

objective in a complex environment where diverse and sometimes conflicting criteria intervene. In 

addition, the fitness function and the genetic algorithm have worked at the time of optimizing 

feeding strategies, evolving from the first generation and finding a good solution in an adequate 

time. 



3.5. Results discussion. 

After assessing the capacity of the developed methodology to analyse and prioritize new 

alternatives properly, some features that are relevant shall be discussed thoroughly. The most 

important is the validation of the hypothesis that a combination of different feeds should improve 

the results obtained with only one feed during the whole period. This requires a comparison 

between the selected mixed strategy for each scenario and the unique feed that the tool would 

have chosen if so requested. It should be taken into account that scenario 2, corresponding to 

organic production, requires a cage density under 15Kg/m3 so the current number of fished is 

lower. 

On the one hand, results for the first scenario are conclusive, the mixed strategy found by the 

developed methodology has resulted in significant gains in the improvement of the selected 

criteria, therefore confirming the initial hypothesis. In this case, the criterion with the highest 

importance is the economic one and it shows an improvement of 7,17% compared to the value 

estimated for AR feed. As can be seen in table 11, although there has been an increase in 

producer's costs, the increase in the weight achieved, and therefore in the benefits obtained, 

compensates the situation. Furthermore, product quality, where the second most important 

criterion can be found, becomes significantly larger.  

Scenario 1 F1 Mixed Strategy % Var Result 

Fishes 12,141 12,144 0.02% Improvement 

Unit weight reached 329.28 370.19 12.42% Improvement 

Total weight (Kg) 3,997.82 4,496 12.45% Improvement 

Cost ($) 9,341.17 11,028.29 18.06% Worsening 

Cost per kg 2.06 2.16 4.99% Worsening 

Revenue ($) 19,262.20 21,660.39 12.45% Improvement 

Revenue per kg 4.82 4.82 - - 

FCR (%) 210% 192% -8.50% Improvement 

Economic Criteria 
 

  

 

Profit ($) 9,921.03 10,632.10 7.17% Improvement 

Environmental Criteria 
   

 

Organic Feed (%) 0% 25% (+25%) Improvement 

Fish-in Fish-out Ratio 52% 75% 42.94% Worsening 

Total N (g) 650,069.23 722,507.69 20.90% Worsening 

Total P (g) 136,724.24 149,525.28 11.14% Worsening 

Energy Use (MJ equiv.) 163,154,800 151,911,800 1.98% Worsening 

Global Warming (kg CO2 equiv.) 13,966,000 12,036,020 8.55% Worsening 

Quality Criteria 
   

 

% Fish origin feed 25% 39% 56.22% Improvement 

Omega 3 (%) 1.02% 1.27% 24.99% Improvement 

Table 11: Improvements achieved – scenario 1. 

This results can be more easily compared in figure 7. As an added benefit, it is possible to highlight 

that the company can’t sell the fish until they reach the minimum weight for sale in the market 



(300 g) and in this case it is reached several weeks before with the mixed strategy. This would give 

the producer greater flexibility and the capacity to react to possible adverse situations, which can 

be considered a measure that significantly reduces the risk incurred.  

  

  

Fig. 7: Visual comparison of strategies – scenario 1. 

On the other hand, scenario 2 presents small differences in main results since the EC feed has 

been chosen for almost the 90% of the period. Table 12 shows how the best alternative found by 

the genetic algorithm has slightly worsened the value for the most important criterion (Organic 

feed - 48,2%) while leading to more quality, that is the second criterion in importance (Omega 3 – 

14,8%) and efficiency in costs. In this case, it is not possible to state categorically what is the best 

solution for the producer. However, the proposal of various alternatives increases the capacity of 

the latter to decide in situations of theoretical equality.  

Scenario 2 F3 Mixed Strategy % Var Result 

Fishes 7,606 7,606 - - 

Unit weight reached 395.40 391.81 -0.91% Worsening 

Total weight (Kg) 3,007.45 2,980.13 -0.91% Worsening 

Cost ($) 8,596.02 8,407.70 -2.19% Improvement 

Cost per kg 2.52 2.48 -1.29% Improvement 

Revenue ($) 16,663.99 16,512.62 -0.91% Worsening 

Revenue per kg 5.55 5.55 - - 

FCR (%) 191% 187% -2.04% Improvement 



Economic Criteria 
 

  

 

Profit ($) 8,067.97 8,104.92 0.46% Improvement 

Environmental Criteria 
 

  

 

Organic Feed (%) 100% 96,0% -4.04% Worsening 

Fish-in Fish-out Ratio 105% 102% -2.94% Improvement 

Total N (g) 567,337.66 555,359.39 -1.77% Improvement 

Total P (g) 100,286.96 99,381.80 -2.11% Improvement 

Energy Use (MJ equiv.) 142,206,900 138,049,200 -0.76% Improvement 

Global Warming (kg CO2 equiv.) 9,770,815 9,596,298 -0.90% Improvement 

Quality Criteria 
 

  

 

% Fish origin feed 55% 54% -0.93% Worsening 

Omega 3 (%) 1.73% 1.97% 13.94% Improvement 

Table 12: Improvements achieved – scenario 1 

 
4. Conclusions 
 

In recent years, aquaculture has become a relevant industry called to meet the world demand for 

fish, though not without difficulty. As is the case with many primary sector activities, the 

management of fish farms is increasingly complex due to the broad range of internal and external 

factors that influence most decisions and the need for managers to consider aspects other than 

economic ones, such as product quality or environmental sustainability. For all of these reasons, 

the need for more efficient and productive management systems in order to automate and 

optimize many strategic and operational decisions has increased over the last few years. 

Among these decisions, it is possible to highlight the selection of the most suitable feeding 

strategy. These decisions are of greater importance not only because of the direct effect on the 

breeding costs they have, since feed is the main operational cost in in finfish aquaculture, but also 

because of they are the maximum responsible for the quality of the final product and the effect on 

the environment that surrounds the farm, two of the criteria most valued by stakeholders. 

Furthermore, feeding decisions have an added complexity: The existence of many different feeds 

and the possibility of combining them during the fattening process cause that traditional 

optimization techniques are not applicable to this problem or lead to computation times too long 

for practical purposes. 

In order to address this problem, the present work integrates a multiple-criteria methodology with 

an evolutionary metaheuristic technique that allows determining the best sequence of feeds to be 

used throughout the fattening period, depending on multiple optimization objectives. In spite of 

their wide applicability and simplicity, metaheuristic techniques are not being used in the 

management of aquaculture farms as widely as in other contexts. In particular, genetic algorithms 

are well suited to address complex problems that arise in the management of such farms. In this 

regard, this work states a model in which the preferences of the decision maker are included 

thanks to the AHP methodology and these preferences influence the definition of the fitness 

function that a genetic algorithm subsequently uses.  



In this regard, the main results of the simulations carried out seem to confirm the goodness of the 

model for the determination of feeding strategies in aquaculture farms that are affected by 

variations in environmental conditions. In addition, these results help to confirm that the 

combination of several commercial feeds in the same feeding strategy may improve the results 

obtained by one-feed strategies that considers only one commercial feed along all the production 

process. 

In the context of the management of aquaculture companies, the implementation of the 

developed model allows multiple criteria to be introduced in the decision-making process, thereby 

enabling producers to find solutions suited to their needs from the many alternatives in very short 

time. All this is translated in a contribution to the improvement of the efficiency and flexibility of 

the decision-making processes, both regarding operative and strategic decisions. 

From the point of view of the management of production processes, the proposed model allows to 

identify the feeding strategy that optimize the economic performance of the farm. However, and 

different from previous works that only considered the economic criteria in the decision process, 

this model also opens the door for aquaculture managers to find the feeding strategy that 

provides the best results in terms of environmental sustainability or product quality. Considering 

several criteria in the same decision is not a minor issue. As in other production activities, those 

criteria in aquaculture are very often opposed and, in most of the cases, their importance is based 

on the subjective perception attributed by each manager. In such way, this model integrates 

multiple-criteria decision making techniques and genetic algorithms applied to the decision-

making process, thereby enabling producers to find solutions suited to their needs. The 

computational time is also a key aspect, since the model finds a near-optimal solution by 

simulating a vast number of alternatives in a very short period of time. All this is translated in a 

contribution to the improvement of the efficiency and flexibility of the decision-making processes 

in aquaculture production, both regarding strategic and operative decisions. 

Lastly, it is mandatory to consider some limitations and future lines of research as, for example, 

the incorporation of elements of fuzzy logic to introduce into the model the vagueness of any 

subjective judgment and the increase of the number of cages that would allow producers to make 

long-term planning in major aquaculture farms. This points to the need for more research studies 

on this line and sets out the future direction of them.  
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