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Abstract. The increasing demand for high-resolution cli-
mate information has attracted growing attention to statis-
tical downscaling (SDS) methods, due in part to their rel-
ative advantages and merits as compared to dynamical ap-
proaches (based on regional climate model simulations),
such as their much lower computational cost and their fit-
ness for purpose for many local-scale applications. As a re-
sult, a plethora of SDS methods is nowadays available to
climate scientists, which has motivated recent efforts for
their comprehensive evaluation, like the VALUE initiative
(http://www.value-cost.eu, last access: 29 March 2020). The
systematic intercomparison of a large number of SDS tech-
niques undertaken in VALUE, many of them independently
developed by different authors and modeling centers in a
variety of languages/environments, has shown a compelling
need for new tools allowing for their application within an
integrated framework. In this regard, downscaleR is an R
package for statistical downscaling of climate information
which covers the most popular approaches (model output
statistics – including the so-called “bias correction” meth-
ods – and perfect prognosis) and state-of-the-art techniques.
It has been conceived to work primarily with daily data and
can be used in the framework of both seasonal forecasting
and climate change studies. Its full integration within the
climate4R framework (Iturbide et al., 2019) makes possi-
ble the development of end-to-end downscaling applications,
from data retrieval to model building, validation, and predic-
tion, bringing to climate scientists and practitioners a unique
comprehensive framework for SDS model development.

In this article the main features of downscaleR are
showcased through the replication of some of the results ob-
tained in VALUE, placing an emphasis on the most techni-
cally complex stages of perfect-prognosis model calibration
(predictor screening, cross-validation, and model selection)
that are accomplished through simple commands allowing
for extremely flexible model tuning, tailored to the needs of
users requiring an easy interface for different levels of exper-
imental complexity. As part of the open-source climate4R
framework, downscaleR is freely available and the neces-
sary data and R scripts to fully replicate the experiments in-
cluded in this paper are also provided as a companion note-
book.

1 Introduction

Global climate models (GCMs) – atmospheric, coupled
oceanic–atmospheric, and earth system models – are the pri-
mary tools used to generate weather and climate predictions
at different forecast horizons, from intra-seasonal to centen-
nial scales. However, raw model outputs are often not suit-
able for climate impact studies due to their limited resolution
(typically hundreds of kilometers) and the presence of biases
in the representation of regional climate (Christensen et al.,
2008), attributed to a number of reasons such as the imper-
fect representation of physical processes and the coarse spa-
tial resolution that does not permit an accurate representation
of small-scale processes. To partially overcome these limita-
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tions, a wide variety of downscaling techniques have been
developed, aimed at bridging the gap between the coarse-
scale information provided by GCMs and the regional or
local climate information required for climate impact and
vulnerability analysis. To this aim both dynamical (based
on regional climate models, RCMs; see, e.g., Laprise, 2008)
and empirical or statistical approaches have been introduced
during the last decades. In essence, statistical downscaling
(SDS; Maraun and Widmann, 2018) methods rely on the es-
tablishment of a statistical link between the local-scale me-
teorological series (predictand) and large-scale atmospheric
variables at different pressure levels (predictors, e.g., geopo-
tential, temperature, humidity). The statistical models or al-
gorithms used in this approach are first calibrated using his-
torical (observed) data of both coarse predictors (reanaly-
sis) and local predictands for a representative climatic period
(usually a few decades) and then applied to new (e.g., fu-
ture or retrospective) global predictors (GCM outputs) to ob-
tain the corresponding locally downscaled predictands (von
Storch et al., 1993). SDS techniques were first applied in
short-range weather forecast (Klein et al., 1959; Glahn and
Lowry, 1972) and later adapted to larger prediction horizons,
including seasonal forecasts and climate change projections,
the latter the problem being the one that has received the most
extensive attention in the literature. SDS techniques are often
also applied to RCM outputs (usually referred to as “hybrid
downscaling”, e.g., Turco and Gutiérrez, 2011), and there-
fore both approaches (dynamical and statistical) can be re-
garded as complementary rather than mutually exclusive .

Notable efforts have been made in order to assess the cred-
ibility of regional climate change scenarios. In the particu-
lar case of SDS, a plethora of methods exists nowadays, and
a thorough assessment of their intrinsic merits and limita-
tions is required to guide practitioners and decision makers
with credible climate information (Barsugli et al., 2013). In
response to this challenge, the COST Action VALUE (Ma-
raun et al., 2015) is an open collaboration that has estab-
lished a European network to develop and validate down-
scaling methods, fostering collaboration and knowledge ex-
change between dispersed research communities and groups,
with the engagement of relevant stakeholders (Rössler et al.,
2019). VALUE has undertaken a comprehensive validation
and intercomparison of a wide range of SDS methods (over
50), representative of the most common techniques covering
the three main approaches, namely perfect prognosis, model
output statistics – including bias correction – and weather
generators (Gutiérrez et al., 2019). VALUE also provides a
common experimental framework for statistical downscal-
ing and has developed community-oriented validation tools
specifically tailored to the systematic validation of different
quality aspects that had so far received little attention (see
Maraun et al., 2019b, for an overview), such as the abil-
ity of the downscaling predictions to reproduce the observed
temporal variability (Maraun et al., 2019a), the spatial vari-
ability among different locations (Widmann et al., 2019), re-

producibility of extremes (Hertig et al., 2019), and process-
based validation (Soares et al., 2019).

The increasing demand for high-resolution predictions or
projections for climate impact studies and the relatively fast
development of SDS in the last decades, with a growing num-
ber of algorithms and techniques available, has motivated the
development of tools for bridging the gap between the inher-
ent complexities of SDS and the user’s needs, able to pro-
vide end-to-end solutions in order to link the outputs of the
GCMs and ensemble prediction systems to a range of im-
pact applications. One pioneer service was the interactive,
web-based Downscaling Portal (Gutiérrez et al., 2012) devel-
oped within the EU-funded ENSEMBLES project (van der
Linden and Mitchell, 2009), integrating the necessary tools
and providing the appropriate technology for distributed data
access and computing and enabling user-friendly develop-
ment and evaluation of complex SDS experiments for a
wide range of alternative methods (analogs, weather typ-
ing, regression, etc.). The Downscaling Portal is in turn in-
ternally driven by MeteoLab, (https://meteo.unican.es/trac/
MLToolbox/wiki), an open-source Matlab™ toolbox for sta-
tistical analysis and data mining in meteorology, focused on
statistical downscaling methods.

There are other existing tools available to the R com-
puting environment implementing SDS methods (beyond
the most basic model output statistics (MOS) and “bias
correction” techniques not addressed in this study, but
see Sect. 2), like the R package esd (Benestad et al.,
2015), freely available from the Norwegian Meteorologi-
cal Institute (MET Norway). This package provides utili-
ties for data retrieval and manipulation, statistical downscal-
ing, and visualization, implementing several classical meth-
ods (EOF analysis, regression, canonical correlation analy-
sis, multivariate regression, and weather generators, among
others). A more specific downscaling tool is provided by
the package Rglimclim (https://www.ucl.ac.uk/~ucakarc/
work/glimclim.html, last access: 29 March 2020), a multi-
variate weather generator based on generalized linear mod-
els (see Sect. 2.2) focused on model fitting and simulation of
multisite daily climate sequences, including the implementa-
tion of graphical procedures for examining fitted models and
simulation performance (see, e.g., Chandler and Wheater,
2002).

More recently, the climate4R framework (Iturbide
et al., 2019), based on the popular R language (R Core Team,
2019) and other external open-source software components
(NetCDF-Java, THREDDS, etc.), has also contributed with
a variety of methods and advanced tools for climate impact
applications, including statistical downscaling. climate4R
is formed by different seamlessly integrated packages for
climate data access, processing (e.g., collocation, bind-
ing, and subsetting), analysis, and visualization, tailored to
the needs of the climate impact assessment communities
in various sectors and applications, including comprehen-
sive metadata and output traceability (Bedia et al., 2019a),
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and provided with extensive documentation, wiki pages,
and worked examples (notebooks) allowing reproducibil-
ity of several research papers (see, e.g., https://github.com/
SantanderMetGroup/notebooks, last access: 29 March 2020).
Furthermore, the climate4R Hub is a cloud-based comput-
ing facility that allows users to run climate4R on the
cloud using docker and a Jupyter Notebook (https://github.
com/SantanderMetGroup/climate4R/tree/master/docker, last
access: 29 March 2020). The climate4R framework is pre-
sented by Iturbide et al. (2019), and some of its specific
components for sectoral applications are illustrated, e.g., in
Cofiño et al. (2018) (seasonal forecasting), Frías et al. (2018)
(visualization), Bedia et al. (2018) (forest fires), or Iturbide
et al. (2018) (species distributions). In this context, the R
package downscaleR has been conceived as a new compo-
nent of climate4R to undertake SDS exercises, allowing
for a straightforward application of a wide range of meth-
ods. It builds on the previous experience of the MeteoLab
Toolbox in the design and implementation of advanced cli-
mate analysis tools and incorporates novel methods and en-
hanced functionalities implementing the state-of-the-art SDS
techniques to be used in forthcoming intercomparison ex-
periments in the framework of the EURO-CORDEX initia-
tive (Jacob et al., 2014), in which the VALUE activities have
merged and will follow on. As a result, unlike previous ex-
isting SDS tools available in R, downscaleR is integrated
within a larger climate processing framework providing end-
to-end solutions for the climate impact community, including
efficient access to a wide range of data formats, either remote
or locally stored, extensive data manipulation and analysis
capabilities, and export options to common geoscientific file
formats (such as netCDF), thus providing maximum interop-
erability to accomplish successful SDS exercises in different
disciplines and applications.

This paper introduces the main features of downscaleR
for perfect-prognosis statistical downscaling (as introduced
in Sect. 2) using to this aim some of the methods contribut-
ing to VALUE. The particular aspects related to data pre-
processing (predictor handling, etc.), SDS model configura-
tion, and downscaling from GCM predictors are described,
thus covering the whole downscaling cycle from the user’s
perspective. In order to showcase the main downscaleR
capabilities and its framing within the ecosystem of ap-
plications brought by climate4R, the paper reproduces
some of the results of the VALUE intercomparison pre-
sented by Gutiérrez et al. (2019), using public datasets (de-
scribed in Sect. 3.1) and considering two popular SDS tech-
niques (analogs and generalized linear models), described
in Sect. 2.2. The downscaleR functions and the most
relevant parameters used in each experiment are shown in
Sects. 3.3 and 4, after a schematic overview of the different
stages involved in a typical perfect-prognosis SDS experi-
ment (Sect. 2.1). Finally in Sect. 4.2, locally downscaled pro-
jections of precipitation for a high-emission scenario (RCP
8.5) are calculated for the future period 2071–2100 using

the output from one state-of-the-art GCM contributing to the
CMIP5.

2 Perfect-prognosis SDS: downscaleR

The application of SDS techniques to the global outputs of
a GCM (or RCM) typically entails two phases. In the train-
ing phase, the model parameters (or algorithms) are fitted to
data (or tuned or calibrated) and cross-validated using a rep-
resentative historical period (typically a few decades) with
existing predictor and predictand data. In the downscaling
phase, which is common to all SDS methods, the predictors
given by the GCM outputs are plugged into the models (or
algorithms) to obtain the corresponding locally downscaled
values for the predictands. According to the approach fol-
lowed in the training phase, the different SDS techniques
can be broadly classified into two categories (Rummukainen,
1997; Marzban et al., 2006; also see Maraun and Widmann,
2018, for a discussion on these approaches), namely perfect
prognosis (PP) and MOS. In the PP approach, the statistical
model is calibrated using observational data for both the pre-
dictands and predictors (see, e.g., Charles et al., 1999; Timbal
et al., 2003; Bürger and Chen, 2005; Haylock et al., 2006;
Fowler et al., 2007; Hertig and Jacobeit, 2008; Sauter and
Venema, 2011; Gutiérrez et al., 2013). In this case, “obser-
vational” data for the predictors are taken from a reanaly-
sis (which assimilates day by day the available observations
into the model space). In general, reanalyses are more con-
strained by assimilated observations than by internal model
variability and thus can reasonably be assumed to reflect “re-
ality” (Sterl, 2004). The term “perfect” in PP refers to the
assumption that the predictors are bias-free. This assumption
is generally accepted (although it may not hold true in the
tropics; see, e.g., Brands et al., 2012). As a result, in the
PP approach predictors and predictand preserve day-to-day
correspondence. Unlike PP, in the MOS approach the pre-
dictors are taken from the same GCM (or RCM) for both
the training and downscaling phases. For instance, in MOS
approaches, local precipitation is typically downscaled from
the direct model precipitation simulations (Widmann et al.,
2003). In weather forecasting applications MOS techniques
also preserve the day-to-day correspondence between predic-
tors and predictand, but, unlike PP, this does not hold true in
a climate context. As a result, MOS methods typically work
with the (locally interpolated) predictions and observations
of the variable of interest (a single predictor). In MOS, the
limitation of having homogeneous predictor–predictand re-
lationships applies only in a climate context, and therefore
many popular bias correction techniques (e.g., linear scaling,
quantile–quantile mapping) lie in this category. In this case,
the focus is on the statistical similarity between predictor
and predictand, and there is no day-to-day correspondence
of both series during the calibration phase. The application of
MOS techniques in a climate context using downscaleR is
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Figure 1. Schematic overview of the R package downscaleR and its framing into the climate4R framework for climate data access and
analysis. The typical perfect-prognosis downscaling phases are indicated by the gray arrows. (i) In the first place, model setup is undertaken.
This process is iterative and usually requires testing many different model configurations under a cross-validation setup until an optimal
configuration is achieved. The downscaleCV function (and prepareData under the hood) is used in this stage for a fine-tuning of the
model. Model selection is determined through the use of indices and measures reflecting model suitability for different aspects that usually
depend on specific research aims (e.g., good reproducibility of extreme events, temporal variability, spatial dependency across different
locations). The validation is achieved through the climate4R.value package (red-shaded callout), implementing the VALUE validation
framework. (ii) Model training: once an optimal model is achieved, model training is performed using the downscaleTrain function.
(iii) Finally, the calibrated model is used to undertake downscaling (i.e., model predictions) using the function downscalePredict.
The data to be used in the predictions requires appropriate preprocessing (e.g., centering and scaling using the predictor set as reference,
projection of PCs onto predictor EOFs) that is performed under the hood by the function prepareNewData prior to model prediction with
downscalePredict.

already shown in Iturbide et al. (2019). Here, the focus is on
the implementation of PP methods that entail greater techni-
cal complexities for their application from a user’s perspec-
tive but have received less attention from the side of climate
service development. A schematic diagram showing the main
phases of perfect-prognosis downscaling is shown in Fig. 1.

2.1 SDS model setup: configuration of predictors

As general recommendations, a number of aspects need to
be carefully addressed when looking for suitable predictors
in the PP approach (Wilby et al., 2004; Hanssen-Bauer et al.,
2005): (i) the predictors should account for a major part of
the variability in the predictands, (ii) the links between pre-
dictors and predictands should be temporally stable or sta-
tionary, and (iii) the large-scale predictors must be realisti-
cally reproduced by the global climate model. Since differ-
ent global models are used in the calibration and downscaling
phases, large-scale circulation variables well represented by
the global models are typically chosen as predictors in the
PP approach, whereas variables directly influenced by model
parametrizations and/or orography (e.g., precipitation) are
usually not considered. For instance, predictors generally ful-
filling these conditions for downscaling precipitation are hu-

midity, geopotential, or air temperature (see Sect. 3.1.2) at
different surface pressure vertical levels. Only sea-level pres-
sure and 2 m air temperature are usually used as near-surface
predictors. An example of the evaluation of this hypothesis is
later presented in Sect. 4.2.1 of this study. Often, predictors
are proxies for physical processes, which is a main reason for
non-stationarities in the predictor–predictand relationship, as
amply discussed in Maraun and Widmann (2018). Further-
more, reanalysis choice has been reported as an additional
source of uncertainty for SDS model development (Brands
et al., 2012), although its effect is of relevance only in the
tropics (see, e.g., Manzanas et al., 2015). With regard to
the assumption (ii), predictor selection and the training of
transfer functions are carried out on short-term variability
in present climate, whereas the aim is typically to simulate
long-term changes in short-term variability (Huth, 2004; Ma-
raun and Widmann, 2018), which limits the performance of
PP and makes it particularly sensitive to the method type and
the predictor choice (Maraun et al., 2019b).

For all these reasons, the selection of informative and ro-
bust predictors during the calibration stage is a crucial step
in SDS modeling (Fig. 1), model predictions being very sen-
sitive to the strategy used for predictor configuration (see,
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e.g., Benestad, 2007; Gutiérrez et al., 2013). PP techniques
can consider point-wise and/or spatial-wise predictors, using
either the raw values of a variable over a region of a user-
defined extent or only at nearby grid boxes and/or the prin-
cipal components (PCs) corresponding to the empirical or-
thogonal functions (EOFs; Preisendorfer, 1988) of the vari-
ables considered over a representative geographical domain
(which must be also conveniently determined). Usually, the
latter are more informative in those cases where the local cli-
mate is mostly determined by synoptic phenomena, whereas
the former may be needed to add some information about the
local variability in those cases where small-scale processes
are important (see, e.g., Benestad, 2001). Sometimes, both
types of predictors are combined in order to account for both
synoptic and local effects. In this sense, three non-mutually
exclusive options are typically used in the downscaling ex-
periments next summarized:

1. using raw atmospheric fields for a given spatial domain,
typically continental- or nation-wide for downscaling
monthly and daily data, respectively. For instance, in
the VALUE experiment, predefined subregions within
Europe are used for training (Fig. 2), thus helping to re-
duce the dimension of the predictor set. Alternatively,
stepwise or regularized methods can be used to auto-
matically select the predictor set from the full spatial
domain.

2. using principal components obtained from these fields
(Benestad, 2001). Working with PCs allows users to
filter out high-frequency variability which may not be
properly linked to the local scale, greatly reducing the
dimensionality of the problem related to the deletion
of redundant and/or collinear information from the raw
predictors. These predictors convey large-scale infor-
mation to the predictor set and are often also referred to
as “spatial predictors”. These can be a number of prin-
cipal components calculated upon each particular vari-
able (e.g., explaining 95 % of the variability) and/or a
combined PC calculated upon the (joined) standardized
predictor fields (“combined” PCs).

3. The spatial extent of each predictor field may have a
strong effect on the resulting model. Some variables
of the predictor set may have explanatory power only
nearby the predictand locations, while the useful infor-
mation is diluted when considering larger spatial do-
mains. As a result, it is common practice to include local
information in the predictor set by considering only a
few grid points around the predictand location for some
of the predictor variables (this can be just the closest
grid point or a window of a user-defined width). This
category can be regarded as a particular case of point
1 but considering a much narrower window centered
around the predictand location. This local information
is combined with the “global” information provided by

other global predictors (either raw fields – case 1 – or
principal components – case 2) encompassing a larger
spatial domain.

Therefore, predictor screening (i.e., variable selection) and
their configuration is one of the most time-consuming tasks
in perfect-prognosis experiments due to the potentially huge
number of options required for a fine-tuning of the predic-
tor set (spatial, local, or a combination of both, number of
principal components, and methodology for their genera-
tion, etc.). As a result, SDS model tuning is iterative and
usually requires testing many different model configurations
until an optimal one is attained (see, e.g., Gutiérrez et al.,
2013), as next described in Sect. 2.3. This requires a flexi-
ble yet easily configurable interface, enabling users to launch
complex experiments for testing different predictor setups
in a straightforward manner. In downscaleR, the function
prepareData has been designed to this aim, providing
maximum user flexibility for the definition of all types of
predictor configurations with a single command call, build-
ing upon the raw predictor information (see Sect. 3.3).

2.2 Description of SDS methods

downscaleR implements several PP techniques, ranging
from the classical analogs and regression to more recent
and sophisticated machine-learning methods (Baño-Medina
et al., 2019). For brevity, in this study we focus on the stan-
dard approaches contributing to the VALUE intercompari-
son, namely analogs, linear models, and generalized linear
models, next briefly introduced; the up-to-date description
of methods is available at the downscaleR wiki (https:
//github.com/SantanderMetGroup/downscaleR/wiki, last ac-
cess: 29 March 2020). All the SDS methods im-
plemented in downscaleR are applied using unique
workhorse functions, such as downscaleCV (cross-
validation), downscaleTrain (for model training), and
downscalePredict (for model prediction) (Fig. 1), that
receive the different tuning parameters for each method cho-
sen, providing maximum user flexibility for the definition
and calibration of the methods. Their application will be il-
lustrated throughout Sects. 3.3 and 4.

2.2.1 Analogs

This is a non-parametric analog technique (Lorenz, 1969;
Zorita and von Storch, 1999), based on the assumption that
similar (or analog) atmospheric patterns (predictors) over a
given region lead to similar local meteorological outcomes
(predictand). For a given atmospheric pattern, the corre-
sponding local prediction is estimated according to a de-
termined similarity measure (typically the Euclidean norm,
which has been shown to perform satisfactorily in most
cases; see, e.g., Matulla et al., 2008) from a set of analog pat-
terns within a historical catalog over a representative clima-
tological period. In PP, this catalog is formed by reanalysis
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data. In spite of its simplicity, analog performance is com-
petitive against other more sophisticated techniques (Zorita
and von Storch, 1999), being able to take into account the
non-linearity of the relationships between predictors and pre-
dictands. Additionally, it is spatially coherent by construc-
tion, preserving the spatial covariance structure of the lo-
cal predictands as long as the same sequence of analogs for
different locations is used, spatial coherence being underes-
timated otherwise (Widmann et al., 2019). Hence, analog-
based methods have been applied in several studies both
in the context of climate change (see, e.g., Gutiérrez et al.,
2013) and seasonal forecasting (Manzanas et al., 2017). The
main drawback of the analog technique is that it cannot pre-
dict values outside the observed range, therefore being par-
ticularly sensitive to the non-stationarities arising in climate
change conditions (Benestad, 2010) and thus preventing its
application to the far future, when temperature and directly
related variables are considered (see, e.g., Bedia et al., 2013).

2.2.2 Linear models (LMs)

(Multiple) linear regression is the most popular downscaling
technique for suitable variables (e.g., temperature), although
it has been also applied to other variables after suitable trans-
formation (e.g., to precipitation, typically taking the cubic
root). Several implementations have been proposed includ-
ing spatial (PC) and/or local predictors. Moreover, automatic
predictor selection approaches (e.g., stepwise) have been also
applied (see Gutiérrez et al., 2019, for a review).

2.2.3 Generalized linear models (GLMs)

They were formulated by Nelder and Wedderburn (1972) in
the 1970s and are an extension of the classical linear re-
gression, which allows users to model the expected value of
a random predictand variable whose distribution belongs to
the exponential family (Y ) through an arbitrary mathemati-
cal function called link function (g) and a set of unknown
parameters (β), according to

E(Y )= µ= g−1(Xβ), (1)

where X is the predictor and E(Y ) the expected value of the
predictand. The unknown parameters, β, can be estimated
by maximum likelihood, considering a least-squares iterative
algorithm.

GLMs have been extensively used for SDS in climate
change applications (e.g., Brandsma and Buishand, 1997;
Chandler and Wheater, 2002; Abaurrea and Asín, 2005;
Fealy and Sweeney, 2007; Hertig et al., 2013) and, more re-
cently, also for seasonal forecasts (Manzanas et al., 2017).
For the case of precipitation, a two-stage implementation
(see, e.g., Chandler and Wheater, 2002) must be used given
its dual (occurrence–amount) character. In this implemen-
tation, a GLM with Bernoulli error distribution and logit
canonical link function (also known as logistic regression)

is used to downscale precipitation occurrence (0= no rain;
1= rain) and a GLM with gamma error distribution and log
canonical link function is used to downscale precipitation
amount, considering wet days only. After model calibration,
new daily predictions are given by simulating from a gamma
distribution, whose shape parameter is fitted using the ob-
served wet days in the calibration period.

Beyond the classical GLM configurations, downscaleR
allows using both deterministic and stochastic versions of
GLMs. In the former, the predictions are obtained from the
expected values estimated by both the GLM for occurrence
(GLMo) and the GLM for amount (GLMa). In the GLMo,
the continuous expected values ∈ [0,1] are transformed into
binary ones as 1 (0) either by fixing a cutoff probability value
(e.g., 0.5) or by choosing a threshold based on the observed
predictand climatology for the calibration period (the latter
is the default behavior in downscaleR). By contrast, for
GLMa, the expected values are directly interpreted as rain
amounts. Moreover, downscaleR gives the option of gen-
erating stochastic predictions for both the GLMo the and
GLMa, which could be seen as a dynamic predictor-driven
version of the inflation of variance used in some regression-
based methods (Huth, 1999).

2.3 SDS model validation

When assessing the performance of any SDS technique it
is crucial to properly cross-validate the results in order to
avoid misleading conclusions about model performance due
to artificial skill. This is typically achieved considering a
historical period for which observations exist to validate
against. k-fold and leave-one-out cross-validation are among
the most widely applied validation procedures in SDS ex-
periments. In a k-fold cross-validation framework (Stone,
1974; Markatou et al., 2005), the original sample (histor-
ical period) is partitioned into k equally sized and mutu-
ally exclusive subsamples (folds). In each of the k iterations,
one of these folds is retained for testing (prediction phase)
and the remaining k− 1 folds are used for training (calibra-
tion phase). The resulting k independent samples are then
merged to produce a single time series covering the whole
calibration period, which is subsequently validated against
observations. When k = n (being n the number of observa-
tions), the k-fold cross-validation is exactly the leave-one-
out cross-validation (Lachenbruch and Mickey, 1968). An-
other common approach is the simpler “holdout” method,
that partitions the data into just two mutually exclusive sub-
sets (k = 2), called the training and test (or holdout) sets. In
this case, it is common to designate two-thirds of the data
as the training set and the remaining one-third as the test set
(see, e.g., Kohavi, 1995).

Therefore, PP models are first cross-validated under “per-
fect conditions” (i.e., using reanalysis predictors) in order
to evaluate their performance against real historical climate
records before being applied to “non-perfect” GCM pre-

Geosci. Model Dev., 13, 1711–1735, 2020 www.geosci-model-dev.net/13/1711/2020/



J. Bedia et al.: Statistical downscaling with downscaleR 1717

dictors. Therefore, the aim of cross-validation in the PP
approach is to properly estimate, given a known predictor
dataset (large-scale variables from reanalysis), the perfor-
mance of the particular technique considered, having an “up-
per bound” for its generalization capability when applied to
new predictor data (large-scale variables from GCM). The
workhorse for cross-validation in downscaleR is the func-
tion downscaleCV, which adequately handles data parti-
tion to create the training and test data subsets according to
the parameters specified by the user, being tailored to the spe-
cial needs of statistical downscaling experiments (i.e., ran-
dom temporal or spatial folds, leave-one-year-out, arbitrary
selection of years as folds, etc.).

During the cross-validation process, one or several user-
defined measures are used in order to assess model perfor-
mance (i.e., to evaluate how “well” do model predictions
match the observations), such as accuracy measures, distri-
butional similarity scores, inter-annual variability, and trend
matching scores. In this sense, model quality evaluation is
a multi-faceted task with many possible and often unrelated
aspects to look into. Thus, validation ultimately consists of
deriving specific climate indices from model output, com-
paring these indices to reference indices calculated from ob-
servational data and quantifying the mismatch with the help
of suitable performance measures (Maraun et al., 2015). In
VALUE, the term “index” is used in a general way, in-
cluding not only single numbers (e.g., the 90th percentile
of precipitation, lag-1 autocorrelation) but also vectors such
as time series (for instance, a binary time series of rain or
no rain). Specific “measures” are then computed upon the
predicted and observed indices, for instance the difference
(bias, predicted – observed) of numeric indices or the corre-
lation of time series (Sect. 3.3.9). A comprehensive list of
indices and measures has been elaborated by the VALUE
cross-cutting group in order to undertake a systematic evalu-
ation of downscaling methods. The complete list is presented
in the VALUE Validation Portal (http://www.value-cost.eu/
validationportal/app/#!indices, last access: 29 March 2020).
Furthermore, all the VALUE indices and measures have
been implemented in R and collected in the package VALUE
(https://github.com/SantanderMetGroup/VALUE, last ac-
cess: 29 March 2020), allowing for further collabora-
tion and extension with other initiatives, as well as
for research reproducibility. The validation tools avail-
able in VALUE have been adapted to the specific data
structures of the climate4R framework (see Sect. 1)
through the wrapping package climate4R.value (https:
//github.com/SantanderMetGroup/climate4R.value, last ac-
cess: 29 March 2020), enabling a direct application of the
comprehensive VALUE validation framework to downscal-
ing exercises with downscaleR (Fig. 1). A summary of the
subset of VALUE indices and measures used in this study is
presented in Table 1.

Figure 2. Location of the 86 stations of the ECA-VALUE-86
dataset (red squares). The colored boxes show the eight PRU-
DENCE subregions considered in the VALUE downscaling exper-
iment for model training (Sect. 3.1). The regular grid of the pre-
dictor dataset, a 2◦×2◦ resolution version of the ERA-Interim re-
analysis, is also shown. The subregions considered are IP (Iberian
Peninsula), FR (France), BI (British Isles), MD (Mediterranean),
AL (Alps), ME (central Europe), SC (Scandinavia), and EA (east-
ern Europe). Station metadata can be interactively queried through
the VALUE Validation Portal application (http://www.value-cost.
eu/validationportal/app/#!datasets, last access: 29 March 2020).

3 Illustrative case study: the VALUE experiment

The VALUE initiative (Maraun et al., 2015) produced the
largest-to-date intercomparison of statistical downscaling
methods with over 50 contributing techniques. The contribu-
tion of MeteoLab (and downscaleR) to this experiment
included a number of methods which are fully reproducible
with downscaleR, as we show in this example. This pan-
European contribution was based on previous experience
over the Iberian domain (Gutiérrez et al., 2013; San-Martín
et al., 2016), testing a number of predictor combinations and
method configurations. In order to illustrate the application
of downscaleR, in this example we first revisit the ex-
periment over Iberian domain (but considering the VALUE
framework and data), showing the code undertaking the dif-
ferent steps (Sect. 3.3). Afterwards, the subset of methods
contributing to VALUE is applied at a pan-European scale,
including also results of future climate scenarios (Sect. 4).

In order to reproduce the results of the VALUE inter-
comparison, the VALUE datasets are used in this study
(Sect. 3.1). In addition, future projections from a CMIP5
GCM are also used to illustrate the application of the down-
scaling methods to climate change studies. For transparency
and full reproducibility, the datasets are public and freely
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Table 1. Summary of the subset of VALUE validation indices and measures used in this study. Their codes are consistent with the VALUE
reference list (http://www.value-cost.eu/validationportal/app/#!indices), except for “ts.ks.pval”, which has been included later in the VALUE
set of measures.

Code Description Type

R01 Relative frequency of wet days (precip ≥ 1 mm) Index
Mean Mean Index
SDII Simple daily intensity index Index
Skewness Skewness Index
WWProb Wet–wet transition probability (wet ≥ 1 mm) Index
DWProb Dry–wet transition probability (wet ≥ 1 mm) Index
WetAnnualMaxSpell Median of the annual wet (≥ 1 mm) spell maxima Index
DryAnnualMaxSpell Median of the annual dry (< 1 mm) spell maxima Index
AnnualCycleAmp Amplitude of the daily annual cycle Index
Var Quasi-variance Index
ratio Ratio predicted/observed Measure1

ts.rs Spearman correlation Measure2

ts.RMSE Root mean square error Measure2

ts.ks Two-sample Kolmogorov–Smirnov (KS) test statistic Measure2,3

ts.ks.pval (corrected) p value of the two sample KS test statistic Measure2,3

The superscripts in the measures indicate the input used to compute them: 1 – a single scalar value, corresponding to the
predicted and observed indices; 2 – the original predicted and observed precipitation time series; 3 – transformed time series
(centered anomalies or standardized anomalies).

available for download using the climate4R tools, as
indicated in Sect. 3.2. Next, the datasets are briefly pre-
sented. Further information on the VALUE data character-
istics is given in Maraun et al. (2015) and Gutiérrez et al.
(2019) and also at their official download URL (http://www.
value-cost.eu/data, last access: 29 March 2020). The refer-
ence period considered for model evaluation in perfect con-
ditions is 1979–2008. In the analysis of the GCM predic-
tors (Sect. 4.2.1), this period is adjusted to 1979–2005 con-
strained by the period of the historical experiment of the
CMIP5 models (Sect. 3.1.3). The future period for presenting
the climate change signal analysis is 2071–2100.

3.1 Datasets

3.1.1 Predictand data (weather station records)

The European station dataset used in VALUE has been care-
fully prepared in order to be representative of the different
European climates and regions and with a reasonably ho-
mogeneous spatial density (Fig. 2). To keep the exercise as
open as possible, the downloadable (blended) ECA&D sta-
tions (Klein Tank et al., 2002) were used. From this, a final
subset of 86 stations was selected with the help of local ex-
perts in the different countries, restricted to high-quality sta-
tions with no more than 5 % of missing values in the analysis
period (1979–2008). Further details on predictand data pre-
processing are provided in http://www.value-cost.eu/WG2_
dailystations (last access: 29 March 2020). The full list of
stations is provided in Table 1 in Gutiérrez et al. (2019).

3.1.2 Predictor data (reanalysis)

In line with the experimental protocol of the Coordinated Re-
gional Climate Downscaling Experiment (CORDEX; Giorgi
et al., 2009), VALUE has used ERA-Interim (Dee et al.,
2011) as the reference reanalysis to drive the experiment with
perfect predictors. For full comparability, the list of predic-
tors used in VALUE is replicated in this study – see Table 2
in Gutiérrez et al. (2019) – namely sea-level pressure, 2 m
air temperature, air temperature and relative humidity at 500,
700, and 850 hPa surface pressure levels, and the geopoten-
tial height at 500 hPa.

The set of raw predictors corresponds to the full European
domain shown in Fig. 2. The eight reference regions defined
in the PRUDENCE project of model evaluation (Christensen
et al., 2007) were used in VALUE as appropriate regional do-
mains for training the models of the corresponding stations
(Sect. 2.1). The stations falling within each domain are col-
ored accordingly in Fig. 2.

3.1.3 Predictor data (GCM future projections)

In order to illustrate the application of SDS methods to down-
scale future global projections from GCM predictors, here
we consider the outputs from the EC-EARTH model (in par-
ticular the r12i1p1 ensemble member; EC-Earth Consortium,
2014) for the 2071–2100 period under the RCP8.5 scenario
(Moss et al., 2010). This simulation is part of CMIP5 (Tay-
lor et al., 2011) and is officially served by the Earth System
Grid Federation infrastructure (ESGF; Cinquini et al., 2014).
In this study, data are retrieved from the Santander User Data
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Gateway (Sect. 4.2), which is the data access layer of the
climate4R framework (described in Sect. 3.2).

3.2 Data retrieval with climate4R

All the data required are (remotely) available under the
climate4R framework. Reanalysis (Sect. 3.1.2) and GCM
data (Sect. 3.1.3) are retrieved in this example from the
User Data Gateway (UDG), the remote data access layer
of climate4R. The UDG is a climate service provid-
ing harmonized remote access to a variety of popular cli-
mate databases exposed via a THREDDS OPeNDAP ser-
vice (Unidata, 2006) and a fine-grained authorization layer
(the THREDDS Administration Panel, TAP) developed and
managed by the Santander Meteorology Group (http://www.
meteo.unican.es/udg-tap, last access: 29 March 2020). The
package loadeR allows easy access to the UDG datasets
directly from R. For brevity, the details regarding data re-
trieval are omitted here, being already described in the previ-
ous works by Cofiño et al. (2018) and Iturbide et al. (2019).
Suffice it here to show how the login into the UDG (via
TAP) is done at the beginning of the R session and how
the different collocation parameters for data retrieval (in-
cluding the dataset ID and the names of the variables and
their vertical surface pressure levels) are passed to the func-
tion loadGridData. It is also useful to provide a reminder
that the user has access to a full list of public datasets avail-
able through the UDG and their IDs using the helper func-
tion UDG.datasets and that an inventory of all available
variables for each dataset can be obtained using the function
dataInventory.

First of all, the required climate4R packages are
loaded, including package transformeR, which under-
takes multiple generic operations of data manipulation and
visualizeR (Frías et al., 2018), used for plotting. Spe-
cific instructions for package installation are provided in the
supplementary Notebook of this paper and on the principal
page of the climate4R repo at GitHub (https://github.com/
SantanderMetGroup/climate4R, last access: 29 March 2020).
The code used in each section is interwoven with the text in
verbatim fonts. Lengthy lines of code are continued in the
following line after indentation.

library(loadeR)
library(transformeR)
library(visualizeR)
library(downscaleR)
library(climate4R.value)

3.2.1 Loading predictor data

loginUDG(username = "****", password
= "****")

# Register at http://www.meteo.unican.es/
udg-tap

vars <- c("psl","tas","ta@500","ta@700",
"ta@850",

"hus@500","hus@850","z@500")

# The bounding box of the Iberia region
(IP) is extracted:

data("PRUDENCEregions", package =
"visualizeR")

bb <- PRUDENCEregions["IP"]@bbox
lon <- bb[1,]; lat <- bb[2,]

grid.list <- lapply(variables, function(x) {
loadGridData(dataset =
"ECMWF_ERA-Interim-ESD",

var = x,
lonLim = lon,
latLim = lat,
years = 1979:2008)

}
)

In climate4R, climate variables are stored in the
so-called data grids, following the Grid Feature Type
nomenclature of the Unidata Common Data Model
(https://www.unidata.ucar.edu/software/thredds/current/
netcdf-java/tutorial/GridDatatype.html, last access:
29 March 2020), on which the climate4R data ac-
cess layer and its data structures are based. In order to
efficiently handle multiple variables used as predictors in
downscaling experiments, stacks of grids encompassing the
same spatial (and by default also temporal) domain are used.
These are known as multiGrids in downscaleR and can
be obtained using the constructor makeMultiGrid from a
set of – dimensionally consistent – grids. Next, a multigrid
is constructed with the full set of predictors:

x <- makeMultiGrid(grid.list)

3.2.2 Loading predictand data

The VALUE package, already presented in Sect. 2.3, gathers
all the validation routines used in VALUE. For convenience,
the station dataset ECA-VALUE-86 (described in Sect. 3.1.1)
is built-in. As package VALUE is a dependency of the wrap-
per package climate4R.VALUE (see Sect. 2.3), its avail-
ability as installed package is assumed here:

v86 <- file.path(find.package("VALUE"),
"example_datasets",

"VALUE_ECA_86_v2.zip")

Stations are loaded with the function
loadStationData from package loadeR, tailored
to the standard ASCII format defined in climate4R, also
adopted by the VALUE framework.
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Table 2. Summary of predictor configurations tested. Local predictors always correspond to the original predictor fields previously stan-
dardized. Independent PCs are calculated separately for each predictor field, while combined PCs are computed upon the previously joined
predictor fields (see Sect. 2.1 for more details). a The standardization in M5 is performed by subtracting to each grid cell the overall field
mean, so the spatial structure of the predictor is preserved. Methods marked with b are included in the VALUE intercomparison, with the
slight difference that in VALUE, a fixed number of 15 PCs is used and here the number varies slightly until achieving the percentage of
explained variance indicated (in any case, the differences are negligible in terms of model performance). Methods followed by the -L suffix
(standing for “local”) are used only in the pan-European experiment described in Sect. 4.

Method ID Predictor configuration description
arguments

GLM

M1b Spatial: n combined PCs explaining 95 % of variance
M1-L Spatial+local: n combined PCs explaining 95 % of variance + first nearest grid box
M2 Spatial: n independent PCs explaining 95 % of the variance
M3 Local: first nearest grid box
M4 Local: four nearest grid boxes

Analogs

M5 Spatial: original standardizeda predictor fields
M6b Spatial: n combined PCs explaining 95 % of variance
M6-L Local: 25 nearest grid boxes
M7 Spatial: n independent PCs explaining 95 % of the variance

y <- loadStationData(dataset = v86, var =
"precip",

lonLim = lon, latLim =
lat,

years = 1979:2008)

Since the variable precipitation requires two-stage model-
ing using GLMs (occurrence, which is binary, and amount,
which is continuous; see Sect. 2.2), the original precipi-
tation records loaded require transformation. The function
binaryGrid undertakes this frequent operation. Also, all
the values below 1 mm are converted to zero (note the use
of argument partial that sets to zero only the values not
fulfilling the condition "GE", that is, “greater or equal” than
the threshold value given).

y <- binaryGrid(y, condition = "GE",
threshold = 1,

partial = TRUE)
y_bin <- binaryGrid(y, condition = "GE",
threshold = 1)

Both raw predictors and the predictand set are now ready
for SDS model development.

3.3 Worked-out example for the Iberian domain

Building on the previous work by San-Martín et al. (2016)
regarding predictor selection for precipitation downscaling, a
number of predictor configuration alternatives is tested here.
For brevity, the experiment is restricted to one of the VALUE
subregions (Iberia, Fig. 2), avoiding a recursive repetition of
the code for the eight domains (the full code is provided in
the notebook accompanying this paper; see the “Code and
data availability” section at the end of the paper). From the
range of methods tested in San-Martín et al. (2016), the meth-
ods labeled M1 and M6 in Table 2 were also used in the

VALUE intercomparison (for every subregion) in order to
use spatial predictors for GLM and analog methods (these
are labeled GLM-DET and ANALOG in Table 3 of Gutiér-
rez et al., 2019, respectively). In the particular case of method
M6, this is implemented in order to minimize the number of
predictors by compressing the information with PCs, hence
improving the computational performance of the method by
accelerating the analog search. The full list of predictor vari-
ables and the same reference period (1979–2008) used in
VALUE (enumerated in Sect. 3.1.2) is here applied for all
the configurations tested, which are summarized in Table 2
following the indications given in Sect. 2.1.

3.3.1 Method configuration experiment over Iberia

In this section, the different configurations of the above-
described techniques (Table 2) are used to produce local
predictions of precipitation. The experimental workflow is
presented following the schematic representation of Fig. 1,
so the different subsections roughly correspond to the main
blocks therein depicted (the future downscaled projections
from a GCM will be later illustrated in Sect. 4.2). We par-
tially replicate here the results obtained by Gutiérrez et al.
(2019), which are the methods labeled M1 and M6.

As indicated in Sect. 2.1, prepareData is the
workhorse for predictor configuration. The function handles
all the complexities of the predictor configuration under the
hood, receiving a large number of arguments affecting the
different aspects of predictor configuration, which are in-
ternally passed to other climate4R functions performing
the different tasks required (i.e., data standardization, princi-
pal component analysis, data subsetting, etc.). Furthermore,
downscaleR allows a flexible definition of local predictors
of arbitrary window width (including just the closest grid
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point). As the optimal predictor configuration is chosen af-
ter cross-validation, typically the function downscaleCV
is used in first place. The latter function makes internal calls
to prepareData recursively for the different training sub-
sets defined.

As a result, downscaleCV receives as input all the ar-
guments of prepareData for predictor configuration as
a list, plus other specific arguments controlling the cross-
validation setup. For instance, the argument folds allows
specifying the number of training or test subsets to split the
dataset in. In order to perform the classical leave-one-year-
out cross-validation schema, folds should equal the total
number of years encompassing the full training period (e.g.,
folds=list(1979:2008)). The way the different sub-
samples are split is controlled by the argument type, provid-
ing fine control on how the random sampling is performed.

Here, in order to replicate the VALUE experimental frame-
work, a five-fold cross-validation scheme is considered, each
fold containing consecutive years for the total period 1979–
2008 (Gutiérrez et al., 2019). The function downscaleCV
thus performs the downscaling for each of the independent
folds and reconstructs the entire time series for the full pe-
riod analyzed.

folds <- list(1979:1984, 1985:1990, 1991:1996,

1997:2002, 2003:2008)

The details for configuring the cross-validation of the
methods in Table 2 are given throughout the following sub-
sections:

3.3.2 Configuration of method M1

Method M1 uses spatial predictors only. In particular, the
(non-rotated, combined) PCs explaining the 95 % of total
variance are retained. As in the rest of the methods, all the
predictor variables are included to compute the PCs. The fol-
lowing argument list controls how the principal component
analysis is carried out, being internally passed to the func-
tion prinComp of package transformeR:

spatial.pars.M1 <- list(which.combine = vars,

v.exp = .95,
rot = FALSE)

As no other type of predictors (global and/or local) is used
in the M1 configuration, the default values (NULL) assumed
by downscaleCV are applied. However, for clarity, here
we explicitly indicate these defaults in the command calls.
As the internal object containing the PCA information bears
all the data inside (including PCs independently calculated
for each variable), the argument combined.only serves
to discard all the unnecessary information. Therefore, with
this simple specifications the cross-validation for method M1
is ready to be launched:

M1cv.bin <- downscaleCV(x = x, y = y_bin,
method = "GLM",

family = binomial(link = "logit"),
folds = folds,
prepareData.args = list(global.vars =

NULL,
local.predictors =
NULL,

spatial.predictors =
spatial.pars.M1,

combined.only = TRUE))

In the logistic regression model, downscaleCV returns
a multigrid with two output prediction grids, storing the vari-
ables prob and bin. The first contains the grid probability of
rain for every day and the second is a binary prediction indi-
cating whether it rained or not. Thus, in this case the binary
output is retained, using subsetGrid along the “var” di-
mension:

M1cv.bin <- subsetGrid(M1cv.bin, var = "bin")

Next, the precipitation amount model is tested. Note that
the log link function used in this case cannot deal with ze-
roes in the data for fitting the model. Following the VALUE
criterion, here a minimum threshold of 1 mm (threshold
= 1, condition = "GE", i.e., greater or equal) is con-
sidered:

M1cv.cont <- downscaleCV(x = x, y = y, method

= "GLM",
family = Gamma(link = "log"),
condition = "GE", threshold
= 1,
folds = folds,
prepareData.args =
list(global.vars = NULL,

local.predictors =
NULL,

spatial.predictors =
spatial.pars.M1,

combined.only = TRUE))

The continuous and binary predictions are now mul-
tiplied using the gridArithmetics function from
transformeR, so the precipitation frequency is adjusted
and the final precipitation predictions are obtained:

M1cv <- gridArithmetics(M1cv.bin, M1cv.cont,
operator = "*")

The final results stored in the M1cv grid can be easily han-
dled for further analysis, as will be shown later in Sect. 3.3.9
during method validation. As an example of a common check
operation, here the (monthly accumulated and spatially aver-
aged) predicted and observed time series are displayed using
temporalPlot from package visualizeR (Fig. 3):

aggr.pars <- list(FUN = "sum", na.rm = TRUE)
pred.M1 <- aggregateGrid(M1cv, aggr.m =
aggr.pars)

obs <- aggregateGrid(y, aggr.m = aggr.pars)
temporalPlot(pred.M1, obs) ##
Generates Fig. 3
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Figure 3. Cross-validated predictions of monthly accumulated precipitation by the method M1 (black), plotted against the corresponding
observations (red). Both time series have been spatially aggregated considering the 11 stations within the Iberian subdomain.

3.3.3 Configuration of method M2

Unlike M1, in M2 the PCs are independently calculated
for each variable, instead of considering one single ma-
trix formed by all joined (combined) variables. To specify
this PCA configuration, the spatial predictor parameter list
is modified accordingly, by setting which.combine =
NULL.

spatial.pars.M2 <- list(which.combine
= NULL, v.exp = .95)

Note that the rotation argument is here omitted, as it is
unused by default. This list of PCA arguments is passed to
the spatial.predictor argument. The rest of the code
to launch the cross-validation for M2 is identical to M1.

3.3.4 Configuration of method M3

Method M3 uses local predictors only. In this case, the first
closest neighbor to the predictand location (n=1) is used con-
sidering all the predictor variables (as returned by the helper
getVarNames(x)). The local parameters list is next de-
fined:

local.pars.M3 <- list(n = 1, vars
= getVarNames(x))

In addition, the scaling parameters control the raw predic-
tor standardization. Within the cross-validation setup, stan-
dardization is undertaken after data splitting. In this particu-
lar case (five folds), the four folds forming the training set are
jointly standardized. Then, its mean and variance are used
for the standardization of the remaining fold (i.e., the test
set). Therefore, the standardization parameters are passed to
function downscaleCV as a list of arguments controlling
the scaling (scaling.pars object; these parameters are
passed internally to the function scaleGrid):

scaling.pars <- list(type = "standardize",
spatial.frame =
"gridbox")

The next steps are similar to those already shown for M1.
For clarity, the precipitation amount M3 model is next shown
(the binary logistic model of occurrence would use a similar
configuration, but changing the model family, as previously
shown).

M3cv.cont <- downscaleCV(x = x, y = y,
method = "GLM",
family = Gamma(link = "log"),
condition = "GE", threshold
= 1,

folds = folds,
scaleGrid.args = scaling.pars,

prepareData.args =
list(global.vars = NULL,
local.predictors
= local.pars.M3,
spatial.predictors
= NULL))

3.3.5 Configuration of method M4

Method M4 is similar to M3, but using the four closest pre-
dictor grid boxes, instead of just one. Thus, the local predic-
tor parameters are slightly modified, by setting n = 4:

local.pars.M4 <- list(n = 4, vars = vars)

3.3.6 Configuration of method M5

Method M5 uses raw (standardized) spatial predictor fields,
instead of PCA-transformed ones. The standardization is per-
formed by centering every grid box with respect to the over-
all spatial mean in order to preserve the spatial consistency
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of the standardized field. To account for this particularity, the
scaling parameters are modified accordingly, via the argu-
ment spatial.frame = "field", which is internally
passed to scaleGrid.

scaling.pars.M5 <- list(type =
"standardize",

spatial.frame
= "field")

In this case, the method for model training is set to
analogs. Other specific arguments for analog method tuning
are used, for instance, the number of analogs considered (1
in this case):

M5cv <- downscaleCV(x = x, y = y,
method = "analogs", n.analogs
= 1,

folds = folds,
scaleGrid.args = scaling.pars.M5,
prepareData.args =
list(global.vars = vars,

local.predictors = NULL,
spatial.predictors = NULL))

3.3.7 Configuration of method M6

The parameters used for predictor configuration in method
M6 (combined PCs explaining 95 % of total variance) are
similar to method M1. Thus, the previously defined parame-
ter list spatial.pars.M1 is reused here:

M6cv <- downscaleCV(x = x, y = y,
method = "analogs", n.analogs
= 1,

folds = folds,
prepareData.args =
list(global.vars = NULL,

local.predictors = NULL,
spatial.predictors =
spatial.pars.M1,

combined.only = TRUE))

3.3.8 Configuration of method M7

Similarly, method M7 uses identical spatial parame-
ters as previously used for method M2 (parameter list
spatial.pars.M2), the rest of the code being similar to
M6 but setting combined.only = FALSE, as indepen-
dent PCs are used instead of the combined one.

3.3.9 Validation

Once the cross-validated predictions for the methods M1
to M7 are generated, their evaluation is undertaken follow-
ing the systematic approach of the VALUE framework. For
brevity, in this example the code of only two example in-
dices is shown: relative wet-day frequency (R01) and sim-
ple day intensity index (SDII). The evaluation considering
a more complete set of nine validation indices is included

Figure 4. Cross-validation results obtained by method M6, consid-
ering the ratio (predicted/observed) of the frequency of wet days
(VALUE index code R01, Table 1).

in the supplementary notebook to this paper (see the “Code
and data availability” section), following the subset of mea-
sures used in the VALUE synthesis paper by Gutiérrez et al.
(2019). Alternatively, a complete list of indices and mea-
sures and their definitions is available in a dedicated section
in the VALUE Validation Portal (http://www.value-cost.eu/
validationportal/app/#!indices, last access: 29 March 2020).
It is also possible to have a quick overview of the avail-
able indices and measures within the R session by using
the helper functions VALUE::show.indices() and
VALUE::show.measures().

To apply them, the package climate4R.value, al-
ready introduced in Sect. 2.3, is used. The function
valueMeasure is the workhorse for computing all the
measures defined by the VALUE Framework. For example,
to compute the ratio of the frequency of wet days (VALUE
code R01) for a given cross-validated method (M6 in this
example), the parameters measure.code="ratio" and
index.code="R01" are given:

R01.ratio <- valueMeasure(y, x = M6cv,
measure.code = "ratio",
index.code = "R01")$Measure

A spatial plot helps to identify at a glance at which loca-
tions the frequency of wet days is under- or overestimated
(red and blue, respectively) by method M6 (Fig. 4):

## Generates Fig. 4:
spatialPlot(R01.ratio, backdrop.theme
= "countries")

Following this example and using the nine indices used
in the synthesis of the VALUE experiment results (Maraun
et al., 2019b) and considering the battery of all methods, M1
to M7, a summary of the validation is presented in Fig. 5. The
figure has been generated with the function violinPlot
from package visualizeR, as illustrated step by step in
the notebook accompanying this paper (see the “Code and
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data availability” section). Violins are in essence a combina-
tion of a box plot and a kernel density plot. Box plots are
a standard tool for inspecting the distribution of data most
users are familiar with, but they lack basic information when
data are not normally distributed. Density plots are more use-
ful when it comes to comparing how different datasets are
distributed. For this reason, violin plots incorporate the in-
formation of kernel density plots in a box-plot-like represen-
tation and are particularly useful to detect bimodalities or de-
partures from the normal distribution of the data, intuitively
depicted by the shape of the violins. The violins are inter-
nally produced by the package lattice (Sarkar, 2008) via
the panel function panel.violin to which the interested
reader is referred for further details on violin plot design and
options. All the optional graphical parameters of the orig-
inal panel.violin function can be conveniently passed
to the wrapper violinPlot of package visualizeR. In
the following, the violin plots shown display how the differ-
ent validation measures are distributed across locations.

4 Contribution to VALUE: further results

The methods M1* and M6* (see Table 2) contributed to
the VALUE intercomparison experiment (see methods GLM-
DET and ANALOGS in Gutiérrez et al., 2019, Table 3) over
the whole European domain, exhibiting a good overall per-
formance. In this section we investigate the potential added
value of including local information to these methods. To this
aim, the VALUE M1* and M6* configurations are modified
by including local information from neighboring predictor
grid boxes (these configurations are labeled M1-L and M6-
L, respectively; Table 2). The M1-L and M6-L models are
trained considering the whole pan-European domain, instead
of each subregion independently, taking advantage of the in-
corporation of the local information at each predictand lo-
cation and thus disregarding the intermediate step of subset-
ting across subregions prior to model calibration. The exper-
iment seeks to explore if the more straightforward local pre-
dictor approach (M1-L and M6-L) is competitive against the
corresponding M1 and M6 VALUE methods when trained
with one single, pan-European domain, instead of using the
VALUE subregional division, which poses a clear advantage
from the user point of view as it does not require testing
different spatial domains and the definition of subregions in
large downscaling experiments.

Throughout this section, the pan-European experiment is
launched and its results presented. Note that now the pre-
dictor multigrid corresponds to the whole European domain
and the predictand contains the full set of VALUE stations
(Fig. 2). The procedure for loading these data is identical to
the one already presented in Sect. 3.2.1 and 3.2.2 but con-
sidering the European domain. This is achieved by introduc-
ing the bounding box defined by the arguments lonLim =
c(-10,32) and latLim = c(36,72) in the call to the

loadGridData function. These arguments can be omitted
in the case of the station data load, since all the available sta-
tions are requested in this case. The full code used in this step
is detailed in the notebook accompanying this paper (see the
“Code and data availability” section).

4.1 Method intercomparison experiment

The configuration of predictors is indicated through the pa-
rameter lists, as shown throughout Sects. 3.3.2 to 3.3.8. In
the case of method M1-L, local predictors considering the
first nearest grid box are included in the M1 configuration
(Table 2):

M1.L <- list(local.predictors =
list(n = 1, vars = vars),

spatial.predictors =
list(v.exp = .95,
which.combine = vars))

Unlike M6, the M6-L configuration considers local pre-
dictors only instead of PCs. In this case, the local domain
window is wider than for M1-L, including the 25 closest grid
boxes instead of just one:

M6.L <- list(local.predictors = list(n = 25,
vars = vars))

Next, the cross-validation is launched using
downscaleCV. M1-L corresponds to the GLM method
(thus requiring the two models for occurrence and amount),
while M6-L is an analog method. After this, the validation is
undertaken using valueMeasure. PP methods in general
build on a synchronous daily link established between
predictor(s) and predictand in the training phase (Sect. 2).
The strength of this link indicates the local variability
explained by the method as a function of the large-scale
predictors. In order to provide a quick diagnostic of this
strength for the different methods and at the same time
to illustrate a diversity of validation methods, in this case
correlation, root mean square error, and variance ratio are
chosen as validation measures in the validation (Table 1).
The validation results are displayed in Fig. 6. For brevity,
the code performing the validation of the pan-European
experiment is not repeated here (this is similar to what it has
been already shown in Sect. 3.3.2 to 3.3.8). The validation
results indicate that the local predictor counterparts of the
original VALUE methods M1 and M6 are competitive (they
reach very similar or slightly better performance in all
cases). Hence, the M1-L and M6-L method configurations
will be used in Sect. 4.2 to produce the future precipitation
projections for Europe, provided their more straightforward
application as they do not need to be applied independently
for each subregion. While the GLM method improves the
correlation between predicted and observed series, the
analog approach does a better job at preserving the observed
variability.
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Figure 5. Cross-validation results obtained by the seven methods tested (M1 to M7, Table 2) according to the core set of validation indices
defined in the VALUE intercomparison experiment, considering the subset of the Iberian Peninsula stations (n= 11). The color bar indicates
the mean ratio (predicted/observed) measure calculated for each validation index (Table 1).

Table 3. Validation results of the four methods tested in the pan-European experiment. The values presented (from left to right: minimum,
first quartile, median, third quartile, maximum, and standard deviation) correspond to the violin plots displayed in Fig. 6 (n= 86 stations).
Note that, for consistency with Fig. 6, the RMSE results are multiplied by a factor of 0.1 in order to attain a similar order of magnitude for
the three validation measures considered. This is also indicated in the caption of Fig. 6.

Min. First qu. Median Mean Third qu. Max. SD

RMSE(×0.1)

M1cv 0.27 0.39 0.45 0.52 0.60 1.41 0.20
M1Lcv 0.25 0.37 0.43 0.49 0.58 1.33 0.19
M6cv 0.33 0.49 0.57 0.67 0.78 1.96 0.28
M6Lcv 0.32 0.47 0.55 0.64 0.74 1.74 0.26

Correlation

M1cv 0.32 0.45 0.50 0.50 0.55 0.76 0.09
M1Lcv 0.40 0.52 0.56 0.57 0.62 0.76 0.07
M6cv 0.16 0.28 0.34 0.34 0.39 0.56 0.08
M6Lcv 0.25 0.33 0.39 0.39 0.44 0.63 0.08

Variance ratio

M1cv 0.32 0.52 0.55 0.55 0.59 0.74 0.07
M1Lcv 0.41 0.57 0.60 0.60 0.63 0.79 0.06
M6cv 0.72 0.88 0.93 0.93 0.99 1.08 0.08
M6Lcv 0.64 0.86 0.94 0.92 0.98 1.10 0.10

4.2 Future downscaled projections

In this section, the calibrated SDS models are used to down-
scale GCM future climate projections from the CMIP5 EC-
EARTH model (Sect. 3.1.3). Before generating the model
predictions (Sect. 4.2.2), the perfect-prognosis assumption

regarding the good representation by the GCM of the reanal-
ysis predictors is assessed in Sect. 4.2.1.
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Figure 6. Cross-validation results obtained by the four methods
tested (M1, M1-L, M6, and M6-L; Table 2) in the pan-European
experiment (n= 86 stations), according to three selected validation
measures (Spearman correlation, RMSE, and variance ratio; see Ta-
ble 1). The color bar indicates the mean value of each measure. A
factor of 0.1 has been applied to the RMSE in order to attain the
same order of magnitude in the y axis for all the validation mea-
sures.

4.2.1 Assessing the GCM representation of the
predictors

As indicated in Sect. 2.1, PP model predictions are built un-
der the assumption that the GCM is able to adequately re-
produce the predictors taken from the reanalysis. Here, this
question is addressed through the evaluation of the distri-
butional similarity between the predictor variables, as rep-
resented by the EC-EARTH model in the historical simula-
tion, and the ERA-Interim reanalysis. To this aim, the two-
sample Kolmogorov–Smirnov test is used, included in the
set of validation measures of the VALUE framework and
thus implemented in the VALUE package. The KS test is
a non-parametric statistical hypothesis test for checking the
null hypothesis (H0) that two candidate datasets come from
the same underlying theoretical distribution. The statistic is
bounded between 0 and 1, indicating that the lower values
have a greater distributional similarity. The KS test is first
applied to the EC-EARTH and ERA-Interim reanalysis time

series on a grid box basis, considering the original continuous
daily time series for their common period, 1979–2005. In or-
der to isolate distributional dissimilarities due to errors in the
first- and second-order moments, we also consider anoma-
lies and standardized anomalies (the latter being used as ac-
tual predictors in the SDS models). The anomalies are cal-
culated by removing the overall grid box mean to each daily
value, and in the case of the standardized anomalies, we ad-
ditionally divide by the seasonal standard deviation. Due to
the strong serial correlation present in the daily time series,
the test is prone to inflation of type-1 error, that is, rejecting
the null hypothesis of equal distributions when it is actually
true. To this aim, an effective sample size correction has been
applied to the data series to calculate the p values (Wilks,
2006). The methodology follows the procedure described in
Brands et al. (2012, 2013), implemented by the VALUE mea-
sure “ts.ks.pval” (Table 1).

The distributions of GCM and reanalysis (Fig. 7) differ
significantly when considering the raw time series, thus vi-
olating the assumptions of the PP hypothesis. Centering the
data (i.e, zero mean time series) greatly alleviates this prob-
lem for most variables, excepting specific humidity at 500 mb
(“hus@500”) and near-surface temperature (tas; not shown
here, but displayed in the paper notebook). Finally, data
standardization improves the distributional similarity, attain-
ing an optimal representation of all the GCM predictors but
hus@500 over a few grid points in the Mediterranean.

The distributional similarity analysis is straightforward us-
ing the functions available in climate4R, already shown in
the previous examples. For brevity, the code generating Fig. 7
is omitted here, and included with extended details and for
all the predictor variables in the notebook accompanying this
paper (see the “Code and data availability” section).

– Data centering or standardization is performed di-
rectly using the function scaleGrid and using the
appropriate argument values type="center" or
"standardize", respectively.

– The KS test is directly launched using the
function valueMeasure from the package
climate4R.VALUE and including the argu-
ment value measure.code="ts.ks" and
"ts.ks.pval" for KS score and its (corrected)
p value, respectively.

– The KS score maps and the stippling based on their p
values are produced with the function spatialPlot
from package visualizeR.

In conclusion, although not all predictors are equally well
represented by the GCM, data standardization is able to solve
the problem of distributional dissimilarities, even in the case
of the worst represented variable, that is, specific humidity at
500 mb level.
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Figure 7. KS score maps, depicting the results of the two-sample KS test applied to the time series from the EC-EARTH GCM and ERA-
Interim, considering the complete time series for the period 1979–2005. The results are displayed for two of the predictor variables (by rows),
namely specific humidity at 500 mb surface pressure height (“hus@500”, badly represented by the GCM) and mean sea-level pressure (“psl”,
well represented by the GCM). The KS test results are displayed by columns, using, from left to right, the raw, the zero-mean (centered),
and the zero-mean and unit variance (standardized) time series from both the reanalysis and the GCM. The grid boxes showing low p values
(p < 0.05) have been marked with a red cross, indicating significant differences in the distribution of both GCM and reanalysis time series.

4.2.2 Future SDS model predictions

The final configuration of predictors for M1-L (stored in the
M1.L list) and M6-L methods (M6.L) is directly passed
to the function prepareData, whose output contains all
the information required to undertake model training via the
downscaleTrain function. In the following, the code for
the analog method is presented. Note that for GLMs the code
is similar but taking into account occurrence and amount in
separated models, as previously shown.

Unlike downscaleCV, which handles predictor stan-
dardization on a fold-by-fold basis (see Sect. 3.3.1 in the con-
figuration of method M3), predictor standardization needs to
be undertaken prior to passing the predictors to the function
prepareData.

# Standardization
x_scale <- scaleGrid(x, type =
"standardize")

# Predictor config (M6-L method)
M6L <- prepareData(x_scale, y,

local.predictors = M6.L)
# SDS model training
model.M6L <- downscaleTrain(M6L, method

= "analogs",
n.analogs = 1)

After SDS model calibration downscalePredict is
the workhorse for downscaling. First of all, the GCM
datasets required are obtained. As previously done with
ERA-Interim, the EC-EARTH simulations are obtained from
the climate4RUDG, considering the same set of variables
already used for training the models (Sect. 3.1.2). Again, the
individual predictor fields are recursively loaded and stored
in a climate4R multigrid.

historical.dataset <-
"CMIP5_EC-EARTH_r12i1p1_historical"

grid.list <- lapply(variables, function(x) {
loadGridData(dataset =
historical.dataset,

var = x,
lonLim = c(-10,32),
latLim = c(36,72),
years = 1979:2005)

}
)

As done with the predictor set, the prediction dataset is
also stored in as a multigrid object:

xh <- makeMultiGrid(grid.list)

An additional step entails regridding the GCM data onto
the predictor grid prior to downscaling in order to attain
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Figure 8. Relative delta change signals of the R01 and SDII precipitation indices (see Table 1) for the future period 2071–2100 (with regard
to the baseline 1979–2005), obtained by the downscaled projections of the CMIP5 GCM EC-EARTH-r12i1p1, considering the RCP8.5
experiment. The SDS methods used are M1-L, M1, M6, and M6-L (see Table 2).

spatial consistency between the predictors and the new pre-
diction data. This is done using the interpGrid function
from transformeR:

xh <- interpGrid(xh, new.coordinates =
getGrid(x))

Identical steps are followed in order to load the future data
from RCP8.5. Note that in this case, it suffices to replace
the URL pointing to the historical simulation dataset by the
one of the future scenario chosen, in this case dataset =
"CMIP5_EC-EARTH_r12i1p1_rcp85". The multigrid
object storing the future GCM data for prediction will be
named xf.

Prior to model prediction, data harmonization is required.
This step consists of rescaling the GCM data to conform to
the mean and variance of the predictor set that was used to
calibrate the model. Note that this step is achieved through
two consecutive calls to scaleGrid:

xh <- scaleGrid(xh, base = xh, ref = x,
type = "center",
spatial.frame = "gridbox",
time.frame = "monthly")

xh <- scaleGrid(xh, base = x, type =
"standardize")

Again, an identical operation is undertaken with the fu-
ture dataset, by just replacing xh by xf in the previous code
chunk. Then, the function prepareNewData will under-
take all the necessary data collocation operations, including
spatial and temporal checks for consistency, leaving the data
structure ready for prediction via downscalePredict.
This step is performed equally for the historical and the fu-
ture scenarios:

h_analog <- prepareNewData(newdata = xh,
data.struc = M6L)

f_analog <- prepareNewData(newdata = xf,
data.struc = M6L)

Finally, the predictions for both the historical and the fu-
ture scenarios are done with downscalePredict. The
function receives two arguments: (i) newdata, where the
preprocessed GCM predictors after prepareNewData are
stored, and (ii) model, which contains the model previously
calibrated with downscaleTrain:

hist_ocu_glm <- downscalePredict(newdata
= h_analog,
model = model.M6L)

Once the downscaled future projections for historical and
RCP 8.5 scenarios are produced using the methods M1-L
(GLMs) and M6-L (analogs), their respective predicted cli-
mate change signals (or “deltas”) are displayed in Fig. 8 (the
code to generate the figure is illustrated in the notebook ac-
companying this paper; see the “Code and data availability”
section). We also depict the downscaled climate change sig-
nals for the M1 and M6 configurations in order to evaluate
whether the local-window approach alters the climate change
signals. As illustrated in Fig. 8, the projected relative changes
in the climate signal of the R01 (first row) and SDII (second
row) indices show minor differences among the configura-
tions presented herein (i.e., M1-L and M6-L) and the VALUE
methods (i.e., M1 and M6), showing that the uncertainty due
to the SDS method in the climate change signal (M1, GLMs
vs. M6, analogs) is larger than that between global predic-
tors or local window (M1/M6 vs. M1-L/M6-L, respectively),
in agreement with San-Martín et al. (2016). This result fur-
ther supports the idea of replacing the VALUE subdomain
approach by the adaptive window centered on each predic-
tand location, allowing for a much more straightforward per-
formance of large PP experiments encompassing large areas
without the need for testing different subdomain configura-
tions.
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5 Conclusions

The results obtained in the pan-European method intercom-
parison experiment (Sect. 4.1), indicate that the example SDS
methods contributing to the VALUE Experiment (GLMs and
analogs, first reproduced in Sect. 3.3.1) can be improved
through the incorporation of local predictors, a novel fea-
ture brought by downscaleR that can help to avoid the
burden of spatial domain screening. It has been shown that
this method does not significantly alter the SDS model re-
sults, neither in current climate validation nor with regard to
the projected anomalies. These results are of relevance for
the development of the forthcoming EURO-CORDEX SDS
statistical downscaling scenarios, in which the VALUE ac-
tivities have merged and will follow on, greatly facilitating
the development of downscaling experiments over large ar-
eas, like the continental scale considered in this study. As in
any other experiment, caution must be taken in order to en-
sure that the assumptions for perfect-prognosis applications
are fulfilled, as shown here.

The experiments carried out throughout Sects. 3.3 and 4
have served to the purpose of showcasing the most prominent
features of the R package downscaleR and its integration
in the climate4R framework, demonstrating its use in end-
to-end applications. In this regard, downscaleR is a new
tool implementing state-of-the-art SDS techniques providing
an extremely flexible interface to accomplish complex down-
scaling experiments. Critical aspects to be considered in any
downscaling exercise, including domain definition, predictor
configuration, perfect-prognosis hypothesis testing, model
validation, and intercomparison, can be achieved through the
use of a few intuitive commands. Users of downscaleR can
also benefit from its direct integration within the comprehen-
sive, well-consolidated VALUE framework for model eval-
uation. Furthermore, its full integration with climate4R
brings to climate scientists and practitioners a unique com-
prehensive R-based framework for SDS model development,
including a cloud-computing facility, user-friendly data ac-
cess to a large climate database, and efficient solutions for
data manipulation, visualization and analysis within one sin-
gle computing environment.

www.geosci-model-dev.net/13/1711/2020/ Geosci. Model Dev., 13, 1711–1735, 2020



1730 J. Bedia et al.: Statistical downscaling with downscaleR

Appendix A: Computing times

A1 Method

The computing performance of the different downscaling ex-
periments is analyzed in this Appendix through the use of
one indicator, the computing time, which measures the (user)
time required to accomplish a certain task. Therefore, all
timings presented in the following plots correspond to user
(wall) times. The values shown are mean values after con-
sidering n= 10 experiment replicates in all cases. However,
spread measures are not displayed given that their values are
negligible, attaining all realizations very similar timings.

All timings presented have been measured using the R
package microbenchmark (Mersmann, 2019), on a ded-
icated Ubuntu 16.04 LTS (64 bits), with 15.6 GiB memory
and a multi-core CPU composed of eight processing units
Intel® Core™ i7-6700 of 3.40 GHz. Further details on the R
configuration are provided in the “Session information” sec-
tion of the notebook accompanying this paper.

A2 Results

The computing times for the Iberia and pan-European down-
scaling experiments are depicted in Figs. A1 and A2, respec-
tively. A more detailed description of the process naming is
indicated in Table A1. The different downscaling configura-
tions are named according to Table 2 and match the nomen-
clature used in the notebook accompanying this paper. As it
can be seen, all the method families perform similarly, the
analogs approach in general being significantly slower than
GLMs, highlighting the computationally demanding task of
analog search (methods M5–M7), which is significantly re-
duced when the dimensionality of the predictor set is reduced
using PCs (M6 and M7). On the other hand, the use of local
neighbors instead of PCs does not make a significant differ-
ence in computing times, as it can be seen from the inter-
comparison of GLM methods (M1 to M4, Fig. A1). As ex-
pected, downscaling the pan-European domain (i.e., config-
urations M1L and M6L) leads to higher computational times
in comparison with the Iberian downscaling experiment (see
Fig. A2), especially in the analog case, in which the ana-
log search is computationally demanding due to the larger
size of the Europe-wide predictor set. The comparison be-
tween training and testing times shows that the most time-
consuming sub-task is the preparation of the predictor and
SDS model training, in this order (Fig. A3), while prediction
is much faster in general for all the methods.

Figure A1. Cross-validation times required for the downscaling
models developed in the Iberian experiment. The computational
times of the generalized linear models configurations (see Table A1)
includes both the downscaling of the occurrence and amount of
precipitation, whereas for the analogs both aspects are downscaled
simultaneously. More information about the configurations can be
found in Tables A1 and 2 or in the notebook accompanying this
paper.

Figure A2. Cross-validation times required for the downscaling
models developed in the pan-European experiment. The computa-
tional times of the generalized linear models configurations (see
Table A1) includes both the downscaling of the occurrence and
amount of precipitation, whereas for the analogs both aspects are
downscaled simultaneously. More information about the configura-
tions can be found in Tables A1 and 2 or in the notebook accompa-
nying this paper.
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Figure A3. Computing times of a particular method (M1-L for precip. occurrence, Table A1) considering the European domain experiment
(n= 86 stations, 1979–2008). The bulk of computing time is for predictor preparation and model fitting, while the preparation of the new
data and the predictions are relatively much faster.

Table A1. A brief description of the nomenclature used in Figs. A1, A2 and A3, involving the predictor configuration (i.e., spatial and/or
local features), the region, and the method (i.e., GLM or analogs). Also, a detailed description of these configurations can be found in Table 2.

Configuration Region Operation Method Spatial Local
features (PCs) features

M1 Iberia Cross-validation GLM Yes No
M2 Iberia Cross-validation GLM Yes No
M3 Iberia Cross-validation GLM No Yes
M4 Iberia Cross-validation GLM No Yes
M5 Iberia Cross-validation Analogs No No
M6 Iberia Cross-validation Analogs Yes No
M7 Iberia Cross-validation Analogs Yes No
M1L Europe Cross-validation GLM Yes Yes
M6L Europe Cross-validation Analogs Yes Yes
M1L (downscaleTrain) Europe Training GLM Yes Yes
M1L (downscalePredict) Europe Testing Analogs Yes Yes
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Code and data availability. In order to promote transparency and
research reproducibility, all the steps followed to generate the anal-
yses shown in this paper (with extended details and additional in-
formation) are available in the notebook accompanying this paper
(repo version 0.1.4, https://doi.org/10.5281/zenodo.3567736, Bedia
et al., 2019b):

– source file (R markdown): https://github.com/
SantanderMetGroup/notebooks/blob/v0.1.4/2019_
downscaleR_GMD.Rmd (last access: 29 March 2020)

– html file: https://github.com/SantanderMetGroup/notebooks/
blob/v0.1.4/2019_downscaleR_GMD.html (last access:
29 March 2020)

– pdf file: https://github.com/SantanderMetGroup/notebooks/
blob/v0.1.4/2019_downscaleR_GMD.pdf (last access:
29 March 2020).

The R software and all the packages required to reproduce the
results are freely available as indicated in the paper notebook, where
more specific details for installation and required versions are given.

– Name of the software: downscaleR (paper version: 3.1.0,
https://doi.org/10.5281/zenodo.3277316, Bedia et al., 2019b)

– Developers: authors of this paper

– Website: https://github.com/SantanderMetGroup/downscaleR
(last access: 29 March 2020)

– Hardware requirements: general-purpose computer

– Programming languages: R

– Software requirements: R version 3.1.0 or later.
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