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Abstract

Advances in the field of complex networks theory and network biology pave
a new way to define human health through the study of networks of proteins,
genes, metabolites, modules across cell signaling pathways, and clinical data.
Combinations of large scale biological datasets and concepts from network
theory, and systems biology produce new insights into the complex dynamic
processes involved in human diseases such as cancer. To develop novel data-
driven computational tools for discovering the insights of human diseases
and for a new approach to multi-drug therapies for personalized therapeu-
tics, it needs combinations of the high-quality set of human interactome
networks, disease-specific expression data, and powerful network controlla-
bility algorithmics. Therefore, we address the issue of this thesis with the
focus to integrate network biology and network controllability approach, to
gain useful insight in the finding of the complex mechanism of cancer net-
works and open the door for a novel drug target approach called multi-drug
therapeutics.

The first part of the thesis presents the network biology approaches to
study the interactome of the biological systems and decode the wiring dia-
gram of the cellular information processing systems. It reveals a variety of
high-level intramolecular relationships including protein-protein interaction
networks (PPI), protein compound interactions, gene regulatory interac-
tions, and metabolic pathways. These interactions play a key role in the
development of diseases and various types of cancers. One characteristic of
such networks is that a small number of nodes in the networks are highly
connected. Another characteristic is that a group of physically and func-
tionally interconnected molecules driving to achieve a common biological
process, have a modular structure. Further, through a minimum number of
target nodes a full (partial) controllability of these intracellular network can
be achieved.

The second part of the thesis presents the network controllability ap-
proach and some of the algorithms used in our case studies on different
types of cancer PPI signaling networks. Recently, network control theory
has been increasingly used in engineering and mathematics which also opens
the way to investigate control principals for complex biological interaction
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networks through a minimum set of input (driver) nodes. According to con-
trol theory, a dynamical system may be steard such that its output is driven
towards some desired final states (e.g target cancer essential proteins in
PPI networks) via suitably-picked inputs (e.g. manipulating a set of driver
proteins). Therefore, it is necessary to understand the dynamics of these
complex networks, and their evolution rules (i.e., expressed as a system of
linear equations) which govern the systems dynamics over time.

This doctoral thesis provides the target control theory approach fine
tuned for the analysis of specific cancer signaling transduction PPI net-
works. The control approach presented here can be an impressive framework
for effective development of multi drug-target therapeutics. We, therefore,
expect that our approach can open a new way towards effective and effi-
cient therapeutics target and a key resource towards personalized medicine
in cancer.
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Sammanfattning

Framsteg inom omr̊adet teori om komplexa nätverk och nätverksbiologi ba-
nar en ny väg när det gäller att definiera mänsklig hälsa genom studiet av
nätverk av proteiner, gener, metaboliter, moduler över stigar för cellsignaler-
ing, och kliniska data. Kombinationer av storskaliga biologiska datamängder
och koncept fr̊an nätverksteori samt systembiologi skapar nya insikter i
de komplexa dynamiska processer som är inblandade i mänskliga sjukdo-
mar s̊asom cancer. För att utveckla nya datadrivna beräkningsverktyg för
att upptäcka insikter i mänskliga sjukdomar och för en ny anfallsvinkel
gällande multiläkemedelsbehandlingar för personlig terapeutika behövs kom-
binationer av den högkvalitativa mängden av mänskliga interaktoma nätverk,
sjukdomsspecifika uttrycksdata, och kraftfulla algoritmer för styrbarhet av
nätverk. Därför fokuserar vi problematiken i denna avhandling p̊a att inte-
grera nätverksbiologi och sätt att närma sig styrbarhet av nätverk, p̊a att f̊a
användbar insikt i hittandet av de komplexa mekanismerna i cancernätverk,
och att öppna dörren för ett nytt sätt att närma sig läkemedelsmål kallat
multiläkemedelsterapeutika.

Första delen av avhandlingen introducerar nätverksbiologins sätt att
studera interaktomen av de biologiska systemen och dekoda de cellulära in-
formationsprocesseringssystemens kopplingsschema. Den avslöjar en mängd
av intramolekylära förh̊allanden p̊a hög niv̊a inklusive protein-proteininterak
tionsnätverk (PPI), proteinföreningsinteraktioner, genreglerande interaktio-
ner, och metaboliska stigar. Dessa interaktioner spelar nyckelrollen i utveck-
lingen av av sjukdomar och diverse typer av cancer. Ett kännetecken för
s̊adana nätverk är att ett f̊atal noder i nätverket är i hög grad sammanhänga-
nde med andra noder. Ett annat kännetecken är att en grupp fysiskt och
funktionellt sammankopplade molekyler som försöker uppn̊a en gemensam
biologisk process har en modulär struktur. Dessutom kan full (partiell) styr-
barhet av dessa intracellulära nätverk åstadkommas genom ett minimum av
målnoder.

I den andra delen av avhandlingen presenteras styrbarhet av nätverk
och n̊agra av de algoritmer som har använts i v̊ara fallstudier av olika typer
av PPI-signalnätverk för cancer. Under den senaste tiden har teori om
nätverkskontroll använts allt mer inom ingenjörskonst och matematik, vilket
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ocks̊a banar väg för att undersöka kontrollprinciper för komplexa biologiska
interaktionsnätverk via en minimal mängd inmatnings- (förar-)noder. Enligt
kontrollteorin kan ett dynamiskt system styras s̊a att dess utmatning drivs
mot n̊agra önskade slutgiltiga tillst̊and (t.ex. i PPI-nätverk inriktar sig
p̊a proteiner nödvändiga för cancer). Därför är det nödvändigt att först̊a
dynamiken i dessa komplexa nätverk och deras utvecklingsregler (uttryckta
som ett linjärt ekvationssystem), vilka reglerar systemdynamiken över tid.

Denna doktorsavhandling presenterar målinriktad styrteori, finjusterad
för analys av specifika PPI nätverk för transduktion av cancer signalering.
Den styrmetod som presenteras här kan vara ett imponerande ramverk för ef-
fektiv utveckling av fler-drogterapi. Vi förväntar oss att v̊art tillvägag̊angssä-
tt kan möjliggöra ett nytt sätt för verkningsfull och effektiv målterapi samt
en viktig resurs för personlig medicin mot cancer.
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Chapter 1

Introduction

Cancer is a complex disease and it often occurs due to genetic and epigenetic
alterations [82]. These alterations further allow other cells to adapt and over-
proliferate as tumor cells, and to develop tumor micro-environments [96]. In
molecular pathways, tumor cells perform various cancer-related dysregula-
tions which control essential cell functions such as differentiation, survival
and cell’s growth factors [82]. Also, these cancer cells have the innate ca-
pacity to establish and proliferate in adverse conditions. They can succeed
even after anticancer therapeutics and get into an immunosuppressive state
[19]. These complex processes which develop tumor cells as malignant cells
[103, 82], are transmitted mainly through protein-protein interactions (PPI)
[55, 39] and metabolic networks [80]. Proteins and metabolites work as ve-
hicles in the signaling pathways while information is transmitted through
interactions among them. For instance, PPI play a key role in the regula-
tion of phosphorylation of serine/threonine residues and initiate the tumor
necrosis factor to transmit the signals from the receptors to downstream sig-
nals [76]. Also, by using PPI, the receptor tyrosine kinases (RTKs) mediate
various intra-molecular interactions [76] which causes downstream signaling
of RTKs and rewire the signaling pathways [75]. Usually, overexpression
rate of RTK modules is very high in cancer which mostly leads to signal-
ing processes to escalate the tumor progression [2]. Similarly, mutations of
tumor cells in metabolic pathways intermittently increase the signaling of
the PI3K-AKT-mTOR pathway and allows further activities which cause
tumor suppression and oncogene activation [18]. Furthermore, the over-
expression level of MYC pathways in cancer increases anabolic growth, mi-
tochondrial metabolism, serine metabolism and promote tumorigenicity [90].
These studies illustrate that to comprehensively understand the complex dy-
namics of signaling pathways networks, we have to understand how different
molecular pathways communicate with each other, and the role of proteins
and metabolites which intermediate those signaling components. Therefore,
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network approaches give us a valuable tool to define and provide a better
understanding of multiple information processing abilities during molecular
alteration in cancer cell lines.

Computational modeling of biological networks has revolutionized the
human diseasome research and has opened a new way towards the develop-
ment of novel therapeutic targets and personalized medicine [22, 39]. The
network-based analysis not only describes the pattern of molecular signaling
interactions but also reveals the transcriptional circuits, enrichment pat-
terns, and system-wide properties[80, 4, 82, 74]. Also, network-based ap-
proaches focused on biological research help us to understand the dynamics
and control characteristics of multiple complex biochemical networks in co-
operation with matching experimental findings.

The research presented in this doctoral dissertation concentrates on net-
work control frameworks, target controllability of linear networks, on model
construction to find effective drug targets in cancer, and on its contribution
to personalized medicine.

In the second chapter, we describe the network biology approach which
studies the interactome of the biological systems and decodes the wiring di-
agram of the cellular information processing systems. It reveals a variety of
high-level intramolecular relationships including PPI, protein compound in-
teractions, gene regulatory interactions, and metabolic pathways essential to
these cooperative activities [34, 106, 5]. One characteristic of such networks
is that a small number of nodes in the networks are highly connected [4, 5].
Another characteristics is that a group of physically and functionally inter-
connected molecules driving to achieve a common biological process, have
a modular structure, and that through a minimum number of target nodes
a full(partial) controllability of these intracellular network can be achieved
[5, 30].

The network biology approach leads us to map various disease networks,
and to identify the genotypic and phenotypic relationship of essential genes
in the diseases to other genes and disease modules [25, 4]. Further, disease
networks suggest that essential genes and disease related genes encode the
properties of the hub in the networks [35, 11]. In almost all types of dis-
eases, PPI networks play a pivotal role in spreading and maintenance of
that particular disease. On the other hand these PPI networks are also a
powerful tool to analyze the biomolecular basis of diseases and give clues
to the function of the disease proteins [4, 29]. Also, these PPI have the
highest number of associations with other diseases. Furthermore, these PPI
can predict disease-specific patterns, which can further lead to the discovery
of therapeutic targets and diagnostic biomarkers.

Metabolic networks encompass the biochemical reaction pathways and
their correlated molecules, which initiates the interactions among cellular
molecules and metabolism [10]. Dysregulation or alteration of the metabolic
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process causes a number of human diseases [23]. Moreover, metabolic dis-
orders are associated with different types of genetic mutations, which cause
enzymes to non-expression and inactivation in certain cellular functions [51].
In disease states, the cascading effect of metabolic pathways are crucial for
comprehending disease-specific biochemical pathways [8]. More, alteration
in metabolic-related activities maintain malignant properties and their sur-
vival in cancer [87].

All of these biomolecular interactions make cancer a complex disease
and very robust in nature [19]. Through these interaction maps cancer cells
drive tumor growth, energy production and biomass production for cancer
[19, 29, 18]. These features of cancer can be crucial to understanding the
pattern of cancer networks [91]. Also in cancer, cancer-associated metabolic
alterations present in all stages of cellular metabolic interactions, and this
makes it difficult to distinguish from the normal cellular proliferation [27].
This in turn, can be used for developing advanced biomarkers to uncover
the disease mechanism, predicting cancer genes, improve its classification,
and influencing drug development.

Therefore, to develop the next generation of cancer therapeutics, com-
putational based approaches with molecular experimental techniques can
significantly define the optimal combination to clinical oncology [59] and
be the realm of intuitive therapeutics to personalized medicine in cancer.
In these steps, network pharmacology can also improve the traditional ap-
proaches by identifying the drug targets and understanding their action on
the disease-causing networks [59, 33]. Network-based finding of drugs and
respective targets can help in quantification of drug-disease combinations.
This combination based approach can offer more efficient clinical targets,
able to provide the answer of toxicological related query and play a key role
in the treatment of multiple cancer. Further, network pharmacology based
drug combination strategy enhances the systems-level understanding, such
as how multi signaling pathways are involved in cancerogenesis is inhibited
by based on drug combination. This approach can potentially improve the
efficacy in the identification of more efficient and effective cancer therapeu-
tics and can improve clinical efficacy [48, 33].

In the third chapter, we discuss the network controllability approach
and some of the algorithms used in our case studies on different types of
cancer PPI signaling networks. Recently, network control theory has been
increasingly used in engineering and mathematics which also opens the way
to investigate control principals for complex biological interaction networks
through a minimum set of input (driver) nodes [15, 14]. According to control
theory, a dynamical system may manage the output of system framework to
any desired final states (e.g target cancer essential protein in PPI network)
via the direct manipulation pf some suitably picked inputs (e.g. driving a set
of driver proteins). Therefore, it is necessary to understand the dynamics of
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these complex network, and their evolution rule (i.e., expressed as a system
of linear equations) which govern the systems dynamics over time.

We say that a linear, time invariant dynamical system is target control-
lable, if there exist a number of input (driver) nodes which can control a
given set of target nodes in finite time. That is, given any desired final con-
figuration of the target nodes and any initial configuration of the systems, we
can drive the target nodes to the desired final configuration (in finite time)
only by acting upon the designated input (driven) nodes. The target con-
trollability problem for linear networks can be specified as an instance of the
output controllability problem [78], and correlated to the full controllability
problem, which asks for the control of the entire system. Previously, Liu et
al. [58] have presented a polynomial time algorithm for an optimal solution
of full controllability. Later, Gao et al. [26] proposed a greedy algorithm for
finding the minimum number of driver nodes for target controllability.

In our research, we build on the approach of Poljak and Murota [78, 67]
and derive the computational complexity of the target controllability of di-
rected graph structures. We start by presenting the approximation algo-
rithm for the target control problem mentioned by Gao et al. [26], and
analyze this algorithm. Finally, we describe our algorithms based on heuris-
tic optimization strategies for more effective investigation used in cancer
networks (cancer signaling PPI networks) and aiming for faster calculations
and effective optimization.

As the biological networks data are assembling, network based approaches
are getting more valid to modeling and understanding of control principles
of complex biological systems. Controlling a complex system translates to
identifing a set of driver(input) nodes which are essential for its control. As
a conclusion of our work, we introduce a target control approach to partial
controllability of cancer networks and showed how a set of cancer essential
proteins (target nodes) can be controlled from a defined set of drug target
proteins (driver nodes) using the directed PPI networks.

In the fourth chapter, we briefly discuss the summary of each research
articles included in this thesis. Finally, in the fifth chapter, we conclude our
research with a perspective for future research directions.
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Chapter 2

The Network Biology
Approach

Networks in biological systems are always represented as a complex set of
interactions between different entities, such as genes, proteins, metabolites,
etc. Therefore, networks are central for our understanding of complex in-
tracellular systems of interactions and provide a conceptual and intuitive
framework of structure and function for the different entities within biolog-
ical systems [34, 105]. The network-based analysis not only describes the
pattern of molecular signaling interactions but also reveals the transcrip-
tional factors, binding sites, and system-wide properties [5, 64]. One of the
main emphasis of the network biology approach is to unravel the cellular in-
teraction pattern between normal and disease states and describe the role of
individual entities in different biological processes [105]. In this chapter, we
discuss briefly the basics of the network biology approach, interaction pat-
terns in biological systems and describe the intracellular map of disease and
particularly of cancer. We also discuss the network pharmacology approach
for the development of the next generation of drugs.

2.1 Background

The high-throughput technologies advanced biological research and gener-
ated a massive amount of data. This in turn to provide new opportunities
to map the cellular networks. Understanding these complex cellular in-
teractions allows researchers to detect and model the interactome of cells,
organs and organism. The network biology approach hence studies the in-
teractome of the biological systems and decodes the wiring diagram of the
cellular information processing sytems [5]. It provides both the interaction
types and useful explanations to visualize and understand the functions,
and interaction patterns of biological systems. Biological networks reveal a
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variety of high-level interamolecular relationships including PPI networks,
protein compound interactions, gene regulatory interactions, and metabolic
pathways essential to these cooperative activities [34, 106, 5]. Further, phys-
ical and functional interactions of all these entities are critical and define
the working properties of the biomolecules inside these complex biological
networks [11]. Physical interactions define the PPI and they are essential
for transcription, translation and detection of interaction pattern of groups
of proteins [11]. Physical interactions have significantly transform our un-
derstanding about relationships between two biomolecules [11]. Functional
interactions define how a set of proteins work together to act for a certain
function, and aim to connect genes and proteins with similar or related
functions.

Biological networks are very complex in nature, and their dynamic char-
acteristics can be expressed in terms of biochemical kinetics, various linear
and non-linear relationships, stochasticity and feedback loops [5, 53]. These
intracellular interactions can be conveniently defined as networks with nodes
which denote biomolecules, and links which denote the interactions between
them [5, 10]. Depending on the type of interactions they represent, these
corresponding edges can be considered directed or indirected. Along with
this, these networks have various topological properties [30]. One such prop-
erties is that a small number of nodes in the networks are highly connected
while most nodes have very few interactions [30, 5]. These highly connected
nodes are defined as hubs and have been often found to play pivotal roles
in the biological systems [106, 11]. Similarly, a group of physically and
functionally interconnected molecules (proteins, genes, or metabolites) driv-
ing to achieve a common biological process, are defined as a module [5, 66].
Modules can be seen in various biological processes; for example, synthesis of
proteins and in various signalling pathways [5, 11]. Another property is that
of full/partial network controllability: the ability to change a network’s state
(or that of a target subset of it) [39]. The target control approach can give
us efficient ways to control a biological network by using drug-combination
based strategy through multi-target perturbations. This method is best fit
in disease associated networks and provides a better understanding of the
disease associated cellular networks. Further it opens a new way toward
network pharmacology and application of multi drug-target based control
mechanisms which in turn could pave the way for next paradigm of drug
discovery.

2.2 Human disease networks

Complex diseases are mostly a consequence of genetic mutations, which
dysregulate multiple molecular processes and create perturbations in the
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Figure 2.1: Disease characteristics and modules (a) Network charac-
teristics such as hub proteins and betweenness centrality have key roles in
disease progression. (b) A disease module indicates that perturbation of a
group of nodes are linked to the occurrence of a particular disease phenotype,
shown as red nodes.

expression pattern of a large number of genes [11]. This further disrupts
the interconnection mechanism of the cell, the regulatory mechanism of pro-
tein/genes and of the metabolic pathways [35, 11]. Therefore, a simple way
to provide an insight of the genes underlying human diseases is through
network biology, namely to reveal the clues about the genes which are re-
lated/interconnected with the disease genes (i.e., the genes which cause the
evolution of a particular disease) [4, 63]; see Figure 2.1. (a). This network-
based approach of disease study leads to map these networks, and identify
the molecular and phenotypic relationship between the essential genes in the
disease and the other genes [25]. The integration of physical and functional
relationships of a disease networks can reveal genes which are involved in the
disease and candidate disease genes. Properties of disease networks suggest
that genes/proteins causing a disease encode the properties of the hub and
have a key role in occurnace of that particular disease [35, 11]. In humans,
hub genes are related to diseases: it has been found that in various cell
carcinomas highly upregulated genes have a high degree [4].

The local hypothesis of disease networks exhibit that some proteins/genes
involved in the disease show a high tendency to interact with each other.
Other studies found that genes linked to diseases show similar phenotypes
and have high propensity to interact directly with the other molecules [11,
28]. These observations suggested that, by identifying few disease com-
ponents, other disease-related components can be easily identified in their
network-based vicinity [25, 28]. These well-connected molecules formed a
well-defined neighborhood of the interactome, forming a disease module [4].
Therefore, a disease module represents a group of network components which
plays a key role in cellular malfunctions and its dysregulations cause disease
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phenotype [4, 25]; see Figure 2.1. (b). Disease module characteristics are
not always identical. Every disease module interacts with the others mod-
ules in a unique way, although some disease modules overlap [25]. Thus,
the emergence of a disease is a combinatorial problem, where many different
perturbations and dysfunctions result in an identical disease phenotype and
modify the activity of the disease modules [25, 4]. These disease mechanisms
are found to be well documented and responsible for various epigenetic, tran-
scription and post-translational modification [4].

The highly interconnected nature of disease modules means that it is
difficult to consider one disease independent of others; since these modules
overlap each other and one disease may trigger another. Therefore, system-
based mapping by using network modules can be crucial in finding the mech-
anism of diseases [4]. Moreover, uncovering these disease links can define
how different phenotypes affect and help us to comprehend why a group
of diseases arises together. Therefore, network-based approaches identify
disease pathogenesis based on their phenotypes, which in turn, can be used
for identifying advanced biomarkers to uncover the disease mechanism, pre-
dicting disease genes, improving disease classification, and influencing drug
development [4].

2.2.1 The human protein-protein interaction (PPI) networks

PPI are an important framework for the study of biological processes. There-
fore, a complete map of PPI networks is important to provide detailed in-
sights into the protein mechanism. In human, over 22000 genes encode these
proteins, and through alternative splicing mechanism they give rise to other
proteins. Mostly, these proteins don’t work in isolation and form interactions
within each other and with other types of macromolecules [17]. The inter-
actions among all the known proteins are called the interactome [17], and
has the key for the study of protein function, and of cellular biochemistry
and physiology [4].

Therefore, PPI networks are serving as an important tool to analyze the
biomolecular basis of diseases, and give clues to the function of the disease
proteins [4, 29]. The PPI networks support in identification of new disease-
associated proteins, the properties of networks and its relation to disease’s
proteins, the identification of disease-associated subnetworks, and classifica-
tion of disease based on the networks. Disease states not only impact the side
effects but also cause the central impact and root origin for initiation or pro-
gression of pathology; see Figure 2.2. For example, the central importance
of the PPI in tumorigenesis is clearly defined by the p53 tumor suppres-
sor protein, which causes mutations and disrupts p53-HDM2 interactions
[37]. The disruption of PPI networks during a disease not only affects sin-
gle genes/proteins but has implications on a variety of diseases, where PPI
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Figure 2.2: Schematic representation of normal and disease PPI
during alterations and it’s effect on pathological conditions. (a)
A topological view of locally connected neighborhoods of normal PPI. (b)
A network view of how group of proteins are different after perturbation
(mutations, deletions, variations or expression change etc.) and are linked
to a specific disease phenotypes, shown as red color.

Figure 2.3: Disease-disease relationship. Shown in interaction pattern
of proteins among various diseases. Disease 3 and Disease 4 are directly
connected, whereas Disesae 1, 2, 3 are linked through some other proteins
which play a role as a bridge in the network. The color of each protein
scales with the change in expression of the corresponding proteins for disease
specific proteins (red) versus non-disease ones (gray).
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acquire the disease characteristics and establish a disease interactome [29].
Additionally, perturbations in PPI significantly cause expression changes in
the various diseases [83], and further affect the composition of protein com-
plexes and influences the disease mechanisms, as well as the mechanism of
the diseases also affects other disease mechanisms [83, 102]; see Figure 2.2,
2.3. Therefore, computational based interaction studies of PPI in different
human diseases can be used to provide interesting and significant options
for further experimental screening for both diagnostic [29] and therapeutic
targets and even provide information about interaction details that could
have potential for drug combination based therapeutics [4, 39]. Moreover,
inhibiting PPI can be envisioned as a disease-specific corrective intervention,
which can further lead us to the discovery of new therapeutic targets and of
diagnostic biomarkers.

In addition, targeting individual proteins in disease network is not effec-
tive, as it has been discovered that single-target drugs are not very efficient
to achieve the therapeutic targets. Therefore, the focus is on developing
multi-target drugs, and here subnetworks in PPI are significant because
these subnetworks address the complexity of dynamic pathological condi-
tions, and lead to the identification of genetic factors that offer mechanis-
tic support in understanding of these diseases. These subnetworks contain
functional information of diseases and reveal the information about the in-
teraction patterns of drug and respective targets [29]. Subnetworks are used
in the identification of those proteins which have key roles in spreading of
that particular disease as well as association with the other diseases [29, 71].

The dysfunctioning of these disease-associated proteins cause many dis-
eases, including cancer. These cancer-associated proteins have significantly
different topological properties. Specifically, these proteins show high con-
nectivity and betweenness centrality, have shorter path distance to connect
with other cancer proteins, and have even more robust network characteris-
tic than other proteins in the networks [36]. Also, in cancer, these proteins
bound with multiple proteins and have hub like characteristics [28]. These
hub proteins in cancer have an average high degree in compare to other pro-
teins in the networks [39]. This is often referred to as the scale-free property
of disease networks [4]. Because of the hub-like properties of these cancer
proteins, they use the interaction of several disease proteins and tend to
interact with the partner proteins through specific interfaces with larger in-
teraction sites [41]. On the other hand, these cancer-related hub proteins are
strongly interacting with the other hub proteins in the network and there-
fore play a central role in the progression and initiation of the disease in
the network. These PPI based features of cancer proteins can be crucial to
understanding the patterns of cancer network [91]. Thus, these properties of
PPI cancer networks might be important in finding new and effective targets
in cancer as well as in other complex diseases.
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2.2.2 Human metabolic interaction networks

A metabolic network (MN) represents the metabolic and biophysical pro-
cesses needed to understand the mechanism of the physiological and bio-
chemical properties of cellular entities [74]. A MN is connected through
its corresponding metabolites and enzymes, which provide the link between
them. It consist of a bipartite graphs, where nodes are metabolites and
enzymes; see Figure 2.4. Here, edges are biochemical reactions that are cat-
alyzed by definite gene products. Also, the nodes of this network includes
information regarding of specific variables in the form of mass or energy
flow [89]. Therefore, to understand the functional properties of the MN
study of these interaction patterns is of central interest. MN are highly
non-random networks and very few of the metabolites act as a hub or are
involved in multiple reactions [10]. In MN, the strongly connected modules
create self independent clustering, which result in a large size-independent
cluster [10]. Feedback loops and multiple-input motifs influence the regula-
tion and dynamics of MN [85]. It has been discovered that enzymatic steps
in the metabolic network are often catalyze through protein interactions
[21]. Certain proteins are connected with the dominant components of the
metabolism and thus essential in several biochemical reactions [21]. Also,
protein interactions contributes to metabolic pathways and their physical
organization such as increasing the adaptability of the metabolic processes
by allowing higher metabolic fluxes [21].

Dysregulation or alteration of the metabolic process causes a number
of human diseases [23]. Therefore, an important challenge is to define the
relationship among various disease phenotypes which cause the disruptions
inside metabolic pathways [60, 81]. Because of these factors, the metabolic-
related diseases are of prime interest for defining the interaction map of the
whole human cell metabolism [20]. Also they are important in order to de-
termine the accuracy of flux-based balance dependencies in diseases, as well
as in finding certain genes role in the grouping of metabolic diseases [20].
Metabolic disorders are associated with different types of mutation, which
cause enzymes to be underexpressed, and leading to an inactivation of cer-
tain cellular functionality [51]. The consequence of disease phenotype exam-
ined as a cell’s inability to impart metabolic substrate, is to produce toxic-
ity levels above of the threshold than the normal functionality of molecules
[73]. Metabolic disorders also affect several building blocks of cellular func-
tion, such as amino acids, carbohydrates, fatty acids, etc [51, 87]. Cellular
metabolism is conducted through enzyme-catalyzed biochemical reactions,
such that a deficiency of enzyme leads to a cascade of effects affecting the
flux of multi subsequent reactions [20, 1]. In disease states, cascading effects
of multiple metabolic pathways are directly associated with disease-specific
biochemical pathways [8]. Therefore, systematic mapping of metabolic as-
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Figure 2.4: A schematic representations of metabolic networks. Con-
sidering both metabolites and enzymes centric network and relationships
called metabolite-centric (top-right), and considering enzymes relationships
called enzyme-centric (bottom-right) .

sociated links can help us uncover various critical mechanisms, and finding
their pathological and metabolic origins. These findings also highlight that
network-based methodologies can be an important tool for exploring and
unraveling the interplay between human diseases and molecular networks
[28].

Alteration in metabolic-related activities support maintainence of ma-
lignant properties and their survival. In addition, cancer cells reprogramme
their metabolism to maintain the demand of unproliferated cells and the in-
habitation of these cells in their changing micro-environments [31]. Cancer-
associated metabolic alterations are present in all stages of cellular metabolic
interactions, making it difficult to distinguish from the normal cellular pro-
liferations [27]. However, various metabolic components target specific onco-
genic signaling pathways, therefore it is important to determine the complex
interaction patterns between oncogenic signaling pathways and metabolic
interaction network [27]. Further, these cooperating interactions allow the
cancerous cells to build their own micro-environments and fuel the nutrients
for cancer cells [27, 18]. Such robust coordination inside the metabolic path-
ways supports the oncogenesis by simultaneous dysregulation of the PI3K-
ATK-mTOR signaling pathways, damage of tumor suppressor genes, and ac-
tivation of uncontrolled proliferation of oncogenes, survival, and alleviation
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of cancer cells [18]. Also, oncogenesis alters the metabolite level in signaling
pathways, affecting epigenetics and gene expression levels, and disregulation
of metabolic enzymes per se. Thus, a new challenge of network-based com-
putational studies is to elucidate the metabolic interactions between tumors
and its host, and to decode how metabolic pathways support cancer cells’
survival. Identification of critical metabolites can be used to optimize novel
therapeutic interventions and to optimize the control principles of metabolic
factors associated with oncogenesis.

2.3 Dynamics in cancer networks

Cancer is a complex disease, defined by its complexity and heterogeneity
[19]. Cancer is very robust in nature, and as such, it has an innate capac-
ity to adapt and proliferate in adverse conditions such as after anticancer
treatments. Also it has the ability to develop cancer micro-environments
with an immunosuppressive state. It is widely accepted that cancer is a re-
sult of somatic mutations [62], although the dynamics and the evolution of
the cancerous cells are not well characterized, largely because of its innate
complex systems [19, 82]. An alteration in a single gene doesn’t activate
full-blown cancer. For the oncogenesis and malignancy, a subsequent round
of mutations is necessary [65, 44], which initiates mutation and cancer driver
prognosis. So, the dynamics of cancer is defined by mutation, selection, and
malignant tissue organization [65]. Also, cancer is a highly heterogeneous
system which is key to enhance its robust interaction network through a spe-
cific subpopulation. The dynamics of this subpopulation enables the tumor
to maintain its survival and prognosis even after anticancer drug successfully
targeted some of this subpopulation [43]. The dynamics of cancer vastly de-
pends on its genomic instability, which plays a key role in the evolution of
genetic mutations and the maintenance [52]. The result of genetic instability
and heterogeneity give rise to a distinct pattern of mutations and results in
various cancer subpopulations within the sites [16]. The dysregulation flow
in cancer is driven by various information channels altering the cell signaling
pathways. These signaling pathways and modified intra cellular interaction
networks (PPIs, metabolic interactions) drive tumor growth, energy pro-
duction, and biomass production for cancer [19, 29, 18]. The dysregulation
of signaling pathways and alteration of MN promotes the synergetic intra-
cellular interactions and development of a tumor micro-environment, which
constantly helps in the sustainability of tumor growth [19].

A number of studies have illustrated that in cancer, so called driver
genes are responsible of initiating the cancer. These driver genes are caused
by driver mutations which affect a number of intra cellular signaling and
regulatory pathways [16, 94]. Cancer driver genes are mainly responsible for
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Figure 2.5: Cancer essential proteins. Role of cancer essential proteins
and cancer related proteins in the networks. Cancer essential proteins (red
colour) are a central part of the nework and have a functional role (hub and
highly expressed in cancer) for driving proliferation in cancer.

the mutations which increase the malignant cell growth in the cancer micro-
environment [92]. A driver gene has a high coverage in disease states and
its mutations are well enough to disturb a/multi pathways. Also, a limited
number of driver genes act as cancer drivers, and play as interconnection
hubs in signaling circuits. The genetic screening of cancer reveals that some
of the cancer driver genes govern critical processes for the establishment of
mutations in cancer types. [3]

In cancer, some of the genes are identified as essential (for that cancer),
if their functioning is essential for the multiplication or survival of those
tumor cells. The concept of cancer essential genes impose that inhibiting
these genes won’t cause loss of functionality of normal cells. Certain genes
become essential in cancer because of the presence of a mutation in the
driver genes. This means that these genes are essential for pathogenesis
(i.e., driver) [61], Figure 2.5, and the tumour becomes fully dependent on
the development of oncogenes through these essential genes [61, 104]. Previ-
ous studies shows that cancer essential genes have lethal phenotype effects.
Cancer essential genes control the cell cycle regulators and protein trans-
lation machinery [104], which directly damages the normal cell functions.
Cancer essential genes are enriched with housekeeping functions involved in
protein metabolism, DNA replication, mRNA processing [61]. Some of the
cancer essential genes are included in the cyclin-dependent kinase produc-
tion [70], promoting downstream consequence of another oncogene in cell
lines [99], overexpression in cell lines [61]. Therefore, it is necessary to iden-
tify the genes which become essential for more effective therapeutics. Also,
because the potential inhibition of only cancer essential genes don’t affect
the other genes and essential genes in healthy cells, these genes are suitable
as new potential targets for antitumor therapy. Other findings show that

14



cancer essential genes can be an effective and direct target in cancer therapy
[39].

Finding an effective target for cancer is always a challenge for current
available therapeutic drugs because of the adaptive complexity of cancer.
Although the dynamics and mechanism underlying in cancer are better un-
derstood than ever [19, 31], these therapeutics couldn’t succeed to provide a
cure in all patients. The side effects of chemotherapy and radiation therapy
on healthy cells is well known, as well as targeting of kinase inhibitor is
causing serious limitation and a problem of drug resistance [6]. However,
cancer heterogeneity is a critical challenge for finding suitable targets, as
well as hindrance in the discovery and validation of effective therapeutics
biomarkers [19, 24]. Therefore, for a better identification of drug candidates
that can be less toxic and maximize effectiveness in the adaptive nature of
cancer, combination therapies can leverage a significant benefit in cancer.
A combinatorial drug-target approach can explore the drug resistance prob-
lem by targeting multiple genes/ proteins simultaneously, and exploring the
possibility of effective drug targets [39, 95]. Combination therapy showed
promising results in a mouse model, where the use of PD0325901, rapamycin
with MEK inhibitors, reduced the growth of prostate cancer [42]. This re-
sult highlighted that combination therapy in silico together with in-vitro
validation might provide an effective treatment strategy in various cancers.
In some cases, this approach didn’t deliver significant benefits [95]. The
challange is, how to effectively counter the complex dynamics of cancer,
where still its genetic diversity is posing a formidable challenge to effective
drug target in most cancer. Therefore, to develop the next generation of
cancer therapeutics, computational-based approaches paired with molecular
experimental techniques can significantly define the optimal combination in
clinical oncology and be the realm of a new therapeutics to personalized
medicine in cancer.

2.4 Network pharmacology for the next genera-
tion of drugs

Despite continuous progress in different therapeutic approaches, which allow
us to better define the cellular dysfunction and mechanism inside disease sig-
naling pathways, the success rate of new drug candidate approvals for clinical
therapies is almost stagnant [59]. In particular, a very small percentage of
drug candidates survive the late-stage attrition of drug development. These
failures are mainly caused due to lack of efficacy in clinical testing, wrong
selection of drug target, and drug toxicity [59, 33]. Although, the existing
approaches work well in some cases, the continuous failure of this reduction-
istic approach in complex diseases indicates alternative approaches for drug
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discovery. Focusing on only a single target knockout gene exhibits little or
no effect on disease phenotypes and ignores its pathogenesis, see Figure 2.6.
Network pharmacology improves this traditional approach by identifying
the drug target and understanding its precise action on the disease-causing
network [4], see Figure 2.7.

Cellular networks and interactions have illustrated that most of the cel-
lular system dynamics are derived from the structure of their molecular
networks [4, 11]. Dysfunction of disease is inherited in its module or sub-
network and therefore these disease proteins perturb the robust cellular phe-
notype [4, 11]. Increasing understanding of the structure of the disease net-
works provide valuable information to identify proteins whose perturbation
can be a desired outcome for therapeutics [39], and discover drug target
agents leads to perturb those proteins. Single target drugs may be able
to modify some dysfunctional nodes of the disease module, yet, they could
likewise modify the dynamics of the entities (i.e., proteins, metabolites, tran-
scription factors etc.) that are arranged in the vicinity of the disease module,
prompting significant side effects [4, 48]. The network-based perspective of
drug target approach illustrates that most of the disease phenotypes are
hard to invert using a single target protein, that is a part of an intervention
by using a single target node in the network. However, to effectively identify
targets through network analysis, we have to recognize interaction patterns
of a particular drug as it has been revealed that some of the multiple pat-
terns with a role in genetic deletion lead to unwanted side effect and toxicity
[48, 33].

By using PPIs-based analysis, Wang and Loscalzo [97] explored the rela-
tionship between drugs, drug targets, drug interactors, and disease proteins
to identify novel drug candidates in acute myocardial infarction, which has
less side effect and toxicity. For this, they used the bipartite network of drug-
targets, disease proteins and 12 drug-target disease modules for identifying
novel insight into clinical therapeutics for this disease. In an another exam-
ple, Li and colleagues [56] use flux balance analysis of metabolic networks
in hyperuricemia-related purine metabolic pathways to identify potential
drug targets. By using the steady flux balance reactions in the pathologic
state, they determined the fluxes that are very effective in medication with
the minimal side effects. The key fluxes have been identified by comparing
and examining the fluxes of reactions during a change in the systems. In
another approach [39], we identified the minimum number of drug target
proteins in cancer PPI networks, needed to control the maximum number
of cancer essential proteins in the network. We showed how to employ the
use of well established drug-target proteins in order to achieve a structural
control over essential target proteins within specific cancer protein-protein
interaction networks, and apply this to breast, pancreatic, and ovarian can-
cer signaling transductions PPI networks. We demonstrated that instead of
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Figure 2.6: Network pharmacology strategies. Difference between tra-
ditional target strategy and network pharmacology strategy. In traditional
approaches drugs target a single disease protein and leave other disease pro-
tein unharmed. Network pharmacology applies holistic approach and targets
many of the disease specific proteins, candidate of disease specific proteins,
disease modules and it’s subnetwork.

Figure 2.7: In a biomedical interaction network, network pharmacology ap-
proach shows how a small set of drug target proteins can be successfully
used as multi-target on disease.
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aiming for the overall control of the entire network, partial controllability
is more effective and efficient in the development of therapies for various
cancers. Therefore, it seems that network pharmacology has the potential
to transform drug discovery and can improve clinical efficacy.
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Chapter 3

Network Controllability

Control theory is a well established approach applicable in dynamical and
complex networks. According to this theory, a dynamical systems is control-
lable if, with a reasonable selection of input sources, it can be driven from
any underlying state to any desire final state inside a limited time [14, 58].
Recent advancement in network control approaches have offered a strong
mathematical and computational framework to investigate the structural
and functional relationship in a wide variety of networks, such as complex
biological systems, social and mechanical systems, electric circuits, aircrafts,
robotics [14, 26, 58, 12]. In complex biological systems, the network con-
trol framework provides meaningful insights and understandings by using
different data sources to observe its structural and functional relationships
[39, 101, 46]. By using this approach authors showed in [39] how this frame-
work has been successfully used to identifiy a minimum number of drug
targets needed to control a cancer PPI network, whereas in [101] authors
have successfully predicted an important nervous function for a neuronal
systems within C elegans. In this chapter, we discuss the network control
framework, target controllability of linear networks and model constructions
employed by us in order to find effective drug targets in cancer PPI networks,
as well as the contribution of this appraoch in personalized medicine.

3.1 The network control framework

Network control theory is increasingly becoming a powerful tool in engineer-
ing and mathematics. Regulation and control are a central part of systems
biology to understand its systems behavior. Therefore, an essential and
ambitious query is how to successfully control system’s behavior [58]. Ac-
cording to control theory, a dynamical system may steer the output of the
system framework to a desired final state (e.g. target cancer essential pro-
tein in PPI network) via suitably picked inputs. Therefore, it is necessary
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to understand the systems’s dynamics expressed as equations which govern
the system evolution over time. In PPI networks, this corresponds to a set
of equations which describes the expression patterns at time t+dt given the
protein’s inputs and current state at time t.

A linear, time invariant dynamical system having n states, m inputs and
l outputs can be described by the linear equations:

{
d(x)
dt = Ax(t) +Bu(t)

y(t) = Cx(t)

where A, B, C are matrices of size n× n, n×m and l ×m respectively,
xt ∈ Rn is the state vector, ut ∈ Rm is the input vector and yt ∈ Rn is a
output vector t ∈ Z≥0. The matrices describe the complete interaction.
Here, states, input and output dynamics are described by A, B and C
respectively, while n, m and l are described as total number of variables of
states, input and output systems respectively. Here, (A,B,C) imply the
system with matrices A, B and C; if C is the identity matrix In, then C is
omitted from (A,B).

An output state y ∈ Rl is driven from an initial state x = x0 ∈ Rn,
denoted x −→ y if there exists an input function ut ∈ Rm and some finite
value t such that yt = y. In a system (A,B,C), the output controllable
subspace y ∈ Rl|0 −→ y is the vector subspace where all the values are driven
from the initial state 0 ∈ Rn. The dimension of the output controllable
systems’s subspace is denotes as d(A,B,C).

The system (A,B,C) is called output controllable if its dimension (A,
B, C) = l = rank(C), and just controllable when C = In [14].

Here, the output controllability matrix is denoted as

OC (A,B,C) := [CB,CAB,CA2B, ..., CAn−1B]

The following result is know as Kalman’s rank criteria of output control-
lability.
Theorem 3.1.1: (Kalman).

Given a linear time invariant dynamical system (A,B,C), we have

d(A,B,C) = rankOC (A,B,C)

that is, the system (A,B,C) is output controlable iff rank OC (A, B, C) =
rank(C).

An analogus concept can be extended to a group of systems, where sys-
tems within a group share a similar set of non-zero relationship. From this
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perspective, we can consider structural equivalance of two or more systems
by omitting the strength of its relationship and only consider their exis-
tances.

Matrices A and B are called structurally equivalent and denoted as A ∼
B if they share the zero values in the same postions, i.e.,

Aij = 0 iff Bij = 0 for all the entries of Aij and Bij ,

System (A,B,C) is structurally equivalent to (A
′
, B

′
, C

′
) if A ∼ A

′
,

B ∼ B
′
, C ∼ C

′
.

It is necessary to verify the equivalence relationship of structural equiv-
alance systems. For this, the conventional properties shared among the
equivalence class [A, B, C] of a given systems (A, B, C) can be examined.
Traditionally, at whatever point the word generic or structural is used, it
is comprehended that the corresponding property is considered among the
equivalent class of a given framework. The maximum dimension among
all output controllable subspaces of a system (A,B,C) is characterized as
generic dimension gd(A,B,C), i.e.,

gd(A,B,C) = max{d(A′
, B

′
, C

′
)|(A′

, B
′
, C

′
) ∈ [A,B,C]}.

The results in Structural (output) controllability are similar to those in
(output) control with d(A,B,C) replaced by gd(A, B, C).

Note. We assume the initial condition of a system is always zero. Any
general system can be reduced to this: one can consider a linear
transformation x �→ x− x0.

3.2 Graph theoretic approaches to control theory

Graph theory has advanced the algorithmic development for identifying the
minimum size input controller u (and input matrix B) for a particular net-
work and target. A first step in this direction was to discard the specific nu-
merical setup inside the linear system, and characterize the intrinsic wiring
diagram of the system’s variables. According to control theory a linear
time-invariant dynamical system (A,B,C) is structurally target controllable
(related to a given size-k target set T ) if there exists a time-dependent in-
put vector u(t) = (u1(t), ..., um(t))T and a numerical setup for the non-zero
values inside the matrices A, B and C, that can drive the set T of target
nodes to any desire final numerical setup in limited time. Also, it is well
known, see e.g., [57, 86] that if a dynamical system is structurally (target)
controllable, then it is (target) controllable in nearly all of numerical setups
of the non-zero entries in A, B and C.
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Linear systems can be defined as directed weighted graphs. The number
n of variables defines the nodes of the graphs, and the non-zero values in the
state transition matrix correspond to directed edges. Therefore, a directed
edge is possible from node xi to node xj , with weight v, iff A(xj , xi) =
v �= 0. Likewise, a size-m controller vector can be defined as m input nodes
u1, ...um, also called driver nodes, while the edges in between the driver
nodes and the network are determined by the input matrix B. Therefore,
the directed edges are possible from ui to xj , with weight w, iff B(xj , ui) =
w �= 0. The nodes xj are called the driven nodes in the network, if there
exist i with B(xj , ui) �= 0. These driven nodes are directly capable in the
network to drive the whole system to the desire final state.

In [57], it was shown that structural controllability approach has a
counterpart formulation in terms of network graphs. The system (A,B) is
structurally controllable from the input controller m and control matrix B
iff we can choose a set of n directed path from the driver nodes (here, this
set is denoted as U) to every nodes in the network (i.e., as ending points),
such that no two paths would cross at a point at the same distance d from
their end points. This formulation about structural controllability is related
to the idea of linking and complex graph investigated in [78, 67]. For the
target controllability problem an target set T = {t1, t2, . . . , tk} ⊆ X, the
graph formulation can be naturally adjusted and described as follows. We
introduce the k new output nodes CT = {c1, c2, . . . , ck} (also introduce as
C) and edges (ti, ci), for all 1 ≤ i ≤ k. Important is that the above wiring
diagram described as output matrix CT . Here, objective is to find a family of
paths contains k directed paths, and able to connect all the available driver
nodes (as input points) to the output nodes (called the final-point), so that
no two paths can intersect at the same distance d from their final points.
Nevertheless, in contrast to full controllability, the above graph condition is
only essential for target control, but not sufficient [67].

From an algebraic point of view, the driver nodes represent the nonzero
columns in the control matrix B, while the nonzero rows of B correspond
to the driven nodes. Following the above mentioned criteria, we analyze the
structural controllability of linear, time invariant system (LTIS)/dynamical-
networks by trying to minimize the total number of driver and driven nodes.

In reality, an input controller (driver node) is able to directly influence
several nodes at the same time. This type of influence in a system leads to
the direct interaction of the input controller to its elements.

Definition 1. We say that in a given LTIS (A,B,CT ) the input controller
is N − bounded iff control matrix B contains the maximum N non-zero
value on every column.
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3.2.1 Full controllability

For full controllability, a network requires the minimum number of input
(driver) nodes, which could be determined through the maximum matching.
In a directed graph, a node is defined as matched if it is the endpoint of
an edge in the matching set, else it is unmatched. Moreover, full control
over a directed network is possible if and only if we managed to control the
unmatched nodes in the network and there is a direct link from the input
nodes to all the matched nodes. The maximum matching of any directed
network can be identified in the maximum O(N1/2L) steps [32], where L
denotes the available links (i.e., edges) in the networks.

3.2.2 Target controllability

In this section, we describe the various approximation algorithms used for
the target control problem, trying in to reach the optimal solution in a time-
efficient manner. The schematic representations of target controllability in
linear networks is defined in Figure 3.1.

The first greedy algorithm used for the target control approach has been
derived by Gao et al. [26]. The approach to solve the problem is by trying to
create a linking inside the associated network, which is called the dynamic
graph; this method is based on studies of Poljak and Murota [78, 67].

Here, we briefly describe the approach mentioned in Poljak and Murota
[78, 67]. Further, we present the approximation algorithm for target control
problem mentioned in [26], and analyze this algorithm. Finally, we describe
our algorithms based on heuristic optimization used in several case studies
(cancer signaling PPI networks).

Let (A,B,CT ) be defined as an LTIS over n variables, m inputs, and
l targets (i.e., |T | = l), and G = (V,E) is the associated graph. Then,
the dynamical graph G is described as a time-disjoint representation of the
graph G. G is called time-disjoint, if in each state (from t = 1 to t = n) and
each input variable (from t = 0 to t = n − 1) is defined as a different node
at distinct time points, whereas time-point t = n+1 is only associated with
target states.

Generally, a graph G = (V ,E) is defined with V = VA ∪ VB ∪ VC , where

• VA = {vi,t | i = 1..n, t = 1..n},

• VB = {vn+j,t | j = 1..m, t = 0..n− 1}, and

• VC = {vn+m+k | k = 1..l}.

Here, the node in VC correspond in an one-to-one relationship with the
nodes VC and target T . The set of edges E in grpah G is defined as follows:
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Figure 3.1: Target controllability of a linear network The main steps
in the target controllability approach: (a) Construct a linear network model
for the system. (b) Identify the part of the network that should be controlled
(red nodes), e.g. targeted nodes. (c) Compute the set of actionable control
nodes (blue). (d) Engineer the control nodes to drive the network into a
more favorable dynamics and internal state (indicated with jiggled lines) .

• {(vj,tvi,t+1) | for all i and j such that Ai,j �= 0, t = 1..n}∪
• {(vn+j,tvi,t+1) | for all i and j such that Bi,j �= 0, t = 0..n− 1}∪
• {(vj,nvn+m+i) | for all i and j such that Ci,j �= 0}.
In a dynamical graph G, a group L = (p1, p2, ..., pk) of k edge-disjoint

paths is defined as a linking of size k. We say L is a linking for (S, T ), if
the set of initial and terminal nodes in the path L is defined as S, T ⊆ V .
In [67], it has been derived that if (A,B) is an LTIS with m driver nodes
and size-l of target set T which is controllable from available driver nodes,
then there is an (VB, VC)-linking of size l. It has been an inquiry for a long
time whether the opposite of the above outcome additionally holds. To be
specific, if for a LTIS (A,B,CT ) there is a (VB, VC)-linking of size l, does it
suggest at that point that the size-m driver set related to B is controlling
the objective T , i.e., rankOC (A,B,CT ) = l? In spite of the fact that the
response to this inquiry was turned out to be negative [67], it turned out
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Figure 3.2: Target controllability of directed graph. The targeted structural
controllability problem for the directed graph G = (VA, EA) with n nodes
and a subset T ⊆ VA with I target nodes, is equivalent with deciding if there
exists a set of l directed paths in G such that each node in T is an end point
of one such path and no two paths intersect at the same distance from their
end points, [57]. In this example, the paths from the driver nodes D1, D2 to
the target nodes T1 − T4 intersect in the internal nodes A, B, and C. The
controllability theorem of [57] implies that the lengths of the paths CT2 and
CT3 is different, and that either the length of the path A⇒ T1, A⇒ T2, and
A ⇒ T3 are pairwise different, or the length of the path B ⇒ T2, B ⇒ T3,
and B ⇒ T4 are pair-wise different (or both).

to be evident that any counter-claim for this case must comply with some
exceptionally strict structure conditions in regards to the controlling way
from the driver nodes to the target.

In [26], author employed the above approach and presented a greedy
algorithms for the structural control issue. To be specific, given an LTIS
A and a target T , their algorithm scans for a set VB for which there exists
a (VB, VC)-linking. In turns, such a set VB would have a high likelihood
for characterizing a set of driver nodes for the objective T . However, after
applying this algorithms, one needs to perform a validation step which checks
whether the set of driver/driven nodes chosen by the algorithms are to be
sure controlling the target. This can be achieved by examining that the rank
of the controllability matrix OC (A,B,CT ) is indeed equal to |T |.

In the next section, we present the detailed description of the algorithms
in [58] and introduce our algorithms based on heuristically improved variants
of it. We have also includeded some of the algorithm presented in our
published articles.

Basic target control algorithm

Let A be is an LTIS of n variables and G = (VA, EA) be the directed graph
associated to it. Let’s assume T ⊆ VA is a set of target nodes (the schematic
representations of target controllability of directed graph is mentioned in
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Figure 3.2). In the following algorithm the output is denoted as a set of
driven nodes D which has direct correspondence to the examined set VB

and there exists a (VB, VC)-linking.

Step 1: Let i = 0, Ci = T , and D = Di = ∅.
Step 2: Define a bipartite graph Gbi whose nodes are L ∪ R, where L = VA,

R = Ci, and any node appearing in both VA and Ci is considered
separately in L and R. For l ∈ L and r ∈ R there exists an edge (l, r)
in Gbi if and only if (l, r) ∈ EA is edge in the initial directed graph
G.

Step 3: Find a maximum matching set of (ML,MR) in Gbi, ML ⊆ L and
MR ⊆ R, and derive that Ci+1 = ML is the set of the left sided
matched nodes and Di = R \MR is the set of right sided un-matched
nodes. Let D = D ∪Di.

Step 4: Consider Ci+1 as a new set of target nodes. If Ci+1 = ∅ then algorithm
complet and output is D. If not, then proceed for Step 5.

Step 5: If i < n then i = i+1 and continue to Step 2 with the updated target
Ci and driven set D. Otherwise, proceed to Step 6.

Step 6: Output D defined as the set of driven nodes.

Note: If the algorithm mentioned above completes in step 6 then it implies
that the target set Cn is non-empty. Since n is the total number of nodes
count in G, it indicates that rest of the nodes in Cn can be separated into
distinct cycles. Nodes remain in this cycles and includes in Cn, can be
controled from any driver (input) node. However, in some cases a number
of driven nodes require to be added. Another possibility to add the
remaining nodes in Cn is as driven nodes in D.

3.2.3 Heuristic target control algorithm

In the basic target control algorithms if a node x is chosen as a driven
node, i.e., included in D in Step 3, we don’t check whether node x showed
up before in some past control path. In this case, since we realize that
node x is chosen for being a driven node, we can shorten that control path
subsequent to achieving node x. In step 3 of the above mentioned algorithm,
at every iteration of the search procedure we locate a maximum matching in
between the nodes of G and the present target Ci. Although, such maximum
matching probably won’t be unique, in which case a few of these maximum
matching may be more reasonable to be chosen.

Let’s assume that i is some iteration process for the search procedure
in the algorithm, and C1, ..., Ci, D1, ..Di−1 and D is the computed sets of
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targets and driven nodes. Let bipartite graph Gbi built in iteration i, with
nodes denoted as L ∪ R, where L = VA, R = Ci, where any new node
appearing in VA and Ci is treated differntly in L and R. While, searching
of maximum matching (ML,MR) in Gbi by using ML ⊆ L and MR ⊆ R,
we set the following heuristic criteria for directing the procedure towards a
minimum number of driven nodes. Note, not all criteria underneath can be
followed in the same time.

Algorithm: Within Step 3.1 of the basic target control algorithm, select
a maximum matching (ML,MR) following the Criteria 1, 2, 3, and 4, in this
exact order of significance.

• Criterium 1: When calculating the maximum matching (ML,MR),
maximize the use of the earlier defined driven nodes in ML.

• Criterium 2: During calculation of the maximum matching (ML,MR)
try to ignore the formation of cyclic controlling path. Especially, ignore
selecting nodes x ∈ ML such as there exists j ≤ i and a sequence
ui+1, ..., uj such that uk ∈ Ck for all j ≤ k ≤ i, ui+1 = uj = x, and
for all j ≤ k ≤ i, uk is connected to uk+1 in the associated bipartite
graph.

• Criterium 3: Further, compute the maximum matching (ML,MR),
and maximize the use of nodes in ML which have appeared previously
in Cj , j < i, on a path that is controlled earlier (ends with a driven
node).

• Criterium 4: Compute the maximum matching (ML,MR), and maxi-
mize the use of nodes inML which have appeared in previous Cj , j < i,
on a path which is not controlled earlier.

Similarly to basic target control algorithm, heuristic target control algo-
rithm follows certain steps to fulfil the above mentioned criteria;

Step 1: (Similar to basic target control algorithm): Let’s define i = 0, Ci = T ,
and D = Di = ∅.

Step 2: (Similar to basic target control algorithm): Define a bipartite graph
Gbi with nodes L∪R, where L = VA, R = Ci, and any node appearing
both in VA and in Ci is treated differently in L and R. For l ∈ L and
r ∈ R there exists an edge (l, r) in Gbi if and only if (l, r) ∈ EA is an
edge defined in the initial directed graph G.

Step 3.1: Following the criteria above, compute a maximum matching (ML,MR)
in Gbi, ML ⊆ L and MR ⊆ R, and denote it Ci+1 = ML to be the set
of the left side of matched nodes and Di = R \MR be the set of right
side of un-matched nodes.
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Step 3.2: For each x ∈ Di \D, do:

• If node x is already present in any previous Cj , j < i, then it is good
to discard the entire control path from that exist (in Cj) onward, and
update all the sets Ck, Dk with j ≤ k ≤ i+1 accordingly. Then update
D as D =

⋃
p=0,..,iD

p.

• End For (from Step 3.2)

Step 4: Then consider D = D∪Di as a new set of driven nodes, and Ci+1 \D
as a new set of targets. If Ci+1 = ∅ then we finish the algorithm and
output D. Otherwise, proceed to Step 5.

Step 5: (Similar to basic target control algorithm): If i < n then i = i+1 and
proceed to Step 2 with the upgraded target node Ci and driver set D.
Otherwise, proceed to Step 6.

Step 6: Add all the remaining nodes in Cn one by one to the driven set D
and, for each new addition to D, carry out the check from Step 3.2,
i.e., shorten the already controlling path for each new addition in D.

Step 7: Output D as the set of driven nodes.

3.2.4 Target control with preferred operators

Building on the approximation algorithm from [14] for structural target
controllability we introduced a new algorithm for structural target control
with preferential operators. Namely, given a directed network (e.g., a pro-
tein/gene signaling network), a set of target nodes (e.g., a set of disease-
specific essential genes), and a set of preferential operators (e.g. a set of
genes/proteins known to be directly targeted by specific drugs) all within
the network, find a close to minimal set of nodes that maximizes the use
of the available operators, in order to control the targets. We detail bellow
this algorithm.
Note: Given two sets A and B, we denote by A ∪ B and A � B the union
and disjoint union, resp., of these sets.

Let G = (V,E) be a directed graph, let T ⊆ V be the set of target nodes,
and let O be a set of preferential operator nodes. We construct a sequence
of sets Ci, Di, i ≥ 0, (and i ≤ |V |) with C0 = T , D0 = ∅, and |Ci| ≥ |Ci+1|,
such that the union set

⋃
1≤k≤iD

k is a set of nodes controlling the target
T , where the use of the nodes in O is maximized in the generation of D; we
refer to [14] for the explanation on why this claim holds.

The target control algorithm for target structural control with
preferred operators:
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Step 1 i:=0, C0 := T , D := D0 := ∅
Step 2 Define the bipartite graph Gi = (Li �Ri, Ei), where Li = V,Ri = Ci,

and Ei contains edges (l, r) ∈ (Li, Ri) such that (l, r) ∈ E is an edge
also in the initial graph.

Step 3 Find a maximum (cardinality) matching (M i
L,M

i
R) (following the 6

heuristic criteria below) in Gi, where M i
L ⊆ Li and M i

R ⊆ Ri, and let
Ci+1 = M i

L be the set of the left sided matched nodes andDi = Ri\M i
R

be the set of right sided un-matched nodes.

Step 4 For each x ∈ Di \D
Step 5 If x ∈ ⋃

j<iC
j (i.e., x appears in any previously computed Cj , j < i)

Step 5.1 remove the entire control path from that occurrence (in Cj) on-
ward, and update all the sets Ck, Dk with j ≤ k ≤ i+ 1 accord-
ingly.

Step 5.2 Update D as D :=
⋃

0≤p<iD
p.

End If (from Step 5)

End For (from Step 4)

Step 6 Update D as D := D ∪Di and Ci+1 as Ci+1 := Ci+1 \D.

Step 7 If Ci+1 = ∅ then output D as a set of control nodes for T and stop.
Else proceed to Step 8.

Step 8 If i < n then i := i+1 and proceed to Step 2. Else, proceed to Step 9.

Step 9 For all the remaining nodes in Cn, add them one by one to the driven
set D and, at each new addition to D, perform the check from Step 5,
i.e., pruning the existing controlling path for each new addition in D.

Step 10 Output D as a set of control nodes for T .

On Step 3 above we mention 6 heuristic criteria for implementing a
maximum (cardinality) matching in between the left, Li = V , and right,
Ri = Ci, disjoint sets of the bipartite graph Gi. This is due to the fact
that the maximum matching might not be unique, and, depending on which
maximum matching we chose, the size of the final set controlling the target
nodes can differ significantly. Also at this point in the algorithm we can
intervene so that a maximal amount of preferred operators is chosen as
actual driven nodes. In the following we are introducing this set of 6 heuristic
criteria.
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• Criteria 1: All preferred nodes from O appearing in a control path are
directly controlled, i.e., the maximum matching is performed between
sets Li := V and Ri := Ci \O) while Di := Di ∪ (

Ci ∩O
)
,

• Criteria 2: Maximize the use of already driven nodes in M i
L.

• Criteria 3: Maximize the use of preferred operators inM i
L. This is done

by initiating the maximum matching algorithm by a first (maximal)
matching which maximizes the number of pairs (x, y) ∈ (M i

L,M
i
R)

where x is a preferred operator,i.e., x ∈ O.

• Criteria 4: Try to avoid the creation of cyclic controlling path. That
is, avoid selecting nodes x ∈ M i

L such that there exists j ≤ i and a
sequence ui+1, ..., uj such that uk ∈ Ck for all j ≤ k ≤ i, ui+1 = uj =
x, and for all j ≤ k ≤ i, uk is matched to uk+1 in the corresponding
bipartite graph.

• Criteria 5: Maximize the use of nodes in M i
L which have appeared in

some previous Cj , j < i, on a path that is already controlled (ends
with a driven node).

• Criteria 6: Maximize the use of nodes in M i
L which have appeared in

some previous Cj , j < i, on a path that is not controlled yet.

3.3 Target controllability of cancer PPI network

In [39] we applied the target controllability algorithm (with preffered opera-
tor) to PPI signaling interaction networks on breast, pancreatic and ovarian
cancer, and identified respective sets of driver (input) proteins for control-
ling the particular networks. We identified a set of proteins in the network
called “cancer essential proteins”[39], whose functioning is essential for the
proliferation or survival of those tumor cells. The concept of cancer es-
sential proteins impose that inhibiting these proteinss won’t cause loss of
functionality of normal cells. Therefore, rather than trying to accomplish
full control of the whole network, which in itself is very unpredictable in
complex biological networks, our approach is based on target control ap-
proach to control those cancer essential proteins. We identified that in order
to control the entire set of available essential proteins inside the networks,
through our approach it needs to put the direct intervention on only 6.6
to 13 % of whole networks node, while for full control it needs around 70
% of networks’ nodes [39]. Furthermore, we analyzed the topological fea-
tures of the available driver drug-target proteins inside the networks. We
concluded that driver drug-target proteins have respectively high average
degree. This confirms that drug-target proteins have multiple interactions

30



inside the networks and can be feasible in the application for control over
essential(target) nodes. We observed that some of the driver drug-target
proteins are oncogenes and expressed in multiple cancer and could have a
high impact in case of therapeutic effects in these cancers.

3.4 Data resources

Here, we describe the data which was used during our analysis and in our
case studies. We show how our network frameworks enable to integrate mul-
tiple types of biomedical data for deeper mechanistic and molecular insight.

3.4.1 Cancer data

The protein data used in our study for various cancers are mainly collected
from UniprotKB [13] and various previous published articles. These data
are a list of protein IDs. For the authenticity of our studies, we collect only
those proteins which are reviewed and used for previous studies. We have
collected the genome-scale metabolic model (GEMs) for breast cancer from
Human Metabolic Atlas [79]. Further GEMs have been used to build the
metabolic network for the analysis. We performed our study over breast,
pancreatic and ovarian cancer for directed PPI signaling network and breast
cancer for the metabolic network.

3.4.2 Essential protein data

In cancer, some of the genes are identified as essential (for that cancer), if
their functioning is essential for the multiplication or survival of those tumor
cells [61]. The concept of cancer essential genes impose that inhibiting these
genes won’t cause loss of functionality of normal cells. Therefore cancer-
specific essential genes could used for effective drug targeting. Certain genes
become essential in cancer be used because of the presence of a mutation in
the driver genes. This means that these genes are essential for pathogenesis.
We collected these cancer essential data for breast, pancreatic and ovarian
cancer from the COLT-Cancer database [45]. This database has cancer
essential proteins for a total of 72 cell lines for breast, pancreatic and ovarian
cancer. For our studies, we have considered 29, 23, and 15 cell lines data
respectively for breast, pancreatic and ovarian cancer.

In particular, we considered the MDA-MB-231, HPAF-II and OV-90 cell
lines respectively for breast, pancreatic and ovarian cancer, and follow the
GARP (Gene Activity Rank Profile) and GARP-P value of corresponding
proteins mentioned in the database. Since previous studies [61] showed that
proteins with lower GARP scores tend to be classified as essential and di-
rectly associated with oncogenesis. We selected only those essential proteins
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whose GARP value is in the negative range, and whose GARP-P value is
less than 0.05 (p ≤ 0.05).

3.4.3 Drug target data

We collected drug-target protein data from the open-source DrugBank [98]
database. The DrugBank database provides comprehensive and freely ac-
cessible information on drug and drug targets. For our analysis, we have
collected the FDA-approved drug-target proteins.

Our network controllability heuristics algorithms for target controllabil-
ity of cancer networks [39] use drug target proteins as input nodes. After this
selection, the algorithm gives first preference to initiate the control pathways
starting from such nodes (for details of the algorithm, see subsections 3.2.2
and 3.2.4). It later maximizes the number of drug target proteins offered
by our network controllability algorithm for better treatment of cancer by
using our networks.

3.4.4 Interaction data and network construction

We created the directed PPI signaling network from SIGNOR (SIGnaling
Network Open Resources) databases [77], which generates binary matrix
representations for the user-provides protein list and allows to create di-
rected graphs between signaling entities. Interactions provided here are
based on the directed influence, such as activation and inhibition of protein.
For building the directed PPI signaling network for each cancer type, we
individually uploaded the data as a list for each study which includes cancer
proteins, cancer essential proteins and drug target proteins in the SIGNOR
database. Next, SIGNOR generated PPI signaling networks for each cancer.

Further, to build the breast cancer metabolic network, we construct the
stoichiometric matrix (S). Here S denotes metabolites as rows and reactions
as columns. It parses and adds an edge based on the sign change value.

3.4.5 NetControl4BioMed

In our web-based pipeline NetControl4BioMed [40], we build automatically
biological networks based on data from KEGG [38], WikiPathways [49],
Pathway Commons [9], and SIGNOR [77]. These datasets have their own
formats, therefore it makes it challenging to integrate and use all of them as
a single network. Firstly we generated the networks from each dataset, and
then integrate them into a big single network.

This pipeline is developed based on the Anduril workflow framework [72].
It is an open-source platform for biomedical data analysis. This platform
allows integrating a range of software analysis and algorithm, and computa-
tional simulation tools into a single data analysis pipeline. Our pipeline used
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the Moksiskaan platform [50] to create biomolecular interaction networks.
Moksiskaan integrates PPI, genome, pathways and literature mining data
into a network, from a given set of input nodes. Therefore, this pipeline
is a nice example of the integration of multi-types of biomedical data and
powerful network controllability algorithm, and analysis of biomedical data.

The network is generated by combining seed nodes provided by the user.
Seed nodes are list of proteins which are used by Moksiskaan to generate
the network in the pipeline. Further, seed nodes define the network-based of
all known paths within the network, whose length is not surpassing the gap
value. The gap is a parameter that maximizes the number of intermediate
nodes inside the networks between the seed nodes. A higher gap value allows
the network to grow quickly. The gap = 1 means that additionally to the
edges between the seed nodes, also path going through one extra node (to be
added to the network are included). Users may use our given set of cancer
essential proteins for breast, pancreatic and ovarian cancer as target nodes
or have their own set of target nodes. For input nodes, users may use our
given set of drug-target proteins or use their own data.

The network controllability algorithm applied in the NetControl4BioMed
pipeline generates as a result a set of control target nodes that are controlled
from a set of input nodes. It provides a list of control pathways from input
nodes (drug targets) to target nodes (cancer essential proteins). These re-
sults may be used to find possible action mechanisms of these drug targets
in the specific context of those particular targets. The pipeline generates
distinct control pathways for the same input node if it controls multiple
target nodes within the network. Further, the pipeline generates .xml file
which can be uploaded in Cytoscape [84] and used for the visualization as
well as for the integration of the network with other data.

3.5 Other approaches

3.5.1 Minimum Dominating Set

In a network G = (V,E), a set S ⊆ V of nodes is defined as a minimum
dominating set (MDS), if every node n ∈ V is either an element of S or
adjacent to an element of S. In other words, a set of nodes is called an MDS
if it can reach to the remaining node in the network by one interaction. The
MDS uses to find the key driver nodes that can control the whole network.
MDS model is used in structurally control of complex networks where each
node is covered by at least two nodes in the MDS set [69]. Also, the MDS
approach can be used for various types of complex dynamic networks, ana-
lyze the controllability of networks. MDS is not always uniquely determined,
this is because of the presence of multiple MDS. Therefore, to adapt to this
non-uniqueness issue, the ideas of basic, irregular and repetitive nodes were
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applied to the MDS [68]. Some key nodes are available in all MDS, whereas
nodes that belong to few but not all MDS are determined as intermittent,
and nodes that are not available in any MDS are called redundant [68].

3.5.2 Feedback control system

A feedback control loop is a well defined and powerful tool for controlling a
system. Generally, feedback control is applied as a control system when the
output is taken into consideration and it enables the systems to produce the
performance to compare the real output with the desired output response.
The meaning of “feedback” is that some part of output is returned back
to the input. The feedback loop is designed to automatically engineer the
systems so that it can achieve and maintain the ambitious output action
by comparing it with the real condition. More, a feedback loop system is
a fully automated control framework, where the control is being dependent
on its output.

34



Chapter 4

Summaries of the included
articles

4.1 Paper 1: Controlling Directed Protein Inter-
action Networks in Cancer

• Krishna Kanhaiya, Eugen Czeizler, Cristian Gratie, and Ion
Petre. “Controlling directed protein interaction networks in
cancer.” Scientific reports 7, no. 1 (2017): 10327.

Advances in systems biology are offering not only insights into complex
molecular interactions but are also useful for the discovery of new disease
proteins and of new therapeutic targets for disease intervention. Here we
employ a control theory approach for the analysis of specific disease net-
works, allowing us to drive the system dynamics towards favorable traits,
as well as helping us to understand better the regulatory mechanisms of
these biochemical networks. We show how to employ the use of well es-
tablished drug-target proteins in order to archive a structural control over
essential target proteins within specific cancer protein-protein interaction
networks. We apply this to breast, pancreatic, and ovarian cancer signal-
ing transductions PPI networks. We demonstrate that instead of aiming
for overall control of entire networks, partial controllability is more effective
and efficient in the development of therapies for various cancers.

4.2 Paper 2: NetControl4BioMed: a pipeline for
biomedical data acquisition and analysis of net-
work controllability

• Krishna Kanhaiya, Vladimir Rogojin, Keivan Kazemi, Eugen
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Czeizler, and Ion Petre. “NetControl4BioMed: a pipeline for
biomedical data acquisition and analysis of network control-
lability.” BMC bioinformatics 19, no. 7 (2018): 185.

Network controllability for biomedical networks focuses on finding of
combinatorial approachs for which external interventions within a biological
system can drive it to a desired final configuration. In practice, this ap-
proach converts into finding of muti drug-target therapeutics for discovering
and development of novel and rational therapeutics approaches for complex
and dynamics diseases like cancer. We develop a novel biomedical data
analysis pipeline called NetControl4BioMed based on the network control
approach using linear networks. Our pipeline produces novel biomolecular
interaction networks by joining pathway information from different open
databases by using user’s query. The pipeline further distinguishes a set
of nodes that is sufficient to control a given, users defined set of essential
proteins related to disease in the networks i.e., it can induce a transition of
the network’s configuration from initial states to desire final states. Also,
we provide new insights into the efficient control of dynamical disease net-
works which can assist in the discovery of novel cancer-associated proteins
and biomarkers. Users can use our pipeline online as well as install the
source code to run locally. This pipeline can be useful in defining the con-
trollability and understanding the complex biomolecular interactions and for
combinatorial multi-drug therapies for more effective therapeutic strategies
and personalized medicine.

4.3 Paper 3: Structural Target Controllability of
Linear Networks

• Eugen Czeizler, Kai-Chiu Wu, Cristian Gratie, Krishna Kan-
haiya, and Ion Petre. “Structural target controllability of lin-
ear networks.” IEEE/ACM Transactions on Computational
Biology and Bioinformatics (TCBB) 15, no. 4 (2018): 1217-
1228.

Computational modelling of the structure of cellular interaction networks
reveals many important novel therapeutics targets for complex disease like
cancer. Recent research on network analysis shows that network control
theory is increasingly becoming a powerful tool apply in engineering and
mathematics. Also, regulation and control are the central part of the bio-
logical system to understanding its systems behavior. Previously, by Liu et
al. [58] has presented a polynomial time algorithm for optimal solution of full
controllability. Later, Gao et al. [26] proposed a greedy algorithm for find-
ing the minimum number of input nodes needed to impose a certain target

36



controllability. However, the full complexity of target control optimization
problem hasn’t been successfully handled. We found that in all the practi-
cal setup target controllability problem perform as NP-hard, i.e. when the
controllability of individual input in a system is bounded by some constant.
Further, we show that greedy algorithm provided in [26] fails to generate
correct solutions in some cases, and needs extra validation steps. We show
that our algorithms which are based on heuristic optimization strategies are
more effective in several case studies(cancer signaling PPI networks) and for
faster calculations and effective optimization.

4.4 Paper 4: Identification of drug targets in breast
cancer metabolic network

• Krishna Kanhaiya and Dwitiya Tiwari. “Identification of
drug targets in breast cancer metabolic network.” JOUR-
NAL OF COMPUTATIONAL BIOLOGY, Volume 26, Num-
ber 0, 2019.

Genome-scale metabolic models have been proven to be valuable for
defining cancer or to indicate the severity of cancer. However, identify-
ing effective metabolic drug-target (DT) of the active small-molecule com-
pound is difficult to unravel and need to be investigated. In this study,
we identify effective DT for breast cancer using proposed network analysis
of enzymes-centric networks in the metabolic model. Our network-based
analysis revealed that high degree nodes(HDN) of enzymes are key to pro-
gression/development of cancer. These HDN show highly interconnections
inside the network. It has been found that these HDN are crucial driver
nodes for effectively targeting in breast cancer metabolic network. Further-
more, based on the correlation and principal component analysis (PCA) we
have shown that certain proteins play a significant role in the network and
can be used as an effective DT in cancer therapeutics. More, these proteins
stimulate the active site of enzymes to activate the target metabolites. Over-
all, we have shown that a better understanding of the metabolic networks
using statistical model could be valuable in DT identification for developing
effective therapeutic approaches and personalized medicine.

4.5 Paper 5: Bioinformatics for Diseases Manage-
ment: A Personalized Therapeutics Prospec-
tive

• Krishna Kanhaiya. “Bioinformatics for Diseases Manage-
ment: A Personalized Therapeutics Prospective.” In Ad-
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vances in Personalized Nanotherapeutics, pp. 187-199. Springer,
Cham, 2017.

Advances in multi-omics technology and development of modern bioinfor-
matics and integrated tools change the way of analyzing and understanding
of complex disease mechanism and transform the healthcare sector towards
smarter disease diagnostic and management. These advancements bring a
high amount of data for the doctors and researchers in the form of genomics
and proteomics which can further deliver for computer-aided therapeutic so-
lutions for screening and early diagnostic of the patients. Therefore, a proper
method for integration and management of biomedical data sets could be
applied into cost-viability, high-value and rational drug therapeutics for ef-
fective personalized treatment. Also, it could decrease diagnostic expenses,
improve individual patient care and help the doctor to create individual
based patient care. This review describes an overview of integrated bioin-
formatics approaches to define effective disease management techniques in
the role to define next generation disease management facilities, which can
further establish accurate, reliable, safer healthcare for each and every pa-
tient.
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Chapter 5

Conclusion and future work

Complex dynamics of cancer remains at the forefront of the quest to under-
stand the structure and function of this disease and also offer an exceptional
model system in perspective of controlling of other disease networks. We
applied the target control theory approach for the specific cancer signaling
transduction PPI networks. We find that this approach can be an impressive
framework to discover effective drug-target proteins as driver nodes to tar-
get cancer-specific essential proteins, defines as target nodes. The concept of
cancer essential proteins impose that inhibiting these proteins won’t cause
loss of functionality of normal cells. Further, these proteins are very likely
to affect the real behavior of cancer networks and the tumour becomes fully
dependent on the development of oncogenes through these essential genes
[61, 104]. In [39], we identify the minimum number of drug target protein in
cancer PPI network to control the maximum number of cancer essential pro-
tein in the network. We show that by employing the use of well established
drug-target proteins in order to achieve a structural control over essential
target proteins within specific cancer PPI networks and apply this to breast,
pancreatic, and ovarian cancer signaling transductions PPI networks. We
demonstrate that instead of aiming for overall control of entire networks,
partial controllability is more effective and efficient in the development of
therapies for various cancers.

Importantly, the method applied in our approach over various cancer
PPI networks provide a new dimension to apply target controllability that
can be unlikely to be successful implemented in other biological networks.
Further, finding a set of driver nodes among the entire network in the can-
cer system can produce results that can be used for experimental validation.
Similarly, for other diseases, the emphasis should now fall on formulating
appropriate control problems in order to identify the network dynamics in
particular on finding disease-specific essential proteins and subsequent mod-
ules/subnetworks to successful control. Some of the disease network features
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and properties are nonlinear and feedback loops play an important role. It
could be an important challenge to add them to the target controllability
framework.

Network control theory analyzes the structure of a complex network and
can efficiently provide the minimum number of driver nodes through which it
can be driven by interconnected nodes in the networks [15]. Recent advance-
ments in the network control approach have shown that full controllability
is empirical in the case of medical setups where the control approach can
be implemented through a minimum set of FDA based drug-target proteins
[39]. Other approaches based on the so-called minimum dominating sets
(MDS) have also been applied on control dynamics of PPI networks [100].
This approach is not very feasible for those cases where the network type
is represented as a directed graph (such as signaling transduction based
disease network or metabolic based disease networks). Another approach
based on feedback loops showed that some of these loops play a vital role
in the signaling transduction networks by affecting many oscillation and
switching the signals [47]. The missing component here is an appropriate
mechanism for targeting of cancer essential proteins within the system and
its implementation toward the development of combinatorial therapeutic ap-
proaches. Therefore, the meaningful strategy here is to find how a minimum
set of driver nodes can enhance the designation to control biochemical net-
works. Hence, these control techniques too should be carefully taken into
consideration in the aim of building new and effective control strategies for
identifying controllable related input nodes in the biological systems.

For an efficient target control strategy, the key idea is to ignore the nodes
which are redundant and focus on the nodes that are necessary to control.
For example, in cancer, some of the proteins are identified as essential (for
that cancer), if their functioning is essential for the multiplication or survival
of those tumor cells. Certain proteins become essential in cancer because
of the presence of a mutation in the driver genes. This means that these
proteins are essential for pathogenesis (i.e., driver) [61], and the tumour
becomes fully dependent on the development of oncogenes through these es-
sential proteins [61, 104]. Cancer essential proteins also control the cell cycle
regulators and protein translation machinery [104]. More, it has been also
know that the proliferation of cancer states is only associated with a small
part of the entire state space. Hence, effective target control of complex bi-
ological network is possible, if we are successfully define and able to control
that small part of the entire space (i.e., essential proteins in cancer). More-
over, practical constraints and optimal selection of driver nodes are the key
strategies for optimal control. Therefore, the development of effective target
control approach can enhance the potential to find complex mechanism of
human diseases and open the door for novel drug development.

Recently, several control approaches have been applied to the biologi-
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cal domain and opened a new way to control complex biological networks
[39, 47]. Although, the availability of data is still a hindrance in this pro-
cess: for example biochemical and signaling pathways databases have very
low amount of curated sets of protein interactions [88]. Sometimes, these
missing data create constraints for exact experimental validations. Similarly,
controllability of nonlinear dynamics can also discover the key componenets
of cellular dynamics and help in finding a new set of driver nodes, but de-
velopment of its control based optimization approach is constrained by the
lack of datasets for detailed models. Since these models are hard to extract
from biological data, we may focus more on the structure of the networks
and by this target controlling of nonlinear biological networks can be more
feasible.

The more we learn about biological interactions, the more we can define
the different mechanisms of its behavior, and get to map genes, proteins,
and other micro molecules. These interaction maps can, in turn, inform
the control features in the biological systems. Indeed, controlling these
interactions in the biological systems can be a promising avenue to explore
through the experimental hypothesis. The benefits of the control approach
are that it can be applied to investigate any type of interaction network.
An appealing extension in the current controllability framework would be
to offer deep insights into the different biochemical reactions in account
to time and energy, such as steering a chemical reaction into a metabolic
pathway [54, 7, 93]. These reactions might involve different sets of reaction
types at different time. These types of problem would be interesting to
control and target controllability would be an efficient platform.

Therefore, theoretical and experimental advancement in the current ap-
proach will significantly improve the control principle in various diseases
and will provide new dataset based approaches and online pipelines. Dis-
ease management technologies are continuing to develop at an astonishing
rate, and promise of new datasets will complement and supersede the ex-
isting interactome model. Functional genomics and proteomics data can
provide us a new paradigm for investigating and calculate the control mech-
anism of biological networks [39], such as how control is achieved and why
certain disease behavioral states are favorite over others.
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