
 

Carpathian Journal of Electronic and Computer Engineering 11/1 (2018) 48-52

DOI: 10.2478/cjece-2018-0009
 

 
ISSN 1844 – 9689 48  https://www.degruyter.com/view/j/cjece 

Stability study of the neural network at particle 
physics detectors 

 

Tamás Majoros 
Intelligent Embedded Systems Research Laboratory 

Faculty of Informatics 
University of Debrecen 

Debrecen, Hungary 
majoros.tamas91@gmail.com 

Balázs Ujvári 
Department of Experimental Physics 
Faculty of Science and Technology 

University of Debrecen 
Debrecen, Hungary 
ujvarib@gmail.com 

 
 

Abstract— Neural networks are used as triggers at high-
energy physics detectors. These triggers can separate the event 
that must be saved for later analysis from the other events or 
noises. Using the raw data of the detector, the signal and the 
background can be separated offline. After separation, sets of 
signals and backgrounds can be used to train the neural 
network. A gas-filled detector (multiwire proportional 
chamber) was used to study the trigger at different noise levels 
to find the most stable neural network that tolerates the 
random hits. The ratio of the recognized and the unrecognized 
signal and background events is used for the measurement. Its 
stability is part of the systematical uncertainty. 

Keywords—neural network, pattern recognition, multiwire 
proportional chamber, experimental physics detector, FPGA 

I. INTRODUCTION 
Neural networks were used in experimental high-energy 

physics even some decades ago for analyzing the data of 
large and complex detectors [1]. The reconstruction time and 
accuracy were good enough, but in physics the estimation of 
the uncertainties is very important and with the neural 
network it is hard to calculate. It was used to reduce the 
background to find rare events [2], neural networks helped to 
select good quality data without additional subdetectors. 
These experiments used massive parallel processing, and the 
decision time was in the order of seconds. 

The next big step of the neural network in the high-
energy physics was the triggering. It was possible to use 
neural networks to identify the interesting events in some 
microseconds [3], after some low-level hardware logic. The 
recent big detectors are using neural network for track 
finding, particle identification [4], and there are running 
projects to use neural network at the hardware level of the 
data acquisition [5]. That means huge amounts of data have 
to flow through the network to select the important events in 
the order of hundreds of nanoseconds. Integrating the neural 
network at this hardware level needs fine-tuned solutions. 
Since the hardware level of these big detectors is not 
accessible, a dedicated setup should be used for learning the 
way to implement the hardware level neural network. A 
simple detector with special front-end electronics is used to 
show it in this paper. 

The gas-filled detectors, like the multiwire proportional 
chamber (MWPC), and the time projection chambers (TPC) 
are widely used in large volumes, and since the gases are low 
density materials, the particle can move without interaction 
with the detector itself along its path, thus no additional 
corrections are needed for the reconstruction. Muon is a 
temporary particle, which will decay into stable electron and 
neutrinos, but lives enough to fly several kilometers before 
the decay. Muons can be used to measure the short-living 
particles (Higgs-boson, Z-boson) that decay almost 
immediately and cannot reach the detector, instead, they 
decay into muons (Higgs-boson can decay into four muons). 

From the parameters of the muon these particles can be 
measured. These short-living particles can be created by 
colliding particle beams at dedicated particle accelerators. 
These accelerators work on very high collision rates in the 
order of 10 millions collisions per second (10 MHz), and the 
detectors at the collision points have to be prepared for these 
rates. At 10 MHz, the time difference between two collisions 
and therefore two muons from two different decays is 100 
ns. Time precision measurements are needed to separate the 
events, in order to avoid the false measurements. 

There are fast detectors, such as semiconductors, 
scintillators, Cherenkov-detectors, and their signal can be 
used in this precision regime. Unfortunately, the gas-filled 
detectors are slower, so additional calibration and data 
analysis need to operate in time precision, high collision 
rates measurements. The particle physics colliders are 
complex and expensive devices. In the early phase of 
detector developments, cosmic muons are widely used to test 
the hardware and software. Cosmic particles hit the atoms in 
the upper atmosphere and create temporary particles that 
decay to muons. These cosmic muons reach the surface of 
the Earth, and can be detected in every laboratory. 

II. MWPC 
At the University of Debrecen readout electronics were 

developed for MWPCs to study the time precision 
measurements with gas-filled detectors. The setup consists of 
four layers MWPC (fig. 1).  
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Fig. 1. MWPC at University of Debrecen 

The muon goes through the setup and ionizes the gas 
(argon 82%, carbon-dioxide 18%), creating few (order of 
ten) electrons. Every layer (fig. 2) has 16 sensitive anodes 
(+1500 V, 50 µm, the thinner in the photo) and 16 grounded 
field wires (100 µm). 

 

 
The electric field accelerates these primary electrons 

towards the anodes. These electrons will have enough kinetic 
energy to kick off new electrons and even these secondaries 
can ionize the gas, then an electron avalanche (order of 
millions) reaches the anode wires. The field wires are read 
out, the potential changes by electron avalanches on the 
anodes capacitively coupled to the field wires. A hit means 
that this analog signal is above a given threshold, which is 
the 1, otherwise the wire is 0 for the path reconstruction. A 
typical signal looks like the one shown on fig. 3. 

 
Fig. 3. A typical signal on field wires of MWPC 

III. RECONSTRUCTION OF SIGNALS 
For path and arriving time reconstructions, the important 

parameters are the Time of Arrival (ToA), Integral, Time 
Over Threshold (TOT). On fig. 3 black dots are the 
amplitudes measured by a 3 MS/s ADC. From the ADC 
measurement, the integral can be easy calculated, but the 

arriving time can be measured only by reconstructing the 
shape of the signal from the discrete ADC values. 

The uncertainty by the signal shape reconstruction with 
the 3 MS/s ADC can be order of 10 ns. With a given 
comparator level, ToA and TOT can be measured with a 
comparator and a precise timer. The integral of the signal 
(that is proportional to the number of electrons arrived at 
anode) and the TOT have a non-linear relationship that can 
be determined with a calibration process for each wire. 

With amplifiers, comparators and an FPGA 1-2 ns 
precision can be reached to measure ToA and TOT, and the 
integral can be calculated from the TOT used for the 
calibrations. Since there is no need for fast ADCs, such 
front-end electronics is the most cost-effective setup for 
measuring the arriving time of the muons at high collision 
rate accelerators. For path reconstruction the wire position 
and the integral of the signal on the given wire are used, but 
the integral is used only for weighted average, its precision is 
not crucial. In this case the hit is the signal above the 
comparator threshold, and the hit’s parameters are the ToA 
and TOT. 

IV. APPLICATION OF NEURAL NETWORK 
The comparators are used to suppress the noise, but in a 

gas-filled detector even one free electron can create an 
electron avalanche, therefore a high rate of false hits is 
expected. These random hits are uncorrelated. An effective 
trigger can be operated with a neural network that trained to 
recognize the structure of the hits of the passing muon. The 
trigger separates signal and background noise using not the 
full measurements, but an aggregated or lower resolution 
sample to decide as soon as possible. The full resolution 
measurements are buffered and read out only after a positive 
trigger answer to lower the necessary bandwidth of the 
readout. At modern experiments not only the signal and the 
noise are separated, but with hierarchical trigger systems 
different particles can be separated by the different event 
structures, and only the events are read out which are among 
the physical goals of the detector.  

In this detector the full measurements are the ID of the 
wire, the ToA, the TOT for every hit, for every wire where 
the signal is above the comparator threshold. The front-end 
FPGA buffers these values, but send only one bit per wire 
whenever the signal at the given value was above the 
threshold (1) or not (0). In every 160 ns front-end FPGA 
sends 64 bits to the FPGA of the neural network to evaluate. 
If the 64 bits representation is a muon candidate, the full 
measurement with the precise timing (1-2 ns) is read out.  

These gas-filled detectors are sensitive to high voltage 
setups and to gas flows. There can be random scratches on 
the wires, and the properties of the noise are not stable. In 
this study the neural network was trained with long 
measurements, thus the trigger efficiency is shown with these 
measurements. Then random zeros and ones are added to the 
measurement to estimate the stability of the neural network. 

V. ROOT AND TMVA 
ROOT is an object-oriented program and library 

developed by CERN, which provides platform independent 
access to a computer’s graphics subsystem and operating 
system using abstract layers. The packages provided by 

Fig. 2. One layer of MWPC 
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ROOT include histogramming, graphing, curve fitting, 
statistics tools, matrix algebra, standard mathematical 
functions, 3D visualizations, multivariate data analysis (e.g. 
using neural networks). 

The Toolkit for Multivariate Analysis (TMVA) provides 
a ROOT-integrated environment for the processing, parallel 
evaluation and application of multivariate classification and 
regression techniques. All multivariate techniques in TMVA 
belong to the family of supervised learning algorithms, 
which make use of training events, for which the desired 
output is known, in order to determine the mapping function 
that either describes a decision boundary (classification) or 
an approximation of the underlying functional behavior 
defining the target value (regression). The software package 
provides training, testing, performance evaluation algorithms 
and visualization scripts [6]. 

TMultiLayerPerceptron is a class in the TMVA package. 
It describes a multilayer perceptron (MLP), which is a class 
of the feedforward artificial neural network. It contains 
facilities to train the network and to use the output. The input 
layer is made of inactive neurons (returning the normalized 
input), while hidden layers are made of neurons with an 
activation function, and output neurons are linear. The basic 
input is a training and a test event list. For classification jobs, 
a branch must contain the expected output. Different learning 
methods are available. A neural network can be instantiated 
by calling a TMultiLayerPerceptron() constructor. The 
network is described by a simple string: the input/output 
layers are defined by giving the branch names separated by 
commas. Hidden layers are described by the number of 
neurons and the activation function. Training and test are two 
cuts defining events to be used during neural network 
training and testing. 

The most common algorithm for adjusting the weights 
that optimize the classification performance of a neural 
network is the so-called back propagation, which belongs to 
the family of supervised learning methods. During the 
learning process the network is supplied with training events. 
For each training event the neural network output is 
computed and compared to the desired output (1 for signal, 0 
for background events). An error function measures the 
agreement of the network response to the desired one. The 
set of weights that minimizes the error function can be found 
using the method of gradient descent, provided that the 
neuron response function is differentiable with respect to the 
input weights. Starting from a random set of weights, the 
weights are updated by moving into the direction where error 
function decreases most rapidly. 

VI. COMPARISON OF ACTIVATION FUNCTIONS 
Neural networks with same structures but different 

activation functions were trained to compare the effect of the 
type of the activation functions. The input layer contains 64 
neurons as 64 wires are read out from MWPC. These 
normalize the incoming zeros and ones. Two hidden layers 
with five neurons and a linear output neuron in the output 
layer were used. Applicated activation functions were linear, 
gaussian, hyperbolic tangent (tanh) and sigmoid. The 
following figures (4-7) show the difference in classification 
efficiency between them on a logarithmic scale. 

 
Fig. 4. Neural network output with linear activation function 

 
Fig. 5. Neural network output with Gaussian activation function 

 
Fig. 6. Neural network output with tanh activation function 

 
Fig. 7. Neural network output with sigmoid activation function 

The highest classification efficiency (lowest number of 
misrecognized inputs at optimal output threshold value) was 
reached with sigmoid function, therefore it is used in later 
sections. 

VII. COMPARISON OF NETWORK STRUCTURES 
Different network structures were compared to examine 

how the number of neurons and hidden layers affect the 
noise sensitivity of the trained neural network. Output 
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threshold value is selected at each case as the lowest value, 
where 90% of signal inputs are recognized as signal. 
Threshold values are shown on fig. 8-9. Ratio of recognized 
and misrecognized signal and background inputs on different 
neural network structures are shown on fig. 10-14 and table 
1. Positive value of noise means the probability in 
percentage, that the wire is set to 1 (even it was 1 or 0). The 
negative noise value means the probability in percentage, 
that the wire is set to 0 (even it was 1 or 0). Network 
structure is described with the number of neurons in hidden 
layers. 

 
Fig. 8. Neural network output to optimal input (red line: threshold value) 

 
Fig. 9. Neural network output to very noisy (-30%) input (red line: 

threshold value) 

 
Fig. 10. Input recognizing efficiency of a 3x3x3 network 

 
Fig. 11. Input recognizing efficiency of a 5x5 network 

 
Fig. 12. Input recognizing efficiency of a 5x5x5 network 

 
Fig. 13. Input recognizing efficiency of a 10x10x10 network 
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Fig. 14. Input recognizing efficiency of a 20x20x20 network 

 
 3x3x3 5x5 5x5x5 10x10x10 20x20x20 
-5% 2.27% 1.84% 2.66% 0.09% 0.09% 
-4% 2.32% 1.71% 2.54% 0.07% 0.11% 
-3% 2.25% 1.64% 2.27% 0.06% 0.08% 
-2% 2.27% 1.58% 2.19% 0.06% 0.08% 
-1% 2.26% 1.53% 2.14% 0.08% 0.08% 
0% 2.25% 1.55% 2.10% 0.06% 0.08% 
1% 5.96% 5.31% 5.12% 2.34% 2.13% 
2% 10.42% 9.79% 9.23% 5.53% 5.59% 
3% 15.15% 13.69% 12.90% 8.77% 9.19% 
4% 20.58% 17.84% 16.30% 12.80% 13.05% 
5% 26.44% 21.58% 19.82% 17.51% 17.41% 

Table 1. Background recognized as signal at different noise levels 

As shown in the above figures and table, a more complex 
network, containing more neurons gives a better recognition 
result. If the background rate (number of background events 
per second) is much higher than signal rate, the background 
recognized as signal (false signal) uses the major part of the 
readout bandwidth, the more complex neural network trigger 
can reduce this false signal rate. For this study, the number of 
signal and background was in the same order of magnitude, 
but in real experiments the ratio of signal and background 
events have to be separated by the trigger, which can be 
1:1000000. A fine-tuned neural network is necessary to 
manage the data flow. 

VIII. FPGA IMPLEMENTATION 
Synapses values and neuron offset values are exported 

from the training program. These values (and the network 
structure) are used for hardware implementation of the neural 
network in an FPGA. For this purpose, a Python program 
was made. This program reads the exported file and 
generates a synthesizable source code in Verilog hardware 
description language. Input layer neurons are implemented as 
multiplexers to save resources and processing time. 
Activation functions are implemented as look-up tables in 

read only memory (ROM), where memory address is the 
input value of the function, and the content on that address is 
the function value. A threshold value can be set to get a 
single bit output (signal or background) from the network. A 
test bench file can be generated for validation purpose. It 
uses random input values and compares the output values of 
software-implemented and hardware-implemented networks. 

A simplified version of the neural network with 32 
inputs, 2 hidden layers (with 5 and 3 neurons, respectively) 
was implemented in FPGA fabric part of a Xilinx Zynq 7020 
SoC device. This configuration uses 184 of the available 240 
digital signal processing (DSP) units in the FPGA. Proper 
functionality is proven by using a generated test bench file. 
Three of the 2000 testcases failed, all of them were very 
close to the output threshold value, which is due to the 
smaller number representation precision in FPGA (for lower 
resource demand). 12.5 MHz clock frequency was used, and 
the latency of the network is four clock cycle. Since 80 ns is 
the trigger decision time and the front-end electronics can 
buffer order of 10 events, this setup can be used at high 
collision rate experiments to select the particle by the 
structure of the hits and reject background events or noises. 
With further optimization resource usage can be decreased, 
and more complex networks can be implemented at the cost 
of higher latency.  
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