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Methylome-based cell-of-origin modeling
(Methyl-COOM) identifies aberrant
expression of immune regulatory molecules
in CLL
Justyna A. Wierzbinska1,2,3, Reka Toth1, Naveed Ishaque3, Karsten Rippe3,4, Jan-Philipp Mallm3,4, Lara C. Klett2,4,
Daniel Mertens3,5, Thorsten Zenz6, Thomas Hielscher7, Marc Seifert8, Ralf Küppers8, Yassen Assenov1, Pavlo Lutsik1,
Stephan Stilgenbauer9, Philipp M. Roessner10, Martina Seiffert10, John Byrd11, Christopher C. Oakes11,12,
Christoph Plass1,3*† and Daniel B. Lipka3,13,14,15*†

Abstract

Background: In cancer, normal epigenetic patterns are disturbed and contribute to gene expression changes,
disease onset, and progression. The cancer epigenome is composed of the epigenetic patterns present in the
tumor-initiating cell at the time of transformation, and the tumor-specific epigenetic alterations that are acquired
during tumor initiation and progression. The precise dissection of these two components of the tumor epigenome
will facilitate a better understanding of the biological mechanisms underlying malignant transformation. Chronic
lymphocytic leukemia (CLL) originates from differentiating B cells, which undergo extensive epigenetic programming.
This poses the challenge to precisely determine the epigenomic ground state of the cell-of-origin in order to identify
CLL-specific epigenetic aberrations.

Methods: We developed a linear regression model, methylome-based cell-of-origin modeling (Methyl-COOM), to map
the cell-of-origin for individual CLL patients based on the continuum of epigenomic changes during normal B cell
differentiation.

Results: Methyl-COOM accurately maps the cell-of-origin of CLL and identifies CLL-specific aberrant DNA methylation
events that are not confounded by physiologic epigenetic B cell programming. Furthermore, Methyl-COOM unmasks
abnormal action of transcription factors, altered super-enhancer activities, and aberrant transcript expression in CLL.
Among the aberrantly regulated transcripts were many genes that have previously been implicated in T cell biology.
Flow cytometry analysis of these markers confirmed their aberrant expression on malignant B cells at the protein level.

Conclusions: Methyl-COOM analysis of CLL identified disease-specific aberrant gene regulation. The aberrantly
expressed genes identified in this study might play a role in immune-evasion in CLL and might serve as novel targets
for immunotherapy approaches. In summary, we propose a novel framework for in silico modeling of reference DNA
methylomes and for the identification of cancer-specific epigenetic changes, a concept that can be broadly applied to
other human malignancies.
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Background
In cancer, normal epigenetic patterns are disturbed and

contribute to gene expression changes, disease onset,

and progression [1]. This seems to be a universal charac-

teristic of all cancers, including chronic lymphocytic

leukemia (CLL). CLL originates from rapidly differentiat-

ing B cells. Although several mutations creating a pre-

leukemic clone, including variants in SF3B1, NOTCH1,

or TP53, have been identified in the hematopoietic stem

cell (HSC) compartment of CLL patients, additional gen-

etic or epigenetic driver events are required for full

transformation [2]. Normal B cells undergo extensive

epigenetic programming during differentiation [3, 4].

The epigenetic fingerprint of the B cell that has acquired

the transforming hit is “frozen” and stably propagated in

the leukemic cells [4]. This demonstrates that two factors

contribute to the epigenomic landscape of CLL: first, epi-

genetic patterns that were present in the tumor-initiating

B cell at the time of transformation, and second, CLL-

specific epigenetic alterations that are acquired during

leukemia initiation and progression. For the purpose of

this study, we define the cell-of-origin of CLL as the nor-

mal B cell differentiation stage with the highest overlap to

the CLL methylome. Consequently, the cell-of-origin of

CLL represents the differentiation stage at which the

clonal B cells deviate significantly from the normal differ-

entiation trajectory and therefore the cell-of-origin defines

the first cell that has acquired sufficient oncogenic hits to

initiate leukemic transformation [5].

Numerous publications have reported extensive epi-

genetic alterations in CLL resulting in deregulation of

protein coding genes [6–11] or miRNAs [12–19]. In this

context, most studies used the epigenome of CD19+ B

cells as controls, but such an approach neglects the epi-

genetic programming occurring during B cell differenti-

ation. As a result, the genes found to be deregulated

mainly reflected the changes occurring during normal B

cell differentiation rather than CLL-specific pathogenic

events. Refined analyses should aim at discriminating be-

tween epigenetic changes occurring during normal B cell

differentiation and CLL-specific epigenetic aberrations.

Here we outline a novel framework for cancer methy-

lome analysis, termed methylome-based cell-of-origin

modeling (Methyl-COOM). We show how Methyl-

COOM can be applied to epigenomic datasets from CLL

patients to identify disease-specific epigenetic events and

demonstrate its power to detect epigenetically deregu-

lated transcripts which encode for proteins that are in-

volved in immune regulatory processes.

Methods
Flow cytometry analysis

Patients’ samples were obtained from the Department of

Internal Medicine III of Ulm University after approval of

the study protocol by the local ethics committee accord-

ing to the Declaration of Helsinki, and after obtaining

informed consent of patients. Patients met standard

diagnosis criteria for CLL. Patients’ characteristics such

as age, gender, mutational state, and Binet stage are

depicted in Table 1.

Peripheral blood was drawn using ethylenediaminetet-

raacetic acid (EDTA)-coated tubes (Sarstedt, Nümbrecht,

Germany). PBMCs were isolated by Ficoll (Biochrom,

Berlin, Germany) density gradient centrifugation. PBMCs

were viably frozen and, when needed, thawed and further

processed.

After blockade of Fc receptors using Human TruStain

FcX™ (BioLegend, London, UK), 5 × 106 PBMCs were

stained with fluorescently labeled antibodies in phosphate-

buffered saline (PBS) with addition Fixable Viability Dye

eFluor® (Thermo Fisher Scientific, Dreieich, Germany) for

30min at 4 °C. Cells were fixed using eBioscience™ IC Fix-

ation Buffer (Thermo Fisher Scientific, Dreieich, Germany)

for 30min at room temperature. The antibodies used are

listed in Table 2. If necessary, cells were permeabilized with

eBioscience™ Permeabilization Buffer (Thermo Fisher Sci-

entific) and stained intracellularly for 30min at room

temperature. CTLA-4 was stained as surface as well as

intracellular marker. Samples were stored at 4 °C in the

dark until acquisition. Data was acquired using a BD LSR

Fortessa (BD Biosciences, Heidelberg, Germany) FACS

analyzer. Flow cytometric data was analyzed using FlowJo

X 10.0.7 software (FlowJo, Ashland, OR, USA). Paired

Wilcoxon signed-rank test was used to determine statistical

significance of changes between CLL B cells and normal B

cells.

Table 1 Characteristics of the CLL patients used for flow
cytometric analysis

# of patients 7

Age [years] 57.1 (mean)

52 (median)

Sex 5/7 male

2/7 female

Prior therapies 7/7 no prior treatment

Binet stage 7/7 A

0/7 B

0/7 C

IGHV status 6/7 mutated

1/7 unmutated

Genetics (FISH) 1/7 Trisomy 12

5/7 del(13q)

1/7 no aberration

TP53 mutation status 4/7 WT

3/7 not tested
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Analysis of RNA-seq/sncRNA-seq data

Expression data (RNA-Seq) from CLLs were obtained

from our previous study [4]. RNA-Seq data from normal

B cells was obtained from International Cancer Genome

Consortium (ICGC). Reads per kilo base per million

mapped reads (RPKM) normalized values were used for

the comparison of gene expression levels. sncRNA-seq

data from CLLs was obtained from our previous study

[20]. Differential miRNA expression was assessed using

normalized counts, reads per million (RPM).

Analysis of 450K methylome array data

450K data from B cells was obtained from Oakes

et al. [4]. CLL 450K data for the discovery and valid-

ation cohorts were both obtained from previous stud-

ies [4, 21]. The analysis of 450K data was performed

using RnBeads software [22]. Both datasets (normal B

cells and CLLs) were processed simultaneously

(Additional file 11). Briefly, raw 450K data for both

CLL and healthy B cell sample sets were normalized

by the BMIQ method [23] without the background

subtraction. The probes overlapping SNPs and the X

and Y chromosomes were removed, and the

remaining probes (n = 464,743 CpGs) were considered

for the downstream analysis (“Cell-of-origin-based

methylome analysis (Methyl-COOM)” section).

We studied the DNA methylation programming dur-

ing normal B cell differentiation, using six discrete B cell

subpopulations including naïve to mature B cells: re-

ferred to as naïve B cells (NBCs), germinal center

founder cells (GCFs), low- and intermediate-memory B

cells (loMBCs, intMBCs), splenic marginal zone B cells

(sMGZs), and high maturity memory B cells (hiMBCs).

DNA methylomes from 2 to 4 donors per normal B cell

subpopulation. In addition, 34 CLL samples were ana-

lyzed using Illumina 450K Bead Chip arrays.

Cell-of-origin-based methylome analysis (Methyl-COOM)

For analysis, we determined the DNA methylation dynam-

ics during normal B cell differentiation (differentiation

axis). Here we assumed that changes in DNA methylation

during the cellular differentiation process are reminiscent

of the DNA nucleotide changes over the evolutionary

time. CpG sites showing a statistically significant gain or

loss of methylation of more than 20% during B cell differ-

entiation defined our set of so-called B cell-specific CpGs

(n = 74,333 CpGs; Student’s t test). A Manhattan distance

matrix was calculated and used to build a methylation-

based phylogenetic tree of normal B cell differentiation by

applying the minimum evolution method (fastme.bal

function, R package “ape”; Desper and Gascuel [24]). Each

node in the phylogenetic tree corresponds to a certain

differentiation stage reached by the B cell. Using this

approach, we observed a non-branched differentiation tra-

jectory of normal B cell differentiation. Therefore, we ini-

tially used all B cell-specific CpGs to generate a linear

regression model of DNA methylation programming dur-

ing normal B cell differentiation. Linear behavior between

the differentiation stage of every B cell subset and the

methylation profiles at B cell-specific CpGs were tested at

the single CpG level using F-test. The majority of the B

cell-specific CpGs (79.8%, n = 59,326 CpGs) showed linear

methylation dynamics across the six B cell differentiation

states. To exclude a potential bias on differentiation stage

assignment, we re-created both the phylogeny and the re-

gression model of normal B cell differentiation, this time

using the linearly behaving B cell-specific CpGs, only. The

final regression model was designed to infer DNA methy-

lation levels of all CpGs included in our analysis.

Next, we mapped all CLL samples onto the normal B

cell differentiation trajectory in order to infer the closest

virtual normal B cell methylome (cell-of-origin) defined

as the position of the closest normal B cell node in the

phylogenetic tree. Then, we applied the linear regression

Table 2 List of FACS antibodies and reagents

Reagent Clone Supplier Cat #

APC anti-human CD5 UCHT2 BioLegend 300612

eBioscience™ CD152 (CTLA-4) PerCP-eFluor 710 14D3 Thermo Fisher Scientific 46-1529-42

eBioscience™ CD276 (B7-H3) PE-Cyanine7 7-517 Thermo Fisher Scientific 25-2769-41

eBioscience™ Fixable Viability Dye eFluor™ 506 Thermo Fisher Scientific 65-0866-14

eBioscience™ IC Fixation Buffer Thermo Fisher Scientific 00-8222-49

eBioscience™ Permeabilization Buffer (10×) Thermo Fisher Scientific 00-8333-56

eBioscience™ TIGIT PE-Cyanine7 MBSA43 Thermo Fisher Scientific 25-9500-42

Human TruStain FcX™ (Fc Receptor Blocking Solution) BioLegend 422302

PE anti-human CD85k (ILT3, LILRB4) Antibody ZM4.1 BioLegend 333007

PE/Dazzle™ 594 anti-human CD19 Antibody HIB19 BioLegend 302252

PerCP/Cyanine5.5 anti-human CD2 RPA-2.10 BioLegend 300215
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model to infer the DNA methylation levels for each CpG

site in the putative cell-of-origin for every patient, ac-

cording to the formula:

M ¼ αþ β� d:s:

where M denotes the calculated beta methylation value

for a CpG site of cell-of-origin, d.s. denotes the differen-

tiation stage (defined as the distance between the NBC

and the cell-of-origin nodes as determined by the phylo-

genetic analysis), β denotes the slope of the regression

line, and α denotes the vertical (y-axis) intercept.

To test our cell-of-origin assignment, we applied a

cross-validation model on our phylogenetic analysis. The

patient cohort was repeatedly divided into two sub-

groups; 70% and 30% (5000 repetitions). To minimize

the likelihood of selecting the same sample multiple

times, a random sampling was allowed in the 70% group,

while sample replacement was restricted only to the 30%

group. Using this approach, we observed that our

original cell-of-origin is located between interquartile

ranges of the cross-validation assignments, confirm-

ing the robustness of the cell-of-origin definition

(Additional file 1: Figure S2f).

Identification of CLL-specific DNA methylation

Subsequently, the inferred DNA methylome of the cell-

of-origin was used as a reference to determine aberrantly

methylated CpG sites in each sample. Disease-specific

CpGs were defined as sites with significant deviation

from the expected methylation levels as compared to the

corresponding cell-of-origin.

Sites with epigenetic B cell programming

Sites undergoing epigenetic B cell programming (i.e., B

cell-specific CpGs) could still show disease-specific

methylation events if their actual methylation status

massively deviates from what would be expected based

on the regression model (sites with “epigenetic B cell

programming”). We used a conservative cut-off of more

than 20% methylation loss (class A) or gain (class B)

relative to the calculated cell-of-origin methylation value

(M value) in at least 75% of the CLL patients.

Sites without epigenetic B cell programming

Sites with no epigenetic B cell programming (i.e., non-B

cell-specific CpGs) were defined to have CLL-specific

aberrant DNA methylation if they displayed either

methylation loss (class C) or gain (class D) of more than

20% relative to the cell-of-origin in at least 75% of the

CLL patients.

Identification of CLL-specific protein-coding genes

To identify CLL-specific protein-coding genes,

disease-specific methylation events were overlapped

with promoter regions (− 2.5 kb, + 0.5 kb to TSS) of

protein-coding genes. Next, correlation between

aberrant DNA methylation and gene expression was

determined (Pearson correlation test, p value < 0.05;

correlation coefficient ≤ 0.7). A full list of identified

CLL-specific protein-coding genes is available in

Additional file 2: Table S1.

Identification of CLL-specific SE-associated genes

To identify CLL-specific super-enhancer (SE)-associ-

ated genes, SE data from DKFZ PRECiSe consortium

was used [25]. All statistically significant, differential

super-enhancers being gained in CLLs (“gained”, p <

0.05, FC > 0) and consensus super-enhancers shared

between normal B cells and CLLs (“stable”) were used

for the analysis. Firstly, SEs were associated with the

closest gene in the vicinity. CLL-specific methylation

events were then overlapped with SE coordinates.

Next, correlation between aberrant DNA methylation

in SE region and gene expression of the SE-closest

gene (Pearson correlation test, p value < 0.05; correl-

ation coefficient ≤ 0.7) was used to identify CLL-

specific super-enhancer (SE)-associated genes. A full

list of identified SE-associated genes is available in

Additional file 3: Table S2.

Super-enhancer (SE) enrichment analysis

For the super-enhancer enrichment analysis two sets of

super-enhancers were used, SE data from DKFZ PRE-

CiSe consortium [26] and SE data from Ott et al. [27].

From DKFZ PRECiSe consortium all statistically signifi-

cant, differential super-enhancers being gained in CLLs

(“gained”, p < 0.05, FC > 0) and consensus super-

enhancers shared between normal B cells and CLLs

(“stable”) were used for the analysis. From Ott et al.

paper, a unified SE region was created using reduce

function in GenomicRanges package, providing a SE data

from individual CLL patients (n = 18). All CpG probes

present on the 450K array were used as a background in

the enrichment analysis.

Identification of micro-RNA promoters

To identify miRNA promoters, the promoter segmen-

tation data from CLLs (DKFZ PRECiSe consortium;

promoter segmentation data is deposited under

GSE113336; raw ChIP-seq data can be found in the

European Genome-phenome Archive under the acces-

sion number EGAS00001002518) and normal cell lines

(Encyclopedia of DNA Elements – ENCODE; ENCODE

Mar 2012 Freeze, UCSC accession numbers: wgEnco-

deEH000784, wgEncodeEH000785, wgEncodeEH000790,
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wgEncodeEH000789, wgEncodeEH000788, wgEnco-

deEH000786, wgEncodeEH000787, wgEncodeEH000791,

wgEncodeEH000792) were used. To define constant pro-

moter segments, the reduce function from the “Genomi-

cRanges” R package was used to create simplified

promoter regions, present in all datasets (CLL and EN-

CODE segmentation data). Putative promoters of pri-

miRNAs were assigned based on their distance to the pri-

miRNA TSSs. The genomic coordinates of pri-miRNAs/

miRNAs were downloaded from miRBase (version 20;

v20). Any promoter located within 100 kb upstream of a

pri-miRNA TSS was considered as a putative pri-miRNA

promoter. The distance of 100 kb was chosen based on

similar approaches that have been used in the past by

Corcoran et al., Fujita et al., and Fukao et al. [25, 28, 29].

The larger distance of putative promoters to pri-miRNA

TSSs is especially important in case of intergenic miRNAs,

which are originating from intronic sequences and which

are considered to be transcribed together with their host

gene.

Identification of CLL-specific micro-RNAs

To identify CLL-specific microRNAs, disease-specific

methylation events were overlapped with potential pri-

miRNA promoters. To identify candidate CLL-specific

miRNAs, correlation between aberrant DNA methyla-

tion and pri-miRNA expression was determined (Spear-

man correlation test, p value < 0.05; abs (correlation

coefficient ρ) ≥ 0.35). Since many mature miRNAs are

derived from the same pri-miRNAs, correlations were

calculated using pri-miRNA expression levels deter-

mined by sncRNA-seq. A full list of identified CLL-

specific microRNAs is available in Additional file 4:

Table S3.

Target genes of CLL-specific microRNAs

To link CLL-specific microRNAs with their pathogen-

etic effects, two databases of experimentally validated

microRNA-target gene interactions were used, Tar-

Base v8.0 and miRTarBase. A full list of experimen-

tally validated CLL-specific microRNA targets is

included in Additional file 5: Table S4. To find

whether CLL-specific microRNAs are targeting epi-

genetic regulators, the comprehensive list of epigen-

etic regulators was used (Additional file 6: Table S5).

The list of epigenetic regulators was further used as a

query for the list of CLL-specific microRNA targets

defined above. The epigenetic regulators targeted by

CLL-specific microRNAs are included in the

Additional file 7: Table S6.

Transcription factor enrichment analysis

Transcription factor motif analysis in disease-specific

methylation events was performed using HOMER

software v4.5 [30] using only the results for the “known

motifs” analysis. All CpGs present on the 450K array

were used as a background, and adjustment for GC and

CpG content was used. Furthermore, enrichment of ac-

tual binding events of TFs and other DNA-binding pro-

teins was analyzed using available ChIP-seq data from

the tier 1 ENCODE cell line GM12878 (for a complete

list of datasets used for this analysis, please refer to

Additional file 8: Table S7). The ChIP-seq enrichment

analysis was performed using the LOLA tool [31] pro-

viding all CpG probes present on the 450K array as the

“universe”. Unsupervised hierarchical clustering and data

visualization were performed using R.

Results
Modeling of normal B cell differentiation

CLL epigenomes are shaped by two major components.

The first component constitutes signatures that stem

from the leukemia-initiating B cell. The second compo-

nent is formed by epigenetic alterations acquired during

leukemogenesis and progression of the disease. To dis-

criminate these components, we developed an in silico

approach to infer DNA methylation dynamics during

normal B cell differentiation and to model the epige-

nome of the cell-of-origin, utilizing previously published

Illumina 450K array DNA methylome data from six dis-

tinct B cell subpopulations [4] and from 34 CLL samples

[21] (Fig. 1a). Our approach to this was based on clas-

sical phylogeny analysis (minimum evolution method,

Desper and Gascuel [24]), which is typically used to re-

construct evolutionary processes based on inherent char-

acters. Similarly to copy number or mutational studies

[32, 33], phylogeny analysis on DNA methylation has

been used successfully to reconstruct the developmental

processes occurring during cell proliferation and dif-

ferentiation [4, 34]. Therefore, to model B cell differ-

entiation, we inferred the hierarchical relationship

between normal B cell subsets ranging from naïve to

memory B cells based on their DNA methylation pat-

terns. The normal B cell methylomes were used to

identify CpG sites that show dynamic DNA methyla-

tion during B cell differentiation (B cell-specific CpGs;

see also “Methods”). A total of 74,333 B cell-specific

CpGs were identified (≥ 20% DNA methylation change

between naïve and differentiated memory B cells,

Student’s t test, p value < 0.05 [4, 35]). Pairwise

Manhattan distances based on DNA methylation pro-

files at B cell-specific CpGs for normal B cell subsets

were used to build a methylation-based phylogenetic

tree revealing a non-branched trajectory of B cell dif-

ferentiation (Additional file 1: Figure S1a). This sug-

gested that linear regression might be suitable to

model DNA methylation dynamics. The initial linear

regression model of B cell differentiation considered
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Fig. 1 (See legend on next page.)
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all B cell-specific CpGs. Testing the linearity between

the differentiation stage of every normal B cell subset

and the methylation profiles at B cell-specific CpGs,

revealed that the vast majority of the differentiation-

specific CpGs (79.8%, n = 59,326 CpGs) showed linear

behavior across all B cell differentiation states (F-test,

p value < 0.05; Additional file 1: Figure S1b-g,

Additional file 9: Table S8). To exclude a potential

bias on the model from the non-linear CpG sites, we

re-generated both the phylogeny and the regression

model of normal B cell differentiation using only the

linearly behaving B cell-specific CpGs.

Identification of disease-specific DNA methylation

patterns in CLL

This B cell differentiation model was applied to a CLL

patient cohort (n = 34) in order to determine the closest

virtual normal B cell methylome (i.e., cell-of-origin or B

cell differentiation stage) for each CLL case (Fig. 1b). As

expected, our model confirmed that good-prognosis

IGHV mutated CLL originates from more mature B

cells, as opposed to IGHV unmutated CLL, which de-

velops from more immature B cells (Additional file 1:

Figure S2a-e). Next, we tested the stability of cell-of-

origin assignment using a cross-validation model (5000

repetitions; for details see “Methods” section). Using this

approach, we observed that the predicted cell-of-origin

is located between interquartile ranges of the cross-

validation assignments, confirming the robustness of the

cell-of-origin definition (Additional file 1: Figure S2f).

The linear regression model was then used to infer DNA

methylation levels for all 464,743 CpG sites in the

predicted cell-of-origin of every patient. These inferred

cell-of-origin methylomes were subsequently used as

controls to identify aberrant (i.e., CLL-specific) DNA

methylation patterns for each sample individually (see

Fig. 1a for a schematic overview of Methyl-COOM).

CLL-specific aberrant DNA methylation was defined as

CpG sites with > 20% deviation from the expected DNA

methylation level of the cell-of-origin, and which were

aberrantly methylated in at least 75% of patients. This

analysis revealed two categories of CLL-specific DNA

methylation events; (1) aberrant DNA methylation oc-

curring at sites undergoing epigenetic programming dur-

ing B cell differentiation (“Sites with epigenetic B cell

programming”) and (2) aberrant DNA methylation oc-

curring at CpG sites that normally do not change during

B cell differentiation (“Sites with no epigenetic B cell

programming”) (see Fig. 1c). The first category was fur-

ther subdivided into class A, showing a loss, and class B,

showing a gain of DNA methylation relative to the dif-

ferentiation stage achieved. The second group of CpG

sites without DNA methylation programming during nor-

mal B cell differentiation was subdivided into class C and

class D displaying hypo- and hypermethylation, respect-

ively (Fig. 1c). Overall, only 2.2% of all CpG sites (10,335

CpGs) represented on the 450K array were affected by

disease-specific methylation programming, the majority of

which were ‘sites with epigenetic B cell programming’

(class A & B, 5940 CpG sites; Fig. 1c, Additional file 10:

Table S9). The majority of CLL-specific DNA methylation

events were characterized by hypomethylation (9995

hypomethylated CLL-specific CpGs; class A: 5757 CpGs,

class C: 4238 CpGs), while only a small proportion of

(See figure on previous page.)
Fig. 1 Identification of CLL-specific DNA methylation events using Methyl-COOM. a Schematic outline of the Methyl-COOM pipeline used for the
identification of CLL-specific DNA methylation events. Methylome data of six distinct B cell subpopulations, representing different stages of B cell
differentiation were used to infer normal B cell differentiation. A linear regression model was applied to model DNA methylation dynamics during
normal B cell differentiation (“DNA methylation: B cells”). DNA methylomes of 34 primary CLL samples were used to identify the closest virtual
normal B cell (cell-of-origin; COO) based on phylogeny analysis. The linear regression model was then used to infer the DNA methylome of the
COO (“DNA methylation: COO”). Next, the DNA methylome of each CLL was compared to the DNA methylome of its COO. CLL-specific aberrant
DNA methylation was defined as a significant deviation from the inferred COO methylome (“DNA methylation: CLL-specific”). b Identification of
the cell-of-origin in CLL samples using phylogenetic analysis. A phylogenetic tree was generated using a set of linear CpG sites that show
dynamic DNA methylation changes during normal B cell differentiation (linear B cell-specific CpGs, 59,326 CpGs). Pairwise Manhattan distances
were calculated between DNA methylation profiles of normal B cells and CLL samples at B cell-specific CpGs and were subsequently used to
assign the closest normal (virtual) B cell methylome (location of the node on the phylogenetic tree = differentiation stage of the cell-of-origin) to
each CLL case. NBCs – naïve B cells; GCFs – germinal center founder B cells; loMBCs – early non class-switched memory B cells; intMBCs – non
class-switched memory B cells; sMGZs – splenic marginal zone B cells; hiMBCs – class-switched memory B cells (mature B cells). CLL samples are
depicted in orange color. Normal B cells are represented in green. c Summary of CLL-specific DNA methylation events. Top: pie chart displays the
frequency of CpGs that are either dynamic (green) or stable (gray) during normal B cell differentiation. Middle: pie charts depict the frequency of
CLL-specific DNA methylation events as fractions of the dynamic (classes A and B; left), and stable (classes C and D; right) sites. Bottom: schematic
depicting the classification of CLL-specific DNA methylation events. We identified two groups: “sites with epigenetic B cell programming” and
“sites without epigenetic B cell programming.” “Sites with epigenetic B cell programming” undergo DNA methylation programming during
normal B cell differentiation, encompassing hypomethylation (class A) and hypermethylation events (class B) relative to the DNA methylome of
the COO. “Sites without epigenetic B cell programming” are defined as CpG sites without significant DNA methylation changes during normal B
cell differentiation and are classified as either hypo- or hypermethylation (classes C and D, respectively). Numbers of CLL-specific DNA
methylation events (CLL-specific CpGs) resolved by class are indicated at the bottom

Wierzbinska et al. Genome Medicine           (2020) 12:29 Page 7 of 19



CpGs were hypermethylated as compared to their

inferred cell-of-origin (340 hypermethylated CLL-

specific CpGs; class B: 183 CpGs, class D: 157 CpGs)

(Fig. 1c, Additional file 1: Figure S2g, h).

CLL-specific aberrant DNA methylation patterns are

independent of the differentiation stage achieved

CLL-specific DNA methylation changes were quanti-

fied for each CpG site in each sample as compared to

the cell-of-origin and inspected by unsupervised

hierarchical clustering. For all classes, consistent

patterns of either loss or gain in methylation relative

to the cell-of-origin were observed, irrespective of the

differentiation stage achieved (Fig. 2a, Additional file 1:

Figure S2i). Hypomethylation at class A sites resulted

from an exaggerated loss of DNA methylation at sites

which show loss of methylation during normal B cell

differentiation (Fig. 2b, c, Additional file 1: Figure S2i;

class A, hypomethylation). Aberrant hypermethylation

observed at class B sites results from exaggeration of

hypermethylation normally occurring during B cell

differentiation, and from failed hypomethylation

during normal B cell programming (Fig. 2b, c,

Additional file 1: Figure S2i; class B, hypermethyla-

tion). Class C and class D sites do not undergo any

significant DNA methylation programming during

normal B cell differentiation, highlighting the poten-

tial importance of these sites for CLL pathogenesis

(Fig. 2a–c Additional file 1: Figure S2i; class C, class

D). Overall, the observed CLL-specific aberrant

methylation patterns are largely independent of the

differentiation stage achieved by the CLL cell-of-

origin.

CLL-specific DNA methylation affects super-enhancers

To test for functional implications of CLL-specific

DNA methylation events, we tested their enrichment

in ENCODE ChromHMM genome segments in the

GM12878 lymphoblastoid cell line. Aberrantly methyl-

ated CpG sites from classes A, B, and C were

enriched for enhancer elements (Fig. 3a). A recent

systematic assessment of transcription factor depend-

encies in CLL has implicated super-enhancer (SE)-

based transcription factor (TF) rewiring in CLL

pathogenesis [27, 37]. In line with this, enrichment of

CLL-specific CpGs was detected in SE regions identi-

fied in a recently published CLL data set from Ott

et al. (Additional file 1: Figure S3a) [27]. Using an-

other SE data set from Rippe and colleagues [26, 38]

enabled us to distinguish between SEs that are either

present in normal B cells (“stable”) or that have been

acquired de novo in CLL (“gained”). Enrichment of

de novo SEs was found in class A and class C sites

(Fig. 3b). De novo SEs overlapping with CLL-specific

CpG sites harbor many known genes with relevance

in CLL biology (e.g., CD5, CLLU1, IRF2;

Additional file 1: Figure S3b, Additional file 3: Table

S2).

CLL-specific DNA methylation differences result from

aberrant transcription factor programming

Recent SE perturbation studies implicated rewiring of

TF regulatory circuitries in CLL pathogenesis [27].

These findings motivated us to ask whether CLL-specific

DNA methylation patterns would be indicative of aber-

rant TF programming. To address this hypothesis, we

used ATAC-seq to test whether CLL-specific DNA

methylation patterns were reflected at the level of chro-

matin accessibility. Indeed, we found that CLL-specific

hypo- and hypermethylation events were associated with

inverse changes in chromatin accessibility in CLL as

compared to normal B cells (Fig. 3c). These concomitant

changes in DNA methylation and chromatin accessibility

indicated that CLL-specific DNA methylation patterns

reflect global epigenomic changes and further demon-

strated that disease-specific DNA methylation changes

identify functionally relevant cis-regulatory sequences in

CLL. In line with this, transcription factor (TF) binding

sites enriched in class A (e.g., IKZF1, BATF, NFAT,

EGR1/2) and in class C sequences (e.g., NFAT, EGR1/2,

E2A) were predominantly associated with B cell biology,

e.g., BATF controlling the expression of activation-

induced cytidine deaminase (AID) and of IH-CH germ-

line transcripts or E2A controlling B cell lineage com-

mitment. This suggested involvement of altered TF

binding patterns in CLL pathogenesis: class A CpG sites

are characterized by stronger than normal TF binding

and class C sites are likely de novo bound by B cell-

specific TFs (Fig. 3d, e). Class B sites were enriched in

motifs for EBF, NKX6-1, and PAX5, but overall the

motif enrichment as well as the associated changes in

chromatin accessibility were only moderate (Fig. 3c–e).

Binding of proteins related to genome architecture

(CTCF, RAD21, SMC3) was overrepresented in class D

sites (Fig. 3d, e). Aberrant DNA methylation patterns at

TF binding sites in CLL might be associated with dis-

turbed TF expression levels. TF expression analysis re-

vealed transcriptional deregulation of MAFB, JUN,

KLF14, KLF4, IRF2, and EBF1, none of which showed

major changes in their promoter DNA methylation sta-

tus (Additional file 1: Figure S4a, b). Among the deregu-

lated TFs, EBF1 showed the strongest and most

consistent transcriptional deregulation with almost

complete loss of expression in CLL samples (log2-FC −

7.98 [CLL - hiMBC]; Additional file 1: Figure S4a). The

EBF1 downregulation potentially explains the observed

CLL-specific hypermethylation at class B sites, as EBF1

has been shown to possess pioneering activity [39].
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Fig. 2 Programming of disease-specific DNA methylation patterns in CLL. a Heatmap depicting DNA methylation changes (ΔMethylation [%]) at CLL-
specific CpG sites relative to the samples’ COO. Unsupervised hierarchical clustering of CLL-specific CpGs, class A and B sites (left), class C and D sites (right).
The direction of DNA methylation change (Dir [%]) is indicated as blue and red bars for hypo- and hypermethylation, respectively, and the numbers of
CpG sites plotted are indicated next to the bars. Differentiation stages (DS) are denoted as a color gradient (white-orange), where CLL samples with
immature COO are represented in white and samples with a more mature COO in orange. DS refers to % normal differentiation programming achieved
(relative to hiMBCs). b Density plots summarizing the distribution of absolute DNA methylation levels for all CLL-specific CpG sites stratified by class (classes
A–D). CLL patients (CLL): orange, naïve B cells (NBC): light green, class-switched memory B cells (hiMBC): dark green. c Box plots and ribbon plots
displaying the average DNA methylation change for each class of CLL-specific alterations across normal B cells and CLLs. Left (normal): average DNA
methylation change (ΔMeth) of CLL-specific CpGs during normal B cell differentiation from naïve B cells (NBCs) to class-switched memory B cells (hiMBCs)
plotted for all classes (classes A [n= 5757 CpG sites], B [n= 183 CpG sites], C [n= 4238 CpG sites], and D [n= 157 CpG sites]). Right (CLL): ΔMeth for CLL-
specific CpGs in CLL. ΔMeth [%] is represented as the mean DNA methylation change relative to the expected DNA methylation level of the COO.
Standard deviation is depicted as gray shaded ribbons. DS refers to % normal differentiation programming achieved (relative to hiMBCs)
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Fig. 3 (See legend on next page.)
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Similarly, upregulation of KLF4, JUN, and IRF2

(Additional file 1: Figure S4a) could explain hypomethy-

lation programming observed at class A and C CpG sites

as all of these TFs have been reported to possess pio-

neering activity [40–42].

Class D hypermethylation is associated with reduced

CTCF binding and potentially deregulates expression of

neighboring genes

The enrichment of CTCF binding sites and motifs as

well as the enrichment of ChromHMM insulator regions

(Fig. 3a, d, e) led us to investigate the effects of aberrant

CTCF binding in CLL in more detail. We found that

class D sites had lower CTCF occupancy and reduced

chromatin accessibility in CLL samples as compared to

normal B cells (Fig. 3f) while globally, these patterns

were identical (Additional file 1: Figure S5a, b). The dif-

ferences in CTCF binding were associated with changes

in gene expression of neighboring genes (Fig. 3g). This

further highlights the importance of aberrant CTCF

binding at class D CpGs and might point towards a

novel pathogenetic mechanism in CLL. Unfortunately,

the low absolute number of class D sites does not allow

a comprehensive analysis of associated gene expression

changes and further studies involving whole-genome bi-

sulfite sequencing will be required to systematically ad-

dress this observation.

Identification of epigenetically deregulated transcripts in

CLL

The promoter DNA methylation status is widely used

as a marker for gene regulation and significant correl-

ation of promoter DNA methylation with gene ex-

pression has been demonstrated before [12, 43–45].

Previous studies in CLL identified many epigenetic

events potentially deregulating the expression of

protein-coding genes and miRNAs. However, all of

the work published so far used CD19+ B cells as

controls to call aberrant DNA methylation [6, 9, 11,

46–54]. To stress the importance of using appropriate

controls to delineate disease-specific DNA methyla-

tion events, we compared our cell-of-origin model to

the classical approach using bulk CD19+ B cells as a

reference. We correlated DNA methylation levels of

all aberrant promoter CpGs with gene expression.

The classical approach resulted in a ~ 1.5-fold over-

calling of epigenetically deregulated protein-coding

genes (Additional file 1: Figure S6a). For miRNAs,

this difference was even more pronounced (about

five- to sevenfold; Additional file 1: Figure S6b).

Interestingly, previously identified differentially meth-

ylated promoters of TCL1, HOXA4, TWIST2, or

DAPK1 did not pass the stringent filtering criteria of

our correlation analysis. This suggested that applying

Methyl-COOM results in the identification of a more

relevant set of epigenetically deregulated candidate

genes.

Using the cell-of-origin model, correlation between

promoter DNA methylation and miRNA expression

levels identified 8 CLL-specific miRNAs (Fig. 4a, b).

Seven out of these miRNAs have been demonstrated

to regulate epigenetic key players, and, even more import-

antly, they regulate genes that have been shown to be re-

currently mutated in CLL, namely ARID1A, ASXL1,

CHD2, SETD1A, SETD2, and KMT2D. Reasoning that

miRNA binding to their target genes results in gene ex-

pression changes, we compared expression levels between

miRNAs and their target genes in CLL and normal B cells.

Indeed, concordant with the pattern of miRNA promoter

hypomethylation and subsequent upregulation of miRNA

transcript levels, we found that known target genes of

CLL-specific miRNAs were significantly downregulated in

CLL as compared to normal B cells while non-target genes

were unaffected (Fig. 4c).

(See figure on previous page.)
Fig. 3 CLL-specific DNA methylation differences result from aberrant transcription factor programming. a Enrichment of chromatin states in
sequences representing CLL-specific DNA methylation. Chromatin states were defined using the 15-state ChromHMM model from immortalized B
cells [36] for CLL-specific methylation sites of the classes A–D. The enrichment in category “Repetitive/CNV” represents the averaged enrichment
value of ChromHMM states called “Repetitive/CNV.” Log2 fold change (log2 FC) was calculated using all 450K probes as a background.
b Enrichment of super-enhancers (SE) in sequences representing CLL-specific DNA methylation. SE were defined as either being gained in CLLs
(gained) or consensus between CLLs and B cells (stable). Fold change (FC) was calculated using all 450K probes as a background. c ATAC-seq
read density (normalized read counts × 10− 3) at CLL-specific CpG sites (± 1 kb) for categories of classes A, B, C, and D. CLL samples (n = 18) are
represented in orange, normal CD19+ B cells (n = 3) in green. Transcription factor enrichment analysis using ENCODE ChIP-seq peaks from the
B-cell lymphoblastoid cell line, GM12878. Displayed are –log10 (p values) resulting from Fisher’s exact test with false discovery rate correction.
e Transcription factor motif enrichment analysis using HOMER. The top 10 most enriched TF motifs for each class are displayed. The colors
represent –log10(p values) derived from a cumulative binomial distribution function as implemented in HOMER. f ATAC-seq & ChIP-seq read
density (normalized read counts × 10− 3) and DNA methylation profiles at class D CpGs co-locating with CTCF motifs (23 CpGs) (± 1 kb). CLL
samples (n = 7 CTCF ChIP-seq, n = 18 ATAC-seq) are represented in orange, normal CD19+ B cells (n = 4 CTCF ChIP-seq, n = 3 ATAC-seq) in green.
g Locus plots of exemplary genes associated with CTCF/class D events. Locus plots include data from CTCF ChIP-seq on normal B cells (red) and
CLL (blue); ATAC-seq on normal B cells (green) and CLL (purple); RNA-seq on NBC (light green), hiMBC (dark green) and CLL (orange). The class D
CpGs are annotated in red
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A similar correlation analysis on protein-coding genes

revealed statistically significant correlations between

DNA methylation and gene expression for 491 (class A),

20 (class B), 390 (class C), and 20 (class D) genes. The

majority of correlations observed were negative (i.e., a

decrease in DNA methylation was associated with an

increase in gene expression and vice versa;

Additional file 1: Figure S6c), and, as expected, the

negative correlation with gene expression was most

unambiguous for hypermethylation events (59% class

A, 95% class B, 70% class C, 85% class D; Fig. 5a,

Additional file 1: Figure S6d). A detailed analysis of

the top correlating genes (Pearson correlation test, p

value < 0.05; correlation coefficient ≤ 0.7) encompass-

ing 102 transcripts demonstrated a tight link between

CLL-specific aberrant DNA methylation and the ex-

pression levels of the corresponding genes (Fig. 5b;

Additional file 1: Figure S6a). Normal B cell

differentiation-related epigenetic and transcriptional

changes were exaggerated in class A and B whereas the

changes detected in classes C and D were observed exclu-

sively in CLL. Aberrantly methylated CpGs of classes A

and C converged in promoters of 12/102 transcripts

(TIGIT, SH3D21, LAX1, LILRB4, CD5, NOD2, POLR3GL,

IGFBP4, ZAP70, KSR2, XXYLT1−AS2, and LAG3),

highlighting the potential functional relevance of the asso-

ciated genes in CLL pathogenesis. In order to validate our

findings, we applied Methyl-COOM to 107 CLL samples

that have been published previously by Oakes and col-

leagues (Additional file 1: Figure S7a; [4]). This analysis

identified 11,059 CLL-specific CpGs, of which 8440 (76%)

overlapped with the 10,339 CpGs identified in our

discovery cohort (Additional file 1: Figure S7b). Further-

more, CLL-specific CpGs identified in our validation

cohort recapitulated 92/102 (90%) of the top correlating

candidate genes found in the discovery cohort

(Additional file 1: Figure S7c).

Epigenetically deregulated transcripts are enriched for T

cell-related and immune-modulating genes

Some of the top correlating genes have already been im-

plicated to play a role in CLL biology, e.g., ZAP70, CD5,

LCK, LAG3, or CLLU1 (Additional file 1: Figure S8a, b),

while for others their role in CLL pathogenesis is cur-

rently unknown. To gain insights into the potential func-

tional role of these epigenetically deregulated genes, we

performed enrichment analysis of known biological

functions, interactions, or pathways. MSigDB and GO

analysis revealed strong enrichment of gene sets related

to immune response, immune system processes,

hematopoietic stem cells, CLL, and NOTCH signaling

(Additional file 1: Figure S8a, b). Ingenuity Pathway

Analysis (IPA) and Metascape analysis resulted in en-

richment of T-lymphocyte-related processes (Metascape:

“Reguation of T cell activation,” “Reguation of T cell re-

ceptor signaling pathway,” “T cell costimulation,” “T cell

differentiation,” IPA: “Cell Proliferation of T Lympho-

cytes,” “T cell homeostasis,” “Proliferation of lympho-

cytes” (Additional file 1: Figure S8a). These findings are

in line with recent reports demonstrating that CD8+ T

cells from patients with chronic lymphocytic leukemia

exhibit features of T cell exhaustion, i.e., lower prolifera-

tive and cytotoxic capacity and increased expression of

inhibitory receptors (e.g., CTLA-4, TIGIT, Lag3, PD-1),

suggesting both CLL and T cell-specific changes leading

to decreased ability to eliminate malignant cells [55–58].

Epigenetically deregulated transcripts show aberrant

protein expression in CLL

Cancer cells express immune regulatory molecules that

might represent potential targets for novel immunother-

apies. These proteins modulate the activity of tumor-

infiltrating immune cells and mediate immune-escape of

tumor cells. Among the epigenetically deregulated genes

we identified several with immune regulatory function.

Therefore, we aimed to determine whether these are also

aberrantly expressed at the protein level in CLL cells.

We selected five candidates from the list of top corre-

lated genes which are known to be involved in lympho-

cyte/T-lymphocyte-related processes (TIGIT, CTLA-4,

CD276, LILRB4, and CD2; Fig. 6a). Flow cytometry was

utilized for the differential analysis of protein expression

in malignant (CD19+CD5+) and normal (CD19+CD5−) B

cells of 7 CLL patients’ blood samples (gating strategy in

Additional file 1: Figure S9a). We found that CTLA-4,

TIGIT, LILRB4, and CD276 showed statistically signifi-

cant increased expression in malignant B cells as com-

pared to normal B cells (CTLA-4, p val = 0.047; TIGIT,

p val = 0.016; CD276, p val = 0.016; LILRB4, p val = 0.016

[Wilcoxon paired signed-rank test]), while CD2 surface

expression was not detectable neither in normal nor CLL

B cells (Fig. 6b; Additional file 1: Figure S9b). Despite the

fact that the functional relevance of some of these aber-

rantly expressed proteins (TIGIT, CD276, or LILRB4) still

remains to be elucidated in the context of CLL, our obser-

vation is of particular interest for the development of new

therapeutic strategies in CLL. Options to interfere with

the signaling of these receptors are currently investigated

as potential novel therapeutic strategies in several cancer

entities.

Discussion
Applying Methyl-COOM analysis to CLL cells, we iden-

tified a number of microRNAs and protein-coding genes

that are epigenetically deregulated and validated the

CLL-specific epigenetic deregulation for the vast major-

ity of target genes in an independent patient cohort.

These epigenetically deregulated transcripts are likely
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involved in the pathogenesis or maintenance of CLL and

are functionally enriched for immune system- and

lymphocyte-related processes. The expression levels of

these transcripts are very low in normal B cells, which is

in stark contrast to the strong overexpression observed

in CLL cells. These epigenetically deregulated transcripts

are further expressed and detectable on the surface of

malignant B cells. CLL patients are known to

Fig. 4 microRNAs associated with CLL-specific DNA methylation. a Candidate CLL-specific microRNAs deregulated by class A events in their
promoter regions. Epigenetic programming during normal B cell differentiation is represented as a green line. Average DNA methylation values
are represented as dots; normal B cell subpopulations (green dots); CLL samples (white-orange dots). The y-axis represents DNA methylation
levels (%), while the x-axis depicts the differentiation stage of normal B cell subpopulations and of CLL samples relative to hiMBCs (DS).
b Candidate CLL-specific microRNAs deregulated by class C events in their promoter regions. Epigenetic programming during normal B cell
differentiation is represented as a green line. Average DNA methylation values are represented as dots; normal B cell subpopulations (green dots);
CLL samples (white-orange dots). The y-axis represents DNA methylation levels (%), while the x-axis depicts the differentiation stage of normal B
cell subpopulations and of CLL samples relative to hiMBCs (DS). c CLL-specific microRNAs target epigenetic regulators. Left panel: schematic
outline of microRNA-target gene prediction. Two databases of experimentally validated targets of microRNAs, TarBase v8.0 and miRTarBase, were
used to define a set of CLL-specific microRNA targets. Right panel: normalized gene expression levels (rlog normalized) of epigenetic regulators
being targeted by CLL-specific microRNAs as well as gene expression levels of non-target genes (negative controls; HPRT1 and MRPS12) are
shown. Recurrently mutated epigenetic regulators in CLL are presented in bold. Statistical significance of expression change between normal B
cells (NBCs, hiMBCs) and CLLs was tested using Wilcoxon rank sum test (p values: ARDB1 = 0.002; ATRNL1 = 0.0013; CASZ1 = 0.000014; GTF3C4 =
0.000014; PHF20 = 0.000014; CHEK1 = 0.000025; BUB1 = 0.007; ARID1A = 0.000014; CHD2 = 0.00003; ASXL1 = 0.00005; SETD2 = 0.00002; SETD1A =
0.000014; KMT2D = 0.00007; HPRT1 = 0.43, MRPS12 = 0.45)
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Fig. 5 Protein-coding genes associated with CLL-specific aberrant DNA methylation. a Waterfall plots summarizing the correlation coefficients [r]
between DNA methylation in the promoters and gene expression profiles of protein-coding genes for each class of CLL-specific alterations
(classes A–D). The direction of DNA methylation change is indicated in blue and red for hypo- and hypermethylation, respectively. b CLL-specific
epigenetically deregulated transcripts. Left panel: heatmap depicting absolute DNA methylation levels [%] at CLL-specific CpG sites (classes A–D)
in the promoter regions of protein-coding genes. Samples were sorted according to the differentiation stage. Differentiation stages are denoted
as color gradients, CLLs (white to orange), normal B cells (light to dark green). Middle panel: heatmap depicting normalized gene expression
levels (rlog normalization) of protein-coding genes in B cells (light to dark green) and CLLs (white to orange). Transcripts enriched for more than
one class of CLL-specific events in their promoter regions are marked with asterisks. Right panel: barplots summarizing correlation coefficients [r]
from Pearson correlation analysis between DNA methylation at CLL-specific CpGs in the promoter region and protein-coding gene expression
levels. The direction of DNA methylation change is indicated in blue and red for hypo- and hypermethylation, respectively
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progressively develop an immunosuppressive state in-

cluding dysfunctional T cells [58] and our data suggest

that CLL cells contribute to the immunosuppressive

microenvironment as well as T cell exhaustion by ex-

pressing immune regulatory molecules. Immune dysreg-

ulation is known to worsen over the course of the

disease, e.g., effector T cells are increased in early-stage

disease and show progressive accumulation and exhaus-

tion in the late-stage [58, 59]. This, together with the

fact that CLL frequently affects older patients with co-

morbidities, makes CLL an ideal candidate for the devel-

opment of effective immunotherapies. CD276, TIGIT,

Fig. 6 Flow cytometry analysis of T cell-/lymphocyte-specific markers on normal and malignant B cells from CLL patients. a Summary scheme representing
functional implications of CLL-specific candidate genes selected for flow cytometric analysis. b Flow cytometric analysis of expression of CTLA-4, TIGIT, CD276,
LILRB4, and CD2 on peripheral blood B cells of CLL patients. The expression was determined for non-malignant B cells (“Normal”; CD19+ CD5− B cells,
represented in green) and neoplastic B cells (“CLL”, CD19+ CD5+ B cells, represented in orange) detected in the same samples. “Co,” no antibody staining
control; “Ab,” staining with the antibody of interest as indicated. c Normalized median fluorescence intensities (target MFI - MFI of negative control [Co];
nMFI). d Δ normalized median fluorescence intensities between CLL cells and normal B cells (ΔnMFI (CLL-normal)) for each patient tested
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and LILRB4 would be of particular interest, since to our

knowledge they were not yet considered as immunother-

apeutic targets in CLL. TIGIT is a recently identified in-

hibitory receptor expressed on T cells and natural killer

(NK) cells. In T cells, TIGIT expression inhibits cell pro-

liferation, cytokine production, and T cell receptor sig-

naling [60]. In tumors, TIGIT is involved in mediating a

T cell exhaustion phenotype, which is manifested by

poor effector function of T cells and, consequently, de-

creased ability to eliminate tumor cells. In non-Hodgkin

B cell lymphomas, PD1- and TIGIT-expressing intratu-

moral T cells were shown to mark dysfunctional or

exhausted effector T cells [61]. CLL patients with an ad-

vanced disease stage display elevated numbers of TIGIT+

CD4+ T cells compared to low-risk patients [62]. In pre-

clinical models of colorectal and breast carcinoma,

TIGIT blockade was shown to reverse the exhaustion

phenotype of cytotoxic T cells and to inhibit tumor

growth [63]. Another immune inhibitory receptor,

LILRB4, was reported as tumor-associated antigen that

is highly expressed on monocytic AML cells [64, 65]. It

was also reported as a selective marker of neoplastic B

cells and HSCs from CLL patients [66]. LILRB4 target-

ing, either by antibodies or by CAR-T cells, impeded

AML development [56, 57]. CD276 overexpression, on

the other hand, was linked to anti-apoptosis in colorectal

cancer through activation of Jak2-STAT3 signaling path-

way, and as a result, increased expression of anti-

apoptotic protein Bcl-2 [67]. High CD276 expression

levels were already linked to poor prognosis in CLL and

prostate and pancreatic cancer [68–71]. Altogether,

TIGIT, LILRB4, and CD276 represent attractive thera-

peutic targets for treatment of CLL.

The present study demonstrates that Methyl-COOM

delineates cancer-specific DNA methylation patterns

and identifies deregulated pathways involved in the

pathogenesis or maintenance of CLL. Our work serves

as a proof of concept that tracing the cell-of-origin by

comparison to normal differentiation trajectories is of

great conceptual importance in cancer epigenetics. Iden-

tifying the cell-of-origin is not only crucial for the pre-

cise analysis of epigenetic data, but it is also important

for clinical translation. The cell-of-origin impacts on

tumor biology, affects chemo- and radiosensitivity, and

influences disease outcome. For instance, studies in a

murine model of MLL-rearranged AML have shown that

the cell-of-origin can influence the phenotype and the

aggressiveness of the resulting leukemia [72]. Likewise,

glioma subtypes vary in their response to therapy and

share molecular signatures with different normal neural

lineages, suggesting a difference in their cellular origin

[73–77]. So far, the identification of a cancer’s cellular

origin is based on genetic lineage-tracing experiments in

mice, like the ones from Blanpain and colleagues

demonstrating the presence of distinct cells-of-origin for

two types of skin cancer [78]. In colorectal cancer, the

cell-of-origin has been studied intensively, pointing to-

wards three potential cell types as founder cells: intes-

tinal stem cells [79–83], transit amplifying cells [79, 84],

and differentiated villus cells [84]. In most instances,

however, the precise cell-of-origin, in which transform-

ation occurs, remains undefined.

Methyl-COOM can, in principle, be applicable to any

type of DNA methylation data as a source of epigenetic

information. In contrast to previous reports in CLL and

other malignancies, epigenetic pathomechanisms were

investigated using an approach that systematically avoids

confounding factors introduced by epigenome dynamics

occurring in the context of physiological differentiation

processes. It has been demonstrated that similar con-

cepts apply to other lymphatic neoplasms, e.g., T-ALL,

DLBCL, or MCL [85–88]. However, for other tumors,

including myeloid malignancies, the knowledge on the

cell-of-origin is still scarce. Therefore, beyond the field

of CLL research, this study could serve as a template for

the analysis of epigenomic data in other cancer entities.

Conclusions
Our work describes a new analytical framework, Methyl-

COOM, to delineate cancer-specific DNA methylation

patterns, a concept that should, in principle, be applic-

able to all tumor entities. Using Methyl-COOM, we in-

terrogated DNA methylomes of CLL samples in the

context of normal B cell differentiation. This enabled us

to unmask abnormal transcription factor and super-

enhancer activities, as well as to identify aberrant tran-

script expression in CLL. Furthermore, we were able to

demonstrate that epigenetically deregulated transcripts

are enriched in immune regulatory molecules which are

also expressed at the protein level in CLL cells, suggest-

ing that CLL cells contribute to immunosuppression and

T cell exhaustion by upregulation of immune regulatory

molecules. This finding might serve as a starting point

for the development of novel therapeutic strategies to

overcome immune evasion of CLL cells.
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