

SET UP OF AUTOMATED USER INTERFACE TESTING SYSTEM

Bachelor’s thesis

Electrical and Automation Engineering

Valkeakoski

Spring 2020

Oanh Do

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Theseus

https://core.ac.uk/display/323463433?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ABSTRACT

Electrical and Automation Engineering
Valkeakoski

Author Oanh Do Year 2020

Subject Set up of automated user interface testing system

Supervisor(s) Juha Sarkula

ABSTRACT

Automation has evolved dramatically in the past decade, one aspect of
this being software automation testing. The system used in this thesis is
Nightwatch.js which is a Node.js-based framework solution for web
applications and websites. With the demonstration conducted in this
paper, the author aims to specify the vital role of automation testing
framework in the software industry.

The commissioning party was Quux Oy, a software company located in
Valkeakoski (Finland). The testing in the company are still done manually
and there is an imperative need for the setup of an automated user
interface testing system.

The thesis project included a theoretical review using online sources such
as articles, forums, electronic sources, and the main website of the
Nightwatch itself. The theory was focused on the definition of automation
and on defining Nightwatch.js system along with all the required features
to set up the system. The implementation part was where the whole set
up process was being examined and recorded.

The outcome of the thesis project is a test suite where all the components
required to be tested were covered. The targets of the thesis were
achieved, with a justification for using this testing system in Quux Oy and
its whole set up process.

Keywords automation testing, Nightwatch.js, Jenkins

Pages 34 pages with appendices 3 pages

CONTENTS

1 INTRODUCTION ... 1

1.1 Commissioner and the assignment ... 1

1.2 Outline and research objectives of thesis ... 2

1.2.1 Outline ... 2

1.2.2 Research questions and research objectives .. 2

2 THEORETICAL REVIEW ... 3

2.1 End-to-end automation testing ... 3

2.2 Nightwatch.js ... 4

2.2.1 API Reference .. 5

2.2.2 An example .. 6

2.3 Guideline in writing test scripts .. 7

2.4 About its dependencies ... 8

3 DESIGN AND IMPLEMENTATION ... 9

3.1 Implementation ... 9

3.1.1 Configuration ... 9

3.1.2 Writing tests .. 11

3.2 Further enhancement ... 16

3.2.1 Using command line .. 16

3.2.2 Defining constant .. 16

3.2.3 Before[Each] and after[Each] hooks .. 17

3.2.4 Custom command ... 17

3.2.5 Page object .. 21

3.2.6 HTML Reporter .. 23

3.2.7 Unit testing .. 24

3.2.8 Headless mode .. 25

3.2.9 Continuous integration and continuous delivery with Jenkins 26

4 LIMITATIONS .. 30

5 CONCLUSION ... 31

REFERENCES .. 32

Appendices
Appendix 1 DP-1952.js IN EARLY STAGE
Appendix 2 testForRightAndWrongAccount.js PAGE OBJECT FILE
Appendix 3 DP-1952.js AFTER BEING CUSTOMISED

LIST OF FIGURES

Figure 1 Enter Google Gmail scenario .. 3

Figure 2 Enter Password scenario .. 3

Figure 3 Operation of Nightwatch (Theory of operation, 2019) 4

Figure 4 An example of a Nightwatch test script ... 6

Figure 5 Result of the example ... 7

Figure 6 Package.json file ... 9

Figure 7 Nightwatch.conf.js file .. 10

Figure 8 A description of a test story in JIRA (JIRA Software features, 2019). 12

Figure 9 Test issue in JIRA (JIRA Software features, 2019). .. 12

Figure 10 A testing folder's structure ... 13

Figure 11 Result in terminal window .. 15

Figure 12 Defining constant.. 17

Figure 13 loginAsAUser.js file ... 18

Figure 14 The test script when using custom command ... 19

Figure 15 The "custom_commands_path" property .. 19

Figure 16 An example of node-postgres connection (Bodnar, 2019) 21

Figure 17 Standard structure of a page object file ... 22

Figure 18 Commands property's structure .. 23

Figure 19 HTML Test Result .. 23

Figure 20 Testing pyramid (Jackson, 2017) .. 24

Figure 21 Headless mode setup ... 26

Figure 22 CI process (Pathania, 2017) .. 27

Figure 23 The Jenkins dashboard (McAllister, 2015) ... 28

Figure 24 Jenkinsfile (Declarative Pipeline) (Pipeline, 2020) ... 29

1

1 INTRODUCTION

In an era where software development is rapidly evolved, automation
testing plays a crucial part when enhancing the testing quality and
productivity not only by reducing a great amount of error but also by being
a considerably great stand-in for manual testing with its versatility.
Automation user interface testing is a process requiring an automated
tool to implement test case suite for the web application, simulate user
behavior and generate detail reports compared to expected results
(Teixeira, 2013). The automation testing approach shorten development
cycle with its reliability by being able to perform the same operation
precisely every time – eliminate human error such as wrong data input
and show how the application would react under repeated execution; its
comprehensive by also being able to be reused on different versions of
the web application to run more tests in less time. It is essential to
understand that automation testing cannot completely replace manual
testing, it is not a safe alternative since there are some scenarios that do
not necessary to employ an automated test and manual works are
preferable. Thereby, both manual and automated tests should be used
coordinately - the testers/developers are advised to begin with manual
testing and by using an automated tool for regression test purpose for
better results (Screenster, 2018).

1.1 Commissioner and the assignment

Quux Oy, or Let’s Do !T is a company located in the municipality of
Valkeakoski and founded in 2014 with specialization in Information
Technology & Services industry (Let's Do !T: About , 2020). In this field,
Quux Oy focuses on the development of digital business and in the field of
system development, software development and data center services
related to the development and production of digital cloud services,
integration, and marketing automation (Let's Do !T). In the dedicated
software development team, there are backend and front-end
developers; maintenance department has testers who run manual and
unit tests. At this point, the strongly required automation testing system
is End-to-end testing, also called as Automated User Interface testing.
Compared to unit testing – a system testing a small unit of the code by
breaking the code into functions then test each function to ensure that it
behaves as expected (What is the Purpose of Unit Testing?, 2014), end-to-
end testing helps ensuring the basic user interactions on the entire web
application work well and does not contain ill effects on end users (Pittet,
End-to-end tests, 2020). In short, although covering all the source code
with unit testing system to verify whether written functions work
correctly, it does not guarantee the functionalities of the final product – a
combination of all the built functions - work together and create a

2

complete website. According to the introduction from the system’s
website, Nightwatch is an integrated End-to-end testing solution which
examines real user scenarios of a web application from start to finish
which can benefit the software development process in Quux Oy
(Nightwatch.js, 2019). Thereby, this thesis is dedicated to examining the
concept of a User Interface testing system – Nightwatch.js – by examining
its benefits and drawbacks, along with strategies for the system setup.

1.2 Outline and research objectives of thesis

1.2.1 Outline

In order to clearly explain the concepts of this automation system, there
are five chapters covering specific fields in this thesis, as follows:

Chapter one introduces the automation testing approach, the
commissioning party and the assignment that needed to be carried out.

Chapter two takes a closer look to an automation testing system with
Nightwatch.js system.

Chapter three is where the implementation takes place along with further
enhancement for the overall system.

Chapter four discusses the drawbacks that the system has.

Chapter five is for the conclusion of the whole thesis.

1.2.2 Research questions and research objectives

The purpose of this thesis project was to give an inclusive answer through
both theory research and design to the research questions: “How can End-
to-end testing boost testing performance?” and “How can automation
testing make the testing system of Quux Oy more flexible?”. The author of
the thesis wished to follow these following objectives throughout the
whole process:

- A thorough theory of an End-to-end testing system – Nightwatch.js.
- A justification of why to include the End-to-end testing framework to

the testing system in Quux Oy.
- A complete set up process for the framework.

3

2 THEORETICAL REVIEW

2.1 End-to-end automation testing

End-to-end automation testing is a software quality assurance
methodology ensuring applications have the correct functioning and
performance as desired across the overall external interface. With end-to-
end testing system, testers are able to test the complete functionality of
the application in end user’s point of view, because a complete end-to-
end testing suite performs every behaviours of users on the application’s
interface. In which, one test script is written to verify functionality of a
particular page from the system (Screenster, 2018). Figure 1 and Figure 2
demonstrate the action of signing in to a Google account, in which, the
user will navigate through two pages and conduct these four interactions
on the webpage’s UI in order to be signed in the Gmail. A complete end-
to-end test for signing in will contains test steps representing these four
steps.

Figure 1 Enter Google Gmail scenario

 Figure 2 Enter Password scenario

4

2.2 Nightwatch.js

There are a vast number of end-to-end automation testing frameworks.
Each of them proposes different process for generating tests along with
different guidelines and installations. To choose which is the most suitable
for the developer team, the testers should consider their needs and
priority. Previously, at Quux Oy, testers used Robot framework for testing.
This keywork-driven testing framework is implemented by using Python
with PyCharm integrated development environment (IDE) to execute
tests. However, for building a website, JavaScript is being used; in order to
make the whole system more flexible and harmonize in a consistent way,
a Node.js based framework as well as being written in Visual Studio Code
IDE – Nightwatch.js is considered a better choice. With the benefits come
with it, Nightwatch can help improve the development process of the
team. As being stated in Collins English Dictionary, a tool is anything that
can be used to perform an operation or to achieve an end (Collins
Dictionary, 2020). In this thesis paper, the author will introduce the
concepts of End-to-end automation testing, the tool – Nightwatch.js by
describing to the reader how to use and boost the tool’s functions. Thus,
what is Nightwatch.js?

Nightwatch.js is a User Interface (UI) automated testing framework for
web applications and websites running on top of Node.js and uses the
Selenium WebDriver API to carry out commands and assertion, which
means it allows testers to test an application through simple commands
in a node.js environment efficiently by communicating through Hyper Text
Transfer Protocol Application Program Interface – or HTTP API - with a
Selenium/WebDriver server (Nightwatch.js, 2019). According to public
information available on its official site, W3C WebDriver API drives
browsers such as Chrome, Safari, and Firefox by controlling them remotely
by standardizing browser automation (Webdriver, 2019).

 Figure 3 Operation of Nightwatch (Theory of operation, 2019)

5

Figure 3 shows how the Nightwatch.js system works. Usually Nightwatch
sends two requests to the WebDriver server in which the first one is for
locating an element with a given CSS selector/ XPath expression, and the
second one is to perform the command on the element or assertion about
it. The figure above show how Nightwatch communicates with Selenium
Grid or Cloud system, however, it can still work with only W3C WebDriver
API such as ChromeDriver.

Nightwatch.js was originally published in January 2014, the creator was
Andrei Rusu, whose vision was to create a system which can write
automated UI tests explicitly while the need of configuration and
additional libraries is all but little (About Nightwatch, 2020). This testing
framework uses page objects, commands, assertions with simple but
powerful syntax for browser-based tests which make the test code clean
and understandable. The useful build-in test runner function helps testing
more flexible with the ability of running tests with groups of tags or single
test module, and tests can be run successively or parallel. Nightwatch is
also a Cascading Style Sheets (CSS) and Xpath support system. An
automated UI test works by identifying and locating elements from the
web page which mostly had been assigned attributes as Name, IDs or
Class. However, there are circumstances where this practice is not
achievable, using CSS selectors and Xpath for verifying the location of
elements comes in handy. In short, by using Nightwatch, testers are not
necessary to learn all the internal source code but can still test user
interaction of the overall website and web applications with high
performance of the automation execution. Furthermore, there are cloud
server support, and continuous integration systems support
(Nightwatch.js, 2019).

2.2.1 API Reference

As being introduced on the official website, Nightwatch’s Application
Programming Interface (API) reference has a remarkably long page full of
commands that allow testers to use for writing test scripts in favor of
manipulate the browsers. It is divided into four sections: Assert and Expect
are used for validating the test, Page Object for advance tests and the
most convenient syntax for manipulating users’ behaviors are in the last
section called API commands. The Assert library is used for implementing
assertions on elements; there are also verify command for similar
purpose; however, while the test ends without further performance when
assertion of assert command fails, the verify command is used to log the
failure and the tests are continued. For instance, assert.title(‘expected
value’, ’message’) command are often used thanks for its ability to check
whether the page title correct compared to given value then log the result.
For Expect assertion, Nightwatch has the agility of Behavior-Driven
Development (BDD) – a method to test the behavior of the system from
the perspectives of users. The BDD interface of Nightwatch is based on
Expect api from the Chai framework; an example for this assertion is

6

browser.expect.element('body').to.be.present.before(1000).The purpose
of develop Expect assertion is to have a more flexible and understandable
language compared to Assert; however, even in the latest update, there is
no support to chain assertions or optional messages. The third API used in
Nightwatch which is an important and powerful functionality is Page
Object. Its goal is to reduce the amount of duplication in the test code as
much as possible by grouping pages or parts of page into object. Further
information will be covered in this thesis while implement the project due
to its extensive assistance; for now, it is adequately to know API Page
Object module consists of URL property, elements object and arrays of
commands. The last introduced section is called API Commands, these
WebDriver protocol mappings help improving the writing tests with a
more readable and comprehensible syntax. There are composite
commands for cases such as checking whether an element is displayed:
getValue(), isVisible(); or some simple, basic commands such as url() or
execute(). Additionally, Nightwatch also allows testers to manipulate the
browser by providing commands functioning as fullscreenWindow(),
maximizeWindow() or openNewWindow, etc (API Reference, 2020).

2.2.2 An example

In this chapter, a simple example of how Nightwatch.js works is given; the
website being tested is nightwatchjs.org itself with a built-in assert library.

Figure 4 An example of a Nightwatch test script

To begin with, a new Java Script (JS) file named “Assert.js” was made in a
separate folder for the tests. In Figure 4, Assert.js starts with
“module.exports”, same as every other JS files, to expose the objects as a
module and a ”@tags” property is added in order to make test more
flexible with the ability to easily target tests based on their own one or
multiple tags. Additionally, Nightwatch allows testers to test multiple test
cases with different tags or to skip tags that does not need to be tested,

7

this will be discussed more deeply in following part of the paper. Because
Nightwatch searches for keys on exported object, those keys will be test
cases; and because the “browser” is a global object that being passed as
an argument to the test, it is used for calling functions or accessing
variables globally along with Nightwatch commands API. To navigate to a
URL of the object’s web page, “.url()” is used. Then, the assert library is
used to check whether the page title is equal to the given value or the
“#navbar” – the navigation bar of the page – is available, etc. To capture
the current state of the page, “.saveScreenShot” help taking the
screenshot and save it to the given file. To simulate end user’s click action,
the tester needs to locate the place with CSS selector/ Xpath o when using
“.click”. Lastly, “.pause” is used for waiting and the browser session closes
properly with “.end()” method. Further explanation on how to write an
automated UI test script will be carried out in following chapters.

Figure 5 Result of the example

It can easily be seen in Figure 4 and Figure 5 that by using commands from
the API reference, testers are able to manipulate the web page and
simulate user behavior; additionally, from what is shown in Figure 3,
Nightwatch.js can generate the result of the process. The displayed result
in Figure 3 shows the success of the assertion along with the amount of
time it takes to perform. By using this end-to-end testing system, the
tester can retest multiple times with less redundant manual steps and less
be erroneous.

2.3 Guideline in writing test scripts

To ensure that there are no erroneous circumstances with the test, the
following rules or guidelines below can be applied.

- A test should start a workflow with opening a browser, navigating to a

certain website; this is a simulation of how a user use a web page.
- A test should be work independent without being linked to other test

suites; this is a good way to avoid redundant failures.

8

- A test should only tests one feature or a test suite can have many test
cases covering one feature individually – in other words, each test
should have single purpose.

- Tests should end properly.

All the test suites, of any form of test automation, should follow these
guidelines in order to prevent error-prone circumstances. From a small
amount of test suites to a total of hundreds or thousands of tests, writing
them with these rules, which were concluded by Raghavendra Prasad Mg
in his book - Learning Selenium Testing Tools Third Edition, helps the
structure clean and consistent, prevents having small issues that can ruin
large parts of tests (MG, 2015).

Janet Gregory and Lisa Crispin also provided some more rules in More
Agile Testing: Learning Journeys for the Whole Team, helping to create
explicit test suites (Design Principles and Patterns, 2009).

- A test should be DRY – a short term for “Don’t Repeat Yourself” in

automation testing wise – for easy modification.
- Use business readable names instead of plain elements copying for the

web page.
- Avoid database access to prevent slowing down the process.
- The results from the test should always run green.

2.4 About its dependencies

To install Nightwatch.js on one’s machine, first, this automated testing
framework works on Visual Studio Code IDE (VS Code); therefore, VS Code
is required. Then, it is necessary to install Node.js – according to the
introduction from the web page, Node.js is a platform which is built on
Chrome’s JavaScript runtime, design for a fast and extensible network
application – along with node package manager (NPM) (About Nodejs,
2020). The whole purposes of NPM is to make managing packages and
dependencies easy; it assorts modules in order which helps the node find
them more efficiently. Next, use NPM command line tool to install
Nightwatch framework itself and Selenium WebDriver(s). Selenium
WebDriver is used to accept commands, from the test suite, using Client
API, and send them to a browser controlled and launched by a driver class.
Nightwatch.js can be used for many browsers with specific WebDriver
server listed on the website such as GeckoDriver, Microsoft WebDriver,
SafariDriver and ChromeDriver. These have similar ways to install which
is by downloading directly online or by using NPM. In this project,
ChromeDriver will be used as based on the customer’s need. In these past
few years, Nightwatch.js has many upgrades and the version will be used
in the thesis is the latest one which is version 1.3.1. With these updates, it
is no longer necessary to use Selenium Server to manage browser drivers
including Chromedriver – the priority of this project; however, to those
testers who use old browsers such as Internet Explorer, download the

9

latest Selenium Server Standalone package is a must and it should be
placed in a file along with the desired browser driver.

3 DESIGN AND IMPLEMENTATION

3.1 Implementation

3.1.1 Configuration

All the programming test scripts of Nightwatch are written in Visual Studio
Code software developed by Microsoft and the configuration is inspired
by the work of Domenico Gemoli – a collaborator of Nightwatch (Gemoli,
2019). To begin with, creating a new Git repository for testing from an
empty folder by typing “git init” is recommended; for this thesis, the new
created folder is called ThesisDemo. Next, a key element file -
package.json – which normally placed in the project root is also needed
for Nightwatch.js system. JSON is the abbreviation of JavaScript Object
Notation, it stores and transports data from server to web page. This
package.json carries a great number of information related to the project
which help NPM to analyse the project and manage its dependencies. By
typing “npm init-y”, this default file is created.

Figure 6 Package.json file

Figure 6 shows that inside the file, there are properties such as name – the
project’s name or, in this case, the name of the folder – thesis-demo;
version of the package; etc.

The first and the main dependency that need to be installed next is
Nightwatch, which can be done by typing “npm install nightwatch –save-
dev” into the terminal window. In this command, “—save-dev” helps

10

saving Nightwatch as a devDependency, a package that is used in the
development process, in the “package.json” file created previously. From
here, the “test” in “scripts” property in the package.json needs to be
changed into “nightwatch”. Additionally, a file named “package-lock.json”
along with the “node_module” file, where the downloaded libraries from
NPM are placed, are also created. “Node_module” is where the
chromedriver will be installed into – “npm install chromedriver --save-
dev”, whereas “package-lock.json” is created automatically whenever
npm is used. This package-lock JSON file is advantageous for its ability of
stabilizing the process with consist install and in harmony dependencies.

According to Nightwatch’s website, to complete the configuration
process, a file named “nightwatch.conf.json” is created manually by
copying the config file shown on the website. This configuration file should
look as Figure 7 illustrates:

 Figure 7 Nightwatch.conf.js file

The file presents src_folder, which is the folder all the nightwatch.js
testing file will be placed in – in this case, the folder named “tests”;
webdriver, an crucial protocol which powers tests and allows testers to
manipulate end user’s behaviour on browsers by communicating with the
browser drivers, contains Webdriver configuration options; test_settings,
which are properties for test environments, containing a default
environment node (such as chrome) or multiple different ones.

Finally, to install chromedriver, testers will need to type “npm install
chromedriver --save-dev” in the terminal window. Some changes should
be made in webdriver object settings depending on the testers’ computer.
Server_path shows the location of the binary web driver file. In order to
allow Nightwatch to manage the browsers, a path to web drivers should
be stated. Therefore, if the testers are working with Windows computers,
the path should be "
node_modules/chromedriver/lib/chromedriver/chromedriver”

11

(chromedriver is used for this thesis). Otherwise, if the used local
workstations are macOS, the copy from the website can be kept, which is
"node_modules/.bin/chromedriver".

3.1.2 Writing tests

At Quux Oy, a tool developed by Atlassian - an Australian Company – called
JIRA is being used. The purpose of using this tool is that it helps tracking
and managing issues and bugs related to the web development process.
Thus, this tool is highly beneficial for the workflow and team collaboration.
To begin the testing process or even a web development process, testers
or programmers should check the issues from JIRA beforehand. JIRA has a
very powerful classification system for the workflow, these schemes are
Issue having types as User Story, Epic, Sub-task, Bug, Test, etc (JIRA, 2019).

In testing process wise, testers focus mainly on Story, Bug and Test Story.
In this project-friendly agile methodology, User Story is where placed the
projects’ requirements from end user’s point of view; they are each made
with a brief-but-comprehensive one-line summary describing what the
story is about and a clear description of how the projects are expected to
work. From what described in the Story, testers can presume how the final
product should be and start creating Test-type issue; draft Nightwatch.js
test scripts are also written in this stage. When the product is finished in
its own branch in git, testers will check it by using “git pull” and “git fetch”
to retrieve updates from the remote repository and test it in local
repository. Git is an open source system and is the modern version
control; it is used widely for tracking changes in source code to manage
projects or set of files with their changes by allowing users to commit their
work locally and merge the copy of the repository to server (What is git:
become a pro at Git with this guide, 2019). At this stage, testers can
rewrite the test script and run the automation test. If any bugs appear,
inform the team by creating Defect under Sub-task option in JIRA; this will
be covered in later section of this chapter. Automation test will be run
again after bugs are fixed and will be merged from the local branch to
remote repository with “git push”. Two figures shown below – which are
made by the maintenance manager of Quux Oy and named respectively
“DP-1952: As a user, I want to login to system, so that I can use the service”
and “DP-1953: Test As a user, I want to login to system, so that I can use
the service”- are examples of what testers will be working with in JIRA,
which contain necessary information for the testing process. Additionally,
for example, “DP-1952” is the unique issue key of the task which its benefit
is easy navigation, while “As a user, I want to login to system, so that I can
use the service” is basically a brief summary of the task.

12

Figure 8 A description of a test story in JIRA (JIRA Software features, 2019).

 Figure 9 Test issue in JIRA (JIRA Software features, 2019).

Figure 8 shows that, in most cases, a description of a Story consists of two
parts: to be implemented and the acceptance criteria. “To be
implemented” shows what a tester should implement, how a test should
be carried out; however, it is not necessary to follow every written step
precisely, a test is qualified if its result meets the acceptance criteria
below. Both a manual test and an automated UI test should be conducted
to ensure that the product is able to perform all the tasks according to
“acceptance criteria”. After checking the issue with a success manual test,
testers now create a test issue in JIRA which can be seen from an example
shown in Figure 9. In this test details section, the steps are created based
on “to be implemented” and “acceptance criteria” in Figure 8 where
“steps” indicates action or behaviour of the end user’s, “data” is the value

13

that need to typed out and “expected result” is basically the desire result
that the web page or web application should show. Therefore, the test
scripts for automation testing are written accordingly. In addition, there
are also issue operations section, under the issue key and summary,
containing option for testers to edit, comment or assign the issue to JIRA
users and sub-task option to create necessary type of sub-task including
defect introduced above. There are also issue status where JIRA users can
define the current status of the task to be from open, to do, coding, testing
to ready, etc.

As mentioned before, a folder called “ThesisDemo” was used for this
thesis project; inside it, there are subfolders such as node_modules,
nightwatch.conf.js, package-lock.json, package.json and a directory called
tests – which correspond with the property value in src_folders stated in
nightwatch.json file – used for holding test modules. Figure 10 shows the
structure of the testing folder.

Figure 10 A testing folder's structure

To start writing any test script, a new Javascript file (.js) is created within
“tests”. For better management, the name of this file should be the same
as the testing task’s key – for example, “DP-1952”. Additionally, there will
be a file called “tests_output”, which is where display all the .xml result
logs file of Nightwatch, after running the tests. According to an article
discusses about .xml file or Extensible Markup Language file, this is a
markup language created to define syntax for encoding document by
using tags in order to make the documents readable to both humans and
machines (What is XML, 2018). There will be a file called “Screenshot” if

14

testers choose to take screenshot of steps in the tests – this works by using
“.saveScreenshot” command.

The following steps in the writing test script process are similar with what
was shown in the previous example in this thesis. Therefore, the tag of this
test became “DP-1952” (the same as the task’s key and its automated test
file’s name). According to the test issue of this login task in JIRA, testers
should test whether the login system web page works well with the
correct input of both the username and password or fails with the wrong
input of either the username or the password by login many times with
different inputs. Moreover, before executing any user’s actions, locating
an element should be the first step in writing a test process. Nightwatch is
a CSS/Xpath selector support system, which means that to locate an
element on the page, testers can copy the CSS/Xpath from the page and
paste it on the tests script’s command. In order to do so, testers should
move the mouse over and right-click on the element needed to be spotted
and choose “inspect” on the pop-up menu (or by press Ctrl+Shift+I on the
clipboard). This action will display a Chrome DevTools window and the
“Elements” tab will be opened with a tree-format HTML along with a
highlighted element. Validating the XPath and CSS can be done by pressing
Ctrl+F to use the search box for searching desired elements. To copy the
CSS or XPath selectors, simply right-click on the element and choose “copy
XPath” for XPath or “copy selector” for CSS option in the pop-up menu.
The return result is pasted to the clipboard and it is an element instance
representing the web page’s actual HTML element.

- “Step one: Login with wrong password” is the stage when by typing the

wrong password, one cannot login to the website.
To begin with, the value of “step one” property is a callback function which
receive browser as a property. To navigate the Uniform Resource Locator
or URL which is the website’s address, use the command .url(). When the
page is loading, the command .waitForElementVisible() is needed. Its
purpose is to give an element a period of time(in milliseconds) to appear
before any further performances. Next act is to set username and
password with .setValue() command. This command usually requires a
location – which can be get by using CSS or Xpath - to put the value into
and the value itself. For achieving this step’s goal, the password input
should be a wrong value. To simulate clicking the log in button, testers can
use .click() command and locate the button. Usually whenever a click
event is happened, the web should need a moment to load to another
page; therefore, tests can use .waitForElementVisible() or use .pause()
command and give the test some time to suspend. Usually when a wrong
value is set, the page will not let user to log in and will generate a message
saying about the reason. To verify whether this message appears on the
web page, the command verify.elementPresent() from the build-in verify
library is useful for this situation. With this command, testers can check
whether an element exists by using CSS or Xpath to locate the element

15

and testers can also optionally give a log message to display in the output
– in this circumstance, the message can be “Login failed”.

- “Step two: Login with wrong username” is the stage when by typing

the wrong username, one cannot login into the website.
Using .url() from step two helps simulating the retrieving current page’s
URL event. From here all the step is the same as step one; however, the
username is now the one with wrong value. Testers still also need to use
.verify.elementPresent() to check whether the page generate a message if
the input is wrong.

- “Step three: Login with correct account” is the last step where using

the real account to login to the page.
All the steps are the same from the steps above, from retrieving to the
URL to login with the correct username and password to the click button
event, all the commands can still be re-used. However, when the inputs
are correct, the page will load to the main page which only the real user
account can control, which will lead to some changes at the verify
command line. The CSS or Xpath selector of the declared location at this
step is copies from one of the elements show in the main page, and the
message will be different with the change of “Login failed” to “Login
successfully”.

To run the test, simply write “npm test” in the terminal window. “npm
test” executes tests by knowing the stated value spotted in “tests” key in
“scripts” property within the “package.json” file in the root of the project.
Nightwatch, then, connects to local host on port 9515 which is where the
chromedriver is in order to manipulate the browser. Figure 11 shows the
result that Nightwatch generates after running the test script.

Figure 11 Result in terminal window

16

3.2 Further enhancement

The automation test runs well with the structure above. However, there
are ways to make the test more advance but readable and easier to
manage. The following section of the thesis is about how to improve test
scripts with more depth.

3.2.1 Using command line

The build-in test runner of Nightwatch is a very useful function which helps
the testing process runs smoothly to generate useful results. This support
comes with several advantageous run-time options; to view all, simply run
“npm test --help”. There are lots of great and useful options such as
running tests in groups, in tags or singularly, etc. As being discussed
earlier, “--tag” or “--skiptags” are convenient with its advantage of filtering
tests by tags to run or skip tests that have specified tags. Moreover,
Nightwatch’s “--group” support has similar influence where it allows tests
to be organised into groups and run them as a single unit; by doing so,
directly place necessary tests into a sub-folder while the folder’s name is
the group’s name. The same as “--skiptags”, there is also “--skipgroup” . In
order to block a test module from being executed, inside the module, set
“@disabled: true”. Unfortunately, there is no official support to disable a
test cases, however, modifying the test method into a string is a great
method for overcoming this issue. Additionally, Nightwatch is still
updatable, to check which version the testers have installed, simply use
“npm test --version”. The "--" is necessary before adding extra Nightwatch
switches because it helps separating the params passed to npm command
and params that passed to the script.

3.2.2 Defining constant

In JavaScript, “const” is a way to define a constant in which the constant
is a value that cannot be changeable (Const, 2019). When using “const” in
Nightwatch, a CSS/Xpath selector of an element or an element itself can
be named, which means the constants can be used multiple times without
writing the values of the constants. As being mentioned above, to simulate
the act of typing username and password, two .setValue() commands are
used successively along with long lines of CSS/Xpath selectors. It can easily
be seen that with this structure, the script will look chaotic; and when
using this technique time and again, it will lead to unreadable situation if
lots of identical commands are used repeatedly. Therefore, “const” is an
excellent choice for a better script when elements which will be interacted
with through commands and assertions are defined. As shown in the
following snippet of code – Figure 12, the test will be more explicit if
testers declare the location of the username and password field and theirs
value with a name, or even with the location of the login button: the Xpath
selector of where to input the username and password is now

17

“userAccountInput” and “userPasswordInput”, while the username and
the wrong password value are simple “userAccount” and
“wrongUserPassword”, the .click() command simulating click event now
appears as “.click(submitButtonSelector)”.

Figure 12 Defining constant

As being shown above, a good programming convention is expected with
meaningful and consistent constant names. With proper meaningful
constant names, the scripts are readable and uncomplicated to modify
later on.

3.2.3 Before[Each] and after[Each] hooks

This test hooks technique - before[Each] and after[Each] hooks – is
inspired by Mocha test framework, which is used for setting up
preconditions and closures to the tests (Using before[Each] and
after[Each] hooks, 2019). There are two types of hooks: before/after and
beforeEach/afterEach. The former run once before and after the
execution of the test suite, while the latter run before and after each test
case. Hooks can be appealed to with optional descriptions or named
functions which helps locating errors in the tests easier. For example,
Before hook is used for navigating the URL and the After hook is for ending
the test execution.

3.2.4 Custom command

One of the motivations for this paper is how to execute this automation
UI test system to its fullest. With its vast number of functions, Nightwatch
allows testers to simplify the test script in advance ways; in which, one is
so called Custom command function. When testing the web application of
Quux Oy’s customer, which is built by Quux Oy developer team, almost
most of the product require authentication - member’s account login -
steps. Having a mindset that there will be scenarios where identical
commands keep being repeated, Nightwatch simplifies the testing process
by allowing testers to reduce these disadvantages with the ability to
abstract away these easy-to-be-repeated commands and reuse them
anywhere across the test suite (Writing Custom Commands, 2019).

When the testers decide to use Custom Command (CC), a
“custom_command_path” property should be created in the
“nightwatch.conf.js” file, next to “scr_folders” property, then specify the
path indicating the location of the commands. Therefore, having a

18

separate file dedicated to them created within the root folder of the
project is needed; because there will be sub-folders that hold different
defined custom commands individually, the file can be named as
“custom_commands”. As being introduced in the document, there are
two types of custom command which are Function-style Commands and
Class-style Commands (Nightwatch.js, 2019). The former is the simplest
way to form a command where the command module exports a command
function and call at least one Nightwatch’s own API command. The latter
is how Nightwatch’ commands are written where command module
exports a class constructor.

For upgrading the test script’ structure, the first type of this function is
used. In the above demonstration wise, the custom command is about
login event; therefore, the file is named “loginAsAUser.js”. The scenarios
are login with three different input: the first one is wrong password, the
second one is wrong username and the last is a correct account input.
Consequently, the command module of “loginAsAUser.js” exports a
function used as a class of “userAccount” and “userPassword” which
means this command will take different constants of each steps into used.
The following snippets of code will show what inside the command file
and how the test will be when using this technique.

Figure 13 loginAsAUser.js file

19

Figure 14 The test script when using custom command

As mentioned earlier, the scenario above is when the user login with
different inputs; therefore, the custom command considers the constant
input of each step as a variable to modify it accordingly. With this custom
command, tests for multiple user accounts process can be boosted. This
command can still be reused in tests that require login event once per test
suite; in order to achieve it, the correct account username and password
are set inside the custom command file. Consequently, the main test script
requires only to call that custom command. When the scale of the test
gets bigger, the need of CC is more demanding. Therefore, many custom
commands will be made and placed in their individual file. Inside the
“nightwatch.conf.js” file, the “custom_commands_path” is now an array
of the paths direct to those made custom command files. The Figure 15
below is how the property for the thesis demonstration looks like.

Figure 15 The "custom_commands_path" property

20

Additionally, although one of Janet Gregory and Lisa Crispin’s rule
mentioned above is about avoiding database access, there are cases
where testing database value is necessary, which is when custom
command comes in handy. Nightwatch is not specifically designed for
related database testing, thus using it with this purpose results in unstable
process. At Quux Oy, pgAdmin4 is a tool that used to manage the company
database - PostgreSQL. pgAdmin4 is a graphical user interface, or simply
considered as a web-based user interface, used for PostgreSQL
administration. pgAdmin4 is an extension that helps managing,
monitoring the schema, and executing SQL queries for PostgreSQL.
PostgreSQL is a sophisticating top-picked open source relational database
management system (RDMS) for its simplicity while installation and
configuration, its rich extensions (pgAdmin , 2020). The relational model
of database management was first introduced in the book A Relational
Model of Data for Large Shared Data Banks by Edgar Frank Codd; which is
a collection of tables, or relations in RDMS wise, represents a database
where store organized data for the purpose of being retrieved by users
(Relational model concepts , 2019). Structured Query Language (SQL) is a
standardized declarative language used for managing and querying in
RDMS (UAS, 2015), which is also used in Nightwatch whenever database
access is required.

Because the demonstration of this paper is about testing whether the user
identification function of the web page works well or not, there is no need
of a database check-up. Therefore, the following figure is an example
found during the research. Nightwatch is a Node.js based framework
meaning, to access to database, Nightwatch works similar as how Node.js
would work; Figure 16 shows how to make a connection to database from
a normal node.js to get exist columns’ names , therefore, to use it in
Nightwatch, simply modify it to suit the Custom Command feature’s
structure. First, type “npm install pg” to install a non-blocking PostgreSQL
client that used for Node.js, node-postgres, to connect the database
(Carlson, 2019); and, optionally, install Ramda library for a more functional
programming style to work with the data (aromano, 2019) - “npm install
ramda”.

21

Figure 16 An example of node-postgres connection (Bodnar,

2019)

To include the modules, define constant, for example, “pg” and “R” as
require('pg') and require('ramda'), or with only “const pg = require(‘pg’)”
is enough for the process. Then, define “cs” as a PostgreSQL connection
string, the string in this case is
“postgres://postgres:s$cret@localhost:5432/ydb”, to build the
connection between the system and the database. Next, create a new
object “client” and connect it with database through “connect()”. The
“SELECT” query and the asterisk “*” are used to include all the attributes,
or columns, of the table. “res.fields” attribute is used to retrieve the
columns’ names along with the “map” method that used for creating a
new array. “console.log” is used to output the results and “catch” clause
is for output errors, if there is any and, finally, the process ends with
“end()”. The result is all the columns’ names of the table.

3.2.5 Page object

Similar patterns will emerge when the automated test source script gets
bigger; beside Custom Commend technique, a very well-known pattern
for reducing the duplication of test commands in automation UI testing is
Page Object. Nowadays, Page Object model (POM) becomes more popular
in automation framework and is being used in many projects, because its
function of basically bundling pages or page parts into objects make it
enhance the testing system’s maintenance with clearer structures. POM
is similar to the technique introduced above; except they are bundles of
custom commands that used for specific UI component (Working with
Page Objects, 2019).

22

Configuring POM is similar to CC, Nightwatch reads the page objects from
the folder (or folders) specified in the page_objects_path configuration
property inside “nightwatch.conf.js”. The property can also be an array of
folders, if the page objects are split into smaller groups.

 Figure 17 Standard structure of a page object file

Figure 17 shows what a defined page object in its own module – the
demonstration file is named “testForRightAndWrongAccounts.js” -
contains: a string for URL property, an object, or an array of objects, for
elements and an array of objects for commands. The URL property is
basically the URL of the page that needed to be tested; it can be a string
or also a function if the URL is a dynamic URL. Elements property are, at
its simplest form, objects of UI elements’ location, which can be interacted
from the page, with theirs identified names; these are used within
commands called from the page object and their values are either CSS
selector or Xpath selector. One advantage of POM is that switching CSS to
Xpath selector is now handled internally by simply specifying
“locateStrategy: 'xpath” – CSS selector is set at default - and the API
“.useXpath” or “.useCss” is unnecessary to written in the main test scripts.
Having the same functionality as CC, POM allows testers to define own
commands, and it is also by where Nightwatch commands and assertions
API is inherited; therefore, the commands property is a list of objects
containing functions, that are encapsulated, used for simulating users’
behavior on the web page.

To reference page object in the main test, define an instance for this JS
object such as, for example, “const page = browser.page.
testForRightAndWrongAccounts ();”. Whenever the
“testForRightAndWrongAccounts” factory function is called, a new
instance is created. Thus, to navigate the URL defined in URL property, use
this object to navigate: “page.navigate()”; this function is what browser
object does not have and testers do not need to rewrite the URL stated in
the page object module when using it. This means that whenever
“browser” object is called, global commands and assertions are used, and
“page” object is called for page object’s custom commands and assertions
only which also is passed as an argument. Another useful property but not
as common as others is “sections” property; sections are used to help
organizing the test scripts into logical groups and performing element-
level nesting.

23

Figure 18 Commands property's structure

As simple as CC, the Figure 18 shows that commands in POM are made by
encapsulating commands and assertions of Nightwatch; this technique
thus also helps the main test scripts gain more simplicity and flexibility
along with prevents them from being flakey. One difference between
these two models is that, in POM, to refer to an element in the commands,
call its name with the “@” prefix rather than selector, this is shown clearly
in the snippet of code above. Additionally, a privilege of using POM is that
a custom command can also be called inside the page object’s commands
property.

3.2.6 HTML Reporter

For a more professional performance, Nightwatch also supports HTML
Reporter for result reports. Theses HTML reports will be generated under
“tests_output” folder with “.html” type. Thanks to the work of Denis
Denisov, a complete setup for this system was established (Denisov’,
2020). Firstly, run “npm install handlebars” for semantic templates; “npm
install fs” and “npm install path”. Then, copy “html-reporter.js” and “html-
reporter.hbs” to project-based directory – which can be found on
Denisov’s post. Lastly, to run the result in HTML, use “npm test -- --tag Dp-
1952 --reporter html-reporter.js”.

Figure 19 HTML Test Result

24

Figure 19 above is a HTML Test Result for this thesis demonstration, which
contains all necessary information of the test including steps, number of
assertion and how long the assertions take. It also supports user to
customize the report’s theme and structure via “html-reporter.hbs”
directory.

3.2.7 Unit testing

Unit testing is a different type of testing compared to End-to-End
framework which will not be covered deeply in this paper; however, a
comprehensive idea about this additional function of Nightwatch is
introduced. According to what Erik Dietrich has stated in his book -
Starting to Unit Test: Not as Hard as You Think, unit testing is a software
testing system that cover smallest individual components or modules of
the source code, typically a method or a function (What is the Purpose of
Unit Testing?, 2014). Its purpose is to validate whether each testable unit
of the source code performs as desired with generated results of either
pass or fail; additionally, the results can be time out or inconclusive
depending on the setup of the used testing tools. Unit test is considered
beneficial for maintaining or modifying codes with its simple and localized
structure along with its advantage of allowing developers to fix bugs in
early stages of development; it is commonly written by developer team
and not testers, thus the knowledge of the internal source code is
required.

Figure 20 Testing pyramid (Jackson, 2017)

Figure 20, courtesy of Nic Jackson (Building Microservices with Go, 2017),
is a figure created by Nic to demonstrate the original testing concept of
Mike Cohn which Cohn explained in his book - Succeeding with Agile. The
concept was that the bottom of the pyramid, which is Unit testing, is the
testing system having a vast number of code and is the least time
consuming; while the UI testing system, which is at the top of the pyramid,
has least test scripts but consumes lots of time to create them, and the
Service system is not as crucial (Cohn, 2009).

25

This leads to a result of many projects done without UI testing. However,
through many years, this approach is proven to not flexible and not
suitable for all situations. Technology has grown dramatically this decade
and changed this assumption; the original pyramid is modified into
different flexible alternative models for all situations but still being kept
the original idea for guiding teams in getting the most value from theirs
testing system. Gradually, with the enhancements of technology, it is
acknowledged that one single testing tool cannot assure the quality of the
source code (Lisa Crispin, The Dangers of Putting Off Test Automation,
2009). According to Gemoli, an experienced developer who has worked
with end-to-end testing and an official collaborator of Nightwatch, even if
the source code is all covered with unit test, it is not guarantee that the
produced web page has required interactable features or the logic of
functions behind those features do not correctly work; therefor, a little
amount but powerful UI test can help solve this problem (Gemoli, Why is
(end-to-end) testing important (to me)? And what does the testing
pyramid actually mean?, 2019).

In order to enable the Unit test mode in Nightwatch, there are two ways.
The first one is similar to Custom command and Page Object introduced
above, inside “nightwatch.conf.js” file, a property “unit_test_mode” need
to be created and set to “true”; this way of setting is for global. The second
way is for individual test suites; set the “@unitTest” property in
“module.exports” to true. For unit test, the object passed as an argument
is not “browser” or “page” but the “done” callback (Unit Testing with
Nightwatch, 2019).

3.2.8 Headless mode

Whenever being used in a Continuous Integration environment,
Nightwatch.js should be set up with headless mode. Browser headless
mode, or headless mode, is a condition of a web browser without its
graphical user interface. Headless mode allows tester to be in control of
the testing normally, execute the tests programmatically and without
rendering any visible UI shell . Currently, there are many headless browser
types, such as Chrome, Firefox and so on (To, 2018). The Figure 21 below
is the additional part of “nightwatch.conf.js” directory, which can be used
for setting up headless mode. In which, the configuration implies that
Chrome is run in headless mode with the resolution of 1920 x 1080;
disable gpu is needed when running in Windows; and the binary path of
Chrome.

26

Figure 21 Headless mode setup

Headless browser is quite difficult for debugging; therefore, this is where
“.saveScreenShot” command comes in handy. Without the visible UI,
tester cannot spot the error when the test fails instantly. However, the
result in the console shows where the error occurs - for example, a “.click”
command cannot interact with an element. Then, tester can re-write the
test script by adding “.saveScreenShot” before the “.click” command to
take the screen shot before the test fails.

3.2.9 Continuous integration and continuous delivery with Jenkins

Continuous Integration, also famous as CI for short, is a software
development practice monitoring the automation and continuous
process of from integration and testing to delivery and deployment of a
product (What is CI/CD?, 2020). This development practice requires
integrated commits from developers’ personal branch to common work
branch (or remote branch) regularly. After every commit, the developer
team can detect errors immediately and as early as possible with the
verifying help of building and testing the committed code from an
automated build of CI (Pathania, 2017). In other words, CI, in its simplest
form, detects a change in the source code as the soonest, then compiles
and tests the application; the tool will notify developers whenever there
is an issue that needed to be fixed. With a good CI infrastructure, the
development environment has less erroneous situation, less redundant
repeated actions; are able to deliver more real value product as soon as
possible while improving the working quality of the development team;
and the health of the system is now measurable (Nguyen, 2017). Figure 20
depicts steps that are conducted in a CI environment.

27

Figure 22 CI process (Pathania, 2017)

One of the most well-known CI tools is Jenkins. Jenkins, historically called
Hudson, is an open source and Java- written automation server. Jenkins
is made available as a tool for automating tasks such as building,
deploying, compiling source code, generating test executions and
scheduling builds; also is available to be used on different platforms
including Windows, Mac OS, Linux etc. (Rajkumar, 2019). John Ferguson
Smart, creator of Jenkins, also stated in his book that Jenkins is simple,
well documented and has visually appealing and friendly user interface
(Smart, 2011). This tool is widely used with its continuous integration
expertise; ability in fast feedback, periodically and automatically in build
scheduling; and its intelligence of identifying issues from the beginning
(Angler, 2019). Therefore, Jenkins is useful for both developers and
testers-wise.

For automated testing wise, Jenkins is useful with many great features. To
begin with, there is the ability to schedule tests and allow testers to run
them at a specific time. Jenkins is well-known with its test result trends
displaying on the home page of each project, which let the users to see
the overview of the tests’ current state. Additionally, Jenkins also provides
summary for tests’ results including the number of executed tests along
with their executing time, etc. The build time trend feature of Jenkins also
shows the amount of time needed for tests to run using graph.
Furthermore, Jenkins is also able to show the details from a test failure
such as error message and stack trace. There is also email notification
support, which means after every execution of the tests, Jenkins will send
emails automatically to whom needed to be announced when the tests is
completed (Saxena, 2016).

28

Figure 23 The Jenkins dashboard (McAllister, 2015)

Figure 21 shows the friendly and visually appealing user interface of
Jenkins. In the Mastering Jenkins book, McAllister divided Jenkins main
dashboard into four sections, which is Header, Job Table, Configuration
Panel and Build Queue & Executor Status Panel. The header section
includes a breadcrumbs system, which shows user’s current page location;
an add description link – an option with the ability to add description to
the dashboard or build; an Enable Auto Refresh switch for enable or
disable the auto refreshing page feature; and, lastly, a search bar, which
displayed on the top-right corner. Next section is the configuration panel
on the top-left corner and below the header of the dashboard.
Additionally, the configuration panel will change in the subpages with
different configuration options. On the main dashboard, the default
options on the configuration panel are New item – used for creating new
Jenkins jobs, People - including all known “users”, login identities and
people mentioned in commit messages, Build history – a list of already
executed builds along with their statuses, Manage Jenkins – most used by
administrators to manage and configure Jenkins to satisfy individuals
requirements, and Credentials – used for managing user account
credentials. The main and most important section of Jenkins user interface
is the job table. This table is a list of jobs such as build job, deployment job
or smoke test job and so on. There is status of the most recent build,
where red is for failure, blue is for success and unstable status is yellow;
weather report – a feature for a combined report of recent builds; name -
name of the job; last success and last failure columns are for how long ago
the last successful and failed execution of the build was; last duration
column is for run time length of the latest build; table footer that contains
RSS feeds providing job’s status; legend – a link of a graphical legend
containing all dashboard’s icon and their definitions. Last but not least,
Jenkins main dashboard also has the build queue and executor status
panel. In which, Build Queue displays waiting triggered job and Build
Executor Status lists master executor and slave nodes (Belmont, 2018).

29

To create a build job, choose New item menu link on the Configuration
panel which is the entry point into job creation. The user will then be
navigated to the item’s configuration page containing Item name bar and
project type options. There are two most used project type: Freestyle
project and Pipeline project. In which, freestyle project allows user to
custom the build job freely and mostly is used for running simple job, while
Pipeline project is for large project with the need of continuous delivery
pipeline. Pipeline can break the jobs into stages which each stage is a job
executing the commands as the user desire. Therefore, this ability helps
user to see the problem clearer in each stage. An example for this type of
project is build -> unit test -> delivery -> testing -> deploy. Pipeline can be
built through a scripted file – Jenkinsfile or a web interface – Blue Ocean
(ramz, 2019).

Continuous delivery (CD) is an extension of continuous integration for
getting software from version control – local machine – to team members
or customers with speed in a sustainable way. As being mentioned earlier,
this process involves building, testing, and deploying the software through
stages. This automated expression is usually distinguished with the ability
of allowing user to release the software daily, weekly or any time that suit
business requirements (Pittet, 2020).

As being claimed in the Jenkins official website, Blue Ocean was a project
that was being developed to evolve the user experience with software
continuous delivery through a new improve clarity and less clutter user
interface. It is designed to have a sophisticated visualization for CD by
being visualized on screen with steps and logs to create a CD pipeline from
start to finish. Blue Ocean is comparable with both Freestyle and Pipeline
projects; however, it is recommended to choose Pipelines when using
Ocean Blue because of its ability to let users easily observe the execution
and spot the problems with the Pinpoint Precision feature with ease and
speed (Dumay, 2016). Created by Blue Ocean or by Jenkins New Item
method, Jenkins pipeline is a great practice for continuous delivery, which
is defining the entire build process, including stages for building an
application, testing it, and then delivering it.

Figure 24 Jenkinsfile (Declarative Pipeline) (Pipeline, 2020)

30

Figure 24 shows how Declarative Pipeline syntax of Jenkinsfile defines
stages and steps of the work. “agent any” is how Pipeline execute its
stages. “Build” is a stage where its work is performed under “steps{…}”,
which is the same to “Test” and “Deploy”. Thanks to the syntax block
“stage”, installation and setup stages are separated from the actual test
execution. Therefore, user can quickly spot which part failed; then, if the
“e2e tests” stage fails, user directly know the error is in the test stages and
not installation issue. By using Jenkins Pipeline, nightwatch.js end-to-end
test is easily tracked and executed in a continuous delivery environment
(Pipeline Syntax , 2020).

Due to the fact that the author has reached the commissioner’s
requirement for this testing system, no further implementation for CD
with Jenkins will be conducted in this paper. However, this work discussed
profoundly about automated testing system, the author believes that this
paper will provide a thorough overview for those who would make further
research of automated testing related to Jenkins Pipeline topic.

4 LIMITATIONS

Automation end-to-end testing systems are getting more recognition days
by days for their testing methodology of checking the workflow of a
product from the start to the end on an external interface. Despite of their
advantage as to the convenience and flexibility aspects for the testing
team, there are also limitations.

Firstly, end-to-end testing relies on developing time. An automation
testing process can only be completed if the components work as required
and are bug-free. The work of a testing team usually starts when a
webpage is announced as ready for being tested before it is released into
the production. Testers then check the webpage manually for bugs (or
also called as errors, flaws or faults) and write manual test cases into JIRA
whether there are bugs or not. Bugs are inevitable in the development
process; testers should inform the developer team by creating a bug issue
in JIRA if there are any. When the bugs are announced fixed, testers
conduct tests manually once again for validation and write end-to-end
scripts for testing their functions with multiple different values.

Secondly, if the source code evolves, the old test suites have a high chance
of failure. An end-to-end testing system, specifically Nightwatch.js, uses
XPath and CSS selector to locate an element on the external interface of
the webpage by using Inspector; therefore, if the code shown in the
Element tab got changed, the test scripts related to that element should
be checked and fixed to guarantee performance. This results in the need
for test maintenance which is considered costly.

31

Thirdly, there is a limited number of scenarios that needs automation
testing. Nightwatch.js has a huge amount of API references that are all
useful for software testing. However, there are circumstances where its
commands cannot simulate desired end user behaviour. An automation
test is used to help the testing process become faster and less redundant
errors; it is not developed to cover all the basic to highly advanced
webpage components but to ease the adverse presenting in this field.

Through all the mentioned limitations above that the author of this paper
encountered, there should be further research to discard these challenges
in the future. Nightwatch.js is still in its early development stages,
therefore, new features may be developed to perfect and advance the
system.

5 CONCLUSION

The comprehensive theory of the automated end-to-end testing system
provided in this dissertation was a firm foundation for the author to
validate the benefits of the system. Nightwatch.js was proved to be
suitable for Quux Oy with its fully browser testing solution and consistent
settings with development section. It is also useful for raising the testing
performance by checking the complete flow of the system, and especially
its great performance in reducing error from human behaviour.

A demonstration of Node.js-based test script was created for testing a
circumstance where the authorization function occurs, along with
methods to evolve the script for a DRY (do not repeat yourself) and clean
structure. The major contributions of this work were presented in
Chapters 2 and 3. In Chapter 2, the theory of end-to-end automated
testing system and Nightwatch.js has been studied and, in Chapter 3, the
complete setup and several additional extension features have been
examined.

In a nutshell, although there are limitations in the Nightwatch.js system,
the target of this thesis, which is to set up an automation testing system
from scratch, was achieved. The test of this automated user interface
system gave a positive result and the enhancements was successfully
functioned. This thesis also studies the theoretical possibilities of
automation testing in a continuous integration and continuous delivery
environment. The author believes that further research about these
features would be conducted and there would be plenty of practical
demonstrations, while this dissertation resolves all remaining questions
regarding the commissioner’s requirements.

32

REFERENCES

(2018, September 25). Retrieved from Screenster: https://screenster.io/end-to-end-

testing/
About Nightwatch. (2020). Retrieved from nightwatch.js:

https://nightwatchjs.org/about
About Nodejs. (2020). Retrieved from Nodejs: https://nodejs.org/en/about/
Angler. (2019). AUTOMATED UI TESTING WITH JENKINS. Retrieved from

https://www.angleritech.com/case_studies/automated-ui-testing-jenkins/
API Reference. (2020). Retrieved from nightwatchjs: https://nightwatchjs.org/api
aromano, b. M. (2019). ramda-npm. Retrieved from npmjs:

https://www.npmjs.com/package/ramda
Belmont, J.-M. (2018). Chapter 8: Building Pipelines with Jenkins. In J.-M. Belmont,

Hands-On Continuous Integration and Delivery. Packt Publisher.
Bodnar, J. (2019). The node-postgres first example. Retrieved from zetcode:

http://zetcode.com/javascript/nodepostgres/
Carlson, B. (2019). pg-npm. Retrieved from npmjs: https://www.npmjs.com/package/pg
Cohn, M. (2009). Succeeding with Agile. In M. Cohn.
Collins Dictionary. (2020). Definition of Tool. Retrieved from Collins English Dictionary:

https://www.collinsdictionary.com/dictionary/english/tool
Const. (2019). Retrieved from Mozilla: https://developer.mozilla.org/en-

US/docs/Web/JavaScript/Reference/Statements/const
Denisov’, D. (2020, March 20). Nightwatch HTML Reporter. Retrieved from BL.ocks:

https://bl.ocks.org/denji/204690bf21ef65ac7778
Design Principles and Patterns. (2009). In J. G. Lisa Crispin, More Agile Testing: Learning

Journeys for the Whole Team.
Dumay, J. (2016, May 26). Introducing Blue Ocean: a new user experience for Jenkins.

Retrieved from Jenkins: https://www.jenkins.io/blog/2016/05/26/introducing-
blue-ocean/

Gemoli, D. (2019). Retrieved from https://github.com/coding-with-dom/intro-to-
nightwatchjs

Gemoli, D. (2019). Why is (end-to-end) testing important (to me)? And what does the
testing pyramid actually mean?

Introduction. (2020). Retrieved from https://robotframework.org/
Jackson, N. (2017). In N. Jackson, Building Microservices with Go. Packt Publishing.
JIRA. (2019). Retrieved from Atlassian : https://www.atlassian.com/software/jira
JIRA Software features. (2019). Retrieved from Atlassian:

https://www.atlassian.com/software/jira/features
Let's Do !T: About . (2020). Retrieved from Linkedin:

https://www.linkedin.com/company/let's-do-t-bonuseurope-o%C3%BC/about/
Lets Do IT! (n.d.). Retrieved from https://letsdoit.fi/en/main-page/
Lisa Crispin, J. G. (2009). The Dangers of Putting Off Test Automation. In J. G. Lisa Crispin,

More Agile Testing: Learning Journeys for the Whole Team.
McAllister, J. (2015). The Jenkins user interface. In Mastering Jenkins. PACKT Publisher.
MG, R. P. (2015). Learning Selenium Testing Tools - Third Edition.

33

Nguyen, S. (2017, May). Continuous Integration with Jenkins. Retrieved from
https://viblo.asia/p/continuous-integration-with-jenkins-bai-1-gioi-thieu-ve-ci-
va-jenkins-OeVKBggEZkW

Nightwatch.js. (2019). Retrieved from https://nightwatchjs.org/
Pathania, N. (2017). Learning Continuous Integration with Jenkins - Second Edition.
pgAdmin . (2020). Retrieved from pgAdmin: https://www.pgadmin.org/
Pipeline. (2020). Retrieved from Jenkins.io: https://www.jenkins.io/doc/book/pipeline/
Pipeline Syntax . (2020). Retrieved from Jenkins:

https://www.jenkins.io/doc/book/pipeline/syntax/
Pittet, S. (2020). Continuous integration vs. continuous delivery vs. continuous

deployment. Retrieved from Atlassian: https://www.atlassian.com/continuous-
delivery/principles/continuous-integration-vs-delivery-vs-deployment

Pittet, S. (2020). End-to-end tests. Retrieved from Atlassian:
https://www.atlassian.com/continuous-delivery/software-testing/types-of-
software-testing

Rajkumar. (2019). Selenium Continuous Integration with Jenkins. Retrieved from
https://www.softwaretestingmaterial.com/selenium-continuous-integration/

ramz. (2019, March 24). Freestyle and Pipeline Jenkins Jobs. Retrieved from techieatom:
https://techieatom.com/freestyle-and-pipeline-jenkins-jobs/

Relational model concepts . (2019). In A. V. Salahaldin Juba, Learning PostgreSQL 11: A
beginner's guide to building high-performance PostgreSQL database solutions,
3rd Edition.

Saxena, M. (2016). Automation Testing with Jenkins: The Game Changer in Test
Automation.

Screenster. (2018, April 5). Manual vs automation testing of the UI. Retrieved from
Screenster: https://screenster.io/manual-vs-automation-testing/

Smart, J. F. (2011). Jenkins The Definitive Guide. In J. F. Smart. O'Reilly Media;.
Teixeira, P. (2013). Enter the automation era. In P. Teixeira, Using Node.js for UI Testing.

Packt Publisher.
Theory of operation. (2019). Retrieved from Nightwatch.js:

https://nightwatchjs.org/gettingstarted
To, V. A. (2018, September 19). Headless mode. Retrieved from

https://vananhtooo.wordpress.com/2018/09/19/tim-hieu-ve-headless-
browsers-trong-selenium-webdriver/

UAS, M. (2015). SQL.
Unit Testing with Nightwatch. (2019). Retrieved from Nightwatchjs:

https://nightwatchjs.org/guide/unit-testing-with-nightwatch/
Using before[Each] and after[Each] hooks. (2019). Retrieved from Nightwatchjs:

https://nightwatchjs.org/guide#using-before-each-and-after-each-hooks
Webdriver. (2019, November 24th). Retrieved from https://www.w3.org/TR/webdriver/
What is CI/CD? (2020). Retrieved from Red Hat:

https://www.redhat.com/en/topics/devops/what-is-ci-cd
What is git: become a pro at Git with this guide. (2019). Retrieved from Atlassian:

https://www.atlassian.com/git/tutorials/what-is-git
What is the Purpose of Unit Testing? (2014). In E. Dietrich, Starting to Unit Test: Not as

Hard as You Think.
What is XML. (2018). Retrieved from https://www.howtogeek.com/357092/what-is-an-

xml-file-and-how-do-i-open-one/

34

Working with Page Objects. (2019). Retrieved from Nighytwatchjs:
https://nightwatchjs.org/guide/working-with-page-objects/

Writing Custom Commands. (2019). Retrieved from Nightwatchjs:
https://nightwatchjs.org/guide/extending-nightwatch/#writing-custom-
commands

35

 Appendix 1

DP-1952.js IN EARLY STAGE

36

Appendix 2
testForRightAndWrongAccount.js PAGE OBJECT FILE

37

Appendix 3
DP-1952.js AFTER BEING CUSTOMISED

