

The process of building an admin dashboard user inter-

face

Duong Thien Ly

 Bachelor’s Thesis

 Degree Programme in BIT

 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Theseus

https://core.ac.uk/display/323461783?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

 Date 10 May 2020

Author(s)
Duong Thien Ly

Degree programme
Business Information Technology

Report/thesis title
The process of building an admin dashboard user interface

Number of pages
41

MariaDB Corporation Ab is a global software vendor that develops and contributes to the
well-known open source MySQL database which was forked and managed by the MariaDB
Foundation. The company is specializing in developing solutions arounds MariaDB server.
MaxScale, a database proxy open source project which is one of the core components of
MariaDB Platform helping to extend the availability, scalability and security of MariaDB
Server. MaxScale provides a command line administrative client tool called maxctrl that
internally uses REST API to configure MaxScale at runtime.

This thesis is established due to the need of developing an alternative solution to maxctrl
which is a web browser application that operates as an admin dashboard user interface.
The application should allow to configure MaxScale in a visually appealing, intuitive and
user-friendly way. It will be built by using Vue.js framework along with its support plugins
and libraries such as Vue Router, Vuex, Vuetify and so on.

Though this is a graphical user interface product-oriented thesis, it will not include all
development processes in terms of user interface such as prototype designs, user
experience designs and user story due to confidential information of the company.
Therefore, the primary objectives of this thesis can be divided into three categories
comprise of setting up developer’s working environment, improving MaxScale REST API
for using in web application in terms of MaxScale user authentication, implementing the
authentication user interface page.

Keywords
Javascript, Vue.js, Vuex, Vue Router, Docker, MaxScale, MariaDB Server, REST API

Table of contents

Terms and Abbreviations ... 1

1 Introduction .. 2

1.1 Thesis structure .. 2

1.2 About the company ... 3

1.3 Objectives and scope ... 4

1.4 Support from the commissioning party and copyrights .. 4

2 Theoretical framework ... 5

2.1 Vue.js .. 5

2.1.1 Reactivity system in Vue.js.. 6

2.1.2 Vue instance lifecycle hooks ... 9

2.2 MariaDB Platform.. 12

2.2.1 MariaDB Server relational database ... 12

2.2.2 MariaDB MaxScale .. 13

2.3 Docker ... 15

3 Empirical .. 17

3.1 Initializing the project .. 17

3.1.1 Setting up MaxScale environment .. 17

3.1.2 Vue CLI and Visual Studio Code configuration... 22

3.1.3 Setting up necessary Vue.js plugins ... 26

3.2 MaxScale REST API authentication approach .. 28

3.2.1 Current authentication method .. 28

3.2.2 JWT for SPA .. 29

3.2.3 Storing the token ... 30

3.3 Implement the graphical user interface of authentication page 33

3.3.1 SSL encryption .. 33

3.3.2 Login page ... 35

4 Discussion ... 40

4.1 Problem encountered ... 40

4.2 Limitation of researched authentication approach ... 41

4.3 Further research ... 41

4.3.1 Summary ... 41

References ... 42

Table of figures .. 48

1

Terms and Abbreviations

SQL Structured Query Language

DMBS Database Management System

DOM Document Object Model

API Application Programming Interface

SASS Syntactically Awesome Style Sheets

CSS Cascading Style Sheets

GUI Graphical User Interface

CLI Command Line Interface

SSL Secure Socket Layer

TLS Transport Layer Security

HTTP Hypertext Transfer Protocol

Database Proxy A middle layer that locates between the

database server and the application

REST Representational State Transfer

VM Virtual Machine

SPA Single Page Application

MITM Man-in-the-middle attack

XSS Cross-site-scripting

CSRF Cross-Site Request Forgery

CA Certification Authority

JWT JSON Web token

GIT A version control system

2

1 Introduction

MaxScale, a core component of MariaDB platform which acts as a database proxy helping

to extend the availability, scalability and security of MariaDB Server. At the moment,

MaxScale provides a command line interface administrative tool called maxctrl which

internally uses REST API to configure MaxScale at runtime. (MariaDB Corporation Ab

2020). The product goal behind this thesis project is to provide web-based application with

similar functionalities to maxctrl CLI tool. The advantage of using a web application is to

configure MaxScale at runtime in a visually appealing, intuitive and user-friendly way

rather than using a CLI which requires tremendous time of memorizing the commands

and syntax. Because of confidential information relating to MariaDB product design

system, only part of the application which is the authentication page in terms of user

interface will be included in this thesis.

1.1 Thesis structure

Overall, the structure of the thesis can be divided into four chapters:

Firstly, the introduction which provides the summary information about the company,

objectives of this thesis and commission party information in terms of support and

copyrights.

Secondly, the theoretical part of this thesis provides necessary knowledge and

explanation behind the empirical part consisting of the UI framework called Vue.js,

MariaDB platform and Docker (a tool to containerize application).

Thirdly, the first chapter in the empirical part describes the process of initializing the

project which includes the steps of building, installing MaxScale; the setting of multiple

MariaDB relational database servers. In addition, the setting up of Vue.js development

environment comprising of Visual Studio Code as a coding editor and several libraries as

Vue.js’ plugins. The second part focus mainly on the improvement approach to the current

REST API authentication in MaxScale along with the implementation of the graphical

interface for user authentication page using Vue.js.

Finally, the conclusion part evaluates the successfully of the thesis implementation as well

as difficulties encountered while developing the application.

3

1.2 About the company

MariaDB Corporation Ab was originally named as SkySQL Corporation Ab which was

founded in 2010 by one of the founders of MySQL Ab, Michael “Monty” Widenius. He is

known as the main author of the well-known open source MySQL relational database and

one of the founding members of MySQL Ab (Widenius, M. 2014).

MySQL Ab was then acquired by Sun Microsystems in 2008 as for the believe in the open

source approach that Sun Microsystems had made with their products before acquiring

MySQL Ab (Widenius, M. 2008). Notwithstanding, in 2010, Oracle finally acquired Sun

Microsystems includes the open source database MySQL. As for the concerns of keeping

the commitments to open source as well as the leaving of MySQL developers at Sun

Microsystems after the acquisition which may results in the hold back of the development

and support for MySQL, Michael “Monty” Widenius employed the MySQL core

development team at his Monty Program Ab company to work on MariaDB which is a

forked of MySQL.

After the acquisition, in 2010, SkySQL Corporation Ab was founded in order to employed

support team, consultants, trainers and salespeople from MySQL Ab to provide support

and other services around MySQL and MariaDB (Widenius, M. 2010). SkySQL operates

as a partner for Monty Program Ab since then before it eventually acquired Monty

Program Ab and joined the MariaDB Foundation in 2013. In 2014, SkySQL changed its

name to MariaDB Corporation Ab as the company “is the main driving force behind the

development of the MariaDB server and the biggest support provider for it (Widenius, M.

2014).

At the moment, MariaDB Corporation Ab contributes the most to the MariaDB Foundation

and has largest number of MariaDB experts. The company provides subscription services

and additional enterprise features around MariaDB which includes MariaDB platform,

MariaDB Cloud, MariaDB Platform Managed Service and ClustrixDB. The company has

two headquarters which are located in United States and Finland as well as other

representative offices in Europe, Asia and Americas.

Customers of MariaDB Corporation Ab include well-known companies such as Nokia, Red

Hat, Samsung, ServiceNow, Walgreens and so on. (MariaDB Corporation Ab. 2020). One

of the additional enterprises features the MariaDB corporation offers is MariaDB

Enterprise Server which is an enhanced, hardened and secured version of a MariaDB

Community Server (MariaDB Corporation Ab. 2020).

4

1.3 Objectives and scope

Though this is a product-oriented thesis, it will not include all development processes

related to graphical user interface such as prototype designs, user experience designs

and user story due to confidential information of the company. However, information

related to MaxScale can be exposed as it is an open source project, part of graphical user

interface’ development processes can be described in thesis. As so, the primary

objectives of this thesis can be divided into three categories as follows:

• Facilitating developer’s environment which includes the setting up of MaxScale

environment, Vue.js’ development environment using VS Code.

• Improvement of MaxScale REST API for using in web application

in terms of MaxScale user authentication. The application should prevent some

common security issues in web application such as MITM, XSS, CSRF.

This is because the REST API was developed and optimized for using in web

application but CLI tools called maxctrl.

• Implementation of graphical interface for user authentication.

1.4 Support from the commissioning party and copyrights

Throughout the process of building the application, MaxScale development team at

MariaDB Corporation Ab will make any changes to the REST API when necessary. The

thesis writer will implement the GUI by using Vue.js framework along with consulting and

observing ready-made application using similar technology stack at MariaDB Corporation

Ab.

MariaDB Corporation Ab holds all rights to the MaxScale GUI application, including the

product described in this thesis. A thesis commissioning agreement and confidential

agreement were signed by the commissioning party, thesis advisor, thesis evaluator and

me.

5

2 Theoretical framework

This chapter divides into three sections in order to provide technology knowledge to set up

development environment and tools for developing the administrative user interface of

MaxScale. In 2.1, this section gives an introduction about the open source Javascript

framework Vue.js as well as its related support plugins and libraries. The discussion and

explanation in this section covers the comparison of Vue.js to React.js to some extent. In

2.2, it provides an overview about MariaDB platform which focusing on the MaxScale

product and its usage scenarios around MariaDB Server relational database. Finally, in

2.3, this section describes the usages of Docker and explains why it is handy for

facilitating MaxScale development environment.

In general, this chapter will not intend to cover all knowledge related to Vue.js but the

most important parts of the framework. Other parts related to the implementation of the UI

will be discussed in the empirical part.

2.1 Vue.js

Vue.js is an opensource Javascript framework that claims to be the first and the only

progressive framework until now. It was created in July 2013 by Evan You who was

working at Google Creative Lab. His initially intention was to make an innovation of

Angular Javascript framework to develop prototype faster. Therefore, his personal project

has similar characteristics, outstanding features of Angular but more concise and easier

syntax.

 In the following years, the framework is redeveloped by taking a lot of ideas from other

famous frameworks, libraries which includes React, Angular and so on. The framework

has been quickly adapted, supported by the developer community and become a

“progressive” framework. (Vue NYC 2017)

A progressive framework in terms of Vue.js, meaning that Vue.js is just a view layer

focused framework but having opt-in official libraries supported. As it “is designed from the

ground up to be incrementally adoptable”. Depending on the business needs, its support

libraries, plugins are needed while reserving ability to integrate with other libraries or

existing projects. Vue.js community has developed many opt-in libraries such as Vue

Router (router library for creating single page application), Vuex (state management

library), Vue Server Renderer (server-side rendering library). With its well adopted

ecosystem libraries and plugins, Vue.js has ability to build single page application,

progressive application, desktop application or even mobile applications. Standing in the

market among other frameworks and libraries backed by big companies and large teams,

6

Vue.js brings the upsides but also eliminates the downsides of those frameworks and

libraries (Vue.js 2020).

As for this reason, MariaDB Corporation Ab chose Vue.js to be the framework that will

build the administration user interface of MaxScale.

Vue.js and its ecosystem is growing faster and faster in these recent years, as it is proved

to be the front-end framework that has the most stars in GitHub in 2019 (bestofjs 2019).

Since the framework itself is in the fast-growing track, to build high-performance and

scalable web applications, the needs for understanding the keys concepts and its

ecosystem of Vue.js is inevitable. The indispensable key knowledge of the Vue.js which

need to be digested when building a Vue.js application is Reactivity system in Vue.js and

the Vue instance lifecycle hooks.

Besides, to make a single page application scalable, reusable and well configured, Vue.js

libraries like Vuex state management, Vue Router and Vue.js Tooling Vue CLI are

recommended. For the case of building MaxScale GUI, MariaDB follows Material UI

design concept, therefore, Vuetify, a Vue UI components library is chosen.

2.1.1 Reactivity system in Vue.js

The needs of a reactivity system come from the edge case of a typical application which is

developed based on components approach and used Virtual DOM. Think of any

applications as a tree component, there are parent component and its children

components.

For example, with React library, although, it does track on the dependencies and update

the DOM whenever there are changes. The child components do not automatically know

to not re-render when the parent component’s state or props changes. Nevertheless, with

the use of an API called “shouldComponentUpdate” or converting stateful component into

PureComponent in React, the issue can be solved (React 2020, JAVASCRIPT REPORT

2017). As so, the React library is not fully reactivity, it needs the manual process of

tracking.

A reactivity system should ensure any updates on the parent component will not trigger

unnecessary re-render on the child components, otherwise, large application has

tremendous child components may encounter performance issue.

While other Javascript frameworks and libraries requiring the implementation of reactivity

system or implement observer patterns, method to achieve reactivity. Vue.js implants its

7

reactivity system in every vue component instance so the developers have an optimized

reactivity system out of the box. Figure 2 is the diagram which demonstrates the reactivity

system in every vue components.

Figure 1. Diagram of reactivity system in Vue.js (Vue.js 2020)

Reactivity system in Vue.js can be seen as a system that has an observation system

called the “Watcher”, a data object, a Component Render Function that interactive with a

Virtual DOM Tree. The process of the reactivity system in Vue.js is can be understood as

follows.

First, when the Vue instance is created, all the properties in the data object is passed to

the Vue instance. It is then added to Vue’s reactivity system and converted to getter/setter

methods using Object.defineProperty static method. Next, the Watcher collects the

dependencies by calling the getter function which is defined in the Object.defineProperty

method. After the first render, whenever there are changes (“Touch”) from the data object,

the setter will be called to update the value in the data object while calling the Notify

function. By doing this, the Watcher will trigger the re-render of the component (Vue.js

2020).

However, not all changes will be detected by Vue’s reactivity system including the

deletion, addition of object properties and the changes of the element’s value based on

the index of an array or the modification of the length in the array.

8

For example, with object modification, as it is illustrated in figure 2, the data object will be

passed to the reactivity system and when adding a property named b, this will not trigger

re-render. This is because when the Vue instance is created, all of object properties must

be passed to the reactivity system in order to be tracked and become reactivity.

Figure 2. Data object in vue instance (Vue.js 2020)

To handle this limitation of Vue.js, Vue provides a set method from Vue instance to update

nested object as shown in figure 3A.

Figure 3. Object and Array changes detection

In terms of Array, we can also use the Vue set method to update the value of an element

at a specific index, as it is illustrated in figure 3B.

9

2.1.2 Vue instance lifecycle hooks

Similar to other frameworks and libraries using Virtual DOM, Vue.js also has a lifecycle

that goes through a series of steps when a vue instance is created as it is illustrated in

figure 5. Throughout the process, Vue.js triggers eight functions called lifecycle hooks that

can be overridden to run code at specific stages (Vue.js 2020).

Vue.js has almost the same lifecycle and allows user to add their own code at specific

stages as React.js does. React.js has three main stages including Mounting, Updating

and Unmounting as shown in figure 4. Meanwhile, Vue.js lifecycle can be divided into four

main stages which includes Creation, Mounting, Updating and Destruction (Unmounting).

Vue.js just has one more stage called the “Creation” which is the very first stage of the

lifecycle. There are two lifecycle hooks in this” Creation” stage including “beforeCreate”

and “created”. In this stage, vue.js initializes the dependencies, events, lifecycle and adds

data to reactivity system after the vue instance is created. Therefore, this is not the stage

where user can manipulate the DOM because it’s not available yet. The “beforeCreate”

hook is not used as often as the “created” hooks since the reactivity data and events are

not accessible. With the “created” hooks, user can perform changes to the reactivity data

before the data is rendered in the DOM or even handle server-side rendering effect. For

example, the application needs to sort the data in the table before sending and rendering

it in the client browser.

The “Mounting” stage in Vue.js is similar to React.js as both allow user to interact and

work with the DOM. However, the “Mounting” stage in React.js offers only one lifecycle

method called “componentDidMount” while Vue.js provides two lifecycle hook methods

including “beforeMount” and “mounted”. Although, in most usage scenarios, the

“beforeMount” hook is not the most used as the mounted hook. This is because of few

reasons as follows:

• The “beforeMount” hook is called just right after the “created” hook. But it does not

support sever-side rendering. Hence, the “created” hook is more favorable.

• User cannot perform DOM manipulation since this hook is called before the

mounting stage when the replacement of Virtual DOM with DOM is not done yet.

The “mounted” hook is more useful since the mounting stage has been done.

The “Updating” stage in Vue.js occurs when there are changes on the reactivity data. For

example, when user clicks the button, the reactivity data controls the visibility of the modal

10

will be changed. Vue.js is then compute the data in the Virtual DOM to re-render and

patch the update to the actual DOM.

In this stage, it has two lifecycle hooks consists of “beforeUpdate” and “updated”, these

seems to be useful when user wants to detect changes on the DOM, perform DOM

manipulation, access to reactivity data. However, to prevent unnecessary updates on the

DOM, changing reactivity state in these hooks is not recommended by Vue.js (Vue.js

2020).

Unlike Vue,js, the “Updating” stage in React.js provides more methods comprise

“getDesiredStateFromProps”, “shouldComponentUpdate”, “getSnapshotBeforeUpdate”

and “componentDidUpdate”. The usages of these methods are not similar to Vue.js

updating hooks as it focuses more on the ability to control the reactivity of the data.

Finally, regarding the Destruction or Unmount stage, both React.js and Vue.js invokes this

stage to destroyed and removed the component from the DOM to prevent memory leak in

the application. React.js provides “componentWillUnmount” method to perform cleaning

up effect, cancelling event listener or network requests. Vue.js also allows users to do the

same actions with “beforeDestroy” lifecycle hook. Besides, Vue.js provides one more

hook called “destroyed” which triggering after everything is cleaned up. This additional

hook compares to React.js seems to be redundant in terms of normal application cases,

though it may be used to do last task like informing the server that the component is

destroyed. (alligator.io 2017).

Figure 4. React.js Lifecycle diagram (Reactjs.org 2020)

11

Figure 5. Vue Lifecycle diagram (Vue.js 2020)

12

2.2 MariaDB Platform

This section provides sufficient knowledge relates to the MariaDB platform along with

explanations of specific related terminologies such as database server, database proxy

and route splitting (MariaDB Corporation Ab 2020). Figure 6 illustrates MariaDB Platform

X4 includes MariaDB Enterprise Server version which is required subscription. However,

MaxScale is not limited to be used with MariaDB Enterprise Server version, it can also be

used within the open source MariaDB server with a proprietary license. It means

MaxScale is free if it is used with less than three MariaDB servers (MariaDB Foundation

2016).

Figure 6. MariaDB Platform X4 (MariaDB Corporation Ab 2020)

2.2.1 MariaDB Server relational database

MariaDB Server relational database is a well-known open source database server that

has been guaranteed to be open source and backed by the MariaDB foundation

community as well as MariaDB Corporation Ab company. Most Linux distributions and

cloud service providers have MariaDB Server installed due to its performance, stability,

and open source (MariaDB Foundation 2020). MariaDB Server relational database named

its database with the word “server” as it operates as a typical database server.

In simple terms, a database server is a data warehouse used to store websites, data,

information and make the databases available to the internet users. A database server

consists of a database management system (DMBS) and database with many core

functions such as recovery services, query management system and security

measurement service. Depends on the client requests, database server searches in

13

databases for specific records and send over the network to the client. In other words, a

database server can be considered as a server that provides database services or a

server that runs database systems. (Science Direct 2020).

For MariaDB Server, it is created to host multiple SQL databases in the same machine

and manage any traffics between the client application and the relational databases.

MariaDB server has many outstanding features such as speed, scalable and powerful in

handling large data. In addition, MariaDB Server is under General Public License v2.0

(GPLv2) forever which means that anyone can have access to the source code.

Therefore, it ensures the transparency, security, availability of the database (MariaDB

Corporation Ab 2020; MariaDB Foundation 2016; MariaDB Foundation GitHub 2019)

2.2.2 MariaDB MaxScale

The traditional application usually consists of two layers which are the application itself

and the primary server layer that connects together. The primary server layer of MariaDB

platform is the MariaDB server which hosts the relational databases as mentioned in 2.2.1

section. When the application sends request directly to the server layer, the server layer

searches in the databases for the request record and sends it to the application (figure

7A). However, when the application grows or the number of requests from the users

increases and a single primary server is unable to process the workload or maybe even

worse the primary server can encounter technical failures. Inevitably, the primary server

needs to be replaced by a replica of that primary server. Nevertheless, this requires

manual, repetitive work from develop operation team to tackle that situation. It would be a

waste of time and labor if a large and complex application requires several replicas of the

primary server confronting that incident (figure 7B).

Figure 7. The Client/Server Architecture and Distributed Processing (Oracle 1999)

14

As for the need of the automation work, MaxScale is an automated service that is created

in order to extend “the high availability, scalability and security of MariaDB Server”

(MariaDB Corporation Ab 2020) relational database. It is a database proxy that support

the development of the application in terms of database server infrastructure. A database

proxy can be described as a middle layer that locates between the database server and

the application (figure 8).

Since the application is connected to MaxScale database proxy, any traffic data requests

from the client application will be sent to MaxScale which be eventually forwarded to the

actual database server. MaxScale database proxy will constantly perform health check on

the primary server whenever there are requests from client application to ensure the

server is available to access. As the result, MaxScale will automatically carry failover

which is a method to prevent the database server from failure by immediately replacing

the primary server with its replicas. Approximately the same time, the previous

transactions which is sent to the failed primary server will be forwarded to the new primary

database server. By performing this failover method and other unmentioned methods,

MaxScale ensures the high availability of the application to the user.

MaxScale not only ensures the availability and hardens the security by supporting

database firewall but also supports scalability of the database by utilizing its “built-in

plugins for multiple routers, filters and protocols” (MariaDB Corporation Ab 2020). For

example, a travel fare metasearch engine application certainly has more read requests

from the users more than the write requests. By setting up the “Read/Write Splitting”

service (MariaDB Corporation Ab 2020), MaxScale will forward any write transactions to

the primary sever while read transactions are forwarded to the replicas servers which is

also known as slave servers. As MariaDB Corporation states “MariaDB MaxScale can be

configured to forward database requests and modify database responses based on

business and technical requirements” (MariaDB 2019; MariaDB Corporation Ab 2020;

Severalnines 2018).

15

Figure 8. MariaDB MaxScale (MariaDB Corporation Ab 2017)

As for the installation of MaxScale, MariaDB corporation Ab provides several package

installations includes deb, rpm and Tarball which are archive files format for Linux

distributions only (StackExchange UNIX&LINUX 2013).

In addition, MaxScale’s source code is available to be accessed in GitHub, therefore

MaxScale can be built from the source code with specific versions (MariaDB Corporation

Ab 2020, Thien, L. 2020).

2.3 Docker

As mentioned in 2.2.2, MaxScale is used when there are multiple MariaDB servers

running. In practice, there will be several physical servers that each of server running

MariaDB server instance. Alternatives, many cloud service providers such as Amazon

Web Service, Google Cloud and Alibaba Cloud provide service for hosting MariaDB

servers (Amazon Web Services 2020; Google Cloud Platform 2020; Alibaba Cloud 2020).

However, for the purpose of developing the admin dashboard user interface for MaxScale,

simulation of several MariaDB server instances is sufficient.

At the moment, there are multiple ways to run multiple MariaDB server instances in the

same machine includes virtual machine, container or following “Configuring Multiple

MariaDB Server Processes” tutorial from MariaDB corporation Ab (MariaDB Corporation

16

Ab 2020). For this thesis project, using Container is the most convenient approach due to

the following reasons:

• For developing the GUI of MaxScale, an end to end application stack needs to be

set up and run in the same host computer which includes multiple MariaDB server

instances, MaxScale and the front-end local hosting environment. However,

setting up and running this application stack by using VM software, it will consume

system resources from the host computer significantly. In addition, setting up the

environment using VM requires time and a lot of configurations (BackBlaze 2018).

• Following the tutorial from MariaDB Corporation is complex and the configuration

depends on the operating system of the host computer.

• Container and VM may have the same usage purpose which is to run applications

and software in multiple operating systems, but its design and approach are

different. VM emulates computer system that “virtualizing the underlying computer”

while Container only virtualizes the operating system As it is illustrated in figure 9,

there are no Guest Operating System layers compared to VM, so instead of

reproducing the same operating system code, creating independent Guest OS

layers, Container shares the operating system resources between operating

systems. This makes Container faster and lighter compared to VM.

• For the sake of simplicity and flexibility, Container is better option as it allows to

rapidly change the configuration file effortlessly while VM requires to reinstall and

setting up most of the things.

Figure 9. VM architecture and Container architecture (Docker 2020)

Docker container is chosen for this thesis project as the thesis writer already has

experience with it and MariaDB Corporation Ab also support the use of Docker for their

MariaDB server. MariaDB Server docker image is already deployed and maintained by

17

MariaDB Corporation Ab (Docker Hub 2020). However, there are two version of MariaDB

server image in Docker Hub which are mariadb/server and mariadb image. Usage of

either mariadb/server image or mariadb image is compatible with MaxScale. The different

is that mariadb/server image is maintained by MariaDB Corporation Ab while mariadb

image is developed and maintained by the Docker Community (Docker Hub 2020).

3 Empirical

As mentioned in the introduction, the objective of this thesis is to set up developer’s

working environment to be eventually used for implementing the administrative UI of

MaxScale. The UI will be built by using Vue.js framework as a user interface framework

and the following fundamental Vue.js libraries such as Vuetify, a reusable components

library followed material design concept, Vuex as a state management library and a

starter kit called Vue CLI using to automatically generate project boilerplate with opt-in

and opt-out configurations.

The empirical chapter will be divided into three main sections including: Initializing the

project, MaxScale REST API authentication approach and Implement the graphical user

interface of authentication page. The first section focuses on setting up tools,

development environment in terms of MaxScale and Vue.js. The second section

discusses around current authentication method in MaxScale REST API and new

authentication approach for using in web application. The last section presents UI

implementation of the authentication page.

Generally, this chapter walks through the most vital aspects of setting up the development

environment and a part of building the application by following good coding practices and

modular approaches.

3.1 Initializing the project

3.1.1 Setting up MaxScale environment

As mentioned in 2.2.2, MaxScale can be installed to the host OS by several approaches,

either by using released pre-built packages or by building MaxScale from the GitHub

source code. Since the development of the GUI for MaxScale is still ongoing, changes on

the MaxScale source code is required, therefore building MaxScale from the source code

is inevitably required. This approach allows users to build their own binaries of MaxScale

whether it is the released version or development version. However, the installation steps

18

may be tricky and time consuming than using pre-build packages as discussed in the

following content.

Regarding the operating systems that MaxScale supports, MaxScale can be built in any

systems having the required main core packages (Table 1). Since, most of these

packages are developed on top of Linux distributions, hence the host operating system is

recommended to build MaxScale is Linux.

Table 1. Required installed packages (MariaDB Corporation Ab 2020).

Package Version

CMake 2.8.12 or later

GCC 4.4.7 or later

SQLite3 3.3 or later

OpenSSL Not specified

Bison 2.7 or later

Flex 2.5.25 or later

libuuid Not specified

GNUTLS Not specified

libcurl Not specified

The thesis writer is using elementary operating system, which is a Linux distribution based

on ubuntu, therefore, those mentioned packages can be installed without difficulty.

Besides those packages, MaxScale installs several packages under the hood by running

a shell script calls “install_build_deps.sh” as illustrated in figure 10.

Figure 10. MaxScale building from source code build steps (MariaDB Corporation Ab

2020)

MaxScale development process including bug fixes, enhancements patches, new features

occurring every working days. Apart from that, the development of the REST API partially

depends on the requirements needed from the GUI. As part of development process,

19

every time MaxScale repository has changes, MaxScale needs to be built and installed to

the host OS again. Nevertheless, the GUI does not need all features from MaxScale such

as system tests, build but it certainly needs REST-API feature, maxctrl to be enabled.

Fortunately, MaxScale allows to configure the build options by using cmake command, all

available options can be found on MaxScale GitHub.

From MaxScale GitHub, before building MaxScale, the document instructs to execute the

following command as shown in figure 10:

cmake ../MaxScale -DCMAKE_INSTALL_PREFIX=/usr

-DCMAKE_INSTALL_PREFIX is a built option indicating the target folder MaxScale will be

installed in which allows multiple versions of MaxScale to be installed in the same OS. As

mentioned, the GUI will not need all features of MaxScale, figure 11 shows a list of build

options to instruct MaxScale to have a minimum build version by opting out unnecessary

parts. After configuring the build options, MaxScale can be built by simply run the “make”

command.

Figure 11. MaxScale build options for minimum build version.

When Maxscale finishes its build process, executing “sudo make install” will install

MaxScale using the build version which was previously built. However, there is one thing

to considered whether MaxScale needs to be run with root privileges or not. If MaxScale

is installed with sudo command, “/maxscale” folder and all of its files can only be executed

by the root owner. However, even if MaxScale is run with sudo command, an alert will be

printed said “MaxScale cannot be run as root. This apparently a typo in the

documentation, so instead of using “sudo make install”, the correct command will be

“make install”.

20

By default, MaxScale reads configuration file with the “.cnf” extension in the “etc“ directory

at this path maxscale/etc” (MariaDB Corporation 2020). However, for the purpose of

developing, several build versions may use the same configuration file. As so, new path

for the configuration file will be defined before starting MaxScale. Meaning that, instead of

reading configuration files the “etc” directory, it reads files from specified path.

For example, if the configuration file is located at this path “/$HOME/maxconfig/local”.

In order to run MaxScale, the current working directory has to be changed to this path

“/$HOME/maxscale/bin”, then executing the following command:

./maxscale -d --configdir=$HOME/maxconfig/local

MaxScale will be run using the specified configuration file as illustrated in figure 12.

Figure 12. Running MaxScale.

For developing purpose, the basic configuration for MaxScale needs to define two servers

with id: row_server_1 and row_server_2 with their address, port and protocol as shown in

figure 13. Though, the figure shows only partial configuration which includes server,

listener and service.

Figure 13. Basic MaxScale configuration file

21

These servers will be run in docker containers using docker-compose tool which allows to

create and run multiple containers together in an isolated environment. (Figure 14)

(Docker 2020).

Figure 14. docker-compose.yml file.

In the docker.compose.yml file, the volumes section allows to persist and share data

between containers. In this case, there is a “/sql” directory containing two child directories

master and slave. “:/docker-entrypoint-inidb.d” simply executing the script inside master

and slave directory. Script in the master directory creates a test database and users as a

primary server while the script in the slave directory sets up the replication mechanism for

the primary server (figure 15).

Figure 15. Persisting and sharing data between primary server and slave server

After defining docker-compose.yml file, executing docker-compose up will create isolated

container for each server and run those servers. When all servers are running, the status

of the servers can be checked through maxctrl CLI with the command “maxctrl list

servers”. If the state of the row_server_1 is “Master, Running” and the row_server_2 is

22

“Slave, Running”, the configuration of MaxScale environment is done properly as

expected (figure 16).

Figure 16. Output of the “maxctrl list servers” command.

3.1.2 Vue CLI and Visual Studio Code configuration

The GUI for controlling MaxScale will be bootstrapped by Vue CLI which is an official tool

from Vue.js for creating project boilerplate with opt-in and opt-out features either by using

CLI or GUI approaches.

The command for creating the project by using CLI approach is “vue create maxgui”.

When creating the project with this approach, user has ability to manually select needed

features. The initial features for this project consist of Babel, Vue Router, Vuex, CSS Pre-

processors (Sass/SCSS with dart-sass), Linter / Formatter, Unit Testing and E2E Testing.

These features are carefully considered to be added in this project in order to remain the

consistence and convention among other MariaDB Corporation Ab user interface projects

using Vue.js.

The structure of the project will have babel and eslint configurations located in their

dedicated configuration files to facilitate the ease of later configuration. However, this is

minimum configurations for starter project, it is not enough for a real-world application that

requires to be scalable. Fortunately, Vue CLI provides an optional dedicated file named

“vue.config.js” in the root project folder to configurate its features. By configuring the

vue.config.js file, we can handle how webpack process to bundle our application (figure

17).

23

Figure 17. vue.config.js

The very first thing that needs to be configured regardless of production application or

development application is handling CORS (Cross-Origin Resource Sharing).

This is a common task when developing the user interface of any applications requires the

communication between the backend and the front-end. For production application, this

requires the configuration from the web server, however, when the development

application is served locally on the host machine, a proxy needs to be configured in the

development server to bypass CORS.

Secondly, when using Sass Pre-processor, using variables or constants sass/scss files

within vue template is a typical development approach. Instead of importing needed styles

files every time to vue template component, we can configure to automatically import

necessary style files to the target vue template component.

Thirdly, for UI frameworks or libraries similar to Vue.js that developed based heavily on

reusable component approach, user usually has to import child components to parent

24

component. To facilitate development effortlessly, we need to configure webpack to

resolve component path to module path.

Figure 18. Resolve path to use module path.

For example, with the webpack configuration as shown in figure 18. To import “Bar”

component in “src/components/common/Bar.vue” and a plugin “moment” from

“node_modules” to a Foo component located at this path “src/pages/Foo.vue”, we can

simply import components with module path as follows:

import Bar from 'components/common/Bar'

import moment from 'moment'

Other options such as “transpileDependencies”, “outputDir”, “pluginOptions”,

“productionSourceMap” are highly recommended to configure.

• The “transpileDependencies” option is used to target specific packages in

“node_modules” to be transpiled alongside with the application when using Babel.

Since, this project will be bootstrapped by using Vuetify, it is advised to transpile

this library.

• The “outputDir” should be added to specify the output directory when the

application is built. Because the GUI will be served by MaxScale in MaxScale’s

share folder, therefore, in my host machine, the “outputDir” value will be as follows

“/home/thien/maxscale/share/maxscale/gui”.

• The “pluginOptions” should be added when using external library like “vue-i18n”

which is a plugin to have internationalization application.

• If the “productionSourceMap” option is set to be true, it simply informs webpack to

create source map files that enable browser debugging tool to map the transpiled

source code to the original source code.

Apart from that, Vue CLI allows to create node environment variables to improve and

optimize product development workflow by creating “env.local” (local environment

variable), “env.development” (development environment variable) or “env.production” (

production environment variable).

25

The local environment variable is created with an intention to be ignored by git version-

control system and used for assigning local variables in the host system. In the case of

MaxScale, for outputting the built directory to MaxScale, the absolute path to MaxScale

share folder needs to be specified. Since the location of MaxScale share folder is different

for each user, a local environment variable that assigning MaxScale share directory path

should be created before building the application. This can be assigned as follows:

“buildPath=/home/thien/maxscale/share/maxscale/gui”

Therefore, instead of assigning outputDir to the actual MaxScale share directory, we

assign to it with the local environment variable in this way: outputDir:

`${process.env.buildPath}/gui`. Basically, when the application is built or served, the “env”

object variable will be created as a property of the global “process” object created by

Node.js. As so, the application has access to all existing environment variables from the

global “process” object.

(Vue CLI 2020, TWILIO INC 2017).

Browser compatibility is considered to a significant factor in benchmarking a web

application. When creating the project with Vue CLI, a “.browserslistrc” file contains a

value “defaults” will be created automatically. Vue CLI will use the value in this file to

transpile needed JavaScript features and add needed css vendor prefixes. Depending on

business need, the value of this file will be varied while keeping the cross-browser

compatibility to some extent (Vue CLI 2020).

Regarding Visual Studio Code configuration, sharing settings, configurations and

extensions to remain then consistency of the source code is an ideal choice for an

application developed by several developers. In addition, this relieves the process of

integrating one application to another application since the programming style is shared

between developers and applications. Once the developer installs recommended VS code

extensions, all settings in the “settings.json” file are automatically recognized by VS code

as workspace configurations. The final configurations consists of list of recommended

install extensions, workspace VS code “settings.json”, configuration file of Prettier

extensions using for formatting source code and a jsconfig.json file used to utilized VS

code IntelliSense features (figure 19)

26

Figure 19. Visual Studio Code configuration

3.1.3 Setting up necessary Vue.js plugins

Plugins in Vue.js can be thought as global features that are accessible throughout the

application to speed up development progress. In addition, some of the plugins are used

to build scalable, well organized and manageable application. Though, this project utilizes

a few helpful plugins consisting of Axios, vue-fragment, portal-vue, vue-i18n, vue-moment,

Vuetify and Vuex. The setting of most plugins is easily and even auto set-up when install

the plugin through vue-cli-service of Vue CLI. Hence, this section focuses mainly on the

setting up of Axios plugin.

A dashboard application certainly needs to send and retrieve data from the server by

performing http requests. Back to the past, if a traditional application operates this process

synchronously, it will freeze the current user interface of the application while making

server calls which is bad in terms of user experience. Therefore, asynchronous

development technique for Javascript was introduced in 1996 to solve synchronous issue

in web application. Later on, other techniques were developed but Ajax developed by

Google in 1999 is the most quickly adapted asynchronous development technique and

27

being stayed at the crown until now. Ajax techniques uses XMLHttpRequest internally to

perform data exchanges between the servers and the client application without refreshing

the browser (Wikipedia 2020).

Using Ajax techniques solves the synchronous issue in web application, but its syntax

requires repetitive work. Whenever there is anything that is repetitive, there will be always

a way to make it automation. As so, many libraries or APIs are developed on top of Ajax

techniques to have better concise syntax. In term of using these libraries with Vue.js,

Axios, an open source http client library is recommended to use in Vue.js because it has

well-supported and maintained from large community. (Vue.js 2020)

Since, Vue.js allows to define new properties in the global “prototype” object, we can

simply define axios as a new property of this object and is then available to access in all

Vue instances. However, reinvent the wheel is not always ideal, the community of Vue.js

provides a simple and lightweight wrapper plugin out of the box called vue-axios. This

plugin internally uses the same approach by defining axios as a property to the Vue

“prototype” object as shown in figure 20A. Figure 20B shows how effortlessly the usage of

axios in Vue.js can be done.

Figure 20. Code snippet of vue-axios and the usage of it within Vue.js.

As mentioned in the beginning of this section, other plugins are auto set-up when using

Vue CLI except vue-fragment. This third-party plugin is added to this project as a

workaround of the root element issue in vue template with the current Vue.js version

(Vue.js GitHub 2017).

28

For example, with a single file component called “Hello.vue”, the Vue template requires

one root element to wrapper the content inside the <template> tag. If the <template> tag

has two child elements, the eslint validator will show the “vue/valid-template-root” error.

With the help of vue-fragment plugin, the issue can be bypassed by adding a fragment tag

<fragment></fragment> to wrapper the two child elements.

This fragment plugin is actually a borrowed concept from React.js version 16. In React.js,

the syntax for the fragment is <React.fragment></React.fragment>.

However, React.js provides an alternative and more concise syntax for the fragment

which is just an empty tag: <></> (Reactjs.org 2020).

3.2 MaxScale REST API authentication approach

3.2.1 Current authentication method

The default local host address of MaxScale REST API is http://127.0.0.1 and it listens on

port 8989. In order to facilitate the development process easier, the address and port will

be added to a global variable environment named VUE_APP_API in the

“.env.development” file.

VUE_APP_API=http://127.0.0.1:8989

At the moment, MaxScale uses Basic Authentication for REST API to authenticate the

user when its resources accessed through HTTP requests. The resources comprise of

maxscale, services, servers, filters, monitors, sessions and users. The client sends the

request to MaxScale with request headers contain the “Authorization” header. The value

of this header consists of the word “Basic” followed after by a space and a base64

encoded string for username and password.

By adding an “auth” object in axios request config option, axios automatically adds a Basic

Authentication header to the request header. The password and username will be also

encoded using base64 encoding schemes by axios. The syntax is as followed:

axios.get(`${VUE_APP_API}/maxscale`, { auth: { username: 'admin', password: 'mariadb' }

})

The request header added by axios will be then generated as follows: “Authorization:

Basic YWRtaW46bWFyaWFkYg==”

http://127.0.0.1/

29

3.2.2 JWT for SPA

With the current implementation of the REST API, SPA cannot keep the user logging in

without storing credentials. Insecure application may store the credentials on the client

side to achieve this. Though the connection is HTTPS encrypted, this approach is still an

extremely bad practice and should be avoided because HTTPS does not compromise

credentials leakage in all cases. Apart from that, the base64 encoded string can be

decoded easily, hence the credentials is exposure unwittingly.

That leads to the need of developing an api endpoint “/auth” to authenticate and keep the

user logged in by returning a token representing that user. As so, instead of exchanging

credentials in every HTTP request, a token will be used. MaxScale implements stateless

REST API which requires the session state to be shared between the client and MaxScale

through HTTP protocol. The token plays a vital role as a state holding authentication data

to be transmitted between MaxScale and MaxScale Admin GUI.

The current develop version of MaxScale is using JWT to create JSON-based access

token which lasts for 8 hours and becomes invalid if MaxScale is restarted (MariaDB

Corporation 2020). To get the token, a post request method with credentials enclosed in

the body need to be sent to the “/auth” endpoint of the REST API. This “/auth” endpoint

still uses the Basic Authentication schemes to authenticate the user, if the credentials are

valid, the response body for the request contains the token (figure 21). After successfully

login, for every future API request to MaxScale, the token needs to be sent along with the

requests; otherwise MaxScale will not accept the request and return unauthorized http

response code.

Figure 21. JWT received from MaxScale "/auth" endpoint.

This token should be cryptographically signed and have expiration date so that it will not

be modified by the client. It is tempting to store the token in the sessionStorage or

30

localStorage of the web storage due to the sake of simplicity. However, this is not the

most secure approach for storing the token due to MITM, XSS and CSRF attacks. In fact,

it is never a good idea to store any sensitive information in the web storage, whether it is

in sessionStorage or localStorage, they are all vulnerable and accessible by JavaScript. A

practical case is when the user may use their favorite browser extensions not knowing it

contains malicious scripts. Attacker may steal the token and act on behalf of the user to

perform unwanted actions. This type of attack is known as XSS, it bypasses the same-

origin policy set by MaxScale REST API (OWASP Cheat Sheet Series 2020).

3.2.3 Storing the token

On the internet, there are so many articles, tutorials, discussions about storing the token.

However, the use cases may vary ranging from the traditional web application to SPA.

So far, one the recommended approaches of storing the token in SPA is by using http-

only cookie (Peter, L 2017).

Cookie with http-only flag prevents it from the access of JavaScript, as so it mitigates the

XSS attack. Nevertheless, storing the token inside a http-only cookie without any

configuration is still vulnerable to CSRF attacks and ineffective for UX in terms of SPA to

some extent as follows.

Regarding the CSRF attack, though MaxScale recommend consuming REST API over

https encrypted connection, this does not compromise CSRF prevention for storing a

token in a http-only cookie. If user browses malicious websites, attacker can steal user’s

session and trick user to perform forgery requests as the cookie is shared among

browser’s tab (OWASP Foundation 2020).

Fortunately, a flag called ‘SameSite’ for cookie mitigates CSRF attack which have three

option values: Strict, Lax and None. Although, this flag supports only well-known

browsers with specific versions. Nevertheless, most modern browsers are migrating to

force the use of SameSite cookie to defense CSRF attacks. For instance, since version

80, Chrome treats cookie as SameSite=Lax by default which prevents third-party context

from accessing the cookie across sites (MDN web docs 2020).

As for the case of storing the token in http-only cookie, set SameSite=Strict is the most

appropriate solution to mitigate CSRF attack in the GUI of MaxScale regardless of

browser compatibility and sharing token with third-party context due to some reasons as

follows:

31

• SameSite=strict flag supports modern browsers with versions older than

MaxScale’s GUI does (browserl.ist 2020). Even so, the target browsers of the

application still cover 90.77% of global browsers which is a remarkable figure

(table 2).

• The token serves the application as an authentication layer to MaxScale REST

API resources and it means not to be sent to any third-party context. If the

application is served via http://127.0.0.1:8989, the token should only be sent to

this address.

Table 2. The minimum versions support SameSite=Strict flag cookie compares to the

browser versions MaxScale’s GUI support (MDN web docs 2020, browserl.ist 2020).

Browsers

SameSite=Strict browserslist defaults

Mobile version

Desktop

version

Mobile version

Desktop

version

Chrome 51 51 78 78

Firefox 60 60 68 68

Edge 16 17

IE NO NO 11 11

Opera 41 39 46 63

Safari 12.2 12 12.2 12.1

Samsung

Internet
5.0 9.2

Android

webview
51 76

Another flag called “Secure” should be added along with the cookie which ensures the

cookie will only be sent to the user if the transmission requested is encrypted using SSL

or TLS. By adding this flag, in prevent the user’s session from being stolen by MITM

attack.

When the token is set in the cookie with http-only flag, JavaScript will not have any access

to the token. Though this guarantees the token integrity whenever the front-end send

requests to MaxScale, SPA cannot verify the existence of the token in an http-only cookie

which leads to the case that after logging in, SPA will not navigate to the dashboard.

Successful http response code receiving after authenticating the user may tackle this

http://127.0.0.1:8989/

32

matter. However, SPA cannot rely fully on http response status code due to the

characteristics of SPA.

For example, to restrict certain view based on user’s role, SPA needs to use user’s

session data to manipulate this behavior. Sending HTTP request to MaxScale just to

verify user’s authentication is ineffective and considered to be bad practice. What can be

done on client side should be done there. Though, MaxScale does not support user roles

and access permissions at the moment, it may change since the administration GUI

provides appealing UI than the CLI which is mainly used by administrator. The GUI means

to be used by non-technical person; therefore, user role-based access control may be

introduced.

Another scenario when SPA wants to handle user’s session timeout in a better user-

friendly approach which popping up a dialog to inform inactivity session and require re-

login or just an animation of navigating to the login page. This is undoable if the token is

stored with http-only flag since the application cannot access the token.

A solution to solve all the above-mentioned issues is to split the http-only cookie into two

cookies which is the same approach as Peter L does (Peter, L 2017). A JWT token

consists of three parts separated by dots after: header.payload.signature.

The first cookie name “token_body” holds the payload part and allows JavaScript to

access it. This “token_body” contains information about the current authenticated user

that can be used by SPA to achieve session timeout feature and page routing to

dashboard page.

The other cookie name “token_sig” contains the signature part that MaxScale will use to

verify user’s authorization. The expiration time will be added only if the user chooses to

use “Remember Me” feature, otherwise, when user closes the browser, this cookie will be

invalid.

To wrap everything up, the cookies MaxScale would send to the GUI are listed as follows

Set-Cookie: token_sig =<signature>; SameSite=Strict; Secure; HttpOnly; Expire=<date>

Set-Cookie: token_body = <payload>; SameSite=Strict; Secure; Expire=<date>

33

The new authentication mechanism flow when using two cookies approach is illustrated in

figure 22 which describes the process for authenticating the user for the first time and

when user is authenticated.

Figure 22. Authentication mechanism when storing token in two cookies.

3.3 Implement the graphical user interface of authentication page

3.3.1 SSL encryption

As discussed in 3.2.3, the cookies will be sent only if the connection between MaxScale

and the GUI application is encrypted when using the “Secure” cookie attribute. Although

MaxScale will serve the GUI application from its origin which means that it only requires

the configuration of TLS/SSL encryption in MaxScale; when developing the GUI

application or hosting the application in localhost environment, the GUI and MaxScale are

not in the same origin, the GUI is hosted at different address. Therefore, the following

content will focus on setting up SSL encryption for both MaxScale and localhost

environment.

34

For the sake of simplicity and speed, CA (certification authority) certificate which is a

digital certificate issued by trusted CA will be created locally using open source “mkcert”

tool created by Fillppo, V. The browser uses this certificate to verify trusted CA to validate

secure encryption. (Wikipedia 2020, Filippo, V. 2020)

The steps are quite simple as shown in figure 23, the “mkcert -install” simply create local

trusted CA which will be then used to issue CA certificate for “localhost” and “127.0.0.1”

addresses.

Figure 23. Creating local CA certificate.

Regarding of TLS/SSL encryption for MaxScale, this can be done by configuring the

configuration file “*.cnf” with the following parameters: admin_ssl_key and admin_ssl_cert

holding value to the path of the CA certificate key (localhost+1-key.pem) and CA

certificate (localhost+1.pem) files, respectively (MariaDB Corporation Ab 2020)

For the GUI application, enabling SSL can be done easily with similar steps which also

requires specifying the path for both mentioned files. As mentioned in 3.1.2, figure 17, the

“devServer” object which is used to configure the development server that host the GUI

application in localhost environment; by adding a property named “https” to devServer

object as below:

 https: {

 key: fs.readFileSync('./.certs/localhost+1-key.pem'),

 cert: fs.readFileSync('./.certs/localhost+1.pem'),

 }

However, specifying the path is not enough, we need to use “fs” API from nodejs to read

and return the content of the file. Webpack starts the development server under the hood

by passing devServer object to Node.js HTTPS module (Webpack 2020). Apart from that,

35

these certificate and key files are meant for using in local development which requires the

local CA to be stored in developer’s OS. Therefore, it is a good idea to store it in a

directory called “.certs” at the root project directory and configure that folder to be ignore

by GIT.

After successfully configuring SSL both MaxScale and the GUI are now only available to

be accessed with https protocol. MaxScale REST API becomes: https://127.0.0.1:8989

and the GUI is now served at https://localhost:8000. As so, the VUE_APP_API node.js

environment variable as mentioned in 3.2.1 will be changed to use https instead of http

protocol as follows:

VUE_APP_API=https://127.0.0.1:8989

3.3.2 Login page

The new JWT authentication approach still utilizes basic authentication in the first login

request, therefore, user needs to provide credentials and send it to MaxScale via REST

API at “/auth” endpoint as illustrated in figure 22. Besides, to remain consistency

regarding user experience among MariaDB UI applications, the login page usually offers

“remember me” feature. As so, the inputs collected from user consisting of username,

password and remember me values which is illustrated in figure 24

Figure 24. Login prototype page (MariaDB Corporation Ab 2020)

The following bullet points shown of the minimum requirements needed for validating user

input and authenticating user:

• Input fields should not be empty, if it is empty, show related error message.

https://127.0.0.1:8989/
https://localhost:8000/

36

• If username or password are incorrect, shows a general error: “Incorrect password

or username” and put two input fields into error state.

• Show server error message

• When “Remember me” checkbox is ticked, user’s session lasts for 8 hours.

Otherwise, as long as user closes the browser, the session is expired.

With the traditional way using vanilla Javascript, in order to handle form submission, these

input fields will be located in a html form tag <form></form>. This form has an “onsubmit”

attribute that provides a callback function which is triggered when user clicks submit

button. This callback function can be a function that validates form data and then attaches

it in the body request to send to the web server. Regarding of collecting form data, there

are several ways using vanilla Javascript to get values from the <form> tag such as using

FormData API, adding event listener to the form or querySelector() method from the

Document interface (MDN web docs 2020). Each approach has different scenarios usage

case coming with its advantages as well as disadvantages.

Nonetheless, when using UI library or framework, handling form submission will be

different depending on library or framework. In terms of a SPA framework, Vue.js handling

form inputs using two-way data bindings approach which means when the input values in

the form get changed by user’s interaction, the properties in the data model binding to the

input value will be updated, vice versa (Vue.js 2020).

Since, the project was initialized by using Vue CLI, single file components was chosen by

default which means files having named ending with “.vue” extension are reusable Vue

instances. In other words, these files are called components which are located, organized

in a structure of tree but still having access to the same options that root Vue Instance

has.

Therefore, all components will have its own reactivity data, computed, watch, method as

well as lifecycle hooks.

As so, to start the implementation of the login page, we first create a file named

“Login.vue” in the /src/views directory which was created automatically when generating

the project with Vue CLI using vue-router as SPA routing plugin. We can then later

configure routing behavior in /src/router directory to achieve authenticated route and

public routes. Below is a code snippet showing the login component’s data option which

returns a reactivity data object for each component. As a rule of Vue.js, “data” has to be

37

always a function returning an object in order to prevent data changes in a specific

component will not affect other components (Vue.js 2020).

data() {

 return {

 isValid: false,

 rememberMe: false,

 credential: {

 username: '',

 password: '',

 },

 errorMessage: '',

 showEmptyMessage: false,

 rules: {

 username: [val => !!val || this.$t('errors.usernameRequired')],

 password: [val => !!val || this.$t('errors.passwordRequired')],

 },

 }

 },

Basically, the returned data object contains data binding we need to handle form

submission. These properties in the object will be passed to the value of either v-bind or v-

model directives in the HTML-based template, which can be called as reactivity data as

mentioned in 2.1.1. The HTML-based template will be rendered as Virtual DOM

performing necessary re-render if the values of those properties are changed. Directories

v-bind and v-model are one-way data bindings and two-way data bindings, respectively.

As explained before, in order to handle form inputs, we need to use two-way data bindings

directive which is “v-model”. Apart from that, for one-way data bindings which is suitable

for read-only data, we can use “v-bind” directive; For example: to display placeholder for

input field, the syntax for it would be as so:

v-bind:placeholder="username"

As mentioned at the beginning of this section, the implementation of the login page needs

to meet four mentioned requirements. To achieve the first bullet point requirement, we add

required attribute for both input fields and specify array of validation methods for “rules”

props of <v-text-field>, a Vuetify input component. By doing this way, validation method

specified in “rules” props will receive the value from the associated input field to either

return Boolean values or an error string message.

For example with rules.username method for username input field, this validation method

receives a parameter value that I named it as “val”.

38

 rules: {

 username: [val => !!val || this.$t('errors.usernameRequired')],

 },

This “val” is a two-way data binding value, when user changes value of the input, it

triggers this validation method which returns either Boolean value or a string. Therefore, if

the Boolean value is false, it switches to return the error string as shown above.

To clarify this validation method, assuming the value is always empty, then we want to

check the truthy of the value and it should be false so as to return the error string.

First, to put the string into Boolean evaluation mode, we add a not operator “!” before the

value, so now empty string will be treated as a falsy value and the operator not “!” will

convert it from false to true. But it goes against our will, the value is empty and is

evaluated to be true, then the string error message will never be returned. That is why we

need to add double not “!” operator, the second not operator simply inverts it to the

original value which is false. Though the use of double not operator minifies the number

line of code but makes it complex for those who does not understand the meaning of

double not operator.

If we use simpler validation method, it would be written as follows:

rules: {

 username: [

 val => {

 if (val === '') {

 return this.$t('errors.usernameRequired')

 } else return true

 },

]

 }

Regarding the second and the third bullet point requirements, we can combine those

requirements into one goal which is to allow custom error message to be shown after

performing asynchronous request to MaxScale web server.

Fortunately, Vuetify <v-text-field> provide props called “error-messages” which accepts

either string or array. Under the hood, <v-text-field> component evaluates the value of this

props to a Boolean value, if the value is provided with a non-empty string or array of non-

empty string, the input field will be put into error state and rendered provided error

message. However, if we pass empty string to this prop, it will not trigger error state as

empty string is treated as a falsy value.

39

To achieve this, we bind the “error-message” props with errorMessage property in the

data object so that we can control the content of the error message based on the

response body whether it returns 401 (wrong credentials) or server error. However, when

it returns 401, both input fields will render the same error message which is not our goal. If

we omit to use “error-message” props for one of the two input fields, the omitted one will

not be put into error state. To handle this issue, simply adding a property in the data

object called “showEmptyMessage”. The value of this property is a boolean value that

controls the display of empty message passed to “error-message” props, as follows:

v-bind:error-messages="showEmptyError ? ' ' : errorMessage"

If “showEmptyError” is true, we return a string with a space instead of the actual error

message which we already shown in the other input. We return a space to bypass the

empty string issue as mentioned above. At this stage, the error state is triggered, but

when user tries to correct the error by re-entering the input field in term of wrong

credential error, “error-message” props will not trigger form validation, hence the error

state still visible in the user interface. A solution to tackle this problem is to detect the

event when user updates input values. To watch on user input state, we add a v-on

directive event for input as so: v-on:input=”onInput”, so whenever input is updated and the

“showEmptyMessage” is evaluated to be true, we set the “errorMessage” to be an empty

string and then clear “errorMessage” value and set “showEmptyMessage” to be true as

shown below:

 onInput() {

 if (this.showEmptyError) {

 this.showEmptyError = false

 this.errorMessage = ''”

 }

 },

Finally, we can achieve the “remember me” feature by adding a new property called

rememberMe to data object and then use v-model to have two-way data bindings to a

Vuetify checkbox component as follows:

<v-checkbox v-model="rememberMe" class="small mt-2 mb-4" :label="$t('rememberMe')"

color="primary" hide-details />

When user clicks sign in button, “handleSubmit” method as shown below will be triggered

to handle form submission. We can then collect all user input in the data object including

40

the “rememberMe” property to either include the “max-age” parameters to “/auth” endpoint

to get two cookies token as is already illustrated in figure 22.

async handleSubmit() {

 let self = this

 try {

 let url = '/auth?persist=yes'

 await self.axios.get(`${url}${self.rememberMe ? '&max-age=28800' : ''}`, {

 auth: self.credential,

 })

 await self.$router.push(self.$route.query.redirect || '/dashboard/servers')

 } catch (error) {

 this.showEmptyError = true

 this.errorMessage =

 error.response.status === 401 ? this.$t('errors.wrongCredentials') : error.response.statusText

 }

}

4 Discussion

This chapter discusses around the problem encountered while writing this thesis and

presents known limitation and suggests for further improvement of researched solution in

terms of REST API authentication methods.

4.1 Problem encountered

Frist of all, it is related to unfamiliar technology using for the product. By the time I was

recruited to the company, which was on February, I was using React.js as a UI library to

develop web applications. However, the company wants to remain technology consistent

between UI projects which are using Vue.js as UI framework. Stepping into the product

project as a beginner in Vue.js, it definitely has an effect on my thesis project timeline due

to learning curve in terms of writing theoretical part.

Secondly, due to time limited, early stage of collecting user requirements, documenting on

practical usage case of the product; the structure, contents of the product are all in

prototype phase. Therefore, changes to the design and the content displaying in the UI

happens frequently which makes difficult to implement UI reusable components. Apart

from that, the look and feel, the design style of the application is following MariaDB

41

product design system which is a confidential information. Therefore, UI styles

implementation cannot be included, which leads to narrow the scope of this thesis.

4.2 Limitation of researched authentication approach

With the two cookies authentication approach, the “Remember me” feature was

implemented simply without taking all security aspects into account. Whenever

“Remember me” feature is enabled, user’s session is lasted up to 8 hours even when the

browser is closed, though it brings convenience to user to some extent, it does not

compromise on leaked access token fully. If user forgets to logout the application, those

who have access to the computer can steal user’s session.

In addition, the two cookies authentication approach claims to prevent the common

security issues for web application in theory as penetration testing have not been carried

out.

4.3 Further research

For resolving “Remember me” feature issue, session cookies renewal approach can be a

potential solution though it needs further research. Basically, expire time of the token will

be set to 30 minutes instead of 8 hours when user chooses “Remember me” feature. It will

be automatically renewed to 30 minutes if authenticated user keeps sending requests.

Otherwise, whenever user’s session is expired, the application prompts a login dialog to

ask for credentials, then the token can be renewed.

Apart from that, there could have been a section to compare the difference, pros and cons

of authentication methods for REST API to clarify the reason behind using JWT method.

4.3.1 Summary

Overall, though I did not achieve objectives outlined in the project plan due to problems

encountered mentioned in 4.1, I was able to make adjustment to the structure of the thesis

at the early stage. New objectives of this thesis including the setting up of development

environment, UI project structure and improvement of MaxScale REST API in terms of

user authentication in web application were obtained. Apart from that, knowledge

regarding to REST API authentication, database proxy and Vue.js were accumulated

significantly throughout the research.

42

References

Alibaba Cloud 2020. ApsaraDB for MariaDB TX. URL:

https://www.alibabacloud.com/products/apsaradb-for-rds-

mariadb?spm=a2c5t.10695662.1389108.279.7b3d12d1dSVvBC. Accessed 17 March

2020.

alligator.io 2017. Understanding Vue.js Lifecycle Hooks. URL:

https://alligator.io/vuejs/component-lifecycle/. Accessed 23 March 2020.

Amazon Web Services 2020. Amazon RDS for MariaDB. URL:

https://aws.amazon.com/rds/mariadb/. Accessed 17 March 2020.

BackBlaze 2018. What’s the Diff: VMs vs Containers. URL:

https://www.backblaze.com/blog/vm-vs-containers/. Accessed 08 March 2020.

bestofjs 2019. 2019 JavaScript Rising Stars. URL:

https://risingstars.js.org/2019/en/#section-framework. Accessed 22 March 2020.

browserl.ist 2020. browserl.ist. URL: https://browserl.ist/?q=. Accessed 21 April 2020.

Docker 2020. Overview of Docker Compose. URL: https://docs.docker.com/compose/.

Accessed 12 April 2020.

Docker 2020. What is a Container? URL: https://www.docker.com/resources/what-

container. Accessed 17 March 2020.

Docker Hub 2020. mariadb Docker Official Images. URL:

https://hub.docker.com/_/mariadb/. Accessed 17 March 2020.

Docker Hub 2020. MariaDB Server Docker. URL:

https://hub.docker.com/r/mariadb/server. Accessed 17 March 2020.

Filippo, V. 2020. mkcert. URL: https://github.com/FiloSottile/mkcert. Accessed 6 May

2020.

https://www.alibabacloud.com/products/apsaradb-for-rds-mariadb?spm=a2c5t.10695662.1389108.279.7b3d12d1dSVvBC
https://www.alibabacloud.com/products/apsaradb-for-rds-mariadb?spm=a2c5t.10695662.1389108.279.7b3d12d1dSVvBC
https://alligator.io/vuejs/component-lifecycle/
https://aws.amazon.com/rds/mariadb/
https://www.backblaze.com/blog/vm-vs-containers/
https://risingstars.js.org/2019/en/#section-framework
https://browserl.ist/?q=
https://docs.docker.com/compose/
https://www.docker.com/resources/what-container.%20Accessed%2017%20March%202020
https://www.docker.com/resources/what-container.%20Accessed%2017%20March%202020
https://hub.docker.com/_/mariadb/
https://hub.docker.com/r/mariadb/server
https://github.com/FiloSottile/mkcert

43

Google Cloud Platform 2020. MariaDB. URL:

https://console.cloud.google.com/marketplace/details/google/mariadb. Accessed 17

March 2020.

JAVASCRIPT REPORT 2017. How Is React Different from Vue? URL:

https://jsreport.io/how-is-react-different-from-vue/. Accessed 22 March 2020.

MariaDB 2019. Learn how MariaDB MaxScale works with multiple MariaDB instances for

HA. URL: https://www.youtube.com/watch?v=Uk0HMlVvN3I&ab_channel=MariaDB.

Accessed 07 March 2020.

MariaDB Corporation 2020. Building MariaDB MaxScale from Source Code. URL:

https://github.com/mariadb-corporation/MaxScale/blob/develop/Documentation/Getting-

Started/Building-MaxScale-from-Source-Code.md. Accessed 11 April 2020.

MariaDB Corporation 2020. REST API. URL: https://github.com/mariadb-

corporation/MaxScale/blob/develop/Documentation/REST-API/API.md. Accessed 19 April

2020.

MariaDB Corporation 2020. Setting up MariaDB MaxScale. URL:

https://github.com/mariadb-

corporation/MaxScale/blob/develop/Documentation/Tutorials/MaxScale-Tutorial.md.

Accessed 11 April 2020.

MariaDB Corporation Ab 2017. MariaDB MaxScale Setup with Binlog Server and SQL

Query Routing. URL: https://mariadb.com/resources/blog/mariadb-maxscale-setup-with-

binlog-server-and-sql-query-routing/. Accessed 07 March 2020.

MariaDB Corporation Ab 2020. About MariaDB Software. URL:

https://mariadb.com/kb/en/about-mariadb-software/. Accessed 07 March 2020.

MariaDB Corporation Ab 2020. Enterprise Database Products. URL:

https://mariadb.com/products/. Accessed 07 March 2020.

MariaDB Corporation Ab 2020. Enterprise Database Products. URL:

https://mariadb.com/products/. Accessed: 23 February 2020.

https://console.cloud.google.com/marketplace/details/google/mariadb
https://jsreport.io/how-is-react-different-from-vue/
https://www.youtube.com/watch?v=Uk0HMlVvN3I&ab_channel=MariaDB
https://github.com/mariadb-corporation/MaxScale/blob/develop/Documentation/Getting-Started/Building-MaxScale-from-Source-Code.md
https://github.com/mariadb-corporation/MaxScale/blob/develop/Documentation/Getting-Started/Building-MaxScale-from-Source-Code.md
https://github.com/mariadb-corporation/MaxScale/blob/develop/Documentation/REST-API/API.md
https://github.com/mariadb-corporation/MaxScale/blob/develop/Documentation/REST-API/API.md
https://github.com/mariadb-corporation/MaxScale/blob/develop/Documentation/Tutorials/MaxScale-Tutorial.md
https://github.com/mariadb-corporation/MaxScale/blob/develop/Documentation/Tutorials/MaxScale-Tutorial.md
https://mariadb.com/resources/blog/mariadb-maxscale-setup-with-binlog-server-and-sql-query-routing/
https://mariadb.com/resources/blog/mariadb-maxscale-setup-with-binlog-server-and-sql-query-routing/
https://mariadb.com/kb/en/about-mariadb-software/
https://mariadb.com/products/
https://mariadb.com/products/

44

MariaDB Corporation Ab 2020. MariaDB Enterprise. URL:

https://mariadb.com/kb/en/mariadb-enterprise/. Accessed 23 February 2020.

MariaDB Corporation Ab 2020. MariaDB MaxScale Configuration Guide. URL:

https://mariadb.com/kb/en/mariadb-maxscale-24-mariadb-maxscale-configuration-guide/.

Accessed 06 May 2020.

MariaDB Corporation Ab 2020. MariaDB MaxScale Installation Guide. URL:

https://mariadb.com/kb/en/mariadb-maxscale-24-mariadb-maxscale-installation-guide/.

Accessed 08 March 2020.

MariaDB Corporation Ab 2020. MariaDB MaxScale. URL:

https://mariadb.com/kb/en/maxscale/. Accessed 04 March 2020.

MariaDB Corporation Ab 2020. Running Multiple MariaDB Server Processes. URL:

https://mariadb.com/kb/en/running-multiple-mariadb-server-processes/. Accessed 17

March 2020.

MariaDB Foundation 2016. MariaDB Server is a true open source project. URL:

https://mariadb.org/mariadb-true-open-source-project/. Accessed 07 March 2020.

MariaDB Foundation 2020. MariaDB Server: The open source relational database. URL:

https://mariadb.org/. Accessed 04 March 2020.

MariaDB Foundation GitHub 2019. GNU General Public License v2.0. URL:

https://github.com/MariaDB/server/blob/10.2/COPYING. Accessed 07 March 2020.

MDN web docs 2020. Set-Cookie. URL: https://developer.mozilla.org/en-

US/docs/Web/HTTP/Headers/Set-Cookie#Browser_compatibility. Accessed 21 April

2020.

MDN web docs 2020. Web APIs. URL: https://developer.mozilla.org/en-US/docs/Web/API.

Accessed 9 May 2020.

Oracle 1999. Distributed Processing. URL:

https://docs.oracle.com/cd/F49540_01/DOC/server.815/a67781/c29dstpr.htm. Accessed

07 March 2020.

https://mariadb.com/kb/en/mariadb-enterprise/
https://mariadb.com/kb/en/mariadb-maxscale-24-mariadb-maxscale-configuration-guide/
https://mariadb.com/kb/en/mariadb-maxscale-24-mariadb-maxscale-installation-guide/
https://mariadb.com/kb/en/maxscale/
https://mariadb.com/kb/en/running-multiple-mariadb-server-processes/
https://mariadb.org/mariadb-true-open-source-project/
https://mariadb.org/
https://github.com/MariaDB/server/blob/10.2/COPYING
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie#Browser_compatibility
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie#Browser_compatibility
https://developer.mozilla.org/en-US/docs/Web/API/FormData
https://docs.oracle.com/cd/F49540_01/DOC/server.815/a67781/c29dstpr.htm

45

OWASP Cheat Sheet Series 2020. Storage APIs. URL:

https://cheatsheetseries.owasp.org/cheatsheets/HTML5_Security_Cheat_Sheet.html#stor

age-apis. Accessed 20 April 2020.

OWASP Foundation 2020. Cross Site Request Forgery (CSRF). URL:

https://owasp.org/www-community/attacks/csrf. Accessed 20 April 2020.

OWASP Foundation 2020. Cross Site Scripting (XSS). URL: https://owasp.org/www-

community/attacks/xss/. Accessed 20 April 2020.

Peter, L 2017. Getting Token Authentication Right in a Stateless Single Page Application.

URL: https://medium.com/lightrail/getting-token-authentication-right-in-a-stateless-single-

page-application-57d0c6474e3. Accessed 20 April 2020.

React 2020. React.Component – React. URL: https://reactjs.org/docs/react-

component.html#shouldcomponentupdate. Accessed 22 March 2020.

Reactjs.org 2020. Fragments. URL: https://reactjs.org/docs/fragments.html. Accessed 18

April 2020.

Reactjs.org 2020. React.Component. URL: https://reactjs.org/docs/react-component.html.

Accessed 23 March 2020.

Science Direct 2020 Database Server. URL:

https://www.sciencedirect.com/topics/computer-science/database-server. Accessed 07

March 2020.

Severalnines 2018. Choosing a Database Proxy for MySQL and MariaDB. URL:

https://severalnines.com/resources/whitepapers/choosing-database-proxy-mysql-and-

mariadb. Accessed 07 March 2020. Accessed 07 March 2020.

StackExchange UNIX&LINUX 2013. What are .deb and .rpm and how are they different

from .msi? https://unix.stackexchange.com/questions/103531/what-are-deb-and-rpm-and-

how-are-they-different-from-msi. Accessed 08 March 2020.

https://cheatsheetseries.owasp.org/cheatsheets/HTML5_Security_Cheat_Sheet.html#storage-apis
https://cheatsheetseries.owasp.org/cheatsheets/HTML5_Security_Cheat_Sheet.html#storage-apis
https://owasp.org/www-community/attacks/csrf
https://owasp.org/www-community/attacks/xss/
https://owasp.org/www-community/attacks/xss/
https://medium.com/lightrail/getting-token-authentication-right-in-a-stateless-single-page-application-57d0c6474e3
https://medium.com/lightrail/getting-token-authentication-right-in-a-stateless-single-page-application-57d0c6474e3
https://reactjs.org/docs/react-component.html#shouldcomponentupdate
https://reactjs.org/docs/react-component.html#shouldcomponentupdate
https://reactjs.org/docs/fragments.html
https://reactjs.org/docs/react-component.html
https://www.sciencedirect.com/topics/computer-science/database-server
https://severalnines.com/resources/whitepapers/choosing-database-proxy-mysql-and-mariadb.%20Accessed%2007%20March%202020
https://severalnines.com/resources/whitepapers/choosing-database-proxy-mysql-and-mariadb.%20Accessed%2007%20March%202020
https://unix.stackexchange.com/questions/103531/what-are-deb-and-rpm-and-how-are-they-different-from-msi
https://unix.stackexchange.com/questions/103531/what-are-deb-and-rpm-and-how-are-they-different-from-msi

46

Thien, L. 2020. ‘Is it feasible to install MaxScale in MacOS operating system?’. Haaga-

Helia University of Applied Sciences. Unpublished report assignment.

TWILIO INC 2017. Working with Environment Variables in Node.js. URL:

https://www.twilio.com/blog/2017/08/working-with-environment-variables-in-node-js.html.

Accessed 16 April 2020.

Vue CLI 2020. Browser Compatibility. URL: https://cli.vuejs.org/guide/browser-

compatibility.html. Accessed 21 April 2020.

Vue NYC 2017. VueNYC - Vue.js: the Progressive Framework - Evan You - YouTube.

URL: https://www.youtube.com/watch?v=p2P3z7p_zTI&ab_channel=VueNYC. Accessed

22 March 2020.

Vue.js 2020. API. URL: https://vuejs.org/v2/api/#updated. Accessed 25 March 2020.

Vue.js 2020. Components Basics. URL: https://vuejs.org/v2/guide/components.html.

Accessed 9 May 2020.

Vue.js 2020. Introduction — Vue.js. URL: https://vuejs.org/v2/guide/. Accessed 22 March

2020.

Vue.js 2020. Form Input Bindings. URL: https://vuejs.org/v2/guide/forms.html. Accessed 9

May 2020.

Vue.js 2020. Lifecycle Diagram. URL: https://vuejs.org/v2/guide/instance.html#Lifecycle-

Diagram. Accessed 23 March 2020.

Vue.js 2020. Modes and Environment Variables. URL: https://cli.vuejs.org/guide/mode-

and-env.html#modes. Accessed 16 April 2020.

Vue.js 2020. Reactivity in Depth. URL: https://vuejs.org/v2/guide/reactivity.html. Accessed

22 March 2020.

Vue.js 2020. Using Axios to Consume APIs. URL: https://vuejs.org/v2/cookbook/using-

axios-to-consume-apis.html. Accessed 18 April 2020.

https://www.twilio.com/blog/2017/08/working-with-environment-variables-in-node-js.html
https://cli.vuejs.org/guide/browser-compatibility.html
https://cli.vuejs.org/guide/browser-compatibility.html
https://www.youtube.com/watch?v=p2P3z7p_zTI&ab_channel=VueNYC
https://vuejs.org/v2/api/#updated
https://vuejs.org/v2/guide/components.html
https://vuejs.org/v2/guide/
https://vuejs.org/v2/guide/forms.html
https://vuejs.org/v2/guide/instance.html#Lifecycle-Diagram
https://vuejs.org/v2/guide/instance.html#Lifecycle-Diagram
https://cli.vuejs.org/guide/mode-and-env.html#modes
https://cli.vuejs.org/guide/mode-and-env.html#modes
https://vuejs.org/v2/guide/reactivity.html
https://vuejs.org/v2/cookbook/using-axios-to-consume-apis.html
https://vuejs.org/v2/cookbook/using-axios-to-consume-apis.html

47

Vue.js GitHub 2017. Allow more than 1 root element for Template. URL:

https://github.com/vuejs/vue/issues/7088. Accessed 18 April 2020.

Vue.js GitHub. 2.0 Changes. URL: https://github.com/vuejs/vue/issues/2873. Accessed 25

March 2020

Webpack 2020. DevServer. URL: https://webpack.js.org/configuration/dev-

server/#devserverhttps. Accessed 06 May 2020.

Widenius, M. 2008. Sun buys MySQL AB. URL: http://monty-

says.blogspot.com/2008/01/sun-buys-mysql-ab.html. Accessed: 23 February 2020.

Widenius, M. 2010. Welcoming SkySQL, a new home for MySQL talents. URL:

http://monty-says.blogspot.com/2010/07/welcoming-skysql-new-home-for-mysql.html.

Accessed: 23 February 2020.

Widenius, M. 2014. Why SkySQL becoming MariaDB Corporation will be good for the

MariaDB Foundation. URL: http://monty-says.blogspot.com/2014/10/why-skysql-

becoming-mariadb-corporation.html. Accessed: 23 February 2020

Wikipedia 2020. Ajax (programming). URL:

https://en.wikipedia.org/wiki/Ajax_(programming). Accessed 18 April 2020.

Wikipedia 2020. Certificate authority. URL:

https://en.wikipedia.org/wiki/Certificate_authority. Accessed 6 May 2020.

https://github.com/vuejs/vue/issues/7088
https://github.com/vuejs/vue/issues/2873
https://webpack.js.org/configuration/dev-server/#devserverhttps
https://webpack.js.org/configuration/dev-server/#devserverhttps
http://monty-says.blogspot.com/2008/01/sun-buys-mysql-ab.html
http://monty-says.blogspot.com/2008/01/sun-buys-mysql-ab.html
http://monty-says.blogspot.com/2010/07/welcoming-skysql-new-home-for-mysql.html
http://monty-says.blogspot.com/2014/10/why-skysql-becoming-mariadb-corporation.html
http://monty-says.blogspot.com/2014/10/why-skysql-becoming-mariadb-corporation.html
https://en.wikipedia.org/wiki/Ajax_(programming)
https://en.wikipedia.org/wiki/Certificate_authority

48

Table of figures

Figure 1. Diagram of reactivity system in Vue.js (Vue.js 2020) .. 7

Figure 2. Data object in vue instance (Vue.js 2020) ... 8

Figure 3. Object and Array changes detection .. 8

Figure 4. React.js Lifecycle diagram (Reactjs.org 2020) ..10

Figure 5. Vue Lifecycle diagram (Vue.js 2020) ...11

Figure 6. MariaDB Platform X4 (MariaDB Corporation Ab 2020)12

Figure 7. The Client/Server Architecture and Distributed Processing (Oracle 1999)13

Figure 8. MariaDB MaxScale (MariaDB Corporation Ab 2017) ..15

Figure 9. VM architecture and Container architecture (Docker 2020)16

Figure 10. MaxScale building from source code build steps (MariaDB Corporation Ab

2020) ..18

Figure 11. MaxScale build options for minimum build version. ...19

Figure 12. Running MaxScale. ..20

Figure 13. Basic MaxScale configuration file ..20

Figure 14. docker-compose.yml file. ..21

Figure 15. Persisting and sharing data between primary server and slave server21

Figure 16. Output of the “maxctrl list servers” command. ...22

Figure 17. vue.config.js ..23

Figure 18. Resolve path to use module path...24

Figure 19. Visual Studio Code configuration ...26

Figure 20. Code snippet of vue-axios and the usage of it within Vue.js.27

Figure 21. JWT received from MaxScale "/auth" endpoint. ..29

Figure 22. Authentication mechanism when storing token in two cookies.33

Figure 23. Creating local CA certificate. ..34

Figure 24. Login prototype page (MariaDB Corporation Ab 2020)35

	Terms and Abbreviations
	1 Introduction
	1.1 Thesis structure
	1.2 About the company
	1.3 Objectives and scope
	1.4 Support from the commissioning party and copyrights

	2 Theoretical framework
	2.1 Vue.js
	2.1.1 Reactivity system in Vue.js
	2.1.2 Vue instance lifecycle hooks

	2.2 MariaDB Platform
	2.2.1 MariaDB Server relational database
	2.2.2 MariaDB MaxScale

	2.3 Docker

	3 Empirical
	3.1 Initializing the project
	3.1.1 Setting up MaxScale environment
	3.1.2 Vue CLI and Visual Studio Code configuration
	3.1.3 Setting up necessary Vue.js plugins

	3.2 MaxScale REST API authentication approach
	3.2.1 Current authentication method
	3.2.2 JWT for SPA
	3.2.3 Storing the token

	3.3 Implement the graphical user interface of authentication page
	3.3.1 SSL encryption
	3.3.2 Login page

	4 Discussion
	4.1 Problem encountered
	4.2 Limitation of researched authentication approach
	4.3 Further research
	4.3.1 Summary

	References
	Table of figures

