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One of the basic steps of steel beam design is to define the effective
lateral-torsional buckling length of structural elements. According to
different kinds of supports of the beam, the effective buckling length can
be calculated sketchily by using Euler’s formula. However, the stiffness of
steel gratings together with secondary beams can resist the lateral-
torsional buckling of platform primary beams and affect their effective
buckling lengths.

The purpose of this Bachelor’s thesis was to build and analyse various
structural models of typical steel platforms to determine the effective
buckling lengths of platform narrow flange primary |-beams. The results
show that gratings and secondary beams provide significant lateral
restraint to narrow flange primary |-beams and reduce their effective
buckling lengths. But the restraining effects from grating is limited by the
properties of beams, stiffness of beam to beam connection and the size of
the grating platform. Some additional tests of wider flange primary I-
beams were also calculated as a reference to solve how effective
stabilization grating platform can provide for wider flange primary beams.
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1 INTRODUCTION

1.1 Background

When an unrestrained I-beam is in flexure, the compression top flange
tends to move laterally, but the web and tension bottom flange will
provide restraints to prevent this behavior. However, when the flexure
load arrives to a certain limit, the compression top flange will buckle locally
and make the I-beam suffer from lateral-torsional buckling.

Steel gratings are used widely in industrial buildings for walkways or
platforms, but when engineers are designing the supporting beams for
steel gratings, the interaction between steel gratings and supporting
beams is difficult to define and normally this interaction is ignored.
However, if steel gratings can provide adequate restraints to prevent the
supporting beams from lateral-torsional buckling and reduce their
effective buckling lengths, then the profile of beams can be changed to
smaller ones to save costs and spaces required for platform structures.
Figure 1 below shows a steel grating platform.
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Figure 1. Steel grating platform (Access/Stainless Steel Grating -
Flooring, Platforms, Access Systems, n.d.)

1.2 Idea of the research

There are already good studies about how steel gratings affect the lateral-
torsional buckling of secondary beams directly connected to gratings, for
example, Stabilisierung von I-Tragern durch Gitterroste (Gilde, 2003), so
this research will mainly focus on the supporting primary beams.

In steel design, the stiffness of beam is very important. When comparing
narrow flange I-beams (the ratio of height and width of the beam is more
than 1.8) with wider flange I-beams, having the same stiffness, the weight
of the first one is much smaller than the second one, which means that
narrow flange beams are more economic. But the narrow flange beam has
lower capacity due to lateral-torsional buckling in case there is no



horizontal / torsional support at the top flange of the beam. If the gratings
together with secondary beams can provide adequate resistance to the
lateral-torsional buckling of narrow flange primary I-beams, then they can
be considered in designing more economical grating platforms.

The effects from steel grating floor (gratings + secondary beams
supporting the gratings) to the lateral-torsional buckling of beams can be
indicated with the effective buckling lengths of beams. It is not possible to
calculate the critical lateral-torsional buckling moment of a beam by using
simple analytical formulas for this kind of complex structure. Finite
Element Analysis (FEA) is suitable for this structure, but this time-
consuming method is not possible to be used in daily design work.
Therefore, the accurate FEA models are built to define the approachable
value of the effective buckling length which can be used to define the
critical buckling moment of a beam by using simple analytical formulas.

According to NCCI(SN0O03a-EN-EU), the relationship between the elastic
critical buckling moment and effective buckling length for a doubly
symmetric cross-section beam can be shown as formula:

n2El, k\%1, (kL)2GI, 2
Mo = Cy { \/(E) A (Cozg) — Gz (1)

In this formula, kL is the effective buckling length and k is the effective
length factor. But in this research, the effective buckling length is
represented by L. and the effective buckling factor is represented by kit to
avoid confusion.

According to formula (1), it is possible to define the effective buckling

length of a beam by calculating the elastic critical buckling moment.

Therefore, the effective buckling length of the primary beam of analyzed

typical platforms calculation is separated into two parts:

1. Calculation of the elastic critical buckling moment (M) by FEA (Finite
Element Analysis)

2. Calculation of the effective buckling length (Lcr) and the effective length
factor (k.r) of the beam based on NCCI (NCCI: Elastic critical moment
for lateral torsional buckling SNOO3a-EN-EU).

The target is to find how efficiently the steel gratings affect the effective
buckling length of narrow flange primary I-beams in different sizes of
grating platforms. The size of the grating platform and the beam sizes for
the design loads should be designed based on real design rules; therefore,
it is not possible to calculate all the possible platform configurations. To
get a good overall understanding of the problem, eight typical sizes of
platforms have been chosen from real projects to provide practical
examples. The profiles of the secondary and primary beams are designed
according to the geometry and the loading of the platform.



For references, there are also extra tests done to see of how the effective
length factor will change if the flange of the primary beam is wider. All the
results are collected and analyzed to give practical and safe suggestions for
the effective length factor for grating platform primary I-beams in steel
design.

2 THE BASIS OF THE RESEARCH

2.1 Connections between secondary beams and primary beams

There are normally three different kinds of connections between the
secondary and primary beams:

1. When the secondary beam is on the top of the primary beam
(connecting with two bolts in bidiagonal direction) (Figure 2)

Figure 2. Condition 1 of the connection between the secondary beam
and the primary beam (side view and 3D view)

2. When the top levels of the secondary and primary beams are same
(connecting with two bolts and one stiffener plate) (Figure 3)

Figure 3. Condition 2 of the connection between the secondary beam
and the primary beam (side view and 3D view)

3. When the top levels of the secondary and primary beams are same
(connecting with 4 bolts and one end plate in the secondary beam) (Figure
4)



Figure 4. Condition 3 of the connection between the secondary beam
and the primary beam (side view and 3D view)

The research will be based on the condition 1 (when the secondary beam
is on the top of primary beam). As for condition 2, the stiffener plate can
provide quite good stiffness in connection to the primary beams to avoid
lateral-torsional buckling. We can assume that there is at least the same
stability in the structures in condition 2 as in condition 1. Thus, the results
from condition 1 can be applied safely on the condition 2. And as for
condition 3, there will be extra stiffness calculations for connection
between secondary beam and primary beam to evaluate if the results of
research can also be applied to case 3.

2.2 Design Criteria of Loads, beams and grating panels

221

2.2.2

Loads

Permanent and live loads are considered to the following:

permanent load g=0.3 kN/m? (weight of steel grating)
live load g=4.0 kN/m?

Beams and grating panels

The following lists the technical details of beams and grating panels:

The ratio of height and width of primary beam is 1.8 or more than 1.8. (h/b>1.8)
Secondary beams are on the top of primary beams and connected to the top
flanges of primary beams with two bolts in bidiagonal direction.

Top flanges of all the secondary beam are at the same level. Spacing of secondary
beams is 1.2m, which is suitable for typical grating panels for loading of 4.0
kN/m?2.

Grating panels shall be continuous over at least 3 secondary beams and every
grating panel is connected to each beam with bolts (M8). The self-tapping screw
in the connection shall go through top flange of the beam (see Figure 5 and
Figure 11).



grating panel secondary beam 2
main beam 1

1.2m

Figure 5. Plan view of simple model of steel grating and beams

The width of grating panel is 1m, and the length of grating panel is 2.4m. The
profile of steel grating: bearing bar 30x3 c/c33, 6x6 ¢/c75. Size of grating panel
can be different on one the side of the model according to the size of platform.
But the bearing direction of grating panel is always parallel to primary beams in
the RFEM model.

Deflection limits of beams are shown in Table 1:

Table 1. Deflection limits of beams

For total load For live load
span of primary beam up to 6m L/300 L/350
span of primary beam up to 8.4m and L/350 L/400
over
secondary beam L/250 -

steel grades of beams are shown in Table 2:

Table 2. Steel grades of beams
secondary beam f,=235 N/mm?
primary beam f,=355 N/mm?

Steel shapes: European rolled I-profile or welded I-profile.

Sizes of secondary beams are calculated assuming one lateral-torsional support
at mid span of the beam. (provided by grating)

Primary beams are designed based on design assumption: 1. one lateral support
at mid span of the beam. 2. secondary beams together with gratings provide this
lateral restraint.



An Excel sheet provided by the company Sweco for calculating the sizes of
the profiles of beams was used. It is assumed that gratings can reduce the
effective lateral-torsional buckling length factor of the beam to around 0.5,
so in the predesign of the profiles of secondary and primary beams, the
effective length factors are assumed to be 0.5. Any other calculations are
based on Eurocode. For examples of Excel sheet calculations, please check
Appendix 1 and 2.

(Design criteria of loads and beams are made by Risto Nurminen from
Sweco)

2.2.3 Beam profiles for different platform configuration

2.3

Beam profiles are shown in Table 3. Beam 1 is the primary beam, and Beam
2 is the secondary beam.

Table 3. Beam profiles for different platform configuration

Span |B = width of platform (m)

L{m) 2.0 4.2 6.2
Beam 1 Beam 2 [Beam 1 Beam 2 |Beam 1 Beam 2
6.0 IPE200 IPE140 IPE240 IPE160
8.4 IPE270 IPE140 IPE360 IPE160 | WI400-5-127220| IPE220

10,8 IPE360 IPE140 |WI400-5-15*220 | IPE160 |WI450-5-16"250 IPE220

The lengths in Table 3 are the spans of platforms. In RFEM models, all the
secondary beams are stretched to the edge of primary beams, and all the
primary beams are stretched to the edge of secondary beams. Therefore,
the real lengths of beams in RFEM models are slightly longer than the span
according to their profiles. Stretching of beam is necessary to be able
describe behaviour of the beams and connection stiffness correctly in
analysis model.

Bolt size and bolt distance

The size of bolt and bolt distance of connections between primary beams
and secondary beams are different due to different profiles of beams as
shown in Figure 6 and Tables 4,5 and 6 below.
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Figure 6. Bolts location of secondary beam (IPE160) for Beam 1-IPE360
/Beam 2-IPE160 (example)

Table 4. Bolt sizes and distances of connections between primary
beams and secondary beams (Beam 2-IPE140)

Bolt size Bolt distance (x-y)
IPE220 M10 60mm-40mm
IPE270 M10 85mm-40mm
IPE360 M10 105mm-40mm
Table 5. Bolt sizes and distances of connections between primary

beams and secondary beams (Beam 2-IPE160)

Bolt size Bolt distance (x-y)
IPE240 M12 75mm-45mm
IPE360 M12 105mm-45mm
WI1400-5-15*220 M12 110mm-45mm
Table 6. Bolt sizes and distances of connections between primary

beams and secondary beams (Beam 2-IPE220)

Bolt size Bolt distance (x-y)
WI1400-5-12*220 M12 110mm-60mm
WI450-5-16*250 M12 125mm-60mm

3 CALCULATION OF THE ELASTIC CRITICAL BUCKLING MOMENT BY FEA

3.1 Background

One of the most important and hardest parts of this research is to simulate
the situations as realistic as possible. There are many important elements
that have to be considered during calculation: the stiffness of one grating
panel,



connections between grating panels and secondary beams and
connections between beams. It is not possible to calculate everything
using simple analytical formulas. However, Finite Element Analysis (FEA) is
suitable for complex structure calculations.

Finite Element Analysis is a numerical method to solve boundary value
problems. It is mainly used for structural analysis, heat transfer, flow
calculation and acoustics. In this research, only structural analysis is used.
It can be done by building FEM models consisting of trusses, beams, shell
elements or solid elements in RFEM programme.

Stability analysis in RFEM makes it possible to calculate the elastic critical
load factor of a beam. In this analysis, the model is considered as a linear
analysis and the material model is in elastic domain. However, the
imperfections are not considered, and the results are not related to
resistance in this analysis. The resistance of the parts can be defined later.
For example, after the effective buckling length of the beam is defined, the
initial imperfections are considered when calculating the resistance
according to Eurocode. Some elements need be simplified due to
calculation time: 1. connections between secondary and primary beams
are modelled by using rigid elements with adequate spring stiffness to
simulate real connection stiffness. 2. grating panels are modelled by using
orthotropic material.

3.2 The geometry of RFEM model

The examples of the geometry of RFEM model are shown in Figures 7 and 8. In
the following there is some general information of the geometry of RFEM
model:

- There are two primary beams.

- The number of secondary beams is decided by the span of grating platform.

- Grating panels are modelled by using orthotropic material.

- In order to connect all the parts together, beams are modelled using shell
elements. The thicknesses of shell elements in webs and flanges correspond to
the dimensions of beam profiles. The shell planes of beam are located at the
middle of surfaces of webs and flanges.

- The connections between grating panels and secondary beams are modelled
using beam elements to simulate the stiffness of the bolts.

- There is 10 mm gap between steel grating panels to make the panels work
separately. Because of this gap, the surface of the top flange of the secondary
beam is divided again to connect with the bolts.

- The connections between secondary and primary beams are modelled using rigid
elements with adequate spring stiffness to simulate stiffness of connections.

- All the cases are modelled separately.



Figure 7. Overview of RFEM model Beam 1-IPE360 /Beam 2-IPE160
without grating panels (example)

Figure 8. Overview of RFEM model Beam 1-IPE360 /Beam 2-IPE160
with grating panels (example)

3.3 The Material model of a steel grating panel

For grating type of structure, the stiffness of the grating panels is different
if the load is applied in different directions. It is not possible to build
accurate model using solid elements to describe the real stiffness
behaviour of grating due to the limited time. The commercial software
usually does not offer a direct method of modelling the stiffness behaviour
of grating with shell elements. To simplify the process of modelling and
optimize the accuracy of results, the steel grating panel was modelled by
using orthotropic material model and the stiffness of grating was
calculated separately by Henri Hautamaki (Sweco) using Ansys
programme. The profile of steel grating: bearing bar 30x3 c¢/C33, 6x6
c/c75.The material properties of plate are calibrated to equal grating
stiffness. This is a typical profile of steel grating panel which is generally
used in industry buildings in the company. The Ansys model is solid model
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with real geometry of grating. Then the grating is loaded by three different
load cases (see Figure 9) and the strains was solved.
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Figure 9. Load cases of steel grating

The plate thickness of 30mm is used to calculate the equivalent E, G and
Vyy. Basic equations for 2d orthotropic material are shown in the equations:

E, E;
V12 | 012
l 0 0 —
G12
Viz _ Va1
L = L (3)

The unit force of 1000N was used to calculate strains (gx, €y, €y2, €x2) by
using real geometry model. (for detailing calculation, please check
Appendix 3)

The results of Appendix 3 are applied in RFEM model (see Figure 10) to
define the stiffness of steel grating panels.
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Material Model - Orthotropic Elastic 2D >

Material Constants

Modulus of elasticity Ex: 195300 % | [MPa]
E"r": 23750 : L [MPEI]
Shear modulus Gyz: 21000.05 |+ | [MPa]
Gz: B1000.0 5+ | [MPa]
Gy ! 9.4 x| [MPa
Poisson's ratio () vy 036115 v [
O vyx: 0.044 T | []

JR-REIE Cance

Figure 10. Material constants of steel grating in RFEM
model

The grating panels are modelled by using Orthotropic elastic 2d material
model in RFEM, and the orthotropy type is constant thickness of 30mm.
The weight of the grating panel surface is applied as 0 kg/m3 in the setting
and the actual weight of the grating will be applied as permanent load on
the secondary beams. Global x direction is the bearing direction of steel
grating in RFEM model.

3.4 Connections between steel gratings and secondary beams

The connections between steel gratings and secondary beams are
modelled using beam elements. These beams act like a cantilever. They
can transfer load to the top of grating via the saddle as shown in Figure 11.
Therefore, in the model, the top end of the bolt is pinned, and the bottom
end of the bolt is rigid (see Figure 12).
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Figure 11. Connection with saddle clip between gratings
and beams in real situation (Fixings, n.d.)
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Figure 12. Properties of the bolt between steel grating
and secondary beam RFEM model Beam 1-IPE360 /Beam 2-IPE160
(example)

The length of the bolt is 30mm as same as the thickness of the steel grating.
M8 bolts are used in this situation. But in real situation, the bolt is with full
length threads, so the cross-section properties of the beam element
correspond to the nominal stress area properties. The diameter can be
calculated from the stress area. For M8 bolt, the effective area is 36.6mm?
as shown in Table 7; therefore, the diameter of the bolt in RFEM model is
6.8mm.



13

Table 7. Part of Minimum ultimate tensile loads — ISO metric coarse
pitch thread (International standard I1SO 898-1, 2009-04-01)

3.5 Connections between secondary and primary beams

MNominal Proparty class

tr
Throad = | STSSSEP® | a8 | a8 | s8 | s8 | es | s |

d Ay rom -
mm2 Minimum ultimate tensile load, £ . (4, =

M3 5,03 2010 2110 2510 2620 3020 4 020
M35 6,78 2710 2850 3390 3530 4070 5420
Ma a,78 3510 3690 4 350 4 570 5270 7020
M5 14,2 5 680 5960 7100 7 380 8 520 11 350
M& 201 B 040 8440 10 000 10 400 12 100 16 100
M7 289 11 600 12100 14 400 15000 17300 | 23100
M8 36,8 14600 | 15400 183005 ( 18000 22 000 29 200 ©
Mi0 58 23200% ( 24400 29000°| 30200 34 BOO 46 400 ©
Mi2 B4.3 33 700 35400 | 42200 43 800 50 600 &7 4009

In reality, the connection between primary and secondary is made with a
bolt through flanges. This connection is not fully rigid, so the rotation
stiffness of connection needs to be considered. In RFEM model, the bolt
and the contact between flanges are not modelled according to reality. The
connection is simplified using five rigid elements (see Figure 13). The
stiffness of the whole connection is applied in one point, so the rigid
elements at the plane of flange are used to extend stiffness to the whole
connection area. This makes the stiffness distribution of connection more
reliable. The rotation stiffness of connection is calculated separately and
applied in one of the rigid elements as spring stiffness.

Figure 13.

Five elements between secondary and primary
beams in RFEM model Beam 1-IPE360 /Beam 2-IPE160 (example)
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The maximum length of rigid element at flange level should be no longer
than the width of the flange of the adjoining beam profile. In all the RFEM
models. all the rigid elements on flanges are 30mm long for saving the time
of modelling. Both end points of these four rigid elements in flange planes
are rigid.

The short rigid element in the middle should be 0.5*thickness of the flange
of the primary beam + 0.5*thickness of the flange of the secondary beam
long. The bottom point of the element which connect to the flange of
primary beam is rigid. The spring stiffness of the top point defines the
initial stiffness of the connection (see example in Figure 14). The initial
stiffness is calculated by using commercial programme IDEA StatiCa (see
examples in Figures 15 and 16 and Tables 8 and 9).

E2
Member Hinge No.
Y‘_,/l_———b.x
N Mt
Reference System Z X - e
(® Local member axes x,y,z “--:"; v
(O Global x,1,Z 4 ),
%y
(0 User-defined axis system: 2
Rotated = .
2
r I)
‘11
Hinge Conditions
Hinge Spring constant Monlinearity
[ ux Cux = None =
[T uy Cuy = None =
O Cuz = None =
Hinge
[ ax Cox : 15.650 (5 | [kNmjrad] MNone v ||
oy Coy o None o=
] 22 Coz ¢ 62,300 15| khNmjrad] None - |
3= | (== =1 [lo=] =] [p=] [I=
N Vo || Ve | [ | | My || Mg || M -
Comment
| v @
/] E@J Ok Cancel
Figure 14. Stiffness of the top point of the short middle

rigid element in RFEM model Beam 1-IPE360 /Beam 2-IPE160
(example)
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Figure 15. Stiffness calculation model in IDEA StatiCa of
Beam 1-IPE360 /Beam 2-IPE160 in local z direction (example)

Table 8. Part of the report of stiffness calculation model in IDEA
StatiCa of Beam 1-IPE360 /Beam 2-IPE160 in local z direction (example)

Rotational stiffness
Mj,Rd Sj,ini Oc L

SiR 5j,p
Bans Comp.  Loads i Nmirad]  [mrad]  [m] [kNmirad] [kNm/rad] Elass
Member2 My LE1 5.0 623 4765 4730 10615, 1 2123 Pinned

StatiCa® CONNECTION

Coabmics pusardeys secimne Toog = 5T G =
e Undo 1./ =3 +
ElG e B0 - PRNE B Y
EPS ST CD DR New Copy Members Plates LCS | New Gallery Creste Manages | Code Caicuite Overal Operatio
setup check
Q6 Q b C:e T T
s N (W vz Mx My

< Mesiher [KN] | (kN] (k] | (ko] | (kNem]
4 /‘ > |Member2/Endf00 |00 |11 o0 |-u1
»

Figure 16. Stiffness calculation model in IDEA StatiCa of
Beam 1-IPE360 /Beam 2-IPE160 in local x direction (example)
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Table 9. Part of the report of stiffness calculation model in IDEA
StatiCa of Beam 1-IPE360 /Beam 2-IPE160 in local x direction (example)

Rotational stiffness

Mj,Rd Sj,ini oc L SiR 8j,p
FErsE Comp.  Loads  yion  (Nmirad]  [mrad]  [mi [kNm/rad] [kNmirad]

Member 2 My LE1 -3.6 o -230,0 430 34 0,1 Rigid

Class.

It is not possible for IDEA StatiCa to calculate the initial stiffness value
around x-axis, but it is possible to define this value by ¢c/Mj.Rd expression.
Actually, there is error in calculating the stiffness in local x direction,
because it is not possible to define the shear force or moment in this
direction. But according to tests, the margin of this error on the effective
buckling length of the beam is less than 1%, and this error has no or
minimal effect on the effective buckling factor.

After applying the results from IDEA StatiCa to RFEM model, the secondary
beam can only move around this one point with correct stiffnesses. All the
stiffnesses of this point in all the models are calculated by this process one
by one to make the model more accurate.

3.6 Supports of the primary beam

The primary beam is supported by pinned support. To be more precisely,
it is supported by fork supports. Fork supports allow warping to develop
freely, but transverse displacement is prevented. Usually, the standards
and general instructions are based on this type of support. This correspond
to the behaviour of end plate connection. There are three different kinds
of supports used for the primary beam:
1. Line support on the web---simple support in global y direction.
2. Line support on the bottom flange---simple support in global z and
y direction.
3. Node support in the middle of bottom flange---simple support in
global x direction.
The example of the supports is shown in Figure 17.
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Line support in global y direction

Node support in global x direction

Line support in global z and y
direction

Figure 17. “Fork supports” of primary beam in RFEM
model Beam 1-IPE360 /Beam 2-IPE160 (example)

The x-direction support is located only on one end of the primary beam to
allow the beam to expand freely.

3.7 Stability Analysis in RFEM model

After all the details are done correctly in the model, stability analysis can
be used to calculate the critical load factors of beams. Stability analysis is
performed on the beams according to ultimate limit state (ULS). Live load
is 4 kN/m2 and permanent load is 0.3 kN/m2. They are applied as line load
to the middle of the top flange of secondary beams. Mesh size of beams is
30mm and mesh size of steel grating is 100mm (see example in Figure 18).
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Figure 18. RFEM model Beam 1-IPE360 /Beam 2-IPE160
with loads in ULS design (example)

Twenty-five different buckling modes were calculated in stability analysis
as shown in Table 10.

Table 10. RF-Stability results of RFEM model Beam 1-IPE360 /Beam 2-
IPE160 (example)
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The result of stability analysis contains both global and local buckling
modes of the beams and gratings. The local modes can be shear buckling
modes and local flange buckling. But for this research, the main interest is
to find the lowest global buckling load for the primary beam and the
secondary beam. In the first buckling mode, which corresponds to the
smallest critical load factor mode in Table 10, the displacement of
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secondary beam already occurred according to the colourful wave in
Figure 19 (Figure 19 shows the relative deformation of the beam),

which means that when the critical load factor reaches 2.026, secondary
beams start to buckle. Therefore, the rest of 24 modes are not important
for secondary beams in this model. The critical load factor for secondary
beams in this model is 2.2026. However, in this mode, there is no
displacement of the primary beam. Then the rest 24 modes will be checked
for the primary beam. Same as the secondary beam, in the second buckling
mode (critical load factor is 3.388), primary beams start to buckle
according to Figure 20, so the critical load factor for the primary beam is
3.388.

Figure 19. Stability analysis of RFEM model Beam 1-
IPE360 /Beam 2-IPE160 in the 2.2026 critical load factor mode for
secondary beam (example)

Figure 20. Stability analysis of RFEM model Beam 1-
IPE360 /Beam 2-IPE160 in 3.388 critical load factor mode for
primary beam (example)
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The process of RFEM model building is finished after the critical load
factors of secondary and primary beams are found.

3.8 Calculation of the elastic critical buckling moment

After the critical load factors of beams are calculated in RFEM, the next
step is to calculate the elastic critical buckling moments of beams. The
elastic critical buckling moment is equal to the critical load factor
multiplied by the bending moment of the beam as shown in Figure 21.

Critical buckling moment

- '] = j --.' T
Maximum load Mgy = 126.57kN-m

critical load amplifier Oy p = 3388

lateral torsional buckling load acc. fem: M =

ot = Ogpop Mg = 4288196N-m

Figure 21. Part of Mathcad of calculating the elastic
critical buckling moment in case Beam 1-IPE360 /Beam 2-IPE160 --
----Beam 1-IPE360 (critical load amplifier = critical load factor; Meqg
= bending moment)

Bending moment of the beam can be calculated easily by building simple
model in RFEM as shown in Figure 22.

Figure 22. RFEM model of calculating bending moment for
Beam 1-IPE360 /Beam 2-IPE160 (example)
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4 CALCULATION OF THE EFFECTIVE BUCKLING LENGTH OF THE BEAM

The Eurocodes are design standards, not design handbooks. They omit
some design guidance which is considered to be readily available in
textbooks or other established sources. It is also accepted that they cannot
possibly cover everything that will be needed when carrying out a design.
The Eurocode format allows so-called non-contradictory complementary
information (NCCI) to be used to assist the designer when designing a
structure to the Eurocode. (SCI, 2006, p.5)

According to the introduction, the elastic critical buckling moment of a
doubly symmetric cross-section beam can be calculated by using the
formula (1):

n2EI, k\21L, . (kL)2GI 2
Mer = GGy {\/(E) LT TL’ZElzt +(Czg)” - Cng}

where
E = Young modulus (E = 210000 N/mm?)
G = Shear modulus (G = 80770 N/mm?)
I; = Second moment of area about the weak axis
It = Torsion constant
lw = Warping constant
L = Beam length between points which have lateral restraint
k = Effective length factor which is related to the restrain against lateral
bending at the boundaries
w = Effective length factor which is related to the restrain against warping
at the boundaries
zg = Distance between the point of load application and the shear centre
Ci= Factor that account for the shape of the moment diagram
C2 = Factor that account for the point of load application in relation to the
shear centre
(NCCI: Elastic critical moment for lateral torsional buckling SNOO3a-EN-EU)

Normally, the effective buckling length L of the beam will be defined
firstly based on supporting conditions of the beam to get critical buckling
moment. But this formula can also be used reversely: calculate the critical
buckling moment first, then get the effective length of beam. The formula
is derived from the buckling theory. So, to use the formula properly, there
are some extra calculations based on Eurocode required. The commercial
programme Mathcad is used to perform these calculations.

The first step is to define the cross-section properties of the beam: height
of the beam, widths of the flange and web, torsion constant etc. The
second step is to define the elastic critical lateral-torsional buckling
moment M. using RFEM analysis (this step was discussed already in
Chapter 3). After these two steps, Mathcad can be used to solve L. by
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texting the formula in the programme and solve the undefined variables in
the formula.

The effective lateral-torsional buckling length of the beam L. is calculated
with the assumption that the load is applied at the centre line of the beam.
If Mcris calculated firstly to define Lo, when the load is on the centre line
of the beam, L. should be longer than the situation that load is at top of
the beam, which means this assumption provides safer result.

According to NCCI SN003a-EN-EU (NCCI: Elastic critical moment for lateral
torsional buckling SNOO3a-EN-EU), in the common case of normal support
conditions at the ends (fork supports), k and ky are taken equal to 1 when
the transverse load is applied in the shear centre, C;*zg = 0. However, the
formula (1) is applied when the conditions of restraint at each end are at
least:

1. restrained against lateral movement

2. restrained against rotation about the longitudinal axis.

Factor Ci depends on the shape of the moment diagram. But in this
situation, the grating platform provides horizontal support for the beam,
so there is no specific suggested value for Ci.

On the one hand, if the total length of the beam is divided into segments,
in the worst segment, the moment is almost linear (not accurate). At the
same time, the load location is assumed to be at the centre line of the
beam. Therefore, the value of Ci1 can be taken from the condition when
the member has concentrated moment applied at the ends as shown in
Figure 23.

Ck 1)

M T ST

]
| —

Agps+

Figure 23. Member with end moments (NCCI: Elastic
critical moment for lateral torsional buckling SNO03a-EN-EU)

Because the load is evenly distribution load in each segment, { should be
+1.00 in this situation. According to Table 11, in NCCI, when ¢ is +1.00, C;
should be taken as 1.00.
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Value of C1 for constant moment and moment distribution

for evenly distributed loading (for k=1) (NCCI: Elastic critical moment

for lateral torsional buckling SNOO3a-EN-EU)

' Cy
+1,00 1,00
+0,75 1,14
+0,50 1.3
+0,25 1,52
0,00 1,77
-0,25 2,05
-0,50 2,33
0,75 2,57
-1,00 2,55

On the other hand, if the moment distribution is considered for the whole
beam, then the moment diagram of the beam is close to the case of a
member loaded by transverse loading and pinned supports as shown in

Table 12.

Table 12.

Values of factors C1 and C2 for cases with transverse loading

(NCCI: Elastic critical moment for lateral torsional buckling SNOO3a-EN-

EU)

Loading and support

Bending moment diagram

]

conditions

T T IR RTE
v 1,127 | 0454

" .
HHH#HHHHH b - A asvs | 1sma

I I
+ —\\\\\_,_,/—’/— 1,348 | 0.830

fin ray
4 = —— — 1623 | 1845

MNote : the critical mement M. is calculated for the section with the maximal moment along the member
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In this case, the value of factor Ci1 should be taken as 1.127.

However, in this research, the rest of chapters (except Chapter 6) will only
focus on the situation when C1=1. There is additional appendix (Appendix
5) which shows the results of the narrow flange primary I-beam for both
Ci=1 and C1=1.127. It is necessary to mention that both of the results are
correct if the same values of C1 and C; are used to calculate the critical
buckling moment of the beam by using the effective length factor found as
a result in this research.

Hence, the formula (1) can be simplified for a symmetric I-shaped steel
beam with C1=1 and C,*z; = 0. And the simpler formula (3) is applied in
Mathcad to solve L.

2 2
M, = T EIZ{ Iy + Ler Glt} 3)

Ler? 1, m2El,

For Mathcad calculation process example, please check Appendix 4.

5 RESULTS OF NARROW FLANGE PRIMARY I-BEAMS

After all the model building and calculations are done, results of the
effective lateral-torsional buckling length of the narrow-flange primary I-
beam are collected and organized into Tables 13-15:

Table 13. Results of the effective buckling length of narrow flange
primary beams when the profile of the secondary beam is IPE140
(width of platform=2m)

L(m) Lcr (m) FACTOR (kl_T = Lcr /L)
IPE200 6.073 1.841 0.30
IPE270 8.473 2.570 0.30
IPE360 10.873 3.557 0.33
Table 14. Results of the effective buckling length of narrow flange

primary beams when the profile of the secondary beam is IPE160

(width of platform=4.2m)

L (m) Ler () FACTOR (kv = Ler /L)
IPE240 6.082 2.000 0.33
IPE360 8.482 3.196 0.38
WI400-5-15*220 | 10.882 5.295 0.49
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Table 15. Results of the effective buckling length of narrow flange
primary beams when the profile of the secondary beam is IPE220
(width of platform=6.2m)

L(m) Lcr (m) FACTOR (kLT= Lcr/L)
WI1400-5-12*220 | 8.510 4.669 0.55
WI450-5-16*250 | 10.910 6.027 0.55

In Tables 13-15, L is the full length of the beam; Lcr is the effective lateral-
torsional buckling length; kit is the effective length factor. And these
results are based on factor Ci= 1. There are also results for C1=1.127 in
Appendix 5 for references. The differences between the two sets of results
are small (maximum 7%).

The regulations of the values in the results are clear:

1. In each table, when the length of platform becomes bigger, the profile
of the primary beam will be bigger relatively, and the effective length
factor will be bigger.

2. Generally, when the size of platform is bigger (width and length are
both bigger), the profiles of the secondary beam and the primary beam
will be bigger relatively, and the effective length factor will be bigger.

The effective buckling length of the primary beam is decreased because of

two restraining factors:

1. horizontal stiffness from steel gratings

2. torsion restraints from secondary beams (end stiffness of the beam
and the stiffness of connection)

Theoretically, when the size of the grating platform is bigger, there is more
horizontal stiffness from gratings, but stiffness is also related to the length
of the primary beam. When the length of the secondary beam is the same,
but the primary beam is longer, the relative lateral-torsional stiffness of
the primary beam itself decreases (if ratio h/b in the beam is the same).
And when the length of the secondary beam increases, changes of the
secondary beam end stiffness depend on the span of beam. End stiffness
of the secondary beam can be described with following formula:

v @

where

E= Elastic modulus(N/mm?)

| = Second moment of inertia (mm#)

L = Span of the beam (mm)

M = Elastic moment (N*mm) at beam end

(M=The moment is required to rotate the end of beam through a unit
angle.)
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In case the size of the secondary beam increases (due to longer span of
primary beam), the stiffness of connection to the primary beam also
increases because of the changes in flange thicknesses and the geometry
in the connection. But because the bolts are the same in each secondary
beam and primary beam connection, the increase of stiffness of the
connection can be less than the increase of end stiffness of the secondary
beam. In certain situations, the limited stiffness of connection can restrict
restraining effect provided by the secondary beams.

For wider platforms, it can be assumed that: even though the grating panel
has a higher horizontal stiffness, and it tries to prevent primary beams
from lateral movement, the torsional restraints (due to secondary beams)
for the primary beam in relation to beam’s own torsional stiffness is
decreasing because of changes in the secondary beam and in connection
stiffness. It is quite obvious that the rotational restraint provided by the
secondary beams and the connection between the secondary beam and
the primary beam plays an important role in defining lateral-torsional
stability of the primary beam.

According to the development of Euler’s formula (Euler buckling cases)
(Gere & Timoshenko, 2009, p.57), when both sides of a beam are
connected by pinned connections, the effective length factor is 1, but in
the results, all the effective length factors are smaller than 0.6 (including
the situations when C1=1.127), so the grating together with the secondary
beams does provide quite good restraints to the lateral-torsional buckling
of narrow flange primary I-beams.

In the RFEM model, stiffness of the grating panel in global z direction is not
defined, and it is only provided by the bolts. At the same time, all the rigid
elements between secondary and primary beams are 30mm long for
convenient modelling. Therefore, the results are on the safe side, and the
real effective length factor can be even smaller than the numbers in the
results.

In total, according to the results, it is possible to give suggestions for the
steel design of the narrow flange primary I-beam which supports steel
gratings with secondary beams:

1. To be precise, the effective length factor of primary beam can be from
0.3 to 0.55 depending on the different size of the area of grating
platform. In real steel design, it is suggested to use the results as a
reference when choosing the suitable value of factor according to the
real situations.

2. Ingeneral, to be on safe side, it is suggested to use 0.6 as the effective
length factor for the primary beam if the beam span is smaller than
10.8 m and the platform width is smaller than 6.2m.

Please also take the results of the situation when C1=1.127 (Appendix 5)
into consideration during steel design. It is important that when applying
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the results of this research to the calculation of the critical buckling
moment of a beam by simple analytical formulas, same values of Ci1and C;
for calculating the effective buckling length should be taken.

6 EFFECTS OF THE EFFECTIVE LENGTH FACTOR ON THE MOMENT
CAPACITY

From the previous chapter, it is clear that steel grating platform can reduce
the effective length factor of narrow flange primary I-beams. But in steel
beam design, generally all the values and calculations will in the end affect
the design moment resistance which is one of the most significant values
for steel beams. Apparently, if steel gratings can improve the stability of
the beam in relation to lateral torsional buckling, the design buckling
resistance moment should be bigger than in the situation when there are
no effects from gratings. The design buckling resistance moment can be
calculated based on Eurocode.

According to Eurocode 3, the design buckling resistance moment of a
lateral unrestrained beam is calculated by the following formula:

f;
My ra = XirWy == (5)

YMm1
where

W, = Appropriate section modulus as follows:
e W,=W,, forClass1or2cross-sections
e W,=We,y forClass 3 cross-sections
o W, =Wery, forClass4 cross-sections
Xt = Reduction factor for lateral-torsional buckling
(Eurocode 3: Design of steel structures - Part 1-1: General rules, 2005)

The formula indicates a linear relationship between the reductions factor
and the design buckling resistance moment, which means that the increase

of this reduction factor represents the increase of the capacity of moment.

The reduction factor is related to the value of non-dimensional
slenderness. Their relationship can be expressed by following formulas:

1
Xir =——F— (6)
D+ ,‘D%T—A%T

@7 = 0,51 + ayr(Ar — 0,2) + A27] (7)

Aur = (8)

where
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xr<l
arr = Imperfection factor
Mer = Elastic critical moment for lateral-torsional buckling

The relationship between the reduction factor and the non-dimensioned
slenderness can also be plotted as graph (see Figure 24):
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Figure 24. Values of the reduction factor for the
appropriate non-dimensional slenderness (Eurocode 3: Design of
steel structures - Part 1-1: General rules, 2005)

For primary beams in RFEM models, the elastic critical moments are
calculated in Chapter 4 by a critical load factor and applied bending
moment (Appendix 4), so it is easy to calculate the non-dimensional
slenderness and the reduction factor according to Figure 27. If gratings and
secondary beams do not affect the primary beam at all, then the effective
buckling length should be the full length of the primary beam. Hence, the
critical buckling moment can be calculated using the formula (1). In this
case, it must be calculated with assumption: 1. load is applied at the top
flange; 2. uniform load distribution(C1=1.127). The non-dimensional
slenderness and the reduction factor in this situation can be calculated in
the same way. Effects of the decrease of the effective length factor on the
capacity of moment can be shown by comparing these two reduction
factors. For detailed Mathcad calculation process, please check Appendix
6.

Two cases are chosen to roughly define the range of how the capacity
increases:

Case 1: Beam 1-IPE200 /Beam 2-IPE140

Case 2: Beam 1- WI450-5-16*250 /Beam 2-IPE140

These two cases are the extreme cases in RFEM models: the smallest
effective length factor is calculated from Case 1 and the biggest effective
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factor is calculated from Case 2. The results of these two cases are shown
in Figures 25 and 26.

Xt

XLTIMTFEM g - 4
N

XLTI LT comp!

04r .

I I
0 0.3 1 1.3 2

M T-*.TFEM-*LT.comp

LTl ML T FEM)
XLTI AL T.u:nmp:'

= 2.708

Figure 25. The effects of the decrease of effective length
factor on the capacity of moment of case Beam 1-IPE200 /Beam 2-
IPE140
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Figure 26. The effects of the decrease of effective length
factor on the capacity of moment of case Beam 1- W1450-5-16*250
/Beam 2-IPE140

In Figures 25 and 26, the blue point is the reduction factor X1 calculated
from the RFEM model and the green point is the reduction factor when the
lateral-torsional buckling length equals the span of the beam. The red line
is the relationship between reduction factor and non-dimensional
slenderness according to different cross-section classes of the beam. The
ratio of two reduction factors shows how much the moment capacity is
increased. According to Figures 25 and 26, the moment capacity increases
around 2 to 2.7 times comparing to the beam without any lateral support
along its span.

In a more general way, the relationship between the effective length factor
and the capacity of design buckling resistance moment can be calculated
directly by using the same Excel sheet (Appendix 1 and 2) when defining
profiles of the beams.

Beam WI450-5-16*250 is chosen as an example of calculation. Ten
different effective length factors have been taken to calculate the design
buckling resistance moments. When there are no effects from gratings, the
effective length of lateral-torsional buckling should be the full length of the
beam. By comparing the moment values calculated for beams having
smaller effective lengths with the ones calculated for beams having full
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effective lengths, it is possible to define the relationship between the
effective length factor and the capacity of moments (see Figure 27).

Beam WI450-5-16*250

3,5
3
25
a
E 1,5
S~
3 1
a
E 0,5
0
1 0,8 0,6 0,4 0,2
Effective Length Factor k;
Figure 27. Relationship between effective length factor

and the change of capacity of buckling resistance moment

In the graph, Myrd is the calculated design buckling resistance moment
with different effective length factors. and Mprg-rL is the moment when
the effective length factor of the beam is 1. The shape of the curve can be
different due to the cross-section of the beam and the applied load as
shown in Table 16. This is just an example of a narrow-flange I-beam
(h/b=1.8) under evenly distribution load in the c group buckling curve.

Table 16. Recommended values for lateral torsional buckling curves for
cross-sections using equation (Eurocode 3: Design of steel structures -
Part 1-1: General rules, 2005)

Cross-section Limits Buckling curve
e hb=2 a
Rolled I-sections Wb - 2 b
- hb=2 c
Welded I-sections Wb = 2 d
Other cross-sections - d

7 SENSITIVITY TEST

In the RFEM model, the secondary beams support the full area of the
grating platform. But in real life, things can be different: the last secondary
beam only supports part of the grating and the primary beam is separated
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into two beams because of the location of column or support (see Figure

28). Therefore, there is one sensitivity test for the results: what if the
secondary beam is 0.6m away from the end of the primary beam?

1200mm 1200mm

Secondary beam
Secondary beam

Secondary beam

Primary beam

Column/Support

Figure 28. Demonstration of sensitivity test

Because the results of Beam 2-IPE220 are bigger, which means that
gratings provide less effects on the primary beams, and they are more
sensitive to the change of gratings, the sensitivity tests are only applied to
the two models of Beam 2-IPE220. To be safer, all the secondary beams
were moved 0.6m along the primary beam, and one grating panel was
deleted (see example in Figure 29).

Figure 29. Sensitivity test for RFEM model Beam 1-WI1400-
5-12*220/Beam 2-IPE220 (example)
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The results of sensitivity test are shown in Table 17:

Table 17. Results of sensitivity tests
TEST L (m) Ler (M) FACTOR ((kut = Ler /L)
WI1400-5-12*%220 | 8.510 4.909 0.58
WI450-5-16*250 | 10.910 6.231 0.57

As shown in Table 17, the difference between the results obtained from
the sensitivity tests and the models used for research is very small (5%).
Therefore, the suggestion of effective length factor (0.6) for the narrow
flange primary I-beam is valid, and this value allows minor modifications in
the configuration of the grating platform. (However, according to
Appendix 5, when factor C1=1.127, the effective length factor is bigger
than 0.6 in sensitivity test. This should be noticed)

8 RESULTS OF SECONDARY BEAMS

Following the same process of calculating the primary beams, the effective
lengths of secondary beams can also be calculated. But there are already
good studies about how steel gratings affect the buckling length of the
secondary beams, for example, Stabilisierung von I-Trdagern durch
Gitterroste (Gilde, 2003). As a reference, the results in this German report
have been compared with the ones which are calculated in the models.
Tables 18, 19 and 20 below show the results of calculations.

Table 18. Results of the effective buckling length of the secondary
beam IPE140 with different primary beams

L(m) | Le (m) | FACTOR | Ler (M) FACTOR (ki = Ler /L)
(Ler /L) (German) | (German)
IPE140- 2.100 | 3.407 | 1.62 1.526 0.73
IPE200
IPE140- 2.135 3294 |1.54 1.526 0.71
IPE270
IPE140- 2.170 | 3.238 | 1.49 1.526 0.70
IPE360
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Table 19. Results of the effective buckling length of the secondary
beam IPE160 with different primary beams

L(m) | Ler (m) | FACTOR | Ler (M) FACTOR ((kur = Ler /L)
(Ler /L) (German) (German)
IPE160- 4,320 | 2.285 | 0.53 2.352 0.54
IPE240
IPE160- 4,370 | 2.158 | 0.49 2.252 0.54
IPE360
IPE160- 4,420 | 2.152 | 0.49 2.252 0.51
WI1400-5-
15*220

Table 20. Results of the effective buckling length of the secondary
beam IPE220 with different primary beams

L(m) [ Le(m) | FACTOR [ Lo (m) FACTOR ((kur = Ler /L)
(Ler /L) (German) | (German)
IPE220- 6.420 | 3.668 | 0.57 3.878 0.60
WI1400-5-
12*220
IPE220- 6.420 | 3.606 | 0.56 3.878 0.60
WI450-5-
16*250

Apart from the result in Table 18, the difference between the two sets of
results is only 2-10%. Also, the regulations of the values of the results are
the same. But in Table 18, the results are not reasonable. It might be
because the secondary beam is really short and there are only fastenings
at middle and ends of the beam. Another reason might be that the stiffness
of grating in global z direction is not defined accurately, and it affect a lot
of the effective length of secondary beams. To prove the assumptions, the
bolts between secondary beams and primary beams were changed into
M10 and M5. The results of this test show that the size of the bolt does
not affect much of results obtained for the primary beams, but it affects
the ones for the secondary beams, especially if the span of the secondary
beam is short. However, it is not possible to define the stiffness of grating
in global z direction properly. Therefore, this model is more suitable for
calculating the primary beams. As for the secondary beam, it is suggested
to use the formulas in the German research. (Gilde, 2003)

9 TESTS OF WIDER FLANGE PRIMARY I-BEAMS
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In all the models, the ratio of the height and width of the primary beam is
1.8 or more than 1.8. But what if the flange of the primary beam is not that
“narrow”? Will the results of effective length of the primary beam change
a lot and what is the direction of the change? To solve these questions,
four models with wider flange primary beams were built using the same
procedure as for the earlier models. The profiles of wider flange primary
beams are shown in Table 21. Also, for these wider beams, the deflection
of the beam is critical for the design. The ratio of height and width of the
wider flange I-beams is designed on purpose in different range of numbers.

Table 21. Beam profiles for different platform configuration for wide-
flange primary I-beams

Span |B = width of platform (m)
L (m) 6.2 6.2
beam 1{wide) beam 2 |beam 1(m) beam 2
6.0
8.4 |WI300-5-15*300 IPE220 WWI360-5-12*230 IPE220
10,8 |WI370-5-20%330 IPE220 W1410-5-18*270 IPE220

And the results of wider flange primary |I-beams are shown in Table 22:

Table 22. Results of the effective buckling length of wider flange
primary beams when the profile of the secondary beam is IPE220
(width of platform=6.2m)

L (m) Ler (M) FACTOR (kv = Ler /L)
WI300-5-15*300 | 8.510 6.803 0.80
WI370-5-20*330 | 10.910 7.928 0.73
WI360-5-12*230 | 8.510 4.723 0.55
WI1410-5-18*270 | 10.910 6.853 0.63

The regulation of the values in Table 22 are quite interesting. Even though
the sizes of platforms are different, their effective length factors are more
related to the ratio of height and width of the beam. Thus, if the results of
wide-flange primary beams are arranged by the ratio of height and width
of the profile, Table 22 can be changed into Table 23:

Table 23. Results of the effective buckling length factor of wider flange
primary beams ranking by the ratio of height and width of the beam

h/b FACTOR (kir = Ler /L)
WI360-5-12*230 1.56 0.55
WI1410-5-18*270 1.51 0.63
WI370-5-20*330 1.12 0.73
WI300-5-15*300 1.00 0.80
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If we also take narrow flange | -beams into consideration, then the results
of effective length factor can be shown in this chart in Figure 30 below
(only the biggest result in each range is taken):

effective length factor

0,9

0,8 —
0,7

0,6 /

0,5

0,4

0,3

0,2

0,1

h/b>1.8 h/b=1.8-1.5 h/b=1.5-1.2 h/b<1.2

= cffective length factor

Figure 30. chart of the relationship between the ratio of
height and width and the effective length factor of beams

It is obvious that when the height to width ratio of the beam is smaller, the

effects from grating on the lateral-torsional buckling of beams are smaller.

And the relationship between the height and width ratio of the beam and

the effective length factor can roughly be (if the area of platform on two

primary beams is smaller than 6.2mX10.8m and Ci=1):

1. when h/bis 1.8 or more than 1.8, the effective length factor is smaller
than 0.6

2. when h/bis from 1.8 to 1.5, the effective length factor is smaller than
0.7

3. when h/bis from 1.5 to 1.2, the effective length factor is smaller than
0.8

4. when h/b is 1.2 or less than 1.2, the effective length factor is bigger
than 0.8

These results are reasonable because wider flange primary beam has a
higher torsional and horizontal stiffness. The additional restraint effect of
grating platform is rather small in case of wider flange primary beams.
However, these results are based on a few testing models, and a grating
platform with wider flange beams requires more investigations.

10 EXTRA STIFFNESS TESTS OF CONDITION 3 CONNECTION
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In all the RFEM models, the secondary beams are on the top of the primary
beams and connected by two bolts in bidiagonal direction. It has been
assumed that condition 2 and condition 3 connections are stiffer than the
condition 1. Because of the strict attitude of science, the stiffnesses of
condition 3 connections are tested by using the programme IDEAStatiCa.

For the models with IPE140 or IPE160 as the profile of the secondary beam,
there is much higher stiffness in condition 3 connections than in the
condition 1 connections. But for the models with the secondary beam IPE
220, when the profile of the primary beam is WI450-5-16*250, there is
lower stiffness in condition 3 connection than in the condition 1. The
reason is assumed to be that web slenderness(hw/tw) of the primary beam
is too high. To prove this assumption, one test was performed in
IDEAStatiCa: changing the profile of the primary beam from WI450-5-
16*250 to WI450-6-15*250. The results show that when the primary beam
is WI450-6-15*250, the condition 3 connection is almost as stiff as the
condition 1 connection. In the beam WI450-5-16*250, the web
slenderness hw/tw is 83.6, but in the beam WI450-6-15*250, the web
slenderness hy/twis 70. Apparently, more tests are needed to draw a clear
conclusion. However, it can be roughly suggested that when applying the
results of this research into steel design, the stiffness of connections
between secondary beams and primary beams need to be checked in
condition 1 and condition 3 if the web slenderness of the primary beam is
more than 70.

11 CONCLUSION

Based on the results of this research on the effective buckling length of
narrow flange primary I-beams, steel grating does provide adequate
restraints to the lateral-torsional buckling of primary beams. The results
suggest that 0.6 is a safe effective length factor for the narrow flange
primary I-beam when the area of platform on two primary beams is smaller
than 6.2mX10.8m, and this value can be smaller according to the size of
grating platform(for both situations: C1=1 and C1=1.127). In steel design,
engineers can use Tables 13-15, results of sensitivity tests and Appendix 5
as references to choose the best effective length factor for real situations.
Also, it is important that when applying the results in this research to the
calculation of the critical buckling moment of a beam by simple analytical
formulas, the same values of C1and C; as calculating the effective buckling
length should be taken. Due to the decrease of the effective length factor
kit of the primary beam, the capacity of design buckling moment for the
narrow flange primary I-beam can be increased around 2 to 2.7 times (if
C1=1.127) comparing to the situation when the effective length factor of
the beam is 1. This result shows the power that the effective length factor
has on the moment capacity of the beam. It can be used as a reference.



38

But it is still suggested to use the found results of the effective length factor
during steel design.

According to the tests of wider flange primary I-beames, it is shown that the
effective buckling length of the primary beam is also related to the ratio of
height and width of the beam. It is roughly suggested that (if the area of
platform on two primary beams is smaller than 6.2mX10.8m and Ci1=1):
1. whenh/bis 1.8 or more than 1.8, the safe effective length factor is 0.6.
2. when h/bis between 1.8 to 1.5, the safe effective length factor is 0.7.
3. when h/bis between 1.5 to 1.2, the safe effective length factor is 0.8.
4. when h/b is 1.2 or less than 1.2, grating platform does not provide
remarkable restraint for the main beam regarding lateral-torsional
buckling.
More investigation of wider flange I-beams is required to support this
conclusion.

It is also important to notice that the type of the secondary beam to the
primary beam connection as well as web slenderness of the primary beam
may provide a remarkable effect on restraining primary beams from
lateral-torsional buckling. Further tests with different kind of connections
are needed to get better knowledge on this topic.
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Appendix 1
Calculation of the profile of beam in case: Beam 1-IPE360 /Beam 2-IPE160 ------ Beam 2-
IPE160 (example)

& DESIGN OF SINGLE SPAN STEEL MEMBER  TO EN 1933-1-1 DATE 18.2.2020
SWECO &3 5yMMETRIC | -SECTION
PROJECT: Insinzzritys ROLLED PROFILE: | IPE160 A= 1' ROLLED EUROFEAN STEEL SHAPE ' I
AREA Ezimerkkitazo B=4.2 m WELDED BEAM: H-tufteab [depth-webit flange & bFlange] (mm]
EEAM EEAMZ EBEAM WEIGTH EE kg
Steel member type:  BEAM N b= 160 mm STEEL GRADE: 5235 GROSE SECTION CLASS:
b= 338E+04 mm4t b= 5 mm
by = 333E+08 mmE b b = 74 mm f, weby]
lz=  BAIEA05 mmé -I:E!— by = g2 mm £ flange]
Wz = 1EEEE+04 mm3 ] te r= 90 mm G= 20200 Mimm2
i = 184 mm A= 2008 mmz E.= 210000 Mfmmz
G= 158 kgim Iy = SEIZES06  mmé Bw=| 04 | factor
] Lo Wy = 1087E+06  mm3 5z 5 - 1,000
PLASTIC PROFERTIES i, = EEZ  mm Bo = 1,00
W 1,24E+05 ) al :|13-' TE a3 F3
= 1,24E+05 mm: ! L4
Ma= 290 Khm R | — v - -
q [ =L Sl L =] A L ]
LOADINGS ON MEMBER [nominal loads)
[t be filled in numerical order, Diadlnad Mg I I =L - 1 L M
wvalue = 0, if load doesn't exist] Fartian () Livelaadiz) 5@ T - [ I e 5
Figerp-] 0,00 allm)=| 0,00 1 0 H i
FzikH)- 0,00 a2[m)= 0,00 a i} [v H . B
Fzikm) | 0,00 aZ(m)= 0,00 45 L] P
Fatikm- i} T F= 1} P
Faziem- 0 7 Fe= i ot B
Fazikry- 1] [ Fx= a My
Agialload N (ki) 0,00 Dusdlnadparian ) : ! - i
(DL) (kMim]= 0,36 gd= 059 KMim Limie] 40 MealkM )= Excentrisiyefmm)= [0
q[LL) (kkfm)= 4.8 qd= TE kRIIm Compression is positive
MOMEMT AND SHEAR in ultimate limet state: Load factors: ¥ I 115 I T o= I 15 I for distributed loads
Reactions Ho= 20 m
ULS  FRags= 12 kM Diesign values: M= M- 17,18 kNm Fiesa= 12 kM
Fard=z 15,1 ki Yeu= 164 kN FEa4= 15,1 kR
164 kM Meas = - kNm Vear= - kM B4 kN
SLS Ra= 12 kM Mesz = - khm Wear= | kM .I Fie = 12 kM(SLE)
Meas = - kMm Vear= - kM
DESIGN CRITERIA 125 BUCKLING; DEFLECTION LIMITS:
Partial zafety Factors ¥ 100 buckling lengthiy)= tokal deflection 200
‘web stiffener spacing a= 4200 | mm buckling lengthlz)= [weak] live laad 250
Factor ! lateral torsional buckling ecs:s.z.2.3 iLTo= 04 | a= specified in MA
Factor ! lateral torsional buckling ecz:e.zz.m B= 0,75 ] as specified in Na Load combination in deflection check
Shear strengthd Tenzile yield limit (ecz:5.101 0= 10 auF g oy Factor for wariable actions =
CALSULATION OF ELASTIC CRITICAL MOMEMT IN LATERAL BUGKLING Caleulaton method For lateral bucklir General caze, £3.2.2
ku=10ja k=10 [beam ends are not fized,= fork support at beam ends ) free span { compression lange = m
Cy equivalent uniform load on beam span Z«-— mm, distance from load point to the centroid of beam
Ca= 4] Factor For transverse loading of the beam +when load on top Hange
[C;=0, if bending moment diagram is line ar between lateral restraints or ransverse loadis applied at shear centre of the beam)
COMEIMED AXIAL COMPRESSION FORCE AMND EENDING:
Factor for equivalent equally distributed moment R, : C., = depends on moment diagram shape on the overall length of beam value 0,4..1,0.
see Table B.3 in EMN1353-11

ANALYSIS AND DESIGN SUMMARY':

ACTIOMS OM STEEL MEMEBER STREMGTHOF CROSS SECTION | STABILITY OF STEEL MEMEER MOTE ! ADDITIOMNAL CHECK
Action walue unit Capacity value  rate EJRy | Capacity walue rate B/,

Moment Me,, 17.2 kNm M. pa 231 0,591 M, r4 203 0,845 0K
Shear Ve, 6.4 kN Vora 38.5 0,166 V. k4 95 0.166] DK
Axial load Ng,y 0,0 kM M. kg 47z 1 Iy gy ]

Combined Mg,, (max) + Ngg  irerong)
[ueak)

CROSS SECTION STRENGHT AT POINT LOAD:

At point load Mgy == kNm  M_g, - 0|k, - 1}

v Ed1 --- kN Upl.ﬁd - o Ubu.ﬁd - o
Atpointload Mg, — kMm o Mg, - 1] 1 - o

VEIZ - kN U»I.Rd - D Ubu.Rd - u
At point load  Mg,; - kMm  M_g, -— 0|M; k., - 1}

VSIB - kN U»I.Rd - [l Ubu.Rd - u
SERVICELIMIT STATE: DEFLECTION mm = zpan! lirmit spand mm actualf limit]
Max moment M, 12 kMNm s 356 200 210 0.562 114
Moment ! live M, 1 kMm o 394 250 16§ 0.634 0K
Natural frequency of uniformly loaded beam Dlesign criteria for natural frequency: > 30 Hz

f, = TH(2*L%) * SART(ENm)) = 8,52 Hz

m=0L+y;*LL = 199,3 kgfm uasi-permanent combination




41

Appendix 2
Calculation of the profile of beam in case: Beam 1-IPE360 /Beam 2-IPE160 ------ Beam 1-

IPE360 (example)

DESIGN OF SINGLE SPAN STEEL MEMBER  TO EN 199311 DATE 18.2.2020

.
SWECO ﬁ SYMMETRIC | -SECTION

PROJECT: Inzinzritys ROLLED FROFILE: = | wevcep untur steeshare -]
AFES, Esimerkkitaso B=6.2 m,L=8.4 m WELDED BEAM: 400512220 Het.ftzub [depth-webit Aange « bflange) (mm)]
BEAM BEAMI BEAM WEIGTH 472 kg
Steel member type:  BEAM ) b= 400 mm STEEL GRADE: 5355 GROSE SECTION CLASS:
lt=  3,23E.05 mm# ts 5 mm
= 80E mmé b t = 2 mm fa
= ZI3E0T mmé 4:'(:)!— be = 220 mm A
W2z 193BE.05 mm3 ] L r= 00 mm G: 80800 Némm2
i 545 mm A= 760 mm2 E.= 210000 N/mm2
G- 56,2 kgim Iy = 2209E+08 mmt B = factor
Wwebiflange weld = 250 mm [tetal weld thic hoho|wys= UMEWDE mmd 0.814
PLASTIC PROPERTIES [ 1756  mm
- 5
W, = L20E.D6 mm3 | —al i
Mo = 4264 kNm
q [ T T —1
LOADINGS ON MEMBER [nominal loads)
[to be filled in numerical order, Deadlaad N 49 M
walue = 0,if load doesn't exist partion () Liveload(<) e T~ | L
Figu - 0 alim)= a
Fa ki) 0 a2m)=| o, i AT : i L i Te
FzikH)-| I a3(m)= ; 45 0 y 1 . 1 -
Fatikm- [i] TRz i g L Yo | -
Faaz ikt ] 0 L LT
o .
) Fazikm- 0 [ My My Mmax M3
Agialload M (k)4 000 Deadlnad partion (2] ' _
g(DL) (kMim)= e gd= 245 KMim Lim)s| &0 Heakh )= Excentricityefmm)= 0]
q(LL) [kNim)= 24 qd=  1BE  KMim

MORMENT AND SHEAR in ultimate limet state:

Compression is positive
Load Factors: 7G= I 115 I T o= I 15 I for distributed loads

Fieactions Hos 420 m
ULS  Rasi= 10,4 kM Dlesign values: M_.= M= 186,00 kNm Fiea= 04 kM
Fiana= 72,0 kR ¥ea= 22,6 kN Figna= 781 kN
.6 kN Wt = kRIm Veas - kM 386 kN
SLS Fg= E12 kM Mgy = kMm Weg= - kM Fe= B12 kM [SLE)
Meis = khm Vear= — kM
DESIGN CRITERIA ThEE 1,25 EUCKLING; DEFLECTION LIMITS:
Prartial safety Factors L 1,00 buckling length(y)= “ m total deflectiol
‘web stiffener spacing a= 2400 |mm bucklinglengthlz)= | 24 |mjweak) live load
F ac:tor flateral torsion al buckling (gcs: .. ILTo= 0.2 | as specified in MA

F actor #lateral torsion al buckling (ecz:s.. B= 1

Shear strengthf Tensile yield limit (£cz:5.1) 1= 10

CALCULATION OF ELASTIC CRITICAL MORMENT IN LATERAL BUCKLING

ku=10ja k=10 [beam ends are not fised,= Fork support at beam ends |
Ci= equivalent uniform load on beam span
Cez|  0454] Factor for transwerse loading of the beam

Load combination in deflection check.
gu+Frwq, oy Factor for variable actions =

as specified in A
Caleulaton method for lateral bucklic General caze, 8322

free spant sion flange = m

z mm, distance from load point to the centroid of beam

+when load on top flange

[C; =0, ifbending moment diagram iz linear between lateral restraints or ranswerse load is applied at shear centre of the beam)

COMEBINED AXIAL COMPRESSION FORCE AMND BEMOIMNG:
F actor For equivalent equally distributed moment 1, :

ANALYSIS AND DESIGN SUMMARY:

C..= depends on moment diagram shape on the overall length of beam value 04..1.0.

zee Table B.2in EM 1932-1-1

STREMGTH OF CROSS SECTION | STABILITY OF STEEL MEMEEH MOTE !+ ADDITIONAL CHECK

ACTIOMS ON STEEL MEMBER
Awtion value unit Capacity walue  rake EJR, | Capacity value rate EJR,
Moment Mc,, 186.0 kNm M. s 3320 0,474 M, .y 7g 0,855 oK
Shear Ve, 35,6 kN [T 299,2 0,296] V. r4 2382 0,296 oK
Axial load N, 00 KN M 25418 Ther, )
Combined Mg, (mazx) + Ngg  irerana)
(ueak)

CROSS SECTION STRENGHT AT POINT LOAD:
Atpointload Mg, - kMNm M. fy -— 1] 1P - o

Vea - kN Voir - 1] K - 0
At pointload Mg, - kMm M. gy - [1] 1 P -— 0

Ve - kN Voir - 0| Viira - 0
Atpointload Mg, - kMNm M, py -— 1] LA -— L]

USIZ - kN UDI.RJ - D Ubu.ﬁd - ']
SERVICE LIMIT STATE: DEFLECTION mm = span! lirmit spand mim actuall limit
Mar mament Mo 128 kNm 204 413 350 24,0 0,848 0K
Moment ! live My 103 kNm 7.3 55| 400 210 0,825 oK
Natural frequency of uniformly loaded beam Design criteria for natural requency: £ Hz

f, = TT(2*L%) * SQRT((ElNm)} = 619

m=DL+uy; *LL 5997

Hz

kalm Quasi-permanent combination
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Appendix 3
Ekvivalentin ortotrooppisen levyn materiaaliarvojen laskenta
Ekvivalentin ortotrooppisen levyn materiaalianojen laskenta
X-suunta A = 1000w 30mm = 0.03 m F = 10008
Oy==—= 0.033-MPa By0= 1. 706 Te-D0G
) A
E.'{ 4
=— =1953= 10 -MPa
: E
X
E}. = —h. 161 Be-007
E}.
v = —— = 0361
Xy
EI
Y-suunta
]:
@, ;== = 0.033-MPa £,,4 = 1403 5e-005
YT A ¥2
o, -
E, =—"=2375= I0"-MPa
¥ ey
£y = —6.0254-006
£x2
Vo = — =043
+ Ey2
Vyx _10 1 Yy _11 1
i = 1.B0% = 10 —_ “==> — = |B4% = 10 —_
, Pa Ex Pa
XY -suunta
F (086278 + 085846 + 090526 + 0.90524)mm — 3
T, == Yo = =3532x 10
Xy A & 1 0Dy
Ty
ny = v— = 9.438-MPa




Mathcad calculation of the effective buckling length of beam in case
/Beam 2-IPE160 ------ Beam 1-IPE360 (example)

Parameters

E = Young modulus

G = Shear modulus

k = Effective length factor which is related to the restrain against lateral bending at the
boundaries

k,, = Effective length factor which is related to the restrain against warping at the boundaries
z, = Distance between the point of load application and the shear centre

C,= Factor that account for the shape of the moment diagram

C, = Factor that account for the point of load application in relation to the shear centre
f, = Yield strength

Buckling lenght calculation

Material properties

E = 210GPa G = 81GPa f"__ = 335MPa
- N +

Beam length: Lpegm = 3482m
Cross section properties of the beam:
h = 360mm by = 170mm tp = 12.7mm ty = fmm h,=h- 2t = 35346mm

‘b \2

[h-te]” 3 4 4

.= 2-be el |+ —t h " =1332x10-
]}- iy 2 ) 2 g * cmn
1 3 1 3 3 4

L= 2oby s ot g = 104 107 em

5
(e + 1) 1 5
R S YPRSTAR RIY 2, 136 10 cd
4 e gy f By + t) tp = 3136 107 -cm
w ¥y S62115-cm Correct if needed plastic capacity.
B

Critical buckling moment

Maximum load

critical load amplifier er.op

lateral torsional buckling load acc. fem: M = c‘cr.op'MEd =428 819-kN-m

The comparison value:

- Load at top of the beam

- kw=1 and k =1

- the uniform load distribution
- the full buckling length

C =1121  Cy=0454 Lol = Lbeam  Ze™=

2 2
“"E"Iz Ly ch.fquL'G'It
crcomp = Cy- 2T *
Lerfutt “ 7 EL

M,

) 2 .
+ |CZ'Zg:' - C},'Zg = 86.971-kN-m

M

Mcr.comp

=4031
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Appendix 4/1
: Beam 1-IPE360
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Appendix 4/2

Moment resistance:

Buckling curve a b c d
Imperfection factor oyt 0,21 0,34 0,49 0,76

op =034 Imperfection factors

Mr=

¢ 2 - i 2 -
b= 0.5-[1 +opplh-02)+ kl_r:| =096 drTcomp= o.:-[1 + o T T comp — 12} + MT.comp J =254

{ 1 3 1 3
xr=mn |, ————— | = 0.6% XLT.comp = min| 1, [=10233

L P+ | drr - M7 J L d’LT.comp ., d’LT_u:omp‘ - >\I_'I'.c,m'np‘,.'-

3

Mgy = XLT'“'}-"fy M}?{d.c,m'rlp = xLT.comp'“'}-"fy

Mgy A nen NOTE: The critical buckling moment Mer is needed
Mgy it for the calculation of moment resistance - not the
“comp LTB lenght

LTB buckling length
a ) The buckling length

The load is at centerline of the beam:




Appendix 5

Results and sensitivity tests of narrow-flange primary |I-beam for both cases of

factor C1=1 and C1=1.127

secondary beam IPE140

Ci=1 Lm) |l (m) FACTOR (k=L /L)  [Ci=1.127 Um) |l (m) FACTOR (ki1 =L./L)
IPE200 6.073  |1.841 0.30 IPE200 6.073  |1.981 0.33

IPE270 8473  [2.570 0.30 IPE270 8.473 |2.760 0.33

IPE360 10.873 [3.557 0.33 IPE360 10.873 |3.821 0.35

secondary beam IPE160

C=1 Lm) |l (m) FACTOR (k=L /L)  |Ci=1.127 Lm) |l (m) FACTOR (ki =L../L)
IPE240 6.082  [2.000 0.33 IPE240 6.082  |2.145 0.35

IPE360 8.482  [3.196 0.38 IPE360 8.482  |3.427 0.40
WI1400-5-15%220 [10.882 [5.295 0.49 WI1400-5-15*220 [10.882 |5.700 0.52

secondary beam IPE220

C=1 Lim) |l (m) FACTOR (k=L /L)  [Ci=1.127 Lim) |l (m) FACTOR (ki =L./L)
W1400-5-12%220 [8.510  [4.669 0.55 WI1400-5-12%220 [8.510  [4.996 0.59
W1450-5-16%250 [10.910 [6.027 0.55 WI1450-5-16*250 [10.910 [6.480 0.59

secondary beam IPE220 (Sensitivity Test)

TEST (Cy=1) Lim)  |L,(m) FACTOR ((kyr=L/1)  |TEST(C=1.127) |U(m) |l (m) FACTOR (ki =L../L)
W1400-5-12%220 [8.510  [4.909 0.58 W1400-5-12#220 [8.510 [s.257 0.62
W1450-5-16*250 [10.910 [6.231 0.57 WI1450-5-16*250 [10.910 [6.705 0.61
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Appendix 6
Mathcad calculation of how much capacity of reduction factor increases in case: Beam
1- WI450-5-16*250 /Beam 2-IPE140 (example)

Material
properties
E - 110GPa G- 81GPa £, = 3550Pa

Beam length: L‘baan’ = 10.81m

Cross section properties of the

beam:

h = 450mm by = 250mm ty = 16mm = Smam b
- tf‘- 1 1 R

Lim2bp| —— |+ oty = 4071 10t

¥ (- 2

3.1 .3 S
£t gt Tm 4167% 167 em

1 3
= T T '-:).-:}DE--:n’.4
3

+ _ P
T im——— 1062 x 10 -om 1.3 ’) 6 €
w Fl zm.- E Al + ] tp= 1.862 = 107 -cm
LBl = 107co” Comed if neaded plastic

capadty.

Imperfection
factors

RFEM results:

M, pppy o= 633.316N-m

The comparison value:
- Load st top of the beam
- bw=1 and k=1

- the uniform load
distribution

- the full budding length

) ) & .
€ = 112 C, = 0.454 Lot = Lpsam  Fmg - 025w Bo=0.75
_ i
Mer comp - 207.6754N.m drTidr) - '“'I:l +aprisy- 4+ r“"LT]
) 1 1
XAy = min 1 7 3
N drridT) - JdTidr - BT
LT.comp
1 T T T
ogt i
*LTiALT)

x T AL TFEM g 4
=m

XLTIALT comp!
04 B
B 1 1 1
% 03 1 15 2
MT M TFEM M.Tcomp

LT AT FEM)

— L2005

NLT\ M T comp)



