A Deep Learning System for Recognizing Facial Expression
in Real-Time

YU MIAO and HAIWEI DONG, University of Ottawa
JIHAD MOHAMAD AL JAAM, Qatar University
ABDULMOTALEB EL SADDIK, University of Ottawa

This article presents an image-based real-time facial expression recognition system that is able to recognize
the facial expressions of several subjects on a webcam at the same time. Our proposed methodology com-
bines a supervised transfer learning strategy and a joint supervision method with center loss, which is crucial
for facial tasks. A newly proposed Convolutional Neural Network (CNN) model, MobileNet, which has both
accuracy and speed, is deployed in both offline and in a real-time framework that enables fast and accurate
real-time output. Evaluations towards two publicly available datasets, JAFFE and CK+, are carried out re-
spectively. The JAFFE dataset reaches an accuracy of 95.24%, while an accuracy of 96.92% is achieved on the
6-class CK+ dataset, which contains only the last frames of image sequences. At last, the average run-time
cost for the recognition of the real-time implementation is around 3.57ms/frame on a NVIDIA Quadro K4200
GPU.
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1 INTRODUCTION

Children with autism often have difficulty recognizing the emotional state of people around them.
For example, it is difficult for them to distinguish a happy face from a fearful face. Robot-assisted
treatment for autism often solves the problem. At the introduction stage of the therapy, the robot is
introduced to the child and free-plays with him. At the teaching stage, cards with different facial
emotions are presented to the child by the human therapist, while the robot demonstrates the
corresponding emotion to teach the child how to recognize joy, sadness, fear, and so on. At last, at
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the practice stage, the child uses the face cards from the teaching stage to indicate what emotion he
thinks the robot is displaying. This therapy is said to be currently the most effective one towards
treating autism [1]. Inspired by this, we decide to design a system that can accomplish estimating
human facial expressions in real time that may help assess the emotional state of autistic children.

Emotional voice, gesture, facial expressions, and so on, constitute the factors of human emotions
[2]. Facial expressions, among these factors mentioned above, play the most important role in affect
analysis [3]. Mehrabian [4] worked out a formula that considered the effect of the spoken message
as a whole; facial expressions of the speaker contribute 55 percent, while the vocal part (e.g., vocal
intonation) and the verbal part (i.e., spoken words) contribute only about 38 percent and 7 percent,
respectively. This condition emphasizes that facial expression is the most significant part of non-
verbal communication and the primary modality used to convey emotions.

Automatic facial expression recognition (FER) systems generally receive two kinds of expected
input (still images or a sequence of frames) and output one of the seven basic universal emotions
(i.e., angry, disgust, fear, happiness, sadness, surprise, and neutral) that were classified by Ekman
[5] in 1975. FER has seen advancement in research and development in the past decade due to
advances in machine learning, image processing, human cognition [6], areas such as face detec-
tion, tracking, and recognition, as well as the recent availability of relatively cheap computational
power.

Most of conventional approaches for FER utilize machine-learning classifiers (e.g., neural net-
works (NN) [7], linear discriminant analysis (LDA) [8], support vector machines (SVM) [9], etc.)
to classify the extracted features (e.g., Gabor wavelet coefficients [7, 8], histograms of local binary
pattern (LBP) [10], histograms of oriented gradients (HOG) [11, 12], etc.). Because of the need for
computational power and programming efforts, few of these can fit the real-time requirement. Re-
cently, the approaches of deep learning have flourished due to inexpensive computational power,
and one example, called the convolutional neural network (CNN), has obtained excellent state-
of-the-art results in the field of computer vision (e.g., image classification, face recognition, object
detection). Also, CNNs have been successfully applied to FER [13, 14] and have shown better results
than many conventional methods due to its efficiency in feature learning and representations.

Among numerous CNN models, MobileNet [15], which was proposed in 2017, is a lightweight
deep neural network produced by Google. Following a year’s development, it has become a basic
and popular network structure similar to GoogleNet and ResNet. Its starting point is to construct
a lean, lightweight network based on a streamlined architecture that has much smaller size and
lower computation complexity than CNN benchmarks (e.g., AlexNet [16], VGG [17]), and it can
be used efficiently on mobile and embedded devices that offer limited performance.

Although FER under controlled conditions is already mature and no longer a substantial prob-
lem, robust CNN-based FER still remains an unsolved problem in real-life scenarios in spite of
CNN'’s superiority. CNNs achieve high accuracy in face-recognition tasks with high efficiency, re-
quiring the size of labeled training data in the millions as emphasized in Reference [18]. However,
the total number of samples in most datasets for FEA is quite small (e.g., hundreds for References
[19, 20] and thousands for References [21, 22], which is far from sufficient for training CNN).
Another problem is that the evaluation of the state-of-the-art work on specific datasets in the
literature are not applied consistently (e.g., in terms of the number of classes of emotions to be
evaluated), which sometimes leads to falsely high accuracies.

Data size is one of the most significant factors affecting the performances of CNN [23]. To
compensate for the limitation of small datasets, transfer learning based on ImageNet, which is the
largest high-quality visual recognition database at present, has become a standard benchmark and
been widely applied to large-scale visual tasks such as image classification and object recognition.
Because of its intraclass variation, this database can help such data-driven systems improve their
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performances even with different domain problems, e.g., the medical image domain [24]. Inspired
by the work of References [25, 26], we decide to follow the “two-stage” supervised transfer learning
based on ImageNet and an auxiliary dataset FER-2013.

For recognition tasks in the computer vision field, particularly for FER in this case, the ideal
learned features to be selected should not only contain interclass separation (separable), but also
intraclass compactness (discriminatory). The softmax loss has been widely used for optimization
of CNN:s for its key characteristic of nonnegativity and eliminates the possibility of positive and
negative value cancellation. However, the softmax loss only tends to separate the deep features.
Thus, Wen et al. [27] in 2016 proposed a new supervision signal called center loss to enhance this
discriminatory power that is very crucial for facial tasks. The promising results obtained in their
work enlighten us to the idea of using center loss in the FER scenario. Following their work, we
develop an applied algorithm that adds center loss to the loss function together with the softmax
loss and apply it to the training of our FER model, enhancing the discriminatory power of the
proposed system.

In our work, the new CNN model MobileNet [15] is applied to accomplish this FER task, provid-
ing a basis for real time. To address the problem of insufficient size of those small facial expression
datasets, a two-stage fine-tuning strategy is used in the training process of CNN. In addition, a new
supervision signal, center loss, is leveraged jointly with the softmax loss function in optimization
for interclass dispersion and intraclass compactness [27]. The proposed system was evaluated on
the CK+ and JAFFE datasets and achieved competitive results. In summary, the main contributions
of this article are as follows:

(1) A two-stage fine-tuning strategy is used in this work to solve the problem of insufficient
data size of facial expression datasets.

(2) An extra center loss is added to the loss function under joint supervision with the softmax
loss for enhancing the discriminatory power of the proposed system.

(3) Implementation of a real-time FER system that achieves a smaller run-time cost compared
to the literature.

The remainder of this article is organized as follows: In Section 2, a brief review of conventional
methods and recent work that is deep-learning-related for facial expression analysis is presented.
The details for the methodology used in the training process of CNN are demonstrated in Section 3.
Then the datasets used in this work are presented in Section 4. Experiments and evaluations on
two datasets showing the effectiveness of the proposed methodology and results are provided in
Section 5. In Section 6, a discussion towards the results are elaborated. Section 7 summarizes the
merits of this work and mentions the limitations and future work.

2 RELATED WORK

Facial expression analysis (FEA) as a research field was established by Darwin in 1872 [28]. Since
then, FER has been an active research topic across a variety of disciplines, such as biology [28], psy-
chology [29], and computer vision [24]. Especially in computer vision, for its impact and prominent
potentiality, automatic FER has been growing in an extensive range of applications, e.g., biometric
identification, surveillance, and security [30], driver state surveillance [6], and the entertainment
industry and virtual reality.

Conventional methods related to facial feature extraction and representation are categorized
as appearance-based [11] and geometric-based (shape-based) [31]. Most of the state-of-art work
includes the so-called hand-crafted features (e.g., Gabor wavelet coefficients, histograms of LBP,
HOG, etc.). These extracted hand-crafted features are then fed into the empirical classifiers (7, 8]
to execute the classification so both the computational power and programming efforts are needed
for consideration.
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One promising advantage of CNN-based method is that it combines the three steps of automatic
FEA (face acquisition, facial feature extraction and representation, and facial expression classifica-
tion) into one single step. The hierarchical structure of CNN—which is a design of local-to-global
feature learning [32] composed of diverse convolution, subsampling (e.g., max-pooling, average-
pooling), and fully connected layers—contains a strong feature representation capacity and can be
apowerful tool in FER [13, 14]. The frameworks of these works include image preprocessing, CNN
architecture, training schemes, and evaluation configuration.

Burkert et al. [33] proposed a CNN architecture that does not depend on the hand-crafted fea-
tures. Four parts comprise this architecture, and the images are first preprocessed automatically
through a convolutional layer. The images are then downsampled by the pooling layer in the sec-
ond part. The next block, called the FeatEx, serves as the fundamental structure in this architecture,
which was inspired by GoogleNet. Finally, the extracted features after two concatenated FeatEx
blocks are fed into a fully connected layer to perform the classification. The deep features of dif-
ferent layers are visualized to show its validity, and evaluations are conducted with two standard
datasets, namely, MMI and CK+. Their experiment on the CK+ dataset, which evaluated seven
classes (angry, disgust, fear, happiness, sadness, surprise, and contempt), achieved a recognition rate
of 99.6%.

Tang et al. [34] presented a framework that followed the convolution routines of Alex
Krizhevsky [16] but replaced the last softmax layer with a linear SVM and optimized the loss
from the L2-SVM (DLSVM) instead of the cross-entropy loss. The input images were first pre-
processed by subtracting the mean value and setting the norm to 100 before being fed into the
network for training. Superior results were obtained by using this DLSVM with softmax by evalu-
ating two standard datasets, MNIST and CIFAR-10, as well as one of the largest recent FER datasets:
FER-2013 [35]. The performance of the proposed framework won first place in the FER challenge
of the ICML 2013 Workshop hosted on Kaggle, with an accuracy of 69.4% for the public validation
set and 71.2% for the private test set.

To engage in the image-based static facial expression recognition sub-challenge of the
EmotiW2015, Kim et al. [25] constructed a hierarchical committee of multiple CNNs with an
ensemble method based on exponentially weighted decision fusion. First, face registration was
achieved by four different pipelines, where the VJ detector and the Zhu-Ramanan (Z-R) model
were used for face detection, andIntraFace was used for the facial landmarks extraction; finally, the
best method was selected by 2D conventional alignment. Following Tang’s CNN architecture [34],
these approaches trained several CNN candidates varying in the size of kernels (receptive fields)
and the number of neurons in the fully connected layer; finally, a decision was made by the ensem-
ble method. In addition, to improve the performance on the SFEW2.0 dataset, a transfer-learning
method that used external datasets—namely, FER-2013, the Toronto Face Database (TFD), and the
GENKI-4K database were applied to the training process. This configuration defeated other candi-
dates in this challenge by achieving a test accuracy of 61.6% on the SFEW2.0 dataset; the baseline
for this dataset was 39.1%.

As an additional candidate in the contest of EmotiW2015, Ng et al. [26] emphasized the impor-
tance of using a transfer-learning method, which was a supervised two-stage process. Two rep-
resentative CNN architectures (AlexNet and VGG-CNN-M-2048) were selected for their trade-offs
regarding accuracy and speed. By first fine-tuning the FER-2013 dataset based on the pretrained
models from ImageNet and then fine-tuning the SFEW2.0 dataset (the target dataset), the authors
reached an accuracy of 55.6% on the test set, which ranked third place in the contest.

Inspired by the architecture of AlexNet and GoogleNet [36], Mollahosseini et al. [37] proposed
their own CNN architecture in 2016, which consisted of two conventional CNN modules (one of
which included a convolutional layer followed by a max-pooling layer), four Inception modules,
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Fig. 1. Overview of the proposed framework. A first stage of fine-tuning is applied to FER-2013 based on
the pretrained model from ImageNet. After obtaining the best-trained model, a second stage of fine-tuning
is then performed on a specific dataset. An additional center loss is used as a part of the supervision signal
together with the softmax loss during optimization. Finally, the best-trained model is selected for online
classification. This example involves the CK+ dataset.

and two fully connected layers, having only 25M operations (compared to 100M in AlexNet). Face
registration was performed to improve the performance of FER by using the bidirectional warping
of the active appearance model (AAM) and a supervised method called IntraFace that adopted the
SIFT features to extract 49 facial landmarks. Both subject-independent and cross-database exper-
iments were carried out on seven public standard datasets (MultiPIE, MMI, CK+, DISFA, FERA,
SFEW, and FER-2013), and six specific classes (angry, disgust, fear, happiness, sadness, surprise,
excluding the neutral and contempt classes) were evaluated on the CK+ dataset.

3 METHOD

In this section, an overview of the proposed methodology is presented that mainly contains two
parts, as illustrated in Figure 1. After the image data are prepared, the CNN training scheme—which
consists of a transfer-learning strategy and an optimization method combining a newly proposed
supervision signal with softmax loss—is applied to a recently proposed CNN model. Finally, the
best-trained model is used to perform the online classification.

3.1 Preprocessing

Preprocessing of expression images can vary depending on factors such as the performance of the
acquisition equipment or changes in illustration conditions. It is necessary to perform data prepro-
cessing, the general purpose of which is to eliminate noise and to normalize and centralize the gray
value of the image to provide a solid foundation for subsequent classification and identification.
However, extensive image preprocessing may require large run-time cost, which threatens real-
time capability. In our work, we perform a minimal amount of preprocessing while maintaining
accuracy.

3.1.1  Face Detection. In our work, a Haar cascade classifier that is based on the object detection
classifier proposed by Viola and Jones [38] is adopted for face detection in both our offline and real-
time systems. We ignore the non-frontal situation since the main concentration is on the FER part.
After loading the pretrained face XML classifier (required for face detection), the input images are
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loaded and converted into grayscale mode. If the classifier finds the faces, then the four coordinates
of the rectangular region of interest (ROI) of the faces are returned. The four vertices are then used
to crop the faces and, consequently, irrelevant backgrounds are deleted, as shown in Figure 1.

3.1.2  Data Augmentation. Data augmentation is often employed during the training of the
CNNs, since the training process itself incorporates a large quantity of data. In the training scheme
of this work, the cropped faces are first distorted with a lightweight library in TensorFlow before
feeding them into the CNN. Each cropped face is randomly sampled by one of the distorted bound-
ing boxes. The area of the sampled patch is [0.85, 1] of the original supplied image, and the number
of generated images is as high as 100. Furthermore, after rescaling (which will be described below),
the images will be randomly flipped horizontally to have two times more data. In this sense, the
dataset is ultimately augmented by a factor of up to 200.

3.1.3  Resizing and Normalization. Since the CNN training input must be square, all the cropped
images after the data augmentation are rescaled to 48 X 48 pixels. The reason for the selection of
this 48 X 48 rescale parameter is to remain consistent with the resolution of the FER-2013 dataset.
After rescale, the data are normalized into the range of [-1, 1].

3.2 The Framework and Transfer Learning

3.2.1 CNN Structure. The first version of MobileNet (MobileNet V1) is employed as the CNN
architecture in both offline and real-time systems of our work, since it focuses both on speed and
size, and it is easy to be tuned for resources versus accuracy, as highlighted in this article. The core
of the MobileNet V1 is that it decouples standard convolution into a depthwise convolution and a
1 X 1 pointwise convolution.

All the merits mentioned above contribute to our decision to select this MobileNet structure
as the framework of this work. The characteristics of small size, low complexity, and remarkable
accuracy enable this FER task to maintain a favorable trade-off between speed and accuracy com-
pared to other popular CNN benchmarks (e.g., AlexNet, GoogleNet, VGG16, SqueezeNet).

3.22 Transfer Learning Strategy. One main problem for CNN-based FER is the insufficient size
of most of the existing facial expression datasets. The required size of the labeled training data
for CNNs to learn and extract features and obtain high accuracies is asked to be in millions (as
mentioned in Section 1), while the size of most facial expression datasets is only hundreds or
thousands. Training deep models with such limited amount of data is rather challenging, since
sometimes it may lead to the problem of overfitting (the model may have poor performance on
the test data while attaining rather perfect performance on the training data). In addition, it is
time-consuming to train from scratch without taking advantage of the pretrained model. One of
the common ways to address this problem is to use inductive transfer learning [39]—the so-called
fine-tuning strategy. A common practice is first initializing the network with a set of pretrained
weights (and bias) based on a large-scale dataset from one task and retraining these parameters
for another new target task. These pretrained weights are adapted for initialization to all layers of
the CNN except for the first and the last layer, since the input resolution or the number of classes
of the dataset of the new task may vary from the dataset used for pretraining. A hallmark of this
approach is the fine-tuning of a small target dataset based on the pretrained models on the ILSVRC-
2012 (ImageNet), and many recent works [24] have established the feasibility of this strategy. To
further compensate for the small size of the CK+ and JAFFE datasets during fine-tuning (the size of
which are both under 1K) and overcome the difference between the target task and the source task,
we follow the recent studies of References [25, 26] using the FER-2013 dataset (the size of which
is more than 30K). Inspired by the associated transfer-learning schemes, “two-stage” fine-tuning
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is employed in the training scheme of CNN instead of only performing “one-stage” fine-tuning.
This technique is a kind of “coarse-to-fine” training process, as illustrated in Figure 1. To make
use of the large FER-2013 dataset, we perform the first stage of fine-tuning following the approach
elaborated in Reference [39]. We first fine-tune the relatively small dataset FER-2013 (compared
to ImageNet) in the target domain (in FER) by initializing the network with pretrained weights
from ILSVRC-2012 in the source domain. Considering the distance between the tasks of FER and
object classification (the target and the source), we refer to this first-stage fine-tuning as “coarse”
fine-tuning. After obtaining the best-trained models from FER-2013, a second-stage fine-tuning
step is applied to the JAFFE and CK+ datasets by transferring these sets of pretrained weights to
the network. Since the target and the source tasks are the same in this process, we term it “refined”
fine-tuning.

For the two fine-tuning schemes, the last fully connected layers are both replaced by a new
classification layer classifying seven classes (the number of classes for CK+ may vary, as elaborated
in Section 5). For the “coarse” fine-tuning, the set of weights of the first convolutional layer are
randomly initialized from a Gaussian distribution, since the input of the images after preprocessing
has a size of 48 x 48, while the original MobileNet V1 is 224 X 224. The initial learning rate of the
first-stage fine-tuning is set to 0.001, which is relatively small, to “tune” the pretrained weights of
the early layers of the network from ImageNet slightly. For the “refined” fine-tuning, the pretrained
weights of the first layer from the FER-2013 are directly set as the initialization at the beginning
because of the same input size of 48 X 48. At this stage of fine-tuning, the initial learning rate is
set to a relatively large value (e.g., 0.045—see training details in Section 5) to “lock” the weights
of early layers (since FER-2013 and the targeted datasets CK+ and JAFFE are in the same domain)
and to relearn the high-level features for the specific dataset (CK+ or JAFFE).

3.2.3  Joint Supervision. Inspired by the work of Wen et al. [27], center loss is applied in the
training scheme to the discriminatory power. In the training process, center loss acts to reduce
the intraclass differences by increasing the distance constraint between the features and its corre-
sponding class center of the samples. The calculation of center loss is given in Equation (1) below:

1 N
Ler= 3 21 lxi = ¢y, llos (1)

where x; stands for the ith deep features extracted before the final classification layer instead of
those classified possibilities after the fully connected layer, and c,, represents the learned center
for the y;th class. The centers are updated within each iteration using a mini-batch strategy (the
size of which is N in Equation (1)) and computed by taking the average of the deep features of
the corresponding class. In addition, a hyperparameter « of 0.001 is also employed to control the
learning rate of those centers during the update within each iteration:
Cy ' = ey — - Acy,. (2)
Center loss is supervised under collaboration with the conventional softmax loss in our work,
closely following the approach of Reference [27]. The total loss used for network optimization is
calculated in Equation (3):

T
eWyix,'+byi

N
A
+5 0 eyl 3)
i=1

With a hyperparameter A of 0.001 balancing the two loss functions, the network is optimized using
the stochastic gradient descent (SGD) [40] with momentum to stabilize the update and greatly

N
L=L5+/1'LCL:—ZIOgm
i=1 j;]e J
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Fig. 2. The proposed structure of this work, using collaborated supervision with center loss. Note that the
deep features before the fully connected layer are used for calculating center loss, while those after the fully
connected layer are collected for the softmax loss.

ALGORITHM 1: The learning algorithm

Input: Training data x;, initialized parameters 6. and weights W of the network, hyperparameter 4, «,
learning rate and initialize the iteration: ¢t « 0.

Output: The updated parameters 0,

while not converge do

t—t+1;
Compute the total loss by L = L{ + A- L, ; t t

. Lt _ ILy . OLL,
Compute the backpropagatlor: error by axT = Tt A ol
Update the weights W by g‘fv 7
Update the parameter c; by cJt.+l = ]t -—a- cht.;
Update the parameters 6, by V0, = géf + 86L GCL .

end

speed up the convergence. This collaboration of supervision is illustrated in Figure 2, where the
deep features extracted after the “Avg Pool” layer are used for calculation of center loss and where
those elements extracted after the final fully connected layer are collected to calculate the softmax
loss.

The details of the learning process are summarized in Algorithm 1; after initialization, the total
loss is first computed during each iteration. Then, the weights and parameters of the network are
updated through computing the gradient of backpropagation error.

4 DATASETS

The commonly used existing facial expression datasets are CK+, JAFFE, MMI, SPEW, YaleFace,
FER-2013, MultiPIE, TFD, and so on. Among these, the two widely used standard datasets, CK+
[19] and JAFFE [20], are selected in this work for evaluation. Another dataset adopted in this
work is FER-2013, which is currently one of the largest facial expression datasets. The examples
of basic facial expressions of the three datasets used in this work are shown in Figure 3. The
expressions in CK+ and JAFFE datasets are lab-controlled while these in FER2013 are wild-setting.
The distribution of every class in each dataset is presented in Table 1, but only in the JAFFE dataset
is the number of each class evenly distributed. In addition, the CK+ dataset includes a contempt
class, while the other two datasets do not.
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Neutral Angry Disgust

Happy Sad Surprise Contempt

(b) JAFFE

uk

(c) FER-2013

Fig. 3. Examples of basic facial expressions of the three datasets. Note that every dataset contains seven
basic expressions (neutral, angry, disgust, fear, happy, sad, surprise), while CK+ also includes a contempt class.
The facial expressions of FER-2013 are wild-type, while those in the CK+ and JAFFE datasets are posed and
collected in a laboratory-controlled environment.

Table 1. The Distributions of Every Class in Each Dataset

| | FER-2013 | CK+ (last frame) | JAFFE |

Angry 4,593 45 30
Disgust 547 59 30
Fear 5,121 25 31
Happy 8,989 69 31
Sad 6,077 28 31
Surprise 4,002 83 30
Neutral 6,198 327 30
Contempt 0 18 0

Each dataset has seven basic classes, including angry, disgust, fear,
happy, sad, surprise, and neutral. Especially for CK+, it also contains
an extra contempt class and the onsets of 327 image sequences make
up its neutral class.

e The Japanese Female Facial Expression Dataset (JAFFE) [20]
This dataset consists of seven basic facial expressions (six basic ones and a neutral one).
It was collected by ATR Human Information Processing Research Laboratory. The dataset
contains 10 Japanese female expressors, each of whom posed 3 ~ 4 examples of the six basic
facial expressions and one for the neutral, resulting in a total of 213 static 256 X 256 images
in the database. All images in the database are well posed, with even illumination, a single
imaging background, and no occlusions such as eyeglasses. This database is characterized
by relatively subtle emotion expression and presents a more challenging FER task.

e The Extended Cohn-Kanade Dataset (CK+) [19]
The CK+ dataset, which was released in 2010, is an extension of the Cohn-Kanade (CK)
dataset that increased the number of sequences and the number of subjects by 22% and
27%, respectively. The dataset includes 327 image sequences digitized into 640 X 480 from
neutral to peak emotions of both posed and non-posed (spontaneous) expressions with
FACS-coded emotion labels for the peak frames. The 123 subjects in this database range
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from 18 ~ 50 years of age (81% Euro-American, 13% Afro-American, 6% other ethnicities),
69% of whom are female. In addition to the seven basic facial expressions, another class,
Contempt, is included in this dataset, resulting in a total of eight classes of facial expres-
sions. Several baseline results and benchmarking protocols for shape and appearance
feature tracking, as well as emotion and AU labels, and are also provided in this dataset.
e FER-2013 Dataset [35]

The FER-2013 dataset was presented in the sub-challenge/competition: Facial Expression
Recognition Challenge of Challenges in Representation Learning in the ICML 2013 work-
shop that was hosted by Kaggle. The dataset itself retrieved from the Internet utilizing the
Google image search API consists of 36,887 images where 28,709 are used as training data,
3,589 for public validation, and another 3,589 are used for private testing. It contains 48 X 48
pixel low-resolution grayscale images across seven basic facial expression classes. Because
of the label noise and its various real-world conditions collected from the Internet, the FER-
2013 becomes by far one of the largest and also most challenging spontaneous dataset for
FER, which has a human recognition rate of around 65 * 5%.

5 EXPERIMENTS AND EVALUATIONS

In this section, the details for the attained results of this work are provided. Note that the data for
CNN training are preprocessed following the procedures elaborated in Section 3.1, while the data
for evaluation does not conduct the data augmentation. For evaluation, the images in the JAFFE
and CK+ datasets are randomly shuffled, respectively. Then each dataset is split into five groups
during the CNN training, with four groups for training and one group for validation. For the FER-
2013 dataset, the entire training set (28,709) and the public test set (3,589) are used for training and
validation, respectively. The total loss function is optimized during the backpropagation using the
stochastic gradient descent (SGD) optimizer with a momentum of 0.9, weight decay of 0.00004 on
the model weights, and a batch size of 64 for a mini-batch. The initial learning rate for the first-
stage and the second-stage fine-tuning are set to 0.01 and 0.045, respectively. For the “refined”
fine-tuning, the initial learning rate is set to be slightly larger than the “coarse” fine-tuning, since
we do not intend to heavily alter these already pretrained weights and mainly expect to fine-tune
these high-level facial-expression-related features. The learning rate exponentially decreases by
0.94 times every 15 epochs of training. To reduce the occurrence of overfitting, a dropout strategy
proposed by Hinton [41] is applied after the “Avg Pool” layer and before the final fully connected
layer with a probability of 0.5.

5.1 Offline Experiments

5.1.1  Effects of Two-stage Fine-tuning. To begin with, the first experiment is conducted to show
the effectivity of adopting this two-stage fine-tuning training strategy. We compare the results of
two scenarios. The first one is directly fine-tuning from the pretrained weights based on ImageNet,
and the second one adopts two-stage fine-tuning using the FER-2013 dataset towards both the CK+
and JAFFE datasets.

As for the first-stage fine-tuning on FER-2013 based on ImageNet, this approach obtains an accu-
racy of 67.03% on the public test set and 68.31% on the private test set. Based on the best pretrained
model from FER-2013, second-stage fine-tuning is then conducted on the CK+ and JAFFE datasets.
To verify the effectiveness of this two-stage fine-tuning method, we directly fine-tune the CK+ and
JAFFE datasets from the ImageNet for comparison. The accuracy of validation on two datasets for
comparing the two situations and the improvement in the accuracy rate are shown in Table 2.
From Table 2, we can see that the adoption of the two-stage fine-tuning strategy improves the ac-
curacy (3.28 + 1.64% increase for CK+, and a 21.43% increase for JAFFE) for both datasets. For CK+,
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Table 2. lllustration of the Effectiveness

of Two-stage Fine-tuning

Dataset Qne-stage Two-stage Accuracy
Fine-tuning | Fine-tuning | Improvement
CK+ 91.80 + 1.64% 95.08% 3.28+1.64%
JAFFE 71.43% 92.86% 21.43%

33:11

The exact accuracy of the two datasets achieved in both cases and the
improvement in the accuracy rate. Note that the accuracy for CK+ takes
the six-class situation as the example.

Table 3. An lllustration of the Effectiveness of Joint Supervision

Dataset | Softmax Loss Softmax Loss + Center Loss Accuracy
Improvement
CK+ 95.08% 96.92% 1.84%
JAFFE 92.86% 95.24% 2.38%

Exact accuracy of the two datasets achieved in both cases and the improvement in the accuracy
rate. Note that the accuracy for CK+ takes the six-class situation as the example.

the result of 95.08% has already reached the state-of-art accuracy compared to the literature [12,
42] (even without applying center loss). We take the result of evaluating six basic classes of facial
expressions of this dataset (excluding neutral and contempt) as an example to do the comparison.
For the JAFFE dataset, the accuracy of 71.43% is improved to 92.86% after applying this strategy,
which can also beat the work of References [42, 43].

The results presented above do not consider center loss, since its effectiveness will be elaborated
in Section 5.1.2. These results suggest that it is advantageous to boost the performance when
training relatively small datasets such as JAFFE and CK+ by leveraging a large dataset such as
FER-2013, which lies in the same domain.

5.1.2 Effects of Center Loss. To further enhance the discriminatory power of the proposed
framework, center loss is employed as one part of the supervision signal. This experiment is con-
ducted to show the superiority of center loss for improving results. Comparisons are carried out
regarding both the JAFFE and CK+ datasets, and A and « for center loss are fixed to 0.001. We
compare two scenarios of adopting the joint supervision and the one only using the softmax loss
for supervision. The exact accuracy of the two datasets achieved in both cases and the accuracy
improvement are reported in Table 3, which illustrates that using center loss as an extra super-
vision signal can lead to an improvement in accuracy (1.85% for CK+ and 2.38% for JAFFE). After
using this joint supervision, an accuracy of 96.92% and 95.24% on CK+ and JAFFE datasets can be
obtained, respectively. During training, the total loss (with center loss) converges slightly slower,
fluctuates more, and cannot reach the minimum that corresponds to training with only softmax
loss. However, this configuration may stimulate the model to continue updating the weights and
parameters during the backpropagation for better learning of discriminant deep features. The re-
sults presented above involve the supervised fine-tuning method as stated in Section 5.1.1. As
stated above, the performance can be effectively enhanced when combining center loss with the
conventional softmax loss during the training of the CNN for FER tasks.

5.1.3 Evaluation on JAFFE Dataset. As mentioned in Section 5.1.1, most of the related work that
evaluated on the JAFFE dataset utilized conventional machine-learning techniques for customized
feature extraction and classification, such as References [12, 14]. The dataset is prepared as stated
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Table 4. Performance Comparison with the State-of-the-art Methods on the JAFFE Dataset

Validation
Methodology Accuracy (%)
IVA + HOG + Addaboost & SVM [12] 88.20
LBP + SVM/Adaboost [43] 86.67
Boosted Deep Belief Networks (BDBN) [44] 93
2D-LDA + SVM [45] 94.13
Gaussian Process with Polynomial Kernels & Gaussian RBF [46] 93.43 ~ 95.24
Local Fisher Discriminant Analysis (LFDA) [47] 94.37
Patch-based Gabor Feature + DL2 with SVM [6] 92.93
DCNN + SVM [14] 98.12
Advanced LBP + Tsallis Entropy + NLDA [10] 90.54 (48x48)
94.59 (64x64)
Feature-based Salient Facial Patches [42] 91.80
Proposed Method 95.24
24
21
o 18
215
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209
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0
"4FEESgRECEERER
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(b) Normalized confusion
matrix

(a) The training loss

Fig. 4. The training loss and confusion matrix for the validation set of the JAFFE dataset.

in Section 3.1 before feeding the data into the network for training. As presented in Table 3, the
proposed method can ultimately reach an accuracy of 95.24% for evaluating seven classes of this
dataset. The results of comparing our proposed model with the literature is shown in Table 4. This
model achieves an average precision of 96.19%, recall of 94.76% and an F1-score of 95.47%. The
training loss and the confusion matrix for the validation set of the JAFFE dataset are also presented;
as shown in Figure 4, the training loss converges quickly, although disgust is sometimes confused
with fear.

Relative to these conventional methods that employ geometric or appearance feature extraction
techniques such as those proposed by References [10, 12], our proposed framework not only does
not require human effort in feature extraction but also can surpass the maximum accuracy levels
of prior work. Examples include the 88.2% accuracy of Reference [12], which used both geometric-
based (inter vector angle, IVA) and appearance-based (HOG) feature extraction and the 92.93%
accuracy of Reference [6], which employed the patch-based Gabor feature extraction and dense
L2 with SVM for classification. Table 4 reveals that although a previous study [14] (which also
applied DCNN) achieved an accuracy of 98.12%, surpassing our result slightly, the time cost for
classification was much higher than ours (see Section 5.2).

5.1.4 Evaluation on CK+ Dataset. The second dataset to be evaluated is the CK+ dataset, on
which eight different evaluation configurations are applied. The number of images in the neutral
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Table 5. The Accuracy, Precision, Recall, and F1-score Values (%) of the Small
Size (Composed of the Last Frames of Image Sequences) and the Large Size
(Composed of the Last Three Frames of Image Sequences) of the CK+ Dataset
with Different Evaluation Configurations

| Evaluation Setups (Small Size) | Accuracy | Precision | Recall | F1-Score |
6 Classes 96.92 92.78 95.95 94.34
Neutral_excluded 93.85 93.84 93.51 93.67
7 Classes
Contempt_excluded 95.38 91.58 91.62 91.60
8 Classes 95.38 94.83 91.38 93.07
Evaluation Setups (Large Size) Accuracy | Precision | Recall | F1-Score
6 Classes 100 100 100 100
Neutral_excluded 100 100 100 100
7 Classes
Contempt_excluded | 98.80 + 0.40 99.25 99.21 99.23
8 Classes 99.69 £ 0.31 99.17 99.81 99.49

Loss Value

Loss Value

Fig. 5. The training loss of eight different configurations for the CK+ dataset. Note: 6, 7, 8: number of classes
evaluated; S: small-size dataset (composed of the last frames of the image sequences); L: large-size dataset
(composed of the last three frames of the image sequences); NC: neutral and contempt excluded; C: contempt
excluded; N: neutral excluded.

class is kept the same for both the small-size and large-size datasets containing the onset frame
of each image sequence. The accuracy, precision, recall, and F1-score values of eight situations
evaluating the small-size and large-size datasets are reported in Table 5. The training loss and the
confusion matrices for eight situations are shown in Figure 5, 6, respectively.

As shown in Table 5, as the number of classes to be evaluated increases, the accuracy drops
slightly, since the process is more challenging with only a limited amount of data when the target
task becomes more complex. For example, the accuracy of the small-size 6-class dataset can reach
96.92%, while this value drops by 1.54% in the 8-class situation. Note also that the increase in the
size of the dataset can greatly help to boost accuracy when comparing the performance on the
small-size datasets (which contain only the apex frame of each image sequence) and the large-
size datasets (which contain the last three frames of the image sequences for enlarging the data
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Fig. 6. The confusion matrices of eight different configurations for evaluating the CK+ dataset. Note: 6, 7,
8: number of classes evaluated; S: small-size dataset (composed of the last frames of the image sequences);
L: large-size dataset (composed of the last three frames of the image sequences); NC: neutral and contempt
excluded; C: contempt excluded; N: neutral excluded.

size). For example, using large-size the 8-class dataset provides an improvement of 4.31% over the
accuracy of 95.38% for the corresponding small-size dataset.

5.2 Real-time Experiment

To verify the ability of running the proposed system in real time, we also design an implemen-
tation for real-time facial expression recognition from a standard webcam. After the webcam is
connected to the network, the faces are preprocessed following the same procedures as described
in Section 3.1 (without data augmentation). The data after preprocessing are then fed into the
selected best-trained model to perform the classification. The subject is asked to face the camera
frontally and display one of the basic facial expressions. The computation time for classifying
one single frame is evaluated and results of comparison with the literature are shown in Table 6.
Table 6 indicates that our proposed framework can perform classification (with a run-time of only
approximately 3.57ms/frame on average) much faster than the conventional classifiers such as
References [43, 44] and the one that also used CNN [14]. This implementation can subsequently
classify the facial expressions of an arbitrary number of faces simultaneously running in real time,
even in non-laboratory-controlled conditions. Selected real-time results are presented in Figure 7.

Note that this computation time includes only the time cost required for the model to perform
the classification (disregarding the preprocessing time for the faces). The OpenCV face detection
and the data preprocessing module (e.g., resizing, conversion to grayscale) takes approximately
46.93ms/frame and 7.49ms/frame, repectively. Even including these preprocessing modules, the
run-time of the complete pipeline for FER is still sufficient for running in real time. Note also that
when taking any arbitrary number M of people in a single frame of camera into account, the total
time cost for this frame is 46.93 + M X (7.49 + 3.57)ms. The proposed framework can successfully
distinguish basic facial expressions except for occasional confusion between “angry” and “disgust”
and between “fear” and “sadness,” as shown in Figures 7(g) and 7(h). It is possible that the subject
who presented these posed expressions was not a professional actor; furthermore, these classes
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Table 6. The Run-time Cost Comparison Against the State-of-art Methods
for Real-time Facial Expression Recognition

Classification Time

Methodology System Arrangement
(ms/frame)
IVA + HOG + Adaboost & SVM [12] 66.7 2.4GHz CPU with no GPU
LBP + SVM/Adaboost [43] 227 Intel i3 2.2GHz CPU
Boosted Deep Belief Networks (BDBN) [44] 210 6-core 2.4GHz PC
2D-LDA + SVM [45] 35.7 Pentium IV with 2.80GHz
Tesla K20Xm GPU with compute version 3.5 /
DCNN + SVM [14] 140 ~ 145
CPU (700-900ms)
CNN + OVA Binary Classification [48] 230 Intel Core i7 3.4GHz with a NVIDA GeForce GTX 660
68 Facial Landmarks + Optical Flow + SVM [11] 83.3 2.6GHz Intel Core i5 CPU
NVIDIA Quadro K4200 GPU /
Proposed Method 3.57

Intel Xeon (R) E5-1603 v3 2.8GHz * 4 CPU

Note: This run-time cost only represents the time for classification and does not include the preprocessing module.

b e
(d) happy

(e) sad (f) surprise (g) disgust but angry (h) fear but sad

Fig. 7. Examples of real-time classification for basic expressions.

tend to be misclassified because of similar geometric and appearance features that are hard even
for a human to discern when reviewing the results of the evaluation on the JAFFE and CK+ datasets.

6 DISCUSSION

When evaluating the effectiveness of the two-stage fine-tuning strategy, we find that the JAFFE
dataset achieves much lower accuracy (only 71.43%) than other reported methods [6, 44, 45] when
fine-tuned only from ImageNet. Moreover, there is hardly any related work that directly used a
CNN to fine-tune this database. The reason may be that it is challenging to have the deep model to
learn and extract features (in the domain of FER) directly based on the pretrained model obtained in
the domain of the object classification (i.e., the target task is much different from the source task),
particularly when the size of the target dataset (JAFFE) is very small and the interclass variation
of which is nuanced (the subjects are all Asian and the facial expressions of which are very subtle).
However, after using an extra auxiliary FER-2013 dataset in the same domain (facial expression)
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Fig. 8. Example of a mislabeled image in the JAFFE dataset. This image should have been labeled as happy
but is labeled as sadness instead, which eventually leads to the misclassification in the results, as shown in
the confusion matrix in Figure 4.

Table 7. A Review of the Evaluation Setups of the State-of-art Methods on CK+ Dataset

Methodology Evaluation Setup A\szllllfaact;o(?y)
[49] 7 classes (neutral excluded) $8.00
Last frame ’
[50] 6 classes (neutral & contempt excluded) 99.10
Last frame '
7 classes (neutral excluded)
[33] Last three frames 99.60
[12] 6 classes (neutral & contempt excluded) $8.20
Last frame '
6 classes (neutral & contempt excluded) 98.30
[51] Last frame '
8 classes
4
Last frame 96.40
7 classes (neutral excluded)

[44] Last three frames 96.70
(48] 6 classes (neutral & contempt excluded) 9781
Last three frames
[11] 7 classes (contempt excluded) 98.12
Last frame
[14] 6 classes (neutral & contempt excluded) 97.08
Last frame

These evaluation setups vary in number of classes (from 6 to 8), which classes, and the size of the
dataset (small or large) to be evaluated.

containing an enormous amount of data, the proposed method can achieve results superior to
those of state-of-the-art methods [10, 47].

From the confusion matrix reported in Figure 4, we notice that it is weird that sadness is mixed
up with happy. When we look into the results, it is eventually because of the mislabeled one in the
dataset, as shown in Figure 8. We also find that disgust is sometimes confused with fear, which may
be due to some of the facial expressions in these two classes having similar features (for example,
the rise of the eyebrows), especially when the difference between classes is less salient, as in the
JAFFE dataset.

In addition, when reviewing the literature on CK+, we find that there is no consistent evaluation
configuration with this dataset, as shown in Table 7. First, the number of classes evaluated in
the related work varies from six to eight, since there is an additional contempt class in the CK+
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dataset to supplement the seven basic facial expressions. Moreover, even with the seven classes, the
evaluations differ in whether the neutral class or contempt class is excluded. Since the CK+ dataset
contains 327 image sequences from neutral to peak emotion, another problematic aspect involves
the size of the dataset. Some of the work selects only the last frame of each image sequence [11,
12, 14, 49-51] comprising the dataset for training and testing, while other methods choose the last
three frames [33, 44, 48] for the purpose of data augmentation. Consequently, it is challenging to
make a fair comparison on this dataset using the literature. To address this issue, eight different
evaluation configurations for the CK+ dataset are carried out, providing a baseline for a much
more comprehensive evaluation comparison with the related work.

In addition, as shown in Table 5, evaluating the small-size 7-class neutral-excluded dataset is
more challenging than the contempt-excluded one (the accuracy of the former is only 93.85%,
which is 1.53% lower than the latter, and the same situation arises with the average precision, recall,
and F1-score). This issue occurs because the number of contempt class is only 18 (only considering
the last frame of the image sequences), which is much smaller than that of the neutral class (327),
as illustrated in Table 1. Therefore, data imbalance is the biggest factor affecting the performance
on small-size datasets when considering the neutral and contempt classes. Moreover, confusion
sometimes occurs among the angry, disgust, and fear expressions in the small-size datasets due
to the similar geometric and appearance features and the limited number of training samples.
The training difficulty for the CNN with small and unbalanced data, particularly in classes with
nuanced differences, is illustrated by these examples.

Since most of these facial expression datasets are collected under a controlled laboratory envi-
ronment, the comparison of classifiers across datasets becomes more reliable than traditional self-
classification determining the capability of generalization of classifiers. In this work, we verify this
ability of the proposed method by first training with the entire JAFFE dataset (6-class excluding
the neutral class) and evaluating on the CK+ dataset (6-class excluding the contempt and neutral
classes), and vice versa. Following the same data preprocessing procedure described in Section 3.1,
evaluating the CK+ dataset when training with the JAFFE dataset achieves an accuracy of 72.49%,
while evaluating the JAFFE dataset when training with the CK+ dataset achieves an accuracy of
50.27 %. Note that cross-dataset evaluation on the JAFFE dataset is much more challenging than on
the CK+ dataset due to the characteristics of the database itself. It is difficult to apply the CNN to
classify a different dataset, especially when the interclass variation is not dispersed as the source
dataset used for training. This factor may be one of the limitations of using the CNN, which can
be described as “dataset-sensitive” for classification.

All the offline (training and testing) and real-time experiments in this work are implemented
on an NVIDIA Quadro K4200 GPU based on the lightweight Slim library with TensorFlow [52]
backend. We use both OpenCV and the Slim library for all image preprocessing, e.g., face detection,
random flips, and rescaling.

7 CONCLUSION

In this article, a CNN-based system of estimating basic facial expressions that utilizes a transfer-
learning strategy and a joint supervision is proposed, being able to recognize facial expressions of
several subjects simultaneously from a webcam in a single-frame-based way. Relative to previous
methods, the proposed framework not only can obtain the state-of-art accuracy on JAFFE and CK+
datasets but it also performs the classification much faster than conventional classifiers or even
similar CNN-based work as a result of the characteristics of MobileNet and the GPU system. It
can be seen that this CNN-based framework for FER is superior to conventional machine-learning
methods in that it eliminates much human effort for complex feature extraction and does not re-
quire extensive preprocessing procedures while obtaining state-of-the-art results. Although some
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reported studies outperform our accuracy, those methods either do not provide real-time imple-
mentation or incur a much higher run-time cost than our approach.

In our future work, we will consider the influence of head-pose variations, since only frontal
faces are taken into account in this work. In addition, efforts may also be tried to leverage the
spatial information of video sequences rather than only a single frame to further enhance the
system.
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