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ABSTRACT

Higher-order Link Prediction Using Graph Embeddings

by Neeraj Chavan

Link prediction is an emerging field that predicts if two nodes in a network are

likely to be connected or not in the near future. Networks model real-world systems

using pairwise interactions of nodes. However, many of these interactions may involve

more than two nodes or entities simultaneously. For example, social interactions often

occur in groups of people, research collaborations are among more than two authors,

and biological networks describe interactions of a group of proteins. An interaction

that consists of more than two entities is called a higher-order structure. Predicting

the occurrence of such higher-order structures helps us solve problems on various

disciplines, such as social network analysis, drug combinations research, and news

topic connections. Moreover, we can use our methods to get more knowledge about

news topics during the COVID-19 pandemic.

Higher-order link prediction can be accomplished using neural networks and other

machine learning techniques. The primary focus of this project is to explore repre-

sentations of three-node interactions, called triangles (a special case of higher-order

structure). We propose new methods to embed triangles: by generalizing node2vec

algorithm using different operators to learn an embedding for a triangle, and by using

1-hop subgraphs of the triangles to learn embeddings using graph2vec algorithm and

graph neural networks. The performance of these techniques is evaluated against the

benchmark scores on various datasets used in the bibliography. From the results, it

is observed that the node2vec based triangle embedding algorithm performs better or

similar on most of the datasets compared to benchmark models.
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CHAPTER 1

Introduction

Link prediction is an emerging field that shows if two nodes in a graph are likely to

be connected or not. Link prediction needs to go beyond the pairwise associations and

predict relationships among more than two nodes. However, much of the information

in the graphs contain information between more than two nodes [1]. We can take

some common examples such as, communication within a group of people, chemical

reactions involving more than two chemicals, or a collaboration between multiple

researchers. These kinds of interactions are omnipresent but have received little

attention. Therefore, there is an increasing need for predicting these structures. This

type of link prediction will help with applications such as involvement of multiple

chemicals in reactions [2], predicting new types of drugs [1], suggesting groups in

social media [3], a collaboration between researchers [1], and biological interactions

between sets of molecules [3].

1.1 Pairwise Link Prediction

Given two nodes in a network, the problem of identifying if these two nodes

will connect shortly is called as link prediction [4]. These interactions, if performed

between any two nodes, is known as pairwise link prediction. The network models

represent the relationships of the underlying system as nodes and to use links in

the network to capture pairwise relationships. These pairwise interactions have ap-

plications in representing friendships between pairs of people in a social network, a

research collaboration between pairs of researchers, and product recommendation in

e-commerce [5].
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1.2 Higher-order Link Prediction

Link prediction is a problem with increasing significance in network sciences

that applies to many disciplines. Link prediction mainly captures the relationships

between any two nodes. This pairwise link prediction ignores the fact that there are

higher-order relationships and interactions involved in the formation of that graph

or network [6]. This project focuses on the issue of extending link prediction even

for higher dimensions, called higher-order link prediction [1]. The topology of the

graph does not capture these higher-order structures. Hence, most of the time, these

interactions are lost right at the data collection stage, where data is collected directly

in the graph format. Higher-order structures can be modeled using different ways

which include simplicial complexes [7], set systems [8], hypergraphs [9], and bipartite

affiliation graphs [10]. In this project, we use simplicial complexes for modeling of

higher-order structures.

1.3 Applications

Higher-order or group-based interactions are ubiquitous in networks. Even tra-

ditional network analysis datasets have these interactions [1]. For example, coauthor-

ship networks often involve more than two people writing a paper together. In this

example, if we represent the data topologically, group interactions between people

are missed. Similarly, in email networks where messages have multiple recipients,

higher-order interactions can provide more meaning to the relationships rather than

just focusing on the pairwise interactions. Furthermore, this strategy can be applied

to the activity of neurons in the human brain, multiple actors appearing in a film,

drug networks involving multiple drugs, and group chats in social networks. Despite

the importance of higher-order interactions in graphs, there is limited information
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about higher-order link prediction in real-world datasets.

1.4 Challenges in applying Embedding techniques

A complex network of entities and relationships make the graph a robust and

informative data structure. Analysis of graphs can be done to extract useful structural

and functional properties of nodes and their interactions. In the recent past, Machine

learning (ML) and deep learning techniques have been applied for graph analysis.

These techniques require the data to be in the euclidean form (n-dimensional vectors)

as feature vectors. The performance of the above models depends on the quality of

these feature vectors.

The task of generating feature vectors is difficult because of the structure of

graphs and has been a field of importance. This field is known as representation

learning. This generation of feature vectors from graphs is known as graph embed-

dings. One such solution is to employ the ML techniques for representation learning.

Much research has been carried out in this domain to learn the representation of the

graph’s nodes, and their interactions.

There are techniques like node2vec [11], graph2vec [12], Deepwalk [13], which

are used for representing nodes and graphs as embeddings. These embeddings are

generated for a single node or a graph. However, there is no direct mechanism that

allows representing a higher-order structure as embedding. To fill this gap, we adapt

the existing techniques of node2vec and graph2vec to generate embeddings for trian-

gles in graphs. This method can be extended to other higher-order structures in the

future.
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1.5 Motivation and Problem Statement

Graphs are complex and dynamic objects which model relationships using nodes

and vertices. The relationships between graphs frequently involve higher-order inter-

actions, which provide a rich source of information for analyzing these graphs. One

such task to analyze the graph is link prediction. In the same vein, higher-order link

prediction is important to consider these interactions and predict the evolution of

graphs. Motivated by the importance of higher-order structure properties and their

importance in the evolution of the graph, higher-order link prediction is studied. The

objective of this research is to employ graph embedding for the task of higher-order

link prediction and analyze the performance on standard graph datasets. For the

scope of this project, higher-order link prediction is restricted to the simplicial closure

of triangles. This project will involve implementing and adapting graph embedding

techniques like node2vec [11], graph2vec [12] and graph neural networks [14] for link

prediction. The performance of these algorithms will be compared with benchmark

results [1] performed for higher-order link prediction.

This report is organized into four chapters. The second chapter describes the nec-

essary terminologies for this project. The third chapter discusses the graph embedding

techniques and higher-order link prediction techniques. It discusses the related work

useful for higher-order link prediction. The fourth chapter explains the methodology

and algorithms used for this project. The fifth chapter describes the datasets and

evaluation metrics used. The sixth chapter discusses the experiments and results.

The last chapter gives the conclusion.
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CHAPTER 2

Terminology

In this chapter, the necessary terminologies used throughout this project are

defined and discussed.

∙ Graph: A graph is a network, containing a set of vertices or nodes and edges

connecting these vertices. An entity is analogous to a node, and the relationship

is analogous to an edge. Figure 1 gives an example of a graph with eight nodes.

Circles in the graph represent the nodes and the lines connecting these circles

represent edges.

Figure 1: Example of a Graph

∙ Weighted and Unweighted Graphs: If the graph has weights specified for

the edges, then it is called as weighted graphs, else it is called as an unweighted

graph. The graph is shown in Figure 1 is an unweighted graph.

∙ Directed and Undirected Graphs: If the graph has directions specified on

its edges, then it is a directed graph, else it is an undirected graph. The graph

is shown in Figure 1 is an undirected graph.
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∙ Temporal Graph: If the graph changes according to time, then it is known as

a temporal graph. This is also known as a time-varying network. These graphs

convey the information about the evolution of the network. For example, the

graph in Figure 1 is a temporal graph. The instances T1, T2, etc. stated in the

fig show the evolution of the graph according to time.

∙ Link Prediction: Link prediction can be best described as the process of

predicting links between two nodes. This prediction is based on the structural

properties and existing link interactions in the graph. For example, in Figure 2

there is no link between nodes B and C at time 𝑇 , but will there be a link

between those two nodes at some time 𝑇 + 1 in the near future is called link

prediction.

Figure 2: Link prediction in a graph

∙ Higher-order Structure in Graph: Higher-order structure is a structure

having interaction between more than two nodes simultaneously. For example,

in Figure 1 instance T4 involves three nodes interacting at once. Similarly, the

instances T2, T4, and T8 in Figure 1 depicts higher-order structures.

∙ Simplex: A simplex is a way to represent triangles, tetrahedrons in terms of

dimensions. In the context of graphs, a simplex is defined as any finite set of
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nodes. In Figure 1, each timestamp represents a simplex. For example,

– a 0-simplex is a point.

– a 1-simplex is a line.

– a 2-simplex is a triangle.

– a 3-simplex is a tetrahedron.

∙ Simplicial Closure: If there is an open (i.e., all nodes have not appeared

simultaneously) k -clique in the graph, then the appearance of a new simplex

containing these k nodes is called as a simplicial closure instance. It is also a

transformation of an open structure to a closed one.

∙ Open Triangle: In the observed graph, if there have been interactions only

between pairs of nodes forming the triangle, but all the three nodes have not

interacted simultaneously (i.e., appeared as a subset in one simplex), then it is

called as an open triangle.

∙ Closed Triangle: Given an open triangle, if all the nodes involved in the

triangle appear in a simplex by itself or as a subset, then the triangle undergoes

closure. This triangle is called a closed triangle.

∙ Embedding: Embedding means converting data to a vector representation of

features where the properties of this data can be represented by distance. For

example, a word embedding creates an embedding for the word using euclidean

distance. These embeddings are similar if the words are similar.

∙ Graph embedding: If the embedding is used to model a graph or subgraph,

it is called graph embedding.
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∙ Node embedding: If the embedding is used to model a node, it is called node

embedding.
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CHAPTER 3

Related Work

This chapter discusses the current approaches used for computing graph embed-

dings and methods used for higher-order link prediction. It also studies and discusses

the techniques used for extracting relationships between nodes and ways to represent

the embeddings for higher-order structures.

3.1 Simplicial Closure

Higher-order interactions are often encountered in all types of datasets. In [1],

the importance of these interactions in analyzing the graphs is studied. They study

the organizational principles of higher-order structures in real-world datasets. This

paper focuses on the higher-order structures which are not captured by the topology of

the graph. Motivated by the importance of triangular structures and triadic closure,

they study this via simplicial closure. They state a simplicial closure as an instance

where a group of nodes evolves until they coappear in a higher-order structure. They

propose a higher-order link prediction problem, which predicts this simplicial closure.

To represent these higher-order structures, they use simplicial complex [7]. A

simplex is a term used to represent multiple nodes occurring at one instance in tem-

poral graphs. For example, 𝑡1 : 1, 2, 3 represents a three-node simplex. Figure 3A

gives an example of a higher-order network dataset represented as simplices. The

data studied in this paper is of this nature. Figure 3B shows the graph of the dataset

without the timestamps. The shading in the figure depicts simplices and is used

to mark the difference between traditional graphs. For example, nodes 1, 7, and 8

form a closed triangle as they appear together in the same simplex at 𝑡5. However,

9



Figure 3: Higher-order network representation and simplicial closure example [1]

nodes 1, 5, and 8 form an open triangle as all three pairs of nodes coappeared in

simplices at time 𝑡2, 𝑡5, 𝑡7 respectively, but they do not coappear in a single simplex.

This open triangle is shown in the figure by not shading the area. A projected graph

with the weight of an edge representing the frequency of those two nodes coappearing

in simplices is shown in Figure 3C. This graph ignores the higher-order structures,

which are often used by traditional network science use cases. A simplicial closure

event is shown as an example in Figure 3D. At the time 𝑡4, the nodes form an open

triangle, which eventually closes by a simplicial closure event occurring at time 𝑡8. In

[1] simplicial closures are studied, and they predict the occurrence of such closures

using higher-order link prediction.

To evaluate the theory of the importance of higher-order structures in analyzing

graphs, a higher-order link prediction problem is used. They restrict their link pre-

diction to 3 nodes appearing together. This is a simplicial closure event on triples

of nodes. The problem studied is of predicting which triples of nodes or open tri-

angles that have not yet appeared in a simplex simultaneously will be a subset of

some simplex in the future. They evaluate their algorithms on 19 different datasets.
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These datasets comprise of Coauthorship networks, Drug Networks, US Congress

data, Email Networks, and StackOverFlow posts. They use an 80/20 split of datasets.

AUC-PR is used as a metric for prediction performance. Eight different models are

compared for link prediction performance. No one model performs the best on all

datasets. Analysis of the performance suggests that open triangles with strong ties

are most likely for a closure. Also, generalized means of edge weights give a strong in-

dication of closures of open triangles. They observe that higher-order link prediction

is challenging because of the absolute performance achieved. They suggest a future

application for embeddings in higher-order link prediction.

Higher-order link prediction gives a new dimension and breaks out of the phe-

nomena of pairwise link prediction. The datasets are evaluated only using traditional

models. There is a potential to employ graph embedding techniques to learn these

higher-order structures and predict closures. In [1] it is suggested that structural fea-

tures are useful in predicting higher-order links. We can make use of this to modify

node2vec [11] and graph2vec [12] embedding techniques as they preserve the struc-

tural significance in their representations.

3.2 node2vec

An area of investigation in graph embedding focuses on node-level embedding.

In [11], node2vec technique uses the local search method. This method is used to ex-

tract the neighboring node information and generating sequences from nodes. Depth-

first search (DFS) and Breadth-first search (BFS) are mainly employed for exploring

the local neighborhood. However, DFS traverses the nodes which are far away from

the target node, which gives a high-level view of the network. DFS helps in pre-

serving the homophily of the graph. On the other hand, BFS extracts the structural

11



equivalence as it only traverses the immediate neighborhood of the target node. The

authors imply that these strategies extract and preserve only specific properties of

the graph.

Considering the above reason as motivation, the authors introduce a new method

called second-order random walks to explore neighborhoods. This method is similar

to a random walk in [13] but has control to bias the behavior of walks and makes it

more flexible in its strategy to explore the local neighborhood. To give this control,

node2vec uses 2 additional parameters that are used to toggle exploration between

BFS and DFS. One parameter is called the return parameter, denoted by 𝑝. The

return parameter controls the frequency of visits to a node in the walk. And the

other parameter is called the InOut parameter, denoted by 𝑞. The InOut parameter

is used to switch the behavior between BFS and DFS.

where,

𝑞 < 1: more like BFS

𝑞 > 1: more like DFS

These two parameters combined are used to determine the next node to be ex-

plored in the walk, known as search bias 𝛼. The walk generates a sequence of length

𝑙, starting at some random node 𝑣. The probability of choosing the next node in the

walk is given by the equation [11] as follows:

𝑃
(︀
𝑐𝑖 = 𝑥|𝑐𝑖−1 = 𝑣

)︀
=

⎧⎪⎪⎨⎪⎪⎩
𝜋𝑣𝑥/𝑍 𝑖𝑓(𝑣, 𝑥) ∈ 𝐸

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

where:

12



𝜋𝑣𝑥: unnormalized transition probability between v and x

𝑍: normalizing constant

There are problems with using normalized edge weight for transitions as in un-

weighted graphs all the neighboring nodes will have equal probability. To counter

this problem, a search bias 𝛼 is used. If node 𝑡 precedes node 𝑣 then the equation [11]

for 𝛼 is given by:

𝛼𝑝𝑞 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
1/𝑝 𝑑𝑡𝑥 = 0

1 𝑑𝑡𝑥 = 1

1/𝑞 𝑑𝑡𝑥 = 2

This random walk technique learns from diverse neighborhoods, which gives qual-

ity information of nodes. Once the corpus is generated, the skip-gram technique is

used to obtain embeddings. The quality of embeddings generated preserves the struc-

tural as well as homophily properties of the graph. node2vec [11] justifies this claim

by experimenting on the Les Miserables [15] dataset. This technique uses the em-

beddings generated for nodes to learn edge features. Figure 4 shows the different

operations to learn edge features. node2vec has experimented on Facebook, Protein-

Protein interactions (PPI), and arXiv ASTRO-PH datasets for link prediction. To

generate the dataset, they remove 50% of randomly chosen edges such that the graph

obtained after removal is connected. Similarly, they generate negative samples from

the node pairs with no connecting edge, equal to the positive number of samples.

AUC is used as a metric to evaluate the performance against other techniques like

LINE, DeepWalk, and other heuristic techniques. The paper states that node2vec

outperforms other feature learning techniques on all datasets. Also, all the binary
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operators used with node2vec give equal or better performance than their peers.

Figure 4: Binary operators to learn edge features [11]

The way in which node2vec is employed for pairwise link prediction, in the same

way, we can use it for higher-order link prediction. The quality of generated embed-

dings improves the link prediction performance of node2vec. The neighborhood ex-

ploration strategy used by node2vec extracts and preserves the relationships amongst

nodes in the graph. Using this strategy, we can use the average, hadamard, l1, and

l2 operators to generate embeddings for higher-order structures. Another strategy of

generating embeddings directly for the higher-order structure is discussed in the next

section of graph2vec.

3.3 graph2vec

The graph2vec [12] algorithm, as the name suggests, generates vectors for graphs.

In contrast, node2vec [11] generates vectors for individual nodes. Graph structure

representation learning is an upcoming research topic. But there has been little

research in representing entire graphs as a single feature vector. Until now, graph

kernels such as random walks, shortest paths, graphlets, etc. have been used to cater

to entire graph analytics.

To overcome the above problem, [12] proposes a new neural embedding frame-

work named graph2vec to learn representations of arbitrarily sized graphs. The em-
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beddings are generated using an unsupervised learning approach and are task agnos-

tic. This gives the liberty to use it for any task such as graph classification, link

prediction, graph clustering.

Graph kernels have two important limitations, which make it all the more neces-

sary to have graph2vec embeddings. Firstly, do not generate embeddings as feature

vectors, which makes graph data unusable with ML techniques and neural networks

for modeling. Secondly, the kernels use substructures that are handcrafted. This

makes it difficult to generalize over all types of datasets. Learning substructure

embeddings such as node, path, or subgraph cannot learn representation for entire

graphs. Obtaining embedding for a graph through extensions like averaging or max-

pooling over substructure embeddings gives sub-optimal results.

Figure 5: Shows the analogous behavior of graph2vec to that of doc2vec. [12]

In [12], it is stated that the graph2vec approach for learning the entire graph’s

representation which is inspired by the document embedding technique [16]. Doc2vec

technique is extended to learn graph embeddings. An entire graph is viewed as a doc-

ument and subgraphs around every node as words that make the document. Doc2vec

uses a skip-gram model to learn the representation of the graph. The Skip-gram model

provides a similar representation for words appearing in a similar context. This makes

the learned embeddings using the skip-gram model preserve semantics of the docu-

ment. The analogous nature of doc2vec and graph2vec is shown in Figure 5. For
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example, doc2vec’s skip-gram model samples 𝑐 words from document 𝑑 and considers

these words as co-occurring in the same context to learn 𝑑’s embedding. Similarly,

graph2vec skip-gram model samples 𝑐 rooted subgraphs around nodes occurring in

the graph and then treat them as co-occurring words to learn graph’s embedding.

The rooted subgraphs used as words in the skip-gram model are important.

Compared to other substructures such as nodes, rooted subgraphs cover higher-order

local neighborhoods. These higher-order features enable a rich representation of the

structure and relationships in the graph. Hence, the composition of graphs is repre-

sented in a better way by these embeddings. Moreover, these subgraphs capture the

non-linear features in the graphs better in comparison to linear features like paths or

walks. The expectation of the learned embeddings is that structurally similar graphs

will have similar embeddings.

The performance of the algorithm is evaluated on five benchmark datasets

for graph classification. The benchmark datasets used are MUTAG, PTC, PRO-

TEINS, NCI1, and NCI109. These datasets belong to the chemo-informatics and

bio-informatics domain. They use a 90/10 split for training and testing data and use

an SVM classifier for classification. Accuracy is used as the evaluation metric, and for

efficiency, the time required to generate embeddings is considered. The graph2vec al-

gorithm performs better or has comparable accuracy with respect to other techniques

(node2vec, sub2vec, WL kernel). The performance of graph2vec is attributed to the

data-driven and structure-preserving nature of embedding, which learns local and

global similarities in graphs. This algorithm outperforms other methods in MUTAG,

PTC, and PROTEINS datasets in particular.

To summarize, graph2vec is an innovative approach to learn the entire repre-

sentation of a graph. As graph2vec is data-driven, it will perform better on large
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datasets. This technique can be employed to work for higher-order link prediction

by giving it each open triangle [1] enclosed subgraph as input. An enclosed subgraph

around an open triangle is nothing but a ℎ-hop subgraph rooted at the nodes involved

in the triangle. Then graph2vec will generate representations for each of the open

triangle. Then it can be used to classify if it is positive or negative for the existence

of a simplicial closure event. In this way, we can leverage graph2vec for higher-order

link prediction.

3.4 SEAL

Similar to graph2vec [14], SEAL can learn a representation for a subgraph. [14]

uses the subgraph to interpolate and learn the graph structure features (used by

traditional heuristic scores). Link prediction traditionally uses heuristic scores like

PageRank [17] and Preferential Attachment [18] which fail on certain datasets. Due

to this reason, learning graph structure features instead of using the heuristic scores is

more viable. To learn these graph structure features, authors make the use of Graph

Neural Network (GNN).

To solve this problem, graph structure features learned from local subgraphs

using GNN can be used [14]. SEAL framework states that heuristic methods have

strong assumptions while predicting links. These assumptions have the drawback of

not working on certain types of data. Heuristic methods belong to a class of graph

structure features that involve relationships observed between edges and nodes in

the graph. These features can be learned automatically from the network. Learning

features from the graph was given by Weisfeiler-Lehman Neural Machine [5], where

they use a local enclosing subgraph around the target nodes and then use it as training

data on a neural network for prediction.
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Figure 6: Example of local enclosing subgraph for learning graph structure fea-
tures [14]

Figure 6 illustrates the method used to extract subgraphs. The enclosing sub-

graph can be extracted till a ℎ hops from the target nodes, in this case, nodes (𝐴,𝐵)

and (𝐶,𝐷). These enclosing subgraphs are 1-hop subgraphs. Similarly, 2-hop, 3-hop,

and ℎ-hop enclosing subgraphs can be extracted as per need. GNN makes use of

subgraphs to learn graph structure features, as proposed in SEAL.

The subgraphs extracted are a rich source of information as all lower hop heuris-

tics can be calculated from this. However, high-order heuristics such as Katz and

PageRank need a large hop number ℎ. This subgraph is as good as the entire net-

work, which makes it unfeasible due to memory and time constraints. To overcome

this [14] introduce a 𝛾−𝑑𝑒𝑐𝑎𝑦𝑖𝑛𝑔 𝑡ℎ𝑒𝑜𝑟𝑦, which unifies most of the high-order heuris-

tics. From an ℎ-hop extracted subgraph, an approximation of 𝛾-decaying heuristic

can be made. Hop count ℎ leads to approximation error reducing exponentially [14].

From this theory, it can be concluded that heuristics like Katz and PageRank can be

learned from small enclosing subgraphs with some approximation error. SEAL [14]

proves that the 𝛾− 𝑑𝑒𝑐𝑎𝑦𝑖𝑛𝑔 𝑡ℎ𝑒𝑜𝑟𝑦 applies to Katz Index, PageRank, and SimRank

methods. [19] and [20] empirically validate the theory of approximating PageRank
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and SimRank, respectively, from local methods. The reason for this exponentially

smaller error can be attributed to the fact that remote nodes in the graph with re-

spect to the target nodes are of little help to the existence of links. Whereas, nodes

closer to target have more information about possible links in the future.

SEAL learns graph structure features for link prediction. The steps involved in

prediction are as follows:

1 : 𝑒𝑛𝑐𝑙𝑜𝑠𝑖𝑛𝑔 𝑠𝑢𝑏𝑔𝑟𝑎𝑝ℎ 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛

2 : 𝑛𝑜𝑑𝑒 𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑚𝑎𝑡𝑟𝑖𝑥 𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛

3 : 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑡ℎ𝑒 𝑠𝑢𝑏𝑔𝑟𝑎𝑝ℎ 𝑢𝑠𝑖𝑛𝑔 𝐺𝑁𝑁

The node information matrix is constructed by using node labeling. Double-

radius Node Labeling (DRNL) technique is used for preserving information about

which node is a target node. This labeling technique allows the GNN to differentiate

between target nodes and neighboring nodes and helps in predicting the link existence.

In addition to just features learned by GNN, there is the capability to concatenate

latent features (graph embeddings) and explicit features in the SEAL framework.

These features can be added to each row in the node information matrix with respect

to the targets. This makes the SEAL framework robust and improves link prediction

performance by combining all types of features in one algorithm. The algorithm is

evaluated on eight different datasets. The datasets include USAir, Yeast, Power,

Router, E.coli, C.ele, NS, and PB. 90% of the data is used as positive training data,

and 10% is used as testing data. Similarly, non-existent links are generated equal

to the number of training and testing data as negative samples. Experiments are

performed using AUC and average precision as evaluation metrics.

Hop count for enclosing subgraphs is an important hyperparameter. The ex-
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periments consider only 1-hop or 2-hop subgraphs. This limit of hop count is due

to the empirical verification that the performance customarily does not increase af-

ter a hop count of 3 or more. The hop count is decided between 1 and 2 based on

the performance of datasets on CN and Adamic-Adar heuristic, respectively. SEAL

performs better than other heuristic methods like CN, Jacquard, Preferential At-

tachment, Adamic-Adar, Katz, and three more heuristics. This reveals that learned

features are better at extracting relationships than the manually designed heuristic

scores.

To summarize, small enclosing subgraphs which are extracted around the target

nodes can calculate low-order heuristics accurately and also interpolate many high-

order heuristics with small approximation errors. Therefore, local subgraphs contain

rich information about graph structure features for predicting links. GNN performs

better in graph feature learning ability in comparison to fully-connected neural net-

works and graph kernels [14]. This ability of GNN for link prediction is also validated

in [21] and [22]. In addition to this, the graph structural features can be combined

with latent features (graph embeddings) and explicit features.

The method of enclosing a subgraph can be used for higher-order link prediction

to learn the graph structure features. Moreover, we can also combine graph structure

features with embeddings from node2vec or graph2vec to make the prediction perfor-

mance more robust. As stated by [1], structural information is important to indicate

higher-order links. This property can be used to apply the local enclosing subgraph

technique to learn structural graph features for higher-order link prediction.
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CHAPTER 4

Methodology

4.1 Problem Definition

Given a timestamped simplices of a graph, 𝐺 = {𝑆𝑖, 𝑡𝑖} where 𝑖 belongs to

the number of observed simplices, 𝑡𝑖 represents the time at which 𝑆𝑖 was observed.

𝑆𝑖 = {𝑛1, 𝑛2, ..𝑛𝑗}𝑖, where 𝑆𝑖 is a set representation of all nodes 𝑛𝑗 interacting at 𝑖th

simplex. This representation gives a temporal network with higher-order interactions

captured in it. Consider, |𝑆𝑖| = 𝑘 then we can say that 𝑆𝑖 is a 𝑘-node simplex. This

can also be called as a 𝑘-clique. The process of predicting occurrence of more than

two nodes simultaneously can be best described as the problem of higher-order link

prediction [1]. For this project, we narrow it down to predicting the occurrence of

𝑡ℎ𝑟𝑒𝑒 𝑛𝑜𝑑𝑒𝑠 simultaneously. This is referred to as 𝑜𝑝𝑒𝑛 𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒 when the event of

all three nodes appearing simultaneously as a subset in a simplex has not happened.

But, when they do appear, it is referred to as 𝑐𝑙𝑜𝑠𝑒𝑑 𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒. An example of this is

shown in Figure 8. This problem can be split into three phases - enumerating all open

triangles and closed triangles in training and testing dataset, representing triangles

as embeddings, triangle closure prediction.

4.2 Implementation Workflow

The implementation of the project is divided into different modules. Figure 7

illustrates the workflow of the whole project. The steps in the workflow are as follows:

1. The first module takes in raw graph data as input and returns a list of times-

tamped simplices containing nodes.
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Figure 7: Workflow of algorithms to perform higher-order link prediction task

2. In the next module, this data is divided into training and testing split. Then

a labeled dataset of open triangles is created based on this data (refer section

5.2).

3. Once we have the prediction data ready, node2vec embeddings are generated

for the data. From these node embeddings, we learn the triangle embeddings

using different operators specified in the figure. Using these learned triangle

embeddings, any binary classifier can be trained, and the prediction result is

returned.

4. Another module extracts 1-hop subgraphs for each of the open triangles for use

in graph2vec and graph neural network algorithms.

5. Extracted subgraphs are passed onto graph2vec to learn embeddings for each

subgraph. These embeddings are then used as an input to the binary classifier,

which will predict if the open triangle undergoes closure or not.
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6. Similar to the previous module, graph neural network receives extracted sub-

graphs, and we add some additional to the subgraph and pass it onto the graph

neural network model for prediction. The model directly gives us the result.

The above explanation gives a brief overview of the implementation and algo-

rithms used in the project. In the sections that follow, all the above algorithms are

discussed in greater detail.

4.3 Enumerating Labelled Open Triangles

Figure 8: A sample lifecycle of triangle closure.

For the task of triangle closure prediction, embeddings of different types will be

applied to represent an open triangle as an embedding. To begin with, let us take a

look at how triangles can undergo closure. In Figure 8, 𝑡1 shows the observed graph

at that point. After 𝑡4, 𝑡5, the triangle converts into an open triangle (i.e., nodes

have interacted in pairs at some point in time, but all nodes have not interacted

simultaneously at a given timestamp 𝑡. The problem is to predict that at some point

in the future i.e., 𝑡𝑛, this open triangle will undergo a closure or not). The triangle
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closure is represented by the shading of that triangle. The ellipsis in 𝑡𝑛 depicts that

triangle closure will happen even if the three nodes appear in a bigger simplex as

subsets.

Algorithm 1: Enumerating open triangles
1 function open_triangles(𝐺,𝑆):

Input : 𝐺: networkx graph representation of 𝑆,
𝑆: Vector representation of set of nodes for a data slice based on
timestamp

Output: 𝑜𝑝𝑒𝑛_𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑠: vector representation of triangles that are still
open in this data slice

2 // Set of triangles already gone through closure in the given simplices
3 closed_triangles ← 𝑔𝑒𝑡_𝑐𝑙𝑜𝑠𝑒𝑑_𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑠(S)
4 open_triangles ← 𝑠𝑒𝑡()
5 // Run the loop in parallel
6 for each edge(u, w) in G do
7 // iterate over all graph nodes
8 for each vertex(v) in G do
9 if edge(u,v) in G and edge(v,w) in G then

10 if tuple(u,v,w) not in closed_triangles then
11 open_triangles.add((u,v,w))
12 end
13 end
14 end
15 end
16 open_triangles ← 𝑙𝑖𝑠𝑡(𝑜𝑝𝑒𝑛_𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑠)
17 return open_triangles

Now, the next challenge is to prepare the data for prediction. For prediction, we

have to split the dataset in training and testing, which is explained in section 5.2.

In preparing the data, there are two essential algorithms to consider, enumerating

open triangles and the closure of these open triangles. For example, if we consider

the training data, the simplices are divided into the first 60 percent (𝑆𝑜𝑙𝑑) and 60-80

percent (𝑆𝑛𝑒𝑤) based on timestamps. The next step is to enumerate all the open

triangles in 𝑆𝑜𝑙𝑑. Then all the new triangle closures are enumerated in 𝑆𝑛𝑒𝑤. Now to
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create a labeled dataset, all the open triangles in 𝑆𝑜𝑙𝑑 that undergo closure in 𝑆𝑛𝑒𝑤

are labeled as positive(1) and others as negative(0). Similar steps are repeated for

testing data, where 𝑆𝑜𝑙𝑑 consists of 0-80 percent simplices, and 𝑆𝑛𝑒𝑤 consists of 80-100

percent simplices.

Algorithm 1 explains how open triangles are enumerated. In the first step, we

get all the triangles that have undergone closure in the data slice. The next step is

to iterate over each edge (𝑢,𝑤) and then for each edge look for a node 𝑣, which has

links with both 𝑢 and 𝑤. This gives us a triangle. The triangle is then checked for

closure, and if it has not yet closed, then the triangle is added to the list of open

triangles. The process of enumerating open triangles is expensive for large datasets

as the algorithm is 𝑂(𝑒 * 𝑣), where 𝑒 is the number of edges, and 𝑣 is the number of

vertices. To make the process faster, the for loop can make use of parallelism.

Algorithm 2 explains the process of enumerating newly closed triangles in the

𝑆𝑛𝑒𝑤 simplices. It is then used to look up the open triangles which undergo closure

to create a labeled dataset. The algorithm takes in 𝑆𝑜𝑙𝑑 simplices, 𝑆𝑛𝑒𝑤 simplices,

and graph 𝐺 built over 𝑆𝑜𝑙𝑑. The first step is to get closed triangles from 𝑆𝑜𝑙𝑑. Then,

the algorithm iterates over all combinations of 𝑛𝑜𝑑𝑒𝑠 of length 3 for each 𝑠𝑖𝑚𝑝𝑙𝑒𝑥

in 𝑆𝑛𝑒𝑤. Next, it checks if all 𝑛𝑜𝑑𝑒𝑠 from the combination ∈ 𝐺|𝑉 | and that the

combination has not undergone closure already. If these conditions are satisfied, the

3 node combination is added to a set of 𝑛𝑒𝑤_𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑠.

4.4 Algorithms for Higher-order Link Prediction

A higher-order link prediction task has been researched with standard features.

In this project, the method of embeddings is leveraged to represent each triangle as

an embedding, either by using node embedding or graph embedding. Three methods
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Algorithm 2: Enumerating new triangle closures
1 function new_closures(𝐺,𝑆𝑜𝑙𝑑, 𝑆𝑛𝑒𝑤):

Input : 𝐺: networkx graph representation of 𝑆𝑜𝑙𝑑,
𝑆𝑜𝑙𝑑: Vector representation of set of nodes for old data slice based
on timestamp,
𝑆𝑛𝑒𝑤: Vector representation of set of nodes for new data slice
based on timestamp

Output: 𝑛𝑒𝑤_𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑠: set representation of triangles that have closed in
this data slice

2 // Set of triangles already gone through closure in old simplices
3 closed_triangles ← 𝑔𝑒𝑡_𝑐𝑙𝑜𝑠𝑒𝑑_𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑠(S𝑜𝑙𝑑)
4 new_triangles ← 𝑠𝑒𝑡()
5 for nodes in S𝑛𝑒𝑤 do
6 // iterate over all combinations of nodes of length 3
7 for (𝑖, 𝑗, 𝑘) in combinations(nodes, 3) do
8 // skip if node has not yet appeared in the old simplices
9 if 𝑖 and 𝑗 and 𝑘 in G|v| then

10 if (𝑖, 𝑗, 𝑘) not in closed_triangles then
11 new_triangles.add((𝑖, 𝑗, 𝑘))
12 end
13 end
14 end
15 end
16 return new_triangles
17

for embeddings representation are discussed in the subsections that follow.

4.4.1 Triangle Embedding using node2vec

node2vec [11] is an algorithm which learns structural features of the graph and

creates an embedding for the nodes in vector space based on their structural simi-

larity. These embeddings generated for a node can be converted into an embedding

for the open triangle using four different operators, which are Hadamard, Average,

WeightedL1, and WeightedL2. Figure 9 illustrates the steps in which an embedding

is generated for an open triangle using node2vec. In the first step, an open triangle is
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Figure 9: Workflow for generating node2vec embeddings

represented, which is to be classified. Then the node2vec algorithm is executed on the

training graph, and output with node embeddings for each node is generated as shown

in the second step of the figure. The last step is to combine the node embeddings

using the specified operator and generate an embedding for the open triangle.

Algorithm 3 explains the procedure of representing triangles as embeddings using

node2vec. A visual depiction of the algorithm is given in Figure 9. In the first step,

the node2vec algorithm is run on the graph 𝐺 to generate embeddings for each node.

Parameters like the dimension of vector, length of the random walk, and the number

of random walks can be passed to the algorithm for experimenting with different

configurations. The next step is to iterate over the triangles and learn an embedding

for each triangle. Table 1 shows the operators to learn the triangle features. These

operators are adapted from binary in [11], to ternary operators for triangle embedding.

Weighted L1 and L2 work with edges in the triangle, and then the embeddings are

averages for each edge. In this way, a triangle embedding is learned from the node

embeddings of node2vec.
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Algorithm 3: Triangle node2vec Embedding
1 function triangle_node2vec(G, triangles, d, l, n, op)

Input : 𝐺: Networkx graph representation of training data,
𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑠: vector of open triangles,
𝑑: dimension of embeddings to be generated,
𝑙: length of random walks performed by node2vec,
𝑛: number of random walks,
𝑜𝑝: type of operator to combine node embeddings

Output: 𝐸: vector of embeddings for triangles
2 model ← 𝑛𝑜𝑑𝑒2𝑣𝑒𝑐(𝐺, 𝑑, 𝑙, 𝑛, 𝑝, 𝑞)
3 model ← 𝑛𝑜𝑑𝑒2𝑣𝑒𝑐.𝑓𝑖𝑡()
4 node_embeddings = model.vectors()
5 E ← []
6 for node set(u,v,w) in triangles do do
7 𝑢𝑣𝑒𝑐 ← 𝑛𝑜𝑑𝑒_𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔𝑠(𝑢)
8 𝑣𝑣𝑒𝑐 ← 𝑛𝑜𝑑𝑒_𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔𝑠(𝑣)
9 𝑤𝑣𝑒𝑐 ← 𝑛𝑜𝑑𝑒_𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔𝑠(𝑤)

10 if op == "average": then
11 E.append((𝑢𝑣𝑒𝑐 + 𝑣𝑣𝑒𝑐 +𝑤𝑣𝑒𝑐)/3)
12 else if op == "hadamard": then
13 E.append(𝑢𝑣𝑒𝑐 * 𝑣𝑣𝑒𝑐 * 𝑤𝑣𝑒𝑐)
14 else if op == "l1": then
15 E.append((𝑎𝑏𝑠(𝑢𝑣𝑒𝑐 − 𝑣𝑣𝑒𝑐) + 𝑎𝑏𝑠(𝑣𝑣𝑒𝑐 − 𝑤𝑣𝑒𝑐) + 𝑎𝑏𝑠(𝑢𝑣𝑒𝑐 − 𝑤𝑣𝑒𝑐))/3)
16 else if op == "l2": then
17 E.append((𝑎𝑏𝑠(𝑢𝑣𝑒𝑐− 𝑣𝑣𝑒𝑐)

2 + 𝑎𝑏𝑠(𝑣𝑣𝑒𝑐−𝑤𝑣𝑒𝑐)
2 + 𝑎𝑏𝑠(𝑢𝑣𝑒𝑐−𝑤𝑣𝑒𝑐)

2)/3)
18 end
19 end
20 return E

4.4.2 Triangle Embedding using graph2vec

graph2vec [12] is an embedding technique that learns features of subgraphs and

generates an embedding for each subgraph. This method makes use of the Weisfeiler

Lehman Machine [5] for feature extraction and Doc2vec [16] model for implementa-

tion. graph2vec can be adapted to learn triangle embeddings by extracting a 1-hop

subgraph around the nodes in the open triangle. An example of 1-hop subgraph is

given in Figure 10. By using this method, subgraphs for all the triangles can be
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Table 1: Operators to learn triangle features from node embeddings

Operator Definition

Average 𝐸𝑎𝑣𝑒𝑟𝑎𝑔𝑒 =
𝑓𝑖(𝑢) + 𝑓𝑖(𝑣) + 𝑓𝑖(𝑤)

3

Hadamard 𝐸ℎ𝑎𝑑𝑎𝑚𝑎𝑟𝑑 = 𝑓𝑖(𝑢) * 𝑓𝑖(𝑣) * 𝑓𝑖(𝑤)

Weighted-
L1-average

𝐸𝑙1 =
|𝑓𝑖(𝑢)− 𝑓𝑖(𝑣)|+ |𝑓𝑖(𝑣)− 𝑓𝑖(𝑤)|+ |𝑓𝑖(𝑢)− 𝑓𝑖(𝑤)|

3

Weighted-
L2-average

𝐸𝑙2 =
|𝑓𝑖(𝑢)− 𝑓𝑖(𝑣)|2 + |𝑓𝑖(𝑣)− 𝑓𝑖(𝑤)|2 + |𝑓𝑖(𝑢)− 𝑓𝑖(𝑤)|2

3

Figure 10: Subgraph extraction example

extracted, and an embedding can be generated for each of these subgraphs.

Algorithm 4 explains the procedure for extracting a 1-hop subgraph for the tri-

angle. The first step is to iterate over the nodes in the triangle and for each node,
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Algorithm 4: Extract one hop subgraph
1 function extract_subgraph(𝐺, 𝑡𝑟𝑖,𝑚𝑎𝑥_𝑛𝑜𝑑𝑒𝑠)

Input : 𝐺: observed graph based on simplices
𝑡𝑟𝑖: vector representing 3 vertices in the triangle
𝑚𝑎𝑥_𝑛𝑜𝑑𝑒𝑠: integer representing the maximum number of nodes
to be included in the subgraph

Output: 𝐺𝑠: networkx representation of subgraph
2 nodes ← 𝑠𝑒𝑡()
3 for each node(v) in tri do
4 nodes.add(G.neighbors(v))
5 end
6 if max_nodes > 0 and max_nodes < length(nodes) then
7 nodes = random.sample(nodes, max_nodes)
8 end
9 nodes.add(tri) // add triangle vertices

10 𝐺𝑠 = G.subgraph(nodes) //networkx function to get subgraph from nodes
11 return 𝐺𝑠

store their neighbors in a set. Now, all the 1-hop neighbors are extracted. The next

step is to check if there is a limit on the maximum number of neighbor nodes that

the subgraph can contain. The limit is applied by randomly sampling neighbor nodes

equivalent to 𝑚𝑎𝑥_𝑛𝑜𝑑𝑒𝑠. This limit is a vital feature to stop the subgraph from get-

ting too big. For some graphs, the neighboring nodes can be in the order of hundreds.

Hence it is crucial to limit the number of subgraphs. The final step is to return the

networkx representation of the subgraph.

Figure 9 illustrates the graph2vec workflow for learning embeddings for the trian-

gle. The procedure for learning triangle embeddings is given in Algorithm 5. The first

step is to extract subgraphs for all the triangles. Then these subgraphs are passed

to the graph2vec algorithm along with hyperparameters like dimensions, epochs, and

learning rate. The output for this will be a list of embeddings learned by graph2vec

for each triangle. These embeddings can then be passed to a classifier where we clas-

sify triangles as open or close. This algorithm is computation and memory intensive
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Figure 11: Example of Graph embeddings using graph2vec

Algorithm 5: Triangle graph2vec Embedding
1 function triangle_graph2vec(𝐺, 𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑠, 𝑑, 𝑒, 𝑙)

Input : G: graph representation of simplices,
𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑠: Vector of triangles,
𝑑: dimension of embeddings to be generated,
𝑒: number of epochs to generate embeddings,
𝑙: learning rate of embeddings

Output: 𝐸: Vector representation of embeddings for given triangles
2 subgraphs ← []
3 for each tri in triangles do
4 𝑔𝑠 ← 𝑒𝑥𝑡𝑟𝑎𝑐𝑡_𝑠𝑢𝑏𝑔𝑟𝑎𝑝ℎ(𝐺, 𝑡𝑟𝑖,𝑚𝑎𝑥_𝑛𝑜𝑑𝑒𝑠)
5 subgraphs.append(𝑔𝑠)
6 end
7 model ← 𝑔𝑟𝑎𝑝ℎ2𝑣𝑒𝑐(𝑠𝑢𝑏𝑔𝑟𝑎𝑝ℎ𝑠, 𝑑, 𝑒, 𝑙)
8 E ← 𝑚𝑜𝑑𝑒𝑙.𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔𝑠
9 return 𝐸

because, subgraph extraction is a memory-intensive step, and generating embeddings

is computationally expensive.
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4.4.3 Triangle Embedding using Graph Neural Network

Graph neural networks can be used for the task of node or graph classification.

For this project, the graph classification neural network is employed. More specifically,

Deep Graph Convolutional Neural Network (DGCNN) [23] implementation is used.

This algorithm is not limited to use with DGCNN. Any other graph neural network

can be substituted in place of DGCNN.

Algorithm 6: Triangle graph neural network
1 function triangle_gnn(G, train_triangles, test_triangles,

node_embeddings)
Input : 𝐺: Graph based on simplices

𝑡𝑟𝑎𝑖𝑛_𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑠: Vector of triangles for training data
𝑡𝑒𝑠𝑡𝑖𝑛𝑔_𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑠: Vector of triangles for testing data
𝑛𝑜𝑑𝑒_𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔𝑠: Vector of node embedding corresponding to
nodes in G

Output: 𝑡𝑟𝑎𝑖𝑛_𝑔𝑟𝑎𝑝ℎ𝑠: Vector of training graphs as GNN objects
𝑡𝑒𝑠𝑡_𝑔𝑟𝑎𝑝ℎ𝑠: Vector of testing graphs as GNN objects

2 for each tri in train_triangles do
3 g𝑠 ← 𝑒𝑥𝑡𝑟𝑎𝑐𝑡_𝑠𝑢𝑏𝑔𝑟𝑎𝑝ℎ(𝐺, 𝑡𝑟𝑖,𝑚𝑎𝑥_𝑛𝑜𝑑𝑒𝑠)
4 node_label ← 𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒_𝑛𝑜𝑑𝑒_𝑙𝑎𝑏𝑒𝑙𝑙𝑖𝑛𝑔(𝑔𝑠, 𝑡𝑟𝑖)
5 if node_embeddings not None: then
6 e ← 𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒_𝑛𝑜𝑑𝑒_𝑙𝑎𝑏𝑒𝑙𝑙𝑖𝑛𝑔(𝑔𝑠)
7 end
8 g𝐺𝑁𝑁 ← 𝐺𝑁𝑁_𝑜𝑏𝑗𝑒𝑐𝑡(𝑔𝑠, 𝑛𝑜𝑑𝑒_𝑙𝑎𝑏𝑒𝑙, 𝑒)
9 train_graphs.append(g𝐺𝑁𝑁)

10 end
11 Repeat lines 2 to 9 for 𝑡𝑒𝑠𝑡_𝑔𝑟𝑎𝑝ℎ𝑠
12 return 𝑡𝑟𝑎𝑖𝑛_𝑔𝑟𝑎𝑝ℎ𝑠, 𝑡𝑒𝑠𝑡_𝑔𝑟𝑎𝑝ℎ𝑠

The steps involved in triangle representation for the DGCNN are given in Al-

gorithm 6. DGCNN makes use of the sort pooling as its graph aggregation layer.

Triangle embedding using graph neural network algorithm can also take in node em-

beddings as an additional feature for classification similar to the implementation in

[14]. The first step is to create an object that can be consumed by DGCNN. To
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accomplish that, a 1-hop subgraph of the triangle is extracted. The nodes in the

subgraph are labeled using the Triple-Radius Node Labelling strategy adapted from

Double-Radius Node Labelling in [14]. Node labeling is essential for GNN to mark

differences between the target nodes and the neighboring nodes. Additionally, if la-

tent features i.e., node embeddings, are to be added, then embeddings corresponding

to all the nodes in subgraph are extracted. The above steps are repeated for all the

training and testing triangles. Once these training and testing triangles are returned,

GNN can be trained on this data for the classification of open and closed triangles. In

addition to this, it is essential to note that the algorithm is memory intensive because

of the subgraph extraction step, as each subgraph also stores the embeddings for all

the nodes involved in the subgraph.
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CHAPTER 5

Datasets

5.1 Datasets

Experiments for this project are done based on the timestamped links in x

datasets. Hence, every dataset is a list of timestamped nodes. A simplex is formed

by a set of nodes which interact at a timestamp as shown in Figure 3. For example,

in email network, a simplex comprises of sender and recipients for an email at a give

timestamp. A simplex enables to represent more than two interactions at any given

timestamp. Overview of dataset statistics is given in Table 2. All the datasets are

limited to a maximum of 25 nodes in a simplex. The reason for this exclusion is that,

simplices with nodes more than 25 are sparse. A brief description of the datasets

used in this project is given below:

1. Email Networks (email-Enron [24] and email-Eu [25]): The simplex represent

the email-addresses of senders and recipients. Email address is considered as

the node. 2 years of data interaction is included in email-Eu.

2. DAWN (Drug Abuse Warning Network [1]): The simplex contains the drugs

used by the patient. Time is determined by the emergency department visit.

3. Coauthorship Network (coauth-DBLP, coauth-MAG-History, coauth-MAG-

Geology [1]): Simplex comprises of authors as node and publication date as a

timestamp. These datasets have interactions where more than 100 authors have

collaborated for a publication.

4. Thread Participation Network (threads-math-sx, threads-ask-ubuntu [1]):

Node is represented by the users of the platform. Simplex denotes the users
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Table 2: Dataset statistic overview

Dataset name Number of nodes Number of times-
tamped simplices

email-Enron 143 10,883
email-Eu 998 234,760
DAWN 2,558 2,272,433
coauth-DBLP 1,924,991 3,700,067
coauth-MAG-History 1,014,734 1,812,511
coauth-MAG-Geology 1,256,385 1,590,335
threads-ask-ubuntu 125,602 192,947
threads-math-sx 176,445 719,792
tags-ask-ubuntu 3,029 271,233
tags-math-sx 1,629 822,059
NDC-classes 1,161 49,724
NDC-substances 5,311 112,405
contact-primary-school 242 106,879
contact-high-school 327 172,035

who have participated in answering a question on the platform. The dataset

contains simplices for all the questions on these platforms.

5. Tagging Network (tags-ask-ubuntu, tags-math-sx, tags-stack-overflow [1]): A

simplex is denoted by the set of annotations (nodes) for a question on the plat-

forms. The dataset contains simplices for all the questions on these platforms.

6. Drug Networks (NDC-classes, NDC-substances [1]): These datasets are col-

lected from the National Drug Code Directory. For classes dataset, a node is

the class label, and a simplex is the list of class labels for a drug. For substances

dataset, a node is the drug substance, and a simplex is the list of substances

constituting the drug.

7. Contact data (contact-primary-school [26], contact-high-school [27]): In these

datasets, a simplex is a collection of students (nodes) who were close to each
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Table 3: Training and Testing Data Samples Statistics

Dataset name Open tri-
angles in
training data
(first 60%)

Triangles
closed be-
tween 60-80%
(training
labels)

Open trian-
gles in testing
data (80%)

Triangles
closed be-
tween 80-
100% (testing
labels)

email-Enron 4,991 497 6,918 372
email-Eu 190,290 28,323 257,978 25,638
DAWN 3,680,410 191,821 4,891,393 274,728
coauth-DBLP 5,759,224 195,517 8,716,463 270,863
coauth-MAG-History 1,926,010 8,175 2,568,644 4,554
coauth-MAG-Geology 3,938,499 121,161 6,913,171 170,405
threads-ask-ubuntu 141,539 23 173,703 53
threads-math-sx 6,360,454 3,810 9,183,013 4,029
tags-ask-ubuntu 1,813,528 28,618 2,599,696 30,798
tags-math-sx 1,358,225 35,856 1,980,691 40,168
NDC-classes 19,493 5,859 27,701 6,067
NDC-substances 869,008 123,119 1,419,325 95,332
contact-primary-
school

53,865 775 82,933 877

contact-high-school 19,593 309 26,506 298

other at a given time.

5.2 Data Preparation

Raw data with timestamped simplices is needed to prepare the dataset for pre-

diction. The raw data is stored in three files, namely nverts, simplices, timestamps.

To get one timestamp data, first, a line from nverts is read to get the number of nodes

in that simplex, and simultaneously a line from timestamp is read, then n number of

lines corresponding to the number of nodes are read from simplices. Following the

steps above gives us all the timestamped simplices in ascending order of time.

Now, to predict the closure of triangles, we need to prepare the simplices. For

prediction, the data is split into training and testing dataset by slicing data based on
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Table 4: Training and Testing samples with Labels

Nodes tuple for open triangle Label Meaning
(1, 2, 3) 1 positive or closure
(4, 5, 15) 0 negative or remains

open

timestamps. The statistics for training and testing data are given in Table 3

∙ Training data: A list of open triangles from the first 60 percent of the dataset

with respect to time are enumerated. Then a label one for these triangles is

given based on the condition that the triangle will undergo closure between

60 and 80 percent slice of data. Otherwise, the enumerated triangle is labeled

zero. For example, as given in Table 4, triangle (2, 5, 10) is open in the first

60 percent of the data and then closes between 60 and 80 percent of the data

based on timestamps. Similarly, triangle (4, 5, 15) does not close.

∙ Testing data: A list of open triangles are enumerated from the data slice 0 -

80 percent with respect to time. These triangles are labeled one if they undergo

closure between 80 - 100 percent data slice. Otherwise, the sample is labeled

zero. An example is shown in Table 4. The algorithms are never trained on the

80-100 percent data slice as they contain the testing data.

5.3 Training models

Based on the observed interactions until 60 percent of the timestamped sim-

plices, a graph is created. This graph is used then used to generate different types of

embeddings. Embeddings efficiently learn the features of the node or graph. Hence,

any additional feature is not added for prediction.
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Using node2vec, graph2vec, and Graph Neural Network embeddings techniques,

an embeddings for each sample is generated. These embeddings, which represent

the sample, are then given as input to a binary classifier for prediction. Logistic

Regression classifier is used as the binary classifier. The configuration used for this

is: 𝑙𝑖𝑏𝑙𝑖𝑛𝑒𝑎𝑟 as solver, 1000 as maximum iterations, 𝑡𝑟𝑢𝑒 for fit_intercept, and rest

of the parameters set to default values as in sklearn library. In this way, the models

are trained for link prediction.

5.4 Evaluation metric

The results in [1] are used to compare the performance of the algorithms proposed

in this research. The evaluation metric used is the area under the precision-recall

curve (AUC-PR). As we can see in Table 3, because of the imbalance in data, AUC-

PR serves as a good metric to check how many of the triangle closures are correctly

predicted. Using this metric gives us how many triangles closures were predicted

correctly. For AUC-PR random baseline is given by,

random_baseline =
open triangles in test going through closure

number of triangles in test set

The performance of algorithms is the AUC-PR score relative to the random

baseline. performance is given by,

performance =
𝐴𝑈𝐶 − 𝑃𝑅 score
random_baseline

5.5 Experimental Setup

The implementation language for this project is Python. Python is chosen be-

cause a wide variety of machine learning libraries are readily available. For data

preparation, feature learning, and classification libraries such as networkx, NumPy,
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scipy, pandas, sklearn, Keras, PyTorch are used. node2vec, graph2vec, and Py-

torch_DGCNN are used for creating different types of embeddings for the triangles.

All the experiments were performed on an AWS EC2 Ubuntu instance with 16 pro-

cessors and 128GB internal memory. Also, exploratory experiments were performed

on Thinkpad t540p with 16GB internal memory.
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CHAPTER 6

Experiments and Results

This chapter provides analysis and information about experiments performed on

datasets. The first, second, and third section discusses the results obtained from ex-

periments using triangle node2vec embeddings, triangle graph2vec embeddings, and

triangle SEAL embeddings, respectively. The experiments focus on applying differ-

ent embedding techniques to solve the higher-order link prediction (triangle closure)

problem. The algorithms are compared against the results in [1]. All the benchmark

scores are taken from this paper for comparison. The metric used for comparison is

the AUC-PR score relative to the random baseline of the data (refer 5.4).

6.1 Results for Triangle node2vec Embeddings

For this project, various experiments are performed for triangle embedding using

the node2vec algorithm. Various datasets are used for experimentation. Information

about the datasets is discussed in Section 5.1. The datasets have a problem of im-

balance due to a lesser number of triangles going under closure. To tackle this and

focus on the positive sample results (triangle closure prediction), the metric used to

evaluate is the AUC-PR score relative to the random baseline. Once the triangle

embeddings are generated, a simple logistic regression classifier is used to predict the

positive and negative samples.

Table 5 summarize the experiment results for triangle embedding using node2vec

approach. Results for different types of operators used to learn the triangle embedding

are also presented. The algorithms performing the hyperparameter setup for learning

node2vec embeddings is configured with 128 dimensions for features, random walk
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Table 5: Comparison of results for triangle embeddings with different operators using
node2vec. Scores listed are AUC-PR relative to random baseline.

Dataset name Random
baseline

Average Hadamard Weighted-
L1-average

Weighted-
L2-average

email-Enron 0.0537 2.33 3.54 1.50 1.58
email-Eu 0.0993 3.17 3.48 1.99 1.96
DAWN 0.0561 7.13 6.84 3.87 2.88
coauth-DBLP 0.0310 2.16 3.34 1.34 1.67
coauth-MAG-
History

0.0017 5.17 7.09 2.63 2.42

coauth-MAG-
Geology

0.0246 4.34 4.30 2.23 2.19

threads-ask-
ubuntu

0.0003 79.65 99.88 60.21 82.23

threads-math-
sx

0.0004 20.52 16.71 9.53 9.39

tags-ask-
ubuntu

0.0118 6.86 9.12 4.21 4.03

tags-math-sx 0.0202 2.68 4.46 2.07 1.65
NDC-classes 0.2190 1.68 1.88 1.78 1.70
NDC-
substances

0.0671 1.53 1.50 1.13 1.22

contact-
primary-
school

0.0105 1.30 1.53 2.36 2.28

contact-high-
school

0.0112 0.90 1.34 1.22 1.28

length as 32 or 48, the number of random walks as 10, and return and in-out parameter

set as 1. These values for hyperparameters are chosen on the basis of results shown

in Table 6, 7 and 8. All values above are the maximum values for the experiments.

From Table 5, we can observe that the Hadamard operator performs the best out

of all other operators. This can be attributed to the fact that the Hadamard operator

performs better even on edge prediction task. Hadamard operator simply multiples

the vector elements, which tend to magnify the features learned by node2vec. On a
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(a) ROC-AUC curve (b) AUC-PR curve

Figure 12: AUC scores for triangle embedding with node2vec for DAWN dataset

(a) ROC-AUC curve (b) AUC-PR curve

Figure 13: AUC scores for triangle embedding with node2vec for threads-ask-ubuntu
dataset

few datasets, Average operator used to learn embeddings for the triangle performs

better than Hadamard. From the results we can observe that node2vec embeddings

tend to perform better on larger datasets. The performance of node2vec embeddings

can be attributed to the graph structural feature learning capability of node2vec

embeddings.

The sample plots of AUC curves for DAWN and threads-ask-ubuntu datasets are

given in Figure 12 and Figure 13 respectively.

Table 6 presents the result of triangle embedding using node2vec based on dif-

42



Table 6: Comparison of results for triangle embeddings with varying embedding di-
mensions

Dataset name 64 128 192 256
email-Enron 2.62 3.54 3.20 3.19
email-Eu 2.19 3.48 2.64 2.70
DAWN 6.33 6.84 6.62 6.55

Table 7: Comparison of results for triangle embeddings with varying length of random
walks.

Dataset name 16 32 48 64 80
email-Enron 3.46 3.54 3.40 2.96 2.80
email-Eu 3.44 3.48 3.14 3.06 2.98
DAWN 6.62 6.84 7.01 6.74 6.69

ferent sizes of dimensions of the embeddings. For all these experiments, random

walk length is 32, and the number of random walks is 10. Hadamard operator is

used to learn the triangle embeddings from the node2vec embeddings. Specifically,

three datasets of varying sizes are chosen for this experiment to generalize over other

datasets. These experiments serve as a purpose to identify the ideal length of di-

mensions for our algorithm. From the results, it can be observed that for all the

three datasets, having dimension length as 128 is the best choice. Therefore, all other

experiments can be limited to the dimension length of 128.

Table 7 summarizes the results for varying length of random walks. For all the

experiments presented in this table, embedding’s dimension size is set to 128, and

the number of random walks is set to 10. Hadamard operator is used to learning

the triangle embeddings from the node2vec embeddings. It can be observed from the

results above that a random walk length of 32 or 48 is best suited for our algorithm.

One more interesting observation is that on smaller datasets, higher random walk
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Table 8: Comparison of results for triangle embeddings with varying number of ran-
dom walks

Dataset name 10 20 30 40
email-Enron 3.54 3.38 2.30 2.85
email-Eu 3.48 3.44 2.97 2.73
DAWN 6.84 6.90 6.45 6.56

length does not perform well. On the other hand, on the DAWN dataset, a random

walk of length 48 performs the best. Therefore, the experiments performed on all

other datasets use random walk length as 32 or 48.

Table 8 lists the observation of scores for the algorithm with varying numbers

of random walks. Configuration used for these experiments is Hadamard operator,

embedding dimension size of 128, and random walk length as 32. From the results, we

can conclude that keeping the number of random walks as 10 gives the best results.

The scores obtained from these results show that more number of random walks

might generalize the features learned by all the nodes as more neighboring node data

that is captured by the random walks. Hence, for all other experiments for triangle

embedding with the node2vec algorithm, we set the number of random walks as 10.

Thus, it can be concluded from the experiments and results above that triangle

embeddings using node2vec perform better or similar on most of the datasets. In

addition to this, the Hadamard operator for learning triangle embeddings performs

the best, amongst others. Triangle embeddings using node2vec can be used as an

alternative for predicting triangle closures. Furthermore, this method can be extended

even to tetrahedron closure (4 nodes interacting simultaneously).
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Table 9: Comparison of results for triangle classification using graph neural network
with varying maximum number of nodes in subgraph

Dataset name 25 50 100 No limit
email-Enron 1.12 2.46 2.29 2.29
email-Eu 1.98 2.90 2.49 2.56
contact-high-
school

1.65 1.59 1.57 1.49

contact-
primary-school

1.93 2.13 2.36 2.23

NDC-classes 1.39 1.68 1.66 1.62
threads-ask-
ubuntu

1.04 5.24 9.12 7.56

6.2 Results for Triangle GNN Embeddings

This algorithm experiments with graph neural networks. The SEAL framework

established by [14] makes use of DGCNN and also gives the capability to add latent

features in addition to features learned by the neural network. The subgraphs are

extracted for each triangle, and the results mostly vary based on the number of nodes

in the subgraph. The hyperparameters are kept at the default values of DGCNN i.e.,

at first, four layers of graph convolution with dimension (32,32,32,1), a SortPooling

layer, two 1D convolution layers with 16 and 32 output channels respectively, and

lastly a dense layer of 128 neurons. Moreover, a layer of dropout is used to tackle

the problem of over-fitting. In addition to this, all experiments are run for 50 epochs,

and the best loss and best epoch is determined based on the validation loss achieved.

The best epoch is updated only if validation loss is less than the previously stored

best loss. To evaluate the model, the AUC-PR score relative to the random baseline

is calculated based on the best epoch. Experiments are not performed on all the

datasets due to limited computation capacity.

Table 9 summarizes the results for triangle closure prediction using graph neural
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Table 10: Comparison of results for triangle classification using graph neural network
with varying maximum number of nodes in subgraph and node2vec embeddings used
as additional feature.

Dataset name 25 50 100 No limit
email-Enron 1.36 2.53 2.27 2.27
email-Eu 2.81 3.11 3.19 2.95
contact-high-
school

1.07 1.32 1.25 1.19

contact-
primary-school

1.69 1.97 2.05 1.99

NDC-classes 1.70 1.71 1.78 1.87
threads-ask-
ubuntu

6.95 7.46 5.28 6.45

network. The primary objective of these experiments was to get more information

about the effect of the maximum number of nodes allowed in each hop. From the

results in this table, we can see that it is not always true to include more and more

data to get the best results. Generally, the algorithm performs best when we limit

the maximum number of nodes in the hop to 50 or 100. Another observation is that

the performance is not good compared to scores for triangle embedding using the

node2vec algorithm.

Table 10 lists the results for this algorithm using node2vec embeddings as an

additional latent feature. The results consider a varying number of maximum nodes

contained by the subgraph of each triangle sample. Once the subgraph is extracted

based on the limit, then node2vec embeddings for the nodes selected in the sub-

graphs are concatenated in addition to the features learned by graph neural network

to create an embedding for the triangle. These experiments focus on experimenting

with node2vec embeddings as they have proven to perform well on this problem, as

discussed in Section 6.1. From the result data, we can infer that the performance
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of the graph neural network algorithm does not provide us with any substantial im-

provement. Instead the performance without node2vec embeddings as an additional

feature (refer Table 9) is better than this. Moreover, these experiments also have an

overhead of additional memory requirements as node2vec embeddings need to stored

in memory for all the open triangles. Owing to this, we do not experiment further

with this algorithm.

From the experiments and results in this section, it can be concluded that triangle

embedding using graph neural network fails to give any performance improvements in

higher-order link prediction. In addition to this, when compared to triangle embed-

ding using node2vec, this algorithm is more computation and memory intensive. The

failure of this technique can be attributed to the fact that we are extracting subgraphs

for each open triangle, which might generalize the features learned for each sample

as most of the open triangles can have overlapping subgraphs.

6.3 Results for Triangle graph2vec Embeddings

This section experiments with graph2vec [12] algorithm to generate embeddings

for triangles. Extracted subgraphs for each triangle as passed as input to graph2vec

for generating embeddings for each triangle. The default configuration of graph2vec

is used for the experiments i.e., dimension size of embeddings is 128, the number of

epochs is set as 10, and Weisfeiler Lehman feature extraction iterations to 2. Once

embeddings for each subgraph are learned, they are passed as input to a simple

Logistic Regression classifier for triangle closure prediction. To evaluate the model,

the AUC-PR score relative to the random baseline is calculated for model comparison.

For this algorithm, experiments are not performed on all the datasets owing to the

computational capacity needed by this algorithm.
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Table 11: Comparison of results for triangle classification using graph2vec embeddings
with varying maximum number of nodes in subgraph

Dataset name 25 50 100 No limit
email-Enron 0.95 1.19 1.08 1.12
contact-high-
school

1.12 1.14 1.25 1.21

contact-
primary-school

1.33 1.57 1.33 1.49

NDC-classes 1.17 1.38 1.37 1.35

Table 11 summarizes the results for triangle embedding with graph2vec tech-

nique. The experiments focus on the effect of subgraph size on the results. For this,

we test the algorithm on different limits for maximum nodes in the subgraph. From

the results, we can conclude that including all the nodes in subgraphs hampers the

performance of the algorithm. Therefore, 50 or 100 is an optimal limit for the num-

ber of nodes in the subgraph for each triangle. This is consistent with observation

in Table 9, and 10 for graph neural network algorithm. As compared to the scores

for triangle embedding using node2vec model score (refer Table 5), this algorithm

performs worse. Another important observation is that, triangle embedding using

graph2vec performs just better than the random baseline on almost all the datasets.

6.4 Results Comparison

Table 12 summarize the results for different triangle embedding algorithms dis-

cussed above with the prediction models in previous work i.e. the benchmark scores.

The table also specifies the scores for previous work for each dataset, as given in

[1]. The classification models that are used in the previous work are: Logistic Re-

gression for email-Eu, coauth-DBLP, coauth-MAG-History, coauth-MAG-Geology,

threads-math-sx, tags-math-sx, NDC-substances, and contact-primary-school; Ge-
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Table 12: Comparison of results for all triangle embeddings algorithms with previous
work. Scores listed are AUC-PR relative to random baseline.

Dataset name Random
Baseline

Previous
work
scores [1]

triangle-
node2vec

triangle-
gnn

triangle-
graph2vec

email-Enron 0.0537 3.16 3.54 2.53 1.19
email-Eu 0.0993 3.47 3.48 3.19 x
DAWN 0.0561 4.77 7.13 x x
coauth-DBLP 0.0310 3.37 3.34 x x
coauth-MAG-History 0.0017 6.75 7.09 x x
coauth-MAG-Geology 0.0246 4.74 4.34 x x
threads-ask-ubuntu 0.0003 80.94 99.88 9.12 x
threads-math-sx 0.0004 47.18 20.52 x x
tags-ask-ubuntu 0.0118 12.64 9.12 x x
tags-math-sx 0.0202 13.99 4.46 x x
NDC-classes 0.2190 4.43 1.88 1.87 1.38
NDC-substances 0.0671 8.17 1.53 x x
contact-primary-school 0.0105 6.91 2.36 2.36 1.57
contact-high-school 0.0112 4.16 1.34 1.65 1.25

ometric mean for tags-ask-ubuntu threads-ask-ubuntu, and contact-high-school; Har-

monic mean for tags-stack-overflow, and NDC-classes, Adamic-Adar for DAWN;

PageRank for email-Enron. Experiments not performed for the dataset are marked

with ’x’. These experiments were not performed because of limited computation and

memory resources.

From Table 12 we can observe that triangle embedding using node2vec performs

better compared to graph2vec, and graph neural networks algorithms. The best scores

from all of the experiments discussed are compared with the prediction model scores

from previous work [1]. We can conclude from the results that triangle embedding

using node2vec performs better or similar on most of the datasets when compared to

the prediction models in previous work. For Coauthorship networks, triangle embed-

ding performs better or similar to the benchmark scores. Also, for email networks,

our algorithm tends to perform slightly better. The best performance is achieved for
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Figure 14: Score comparison between previous work and triangle embeddings using
node2vec. Log scale is used to enhance lower magnitude scores

the DAWN dataset, which shows a 43% increase from the benchmark score. Previous

work scores rely heavily on the graph structural features in the dataset. Similarly,

node2vec embeddings are known to learn representation for each node and preserve

the graph structural features. Therefore, we can attribute the performance of triangle

embeddings using node2vec to the above characteristics.

Results from Table 12 are visualized in Figure 14. The figure compares the best

scores for the prediction models used in previous work and triangle embedding using

the node2vec. A log scale is used on the y-axis to enhance the smaller performance

improvement scores in the plot.
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Table 13: Comparison of number of edges and open triangles in testing data

Dataset name nodes edges open triangles
email-Enron 140 1,607 6,918
email-Eu 952 26,582 257,978
contact-high-school 327 5,225 26,506
contact-primary-school 242 7,575 82,933
NDC-classes 1,084 5,593 27,701
threads-ask-ubuntu 80,258 168,758 173,703

Table 13 gives the statistics of the datasets used in experiments for graph neural

networks and graph2vec based triangle closure prediction. From the data presented

in this table, we can see that there is an exponential increase in the number of inter-

actions in proportion to the number of nodes involved in an interaction. For example,

the email-Enron dataset has 140 nodes i.e., single node interactions, 1,607 edges i.e.,

two-node interactions, and 6918 open triangles i.e., possible three-node interactions.

Hence, when we consider higher-order structures, there are more combinations pos-

sible for the interactions between nodes. We can correlate this data with the failure

of subgraph embedding methods (graph neural networks and graph2vec). When we

consider the subgraphs of triangles, there is a higher possibility of overlapping [1]

between the extracted subgraphs. This can make it difficult for graph neural network

and graph2vec to learn features optimally for the open triangles. As opposed to this,

the chance of overlapping when we consider edge interactions is relatively less be-

cause of the small magnitude of the number of edges. Therefore, link prediction using

subgraphs and graph neural networks gives better results for pairwise interactions, as

seen in [14]. To make these methods work, we need to find a way to extract features

that represent the higher-order nature of the data.
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CHAPTER 7

Conclusion and Future Work

7.1 Conclusion

This project focuses on solving the problem of higher-order link prediction, and

more specifically, closure of open triangles. The problem is solved using different

types of embeddings, particularly node embeddings, graph embeddings, and graph

neural networks. Triangle embeddings using node2vec leverages the node embeddings

generated for the graph and combines it using different operators to represent an

open triangle. This algorithm performs substantially better on some of the datasets

tested. The reason for this can be attributed to the basis that node2vec learns graph

structural features of higher quality. Additionally, it is discussed in the related work

that generally graph structural features perform better for the task of link prediction.

On the other hand, the other two algorithms i.e., triangle embeddings using

graph2vec and graph neural network, suffer in the prediction performance. The rea-

son for that can be attributed to the similarity and overlapping of subgraphs for

open triangles in the datasets. Another reason is that we are extracting subgraphs

for higher-order structures from a 2D graph, which cannot represent higher-order

structures efficiently. Experiments performed with a varying number of nodes in 1-

hop subgraphs give better results where smaller values of nodes are chosen, which

indicates that having less context about neighborhoods is better. From the experi-

ments performed, we can conclude that learning triangle embeddings using node2vec

performs better than the other two proposed solutions. Most importantly, trian-

gle embeddings using node2vec give better or similar performance than the current

benchmark models on most of the datasets.
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7.2 Future Work

Future direction to improve the results is to add data specific attributes to

node2vec embeddings to increase prediction performance. Edge weights in the pro-

jected graph of all simplices can be a potential attribute to concatenate with node2vec

embeddings. In addition to this, all the proposed techniques are generic enough to

be extended for the task of other higher-order structure predictions like tetrahedron

closures. Moreover, the research in this area will hugely benefit from an embed-

dings approach that extracts features from higher-order structures. Exploring Hasse

diagram and random walks on those diagrams can be a way forward to obtaining

embeddings for higher-order structures. Higher-order structures like simplices will

prove useful in the research for social network analysis, news topic connections, and

drug combination research.
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