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ABSTRACT 

 

Scheduling is a common task that plays a crucial role in many industries such as 

manufacturing or servicing. In a competitive environment, effective scheduling is one of the key 

factors to reduce cost and increase productivity. Therefore, scheduling problems have been 

studied by many researchers over the past thirty years. Rehearsal scheduling problem (RSP) is 

similar to the popular resource-constrained project scheduling problem (RCPSP); however, it 

does not have activity precedence constraints and the resources’ availabilities are not fixed 

during processing time. RSP can be used to schedule rehearsal in theatre industry or to schedule 

group scheduling when each member has different sets of available time. In this report, three 

different approaches are proposed to solve RSP including Constraint Programming, Integer 

Programming, and Schedule Generation Schemes.        
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INTRODUCTION 

Rehearsal scheduling is a time consuming and tedious task in theatre industry. In theatre, 

a play usually has multiple scenes and for each scene, not all performers have to participate. 

Before practicing for the play, each performer will submit a set of available time to the 

scheduler. Based on these sets of available time and the duration needed to practice for each 

scene, a schedule is created with the effort to satisfy these constraints: 

• A performer cannot practice more than one scene at the same time. 

• Each scene’s start time and end time must be in one of the available timeslots 

submitted by all performers who take part in that scene. 

This scheduling problem is similar to an original resource-constrained project scheduling 

problem (RCPSP) with additional constraints of resource’s availability but without precedence 

constraints. RCPSP is defined as a single project scheduling that satisfies the resource constraints 

with no preemption. All activity durations, resource requirements, and resource availabilities 

must be integral and known before scheduling [1]. The original RCPSP can be formulated as: 

 

Optimize Min tn, 

Subject to tj – ti ³  di, (i, j) Î H, 

∑ 𝑟!" 	£	𝑏" 	#(%)  ,  t = 1, …, T;  k = 1, …, K 

Where ti = starting time of activity i, i = l,...,n. 

 H = set of precedence constraints. 

 di = duration (processing time) of activity i. 

 rik = amount of resource k that activity i requires. 

 bk = resource k’s total availability. 

 S(t) = the activities set being processed at time t 
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We observe that the rehearsal scheduling problem (RSP) is similar to the original RCPSP 

in term of activity and recourse modeling. RSP’s practicing event can be considered as an 

activity and each performer of that event is similar to a resource required by that activity. 

However, activities in RSP can start in any order, i.e. no precedence constraints, and the 

resources required by each activity have the capacity of one. Furthermore, unlike the original 

RCPSP, resources in RSP are not available with a fixed amount during processing time. With 

this observation, we can formulate a RSP as: 

 

Optimize Min tn, 

Subject to Resource R must be available during (ti, ti + di), R Î Ri     (1) 

∑ 𝑟!" 	£	1	#(%)  ,  t = 1, …, T;  k = 1, …, K                             (2) 

Where ti = starting time of activity i, i = l,...,n. 

 Ri = list of resources required by activity i 

 di = duration (processing time) of activity i. 

 rik = amount of resource k required by activity i, either 0 or 1 

 S(t) = set of activities in process at time t 

 

Constraint (1) means that during the processing time of each activity, every resource 

required by this activity must be available. For example, if performers A and B participate in 

practicing event for scene 1, then this constraint can be described as resource A and B must be 

available during the processing time of activity 1. This is different from the original RCPSP that 

resources are always available with a fixed capacity at any processing time. Constraint (2) 

denotes the fact that all activities processed at the same time must not require the same resource, 

which has the capacity of either 0 or 1 at any processing time. An example of this constraint can 
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be seen as if performer A takes part in both scene 1 and 2, then the practicing events of these two 

scenes must not be overlapping scheduled. 

Blazewicz has shown that RCPSP is actually a generalization of the classic job shop 

scheduling problem (JSSP) [1]. In a job shop scheduling problem, there are n jobs that will be 

executed on m machines. The activities of each job must be executed in a specific order so that 

each activity requires a specific machine with a predefined processing time. The JSSP is a NP-

hard problem which is known to be one of the most difficult in this class [2]. RSP does not have 

the constraint of precedence, but it has the additional constraint of resource’s availability which 

makes the search space not smaller. Thus, we can consider RSP as an NP-hard problem as well. 

During the past thirty years, many solutions have been proposed to solve RCPSP but not 

RSP. They can be classified into three categories including heuristic methods based on serial and 

parallel schedule generation schemes; exact method using branch-and-bound procedures; and 

metaheuristic methods based on Tabu search or genetic algorithm [1]. Based on the study of 

RCPSP and constrained scheduling problem in general, we propose three different approaches to 

solve RSP. In the first approach, we define the problem as a Constraint Satisfaction Problem 

(CSP) and then use a Constraint Programming solver to find the optimal solution. In the second 

approach, we model the problem as an Integer Programming problem, and then use a Mixed 

Integer Programming solver to find the optimal solution. The third approach is based on the 

serial Scheduling Generation Schemes technique with some heuristics to increase the runtime 

performance. We then conduct the performance benchmark for the three approaches with 

different criteria. 
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CONSTRAINT PROGRAMMING 

1.1. Constraint Satisfaction Problem 

1.1.1. Definition  

Constraint Satisfaction Problem (CSP) is the fundamental concept in Constraint 

Programming. Assume we have a set of variables Y = y1,…,yk and a set of domains D1, …, Dk so 

that each variable yi has value in the domain Di. Then a constraint C over Y is a subset of D1 ´ 

…´ Dk. If k = 1 then the constraint is unary, if k = 2 then the constraint is called binary 

constraint. A CSP is defined as a sequence of variables X = x1, …, xn on domain D1, …, Dn, 

respectively so that a finite set C of constraints are specified with one or more subsequences of X 

[3]. Such CSP is notated as ⟨ C ; DE ⟩ where DE = x1 Î D1, …, xn Î Dn.  

A CSP’s solution is a sequence of valid variable values so that all the constraints are 

satisfied. Assuming we have a CSP denoted as ⟨ C ; DE ⟩, the set (d1,…, dn) Î D1 ´ …´ Dk satisfies 

the constraint C Î C on the variable xi1,…, xin if (di1, …, din) Î C is a solution to ⟨ C ; DE ⟩ if it 

satisfies all constraints in C. 

1.1.2. Example 

1.1.2.1. Constraint Satisfaction Problem on integers 

A well-known example of CSP on integers is the n queens problem. In this problem, the 

challenge is to arrange n queens on a chess board with side n x n so that there is no queen being 

attacked.   
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Figure 1. CSP example - 9 Queens Problem [3] 

 

We can model this CSP by using n variables xi with domain [1…n], i = 1,…,n  so that xi 

denote the position of the queen which is located at the ith column of the board. The constraints 

of this CSP can be conveyed through the following formula: 

• xi ¹ xj (to satisfy the constraint that no two queens placed in the same row) 

• xi – xj ¹ i – j (no two queens placed in South-West – North-East diagonal) 

• xi – xj ¹ j – i (no two queens placed in North-West – South-East diagonal) 

• i Î [1, n-1] and j Î [i + 1, n] 

 
1.1.2.2. Boolean Constraint Satisfaction Problem 

We can represent the n queens problem in the different way using Boolean expression. 

Let’s consider n2 Boolean variables xi, j where i,j ∈	[1,…,n]	and	each	variable	xi,j	indicates	if	a	

queen	is	placed	at	row	ith,	column jth. Let one(s1,…,sk) denote the Boolean expression that one 

and only one Boolean expression from the set of Boolean expressions [s1,…,sk] is true. Then the 

n queens problem can be represented as: 
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• one(xi,1, ..., xi,n) for i ∈ [1…n] ( satisfy the constraint of no queens placed at same row) 

• one(x1,i, ..., xn,i) for i ∈ [1…n] (satisfy the constraint of no queens placed at same column) 

• not(xi,j and	xk,l) for i, j, k, l ∈	[1…n], i ¹ k and |i - k| = |j - l| ( no 2 queens placed in the 

same diagonal)  

1.1.3. Constrained Optimization Problem 

Constrained optimization is a form of finding the optimal solution to a set of constraints 

subject to some objective functions [3]. Constrained optimization has been studied deeply, thus 

many researches have been conducted on this subject. One classic example of constrained 

optimization is the Knapsack problem. In this problem, there are n objects so that each object has 

a value and a volume, and a knapsack with fixed volume. We have to find a collection of objects 

so that the total value is maximized while all objects can be placed in the knapsack. We can 

model this problem by using n objects with volume a1,…, an and values b1,…,bn while v will be 

the volume of the knapsack. Then we define n variables x1, …, xn with domain {0, 1} so that if 

object ith is put into the knapsack then xi = 1. The requirement that objects fit in the knapsack can 

be formulated as ∑ a+
!,- i ´ xi £ v. The goal is to look for the solution that satisfies this constraint 

and the sum ∑ b+
!,- i ´ xi is maximized. 

1.2. Constraint Programming 
According to [3], constraint Programming is a programming process that is bounded to a 

set of constraints and a solution of these constraints by domain requirements or general methods 

[3]. We can solve a Constraint Programming problem by using a general approach with the help 

of constraint propagation. 
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1.2.1. Basic approach to solve a Constraint Programming problem 

The first step to solve a Constraint Programming problem is to model the initial problem 

as a CSP. Modeling a CSP is more an art than science and usually requires rules of thumb or 

heuristics to have a good result [3]. The second step is to apply the generic procedure SOLVE 

defined in Figure 3 to the modeled CSP. 

 

 

Figure 2. Generic procedure SOLVE [3] 

 

PREPROCESS:  transform the original CSP to another form that is easier to process 

later. 

HAPPY: this means all the constraints of the initial CSP has been satisfied. It is either a 

solution or all solutions have been found or an inconsistency has been detected. 

ATOMIC: before we can split a CSP, we need to determine whether the current CSP can 

be split or not. This test is conducted by an ATOMIC procedure which will check if the CSP’s 
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domains are singleton sets or empty, or the search for another solution “under” this CSP is no 

longer needed.  

SPLIT: if constraint propagation does not give us any solution which makes the test 

HAPPY failed and the current CSP P is not atomic, then we can split that CSP into two or more 

CSPs so that the union of them is equal to P. Such split can be obtained by either splitting a 

domain or a constraint so that the split CSPs need to comply with a new set of constraints and 

domains. 

PROCEED BY CASES: after splitting, there will be two or more new CSPs that will be 

considered in order. By using SPLIT procedure multiple times, a tree of CSPs will be formed. 

PROCEED BY CASES procedure will traverse this CSP tree in a specific order and keep track 

of newly added information at each node of the tree. The most well-known search techniques are 

backtracking, and branch and bound, which are applicable for searching optimal solutions [3]. 

CONSTRAINT PROPAGATION: this procedure will replace a given CSP by a simpler 

CSP but still guarantees the equivalence in term of logic satisfaction. “Simpler” refers to the fact 

that the new constraints or domains are reduced in term of size or search space. Constraint 

propagation is the most crucial and fundamental concept of Constraint Programming [4]. 

1.2.2. Constraint propagation algorithms  

Constraint propagation algorithm deals with reduction of a domain or a constraint in a 

CSP. By using this algorithm, we can achieve a property called local consistency notation which 

is crucial for solving constraint programming problem. Local consistency is defined as for every 

variable x of constraint C, each value in x’s domain participates in an element of C [3]. This 

property is call hyper-arc consistency and in the case of binary constraints, it is called arc 

consistency. Details of constraint propagation can be found  in  [3], [5], [6], [2] and [7]
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INTEGER PROGRAMING 

 

2.1. Definition 
According to [8], a pure integer program can be formulated as: 

 

Max cx 

Subject to Ax £ b 

x ³ 0 

Where c = (c1,…,cn) is a row vector 

 A = m ´ n matrix (aij) 

b = ?

𝑏.
.
.
𝑏/

A is a column vector 

x = ?

𝑥.
.
.
𝑥/

A is a column vector that contains the variables to be optimized  

c, A, b contains the rational values while x contains integer values 

 

A mixed integer program is more relaxing than a pure integer program and can be 

formulated as: 

 

Max cx + hy 

Subject to Ax + Gg £ b 

x ³ 0, y ³ 0 

Where c = (c1,…,cn), h = (h1,…,hn) are a row vectors 

 A = m ´ n matrix (aij), G = m ´ p matrix (gij)  
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b = ?

𝑏.
.
.
𝑏/

A is a column vector 

x = ?

𝑥.
.
.
𝑥/

A, y = ?

𝑦.
.
.
𝑦/

A are column vectors that contains the variables to 

be optimized  

c, A, b, y contains the rational values while x contains integer values 

 

Example of mixed integer and pure integer programs can be found in Figure 4. In this 

example, the solution set of the mixed integer program is (x,y) where x is integral and y is 

rational. In contrast, the pure integer program has the solution set of concrete integers. 

 

 

Figure 3. Example of mixed integer and pure integer  [8] 

 

2.2. Integer Programming Methods 
Branch-and-bound and cutting plane methods are the two algorithmic principles for 

solving integer programs [8]. The mixed integer program mentioned above can be rewritten to be 

easier for reference as: 
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 MILP:   max {cx + hy : (x, y) Î S}      

  where S := {(x, y} Î 𝑍0+ ´  𝑅0
1: Ax + Gy £ b} 

(2.1) 

 

We denote (x*, y*), z* as the optimal solution and the optimal value of the above mixed 

integer program, respectively. (x0,y0) and z0 are the optimal solution and optimal values of linear 

programming relaxation 

  max {cx + hy : (x, y) Î P0} 

where P0 is the linear relaxation of S. Because S Í P0, it is easy to conclude that z* £ z0. When x0 

is an integral vector, we will have (x0, y0) Î S and z* =  z0 will be the optimal value of S. 

2.2.1. Branch-and-Bound method 

Assuming we have an index j where 1 £ j £ n so that 𝑥2- is fractional and let f := 𝑥2-. 

Define two sets 

S1 := S Ç {(x, y): xj £ ëfû} 

S2 := S Ç {(x, y): xj ³ éfù} 

where ëfû is the largest integer k £ f and  éfù is the smallest integer l ³ f. If xi is an integer for 

each (x,y) Î S then it derives that (S1, S2) is a partition of S. Now we have two integer programs 

as: 

  MILP1:  max{cx + hy : (x, y) Î S1} 

MILP2:  max{cx + hy : (x, y) Î S2} 

The optimal solution of MILP described in (2.1) is the best between the optimal solutions 

of MILP1 and MILP2. Thus, finding the optimal solution of the original problem is now 

considered as finding the solutions for the two new subproblems. 
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Let call P1, P2 the natural linear relaxation of S1, S2 so that P1 := P0 Ç {(x, y) : xj £ ëfû} 

and P2 := P0 Ç {(x, y) : xj £ éfù} and consider the two linear relaxation programs LP1: max{cx + 

hy : (x, y) Î P1} and LP2: max{cx + hy : (x, y) Î P2}. Here are the steps for finding the optimal 

solution: 

(i) If one of the LPi linear program is infeasible the Si is infeasible as well because Si 

Í Pi. Therefore, MILPi is infeasible and the algorithm stops here.     

(ii) Let (xi, yi) be the optimal solution of LPi and zi be its value, i = 1, 2 

a. If xi is an integral vector, it derives that (xi, yi) is an optimal solution of MILPi 

and then a solution of MILP. Because of Si  Í S, we can conclude zi  £ z* and 

zi becomes a lower bound of the optimal value of MILP. 

b. If xi is not an integral vector and zi is not greater than the best known lower 

bound of the MILP then Si cannot have any better solution than the current 

lower bound. 

c. If xi is not an integral vector and zi is greater than the best known lower bound 

of the MILP then Si might still have a better solution than the current lower 

bound. Let  𝑥23! 	be a fractional component of vector xi, f′ := 𝑥23!  then create the 

sets 𝑆!! := Si ∩ {(x,y) : xj’ ≤ ⌊f′⌋},  𝑆!" 	:= Si ∩{(x,y): xj’≥⌈f′⌉} and repeat the 

above process until the program stops. 

The procedure above finds the optimal solution by partitioning the set S into subsets and 

limits the enumeration by bounding the objective value of the subproblems [8]. It generates a list 

of linear programming problems achieved by relaxing the integral requirements on the variables 

xj and establishes bounds on these variables.  
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2.2.2. Cutting Plane method 

Assuming we have an integer program as: 

 MILP:  max {cx + hy : (x, y) Î S}  

  where S := {(x, y} Î 𝑍0+ ´  𝑅0
1: Ax + Gy £ b} 

  

Denote z0 and (x0, y0) as the optimal value and solution of the above MILP’s linear 

relaxation program formulated as max {cx + hy : (x, y) Î P0}. The main idea of cutting plane 

method is to find an inequality αx + γy ≤ β which is met by all points in S but not (x0, y0). A 

valid inequality αx + γy ≤ β for S that is not satisfied by (x0, y0) is a cutting plane separating (x0, 

y0) from S [8]. 

Let αx + γy ≤ β be a cutting plane and define P1 := P0 ∩ {(x, y) : αx + γy ≤ β. Because of 

S ⊆ P1 ⊂ P0, the linear programming relaxation of MILP based on P1 is stronger than the natural 

linear programming relaxation. The cutting plane method is based on this observation with the 

recursive approach [8]: 

Initialize i = 0, repeat: 

Solve linear program of max {cx + hy : (x, y) ∈ Pi} 

§ If S consists the optimal solution (xi, yi), then stop. 

§ Else solve the problem: 

• Find new cutting plane αx + γy ≤ β so that (xi, yi) is separated from 

S. 

• Assign Pi+1 := Pi ∩ {(x, y) : αx + γy ≤ β}, then repeat the above 

steps
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SCHEDULING PROBLEM 

3.1. Scheduling theory 

3.1.1. Definition 

Scheduling problem is identified as a problem of allocating scarce resources to activities 

over time [2]. Activities are denoted as {A1, …, An} while resources are denoted as {R1, …, Rn}. 

Each activity has a processing time and demands a certain capacity from one or many resources. 

Each resource has a fixed capacity that cannot be overloaded at any time. A resource with 

capacity of one is named as a machine. There will be a set of temporal constraints between 

activities and a cost function. The goal of scheduling problem is to determine when each activity 

is executed so that the overall cost is minimized, and all constraints are satisfied. 

Based on resource type, scheduling problem can be classified into disjunctive scheduling 

and cumulative scheduling. For disjunctive scheduling problem, each resource is a machine so it 

can execute one activity at a time at most. Contrarily, a resource can execute multiple activities 

at the same time in a cumulative scheduling problem as long as the resource capacity is not 

exceeded.  

Based on activity type, scheduling problem can be grouped to non-preemptive 

scheduling, preemptive scheduling and elastic scheduling. Activities in non-preemptive 

scheduling problem are not allowed to be interrupted. Preemptive scheduling activities, in 

contrast, can be interrupted so that other activities can execute using the same resource. In elastic 

scheduling, resource’s amount allocated to an activity can have any value between 0 and the 

resource’s capacity. However, there is another constraint as the sum over time of the allocated 

capacity must equal to a predefined value, which is denoted as energy.  
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We can also classify scheduling problems into decision problems and optimization 

problems. The goal of decision problem is to find an existing schedule that can satisfy all 

constraints. In optimization problems, the goal is to find a satisfied schedule that is optimal using 

objective function. 

3.1.2. Examples 

Pinedo et al. [9] has given examples of some classic scheduling problems as: 

• Flow Shop: there are m machines and each job are processed on one of these 

machines. All jobs must be processed in the same route, for example, they are 

processed on machine 1 first, then on machine 2, etc. The objective is to find the 

order to execute all jobs so that the sum of completion time is minimized. 

• Job Shop: a job shop problem has m machines and each job has different 

predetermined route to follow. The objective of this problem is to minimize the 

makespan, which is the finished time of the latest job. This problem is considered the 

fundamental of scheduling literature, thus it has been studied widely by many 

researchers. 

• RCPSP: a project scheduling problem that is generalized based on job shop problem 

[1]. RCPSP is similar to RSP and has been mentioned in the report’s introduction. 

3.1.3. Constraint-Based Scheduling Model 

3.1.3.1. Activity 

In non-preemptive scheduling problem, we use three variables to represent an activity Ai 

as proc(Ai), start(Ai), and end(Ai) that denote the processing time, start time, and end time. If we 

denote ri and di as the release time and the deadline of activity Ai then [ri, di] is the time period in 

which Ai must be executed. The domains of start(Ai) and end(Ai) will be [ri, lsti] and [eeti, di] so 
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that lst stands for latest start time and eet stands for earliest end time. Activity Ai’s processing 

time is calculated as proc(Ai) = end(Ai) – start(Ai). Figure 4 demonstrates an example of an 

activity model. Light grey color denotes the time window [ri, di] and dark grey color denotes the 

activity’s processing time. 

 

 

Figure 4. Activity modeling [3] 

 

3.1.3.2. Resource Constraints 

Resource constraints express the requirement that an activity requires a certain amount of 

resources throughout its execution. For activity Ai and resource R, let cap(R) denote the capacity 

of resource R and cap(Ai, R) denote the amount of resource R required by activity Ai. If we 

denote E(Ai, R) as the energy needed by activity Ai upon resource R, then the equality E(Ai, R) = 

cap(Ai, R) * proc(Ai) is true for non-elastic problem. If we denote the unit amount of resource R 

required by activity Ai during the processing time t as E(Ai, t, R), then the following constraint 

must be satisfied for every activity: 

𝐸(A! , R) 	=S𝐸(A! , t, R)
	

%

 

And for each time t, this constraint represents the fact that the capacity of resource R 

cannot be exceeded: 
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SE(A! , 𝑡, 𝑅)	£	𝑐𝑎𝑝(𝑅)
+

!,.

 

In the non-preemptive scheduling problem, the above expression can be rewritten as: 

S cap(A! , 𝑅)	£	𝑐𝑎𝑝(𝑅)
+

4#:	6%78%(4#)	£		%	<	9+:(4#)

 

3.1.3.3. Objective Function 

Objective function is used to find the optimal solution of a scheduling problem. Usually, 

the objective function takes in a set of end variables of the activity [2]: 

criterion = F(end(A1},…, end(An)) 

To find the optimal solution of a problem, we can solve the problem’s successive 

decision variants. We can iterate through the possible values from the lower bound to upper 

bound of the domain, or vice versa. More details of objective functions can be found in [2], [5]. 

3.2. Constraint Propagation of Scheduling Problem 
According to [10], a constrained scheduling problem usually includes: 

• Temporal constraints including activities’ possible values of start and end time. 

• Resource constraints which define the activity’s requirement of resource sets and the 

corresponding capacity. 

• Capacity constraints which limit each resource’s available capacity over time. 

• Problem-specific constraints that address particular features of the activities and 

resources. These features will vary from problem to problem. 

Let consider a simple disjunctive non-preemptive scheduling problem, which can be 

defined as a set of n activities {Ai, …, An} requiring the same resource with the capacity of one. 

Propagation on cumulative and preemptive is more complex and can be found in [2], [5]. 
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3.2.1. Time-Table Constraint Propagation 

Resource constraints in non-preemptive problem can be propagated by using Time-Table 

method to maintain resource utilization and availability information. Resource constraints can be 

propagated in two ways, from resources to activities or from activities to resources. Resources to 

activities propagation will update the activities’ time bounding, i.e., earliest start times and latest 

end times, based on the resources’ availability. Activities to resources propagation can update the 

Time-Tables based on the activities’ time bounds [2]. The propagation is the process of 

maintaining an arc-consistency for any time t with the expression: 

S𝐸(A!

+

!,.

, 𝑡)	£	1 

Let denote X(Ai, t) as a formula that has the value of 1 when activity Ai is executed at 

time t, 0 otherwise. Then X(Ai, t) = 1 only when start(Ai) £ t < end(Ai). For this particular 

problem, we will have E(Ai, t) = X(Ai, t) because the capacity for the resource is 1. We can 

propagate further with ri, eeti, lsti and di as: 

start(Ai) ³ min {t: ub(X(Ai, t) = 1} 

end(Ai) £ max {t: ub(X(Ai, t)) = 1} + 1 

[X(Ai, t) = 0] Ù [t < eeti] => [start(Ai) > t] 

[X(Ai, t) = 0] Ù [lsti < t] => [end(Ai) < t] 
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Figure 5. Time-Table constraint propagation [3] 

 

Figure 5 demonstrates the propagation of two activities requiring the same resource with 

the capacity of one. A1’s latest start time ((lst1 = d1 – p1 = 1) is smaller than its earliest end time 

(eet1 = r1 + p1 = 2). This informs that A1 can only be executed between 1 and 2. Throughout this 

period, X(A1, t) is equal to 1 so that the related resource is not available for A2 anymore. Because 

A2 is not allowed to be interrupted or to finish before 1, its earliest start and end times are 

changed to 2 and 4 by propagation 1. This will enforce X(A2, t) to be set to 1 during the period 

[2, 4], thus A1’s latest end time will be updated to 2 by propagation 2.  

3.2.2. Edge-Finding Propagation 

The term "Edge-Finding" represents both a "branching" and a "bounding" technique [2]. 

Branching technique is to order activities which require the same resource. In branching 

technique, a set of activities W is chosen at each node, and for each activity Ai Î W, a new branch 

is generated with the constraint that Ai is executed first (or last) in W. Bounding technique is 

used to derive that some activities of set W must, can, or cannot be executed first (or last) in W. 

These observations will indicate new time bounds and new ordering relations so that activities’ 

earliest start times and latest end times can be strengthened. 
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Let rW and eetminW represent the smallest of the earliest start time and smallest of the 

earliest end time of all activities in W respectively. Similarly, let lstmaxW  and dW represent the 

largest of the latest start times and the largest of the latest end times of all activities in W, 

respectively. Let pW denote the sum of all activities’ minimal processing times in W, Ai << Aj ( or 

Ai >> Aj) denote Ai executes before (or after) Aj, and Ai << W ( or Ai >> W) denote that Ai 

executes before (or after) all activities in W. Then the following rules can be applied to the Edge-

Finding bounding technique [2]: 

"W, "Ai Ï W, [dW È {Ai} - rW < pW + pi] => [Ai << W] 

"W, "Ai Ï W, [dW  -  rW È {Ai} < pW + pi] => [Ai >> W] 

"W, "Ai Ï W, [Ai << W] => [end(Ai) £ min
Æ	¹	W,Í	W	

	(𝑑W, 	− 	𝑝W,)] 

"W, "Ai Ï W, [Ai >> W] => [start(Ai) ³ max
Æ	¹	W,Í	W	

	(𝑟W, +	𝑝W,)] 

3.3. Schedule Generation Schemes for RCPSP 
Scheduling Generation Schemes (SGS) is the fundamental of most heuristic solutions 

used to solve a RCPSP [1]. There are two types of SGS, distinguished by the usage of activity-

incrementation and time-incrementation. Serial SGS employs activity-incrementation while 

parallel SGS employs time-incrementation. Our approach to solve the scheduling problem is 

based on serial SGS so we will describe it here. The concept of parallel SGS can be found in 

section 7.2 of [1]. 

Let assume that the RCPSP has n activities that need to be scheduled. Serial SGS will 

consist of n stages g so that in each stage, an activity is chosen and scheduled at the earliest 

precedence and resource-feasible completion time. At each stage g, two set of activities Sg and 

Dg are presented so that Sg includes all scheduled activities while Dg includes all activities 
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available for scheduling. One important note is that the union of Dg and Sg is not equal to the 

activities set because there might be some activities that are not available to be scheduled at stage 

g due to precedence constraints. Let 𝑅]k = Rk - ∑ 𝑟2,"2	Î	4(%)  denote the remaining capacity of 

resource k during processing t and let Fg = {Fj | j Î Sg} denote finish times set. According to [1], 

the algorithm for serial SGS is given as: 

Initialization: F0  = 0, S0 = {0}, 

For g = 1 to n do:  

 Calculate Dg, Fg, 𝑅]k(t) ( k Î K, t Î Fg) 

 Select one j Î Dg so that: 

  EFj = 𝑚𝑎𝑥;	Î	<${Fh} + pj  

  Fj = min {t Î [EFj  - pj, LFj - pj]} Ç Fg 

  rj,k £ 𝑅]k(t),  k Î K,  r Î [t, t + pj[ÇFg} + pj 

 Sg = Sg – 1  È {j} 

Fn + 1 = 𝑚𝑎𝑥;	Î	<%&!{Fh} 

 

The fake activity j = 0 is initially assigned with a completion time of 0 and is added to the 

partial schedule. At each stage the set of finish times Fg, the decision set Dg and the remaining 

capacity of resource 𝑅]k(t) are calculated. Then an activity j is chosen from the decision set. 

Activity j’s finish time is calculated by the earliest precedence feasible finish time EFj and the 

earliest resource-feasible time Fj in [EFj, LFj] [1]. 

According to [1], serial SGS always produces a feasible scheduler if the resources are 

unconstrained and the time complexity of above algorithm is O (n2 * K) 
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REHEARSAL SCHEDULING PROBLEM 

4.1. Problem Definition 
As mentioned in the introduction section, RSP is similar to RCPSP but without activity 

precedence constraints and resources’ availabilities are not fixed at processing time. An example 

of this scheduling problem is described in Table 1. Scene E1, i.e. event E1, has the duration of 90 

minutes while E2 and E3 have the duration of 60 minutes. Performers P1 and P2 have to attend 

the event E1, while the event E2 requires P1, P2, P4 and the event E3 requires P3, P4. All 

performers have submitted their availabilities during the period 01/01 – 01/05. 

 

 E1 (90) E2 (60) E3 (60) 01/01 01/02 01/03 01/04 01/05 
P1 x x  8 am - 11 am 

2 pm – 5 pm 
8 am – 11 am 
3 pm – 5 pm 

None None 8 am – 10 am 

P2 x x  8 am – 5 pm 12 pm – 1 pm None 3 pm – 5 pm 8 am – 10 am 
P3   x 2 pm – 3 pm None None 12 pm – 3 pm 9 am – 11 am 
P4  x x None 8 am – 5 pm 12 pm – 1 pm 12 pm – 1 pm 9 am – 12 pm 

 

Table 1. Rehearsal example 

 

Usually, there are more than one solution that can satisfy all the constraints in a RSP. The 

goal is to find the solution having the minimum makespan, which is the time when the last event 

finishes. An optimal solution for the above example is demonstrated in Figure 8. The timeslot 

with blue color is where the event E1 occupies. The event E2 occupies timeslot with orange 

color, while the event E3 occupies magenta timeslot. Green-color timeslots are where the 

participant is still available for any event. Schedule in Figure 6 is optimal because there is no 

other schedule that can satisfy all the constraints and has a finish time of the last event earlier 

than 01/05 10:00. 
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Figure 6. Optimal solution of RSP example 

 

The RSP can be used to solve rehearsal scheduling problems in theatre industry or group 

scheduling with the similar time requirements. To the best of our knowledge, there is no direct 

research on this particular problem. In this report, we propose three approaches to solve RSP 

using Constraint Programming, Integer Programming and serial Schedule Generation Schemes 

technique. Then we do experiment on these approaches with different test criteria. 

4.2. Constraint Programming approach 

4.2.1. Problem model 

The crucial step of this approach is to model the scheduling problem as a CSP so that a 

constraint programming solver can interpret it correctly. We observe that the original problem 

can be transformed to a CSP without losing any logic by applying the Time-Table technique 

described in section 3.2.1. More specifically, we get the list of all participants of each event and 

then based on the availability of each participant, we can calculate the possible timeslots that 
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each event can occupy. Figure 7 displays the result of the original problem after this propagation 

step.  

 

Figure 7. Time-Table propagated problem 

 

The event E1 requires P1 and P2, therefore after being Time-Table propagated, its 

possible timeslots will be [01-01 08:00, 01-01 11:00], [01-01 14:00, 01-01 17:00] and [01-05 

08:00, 01-05 10:00]. We can consider the possible timeslots of E1 as the intersection between the 

available timeslots of P1 and P2. We can calculate the possible timeslots of E2 and E3 using the 

same approach, and the final result is displayed in Table 2. 

 

 01/01 01/02 01/03 01/04 01/05 

E1 08:00 - 11:00 

14:00 - 17:00 

   08:00 - 10:00 

E2     09:00 - 10:00 

E3    12:00 - 13:00 09:00 - 11:00 
 

Table 2. Events’ possible slots after Time-Table propagation 
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After this step, each event will have a list of possible timeslots. This will guarantee that if 

an event is scheduled at one of its possible timeslots, all of its participants are able to attend. But 

it is not guaranteed that there is no overlap between events which require at least one same 

participant. In our example, the event E1 must not overlap with the event E2 because P1, P2 

participate in both events. Similarly, E2 and E3 must not overlap because they both require P4 

while E1 and E3 do not have this constraint.  

With these observations, we can model our problem (after doing Time-Table 

propagation) with a CSP as: 

o Each event consists of a list of possible timeslots     

o Events that require at least one same participant must not be overlapped. 

4.2.2. Problem solver 

At this step, we will choose a constraint programming solver to solve the above CSP 

model. There are many constraint programming solvers developed over the past years such as 

Choco 4, JaCop, Yuck or Google OR-Tools. In this report, we use Google OR-Tools [11] as our 

primary solver for both Constraint Programming and Integer Programming approaches. Below is 

the pseudo code of the problem solved by OR-Tools: 

 

Start: Do Time-Table propagation on the original problem 

For each event Ei: 

           
 

 

 

Create a time interval variable (starti, starti + di) 

For each available timeslot (tstartik, tendik) of Ei, create a Boolean 

variable efik and add the constraints:  

• starti ³ tstartik only enforced if efik is true            (4.1) 

• starti + di £ tendik only enforced if efik is true.     (4.2) 
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Add a XOR constraint of all efik variables                       (4.3) 

For each pair of events 

(Ei, Ej) that require at 

least one same 

participant: 

 

 

 

Add not overlapped constraint between (starti, starti + di) 

 and (startj, startj + dj)                                                     (4.4) 

Add objective function: Minimize max {starti + di}, i = 1, …, n                            (4.5) 

  

The challenge of this approach is how we can programmatically model the constraint of 

start time and end time of each event so that these values must be in one of the available 

timeslots. By introducing a new Boolean variable efik, we tell the solver to only enforce 

constraints (4.1)  and (4.2) if this variable is set to true. This will add m x n variables to the 

problem, where m is the average available timeslots per event and n is the number of the events. 

Constraint (4.3) will make sure that only one variable from the set of efij is set to true, then it will 

enforce the start time and end time of event i to fall into one and only one possible timeslot. 

Constraint (4.4) tells the solver that the interval of events sharing at least one same participant 

cannot be overlapped. Then we add an objective function at (4.5) to minimize the makespan of 

the schedule. The complexity of this algorithm is calculated by the variables used, which is 

derived to the above m x n expression because the number of other used variables is relatively 

small compared to this value.  

Once the problem is modeled so that the solver can understand all constraints, the heavy 

work to find the optimal solution will be loaded to the solver. Overall, constraint programming 

approach gives a good performance on RSP because the requirements of RSP fit naturally with a 

Constraint Programming model. 
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4.3. Integer Programming approach 

4.3.1. Problem model 

It is difficult to model the RSP as an integer programming problem without extra work. 

Lorraine et al. (2006) had successfully used integer programming to solve the nurse scheduling 

problem, which is another classic scheduling problem [12].  By looking into their work, we can 

have an overview of how to solve a scheduling problem using Integer Programming. 

A simple nurse scheduling problem can be described as a scheduling problem in hospital 

subject to these conditions: 

• There are three shifts in each day. 

• Each nurse is responsible for each shift and no nurse works on more than one shift 

per day. 

• During a specific period, each nurse is assigned at least two shifts. 

In their paper, Lorraine et al. studies the anesthesiology nurse scheduling problem, which 

is more complicated than the above nurse scheduling problem. In addition, the RSP is not similar 

to scheduling problem. However, we can borrow the idea of using binary variables to enforce an 

event to start at a particular time. 

With the same observation in section 4.2.1, we do Time-Table propagation on the RSP 

first. Then the original problem is transformed to a new problem that is illustrated in Figure 7. 

However, the new problem is not ready for integer programming yet. At this stage, the possible 

timeslot of each event, which is a pair of start time and end time, is still a continuous range. We 

need to do an extra step to map these continuous ranges into sets of concrete integral values so 

that an integer programming solver can understand. Basically, a timeslot is a pair of start time 

and end time, so to convert these pairs to integer we can use UNIX timestamp. UNIX timestamp 
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is calculated by the number of seconds that have been spent since January 1, 1970. We can do 

even better by converting the time value based on the minimum start time of all available 

timeslots. This can help reduce the computational space, which can boost the runtime 

performance. At this step, possible timeslot is modeled as a pair of (start, end) so that start, end is 

integral. If we minus the end time by the event’s duration and create a new pair as (start, end – 

duration) then the new pair deals with the start variable only. 

Unfortunately, these new pairs are still not ready for integer programming because not 

every integer between each pair can be a candidate of the event’s start time. Let’s assume that 

each event’s duration is a multiple of 30, and the available time submitted by each participant is 

rounded to hour or half hour. With this assumption, we divide the value of each pair by 30 then 

each integer number between each pair can be a valid start time of the event. Finally, the original 

RSP is transformed so that we can apply integer programming as: 

• Each event consists a list of integer pairs. The start time of the event will be an 

integer between a certain pair.  

• Events require at least one same participant must not be overlapped 

According to Table 1, the earliest start time of all events is 01/01 08:00 so we can use this 

value as the lower bound. We then convert all the available timeslots to UNIX timestamp, and 

minus those values by this lower bound. For example, the first available timeslot of event E1 is 

01/01 08:00 – 01/01 11:00, then after converting and subtracting, this timeslot can be re-written 

as 0 - 10,800. E1 has the duration of 90 minutes so if E1 is scheduled during this timeslot then 

the start time of E1 must be lesser than 10,800 – 90 * 60 = 5400, or E1’s start time is ranged 

between 0 and 5400. We assume that each event’s duration is a multiple of 30, so if we divide 

this pair by 1800, i.e. 30 minutes calculated in seconds, then the start time of E1 can be any 
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integer values between 0 and 3. We keep applying these steps to all available timeslots of all 

events in Table 1, then the original integer programming problem can be stated as: 

Minimize the makespan 

Subject to:  

start(E1) Î 𝑍0, start(E1) Î [0,3] v start(E1) Î [12,15] v start(E1) Î 

[192,193] 

start(E2) Î 𝑍0, start(E2) Î [194,194] 

start(E3) Î 𝑍0, start(E3) Î [152,152] v start(E3) Î [194,196] 

E1, E2 and E2, E3 are not overlapped 

Where:  

 

 

start(Ei) is the start time of event Ei, i = 1, …,3 

start(Ei) Î [x, y] means start time of event Ei is an integer value between x 

and y, inclusively 

 

4.3.2. Problem solver 

After the preparation steps in section 4.3.1, the problem can be modeled so that an integer 

programming solver can understand. The pseudo code is described as below:  

Start: 

Do Time-Table propagation on the original problem 

Convert each event’s possible timeslots to pairs of integer numbers 

LI: a large enough integer number in the search space            (4.6) 

Define objective variable objVar so that it can be minimized 

Define integer variable maxVar and then set objVar = maxVar 

For each event Ei: 

     For each possible slot (startij, endij) of Ei: 

   Create integer variable startVari 

Create Boolean variable logicalVarij 

Add two inequalities:  
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• startVari – logicalVarij * LI  ³ startij – LI                      (4.7) 

• startVari + logicalVarij * LI £ endij + LI                       (4.8) 

Add equality: ∑ 𝑙𝑜𝑔𝑖𝑐𝑎𝑙𝑉𝑎𝑟!2 		2 = 1                                                             (4.9) 

Create an integer variable maxVari in range (0, LI) 

Add equality: maxVar - startVari – di = maxVarI                                        (4.10) 

For each pair of events (Ei, Ej) that require at least one same participant: 

Create Boolean variable boolVarij 

Add two inequalities: 

• startVari – startVarj + boolVarij * LI ³ dj                                       (4.11) 

• startVari – startVarj + boolVarij * LI  £ LI - di                   (4.12) 

 

The LI constant in (4.6) is actually a “large enough” integer number so that the solver can 

interpret it as an upper bound for any computational inequality. The three constraints (4.7) to 

(4.9) are used to enforce that the start time of event Ei must be a valid integer value among its 

pairs. LogicalVarij is a Boolean variable so its value is either 0 or 1. If logicalVarij is equal to 0 

then inequalities (4.7) and (4.8) are naturally satisfied because LI is a large integer number. 

Otherwise, when logicalVarij is equal to 1 then from these two constraints we can derive that 

startij £ startVari £ endij. This inequality expression will imply that the start time of event Ei is a 

valid value. Equality (4.9) will make sure only one logicalVarij variable is set to 1, which 

enforces the start time of event Ei must be a valid value of one and only one pair. Equality (4.10) 

is used to express the fact that maxVar is the maximum value between all events’ end time. 

 Inequalities (4.11) and (4.12) are used to make sure that the processing period of two 

events that share at least one participant are not overlapping.  Again, boolVarij is a Boolean 

variable so its value is either 0 or 1. If boolVarij is equal to 0 then from (4.11) we have startVari – 

startVarj  ³ dj. This will ensure that event Ei is scheduled after event Ej is finished. (4.12) is 

naturally satisfied in this case because LI is a large enough integer number. If boolVarij is set to 1 
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then (4.12) is derived to startVari – startVarj  £ di, which refers that event Ej is happening after Ei 

is finished. Inequality (4.11) is satisfied naturally if boolVarij is equal to 1 thanks to the fact that 

LI is a large integer number. 

We can see that solving RSP using Integer Programming approach is not as simple as 

using Constraint Programming approach. With a large test input, Integer Programming approach 

will require a very large set of variables, which will affect the runtime performance. However, 

there might be different ways to model RSP as an Integer Programming problem, e.g. the way 

we model the problem above is just one of them. Thus, we can improve the performance of 

Integer Programming approach by re-modeling the problem so that the number of integer 

variables can be reduced. 

4.4. Schedule Generation Schemes based approach 

4.4.1. Brute-force approach 

As mentioned in section 3.3, SGS plays an important role in many heuristic approaches to 

solve the RCPSP.  SGS is classified into serial and parallel based on the usage of time or activity 

incrementation. The basic idea of serial SGS is at each step of the process, an activity is 

selectively chosen from the set of ready-to-schedule activities.  This approach is similar to the 

branch-and-bound technique that is described in section 3.2.2. Branch-and-bound has been used 

successfully to solve the Job Shop problem (section 3.1.2) as well as the RCPSP [13, 14].  

With the concept of serial SGS, we propose a solution to solve the RSP by scheduling 

one activity at a time. Let’s denote a timeslot, i.e. interval, as (start, end) and a time value t that 

is in this timeslot as t Î (start, end). Then we our proposed approach can be formulated as: 
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Start: Do Time-Table propagation of the original problem 

Create 2 sets of activities (events): S0 = f and D0 = {Ei}, i = 1,…,n 

For i = 1 to n: Choose an event Ei from Di 

 For each available timeslot (startj, endj) of Ei: 

  Assign each value t to the start time of Ei, t Î (starti, endi) 

  Update the available timeslots of Ek Î Di that shares at least 1 

participant with Ei. If no available timeslot for Ek then return. 

Update Si = {Ei,}, Di = Di – 1 È {Ei} 

If Di = f, save the makespan of the schedule 

Return the minimized value of all makespans 

 

     We can see that the above algorithm is similar to the serial SGS method mentioned in 

section 3.3 because both of them are based on the activity incrementation approach. The main 

difference between the two algorithms is how we assign the start time of the current chosen 

activity. It is expected because unlike a RCPSP, the resource availability of our scheduling 

problem is not a constant during processing time and there is no activity precedence. Below are 

the steps demonstrating how we apply the above algorithm to the sample mentioned in section 

4.1.  

• Step 1: Time-Table propagation (details can be found in section 4.2.1) 
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Figure 8. Time-Table propagation 

 
 

• Step 2 (i = 1):  

o E1 is selected as the next activity without any heuristics. This selection 

can cause performance issue when the number of activities is large. A 

better solution combining heuristics and bounds that can lead to better 

performance is discussed in section 4.4.2. 

o From E1’s list of possible timeslots, one is selected and the start time of 

E1 is set to this timeslot’s start time. Figure 9 displays the result after this 

step so that E1’s start time is set to 01/01 08:00. The period when E1 is 

scheduled is colored in blue. The corresponding periods of P1 and P2’s 

available time are colored in blue as well to imply that during this time 

period, both P1 and P2 are busy attending event E1. 

 



 

 34 

 

Figure 9. Brute force approach example – step 2 

 

• Step 3 (i=2, E1 starts at 01/01 08:00): 

o Event E2 is chosen as the next activity. Again, E2 is selected randomly 

because there is no heuristic. 

o E2 is set to start at 01/05 09:00, which is the start time of its only possible 

timeslot. Figure 10 displays E2’s start / end period and the corresponding 

available time of P1, P2, and P4 in orange color. 
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Figure 10. Brute force approach example – step 3 

 

• Step 4 (i = 3, E1 starts at 01/01 08:00, E2 starts at 01/05 09:00): 

o There is only one event left, so E3 is chosen as the next activity. 

o After step 1, E3 has 2 possible timeslots starting from 01-04 12:00. So 

E3’s start time is set to 01-04 12:00. E3’s duration and its corresponding 

timeslot of P3, P4 are colored in magenta in Figure 11. 

 

Figure 11. Brute force approach example – step 4 
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After step 4, we have a solution for the RSP that can satisfy all the constraints. However, 

the algorithm will not stop here. It will memorize the makespans of this solution, which is the 

end time of event E2, and then continue iterating through all the possible combinations of each 

event’s valid start time. After each iteration, if a solution is found then the minimum makespan 

will be updated accordingly. For illustration purpose, we intentionally choose event E1, E2, E3 

in order so that the current solution is optimal. In reality, it will take many iterations until an 

optimal solution is found, and the only way to prove a solution optimal is to go through all the 

iterations. 

Obviously, the current algorithm is a brute-force approach because all possible 

combinations of activities’ valid start time are considered. The complexity will be O(kn) where n 

is the number of activities and k is the number of available values that an event’s start time can 

be assigned to. In section 4.4.2 we will discuss how to improve the current approach to get better 

performance. However, it is not clear if there is a polynomial complexity solution to solve RSP 

because the problem itself is NP-hard. 

4.4.2. Improved approach 

We observe that the ultimate goal of the algorithm is to minimize the makespan of all 

feasible solutions. During the iteration process, if an activity is scheduled so that its end time is 

greater than the current smallest makespan of all feasible solutions, then it is safe to discard the 

current iteration. This bounding technique can reduce a tremendous amount of unnecessary 

iterations compared to the brute-force approach. 

Another observation is that currently the next activity chosen from the set Di of the 

algorithm is selected randomly. If somehow, we can apply a “smarter” selection then the number 

of iterations may be reduced. In this report, we use these criteria to select the next activity in 

priority order as: 

 

• Activity that has the less possibilities of start time                                     (4.13)      
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• Activity that has the greatest number of other activities sharing as least one 

participant                                                                                                    (4.14) 

• Activity that has the longest duration                                                          (4.15) 

 

Criterion (4.13) is used to limit the number of iterations as soon as possible. At a first 

glance, this criterion is not bringing much benefit because sooner or later we need to go through 

every activity’s possible timeslots. However, our approach is a “depth-first” approach, therefore 

if we consider the whole problem as a tree and each activity as node, then the less branches the 

root has the better performance the algorithm can achieve. Obviously, the criterion (4.14) is used 

to remove as many possible values of the remaining activities’ start time as possible. As 

mentioned in Section 4.2.1, once an activity is scheduled, we will update the availabilities of all 

related activities so this criterion will help reduce the search space as early as possible. Criterion 

(4.15) is used with the same purpose of the criterion (4.14) to reduce the search space as soon as 

possible. 

At this stage, our original approach has been improved using the bounding and heuristic 

techniques. We observe that during the iteration, the same subproblems are considered again and 

again. More specifically, after assigning the start time for event Ei at each iteration, we remove 

that event from the current set of unscheduled events and update the available timeslots 

accordingly. In fact, this action is similar to creating a subproblem of the current considered 

problem. If the boundary of available timeslots is small while the number of activities is big, e.g. 

schedule 20 events within one week, then the chance of revisiting the same subproblem is high. 

This leads to a new promising improvement that if we can prove the newly created subproblem 

having the same solution with one of the already considered subproblems, then we do not need to 

consider that subproblem anymore. Unfortunately, there is no known algorithm with polynomial 
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time complexity that can be used to check if two RSPs have the same solution. In our 

experiment, we apply a naïve comparison such that two scheduling problems are considered the 

same if: 

• Each has the same number of events 

• Each event E1i in problem 1 must have a corresponding activity E2i in problem 2 

so that: 

o E1i, E2i have the same available timeslots 

o E1i, E2i have the same number of events that share at least one same 

participant 

o For each event in R1i, there is an event in R2i so that the two events have 

the same timeslots. R1i, R2i is the set of all related events of E1i and E2i, 

respectively 

Obviously, the comparison above will not always return true even when the two problems 

have the same solution. But it will guarantee that once the returned result is true then the two 

problems are indeed having the same solution. Although the comparison is not ideal, it does give 

better performance when there are many activities scheduled in a short period of time. 

4.5. Solution validation 
To prove the correctness of the three approaches, we create a test program to verify if the 

solution can satisfy all constraints. The pseudo code of the program is described as follow: 
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For each event Ei:  

For each participant Pj in Ei: 

        If Pj is unavailable during the period [start(Ei), end(Ei)]: 

               Return False 

        For each event Ek that Pj participates: 

                 If Ek and Ei overlap: 

                          Return False 

 

 

(4.16) 

 

(4.17) 

Return True   

 

Code block (4.16) will verify if all related participants of an event are able to join the 

event during its period. Block (4.17) guarantees no overlap between two events that require at 

least one same participant. 

The above program can verify if a solution satisfies all the constraints; however, it cannot 

guarantee that the solution is optimal. In the Constraint Programming and Integer Programming 

approaches, we define the objective function as the finish time of the latest event and dedicate it 

to the solver. Assuming the solver is correct, the solution returned by the solver should be 

optimal. In the brute-force approach, we iterate through every possibility of the next event from 

the list of ready-to-schedule events. This method will ensure that all cases are considered. 

Besides, only one solution that has the smallest makespan is kept during each iteration so the 

final solution should be optimal. 

4.6. Benchmarks 
As stated in the introduction section, RSP is considered as a NP-hard problem so we can 

expect that the runtime for each approach will increase immensely when the size of the problem 

is getting bigger. The goal of our benchmark is to give an overview of how well these proposed 

approaches can perform with different feasible and infeasible RSPs. Feasible RSP has an optimal 
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solution while infeasible RSP does not have any solution that can satisfy all the constraints. 

Because there is no such direct research of RSP, we believe that these benchmarks are the first 

conducted on RSP.  

Obviously, the size of a RSP depends on the number of events, the scatter of participant’s 

availabilities and the number of participants of each event. Thus, we create different RSPs based 

on these criteria and monitor the runtime of each approach. For more accuracy, at each 

measuring step we create 50 RSPs randomly with the same criteria, then we use the average 

runtime that each approach performs on these RSPs as the benchmark indicator. The test 

machine has 16 GB RAM and 2.6 GHz Quad-Core Intel Core i7 CPU. 

4.6.1. Benchmark based on number of events 

In this experiment, we create RSPs with the fixed configuration as below: 

 

Total participants 20 

Available timeslot per participant 15 

Number of participants per event 5 

Project’s span 2 weeks 

Table 3. Input for number of events benchmark 
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Figure 12. Benchmark based on number of events – Feasible 

 

 

 

Figure 13. Benchmark based on number of events – Infeasible 
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As we can see in Figure 12, the Constraint Programing approach gives a superior 

performance compared to the other approaches for feasible problems. Especially, if the number 

of events is large (n = 100) then none of the Integer Programming or SGS approach can find an 

optimal solution in reasonable time, i.e. there is no optimal solution found within one hours. 

Figure 13 shows an interesting fact that for infeasible problem, Constraint Programming gives 

the worst performance.  

4.6.2. Benchmark based on availability scatter 

In this experiment, we increase the scatter of participants’ availabilities to see how well 

the three approaches can perform. In theory, the more scattering of availabilities the more time 

the program needs to run. However, if the approach has a good bounding technique then there 

should not be many differences in performance. 

 

Total events 20 

Total participants 20 

Available timeslot per participant 30 

Number of participants per event 5 

Table 4. Input for number of availabilities scatter benchmark 
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Figure 14. Benchmark based on availability scatter - Feasible 

 

 

Figure 15. Performance based on availability scatter - Infeasible 
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We can see that even when the participant’s availabilities expand over 21 days, there is 

not much difference in the computational time if the problem is feasible. This is understandable 

because all three approaches utilize the applied bounding technique. Surprisingly, Integer 

Programing gives a slightly better performance compared to Constraint Programing. For 

infeasible problem, Constraint Programming approach still performs worst. Integer Programming 

and SGS based approaches give a steady performance in term of proving a problem infeasible. 

4.6.3. Benchmark based on number of participants per event 

The last experiment is based on the average number of participants of each event. More 

participants mean more constraints are added; thus, the computational time will be increased. In 

order to get a feasible solution, we need to increase the number of timeslots as well as the 

project’s span as below: 

 

Total events 20 

Total participants 20 

Available timeslot per participant 40 

Project’s span 3 weeks 

Table 5. Input for number of participants per event benchmark 

 

The experiment gives an example of how well the Constraint Programming model can 

perform with feasible problem when the number of constraints is larger.  Starting from the value 

of 5 participants per event, both Integer Programming and SGS approaches cannot give an 

optimal solution in reasonable time. If the number of participants per events is equal to 10 then 

even the Constraint Programming approach cannot perform well. In contrast, if the problem does 
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not have any solution, then Integer Programming and SGS based approach have better 

performance. 

 

 

Figure 16. Benchmark based on number of participants per event - Feasible 

 

 

Figure 17. Performance based on number of participants per event - Infeasible 
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4.6.4. Summary 

Table 6 quantifies the performance comparison, i.e. how many percentages faster an 

approach can perform compared to other approaches, between Constraint Programming (CP), 

Integer Programming (IP) and SGS. Negative value means the approach that is being compared 

to has better performance. “N/A” means the comparison is not possible because one of the two 

compared approaches cannot find a solution with reasonable time. Columns with grey 

background color is for performance comparison conducted on infeasible problems. 

 

Criteria Variant CP/IP CP/SGS IP/SGS IP/SGS IP/CP SGS/CP 

Number of 

events 

5 2.4 9.5 6.9 50 300 166.7 

10 -2.4 46.3 50 20 440 350 

20 101.9 169.2 33.3 25 362.5 270 

50 379 285.4 -19.6 34.6 307.7 202.9 

100 N/A N/A N/A 14.9 141.4 110 

Availability 

scatter 

3 4.1 8.3 4 20 580 466.7 

5 3.8 7.7 3.7 0 620 620 

7 -4.1 33.3 39.1 20 600 483.3 

14 -3.7 3.7 7.7 0 1580 1580 

21 -13 44.9 66.7 20 2720 2250 

Number of 

participants 

per event 

2 3400 525 -82.1 15.4 330.8 273.3 

5 N/A N/A N/A 23 761.5 600 

7 N/A N/A N/A 23.1 1053.8 837.5 

10 N/A N/A N/A 21.4 1407.1 1141.8 

15 N/A N/A N/A 21.4 2107.1 1717.6 

Table 6. Quantified performance comparison in percentage 
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The benchmarks suggest that Constraint Programming approach outperforms the other 

approaches in term of running time when the problem is feasible. This is understandable because        

the characteristic of scheduling problem fits well with Constraint Programming methodology. 

However, if the RSP is large, e.g. when the number of participants per event is big enough, then 

even the Constraint Programming approach cannot solve the problem in reasonable time. This 

opens up the opportunity for further research on the RSP using techniques such as heuristic, local 

search and bounding, etc., which are successfully applied to solve the original RCPSP. 

On the other hand, if the problem has no solution then all three approaches will give 

better running time performance overall. This observation can be explained that for infeasible 

problem, an inconsistency might be found after a few constraint propagations (in case of 

Constraint Programming or Integer Programming approaches) or after a few iterations (in case of 

SGS based approach). Especially, Integer Programming and SGS based approaches will give 

better performance than Constraint Programming approach. SGS based approach can perform 

well in this case because it follows “depth-first” paradigm with heuristic, which always chooses 

the “best” next activity that can find as many inconsistencies closer to the root as possible. This 

can help eliminate any infeasible iteration earlier. Unfortunately, we do not have a good 

explanation of why Integer Programming approach can give a very good performance compared 

to Constraint Programming approach when the problem is infeasible. 

The above benchmarks are measured based on how fast an optimal solution, which 

satisfies all the time constraints and has the smallest makespan, can be found. There is possibility 

that the optimal solution found by each approach has the same makespan but “different” 

schedule. For example, if we change the start time of event E1 in Figure 6 to 01/01 14:00 then 

the makespan of the solution is not changed, thus remaining optimal. To this point, we might 

consider other factors of result quality that can help decide which optimal solution found by each 
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approach is actually better. One promising factor is to minimize the number of consecutive 

events for each participant. However, it is not reasonable to judge the result of each approach 

based on consecutive events without adding this requirement to the problem. 

If we really want to consider the factor of minimizing consecutive events, we can add it 

to the definition of the problem as a “soft” constraint, which can be violated if necessary. Then 

the goal of the original RSP is updated to find the solution with minimized makespan and 

minimized number of consecutive events. This modification of the original RSP with the 

additional soft constraint can be solved using the same approaches that we have discussed. 

Details of how to use soft constraint in scheduling problem can be found in  [2], [15].
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CONCLUSION 

The rehearsal scheduling problem studied is similar to the original resource-constrained 

project scheduling problem. However, the rehearsal scheduling problem has different 

requirements such as no precedence constraints and resources’ availabilities are not fixed during 

processing time. Thus, this problem requires different approaches to find the optimal solution. 

Three approaches are proposed in this report to solve rehearsal scheduling problem including 

Constraint Programming, Integer Programming, and Schedule Generation Schemes. 

Among the three approaches, Constraint Programming has the superior performance. 

However, this benchmark does not mean that Integer Programming is not as powerful as 

Constraint Programming. The nature of rehearsal scheduling problem fits better with Constraint 

Programming paradigm, thus resulting in better performance. Flexibility is a characteristic of 

Integer Programming in problem modeling and it is proven through the Integer Programming 

approach. 

We also introduce the brute-force approach based on Schedule Generation Schemes 

technique. Without heuristic and bounding, the brute-force approach’s performance is worse than 

the Integer Programming approach’s performance. The heuristic to choose next activity is an 

important factor to increase performance, thus additional research in this area could be done to 

further enhance performance. Although the dynamic programming implementation does not 

improve the overall performance tremendously, it gives us an opportunity to establish a 

promising improvement. We believe that by giving a better comparison between same 

subproblems, the algorithm can reduce the number of iterations and increase overall outcome.
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