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ABSTRACT

Word Embedding Techniques for Malware Classification

by Aniket Chandak

Word embeddings are often used in natural language processing as a means to

quantify relationships between words. More generally, these same word embedding

techniques can be used to quantify relationships between features. In this paper, we

conduct a series of experiments that are designed to determine the effectiveness of word

embedding in the context of malware classification. First, we conduct experiments

where hidden Markov models (HMM) are directly applied to opcode sequences. These

results serve to establish a baseline for comparison with our subsequent word embedding

experiments. We then experiment with word embedding vectors derived from HMMs—

a technique that we refer to as HMM2Vec. In another set of experiments, we generate

vector embeddings based on principal component analysis, which we refer to as

PCA2Vec. And, for a third set of word embedding experiments, we consider the well-

known neural network based technique, Word2Vec. In each of these word embedding

experiments, we derive feature embeddings based on opcode sequences for malware

samples from a variety of different families. We show that in most cases, we obtain

improved classification accuracy using feature embeddings, as compared to our baseline

HMM experiments. These results provide strong evidence that word embedding

techniques can play a useful role in feature engineering within the field of malware

analysis.
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CHAPTER 1

Introduction

In this paper, we classify malware samples by applying machine learning techniques

to engineered features. The feature engineering techniques themselves involve machine

learning, that is, we apply machine learning to generate features. The motivation here

is that machine learning can possibly derive more useful features from the available

data, and hence classification based on such features may perform better than using

the raw features. In this research, we study the effectiveness of such machine learning

based feature engineering in the context of malware classification.

Malware is malicious software designed with the intention to harm the computer

system or obtain unauthorized access to a computer system [1]. Malware exists on

virtually all computer systems, including laptops, smartphones, and software services

such as email and internet banking. In recent years, the increase in the number

and importance of such computing systems has created many new opportunities for

malware-based attacks. This has led to the development of a variety of advanced

malware types.

Research aimed at improved detection and classification of malware is a critical

topic in information security. Malware samples that belong to the same family should

show some similar characteristics and behavior. Classifying malware into its family is

a fundamental problem in malware analysis.

Existing approaches to detect malware include behavior-based and signature-

based detection. These approaches have various advantages and disadvantages [2]. For

example, signature-based detection is relatively fast and efficient, but it fails to detect

malware that has not been seen before, and many obfuscation techniques can defeat

signature scanning. On the other hand, behavior-based detection can detect new

malware, but such approaches are often costly and have unacceptable false positive
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rates. Recent advances in learning techniques and the availability of large datasets has

resulted in significant improvement over traditional malware detection approaches.

In this research, we consider the use of word embedding techniques based on

opcode features for malware classification. We consider embedding techniques based

on hidden Markov models (HMM) [3], principal component analysis (PCA) [4], and

the neural network based technique, Word2Vec [5]. We refer to the techniques based

on HMM and PCA as HMM2Vec and PCA2Vec, respectively. For all of the word

embedding techniques considered, we generate the embeddings based on opcode

sequences, and we experiment with a substantial malware dataset that includes

samples from seven different malware families. For each embedding technique, we

also consider an additional feature engineering step, where PCA is used to reduce the

dimensionality of the feature embeddings prior to the classification step. We refer

to this method as 𝑘-PCA where 𝑘 represents the dimension of the reduced feature

vectors. In all cases, for classification, we experiment with 𝑘-nearest neighbors (𝑘NN),

multilayer perceptrons (MLP), random forest (RF), and support vector machines

(SVM).

The remainder of this paper is organized as follows. In Chapter 2, we provide

background on malware detection and the various machine learning techniques used in

this research. In Chapter 3 we discuss our dataset and experimental results. Finally,

Chapter 4 concludes this report, and we consider some directions for future work.
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CHAPTER 2

Background

Malware is one of the most alarming and crucial threats existing in the era

of the internet. As per the Internet Threat Security Report 2019 [6], there is an

increase of 25% compared to the previous year in the number of attack groups using

malware to disrupt the business of the organization. As per California Data Breach

Report 2016 [7], malware has contributed to 54% of breaches and 90% of total records

breaches which accounts for 44 million records breach in the year 2012–2016. As

per the Kaspersky Security Statistics 2017 [8], 29.4% of personal computers suffer a

minimum of one malware attack over the year. Overall statistics imply that malware

are increasing rapidly in terms of momentum, quantity, and variation.

Various factors like large volume, obfuscation, detection speed, detection of the

virtual environment make it difficult to analyze and detect malware [9]. Every day,

thousands of new malware are generated and it is difficult to analyze the enormous

volume of data. Obfuscation is a technique used by malware creators to make it difficult

to read the content of malware code, e.g., by adding a dead code [9]. Advancement

in malware creation has reduced the speed of malware detection. Malware can cause

damage if detection is delayed. Malware detection plays an important role in the

information security domain because of these challenges.

Many companies and software products are dependent on conventional methods

to detect malware. These methods can be classified into two types, signature-based

detection, and behavioral-based detection. Antivirus companies use a signature-based

method to detect malware and protect legitimate users from attack [2]. The signature-

based method is based on the identification of a unique pattern in a file [10]. It refers

to the database of existing known malware for pattern matching to classify a file as

malware [2]. Signature extraction is a complex activity because it involves manual
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intervention. In this method, detection is faster but can be easily bypassed using

obfuscation. Obfuscation is adding a dead code into the file. This method fails to

detect new malware which are not part of the database.

Another method, behavioral-based detection is based on identifying the actions

performed instead of a pattern [2]. When the file performs any action, which does not

fall under normal behavior, this method triggers an alarm for the file. This method

can detect obfuscated malware, however, the speed of detection is slower because of

the complexity to detect actions. Limitations of conventional methods can be defeated

with machine learning based solutions. In the following section, we describe previous

work done in the malware detection and classification using machine learning.

2.1 Previous Work

Effectiveness of the machine learning algorithm not only depends on the task

at hand but also the characteristics of features. In malware classification, a file can

be represented with features associated with it such as opcode, bytecode, API calls,

and permissions, etc. Features can be used to perform analysis using a compatible

machine learning algorithm. Opcode has been used to detect the malware based on a

count of opcode in the file [11]. An opcode is a machine-level instruction of a program.

Support vector machine trained on 20 most frequently used opcodes as a feature with

100 malware and benign sample to achieve a 96.67% success rate.

In [12], the authors experimented with 67 malware and 20 non-malicious files and

extracted opcodes from these files. Statistics in the experiments conclude that opcodes

can be used as a feature to differentiate between malware and non-malware [12].

Another research in [13] achieved good results by using API calls as a feature. API can

be defined as functionality or action performed by a program. They experimented with

3536 malicious programs and extracted API features using a sandbox deriving accuracy
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as 0.87 in malware detection [13]. Extracting API calls from any file is a difficult task

as compared to extracting opcode. As the time efficiency is an important factor in

designing malware detector, the opcode is a better choice as a feature compared to

API calls.

Another research in [14] used opcode sequence as a feature for malware detection.

Experiments in the research consider 𝑛-gram opcode sequence with values of 𝑛 = 2, 3, 4.

They introduced the Markov blanket for feature selection from the large 𝑛-gram feature

set. Mutual information value is used for selecting the feature and reduced feature

size by 99%Ȧfter feature selection, classifiers trained on hidden Markov model for

five malware families contributing to 1200 malware files and 194 benign files. They

achieved 99% precision and 98% sensitivity.

There have been researches in feature engineering using machine learning tech-

niques. Word2Vec is used for feature extraction for malware [15]. In this research,

malware is treated as a language for semantic analysis using language modeling tech-

niques. They used the Word2Vec model to extract contextual information from the

opcode sequence of malware. Learned contextual information is used as a feature

for classification using 𝑘NN. Distance between vectors is calculated using the word

movers distance algorithm in 𝑘NN classification. This method achieved 95% accuracy

for 9 malware families. The research concludes that word embedding techniques such

as Word2Vec are effective in understanding the contextual information in malware

and word embeddings act as an effective feature for classification. In this research, the

author does not consider classification methods other than 𝑘NN, also this research is

focused on language modeling using Word2Vec and does not explore other language

modeling techniques.

Another research in [16] used Word2Vec to generate the feature vector. The

opcode sequence is used for training the Word2Vec for feature extraction. A deep
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neural network is trained using features for malware classification. The proposed

method considers large number of opcodes in the range 50 to 200 and vector embedding

of length in the range 250 to 750. Binary classification experiments are performed

on 1200 benign and 1200 malicious samples. Proposed experiments can be further

extended to cases with less number of opcodes and shorter embedding length. The

research shows that malware can be treated as a language for semantic analysis.

In [17], the proposed method uses a similar approach based on Word2Vec with an

interesting combination of TF-IDF. The sequence of API syscall is used as a feature in

the research. Word2Vec embeddings represent contextual information of feature and

TF-IDF vector represents relevancy of feature. In the proposed method, Word2Vec

embeddings of the feature are multiplied by the TF-IDF weight of respective features.

This additional step makes contextual information stronger for a more relevant API

syscall. Further, this information is used to perform classification using 𝑘NN, RF, and

SVM. The limitation of the proposed solution is the use of dynamic features.

Word2Vec embeddings are used as a feature for training the BLSTM [18]. Bi-

directional LSTM is improved version of LSTM [19]. The experiments achieved good

accuracy for malware detection. In [20], the author proposed the word embedding

method based on the graph. In this method, the graph is generated using opcode

information. This graph is projected into vector space to generate word embeddings.

In the classification task, graph generation shows slower performance.

In [21], the author states that word embedding techniques based on traditional

machine learning methods are comparable to a neural-network approach. Their work

shows that word embeddings can be generated using a matrix of pointwise mutual

information (PMI) of the respective word and principal component analysis (PCA).

In this research, we experiment with a similar approach based on the PMI matrix for

generating word embeddings for malware.
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In the survey of related work, we understood that opcode acts as a good feature

in malware classification. We learned that machine learning techniques based on word

embedding can be used for feature engineering. However, there are no relevant studies

based on HMM models to extract word embeddings.

2.2 Background on Machine Learning Techniques

In this section, we present various machine learning techniques that are used

in the experiments discussed in Chapter 3. We introduce HMMs and PCA, which

form the basis for the word embedding techniques that we refer to as HMM2Vec and

PCA2Vec, respectively. Finally, we introduce four classification techniques used in

our experiments.

We also discuss HMM2Vec, PCA2Vec, and the neural network based word

embedding technique, Word2Vec, in detail. For our experiments in Chapter 3, we use

this three word embedding techniques along with other techniques to generate features

vectors. Feature vectors are used in the classification experiments for comparison.

2.2.1 Hidden Markov Models

Hidden Markov model (HMM) is a machine learning model based on a sta-

tistical Markov model representing the probability distribution on the observation

sequence [22]. HMM is a discrete hill-climbing algorithm represented using initial

state probabilities, observation probabilities in hidden states, and state transition

probabilities. Information related to the working of hidden Markov model, applications,

and algorithm is mentioned in [22], which include detailed algorithms or Rabiner’s

classic paper [23].

2.2.2 Principal Component Analysis

Principal component analysis (PCA) is a machine learning technique usually used

in dimensionality reduction problems [4]. Trained PCA represents the eigenspace
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where original data can be projected. This technique does not eliminate any feature

but packs the entire feature in a more concentrated form with fewer dimensions. More

information on PCA is mentioned in [4] and also to understand the math in detail

behind the PCA refer [24]. The discussion at [25] also provides more insight into PCA.

2.2.3 Word Embedding Techniques

Word embeddings are often used in natural language processing as they provide

a way to quantify relationships between words. Here, we use word embedding to

generate higher-level features for malware classification.

In this section, we discuss three distinct word embedding techniques. First, we

consider word embeddings derived from trained HMMs, which we refer to as HMM2Vec.

Then we consider a word embedding technique based on PCA, which we call PCA2Vec.

Finally, we discuss the popular neural network based technique Word2Vec.

2.2.3.1 HMM2Vec

We will discuss one simple example before jumping to word embedding, where

we consider the letters instead of words and will call this approach as Letter2Vec.

HMM model represented with three matrices 𝐴, 𝐵, and 𝜋 which represents hidden

state transition probabilities, observation probability distribution in hidden states and

initial state probabilities respectively with row stochastic property. Notation-wise, 𝑁

represents the number of hidden states, 𝑀 represents count of distinct symbol in

observation, and length of observation symbol is represented by 𝑇 . Users can define

the value of 𝑁 whereas 𝑀 and 𝑇 are decided by the training data.

Consider the experiment where we train the HMM on English text with each letter

as an observation symbol and ignore the case-sensitivity and characters other than

alphabetical letters. Thus 𝑀 = 27 (letters plus word-space), and we choose 𝑁 = 2

hidden states, and 𝑇 = 50,000 length of observation sequence. Table 1 represents 𝐵ᵀ
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Table 1: Initial and Final 𝐵ᵀ

Observation Initial Final

a 0.03735 0.03909 0.13845 0.00075
b 0.03408 0.03537 0.00000 0.02311
c 0.03455 0.03537 0.00062 0.05614
d 0.03828 0.03909 0.00000 0.06937
e 0.03782 0.03583 0.21404 0.00000
f 0.03922 0.03630 0.00000 0.03559
g 0.03688 0.04048 0.00081 0.02724
h 0.03408 0.03537 0.00066 0.07278
i 0.03875 0.03816 0.12275 0.00000
j 0.04062 0.03909 0.00000 0.00365
k 0.03735 0.03490 0.00182 0.00703
l 0.03968 0.03723 0.00049 0.07231
m 0.03548 0.03537 0.00000 0.03889
n 0.03735 0.03909 0.00000 0.11461
o 0.04062 0.03397 0.13156 0.00000
p 0.03595 0.03397 0.00040 0.03674
q 0.03641 0.03816 0.00000 0.00153
r 0.03408 0.03676 0.00000 0.10225
s 0.04062 0.04048 0.00000 0.11042
t 0.03548 0.03443 0.01102 0.14392
u 0.03922 0.03537 0.04508 0.00000
v 0.04062 0.03955 0.00000 0.01621
w 0.03455 0.03816 0.00000 0.02303
x 0.03595 0.03723 0.00000 0.00447
y 0.03408 0.03769 0.00019 0.02587
z 0.03408 0.03955 0.00000 0.00110

space 0.03688 0.03397 0.33211 0.01298

of trained HMM [26], Suppose that we represent a letter using the corresponding row

of the converged matrix 𝐵ᵀ in the last two columns of Table 1. Suppose that for a

given letter ℓ, we define its Letter2Vec representation 𝑉 (ℓ) to be the corresponding

row of the converged matrix 𝐵ᵀ in the last two columns of Table 1. Then, for example,

𝑉 (𝑎) = (0.13845, 0.00075) 𝑉 (𝑒) = (0.21404, 0.00000)

𝑉 (𝑠) = (0.00000, 0.11042) 𝑉 (𝑡) = (0.01102, 0.14392)

(1)

These embedding can be used to calculate the cosine distance between the vectors.
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The cosine similarity of vectors 𝑋 and 𝑌 is given by

cos(𝑋, 𝑌 ) =

𝑛−1∑︁
𝑖=0

𝑋𝑖𝑌𝑖⎯⎸⎸⎷𝑛−1∑︁
𝑖=0

𝑋2
𝑖

⎯⎸⎸⎷𝑛−1∑︁
𝑖=0

𝑌 2
𝑖

Where 𝑋 = (𝑋0, 𝑋1, . . . , 𝑋𝑛−1) and 𝑌 = (𝑌0, 𝑌1, . . . , 𝑌𝑛−1) are the vectors. As the

cosine similarity represents the cosine angle between the vector, a value closer to 1

represents a similar vector and vice versa. Here if we see, for the letter embedding in

equation (1), vowels “a” and “e” are close as cos(𝑉 (𝑎), 𝑉 (𝑒)) = 0.9999 whereas vowel

“a” and the consonant “t” are apart as cos(𝑉 (𝑎), 𝑉 (𝑡)) = 0.0817. These results show

that letter embedding carries important information related to the letter. Similar to

Letter2Vec embedding, HMM can be trained on observation sequence consisting of

words and define the embedding using the resulting 𝐵 matrix.

While HMM2Vec is possible to train there are some limitations to training. The

most critical limitation is as HMM is based on a Markov model of order one, therefore

the resulting vectors of HMM will have limited context information. The state of the

art approach of Word2Vec is trained on data corresponding to 𝑀 = 10,000, 𝑁 = 300,

and 𝑇 = 109, and training HMM would be difficult because of the order of 𝑁2𝑇 work

in Baum-Welch re-estimation.

2.2.3.2 PCA2Vec

Another technique in this research for generating word embedding is to apply

PCA on a special matrix. This special matrix used is constructed based on pointwise

mutual information (PMI) using window size 𝑊 . To construct a PMI matrix, we

calculate 𝑃 (𝑤𝑖, 𝑤𝑗) for all pairs of words (𝑤𝑖, 𝑤𝑗) that occur within a window 𝑊 of

each other within out observation sequence dataset. In the process compute 𝑃 (𝑤𝑖) for
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each individual word 𝑤𝑖. Then we define the PMI matrix as

𝑋 = {𝑥𝑖𝑗} = log
𝑃 (𝑤𝑗, 𝑤𝑖)

𝑃 (𝑤𝑖)𝑃 (𝑤𝑗)

We represent column 𝑖 of 𝑋, denoted 𝑋𝑖, as the feature vector for word 𝑤𝑖

Next step is to perform PCA training on these 𝑋𝑖 feature vectors, and then project

the feature vectors 𝑋𝑖 onto the resulting eigenspace. When projecting the feature

vector into eigenspace, length 𝑁 of final feature vector will be decided by choosing

the 𝑁 dominant eigenvalues. Similar properties of these embedding vectors is shown

in [27] and also some research claims [28] that eliminating eigenvectors with dominant

eigenvalues is beneficial to gain more information in embedding vectors. More details

on using PCA to generate word embeddings can be found in [28] and [27].

2.2.3.3 Word2Vec

Word2Vec is a famous word embedding technique based on a shallow neural

network which can be used for embedding any feature into a high-dimensional space.

After the training of neural network, words that are more similar in context will

be close to each other compared to words that are not similar in context. Another

surprising thing about these embedded vectors is that they hold algebraic property.

For example, according to [5], if we let

𝑤0 = “king”, 𝑤1 = “man”, 𝑤2 = “woman”, 𝑤3 = “queen”

and we assume 𝑉 (𝑤𝑖) to be the Word2Vec embedding of 𝑤𝑖, then it is observed

that 𝑉 (𝑤3) is closest to
𝑉 (𝑤0)− 𝑉 (𝑤1) + 𝑉 (𝑤2)

And the closeness is defined by the cosine similarity between the vectors. Word2Vec

and HMM2Vec hold similarity in the ways it is being used. In both cases, we are not

interested directly in the model itself but rather in the learning of the model, i.e., we

are more interested in model representation after training.
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A general discussion of Word2Vec can be found in [29] and a good introduction is

given in [30]. The original paper describing Word2Vec is given in [5] and improvements

on original implementation are given in [31].

2.2.4 Classifiers

Features generated by word embedding techniques are used to classify malware

into the respective family. Machine learning based classifiers can be used to analyze

the quality of generated features. There are many existing machine learning based

classifiers. In the research presented in this paper, we consider four different classifiers,

namely, 𝑘-nearest neighbors (𝑘NN), multilayer perceptron (MLP), random forest (RF),

and support vector machine (SVM). Experiments discussed in Chapter 3 use these

classifiers.

2.2.4.1 𝑘-Nearest Neighbors

One of the simplest machine learning techniques is 𝑘-nearest neighbors where

classification is based on the vote of nearest 𝑘 samples in training data. The distance

measure formula can be Euclidean distance, Manhatten distance or any other distance

formula. This is also a lazy machine learning technique as it does not involve any

training phase but at the same time, more training samples make the scoring phase

slower. More information on 𝑘NN can be found in [26].

2.2.4.2 Random Forest

Random forest (RF) is the technique used to overcome the overfitting problem

in the decision tree by generalizing the decision tree algorithm. An RF consists of

multiple decision trees using subsets of features and samples and uses the majority

vote of decision trees to make a final decision on classification. RF and classification

using RF are discussed in more detail in [26] and [32].
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2.2.4.3 Support Vector Machine

Support vector machine is the type of supervised learning method whose goal is

to learn hyperplane to separate the input labeled data. This separating hyperplane

is capable of maximizing the separation between classes and can work in higher

dimensional space with the help of a kernel trick. More information on support vector

machines and the kernel are given in [26]

2.2.5 Multilayer Perceptron

Multilayer perceptron (MLP) is a feedforward neural network and is one of the

simplest neural network which can be used for classification and regression [33]. It

consists of an input layer, an output layer, and multiple hidden layers. It learns the

best value for weights in those layers to minimize the error. More details on the

architecture and working of neural networks are given in [33] and [26]

2.2.5.1 Last Word on Classification Techniques

MLP and SVM are related as they share some similarities in the approach they

work. Both of them are capable of creating nonlinear decision boundaries as in SVM

nonlinear kernel can be used whereas MLP learns the non-linearity using the data.

This implies MLPs have an advantage as there is no need to specify correct kernel

and model can learn that based on data. On the other hand, MLP requires more

computation and data to train as it has more things to learn than comparable SVM.

Another observation is the similarity between 𝑘NN and RF. They both are the same

in terms of algorithm based on neighbors but there is a structural difference in both

the approach to look at neighbors [26].

Thus, considering the similarity we expect that 𝑘NN and RF to show similar

results. Also, SVM and MLP should be closely related in terms of results. This

relation can be used for a sanity check of experiments. If the results for SVM and
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MLP have a significant difference then we should investigate experiments further. On

the other hand, if the results are significantly different for SVM and RF then it should

not raise the same concern.
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CHAPTER 3

Experiments and Results

In this chapter, we explain malware families considered in the research. Also, we

briefly discuss the dataset, machine learning techniques used for feature extraction

and classification.

3.1 Dataset

Malware families in Table 2 represent the dataset used for the experiments in this

study. In this research, 1000 samples are randomly selected from each of these families

to keep balance in the dataset and considers 7 malware families making 7000 samples

in total. These families have been used in many recent studies, including [34] and [35],

for example. Malware families in Table 2 are of different types. We will briefly discuss

each of these families used in our experiments.

Table 2: Malware Families

Family Type Samples

BHO Trojan 1396
CeeInject VirTool 1077
FakeRean Rogue 1017
OnLineGames Password stealer 1508
Renos Trojan downloader 1567
Vobfus Worm 1107
Winwebsec Rogue 2302

Total — 9974

BHO — Malware in this family are capable of a range of malicious actions. These

actions can be specified by attacker [36].

CeeInject — Malware in this family are designed to avoid detection. Therefore many

families use it as a shield to avoid detection. For example, CeeInject can be used
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to obfuscate a bitcoin mining client, making it possible to be installed on the

user’s system without their knowledge or consent [37].

FakeRean — Malware in this family shows fake issues in a user’s system and ask

them to pay to clean the system [38].

OnLineGames — Malware in this family are used to steal information such as login

credentials of a user for online games and their keystroke activity [39].

Renos — Malware in this family states that the system has spyware and ask a user

to pay money to remove the mentioned spyware [40].

Vobfus — Malware in this family damages user’s computer by downloading other

malware and tweak the system configurations that can not be restored easily by

cleaning the downloaded malware [41].

Winwebsec — Malware in this family acts as an antivirus for the user’s system and

shows false information that the device has been compromised and asks a user

to pay money to clean the system [42].

3.2 Data Pre-processing

Malware samples in our dataset are executable files in raw form. Executable

malware samples are disassembled using objdump to extract features. Objdump is a

part of GNU Binutils in Linux which can be used to disassemble the executable. We

disassembled 7000 malware samples to extract the sequence of an opcode from the

executable file. A large number of distinct opcodes are present in disassembled code.

Considering all opcodes in experiments do not add value and increases the overhead

in the training of machine learning models. There are more than 200 different types

of opcodes and it is not efficient to use all the opcodes in the experiment. Previous

research in [11] considered the top 20 opcodes in malware classification. We calculated
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the top 20 opcodes in our dataset based on frequency. Based on the those, the opcode

sequence is filtered for 7000 samples. Figure 1 shows the top 20 opcodes and their

percentage. It contribute to 69.8% of the total opcodes.
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Figure 1: Top 20 Opcodes

Table 3: Top Opcode Percentage

Opcode Percentage

Top 10 53.4%
Top 20 69.8%
Top 30 78.3%
Top 40 85.1%
Top 50 89.5%
Top 60 92.7%
Top 70 95.4%
Top 80 97.6%
Top 90 98.5%
Top 100 98.9%

We conducted binary classification experiments discussed in Section 3.3.5.1 with

the top 20 and 30 opcodes. Figure A.19, and A.20 represents experiment result for
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a model trained on Renos family and tested against Onlinegames family. Results

show that there is no significant improvement in using the top 30 opcodes over top 20.

Based on these experiments and use of the top 20 opcode in [11], we select the top 20

opcodes.

3.3 Feature Engineering

In this section, we discuss the experiment for feature engineering using machine

learning. The features are used as input for classifiers discussed in Section 2.2.4. We

use multiple machine learning techniques to model the features for malware samples

in our dataset. The focus of this section is to explain experiments for HMM2Vec,

PCA2Vec, and Word2Vec. It also discusses the technique to reduce the dimension

of features using PCA based pipeline, referred to as 𝑘-PCA. To compare the results

of the proposed method, a simple baseline HMM score approach is used. We expect

the proposed technique based on word embedding to perform better than the baseline

approach.

3.3.1 HMM Score

First, we consider experiments based on HMMs and opcode sequences. We choose

these HMM-based experiments for the baseline approach for comparison. The opcode

feature for training HMM has shown good results in many studies [43, 44, 45, 46, 47].

In this experiment, we train the HMM model for 7 families. When training the HMM

model for given family, the observation sequence is generated by appending 10 random

samples. To avoid the convergence at local maxima, HMM is trained 10 times with

different initial values of 𝐴 and 𝐵 matrix to select the best model.

To create a feature vector, 500 random samples from each family are scored

using the HMM models. These scores from 7 HMM models form a feature vec-

tor. The position of score from a specific HMM model is fixed in the feature

18



vector and does not change across samples. The feature vector will be repre-

sented as <BHO score, CeeInject score, OnLine Games score, Renos score,

Winwebsec score, FakeRean score, Vobfus score>. Here we generated 3500 la-

beled samples (500 from each family) with a feature vector of length 7.

3.3.2 HMM2Vec

Another technique we use for feature extraction is the hidden Markov model.

To train the hidden Markov model, an observation sequence and a number of states

parameter are required. The opcode sequence is treated as an observation sequence

in the HMM training. The remaining training parameters for HMM and respective

values are given in Table 4. The complete process of training the HMM2Vec is shown

in Figure 2.

Table 4: Parameters in HMM Training

Parameter Description Value

𝑇 Length of observation sequence 500 to 200000
𝑁 Number of states 2
𝑀 Number of observation symbol ≤ 20

Figure 2: HMM2Vec Feature Generation
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3.3.2.1 Adaptive Random Restart in HMM

HMM is a discrete hill climb algorithm. Therefore HMM training can sometimes

converge at local minima. To avoid convergence at local minima, HMM can be trained

from multiple starting points on hill, i.e., in our case with different initialization of

𝐴, 𝐵, and 𝜋 matrix. From those multiple initialization, consider the model which

reached the highest point on the hill and discard other models. This method is called

as random restarts in HMM training. In this method, random restarts represent

the number of models trained from different initialization. It is usually observed

that shorter observation sequence requires more random restarts compared to longer

observation sequence. Also, random restarts for longer observation sequence will take

more time to train, which is unnecessary if convergence is achieved earlier. To address

this issues, we implemented adaptive random restarts to ensure model convergence

in training. Adaptive indicates that a number of random restarts is decided based

on the length of the observation sequence. Table 5 represents the number of random

restarts based on length when training HMM.

Table 5: Number of Random Restarts

Observations Restarts

> 30000 10
10000-30000 30
5000-10000 100
<500 500

3.3.2.2 Code Details

Hmmlearn python library is used for training the HMM. It requires valid observa-

tion sequence represented as a sequence of numbers in range 0 to |𝑉 | − 1, where |𝑉 |

is the number of the distinct observation symbols, and each number exist at least

once in the observation sequence. The constraint in the library is to map observation
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symbol in 𝐵 matrix column with two dimensional array in python, for example, the

0th column represents state probabilities for observation symbol “0”. To satisfy the

constraint of the library with opcode sequence, it is required to map opcode with

number with help of mapping.

The opcode to digit mapping is not static for all observation sequences, i.e., we

generate new mapping for each observation sequence. Every sample does not have

all of the 20 opcodes. In cases, when opcode is absent in the observation sequence,

the use of static mapping will invalidate the observation sequence constraint. Hence

same static mapping can not be used for all samples. Consider static mapping is used

and ADD is mapped with number 3 and a sample in the dataset does not have the

ADD opcode, therefore number 3 will be missing in the observation sequence. This

observation sequence is invalid for hmmlearn training as per the constraint discussed

earlier. Hence we generate new mapping for each sample to represent opcode sequence

as a sequence of numbers in range 0 to |𝑉 | − 1.

3.3.2.3 Parallel Restarts in Hidden Markov Model

In this research, HMM is used to train around 7000 models. Training the HMM

is a computationally expensive. Adding the overhead of random restart on training

increases the execution time. All the random restart instances of training the HMM

are independent of each other. Available libraries to train the HMM do not consider

the parallel training of random restarts. We implemented the parallel version of HMM

training, which trains multiple models in parallel based on available CPU cores in

the system. The multiprocessing module in python is used to leverage the multiple

processors available in the system. Figure 3 shows that the parallel approach improves

the execution time for more random restarts compared to a sequential approach. The

improvement depends on the number of CPU cores and our experiment shows the
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parallel execution is 4 times faster with 8 core CPU than the serial execution. Initially,

the graph shows that the parallel approach is slower than the serial for small values

of the random restart. The reason is, overhead of dividing the task on CPU and

collecting back the results is more than execution itself for a few random restarts.

Figure 3: Parallel vs Serial Random Restarts

3.3.2.4 Vectorization of HMM

This step involves generating a feature vector from HMM which is consistent

across all the samples. To maintain consistency in a feature vector, a position in

the feature vector is fixed for a given feature. Any information from 𝐴 matrix or 𝐵

matrix in vectorization have a fixed position in a feature vector, for example, the

observational probability of MOV opcode in state 0 take a fixed position in feature

vector for every sample.

There are two challenges in maintaining consistency. First, the format of the

𝐵 matrix is not consistent across all the models, i.e., trained HMM model can have

different dimensions as a value of 𝑀 is not fixed for all samples. Also, the order of

columns in 𝐵 matrix is inconsistent, i.e., column number for given opcode is not fixed

𝐵 matrix. Second challenge is unknown state in the HMM as per the term “hidden.”

The MOV opcode in can converge in either state 0 or state 1 in a given sample.
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To solve these challenges, our HMM model vectorization code incorporates logical

steps. The first is to swap the rows in 𝐵 matrix if required to maintain consistency in

the state. We considered a specific opcode for which there is significant convergence in

one of the states. For every sample, if that opcode has convergence in state 0 then we

do not swap the state in the respective HMM model. If the matrix has convergence in

state 1 (another state) we swapped the rows in 𝐴 and 𝐵 matrix. After swapping the

convergence is consistent in state 0.

To solve the second challenge, we maintained the fixed mapping of opcode and

position in the feature vector. This mapping is the same throughout all the experiments

and does not change for any sample. This mapping is used in vectorization of the 𝐵

matrix. For the cases, when 𝐵 matrix has dimension less than 20, i.e., not all the

opcodes are present in the observation sequence, 0 is appended.

3.3.2.5 Results for HMM2Vec Versions

Three different versions of HMM2Vec considered are plain HMM with no random

restarts and no state swap, HMM with state swap and without 𝐴 matrix, and HMM

with random restarts. SVM based classification experiments were conducted on these

versions of feature vector with 𝑘-PCA reduction. Figure A.21, A.22, and A.23 in the

appendix represent the confusion matrices for the experiments. Experiment results in

0.79, 0.80, and 0.90 accuracy respectively for previously mentioned versions. It shows

that 𝐵 matrix does not contribute to feature and removing 𝐵 matrix from vector does

not reduce the accuracy. Also, the swapping states does not improve accuracy in a

considerable amount. The reason can be a high correlation of features within states

and relation is learned by the machine when classifying.

23



3.3.3 Word2Vec

Word2Vec is another technique used in this research for feature engineering.

Word2Vec is most popularly used to learn word embedding with the help of the

shallow neural network. In this experiment, Word2Vec is trained using the opcode

sequence. After training the Word2Vec model, the feature vector is generated by

appending opcode embedding. If the opcode is missing in the observation sequence,

zero vector is appended, for example, append two zeros in feature vector for missing

opcode when the length of the embedding vector is 2.

To keep it consistent with HMM with two states, Word2Vec with the length of

embedding vector as 2 and window size as 10 is trained. We vectorize the trained

Word2Vec model by appending the embedding of opcodes in feature vector. The

length of this feature vector depends on the length parameter in the training of the

Word2Vec model.

Figure 4: Word2Vec Feature Generation

3.3.3.1 Code Implementation

For training Word2Vec, we used the gensim module in python [48]. Gensim allows

us to specify parameters such as window, size of embedding vector, and underlying

training algorithm. Continuous bag of words (CBOW) and skip-gram are options for

training algorithms in Word2Vec and the default training algorithm in the library is

CBOW. In our experiments, we use default CBOW for training Word2Vec.
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3.3.4 PCA2Vec

PCA2Vec is another technique used in this research for feature engineering. PMI

matrix of 20× 20 dimensions is calculated as our observation has a maximum of 20

distinct opcodes. For consistency with the HMM2Vec experiment discussed above, we

used the two eigenvectors and for consistency with the Word2Vec model above, we

used the window size of 𝑊 as 10 when constructing the PMI matrix. The resulting

projection into the eigenspace is 2× 20 which we vectorize to obtain the feature of

length 40.There is no library available to train PCA2Vec hence implemented python

code to generate PMI matrix as discussed in Section 2.2.3.2.

3.3.4.1 PCA2Vec Variation

In trained PCA, the eigenvector corresponding to bigger eigenvalues is most

influential. We experimented by eliminating eigenvectors with bigger eigenvalues.

Research claims the elimination of bigger eigenvalue can give better projection [28].

In this experiment, we select two eigenvectors to project features into 2-d space.

• Case 1: PCA2Vec with no elimination

• Case 2: PCA2Vec with the elimination of first eigenvalue

• Case 3: PCA2Vec with the elimination of first and second eigenvalue

These versions of features are used for classification using MLP classifier after finding

the best parameters in GridSearch.

Accuracy in Figure 5 shows that elimination of eigenvector corresponding to bigger

eigenvalues do not help to improve performance. Rather, it reduces the accuracy which

indicates that eigenvectors corresponding to bigger eigenvalues have more information.

3.3.5 𝑘-PCA

There is another novel approach we introduced called as 𝑘-PCA for feature

engineering. This is a two level feature engineering method where the first level can be
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Figure 5: Regular PCA2Vec and Variants Accuracy

any feature engineering method to generate level 1 of the feature vector. The proposed

method reduces the dimensionality of the feature vector from level 1 to the number of

classes in the dataset. Figure 6 shows the process involved in feature engineering using

𝑘-PCA. We will discuss the steps involved in feature reduction by the 𝑘-PCA method.

Step 1 Generate the level 1 features for samples. In our experiments, level 1 can be

HMM2Vec, PCA2Vec, or Word2Vec.

Step 2 Divide the data into a training set and feature engineering set. In our

experiments, we divide each family into 500 samples for training and 500 samples

for feature engineering.

Step 3 Train individual PCA model for classes in dataset using training data. In our

experiments, we train 7 PCA model which belongs to 7 malware families.

Step 4 Project samples from feature engineering set into eigenspace of trained PCA

models from Step 3.

Step 5 Calculate the score of a projected sample in the eigenspace of each class.
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Step 6 Create a feature vector with scores from Step 5. Feature vector created in

this space has a length equal to the number of classes in the dataset. In our

experiments, feature vector is of length 7.

Figure 6: 𝑘-PCA Feature Generation

3.3.5.1 Binary PCA Classifier

Before experimenting with 𝑘-PCA, experiments on binary PCA classifier are

conducted which supported use of 𝑘-PCA technique. In binary PCA experiment, we

train the PCA model using 500 samples from one family. The test set consists of 500

positive samples of same family and 500 negative samples of another family.

After training the PCA, we project the test sample into eigenspace and calculate

the minimum euclidean distance from vectors in projected space as a score. Projection

can be tuned by selecting the number of eigenvectors. We experimented by training

the model on one of the family and tested individually against the remaining 6 families.

In each pair of test and train family, we experimented with eigenvectors in range 1 to

20. This results in a total of 7 · 6 · 20 = 840 experiments. For all these experiments,

we calculated accuracy and scatterplot, out of which results for an experiment on

Winwebsec and OnLineGames is shown in Figure 7, 8 and 9.
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Figure 7: Scatterplot for PCA Trained on Winwebsec and Tested on OnLineGames
with 2 Eigenvectors

Figure 8: Scatterplot for PCA Trained on Winwebsec and Tested on OnLineGames
with 19 Eigenvector

As we can see in Figure 7, 8 and 9, increasing the number of eigenvectors in

eigenspace helps to get a clear boundary to classify the sample. Also, it shows that
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PCA is an effective binary classifier. This forms the basis for using multiple PCA

models in 𝑘-PCA feature engineering technique.

3.3.6 Feature Vector Length

So far we have discussed different techniques to generate the feature vector. The

length of the feature vector is decided based on different parameters. Here, we discuss

the relation of the length of feature vectors and the parameters in the respective

technique.

3.3.6.1 HMM baseline

The feature vector length is decided based on the number of classes. In our

experiments, the length of the feature vector is 7 because of a number of malware

families.

3.3.6.2 HMM2Vec

The feature vector length is based on the number of distinct observation symbols

and the number of states used to train the HMM. The length of the feature vector is

the product of a number of states and the number of observation symbols.
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3.3.6.3 PCA2Vec

The feature vector length is decided based on distinct observation symbols and

the number of significant eigenvectors selected in eigenspace. The resulting length of

the feature vector is a product of both these parameters.

3.3.6.4 k-PCA

The special part about this technique is the reduction of feature vector length

from level 1. The length is independent of feature vector in level 1. Any size of input

feature vector length can be reduced to a feature vector of length 𝑘, where 𝑘 is a

number of the classes.

3.4 Effect of Embedding Length

In our main experiments of PCA2Vec and Word2Vec discussed in Section 3.3,

word embedding is of length 2 for consistency with HMM2Vec. However, it is essential

to know if increasing the size of the embedding vector can result in more information.

We generated embedding vectors of length 20 and window size of 50 for Word2Vec

and PCA2Vec. Results are compared with the vector length 2 and window size 10.

These experiments incorporate 𝑘-PCA to reduce the dimension of the feature vector.

We observed that there is no significant improvement in accuracy when increasing

the length of the feature vector in Figure 10, and the slight improvement comes with

the overhead of dealing with a longer feature vector. Also, the small vector length

does not harm the contextual information, and accuracy is not reduced.

3.5 Classification

The quality of features generated is determined by classification based on features.

We experimented with multi-class classification to assess the feature quality. A

good feature is supposed to yield better results compared to other features. In

the classification experiment, we employ SVM, MLP, 𝑘NN, and RF. We use the
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Figure 10: Effect of Embedding Length

scikitlearn [49] library for all the classifiers. Classification experiments involve two

phases. First, to find the best suitable parameters for training the classifier and the

second phase is training the classifier.

3.5.1 GridSearch Phase

To determine the best possible parameters for a given combination of feature

and classifier, the GridSearch module from scikitlearn is used. Data is divided into a

training set and test set using a train test split module. This module randomly splits

data to 20% as a test set and 80% as a training set. When dividing the data, this

module selects an equal number of samples from each family.

The training set is used to perform GridSearch operation on all possible com-

binations of parameters for a given classifier. When finding the best parameters,

GridSerach divides the training data into 5 folds. GridSearch trains and tests the
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model on those 5 folds and finds the best parameter. The best parameter is decided

based on the combination which gives the highest average of accuracy in each fold.

This phase determines the best suited parameter for a given classifier and feature.

Parameters tested in this phase are listed in Table 6

Table 6: Classifier Hyperparameters Tested

Classifier Hyperparameter Tested values

MLP

learning_rate constant, invscaling, adaptive
hidden_layer_size [(30, 30, 30), (10, 10, 10)]
solver sgd, adam
activation relu, logistic, tanh
max_iter [10000]

SVM
kernel rbf, linear
C [1, 10, 100, 1000]
gamma (rbf only) [0.001, 0.0001]

𝑘NN
n_neighbors [3, 5, 11, 19]
weights uniform, distance
p manhatten, euclidean

RF

n_estimators [30, 100, 500, 1000]
max_depth [5, 8, 15, 25, 30]
min_samples_split [2, 5, 10, 15, 100]
min_samples_leaf [1, 2, 5, 10]

3.5.1.1 GridSearch Results

In this section, we discuss the results of our GridSearch. Table 7 and 8 represents

the best parameters found.

The parameters tested are listed in Table 6. Observe that for each of the three

different word embedding techniques, three 𝑘-PCA techniques, and one baseline tech-

nique, we tested 36 combinations of parameters for MLP, 12 combinations for SVM, 16

combinations for 𝑘NN, and 400 RF combinations. Overall, we conducted

7 · (36 + 12 + 16 + 400) = 3248

experiments to determine the parameters for the remaining experiments.
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Table 7: Classifier Hyperparameters Selected for HMM2Vec, PCA2Vec and Word2Vec

Classifier Hyperparameter HMM2Vec Word2Vec PCA2Vec HMM Baseline

MLP

learning_rate invscaling constant adaptive constant
hidden_layer_size (30, 30, 30) (30, 30, 30) (30, 30, 30) (30, 30, 30)
solver adam adam sgd adam
activation relu relu relu relu
max_iter 10000 10000 10000 10000

SVM
kernel linear rbf rbf rbf
C 1000 1000 1000 10
gamma NA 0.001 0.001 0.0001

𝑘NN
n_neighbors 3 3 3 3
weights distance distance distance distance
p manhatten euclidean manhatten manhatten

RF

n_estimators 100 500 1000 1000
max_depth 25 30 30 30
min_samples_split 2 2 2 2
min_samples_leaf 1 1 1 1

Table 8: Classifier Hyperparameters Selected for 𝑘-PCA Features

Classifier Hyperparameter HMM2Vec Word2Vec PCA2Vec

MLP

learning_rate invscaling constant constant
hidden_layer_size (30, 30, 30) (30, 30, 30) (30, 30, 30)
solver adam sgd adam
activation relu tanh tanh
max_iter 10000 10000 10000

SVM
kernel linear rbf rbf
C 1000 1000 1000
gamma NA 0.001 0.001

𝑘NN
n_neighbors 19 5 11
weights distance distance distance
p euclidean euclidean manhatten

RF

n_estimators 100 500 1000
max_depth 25 15 25
min_samples_split 5 5 2
min_samples_leaf 2 1 2

The optimal parameters selected for each classifier and for each embedding tech-

nique are listed in Table 7 and Table 8. It is observed that overall there is considerable

agreement between the parameters for the different word embedding techniques, but
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in two cases (learning_rate and n_estimators), a different parameter is selected

for each of the three embedding techniques. In 𝑘-PCA version of the feature, different

parameters selected for most cases.

3.5.2 Results

After deciding the best parameters as discussed in Section 3.5.1, we train the

model using training data with best parameters. We calculate the accuracy of the

trained model by classifying the test data. Test data is not used in GridSearch to

avoid biased in finding best parameters. Also, cross-validation in the GridSearch phase

reduces possibility of overfitting the model.

The confusion matrices are generated for a combination of feature vectors and

classifiers. The classification result helps in comparing the quality of feature vector

and the performance of different classifiers. In this section, we discuss the results of

classification for the feature engineering techniques discussed in Section 3.3.

3.5.2.1 HMM Baseline

The confusion matrices for baseline HMM experiments are given in Figure 11

The accuracy achieved for 𝑘NN, MLP, RF, and SVM are 0.92, 0.44, 0.91, and 0.78,

respectively. We observe that MLP and SVM both perform poorly, whereas the

neighborhood-based techniques, namely, 𝑘NN and RF, are both strong, considering

that we have 7 classes. Also, 𝑘NN and RF give very similar results.

3.5.2.2 HMM2Vec Results

From the confusion matrices in Figure 12, we infer that the greatest source of

misclassifications is between FakeRean and Winwebsec families. In many—but not

all—of our subsequent experiments, these two families will prove the most challenging

to distinguish.
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Figure 11: Confusion Matrices for HMM Baseline Experiments

3.5.2.3 PCA2Vec Results

In the confusion matrices in Figure 13, we give the overall accuracy for each of

our experiments. The results show that PCA2Vec performed poorly for each of the

classifiers, as compared to HMM2Vec.

3.5.2.4 Word2Vec

Analogous to the HMM2Vec and PCA2Vec experiments above, we classify 7000

feature vectors using four classifiers. The confusion matrices for these experiments are

given in Figure 14. From the results in Figure 14, we can infer that the RF seems to

perform particularly well.

3.5.2.5 𝑘-PCA Results

In the 𝑘-PCA experiment, level 1 of the feature can be HMM2Vec, Word2Vec,

and PCA2Vec. Confusion matrices in Figure A.24, A.25, and A.26 in the appendix
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Figure 12: Confusion Matrices for HMM2Vec Experiments

represent the classification result for three different experiments of 𝑘-PCA based on

level 1 feature. The accuracy of the 𝑘-PCA method with the respective level 1 feature

can be compared in Figure 15. The experiments with the reduced feature vector using

𝑘-PCA show approximately similar results compared to respective word embedding

feature vector. The comparison shows that 𝑘-PCA does not reduce the accuracy after

the reduction of dimensions in the feature vector.

3.5.2.6 Discussion

In this section, we discuss the results of all the feature engineering techniques.

Figure 15 gives the overall accuracy for each of our multi-class experiments using

𝑘NN, MLP, RF, and SVM classifiers, for each of the HMM baseline, HMM2Vec,

PCA2Vec, Word2Vec, and 𝑘-PCA derived features. From these 28 distinct results, we

see that HMM2Vec and Word2Vec perform equally well, with PCA2Vec lagging far
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Figure 13: Confusion Matrices for PCA2Vec Experiments

behind. This relation between feature embedding techniques holds after dimensionality

reduction using 𝑘-PCA.

We also see that the neighborhood-based classifiers, namely, RF and 𝑘NN, perform

better than SVM and MLP classifiers. In general, we expect that RF and 𝑘NN would

perform similarly to each other, and that SVM and MLP would perform similarly as

well. Another observation is 𝑘-PCA level of feature engineering gives almost same

results as level 1. However, the length of the feature vector in 𝑘-PCA is less than the

level 1 feature. This shows that 𝑘-PCA reduces the dimension of the feature vector

without affecting the performance.

3.6 Overfitting in 𝑘NN and RF

We performed additional experiments on the baseline HMM, HMM2Vec, and

Word2Vec features to understand the effect of changing the parameters in 𝑘NN and
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Figure 14: Confusion Matrices for Word2Vec Experiments

RF. For both the experiments, we performed 10 fold cross-validation and used the

average accuracy of all folds to smooth any bias that might appear in the results

for the various folds. For our 𝑘NN experiments, we tested the number of nearest

neighbors 𝑘 in the range 1 to 150 with a step size of 5. For our RF experiments, we

trained RF with the maximum depth of the tree in the range 1 to 30, and the number

of trees ranging from 1 to 500, with a step size of 5 for both parameters.

Figure 16, 18, and 17 show the results for these experiments. RF results in

Figure 17 and Figure 18 are truncated to make graph readable. Based on the results in

Figure 15, the baseline HMM feature performs poorly in MLP and SVM classification

and better with RF and 𝑘NN classifier. Features such as Word2Vec and HMM2Vec

perform better for all classifiers and we can consider it as strong features compared to

baseline HMM.
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Figure 15: Accuracy for Various Features and Classifiers

In Figures 7 and 8, it is observed that GridSearchCV chooses a small 𝑘 in 𝑘NN, a

large number of estimators, and a large max depth of tree for RF in most cases. This

leads to analyze the effects of parameters in 𝑘NN and RF against strong and weak

features. This experiment will help us to identify if there are any potential over-fitting

issues in 𝑘NN and RF for weak features.

In Figure 16, it is observed that the increasing value of 𝑘 in 𝑘NN for weak feature

increases the misclassification rate drastically. The graph is steeper for the HMM

baseline than HMM2Vec and Word2Vec. Similarly, in Figure 17 and Figure 18, 3d

graphs shows that the increasing number of trees for short tress is helping to reduce

the misclassification rate more effectively with HMM2Vec features compared to the

baseline HMM feature. Decision boundary for a trained model should be smooth if

learning (As opposed to memorizing) is taking place. HMM baseline results with

𝑘NN and RF show irregular boundary as changing the training parameters radically
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Figure 16: 𝑘NN Results as a Function of 𝑘

changes the misclassification rate. Hence we can say that classifier for HMM baseline

features is overfitting for small values of 𝑘 in 𝑘NN and large number of trees in RF.

Experiments based on testing with robust samples can give more insights on our claim.
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CHAPTER 4

Conclusion and Future Work

In this research, we conducted experiments to understand the significance of word

embedding techniques for feature engineering. We considered word embedding tech-

niques, including Word2Vec, HMM2Vec, and PCA2Vec. We used opcode sequence as

a basic feature of malware and considered 7 different malware families for classification,

with a substantial number of samples for each family. We extracted the opcode using

the objdump tool in Linux and filtered the most important opcodes from samples.

We also used a balanced dataset with 1000 samples in each family to avoid biased in

experiments.

In this paper, we have presented the results of several experiments using word

embedding techniques to generate features for malware family classification. In effect,

we have applied machine learning techniques to generate results that are subsequently

used as features for additional machine learning techniques. Such a concept is not

entirely unprecedented as, for example, PCA is often used to reduce the dimensionality

of data before applying other machine learning techniques. However, the authors are

not aware of previous work involving the use of word embedding techniques in the

manner considered in this work.

Our results show that word embedding techniques can be used to generate

features that are more informative than the original data. This process of distilling

useful information from the data before classifying samples is potentially useful, not

only in the field of malware analysis but also in other fields where learning plays

a prominent role. The experiments show that random restarts in HMM2Vec are

effective in learning of word embeddings. In a comparative study of word embedding

techniques, we conclude that HMM2Vec and Word2Vec perform similar whereas

PCA2Vec performs poorly.
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We also performed binary classification experiments on malware families in our

dataset using the PCA model. From this experiment, we derived that the families in the

dataset are separable and PCA scores can be used as a feature. Based on the results of

PCA as a binary classifier, we proposed 𝑘-PCA technique to reduce the dimensionality

of the feature vector which no other research has explored before. Results in the

experiments show that 𝑘-PCA can be used effectively to reduce dimensions of the

feature vector. We considered four different classifiers in our experiment SVM, MLP,

𝑘NN, and RF for classification and observed that results in SVM and MLP are related.

For future work, it would be interesting to consider other families and different

types of malware. It would also be interesting work to use more complex and higher

dimensional data—as with dimensionality-reduction techniques, such data would

tend to offer more prospects for improvement using the word embedding strategy

considered in this paper. Also, the robustness of the models can be analyzed by

checking the effect of obfuscation on the word embedding techniques. The word

embedding techniques can be used with features such a byte code n-gram, system

API calls etc. as we only consider opcode in this study. Another direction to explore

is to use the contextual information from word embedding for a task other than

classification such as unsupervised clustering. Spherical 𝑘-means can be used for

clustering based on word embeddings.

Our experiments are done on malware families of different types, hence experiments

can be extended on malware families of the same type to understand the patterns

within the same type of malware. In all our word embeddings, instead of generating

feature vector, images can be generated and a deep learning model can be trained for

classification using those images. In our experiments, feature selection is based on

the frequency of opcodes. Research can be extended to use advanced feature selection

techniques based on TF-IDF and SVM, for example.
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APPENDIX

Appendix
A.1 Additional Results
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Figure A.19: AUC vs Number of Eigenvectors for Top 20 Opcodes in PCA Binary
Classification
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Figure A.20: AUC vs Number of Eigenvectors for Top 30 Opcodes in PCA Binary
Classification
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Figure A.21: Confusion Matrices for HMM2Vec with No Random Restart and No
State Swap
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Figure A.22: Confusion Matrices for HMM2Vec with State Swap and 𝐵 Matrix
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Figure A.23: Confusion Matrices for HMM2Vec with Random Restarts
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Figure A.24: Confusion Matrices for 𝑘-PCA with Word2Vec

51



BHO

OnL
ine

Gam
es

Ren
os

W
inw

eb
sec

CeeI
nje

ct

Fa
ke

Rea
n

Vo
bfu

s

BHO

OnLineGames

Renos

Winwebsec

CeeInject

FakeRean

Vobfus

1

0.87 0.03 0.02 0.04 0.03 0.01

0.01 0.92 0.01 0.02 0.03 0.01

0.01 0.85 0.02 0.12

0.02 0.02 0.03 0.88 0.03 0.02

0.06 0.04 0.03 0.03 0.84

0.01 0.01 0.01 0.97

0

0.2

0.4

0.6

0.8

1

BHO

OnL
ine

Gam
es

Ren
os

W
inw

eb
sec

CeeI
nje

ct

Fa
ke

Rea
n

Vo
bfu

s

BHO

OnLineGames

Renos

Winwebsec

CeeInject

FakeRean

Vobfus

1

0.01 0.9 0.01 0.01 0.02 0.05

0.91 0.02 0.03 0.03 0.01

0.02 0.84 0.02 0.12

0.01 0.04 0.83 0.08 0.04

0.02 0.02 0.02 0.01 0.02 0.9 0.01

0.02 0.02 0.96

0

0.2

0.4

0.6

0.8

1

(a) kNN (b) MLP

BHO

OnL
ine

Gam
es

Ren
os

W
inw

eb
sec

CeeI
nje

ct

Fa
ke

Rea
n

Vo
bfu

s

BHO

OnLineGames

Renos

Winwebsec

CeeInject

FakeRean

Vobfus

0.99 0.01

0.88 0.03 0.01 0.03 0.05

0.02 0.91 0.01 0.01 0.03 0.02

0.01 0.82 0.02 0.14 0.01

0.01 0.03 0.01 0.89 0.06

0.01 0.05 0.01 0.05 0.88

0.01 0.02 0.97

0

0.2

0.4

0.6

0.8

1

BHO

OnL
ine

Gam
es

Ren
os

W
inw

eb
sec

CeeI
nje

ct

Fa
ke

Rea
n

Vo
bfu

s

BHO

OnLineGames

Renos

Winwebsec

CeeInject

FakeRean

Vobfus

0.98 0.01 0.01

0.01 0.9 0.01 0.01 0.01 0.05 0.01

0.91 0.04 0.04 0.01

0.83 0.03 0.14

0.04 0.02 0.82 0.1 0.02

0.01 0.02 0.03 0.03 0.9 0.01

0.01 0.02 0.02 0.95

0

0.2

0.4

0.6

0.8

1

(c) RF (d) SVM

Figure A.25: Confusion Matrices for 𝑘-PCA with HMM2Vec
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Figure A.26: Confusion Matrices for 𝑘-PCA with PCA2Vec
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