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ABSTRACT

Malware Classification Based on Hidden Markov Model and Word2Vec Features

by Aparna Sunil Kale

Malware classification is an important and challenging problem in information

security. Modern malware classification techniques rely on machine learning models

that can be trained on a wide variety of features, including opcode sequences, API

calls, and byte 𝑛-grams, among many others. In this research, we implement hybrid

machine learning techniques, where we train hidden Markov models (HMM) and

compute Word2Vec encodings based on opcode sequences. The resulting trained

HMMs and Word2Vec embedding vectors are then used as features for classification

algorithms. Specifically, we consider support vector machine (SVM), 𝑘-nearest neighbor

(𝑘-NN), random forest (RF), and deep neural network (DNN) classifiers. We conduct

substantial experiments over a variety of malware families. Our results surpass those

of comparable classification experiments.
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CHAPTER 1

Introduction

Malware is a computer program that is created with an intent to cause harm to

computer data or otherwise adversely affect computer systems [1]. Detecting malware

can be a challenging task as there exists a wide variety of advanced malware that can

employ various anti-detection techniques.

Some of the examples of advanced malware types include polymorphic and

metamorphic malware [1]. According to the McAfee labs threat report, 60 million

new malware were detected in the first quarter of 2019 [2]. Thus, malware detection

techniques are crucial for dealing with information security threats.

The methods used to protect users from malware include signature-based and

behavioral-based detection techniques. Signature-based detection is established on the

specific patterns found in malware samples. In contrast, behavioral-based detection

observes and records actions performed by a program to decide if it is a malware or not.

The behavioral-based detection frequently results in a high false-positive rate, which

causes benign samples to be classified as malware. These traditional malware detection

techniques fail to detect advanced forms of malware, such as metamorphic malware,

which can change its internal structure with each infection [3]. Therefore, it is essential

to consider more advanced malware detection techniques. Modern implementation

of malware detection uses machine learning. It has shown to perform better than

conventional techniques. Machine learning models for malware classification can be

trained on a wide variety of features, including API calls, opcodes sequences, system

calls, and control flow graphs [4].

In this research, we extract features from several malware families. We generate

a hidden Markov model (HMM) for each malware sample in a family. The converged

observation probability matrices of the HMMs (the so-called 𝐵 matrices) that belong
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to the same malware family are expected to have similar characteristics. The 𝐵

matrices from our converged HMMs are used as features for other machine learning

algorithms, including 𝑘-nearest neighbors (𝑘NN), support vector machines (SVM),

random forest (RF), and deep neural networks (DNN); we refer to these hybrid

techniques as HMM-𝑘NN, HMM-SVM, HMM-RF, and HMM-DNN, respectively.

Similarly, we consider Word2Vec encodings in place of the HMM matrices, which gives

rise to the corresponding hybrid models [5].

For each of the hybrid techniques mentioned above, extensive malware classi-

fications are conducted over a wide variety of substantial malware families. This

report is composed of all the results associated with different experiments. As of

now, experiments mentioned in this report are based on opcode sequences as features.

The hybrid machine learning models, namely HMM-SVM, HMM-𝑘NN, HMM-RF,

HMM-DNN, Word2Vec-SVM, Word2Vec-𝑘NN, Word2Vec-RF, and Word2Vec-DNN

are trained for malware classification, and the results are compared to the relevant

work [6].

This thesis continues in Chapter 2 with a discussion of background topics, including

related work and inspiration for this research. Chapter 3 covers the hybrid machine

learning techniques, and provides information on the dataset used for this research.

The results and analysis of our malware classification experiments are elaborated in

Chapter 4. Finally, Chapter 5 summarizes our results and discusses future work.
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CHAPTER 2

Background

Malware is a computer program that steals data, corrupts files and changes the

behavior of computer systems. It can be categorized into different families such as

viruses, trojans, worms, etc [1]. Antivirus software is designed to detect such malicious

programs. However, malware deceives the antivirus software by evolving continuously.

Therefore, it is essential to develop effective malware detection techniques. The

research shows that malware detection techniques use two approaches, static and

dynamic [7]. The signature-based technique is a static malware detection, and the

behavioral-based technique is a dynamic malware detection. The signature-based

technique detects the specific pattern in the code. On the other hand, behavioral-based

technique notices and captures the behavior of a program to decide if it is a malware

or not.

Next, we briefly discuss various malware detection techniques and outline various

machine learning algorithms that are significant for this research. We conclude this

chapter with a few examples of related work.

2.1 Signature-based malware detection

In [8], the author suggests that the signature-based technique uses pattern match-

ing algorithms to detect malware. Signature generation requires a thorough analysis of

the code, which is a manual and laborious process. When antivirus software recognizes

a program as malware, the signature of that malware is added to a collection of

identified malware. New computer programs are then analyzed based on the collection

of stored signatures. However, malware is known to evolve rapidly and continuously,

which changes its code and signature quite often. If a new signature is not present

in the collection, it becomes challenging to detect malware using signature-based

techniques.
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2.2 Behavioral-based malware detection

Behavioral-based technique analyzes the behavioral information of a computer

program while it executes in a controlled environment. Identifying malware this way

is called dynamic analysis. Malware program uses dead code to deceive antivirus

software. Dead code is a piece of code obtained from benign samples which does

not contribute to the actual execution. This malware detection technique cannot be

easily deceived as it observes the actual execution of a program. Therefore, dynamic

analysis takes care of evolving malware. However, dynamic analysis results in a high

false-positive rate as it may classify benign computer programs as malicious programs.

Also, advanced forms of malware such as metamorphic malware [1] cannot be detected

using this technique.

2.3 Machine learning models for malware classification

In machine learning, the model uses data samples and mathematics to categorize

malware more accurately than traditional malware detection techniques. Therefore,

machine learning for malware detection is a better methodology to beat evolving

malware. The data features used for training the machine learning models have a

notable impact on accuracy. Misclassification often occurs if features that do not

contribute to classification are used for training the models. This section discusses

a brief background of machine learning techniques that can be used for malware

classification.

2.3.1 Hidden Markov model

A hidden Markov model (HMM) is a probabilistic machine learning algorithm

that can be used for pattern matching applications such as speech recognition, human

activity recognition [9], and protein sequencing [10]. This section discusses the role of

HMMs in malware classification.
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A Markov model is a stochastic model. It models the dependencies of current

information with previous information. The extension of the Markov model is HMM.

HMM has hidden states, and each state is associated with a probability distribution to

observe symbols. HMM is represented by the matrices 𝐴, 𝐵, and 𝜋. In HMM, matrix

𝐴 represents state probabilities. Matrix 𝐵 represents the emission probabilities of every

symbol per state, and matrix 𝜋 is the initial probability distribution over the states.

As HMM is a statistical framework, once the HMM is trained, we can use it to identify

the possibility of seeing a similar observation sequence. The sequence of opcodes in

malware best describes the unique type and the behavior of malware. Therefore, once

HMM is trained using a sequence of opcodes as an observation sequence, we can use

the observation probability matrices of each malware family to classify malware.

2.3.2 Word2Vec embeddings

Word2Vec technique [5] has recently gained popularity in natural language pro-

cessing. It is used for the classification of text using a shallow neural network. In

this model, each word is represented as a mathematical vector under which it holds

some structural relation. Therefore, it vectorizes the words. Word2Vec trains a neural

network using two approaches. One way is to predict the neighbor word by giving

the word (the so-called skip-gram method), and the other is to predict the word

given neighbors (continuous bag of words method). Word2Vec detects similarities

mathematically by grouping similar words together in the vector-space.

2.3.3 Random forest

Random forest (RF) is an ensemble learning technique where predictions are

obtained by combining several models. The idea is to form a strong decision tree from

several weak decision trees. It chooses the samples at random for every decision tree

and then uses averaging to improve accuracy. Each decision tree gives a classification
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by voting for that class. RF then selects one classification with most of the votes. As

random forest not only bags observations but also the features, it becomes immune to

overfitting, unlike decision trees [11]. A variety of hyperparameters is used to optimize

the performance of RF. The number of decision trees in RF is defined by 𝑛-estimators.

The minimum sample split defines a required number of observations at the tree

node for further division of that node. Increasing the minimum sample split prevents

overfitting. Another hyperparameter in RF is maximum features. Maximum features

can control a list of features before spitting the node in a decision tree of RF. The

minimum sample leaf specifies the minimum number of samples that should be present

at the leaf after a node is split. The hyperparameter maximum depth is the longest

path in a decision tree from root to leaf. Setting this parameter helps in limiting the

height of a tree, therefore avoids overfitting. When bootstrap hyperparameter is set to

false, the entire dataset is used to build the RF. All the mentioned hyperparameters

can be tuned to improve the performance of RF.

2.3.4 𝑘-nearest neighbors (𝑘NN)

Perhaps the most straightforward supervised machine learning algorithm possible

is 𝑘NN. 𝑘NN technique does not make any assumptions related to data distribution. It

is a lazy classifier that classifies the data based on similarity measures using distance

functions. 𝑘NN is used in pattern recognition and statistical estimations [12]. It

classifies the data in two stages. In the first stage, 𝑘-neighbors are determined. In

the second stage, the class of a given sample is determined based on the results of 𝑘

selected neighbors. The ideal value of 𝑘 is dependent on the nature of the data. As 𝑘

increases, accuracy reduces, and the classification boundaries become less distinct.
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2.3.5 Support vector machine

Support vector machine [13], a supervised machine learning algorithm, analyzes

and identifies the pattern in the data to perform classification. In [14], the authors

claim that SVMs perform well on malware classification problems using 𝑛-gram of

byte codes as the feature. It uses linear classifiers, using a vector of weights 𝑤 and

intercept 𝑏. SVM is based on three concepts.

• Hyperplane: Hyperplane separates the input data into two classes. If the number

of classes is 𝑋, then the hyperplane has 𝑋 − 1 dimensions.

• Hyperparameters to maximize the margin: To classify data samples, we need

a hyperplane with the largest minimum margin with maximum accuracy. It

can be achieved by tuning two regularization parameters, which are 𝐶 and

𝛾. The hyperparameter 𝐶 is known as the cost parameter. It trades off the

misclassification of data against the decision surface. When a model selects

samples as support vectors, 𝛾 is the inverse of the radius of influence of those

samples. Large values of 𝛾 determine if two samples that are very close to each

other are similar or not. On the other hand, small values of 𝛾 means the two

samples are considered similar even if they are far from each other. That is, 𝛾

controls the shape of the decision boundary.

• Kernel trick: The data is transformed into the higher dimensional space using a

kernel function where the hyperplane separates data into classes. The two most

common kernel functions used are radial basis kernel function (RBF) and linear

kernel.

2.3.6 Deep neural network

Neural network (NN) is a collection of algorithms that resembles the structure

of the human brain. DNN is derived from NN, where neuron layers are hidden.
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The complex structure of DNN makes it learn the abstract features automatically.

Researchers widely use DNN for natural language processing, image recognition, and

pattern recognition. A convolutional neural network (CNN) is one of the DNNs. It is

known for image classification problems. The architecture of CNN consists of hidden

layers, input, and output layers. Hidden layers of CNN include the convolutional layer,

fully connected layers, normalization layer, and pooling layers [5].

2.4 Previous work

Machine learning has been widely used to classify malware. This section introduces

different approaches in a selective review of the relevant literature.

In [15], the author suggests that a series of API calls can be used as a feature to

identify malware. Different features such as opcodes [16], system calls, control flow

graphs, and byte sequences can be used while training machine learning models to

detect malware [14]. When the opcode sequence and their frequencies were used as

features, malware samples were classified accurately. As proposed in [15], the static

analysis of malware by obtaining opcode sequences is efficient and faster as compared

to dynamic analysis techniques.

The authors from [14], proposed to use 𝑛-gram of byte codes as a feature to

classify malware from benign samples. They gathered distinct 𝑛-grams and used

SVM, naive Bayes, term frequency-inverse document frequency (TFIDF) classifier,

and decision trees for classification. The authors claimed that boosted decision trees

achieved the highest accuracy for malware classification with 0.996 as area under the

curve.

The literature discusses many hybrid machine learning techniques for malware

classification. In [17], the author, proposed a hybrid machine learning technique by

using the HMM matrices as the input to a convolutional neural network to classify

8



malware families. Researchers in [17] also used SVM to classify the trained HMMs.

In [18], the author suggested an ensemble model that combines predictions from .asm

and .byte files together after training using xception models. The predictions are

stacked and fed to the neural network for classification. In [19], the authors proposed

to use the Word2Vec technique to generate embeddings from machine instructions.

Moreover, they proposed a proof of concept model to train a convolutional neural

network based on the vectors generated by Word2Vec. This research is highly motivated

by the work in [15], [17], and [19]. We propose hybrid machine learning techniques

using opcode sequences for the classification of malware families. The methods are

discussed in depth in Chapter 3.
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CHAPTER 3

Implementation

This chapter comprises two sections. The first section gives information about the

dataset used in this research and overview of malware families used for classification.

In the second section, we propose hybrid machine learning techniques.

3.1 Dataset

The raw dataset is used to conduct experiments that involve the classification

of 7 malware families, Winwebsec [20], BHO [21], Renos [22], OnLineGames [23],

Ceeinject [24], Fakerean [25], and Vobfus [26]. The raw dataset has 2793 malware

families that have at least one sample. We decided to generate 1000 HMMs for 7

families. There should be around 1000 executables to train 1000 HMMs. However,

most of the families have less than 100 samples. Therefore, we decided to analyze

50 malware families having the maximum number of samples. Figure 1 shows the

number of samples present in the 50 malware families.

In this research, we train HMMs and Word2Vec models using opcode sequences.

Therefore, data exploration involves identifying the most frequent opcodes from the raw

dataset. In the raw dataset, each malware family has a set of executables. We converted

these executables to .asm files using Linux command objdump. The preprocessing

involved extracting the opcodes from these .asm files. Once we obtained opcode

sequences, we trained HMMs for each malware family using the opcode sequence as

an observation sequence. To select the optimum number of opcodes, we experimented

using 20, 31, and 40 most frequent opcodes based on the opcode distribution in raw

dataset. After deciding the most frequent opcodes, HMM matrices, i.e., 𝐴, 𝐵, and

𝜋, were initialized to approximately 1/𝑁 , 1/𝑀 , and 1/𝑁 per row, respectively. The

number of hidden states is represented by 𝑁 , and the number of output symbols is

represented by 𝑀 . In this research, the number of opcodes is represented by 𝑀 . We
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Figure 1: Number of samples per family

used 31 frequent opcodes, and the rest of the opcodes were ignored while training

HMMs.

Based on the accuracies and cost of computation, we decided to use the 31 most

frequent opcodes, as shown in Figure 2. Most frequent 20 opcodes contribute to

75.3% of total opcodes. Most frequent 31 opcodes contribute to 83.2% of opcodes,

and most frequent 40 opcodes contribute to 87.2% of total opcodes. Top 30 opcodes

contribute to 82.3% of the total number of opcodes, therefore using 31 opcodes for

these experiments increases opcode contribution percentage by 1. The experiments
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Figure 2: Percentage of 31 frequent opcodes from 50 malware families with highest
number of samples

using 20, 31, and 40 opcodes are discussed in Chapter 4.

3.2 Hybrid classification techniques

In this section, we describe hybrid machine learning models Word2Vec-𝑘NN,

Word2Vec-RF, Word2Vec-DNN, Word2Vec-SVM, HMM-RF, HMM-DNN, HMM-𝑘NN,

and HMM-SVM. HMMs are used to identify the statistical patterns in the data.

In [14], the author, shows the effectiveness of HMM in malware classification.

3.2.1 Hybrid machine learning based on HMMs

The hybrid machine learning technique is machine learning of machine learning.

We trained HMMs and used their converged matrices as input for other machine

learning techniques to classify malware families. The matrices 𝐴, 𝐵, and 𝜋 define

a hidden Markov model. Once the model is converged, the observation probability

matrix 𝐵 and state transition probability matrix 𝐴 describe the statistical pattern of

opcodes present in the respective malware family.
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3.2.1.1 HMM-SVM

HMM-SVM is a hybrid machine learning technique that uses converged models

of HMM as features for the SVM technique. We use opcode sequences as features to

train HMMs. The converged matrices are converted to the one-dimensional vectors by

appending each row from the respective matrix. Therefore, the converged observation

probability matrix of HMM will generate one such vector. The output of this task

produces two vectors per converged model; one represents vectors created from 𝐴

matrices and other created from 𝐵 matrices. However, for all the experiments, the

vectors generated from 𝐵 matrices are used as features for training.

3.2.1.2 HMM-RF

The random forest not only bags observations but also features, and unlike

decision trees, the random forest does not overfit data [11]. We propose HMM-RF, a

hybrid machine learning technique, that uses converged matrices of hidden Markov

models as features to random forest algorithm for multiclass malware classification.

In this research, we used an ensemble library from sklearn [27] to implement RF using

Python.

3.2.1.3 HMM-𝑘NN

The 𝑘-nearest neighbors (𝑘NN) algorithm [11] is widely used for classification.

When 𝑘NN is trained, the parameter 𝑘 plays a vital role in classification. The number

of nearest neighbors which are included in the voting process is represented by 𝑘. Low

values of 𝑘 result in overfitting, and large values of 𝑘 underfit the model. Therefore,

we experimented on different values of 𝑘. We propose HMM-𝑘NN, a hybrid machine

learning technique that uses the vectors generated from HMMs to classify a variety of

malware families. The number of neighbors corresponds to the number of malware

families.
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3.2.1.4 HMM-DNN

Although CNNs are widely used for image classification, we used one-dimensional

CNNs for malware classification because the input is a set of vectors [11]. CNN

identifies structural patterns of malware families, which can classify them. We propose

HMM-DNN, a hybrid machine learning technique, that uses the vectors generated from

HMMs and trained to classify 7 malware families. We experimented using a variety of

parameters such as different numbers of hidden layers, neurons, loss functions, and

optimizers.

3.2.2 Hybrid machine learning based on Word2Vec embeddings

Word2Vec expects a stream of words, which are the sentences in natural language

processing. In our research, the sequence of opcodes, present in malware executables,

is treated as a stream of words. We observe that the vectors of opcodes have small

distances among them when they are semantically close. This property can uniquely

identify peculiar patterns that are unique to malware families. Therefore, we generated

the vectors using Word2Vec and used those for other machine learning algorithms as

input. Each vector is of size 𝑣𝑤, where 𝑣 is a vector size, and 𝑤 is a window size. The

hybrid machine learning models that we propose in this research, Word2Vec-SVM,

Word2Vec-RF, Word2Vec-DNN, and Word2Vec-𝑘NN, learn from the Word2Vec vector

representations of the words by using different vector sizes and window sizes.
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CHAPTER 4

Results and Analysis

In this chapter, we present the results and analysis of hybrid machine learning

models. We have used opcode sequences as the feature for classification. We focus the

experiments on 8 hybrid machine learning techniques HMM-SVM, HMM-𝑘NN, HMM-

RF, HMM-DNN, Word2Vec-SVM, Word2Vec-RF, Word2Vec-DNN, and Word2Vec-

𝑘NN. After exploring the raw dataset, the next step in malware classification is to

decide the number of opcodes to train models. Therefore, we performed experiments

using different numbers of opcodes to classify two malware families and compared

their accuracies. Later, we added more families for multiclass classification. The first

section of this chapter describes experiments for binary classification. The second

section describes the multiclass malware classification of 7 malware families using 8

hybrid machine learning techniques.

4.1 Binary classification to determine the number of opcodes

In this section, we classified the samples from Winwebsec and Fakerean malware

families, both of which are rogue security softwares that claim to be genuine antivirus

tools and lure the victims into buying illegitimate antivirus software. To decide the

number of opcodes, we evaluated each experiment based on two parameters, i.e., the

time required to generate vectors and accuracy achieved. We compared test accuracies

of experiments based on most frequently occurring 20, 31, and 40 opcodes from the

raw dataset.

4.1.1 Training Word2Vec

We generated 1000 Word2Vec vectors for each family using vector size of 2 and

window sizes of 1, 5, 10, 30, 100. Therefore, for each experiment we used 2000 vectors.
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4.1.2 Word2Vec-SVM for binary classification

Using the combination of vector and window sizes, we conducted a total of 15

experiments for Word2Vec-SVM using linear kernel for most frequent 20, 31, and 40

opcodes. While training Word2Vec-SVM, we split the input data into 70% training

samples and 30% testing samples. Therefore, 1400 samples were used for training,

and 600 samples were used for testing. Figure 3 shows the summary of experiments.

Each group of bars in Figure 3 shows the testing accuracy for 20, 31, and 40 opcodes.

For window size 5 and the number of opcodes 31, we achieved an accuracy of 99.66%.

This means even if the window size is small, choosing the most frequent 31 opcodes

worked well. Moreover, the time required to train models using smaller parameters is

significantly less than training models with large window sizes and more opcodes.

Figure 3: Word2Vec-SVM: Binary classification of Winwebsec and Fakerean

For every window size, the models trained using the most frequent 40 opcodes

show the maximum accuracy. As we increase the window size, the models trained

using 20 opcodes show significantly less accuracy compared to the models trained
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using 40 opcodes. If we add more malware families, the accuracy reduces further. The

models trained using the most frequent 31 opcodes show better accuracy than models

trained using 20 opcodes. The difference between the accuracies of models trained

using 31 opcodes and 40 opcodes is not significant. Moreover, training HMMs using

40 most frequent opcodes costs more computational resources than training HMMs

using 31 most frequent opcodes. To reap both the benefits of less computational time

and better testing accuracy, we decided to choose the most frequent 31 opcodes for

hybrid machine learning techniques for the classification of 7 malware families.

4.2 Multiclass malware classification

This section describes the experiments for multiclass classification. We have

obtained the results using 8 different hybrid machine learning models.

We used 7 malware families namely Winwebsec [20], BHO [21], Renos [22],

OnLineGames [23], Ceeinject [24], Fakerean [25], and Vobfus [26] for all hybrid

machine learning experiments.

We obtained the most frequent 31 opcodes from 50 malware families with a

maximum number of samples and ignored the rest of the opcodes while training

HMMs.

4.2.1 Training HMMs

As part of this experiment, each HMM model was initialized as follows: 𝑁 = 2,

𝑀 = 31. The number of opcodes is represented by 𝑀 . For these classification

experiments, 𝑁 is set to 2 as it gives best classification [28] and 𝑛-grams is set to 1.

To train these HMMs, we used the hmmlearn library [29]. The best model is

obtained after 100 random restarts. The malware samples in this dataset contain

opcode sequences of length more than 50000. The best model was obtained after 100

random restarts for a sequence of opcodes if the length of the observation sequence
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is between 1000 to 5000 opcodes. Otherwise, the best model was selected after 50

random restarts. The rest of the models were discarded. Any opcode which is not the

part of the top 31 opcodes is discarded. Therefore, it is not counted in 𝑀 . Converged

matrices of the best model are converted to a one-dimensional vector by appending

each row of the matrix one after the other. Moreover, while generating the vectors,

we made sure to assign the probabilities to predefined positions for each opcode. We

created two vectors, each from the matrix 𝐴 and 𝐵 for every HMM. In this research,

we conducted all the experiments by using vectors generated from 𝐵 matrices.

4.2.2 HMM-SVM

This section discusses experiments using different kernel functions for classifica-

tion. For HMM-SVM, we used one-dimensional vectors obtained from 𝐵 matrices of

converged HMMs.

4.2.2.1 HMM-SVM using linear kernel

Figure 4 represents the accuracy of the HMM-SVM model that classifies 7 malware

families, namely BHO, OnLineGames, Renos, Winwebsec, Fakerean, Vobfus, and

Ceeinject. Different values of hyperparameter, 𝐶, were used to analyze the accuracies.

The six values of 𝐶 used are 0.001, 0.01, 0.1, 1, 10, and 100. The best accuracy using

a linear kernel was 0.89 for 𝐶=100.

According to Figure 5, the percentage accuracy of predicting the malware samples

from BHO and Vobfus is highest which is 94.2% and 96.6% respectively. The percentage

accuracy of predicting the malware samples from Winwebsec and Fakerean is lowest.

Figure 5 shows that 9% of testing samples from Winwebsec are misclassified as Fakerean

and 7% of testing samples from OnLineGames are misclassified as Fakerean.
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Figure 4: HMM-SVM, Accuracy vs 𝐶

Figure 5: Confusion matrix for HMM-SVM with linear kernel

4.2.2.2 HMM-SVM using grid search

To find the best suitable hyperparameters, we tried a different combination of 𝐶

and 𝛾 with linear and RBF kernels. Similar to the exhaustive grid search method [30],
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we randomly pick 70% of the total number of input vectors for training and 30% of

the total number of input vectors for testing. We obtained a variety of accuracies for

HMM-SVM using linear and RBF kernels.

Table 1: HMM-SVM accuracies

Kernel 𝐶 𝛾 Accuracy
linear 1 — 0.83
linear 10 — 0.87
linear 100 — 0.88
linear 1000 — 0.88
RBF 1 0.001 0.13
RBF 1 0.0001 0.13
RBF 10 0.001 0.42
RBF 10 0.0001 0.13
RBF 100 0.001 0.69
RBF 100 0.0001 0.34
RBF 1000 0.001 0.83
RBF 1000 0.0001 0.70

Table 1 lists all the accuracies that we obtained from grid search. We can notice

that the model with 𝐶 = 100 gave the best accuracy when we used a linear kernel.

However, the RBF kernel is not suitable for malware classification. All in all, it is

clear from the experiments that for HMM-SVM, linear kernel worked well to classify 7

malware families.

4.2.3 HMM-𝑘NN

As 𝑘NN captures the closeness of data samples, in this experiment, we classify

malware based on their similarities. The experiments were conducted with 𝑛-fold

cross-validation and without 𝑛-fold cross-validation with the value of 𝑛 set to 5. The

input for HMM-𝑘NN is a set of vectors, each created by using 𝐵 vectors from HMM

training. A total of 7000 vectors were used. The labeled input vectors are split into

two sections of training and testing data. We randomly pick 70% of the total number

of input vectors for training and 30% vectors for testing. Therefore, 4900 vectors were
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used for training, and 2100 vectors were used for testing. In, 𝑘NN, 𝑘 is the number of

neighbors that contribute to the voting process to classify malware samples. In this

research, we refer to the number of neighbors as 𝑘-neighbors.

4.2.3.1 HMM-𝑘NN without cross-validation

We performed experiments for different values of neighbors in the range

1, 2, 3, . . . , 100. As we increased the value of 𝑘-neighbors, our predictions achieved

more stability as there is a majority of voters. 𝑘NN is the simplest algorithm and

an optimal value of 𝑘 does not depend on the number of classes. A general rule of

thumb to find the optimal value of 𝑘-neighbors is a square root of training samples.

As we have 4900 samples for training for this experiment, the optimal value of 𝑘 is 70.

Therefore, we are interested in 𝑘NN accuracy when 𝑘-neighbors are 70.

Figure 6: Confusion matrix for HMM-𝑘NN with 𝑘 = 70
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Figure 6 is a confusion matrix for HMM-𝑘NN when 𝑘 = 70. As shown in Figure 6,

we observe that the percentage accuracies of predicting the malware samples from

BHO, Ceeinject, and Vobfus are the highest. In this technique, we observed the

misclassification similar to HMM-SVM. The samples from Winwebsec are misclas-

sified as Fakrean. Winwebsec is also misclassified as OnLineGames. Samples from

OnLineGames family are misclassified as Fakerean samples. The overall percentage

of misclassification is higher in HMM-𝑘NN. This could be because of the bias in the

data. To avoid this bias, we trained HMM-𝑘NN with cross-validation.

4.2.3.2 HMM-𝑘NN with cross-validation

In this subsection, we trained HMM-𝑘NN with 5-fold cross-validation. We trained

the 𝑘NN classifier for different values of neighbors in the range 𝑘 = 1, 2, 3, . . . , 100. Fig-

ure 7 represents average accuracy for 5-fold cross-validation with varying 𝑘-neighbors,

which was obtained using HMM-𝑘NN to classify 7 malware families.

Figure 7: HMM-𝑘NN, cross-validation: Average accuracy for varying 𝑘-neighbors,
using 𝐵 vectors

As shown in Figure 7, as we increased the value of 𝑘-neighbors, our predictions

achieved more stability as there is a majority of voters. As we know that the optimal
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value of 𝑘 is a square root of training samples. In this experiment, we have 80%

training samples and 20% testing samples. Therefore, we have 5600 training samples

for this experiment. The optimal value of 𝑘-neighbors should be around 75. As it can

be observed in Figure 7, accuracy of predictions decreases as we increase 𝑘-neighbors.

For all the values of 𝑘 before 75, the model overfits the data. From 𝑘=70 to 𝑘=80,

we see a small peak where the accuracy is maximum. We achieved 79% accuracy for

𝑘 = 75 for HMM-𝑘NN when this hybrid model was trained with 𝐵 vectors.

4.2.4 HMM-RF

When it comes to supervised learning, studies have shown that random forests

and neural networks hold a high level of predictive accuracy [31]. We trained HMM-

RF using vectorized versions of the 𝐵 matrices obtained from HMMs. For these

experiments, we have 7000 vectors in total. The training data for HMM-RF involves

splitting the set of vectors into 70% training and 30% testing samples. A random split

is obtained after shuffling the feature vectors. We used 1000 trees in the forest, and

the maximum depth of the tree was set to 300.

Figure 8 represents a confusion matrix obtained for HMM-RF. For HMM-RF,

we obtained an accuracy of 0.949 for multiclass malware classification, which is

highest so far. To further optimize the performance of HMM-RF, we decided to tune

hyperparameters. The best hyperparameters are impossible to find ahead of time.

However, a randomized search can be used to find hyperparameters by providing

a combination of parameters to the model. The best parameters obtained using a

randomized search are shown in Table 2.

Using the parameters mentioned in Table 2, we retrained HMM-RF classifier.

Figure 9 represents a confusion matrix obtained for this experiment, which gives a

visual representation of classification for each malware family. Figure 8 and Figure 9
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Figure 8: Confusion matrix for HMM-RF

Table 2: Randomized search parameters for HMM-RF

Hyperparameter Value
𝑛-estimators 1000

min samples split 2
min samples leaf 1

max features auto
max depth 50
bootstrap false

indicate that BHO and Vobfus are 97% and 99% correctly classified. The percentage of

misclassification between malware samples of OnLineGames and Fakerean is reduced

to 4%. Moreover, 4% of testing samples of Winwebsec are getting misclassified as

Fakerean. So overall, we observe the same pattern for malware misclassification, as

observed in HMM-SVM.
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Figure 9: Confusion matrix for HMM-RF using grid parameters

Figure 10: HMM-RF cross-validation, average accuracy across 10 folds

To summarize HMM-RF, the accuracy of 96% was achieved when this hybrid

model was trained on 𝐵 vectors with best-obtained parameters using a randomized

search. It is the highest accuracy obtained so far. We also performed cross-validation
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for the values of 𝑛-folds as 2, 3, . . . , 10. Figure 10 represents average accuracy over the

set of folds for HMM-RF.

4.2.5 HMM-DNN

To select a model for a classification problem using deep learning (DL), there are

a variety of options, which include one-dimensional (1-D) CNN, two-dimensional (2-D)

CNN, recurrent neural networks (RNN) and so on. As HMM-DNN classification is

based on the 1-D vectors generated from converged HMM matrices where each vector

is of length 200, we chose fully connected DNN, which is equivalent to 1-D CNN.

In DNN, the prediction error is represented by loss. Loss determines the gradient

and gradient defines how far the model is from predicting the correct class. In short,

gradient updates the weights associated with neurons. Loss functions calculate this loss.

There are four most commonly used loss functions, namely mean squared error (MSE),

binary cross-entropy (BCE), categorical cross-entropy (CC), and sparse categorical

cross-entropy (SCC) [32]. In HMM-DNN, we experimented on MSE, CC, SCC loss

functions, and different numbers of fully connected layers and neurons.

We split input data into 80% training samples, 10% validation samples, and 10%

testing samples. With this split, we obtained 5600 training samples, 700 validation

samples, and 700 testing samples. We trained each model using the rectified linear

unit (ReLU) activation layer and 200 epochs. To construct a sequential model, we

used Keras [33] library.

4.2.5.1 Multilayer perceptron: Optimizer selection

In the first experiment, we trained HMM-DNN using one input layer of dimension

200, a hidden layer using 500 neurons and an output layer using 7 neurons as we

have 7 classes. We used MSE as the loss function and stochastic gradient descent

(SDG) as the optimizer. Both training and testing accuracies were 50%, which is as
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good as a flip of a coin. To achieve better accuracy, we changed the optimizer to

Adam [34] and kept the loss function as MSE. With this change, we achieved training

accuracy of 97% and testing accuracy of 92%. As Adam uses an adaptive learning

strategy, we got better accuracy. We then used Adam for all further experiments.

4.2.5.2 Multilayer perceptron: 2 hidden layers of 20 neurons

We trained HMM-DNN with 2 hidden layers, one input layer, and an output

layer with 20, 200, and 7 neurons, respectively. The output layer has 7 neurons

because we have 7 malware families to classify. We used CC as the loss function. In

this experimental setup, we achieved the best testing accuracy of 88% after varying

hyperparameters. At this point, the model showed a 40% loss. We decided to continue

further experiments using 500 neurons for a hidden layer.

4.2.5.3 Multilayer perceptron: Loss function selection

A grid search method helps to identify the best hyperparameters. However, it is

cost-effective to train a DNN. The other way is to try different values to regularize

a DNN. Therefore, we chose to compare models using different loss functions. Loss

functions CC and SCC work well for classification problems. Therefore, we performed

two more experiments to decide the loss function. In these experiments, we used

one input layer with 200 neurons, one hidden layer with 500 neurons and the ReLU

activation function, and the output layer of 7 neurons followed by softmax activation.

In this setup, we achieved a testing accuracy of 93.7% using the previously mentioned

sparse categorical cross-entropy and 93.8% using CC. Therefore we continued to use

categorical cross-entropy for further experiments. In both cases, the training accuracy

is 100%, which implies overfitting.

Figure 11 shows model accuracy and Figure 12 shows model loss for the experiment

using categorical cross-entropy. As you can see in Figure 11, the gap between training
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Figure 11: Model accuracy for HMM-DNN — overfitting

Figure 12: Model loss for HMM-DNN — overfitting

accuracy and validation accuracy is reducing, but as per Figure 12, the gap between

validation loss and training loss is increasing. As we increase the number of epochs,

accuracy keeps on increasing; this suggests that the model overfits training data.

4.2.5.4 Multilayer perceptron: Dropout layer

So far, we observed that the HMM-DNN overfitted the data with high loss. There

are a handful of ways to minimize loss. DNN can be regularized using a dropout layer.

Figure 13 shows the DNN architecture with an added dropout layer. It drops out
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inputs to the layer in a probabilistic manner. We set the dropout rate to 0.5. In this

setup, we achieved a testing accuracy of 94.2% and a training accuracy of 98%. The

training accuracy is reduced, which means that the model is not overfitting.

Figure 13: HMM-DNN model architecture

Figure 14 (a) and (b) shows model accuracy and and loss, respectively, for this

experiment. Training and validation accuracies are increased as we increase the number

of epochs. As shown in Figure 14 (b), the validation loss curve and training loss curve

are more coherent to each other than shown in Figure 12. It means that the model

is not overfitting, unlike before. All in all, HMM-DNN achieved 94% of accuracy to

classify 7 malware families, which is the second-best accuracy achieved for HMM-based

hybrid machine learning models.

4.2.6 Word2Vec-SVM

The experiments conducted in this section use vector embeddings generated

from the Word2Vec algorithm. The generated vectors are analogous to the vectors

generated using HMM. However, Word2Vec gives us the flexibility to choose vector

and window sizes to generate vector embeddings. We used 7 malware families for

this experiment and, therefore, the number of samples for this experiment is 7000.
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(a) Accuracy (b) Loss

Figure 14: Model accuracy and loss for HMM-DNN

Word2Vec based hybrid machine learning models are also trained using the most

common 31 opcodes. In this section, we discuss three significant experiments we

conducted using Word2Vec-SVM.

4.2.6.1 Word2Vec-SVM using linear kernel

For Word2Vec-SVM, we used a linear kernel with a one-versus-other technique.

We split the input data in 70% training samples and 30% testing samples. We

generated Word2Vec vectors of size 2, 31, 100, and windows of size 1, 5, 10, 30, 100.

Using the combination of vector and window sizes, we conducted 15 experiments for

Word2Vec-SVM using linear kernel.

We achieved 95% accuracy to classify 7 malware families using linear kernel with

input vectors of size 31 and window of size 1. Figure 15 clearly indicates the accuracies.

Figure 15 shows that accuracies significantly improved when the vector size

increased from 2 to 31. We used 31 opcodes for this training, so the vector size 31

worked best for Word2Vec-SVM. We also observed that as window sizes increased

beyond 10, the accuracies reduced.
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Figure 15: Word2Vec-SVM, linear kernel: Accuracy vs different vector and window
sizes

4.2.6.2 Word2Vec-SVM using grid search

So far, we used a linear kernel for SVM related experiments. To check which

kernel is suitable, we used an exhaustive grid search method [30]. Table 3 represents

grid search parameters obtained after training Word2Vec-SVM for input vectors of

size 2 and window of size 30. We used 𝑛-fold cross-validation for grid search where

𝑛 was 5. As shown in Table 3, we observed that for RBF kernel with 𝛾 = 0.001, we

achieved the highest accuracy.

4.2.6.3 Word2Vec-SVM using RBF kernel

For the RBF kernel, we used 𝐶 = 1000 and 𝛾 = 0.001. The labeled input vectors

are split into two sections of training and testing data. We randomly pick 70% of the

total number of input vectors for training and 30% vectors for testing. Therefore, we

used 4900 vectors for training and 2100 vectors for testing. We generated Word2Vec

vectors of size 2, 31, 100, and windows of size 1, 5, 10, 30, 100. Using the combination

of vector and window sizes, we conducted 15 experiments for Word2Vec-SVM using

RBF kernel.
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Table 3: Word2Vec-SVM grid search accuracies, vector size = 2 and window size = 30

Kernel 𝐶 𝛾 Accuracy
linear 1 — 0.86
linear 10 — 0.85
linear 100 — 0.85
linear 1000 — 0.85
RBF 1 0.001 0.87
RBF 1 0.0001 0.70
RBF 10 0.001 0.91
RBF 10 0.0001 0.84
RBF 100 0.001 0.92
RBF 100 0.0001 0.88
RBF 1000 0.001 0.92
RBF 1000 0.0001 0.90

We achieved 95% accuracy to classify 7 malware families using RBF kernel with

input vectors of size 31, and windows of sizes 1 and 30. Figure 16 clearly indicates

the accuracies.

Figure 16: Word2Vec-SVM, RBF kernel: Accuracy vs different vector and window
sizes

As we can see from the Figure 16, when the vector size was increased from 2 to

31, the accuracy of classification was slightly improved. Vector size 31 worked best for

this experiment.
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4.2.7 Word2Vec-RF

In this experiment, we used 7 malware families for classification, namely, BHO,

OnLineGames, Renos, Winwebsec, Fakerean, Vobfus, and Ceeinject. Therefore, the

number of samples for this experiment is 7000. Word2Vec embeddings are given as

input to the RF algorithm.

For this experiment, Word2Vec vectors were generated for vector sizes 2, 31, 100,

and window sizes 1, 5, 10, 30, 100. The number of trees in the forest is called as

𝑛-estimators, which were set to 1000 by default. A total of 4900 samples were used

for training, and 2100 samples were used for testing. Using this setup, we obtained

the results for 15 different experiments using vector sizes and window sizes mentioned

before. The best accuracy to classify 7 malware families using Word2Vec-RF using

vector size as 100 and window size as 30 is 96.2%. The class-wise confusion matrix

is summarized in Figure 17. Figure 17 indicates that almost all malware families

are classified correctly. Winwebsec is misclassified as Fakerean for 3% of the testing

samples.

Additional results for Word2Vec-RF with different window and vector sizes can be

seen in Appendix A. After conducting experiments using default parameters, we then

obtained the best parameters for RF using a grid search method for the embeddings

generated using vector size as 100 and window size as 30. Table 4 summarizes the

best parameters obtained using grid search.

By using the best parameters, we trained Word2Vec-RF for embeddings generated

using a vector size of 100 and a window size of 30. We performed cross-validation

for the values of folds 2, 3, . . . , 10. Figure 18 shows average accuracy for 𝑛-fold cross-

validation. We achieved around 96% accuracy using the best parameters for 6-fold

cross-validation.
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Figure 17: Word2Vec-RF classification vector size = 100 and window size = 30

Table 4: Randomized search parameters for Word2Vec-RF

Hyperparameter Value
𝑛-estimators 1400

min samples split 2
min samples leaf 1

max features auto
max depth 40
bootstrap false

4.2.8 Word2Vec-𝑘NN

For this experiment, we considered 7 malware families, namely BHO,

OnLineGames, Renos, Winwebsec, Fakerean, Vobfus, and Ceeinject. As there are 7

families, the total number of vectors used as input for 𝑘NN is 7000. The experiments

were conducted with 𝑛-fold cross-validation and without 𝑛-fold cross-validation.
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Figure 18: Word2Vec-RF cross-validation: Average accuracy across 10 folds,
vector size = 100 and window size = 30

4.2.8.1 Word2Vec-𝑘NN with cross-validation

We trained Word2Vec-𝑘NN using 5-fold cross-validation. We generated the vectors

of size 2, 31, 100, and windows of size 1, 5, 10, 30, 100. Using the combination of

vector and window sizes, we conducted 15 experiments with Word2Vec-𝑘NN. For every

experiment, we trained 𝑘NN classifier for different values of neighbors in the range

𝑘 = 1, 2, 3, . . . , 100. We observed that for the input vector of size 100 and window

size of 1; we achieved 88% of classification accuracy for 𝑘=75. The line graphs of

accuracy vs. 𝑘-neighbors for all the 15 experiments are represented in Appendix A.

Figure 19 represents a line graph where we achieved an accuracy of 88.1% when 𝑘 = 75.

Figure 19 shows a small peak from 𝑘=70 to 𝑘=80, where we get the highest accuracy

without overfitting the data.

4.2.8.2 Word2Vec-𝑘NN without cross-validation

We performed experiments for different values of neighbors in the range 𝑘 =

1, 2, 3, . . . , 100. We split the labeled input vectors into two sections of training and

testing data. We randomly pick 70% of the total number of input vectors for training

and 30% vectors for testing. As we have 7 categories of malware families in this

experiment, we are interested in the accuracies for 𝑘 = 70 as for this experiment
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Figure 19: Word2Vec-𝑘NN cross-validation: Average accuracy for varying 𝑘-neighbors,
vector size = 100 and window size = 1

we have 4900 samples for training. As mentioned in above, we achieved the best

accuracy of 88.1% for Word2Vec-𝑘NN when vector size and window size was 100 and

1, respectively. Therefore, for this experiment, we used vector size as 100 and window

size as 1. The reason to perform this experiment without cross-validation is to see the

classification of an individual malware family.

Figure 20 shows confusion matrix for classification of malware families using

Word2Vec-𝑘NN for 𝑘-neighbors = 70. As we increase the value of 𝑘-neighbors, our

predictions achieve more stability as there is a majority of voters. Figure 20 indicates

that malware samples from BHO, Vobfus, and Fakerean families are correctly classified.

We still see the misclassification of Winwebsec samples as Fakerean samples.

4.2.9 Word2Vec-DNN

We generated Word2Vec vectors using vector sizes of 2, 31, 100, and window

sizes of 1, 5, 10, 30, 100 for each family. With these vectors, we conducted 15

experiments. We used DNN architecture, as shown in Figure 13, to train Word2Vec-

DNN experiments. However, the input layer changes in each experiment, depending

on the vector size.
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Figure 20: Confusion matrix for Word2Vec-𝑘NN for 𝑘-neighbors = 7, vector size = 100
and window size = 1

When the training process is going well, loss decreases. Figure 21 (a) and (b),

respectively, demonstrate model accuracy and model loss for one of the experiments

with 31 as vector size, 1 as window size and 200 epochs.

We achieved 95% of testing accuracy with higher loss. If the loss is decreasing,

then the training process is going as per expectations. However, Figure 21 (b) shows

that validation loss increased as the number of epochs increased, and accuracy remains

the same. It means that the model is highly confident about its prediction, and any

misclassification of malware families induces high loss, and the model is diverging.

One of the ways to stop this problem is early stopping. It prevents the waste of

computational resources. Another way is to tune the learning rate. Therefore, as we

increased the window sizes, we reduced the number of epochs to 50, tuned the learning

37



(a) Accuracy (b) Loss

Figure 21: Model accuracy and loss for Word2Vec-DNN, vector size = 31,
window size = 1 and epochs = 100

rate to 0.0001, 𝑏𝑒𝑡𝑎1 is set to 0.9, and 𝑏𝑒𝑡𝑎2 is set to 0.999 [34]. Figure 22 (a) and (b)

demonstrate model accuracy and model loss, respectively, for the same experiment

using 50 epochs. We achieved 94% testing accuracy, but the loss is reduced significantly

without compromising much on accuracy.

(a) Accuracy (b) Loss

Figure 22: Model accuracy and loss for Word2Vec-DNN, vector size = 31,
window size = 1 and epochs = 50
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Figure 23 shows the confusion matrix for the classification. It shows that malware

family Fakerean is getting misclassified with OnLineGames and Winwebsec, which is

a common pattern that we have observed so far in all the experiments.

Figure 23: Confusion matrix: vector size = 31, window size = 1 and epochs = 15

Figure 24 indicates a summary of all the 15 experiments we conducted using

Word2Vec-DNN. Each bar represents testing accuracy, number of epochs, window size,

and vector size used. It is clear from the experiment that as we increased the window

size, we decreased the number of epochs to minimize model loss. All in all, the best

accuracy we achieved using Word2Vec-DNN is 94%.

The experiments with 7 malware families show that malware classification gets

more challenging as the model becomes generic. From the experiments, we conclude

that detecting malware using RF and SVM for hybrid machine learning are the most
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Figure 24: Accuracies across all Word2Vec-DNN experiments

reliable techniques when opcode sequences are used as features. Moreover, hybrid

models based on Word2Vec embeddings obtained better accuracies than HMM-based

models. Word2Vec-RF resulted in 96% accuracy for the classification of 7 malware

families.

4.3 Robustness analysis of hybrid machine learning techniques

Advanced types of malware such as polymorphic malware changes itself constantly

to evade malware detection techniques. One way to evade malware detection algorithms

is to add dead code into malware code from legitimate computer programs. Adding

dead code changes the signature of malware making them difficult to detect. In this

research, to check how robust hybrid techniques are, we scrambled a percentage of

the opcode sequence before training HMM and Word2Vec techniques. For robustness

experiments, we randomly scrambled 10%, 20%, 30%, and 40% of opcode sequences

and trained HMM and Word2Vec to generate the vectors for two malware families,

Winwebsec and Fakerean. We used the most frequent 31 opcodes for all robustness

experiments.
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4.3.1 Robustness of HMM-based techniques

For all HMM-based experiments, we first generated vectors without any scrambling

of opcodes. We used B matrices from 1000 converged HMM models to generate 1-D

vectors. As we trained all the classifiers using two families, we have a total of 2000

vectors. We trained a binary classifier using HMM-SVM, HMM-𝑘NN, HMM-RF, and

HMM-DNN. Now, we scrambled 10%, 20%, 30%, and 40% of opcode sequences and

generated 300 vectors from 300 HMMs for each percentage of scrambled opcodes. We

did this for Winwebsec and Fakerean families. Now that we have 600 obfuscated

vectors, we tested them on the trained binary classifier. This section describes the

result obtained after scrambling the opcodes.

Figure 25: Robustness experiment for HMM-based hybrid machine learning techniques

In the Figure 25, we show a plot of accuracies vs. a percentage of opcodes that

are scrambled. The accuracies are for the classification of Winwebsec and Fakerean

samples. Each line graph indicates a hybrid machine learning technique. HMM-

DNN shows good tolerance for the scrambled opcodes. The accuracy of HMM-SVM

drastically dropped when tested on 600 samples of obfuscated data. The accuracies of

HMM-𝑘NN and HMM-RF remained between 50% to 60%.
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4.3.2 Robustness of Word2Vec-based techniques

For all Word2Vec-based experiments, we first generated vectors with vector size

of 2 and window sizes of 1, 5, 10, 30 and 100, without any scrambling of opcodes. We

generated 1000 vector embeddings using Word2Vec model for Winwebsec and Fakerean

malware family. Thus, we have a total of 2000 vector embeddings. We trained binary

classifiers using SVM, 𝑘NN, RF, and DNN. Now, we scrambled 10%, 20%, 30%, and

40% of opcode sequences and generated 600 vectors for each percentage of scrambled

opcodes. We chose 300 vectors from Winwebsec family and 300 vectors from Fakerean

family for that purpose. We tested 600 obfuscated vectors of two families on the

trained binary classifier. This section describes the result obtained after scrambling

the opcodes.

Figure 26: Robustness experiment for Word2Vec-SVM

In Figure 26, we show a plot of accuracies vs. percentage of opcodes that are

scrambled and tested on Word2Vec-SVM model. Each line graph indicates a specific

vector size and window size configuration used for testing the data. As the window

size increased, the accuracy dropped. When the window sizes are 30 and 100, the

accuracies remain in range 50% to 60%. However, for the window sizes of 1, 5, 10,
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the accuracies remain in the range 60% to 70%. The reason is that, large window

sizes capture more information about the opcode sequence. The vector is affected by

consecutive opcodes. As we have randomly scrambled opcodes, the vectors with large

window sizes add more noise into the vectors making the classification difficult.

Figure 27: Robustness experiment for Word2Vec-𝑘NN

In Figure 27, we show a plot of accuracies vs. percentage of opcodes that

are scrambled and tested on Word2Vec-𝑘NN model. Each line graph indicates a

specific vector size and window size configuration used for testing the data. When

the window sizes are 30 and 100, the accuracies drop to 60% when the percentage

of scrambling opcodes is 40%. As we have randomly scrambled opcodes, the vectors

with large window sizes add more noise into the vectors making the classification

difficult. Moreover, as per Figure 27, vectors generated with window sizes 5 and 10

are comparatively tolerant to the scrambling and the accuracies remain 70%.

In Figure 28, we show a plot of accuracies vs. percentage of opcodes that are

scrambled and tested on Word2Vec-RF model. Each line graph indicates a specific

vector size and window size configuration used for testing the data. When the window

sizes are 30 and 100, the accuracies drop. When the window size is 100, accuracy
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Figure 28: Robustness experiment for Word2Vec-RF

drops below 50% when a percentage of scrambling is 40. Vectors with window sizes 1,

5, and 10 remain in a range of 60% and 70% accuracies.

Figure 29: Robustness experiment for Word2Vec-DNN

In Figure 29, we show a plot of accuracies vs. percentage of opcodes that are

scrambled and tested on Word2Vec-DNN model. Each line graph indicates a specific

vector size and window size configuration used for testing the data. For Word2Vec-

DNN, we see the same pattern. As we increase the window sizes and percentage of

opcode scrambling, the prediction accuracies keep getting worse.
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From these obfuscation experiments, we can see that Word2Vec-based hybrid

machine learning technique is robust at different percentages of opcode scrambling

if the window sizes are 1, 5, and 10. Also, HMM-DNN technique is the most robust

at different percentages of opcode scrambling. Chapter 5 discusses the summary and

accuracies in detail.
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CHAPTER 5

Conclusion and Future Work

In the first set of experiments, we tested hybrid machine learning techniques to

decide the number of opcodes to train our base models, namely HMM and Word2Vec.

In the second set of experiments, we tested the performance of 8 different hybrid

machine learning techniques for malware classification of 7 malware families.

Figure 30 summarizes the best accuracies for Word2Vec-based and HMM-based

hybrid machine learning techniques. HMM-based techniques are trained using 𝐵

vectors of converged HMMs. It is clear from Figure 30 that HMM-RF outperformed all

the models and achieved 96% accuracy to classify 7 malware families. Its configuration

was set to 1000 𝑛-estimators, 50 maximum depth, 1 minimum samples at leaves,

2 minimum samples split, and bootstrap set to false. HMM-DNN also performs

well to classify malware families. Almost all the hybrid machine learning techniques

based on Word2Vec embeddings have performed well. We achieved 96.2% accuracy

for the Word2Vec-RF and 95% accuracy for the Word2Vec-SVM model using both

linear and RBF kernels. In this research, we also performed experiments to test the

robustness of hybrid machine learning models. From the obfuscation experiments, we

concluded that Word2Vec-based hybrid machine learning techniques are robust at

different percentages of opcode scrambling for window sizes less than 30.

Almost all the hybrid machine learning techniques correctly classified the testing

samples from BHO, Vobfus, and Renos. We observed that the samples from Winwebsec

were often misclassified as Fakerean samples. Similarly, the samples from OnLineGames

were often misclassified as Fakerean samples. The percentage of this misclassification

is higher in HMM-based classification techniques than Word2Vec-based classification

techniques.

The substantial advantage of using Word2Vec is its high-speed training time.

46



Figure 30: Best accuracies for HMM-based hybrid machine learning

While HMM models generate 1000 vectors, based on 31 opcodes, in 76 hours, the

Word2Vec model takes 5 hours to do the same. Therefore, it becomes a suitable

method of training when more malware families are added for multiclass classification.

In conclusion, we observed that Word2Vec-based machine learning techniques not

only performed better than HMM-based machine learning techniques but also took

significantly less computational resources to generate the vectors and to train the

hybrid models.

As part of future extension to this research, similar experiments could be performed

on 25 or more malware families. The malware families that are similar to each other

can also be used for future experiments to make the classification more challenging.

In this research, opcode sequences were used as the feature for training HMMs and

generating Word2Vec embeddings. Similarly, corresponding experiments could be

conducted by using the byte 𝑛-gram [35] of opcodes as the feature. As discussed in [15],
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dynamic features of malware such as API calls could be used to classify malware

families. API calls identify if the sample belongs to a particular malware family based

on the likelihood of the observation sequence used in HMM. Therefore, we could also

train our hybrid models to classify malware families using API calls as a feature.

Instead of building the sequential layers for CNNs, we could also try to use

architectures such as ResNet and VGG [36] by using transfer learning techniques. In

transfer learning, models are pre-trained on a large dataset of images. We could leverage

such well-trained models for malware classification. Moreover, it would be interesting

to combine HMM and Word2Vec features with the Expectation-Maximization (EM)

clustering techniques [37] for the classification.

For this research, we have used a limited number of windows and vector sizes

to generate Word2Vec embeddings. Further experiments could be conducted by

generating a different set of window sizes and vector sizes as the input for our hybrid

machine learning techniques. Another experiment we can try is to create a pipeline of

three or more machine learning algorithms similar to the hybrid models that we have

proposed.
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APPENDIX

Additional results
A.1 HMM-SVM: Binary classification of Winwebsec and Zbot malware

families

The dataset used for these experiments was MALICIA [38] dataset. We used

Winwebsec [20] and Zbot [38] for this binary classification problem. As part of the

training phase, input for HMM-SVM is a set of vectors, each created by appending

𝐵 vectors to 𝐴 vectors. Total 1941 vectors were used in the training phase. While

training, the data is divided into 70% training samples and 30% testing samples. With

this distribution, training samples were 1358, and testing samples were 583. We used

a regularization parameter, 𝐶 with values 0.001, 0.01, 0.1, 1, 10, 100, 1000. Finally, in

the testing phase, SVM categorizes the data into two malware families.

Figure A.31: PR curve for HMM-SVM

We represented the results of HMM-SVM using receiver operating classifier (ROC)

curve and precision-recall (PR) curve. Figure A.31 and Figure A.32 represent the

results for this experiment.
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Figure A.32: ROC curve for HMM-SVM

A.2 HMM-𝑘NN: Binary classification of Winwebsec and Zbot malware
families

The experiments were conducted with 𝑛-fold cross-validation with the value of 𝑛

set to 5. The input for HMM-𝑘NN is a set of vectors, each created by appending 𝐵

vectors to 𝐴 vectors.

Figure A.33: Mean score of cross-validation vs 𝑘-neighbors

A total of 1940 vectors were used for this hybrid model. Cross-validation shuffles

the data and splits it into 𝑛-folds. Figure A.33 shows the graph of average accuracy
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for cross-validation vs 𝑘-neighbors. It is clear that using 𝑛-fold cross-validation, we

achieved around 96% accuracy for 𝑘 = 39 as we removed the bias from the data. The

optimal value of 𝑘 is selected as 39 based on the number of training samples.

A.3 Word2Vec-RF: Multiclass classification

The Table A.5 shows the accuracies of Word2Vec-RF malware classification of 7

malware families for vector sizes and window sizes.

Table A.5: HMM-SVM accuracies

Parameters Accuracy in percentage
vector size = 2, window size = 1 93.3
vector size = 2, window size = 5 94.1
vector size = 2, window size = 10 94
vector size = 2, window size = 30 94.1
vector size = 2, window size = 100 93.2
vector size = 31, window size = 1 94
vector size = 31, window size = 5 95
vector size = 31, window size = 10 95.19
vector size = 31, window size = 30 95.3
vector size = 31, window size = 100 94.1
vector size = 100, window size = 1 95.1
vector size = 100, window size = 5 94.9
vector size = 100, window size = 10 95
vector size = 100, window size = 100 94.6

A.4 Word2Vec-𝑘NN: Multiclass classification

This section represents few experiments performed for Word2Vec-𝑘NN
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Figure A.34: Word2Vec-𝑘NN classification vector size = 2 and window size = 1

Figure A.35: Word2Vec-𝑘NN classification vector size = 2 and window size = 5
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Figure A.36: Word2Vec-𝑘NN classification vector size = 2 and window size = 10

Figure A.37: Word2Vec-𝑘NN classification vector size = 2 and window size = 30
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Figure A.38: Word2Vec-𝑘NN classification vector size = 2 and window size = 100

Figure A.39: Word2Vec-𝑘NN classification vector size = 31 and window size = 1
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Figure A.40: Word2Vec-𝑘NN classification vector size = 31 and window size = 5

Figure A.41: Word2Vec-𝑘NN classification vector size = 31 and window size = 10
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Figure A.42: Word2Vec-𝑘NN classification vector size = 31 and window size = 30

Figure A.43: Word2Vec-𝑘NN classification vector size = 31 and window size = 100
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Figure A.44: Word2Vec-𝑘NN classification vector size = 100 and window size = 5

Figure A.45: Word2Vec-𝑘NN classification vector size = 100 and window size = 10
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Figure A.46: Word2Vec-𝑘NN classification vector size = 100 and window size = 30

Figure A.47: Word2Vec-𝑘NN classification vector size = 100 and window size = 100
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