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Abstract: Tropical forests are often located in difficult-to-access areas, which make high-quality
forest structure information difficult and expensive to obtain by traditional field-based approaches.
LiDAR (acronym for Light Detection And Ranging) data have been used throughout the world to
produce time-efficient and wall-to-wall structural parameter estimates for monitoring in native and
commercial forests. In this study, we compare products and aboveground biomass (AGB) estimations
from LiDAR data acquired using an aircraft-borne system in 2015 and data collected by the unmanned
aerial vehicle (UAV)-based GatorEye Unmanned Flying Laboratory in 2017 for ten forest inventory
plots located in the Chico Mendes Extractive Reserve in Acre state, southwestern Brazilian Amazon.
The LiDAR products were similar and comparable among the two platforms and sensors. Principal
differences between derived products resulted from the GatorEye system flying lower and slower
and having increased returns per second than the aircraft, resulting in a much higher point density
overall (11.3 + 1.8 vs. 381.2 + 58 pts/m?). Differences in ground point density, however, were much
smaller among the systems, due to the larger pulse area and increased number of returns per pulse of
the aircraft system, with the GatorEye showing an approximately 50% higher ground point density
(0.27 £ 0.09 vs. 0.42 + 0.09). The LiDAR models produced by both sensors presented similar results
for digital elevation models and estimated AGB. Our results validate the ability for UAV-borne
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LiDAR sensors to accurately quantify AGB in dense high-leaf-area tropical forests in the Amazon. We
also highlight new possibilities using the dense point clouds of UAV-borne systems for analyses of
detailed crown structure and leaf area density distribution of the forest interior.

Keywords: forest inventory; forest monitoring; forest structure; remote sensing

1. Introduction

Tropical forests are often located in remote and difficult-to-access areas. Therefore, field data
collection costs are high, which forces compromises in the measurements collected or the number
of locations sampled. As a consequence, high-quality forest structure information is difficult and
expensive to obtain by traditional ground surveys in these areas. Airborne Light Detection And
Ranging (LiDAR) data have been widely used to produce structural parameter estimates of both
temperate and tropical forests and to monitor native and commercial forests [1-5].

This technology provides a quick and complete assessment of forest structure, which allows
the calculation of metrics such as canopy height, wood volume, biomass, and carbon stocks [4,6].
In addition, LiDAR also has multiple applications in the planning and monitoring of activities related
to forest management through the assessment of digital elevation and surface models with sub-meter
accuracy [7-11], enabling surveying of areas difficult to access at relatively low cost. Forest monitoring,
particularly of areas undergoing forest management, require repeat LiIDAR estimates of damages
produced by logging, changes in the canopy cover [12], and biomass stock dynamics [5,13]. The benefits
for scientists and forest companies of LIDAR data are immense. However, despite the great usefulness
of this technology, its acquisition is still expensive [14] and limited to large, contiguous areas. Challenges
in obtaining data are considerable for regions that are furthest away from population centers where
the companies providing these services are usually located (e.g., [7]), which limits the use of LIDAR
surveys—notably those that require repeated flights over the same area or that do not have large
budgets for data acquisition.

In the last few years, we have observed an increase in the use of unmanned aerial vehicles (UAVs)
for forest use [15-17] and as a complementary tool to aircraft-borne LiDAR for forest studies [18]. For
example, UAV-borne visual sensors have provided 3D products through photogrammetric analyses
and high-resolution orthomosaics, creating a revolution in landscape mapping through its combined
low-cost hardware and high-resolution outputs [17,19,20]. This approach is limited, however, to
mapping areas visible from multiple perspectives, and as such, visibility is typically unable to penetrate
most forest canopies to the ground and therefore has significantly limited products [19,21]; for example,
it is unable to produce digital elevation models, which require ground points, and therefore tree height
models—which are critical for most studies of aboveground biomass.

In the search for alternatives, LIDAR sensors have very recently become sufficiently small to be
mounted on UAVs and have been used to generate models similar to those produced by standard
aircraft-borne LiDAR systems, substantially extending the usefulness of UAVs [21-24]. UAV-borne
LiDAR—which usually employs a flight above ground level (AGL), below 100 m, at a low (1040
km/h) speed, with wider scanning angles, and high pulse frequency—are capable of producing very
high-density point clouds, which largely exceed the ones produced by aircraft-borne LiDAR. The
development of allometric models to estimate aboveground dry biomass stored in dominant and
co-dominant individual trees in tropical forests is feasible with the typical 5-10 pts/m? LiDAR data
obtained from aircraft-borne LiDAR sensors [25]. However, the much higher point-density clouds
produced by UAV-borne LiDAR enable more extensive and varied uses, including assessing interior
forest structure with higher precision and accuracy [21,26], digital terrain model with very high
resolution [27], direct diameter-at-breast height (DBH) estimates [24], and individual tree detection
and detailed crown segmentation [28].
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The objective of this study was to compare LiDAR data and its products obtained from two
different platforms: aircraft and UAV. Specifically, we compared: (a) LiDAR point clouds and metrics;
(b) digital terrain, surface and canopy models, and (c) aboveground biomass (AGB) models for a
group of forest inventory plots located in an Amazonian tropical forest in the Chico Mendes Extractive
Reserve in Acre, Brazil.

2. Materials and Methods

2.1. Study Site

Seringal Filipinas is a small rural community located in the Chico Mendes Extractive Reserve
(locally known as Resex Chico Mendes), which is an International Union for Conservation of Nature
(IUCN) category VI Protected Area with sustainable use of natural resources, located about 30 km from
Brasileia city (Figure 1). The community has little structure for agricultural production and storage,
and the primary economic income is from non-timber product extraction. The forest is predominantly
open with a transition to a dense forest with a relatively high occurrence of the species Hevea brasiliensis
L. and Bertholletia excelsa Bonpl. The climate is classified as Awi (Koppen) with annual precipitation of
around 2000 mm and an average temperature of 24 °C, with a dry season between the months of June
and September. The area has gentle topography with a maximum elevation range of around 75 m.
Because it is contained in an extractive reserve, the forest is typically well conserved with only small
areas of secondary forest, pasture, and crops, not exceeding 5% of the total area. However, there have
been indications of increased deforestation and selective logging in this area in the last decade [29,30].
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Figure 1. Map of Acre State and its location in South America (top left), the Resex Chico Mendes
(middle and bottom left), the BR 317, and the surrounding urban areas (Brasileia and Epitacioldndia
cities). The black polygon in the bottom left map is the Seringal Filipinas, and the blue polygon is the
1000 ha area covered by Light Detection And Ranging (LiDAR) flight in 2015. The Google map on the
right represents the area covered by the 2015 LiDAR flight and the 15 established permanent sample
plots (PSPs).
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2.2. Forest Inventory Plots

A forest inventory was conducted in March 2017. During the inventory, 10 randomly distributed
1 ha (100 x 100 m) permanent sample plots (PSP) were established. The plot boundaries were defined
using a handheld compass for azimuths and a measuring tape for length. GPS coordinates of all plot
corners were calculated using a differentially corrected GPS with at least 30 minutes of acquisition per
point. All woody stems greater than 10 cm in diameter at breast height (DBH) were labeled, measured,
and identified. For each tree, oven-dried AGB was estimated with Equation (1), which was developed
for a similar forest in the southern Amazon [31]. Ground measurement data were summarized to the
plot level for further analysis (Table 1).

AGB = (DBH)"2.671 X 0.064)/1000 1)

Table 1. Plot identification (ID), number of trees and aboveground biomass (AGB Mg-ha™!) to the
permanent sample plots established at the Seringal Filipinas in the Resex Chico Mendes.

Plot ID Number of Trees AGB Mg-ha1

1 543 252.17

2 498 224.44

3 596 239.16

4 576 283.38

5 628 280.81

6 667 233.07

7 548 244.82

8 579 300.85

9 519 315.95
10 590 356.50
Mean 558.33 293.99
SE 15.28 10.66

2.3. LiDAR Data Acquisition

Aircraft-borne LIDAR: Discrete return LIDAR data were collected in September 2015 using a Trimble
Harrier 68i sensor set to 300 kHz, installed in a Cessna 206 aircraft, flying at 600 m above ground
level (AGL) with an average speed of 198 km/h. This system employs full-waveform digitization,
and each waveform is then analyzed by Trimble software to identify return peaks, allowing for a
theoretically unlimited number of discrete returns per waveform, but typically 3-6. In our landscape
dataset (which covers all PSPs), we identified a maximum of 6 returns being present. LiDAR sidelap
was 50%, resulting in a point cloud with a minimum (average) density of 5 (14) pts m~2
area of 1000 ha (Table 2). Estimated point absolute spatial accuracy is < 0.25 m horizontal and < 0.15 m
vertical (Trimble provided specifications sheet).

UAV-borne LiDAR: Discrete dual return (strongest and last) LIDAR data was collected in August
2017 using the GatorEye Unmanned Flying Laboratory (www.GatorEye.org). The complete sensor
suite includes radiometric thermal, high-resolution visual, dual hyperspectral sensors, and LiDAR.
The flight platform is a DJI Matrice 600 Pro hexacopter capable of vertical takeoff and landing, with
16 minute flight autonomy for smaller areas and a five km telemetry/control range. In this study, we
used only data from the LiDAR sensor. The GatorEye Generation 1 used in this study (the system is
now on Gen 3 with a higher-power LiDAR sensor) features a Phoenix Scout integration, including a
Velodyne VLP-16 puck lite sensor with dual returns, capable of 600,000 returns per second (Table 2).
The system has an L1/L2 dual-frequency Global Navigation Satellite System (GNSS) receiver, and the
inertial measurement unit (IMU) is a tactical grade STIM 300. UAV trajectories are obtained through
post-process fusion of the IMU and GNSS data in Novatel Inertial Explorer software, differentially
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corrected to a mobile base station (X900-OPUS) set within 500 m of each launch location. The location
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of the base station itself was determined using the online Trimble CenterPoint RTX post-processing
website. GatorEye flights were conducted at 60 m AGL and an average speed of 30 km/h. LiDAR
sidelap was approximately 90%. Point absolute spatial accuracy has been estimated to be <5 cm [32].

Table 2. Aircraft and GatorEye LiDAR acquisition and product specifications.

Specification Aircraft GatorEye
Lidar sensor Harrier 68i Trimble (300 kHz) Velodyne VLP-16 Puck Lite (600 kHz)
Flying altitude (AGL) 600 m 60 m
Laser number 1 16
Beam divergence 0.25 mrad (1/e) 3.0 mrad (1/e)
Scan angle: horizontal field of view +15 degrees off-nadir Full 360 degrees off-nadir
Vertical field of view +1 +15 degrees
Swath sidelap 50% 80%
Approximate pulse density >4 m? >500 m?
Datum (Horizontal) WGS 84 WGS-84
Projection UTM, Zone 19S UTM, Zone 19S
Datum (Vertical) WGS 84 ITRF 2014
Pulse diameter at target 15-30 cm 2-8 cm
Horizontal accuracy 50-75 cm 2-5cm
Vertical accuracy 15-50 cm 2-5cm
Li . LAS format with classified ground LAS format with classified ground
idar raw point cloud format . oo s e
points identified points identified

2.4. LiDAR Data Processing

The FUSION LiDAR processing package [33] was used for processing the LIDAR all-returns data
(first, intermediates, and last returns per pulse) for both GatorEye and aircraft data. LIDAR returns
that occurred within each of the ten ground plot polygons were extracted from the acquisition datasets
to create an all-returns point cloud file for each plot (Appendix 1). The ground surface elevation
(interpolated from the LiDAR digital terrain model) was then subtracted from each return to remove
topographic variation within the plot. Descriptive statistics of the LIDAR point cloud vertical structure,
using all returns above 1 m, were computed for each plot. The one-meter minimum height above
ground was used to reduce noise within the near-ground point cloud caused by low vegetation and
imperfections in the ground point filtering.

First, the following layers were produced at a 1 X 1 m spatial resolution: (1) a reference image
which serves as a background image for data exploration and display, and which provides sufficient
resolution to clearly recognize overstory tree crowns as well as areas of agricultural crops and pastures;
(2) digital terrain (DTM) (e.g., elevation-ground), surface (DSM) (top-of-canopy), and canopy height
(CHM) models (CHM = DSM — DTM). Second, we computed a suite of forest structural metrics at
different spatial resolutions. A list of all computed metrics is provided in Table 3, and a detailed
description of each metric is provided in [33]. In overview, the metrics provide information on the
vertical distribution of LiDAR points across the forest profile and the shape and heterogeneity of
this distribution.

For canopy cover metrics, we used a canopy overstory threshold height of 2 m. Plot-level LIDAR
metrics were merged with the summarized field plot data for regression modeling. Raster layers of
forest canopy metrics were created using FUSION, following the same methodology used by [7]. All
rasters produced were automatically aligned [34]. We then created from the LiDAR point clouds, at a
100 x 100 m resolution, raster layers for the forest structure metrics selected as predictor variables to
the AGB models at a raster cell resolution equal to the nominal ground plot size over the entire 1000 ha
study area.
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Table 3. LiDAR-derived forest structure metrics.

Metric Abbreviation Metric Description

HMAX Maximum height above ground

HMEAN Mean height above ground

HMEDIAN Median height above ground

HMODE Mode height above ground

HSD Standard deviation of height above ground
HVAR Variance of height above ground

HCV Coefficient of variation of height above ground
HIQ Interquartile distance of height above ground
HSKEW Skewness of height above ground

HKURT Height kurtosis of height above ground

o Percentiles of height above the ground (AGL): 5th, 10th, 20th, 25th,
H.% (e-g., HOSTH-H99TH) 30th, 40th, 50th, 60th, 70th, 75th, 80th, 90th, 95th, 99th
CCR Canopy relief rate (CCR)

2.5. LiDAR Point Cloud, Metrics, and Digital Terrain, Surface, and Height Models Comparison

Comparisons were made between the aircraft- and GatorEye-derived point cloud and filtered
ground point density (points m~2) within each PSP polygon (FUSION LiDAR processing package [33]).
Pearson correlation analysis was used to determine the linear correlations among metrics from systems
(PROC CORR, SAS 9.2). The PROC MIXED (SAS 9.2) procedure was used to test the equivalency of
slopes for the adjusted equations between the predicted values. The produced digital terrain models
were tested by covariance analysis and the differences between regression parameters (intercept and
slope) by means of least squares means test using the SAS 9.2 PROC MIXED.

2.6. Regression Modeling of Aboveground Biomass

Multiple linear regression techniques were used to develop relationships between plot-level
LiDAR metrics and field-measured AGB. LiDAR predictor variables were selected using the best
subsets approach. The variance inflation factor (VIF) statistics and a Pearson correlation test were
used to eliminate highly collinear predictor variables [35,36]. If VIF exceeded 5.0 or p above 0.7 for
a candidate predictor variable, it was dropped from the regression model. The hypothesis of equal
slopes for the adjusted equations between the predicted values for both AGB models was tested by
covariance analysis and the differences between parameters by means of least squares means test using
the SAS 9.2 PROC MIXED and extrapolated to the entire area covered by LiDAR.

3. Results

3.1. Comparison of LiDAR Points Clouds

The GatorEye produced about 35 times greater density point clouds than the aircraft system,
averaging 381.2 + 58.2 returns m~2 versus 11.0 + 1.8 returns m~2, respectively (Table 4, Figure 2A,B).
Although in much greater number, the GatorEye LiDAR sensor produces only two returns per pulse
(Table 4, Figure 2D), while the aircraft one multiple (4-6 per pulse, Table 4, Figure 2C). The points
density profile of the returns reflects the studied area canopy structure with a peak of return numbers
around 22 m for both cases. Looking to the point distribution percentage height profile, we observed a
higher proportion of aircraft returns below 20 m height produced by the larger LiDAR footprint and
the higher number of returns per pulse (Figure 2D). The GatorEye’s higher point cloud number and
density resulted in its point clouds producing visibly higher resolution delineation of tree branches
and leaf area distribution (Figure 3). The GatorEye’s filtered ground points remained about 1.5 times
greater than the aircraft system, with point densities averaging 0.42 + 0.09 and 0.29 + 0.09 returns m~2,
respectively (Table 4).
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Table 4. Summary statistics for aircraft- and GatorEye-system-derived LiDAR point clouds extracted

from the permanent sample plots.

GatorEye—all returns

Return number | 1 2 3 4 5 Total
Total 49,166,975 | 1,406,827 0 0 0 50,573,802
Maximum return density 461.3
Average return density 381.2
Standard deviation of return density 58.2
GatorEye—filtered ground returns
Return number | 1 2 3 4 5 Total
Total 51,571 3383 54,954
Maximum return density 0.60
Average return density 0.42
Standard deviation 0.09
Aircraft—all returns
Return number | 1 2 3 4 5 Total
Total 1,068,490 333,990 42,543 | 2131 | 39 1,447,194
Maximum return density 14.2
Average return density 11.0
Standard deviation of return density 1.8
Aircraft—filtered ground returns
Return number | 1 2 3 4 5 Total
Total 5443 20,817 7697 | 635 16 34,609
Maximum return density 0.43
Average return density 0.27
Standard deviation of return density 0.09
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Figure 2. (A,B) GatorEye (red) and Aircraft (blue) LIDAR point density (pts m~2) and distribution (%
per 1 m vertical zone) vertical profiles. (C) Vertical profile of point density for all returns for aircraft
(1-6) and (D) for GatorEye (2).

Figure 3. Example LiDAR point clouds of a canopy tree located in Permanent Sample Plot (PSP) 14
produced by the GatorEye (A) and Aircraft (B) systems, highlighting the increased crown, branch, and
trunk resolution of the GatorEye system.

3.2. Comparison of LIDAR Metrics

Plot-scale LiDAR metrics for aircraft and GatorEye systems are presented in Tables 5 and 6,
respectively. Figure 4 shows their statistical comparison and highlights that most metrics were
significantly correlated. Metric in the lower height quartiles (HO5TH to H20TH) had lower correlations
than those in the higher quartiles. Overall, metrics having a poor correlation (p < 0.05; e.g., HSD, HVAR,
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and HCV) were influenced by point cloud density. Complete tables of Aircraft- and GatorEye-derived
LiDAR structural metrics are provided in the Supplementary Materials.
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Figure 4. Comparison of the metrics produced by LiDAR sensors on the aircraft and GatorEye systems.

Metrics ending with “D” were those calculated using GatorEye LiDAR (a.k.a, drone).

3.3. Comparison of DTM, DSM, and CHM

Figure 4 provides comparisons of the DTM, DSM, and CHM models derived from aircraft and
GatorEye system point clouds. The digital terrain models (Figure 5A) were statistically indistinguishable
(R2 > 0.99, RMSE = 0.26 m), and the digital surface models (Figure 5B; R? = 0.96, RMSE = 3.33 m) were
significantly and highly positively correlated. The CHM models also present a significant correlation
(Figure 5C; R? = 0.80, RMSE = 3.29 m), but in this case, a height dispersion can be observed, especially
at low tree heights, where above 20 m tree heights differences could be identified.



Remote Sens. 2020, 12, 1754 10 of 19

350
325
300
275+

250

DTM Aircraft (Mg.ha-1)

2254 -+ OBS=3.5076(0.0156)+1.003(0.00006)*DEM_Dr_Al;R?=0.99;p<.0001
T T T T T T

225 250 275 300 325 350
DTM Gatoreye (Mg.ha-1)

350 B
325
300

275+

250 —

DSM Aircraft (Mg.ha-1)

225  + OBS=4.9308(0.189)+0.9945(0.0007)*CSM_Dr_Al;R?=0.96;<.0001

T T T T T T
225 250 275 300 325 350
DSM Gatoreye (Mg.ha-1)

60 C
50—

40
30
20+

CHM Aircraft

10+
0

+ OBS=0.4746(0.0374)+ 0.9433(0.0015)*CHM_Dr_AI:R?=0.80:p<.0001
T T T T T T T

0 10 20 30 40 50 60
CHM Gatoreye

Figure 5. Comparison of the digital terrain model ((A)—DTM), digital surface model ((B)—DSM), and
digital height model ((C)—DHM/canopy height model (CHM)) produced by aircraft and GatorEye
systems. Numbers in parentheses are the standard errors for each coefficient.

3.4. Regression Modeling of AGB between LiDAR and Field Data

Table 5 summarizes the models evaluated for AGB produced by the two systems. The metrics for
the height mode and 95th percentile height above ground for aircraft-borne LiDAR provided the most
parsimonious multivariate model (Adj. R? = 0.79, RMSE = 19.3 Mg-ha~!). For the GatorEye, the best fit
was obtained with the 90th percentile height above ground (Adj. R? = 0.65, RMSE = 24.8 Mg-ha™!).
Other models were generated, but all of them presented VIF above 5 or Pearson correlation test > 0.7
and were discarded.
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Table 5. Regression models for aboveground biomass (AGB; Mg-ha™!) relating field-estimated AGB
and forest metrics calculated with aircraft and GatorEye LiDAR data.

LiDAR Regression Model F Adj. R? RMSE
Aircraft

Model —-529.761 + (2.536 x HMODE) + (23.115 x H95TH) 18.03 0.79 19.3
GatorEye

Model —355.4877 + (19.794 x H90TH) 18.00 0.65 24.8

Figure 6 displays the predicted and observed AGB values for each plot for models from the
aircraft (6A) and GatorEye systems (6B) and their inter-comparison (C). The predicted values from
the models were highly correlated (R? = 0.90, RMSE = 13.23 Mg-ha™!). Table 6 summarizes the AGB
estimates by the models for each PSP. The mean AGB estimates by the aircraft and GatorEye systems
were 273.1 + 12.2 and 273.1 + 11.1 Mg-ha™!, respectively. Although variations can be observed between
modeled and field derived estimates, the mean for the plots by all approaches was close to the same
(273 Mg-ha™?).

Table 6. Aboveground biomass estimates (AGB; Mg-ha‘l) produced by the LiDAR models and field
measurements for each Permanent Sample Plot (PSP).

PSP Field Aircraft GatorEye
1 2522 275.20 261.6694
2 2244 250.58 253.9894
3 239.2 252.37 277.7421
4 283.4 258.72 241.4598
5 280.8 273.08 271.7643
6 233.1 214.78 229.2271
7 2448 243.30 243.0037
8 300.9 297.36 293.7159
9 316.0 322.73 324.7331
10 356.5 343.69 333.8977

Mean 273.1 273.18 273.12

SE 12.7 12.24 11.12
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Figure 6. Predicted versus observed ground plot values for aboveground biomass (Mg-ha™!) for models

produced by the (A) aircraft system and (B) GatorEye system, and (C) their comparison. Numbers in

parentheses are the standard errors for each coefficient.

3.5. Landscape-scale Analysis

Figure 7 illustrates an extrapolation of the aircraft-system AGB models to the full 1000 ha landscape
at a plot-scale 100 x 100 m resolution. We can observe non-forest areas occupied by agriculture crops,
pastures, and secondary forests (7A). These areas were mapped as no data (blank cells in Figure 7B,C)
as their AGB values were out of the range of the model input data. The predicted AGB across the
entire landscape for the aircraft and GatorEye predictive equations averaged 247.7 + 37.2 Mg-ha™! (B)
and 283.9 + 61.6 Mg-ha™! (C), respectively, and they were highly correlated: R? = 0.90, RMSE = 14.2,
N = 3.330 (Figure 8). However, the AGB values estimated by the two models do not correspond 1:1; in
other words, intercept and slope coefficients values are statistically different from 0 and 1, respectively
(Figure 8).
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Figure 7. (A) Canopy height model (CHM) at 1 x 1 m resolution, showing forest canopy gaps and
anthropogenic features, including roads, crops, pastures, and secondary forests, and aboveground
biomass (AGB; Mg ha~1) estimates from the (B) aircraft and (C) GatorEye predictive equations, at a 100
x 100 m plot-scale resolution. Blank cells in the AGB models are non-forest areas. All maps are based
on the aircraft-derived LiDAR data acquired in 2015.
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Figure 8. Predicted AGB across the entire landscape for the aircraft and GatorEye predictive models
correlation: Aircraft: —529.761 + (2.536 x HMODE) + (23.115 x H95TH), RZ = 0.79, RMSE = 19.3 and
GatorEye: —355.4877 + (19.794 x H90TH), R% =0.65, RMSE = 24.87) and GatorEye: —418.01 + (7.2625 x
HMODE) + (24.2363 x H95TH) + (—535.1370 x CRR), R = 0.77, RMSE = 20.16. Numbers in parentheses
are the standard errors for each coefficient.
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4. Discussion

Our study demonstrates the potential of UAV-borne LiDAR to assess the structure and biomass
of tropical forests in the Amazon. To our knowledge, this is the first study to compare aircraft- and
UAV-borne LiDAR AGB predictions for tropical forests. The plots did not suffer significant natural
or anthropogenic disturbances during the two-year interval (2015-2017) between the aircraft and
GatorEye flights. As, during this time, only limited natural changes in the forest canopy occurred, we
were able to robustly compare vegetation metrics and models produced by the two systems, similar to
as if they had happened synchronously [37].

The GatorEye sensor pulse frequency was only twice the Harrier 68i Trimble, but, in part due
to having 16 lasers versus the one used in the Harrier system, it produced a point cloud almost 35
times denser. The main differences between the point clouds generated by these sensors were due to
the GatorEye lower flight height and speed (60 m AGL at 12 m/s) when compared with the aircraft
(600 m at 55 m/s), and due to the number of lasers. Low-altitude flight at relatively slow speeds can
produce point densities much higher than traditional aircraft LIDAR approaches [38]. The dense point
cloud generated by GatorEye in this study was similar to or higher than that of other UAV-borne
LiDAR systems [28,39], which allowed the identification of individual tree and branch structure with
results similar, in the overstory, to terrestrial laser scanners. That allows a broader use of these data for
applications such as individual canopy tree detection, stem segmentation, tree height, and estimation
of understory leaf area index [21,24]. The differences in point cloud density were possibly responsible
for the main differences observed among the extracted LiDAR metrics. Even when the density of the
points is not as high as in this study, they can significantly improve CHM-based metrics derived from
vegetation in both temperate and tropical forests [40].

Some UAV-borne LiDAR sensors are capable of producing multi-return per pulse (e.g., RIEGL
VUX series); however, the GatorEye’s Velodyne VLP-16 sensor returns the strongest and last returns.
When we compared the ground-filtered clouds of both sensors, we observed that even when flying at a
higher altitude and speed, the Harrier 68i was capable of producing up to five useful returns per pulse.
The second and particularly third pulse echoes mostly exist beneath trees [22]; thus analyzing the
Harrier 68i ground filtered point cloud, we observe more second and third returns than first. The cloud
density of the ground returns of the GatorEye’s cloud was still higher than that from the aircraft system
but had a higher standard deviation in the number of ground returns per area, indicating the GatorEye
ground points were not as uniformly distributed across the ground as the returns produced by the
aircraft system. We attribute this difference to the GatorEye acquiring very dense point in areas of lower
leaf area index (LAI), with more limited returns in areas of dense coverage, while the aircraft-system
more fully penetrated across the entire forest floor.

The differences highlighted above did not affect the correlation of the high-resolution (1 X 1 m)
digital terrain models (DTM) produced by both systems within the PSPs. Typically, at high resolutions,
the relatively low-density point clouds of both systems would force estimation of ground location
and forest structure through statistical interpolation approaches [14]. However, we found an almost
total agreement between the DTMs from both systems, indicating that the ground returns from both
systems were sufficient to fully and accurately represent the forest ground surface—a critical aspect for
post-process work such as AGB calculation.

Different from the DTM, although highly correlated, the much higher GatorEye point cloud
density, and the time interval between the flights, did produce some noticeable differences between
the DSM and CHM models. Changes observed in the forest structure, through natural tree falls and
growth canopy trees as well as within previously existing gap areas in the PSP, produced height
differences. Thus, some negative height differences (CHM 2017-CHM2015) can be attributed to tree-
and branch-fall gap creation and positive height differences made by pioneer species rapidly growing
in the previously existing forest gaps. However, due to the large dispersion observed between CHM
models, other factors such as i. crown delineation inconsistencies created by individual tree growth or
absence of returns to computed tree height in a cell (in particular for the lower density aircraft data); ii.
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differences in flight and LiDAR sensors specifications (e.g., with a much higher number of returns
per area, the GatorEye data resulted in a higher number of heights in the cells, generating a better
chance to identify the highest part of the treetop); iii. phenological phases differences (e.g., flowering
or leaves fall); and iv. crown movement by wind [14] also contributed to the observed differences
between models.

The AGB model produced by the aircraft system presented a higher R2 value and lower RMSE.
In similar studies, despite technical differences in the LiDAR data acquisition, the AGB models
produced by UAV-borne LiDAR (e.g., [41]) had similar accuracy to those produced by aircraft systems
(e.g., [8,12]). Other factors, such as the quality of fieldwork on the establishment, measurement, and
geolocation of the ground plots, also can strongly affect the accuracy of the models. Still, in this study,
the models were developed from the same PSP data and geolocation.

All AGB models produced presented high accuracy, and the uncertainty at 1 ha resolution was
lower or comparable with values previously reported in other tropical forests for both aircraft and
UAV-based LiDAR systems [5,13,41]. The inclusion of more LiDAR independent variables produced
models with higher R2 statistics. The use of more than two independent variables to compose a LIDAR
AGB model is considered acceptable (e.g., [42]); however, to avoid highly collinear LiDAR metrics that
would limit the model’s predictive usefulness over the range of forest structure condition in the study
site [7], we only accepted models with VIF below 5 and Pearson correlation test below 0.7. In our
study, the best model to the aircraft was a combination of two LiDAR metrics representing the forest
higher stratum (Elev P95) and the elevation mode (Elev mode) [43] and to GatorEye an univariate
model based only in the 90th percentile above ground height. Correlation coefficients above 0.8 are not
typical in tropical forests, but we found a study [37] where, in similar conditions, the authors found a
very high accuracy in a model built with three independent variables. In our study, we built models
for both GatorEye and Aircraft with Adj. R? > 0.9 with acceptable VIF (below 5), but we discarded
these models because they present Pearson correlation > 0.7.

The AGB models produced by both systems were highly correlated; however, there was no 1:1
statistical correspondence. Therefore, both systems proved to be equally efficient for estimating ABG,
but the models of both systems were not statistically equal. Although the average biomass estimated
at the landscape scale was very similar, the reduced statistical correspondence was likely due to the
canopy structure changing during the two-year difference between LiDAR data collections. We believe
that studies using data collected in the same period may achieve the statistical correspondence match
between the models from the two systems.

One current use of the AGB models produced by LiDAR is through the use of satellite images
to upscale AGB estimates to a regional scale. Usually, when large LiDAR samples are available, a
first upscale is performed from the field plot scale to LIDAR sampled area [44,45]. Here, we tested
the possibility to upscale the AGB model produced by GatorEye. AGB LiDAR models can be, when
functioning correctly, generalized [46] or applied in different regions [42]. In our extrapolation of both
models to the entire area covered by the 2015 LiDAR flight, the AGB maps produced presented a
surprisingly high correlation, as both models used the same LiDAR metrics as independent variables,
and these metrics were unaffected by the difference in cloud point density (see Figure 3). When the
same procedure was performed with the GatorEye univariate regression model, although the model
correlation was still high, there was a tendency for the model to slightly underestimate AGB values.

5. Conclusions

The aircraft and GatorEye systems produced highly correlated LiDAR products, including DTMs,
DSMs and CHMs, forest structural metrics, and AGB models. In general, the main differences were
a result of the GatorEye providing a much higher point cloud density, resulting from a lower and
slower flight pattern with a higher return per time period and a complete 360-degree horizontal and
30-degrees vertical scan angle field-of-view (FOV) sensor incorporating 16x the number of lasers. A
small number of natural disturbances that occurred during the two years between flights was visible
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by comparing the DSMs. Ground returns of the GatorEye were still higher but less so than the overall
point cloud due to the aircraft system’s multiple returns. The LIDAR AGB models produced by both
systems presented similar accuracy and AGB estimation at the plot level, as well as when upscaled
across the entire 1000 ha landscape scale flown by the aircraft system in 2015.

Our results highlight the advantages of and recommend the use of UAV-borne LiDAR sensors
as an effective approach for monitoring forest AGB stock dynamics in areas where previously only
aircraft-borne LiDAR could be considered. We also highlight new possibilities feasible with these
uniquely high-density point clouds, including multi-temporal 3D monitoring and analyses of detailed
crown structure and interior forest leaf area density distribution, which can be indicators of forest
structure and AGB stocks and dynamics.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/12/11/1754/s1,
Table S1.1: Aircraft system derived LiDAR forest structural metrics for the PSP, Table S1.2: GatorEye system
derived LiDAR forest structural metrics for the PSP.
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