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Critical slowing down as a biomarker for seizure
susceptibility
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The human brain has the capacity to rapidly change state, and in epilepsy these state changes

can be catastrophic, resulting in loss of consciousness, injury and even death. Theoretical

interpretations considering the brain as a dynamical system suggest that prior to a seizure,

recorded brain signals may exhibit critical slowing down, a warning signal preceding

many critical transitions in dynamical systems. Using long-term intracranial electro-

encephalography (iEEG) recordings from fourteen patients with focal epilepsy, we monitored

key signatures of critical slowing down prior to seizures. The metrics used to detect critical

slowing down fluctuated over temporally long scales (hours to days), longer than would be

detectable in standard clinical evaluation settings. Seizure risk was associated with a com-

bination of these signals together with epileptiform discharges. These results provide strong

validation of theoretical models and demonstrate that critical slowing down is a reliable

indicator that could be used in seizure forecasting algorithms.
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The unexpected nature of epileptic seizures represents the
major clinical disability of epilepsy1. The mechanisms
underlying the transition from a normal to a seizure state

are currently an open question2–4. Unraveling the mechanisms
underlying seizure generation could form the basis of much
needed new treatment strategies, particularly for patients where
existing treatments are ineffective.

Abrupt state changes in natural systems, including the onset
of seizures, can, in principle, be due to critical transitions5. A
characteristic of a system that is approaching a critical transi-
tion is a phenomenon called “critical slowing down”. Critical
slowing down refers to the tendency of a system to take longer
to return to equilibrium after perturbations, indicated by an
increase in signal variance and autocorrelation. Generally, cri-
tical slowing down can be expected if a system is driven towards
the transition point at a moderate pace6 and if the basin of
attraction around the equilibrium point can be approximated
by linear-stability analysis7. It has been observed in many
systems, including cell population collapse in bacterial cultures8

and crashes in financial markets9. Critical transitions have been
employed to describe neural systems, such as onset of depres-
sion10, pharmacologically induced cortical state changes11–13,
onset of spiking in neurons14, and termination of epileptic
seizures15.

It has been hypothesized that the rapid transition from normal
brain activity to an epileptic seizure also corresponds to a critical
transition3,4,16–19. However, empirical evidence for this hypoth-
esis has been missing in humans, which may be due to lack of
long-term recordings as well as intra-patient and inter-patient
variability. Empirical validation of critical slowing down in
humans would provide vital support for current theoretical
models of seizure generation and of the dynamics of the brain in
general. Furthermore, it could aid in forecasting seizures and
potential titration of epilepsy therapies.

Computational neural models are powerful tools for
studying the dynamics of the brain. Numerous computational
models of epilepsy suggest that seizures reflect a change in
brain state via a critical transition16,18,20. Mathematical ana-
lyses of dynamic systems, combined with simulations, enable
classification of bifurcations and critical transitions21. Simu-
lations enable controlled experiments that vary the parameters
of the model and reveal statistical markers that are repre-
sentative of transition susceptibility, such as increases in sig-
nal variance and autocorrelation. While some methods have
been developed to track control parameters (variables that
drive changes in state) from clinically captured electro-
encephalography (EEG) in epilepsy22,23, this approach is not
straightforward. Alternatively, tracking the statistical markers
related to critical slowing down in clinical EEG recordings
may constitute a direct test of the hypothesis that seizures
occur via a critical transition.

In this paper, we test the hypothesis that markers of critical
slowing down can be used as a biomarker of seizure suscept-
ibility. We examine hallmark signals of critical slowing down
using a continuous intracranial electroencephalography (iEEG)
dataset from the first-in-human trial of an implanted seizure
prediction device that was recorded over multiple years24. As
the markers of critical slowing down can potentially change
over very long timescales, the long duration dataset used for
this analysis provides a unique opportunity where critical
slowing down in humans can be robustly investigated. We show
that the autocorrelation and variance of the iEEG signals are
modulated by patient-specific cycles over long temporal scales.
Furthermore, we show that modulations of the variance and
autocorrelation are related to seizure susceptibility—a prob-
abilistic propensity to have seizures.

Results
Conceptualization of critical slowing down in epilepsy. In
epilepsy, seizure events could be described as a “phase” or “cri-
tical” transition, based on deterministic dynamics, where the
brain shifts from a normal to a seizure state5. Assuming that the
system dynamics are driven towards the transition point at a
moderate pace6 and that the basin of attraction around the stable
region can be approximated by linear-stability analysis7,
approaching the critical transition is expected to be accompanied
by increases in signal variance and autocorrelation, i.e. the sig-
natures of critical slowing down5. Although there are different
model specifics and possible paths leading to a state change18,21, it
may thus be possible to detect the occurrence of a critical slowing
down close to the seizure onset3. We describe here a model to
demonstrate how transitions may occur with the view that this
concept may hold for a wider class of models.

Several models of epilepsy describe the change in brain state
from normal to seizure as a bifurcation that occurs as the system
crosses a critical point16–19,21,25. Figure 1a illustrates a one-
dimensional nonlinear dynamical system, where the state z is
modulated by the driving parameter k. We can think of z as being
a fast-changing property of the iEEG signal; for example, it could
represent the time-varying mean membrane potential of
pyramidal cells averaged locally in space. The parameter k
represents the driving element, which could represent the
response of the brain to a variety of factors such as medication,
sleep, or metabolic processes. The lines in Fig. 1a (colored and
black dashed) represent the fixed-points or equilibrium values
taken by z for any given value of k. The Hartman–Grobman
theorem26 suggests that close to a fixed-point, the system’s
dynamics can be reduced to a simpler linearized system. The
color of the lines represents the time constants associated with the
linearized system, and therefore describe the response dynamics
of the system close to the equilibria.

Given this system, there are two possible ways to transition
from the s1 (normal) to s3 (seizure) states. The first involves
varying the driving parameter k positively such that the system
approaches and passes s2 (orange dashed arrow). In this case, we
should observe critical slowing down—a slowing of the signals
monitored, which is characterized by an increase in autocorrela-
tion and variance (see Supplementary Note 1 for details). The
occurrence of critical slowing down has been shown to occur
under the assumption of moderate noise; noise that is too large
can cause a transition to the new state6. The second involves a
perturbation (e.g. noise) that kicks the system across the unstable
threshold (dashed black line) and into the seizure state, s3 (green
dashed arrow). In this case, a state transition still occurs but
critical slowing down may not be expected due to the rapid push
into a new state.

The clinical definition of a seizure onset is often subjective. In
our example, a shift into state s3 is an unequivocal onset, but
clinicians also recognize the earliest electrographic change which
may precede clinical symptoms by seconds to minutes27. The
electrographic change is characterized by an evolution of the
iEEG signal in time and frequency, which could be described by
changes observed through critical slowing down. Therefore in our
example, the seizure onset begins at s1 and is followed by a
transition regardless of the path taken to s3.

Assuming the linear approximation captures the basin of
attraction around the stable region, then the system’s response
function will be directly proportional to the autocorrelation
function of the signal, from which the time constant can be
estimated (see Supplementary Note 1 for proof). Thus, analyzing
the system with regards to the autocorrelation function allows us
to predict how the signals should evolve when a seizure occurs
(Fig. 1b). In the first case, we should observe an increase in the
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width of the autocorrelation function in the period leading up to
s2. The speed at which the transition is approached will
characterize the shape of the autocorrelation prior to the
transition (orange dashed and solid curves). In many cases, the
transition will be followed by a sharp drop in the width of the
autocorrelation function assuming that the seizure state is
characterized by a smaller time constant. In the second case,
critical slowing down may not observed due to a rapid
perturbation that causes a transition. Assuming that s1 is
relatively close to s2, then in this case we should only observe a
sharp drop in autocorrelation function width close to the seizure
onset (green curve). The seizure termination has also been found
to follow a critical transition15, hence it is possible that the seizure
termination also follows a similar pattern (black line).

Seizure onset as a critical transition at short time scales. A
sample seizure from a patient showing a gradual increase in the
signal markers, in line with a slow approach towards the critical
point is shown in Fig. 1c. This is in agreement to trajectory one,

where the seizure onset begins at s1, gradually passes through s2,
and transitions to s3. The transition point is also characterized by
a clear change in the electrographic activity from low amplitude
fast activity, to large amplitude spiking. A sample seizure showing
a fast approach to the critical point is shown in Fig. 1d. In this
case the seizure exhibits a sharp increase in autocorrelation, fol-
lowed by a sharp drop at seizure onset.

These examples highlight the high dimensional nature of the
system, where transitions may occur even within the seizure itself
(blue arrows). These transitions are accompanied by obvious
changes in the electrographic activity during the seizures.
Transitions within the seizure suggests that s3 has other
dimensions (imagine a dimension into the page in Fig. 1a) that
may also contain critical points.

The presence of critical transitions were analyzed for all
seizures in each patient (Supplementary Fig. 2). We observed that
13 of the 14 patients demonstrated the characteristic changes
close to the seizure onset as described by a critical transition.
Most patients had seizures with a fast onset transition similar to
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Fig. 1 Conceptualization of critical slowing down with regards to intracranial EEG (iEEG) signals. a A bifurcation diagram showing the system’s steady
states. The seizure state is assumed to lie along the top line, at points s3. The state z represents a property of the iEEG signal, which could be the mean
action potential firing rate or mean membrane potential of pyramidal cells (believed to be the principle generators of the iEEG signal). Two stable steady
states (colored lines) are separated by an unstable steady state (black dashed line). The color represents the linearized system’s time constant at a given
fixed point. The time-constant is highest when the system is close to the critical point, s2, and is smaller away from the critical point. Starting at point s1, two
possible seizure onset routes are shown (green and orange dashed arrow). b By monitoring the system time constant, or the signal autocorrelation (ACFW),
we expect to observe a consistent profile for both types of state transitions. In the perturbation-mediated transition (green), we expect to see a sharp
decrease in autocorrelation close to the seizure onset. In the transition that occurs via the critical point, we expect to see a gradual (solid orange) or fast
(dashed orange) increase in the autocorrelation amplitude depending on the speed of approach to the critical point, followed by a sharp drop. c An example
seizure from Patient 2 (middle plot) where a seizure likely occurs via a slow approach to the critical transition, similar to the solid orange curve in b. d An
example seizure from Patient 9 where a seizure likely occurs via a fast approach to the critical transition, similar to the dashed orange curve in b. Dashed
lines in c and d represent the clinically marked seizure onset time. Blue arrows represent other likely transitions that occur during the seizure.
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the example in Fig. 1d (see arrows in Supplementary Fig. 2). Two
patients had a slow transition into seizure similar to the example
in Fig. 1c (Patients 2 and 4). Three patients had little signs of
critical slowing down prior to seizure, instead showing a sharp
decrease similar to the perturbation-mediated seizure onset
(Fig. 1a and b, green; Patients 5, 7). Lastly, one patient with
very few clinical seizures demonstrated no signs of a critical
transition at the seizure onset (Patient 12).

The patient average in Supplementary Fig. 2 compares the peak
and subsequent trough in the autocorrelation function width
(ACFW) during seizures, to a baseline period 5 min prior to the
seizure (e.g. red and green dots in Fig. 1c, d). Across all seizures in
all patients (excluding Patient 12), the peak in ACFW was
significantly higher than baseline, and the subsequent trough was
significantly lower.

These examples provide strong evidence of critical transitions
close to the seizure onset. Close to the transition, we expect to see
these effects since the seizure dominates the system’s dynamics.
However, on longer time scales and during periods far from
seizures, it is possible that other effects (like sleep) dominate the
brain’s dynamical behavior. Recent observations suggest that
seizure propensity are modulated over long timescales28,29. As a
potential measure of seizure propensity, we next asked if and how
the measures of critical slowing down were related to those long
cycles and timescales, and whether monitoring metrics of critical
slowing down could be used to forecast seizures.

Signatures of critical slowing down on long time scales. Con-
tinuous iEEG recordings obtained from a clinical trial of a seizure
prediction device from 14 patients were used in this study24. The
device comprised of an array of 16 electrodes that were placed on
the surface of the brain near the presumed epileptogenic zone

(Fig. 2a). After pre-processing, a total of 2871 seizures were
analyzed (Table 1).

We sought to investigate the relationship between critical
slowing, epileptiform spikes (a known biomarker of epilepsy) and
seizures. We hypothesized that the likelihood of seizures would be
related to the modulation of the autocorrelation and the variance
signals. Furthermore, this modulation may also be linked to
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Fig. 2 Details of analysis of Patient 1. a An illustration of the implanted electrodes that captured continuous EEG signals from the surface of the brain at 16
different locations. b The autocorrelation (top), variance (middle), and spike rate (bottom) signals were filtered using a moving average filter to reveal short
and long rhythms. For clarity, here we show an anti-causal filter with the short rhythm shown prior to subtraction of the long rhythm. Seizures (red
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Table 1 Patient data summary.

Patient Total
seizures

Mean seizure
rate (seizures/
day)

Number
of days

Data
dropout (%)

1 151 0.20 767 35.1
2 32 0.04 730 19.6
3a 374 0.70 557 78.3
4 22 0.09 233 26.2
5 9 0.03 273 40.11
6 71 0.16 441 2.95
7 313 1.70 185 11.93
8 466 0.84 558 35.7
9 202 0.51 395 36.4
10 545 1.46 373 6.9
11 461 0.64 722 36.6
12 13 0.02 729 3.4
13 497 0.67 747 24.3
14 12 0.02 627 32.8
15 77 0.17 466 1.25
Totalb 2871 7246 Meanb 22.37

The total number of seizures, mean seizure rate, the number of recorded days and the
percentage of data dropouts are tabulated.
aPatient 3 was excluded owing to high dropouts.
bTotals and means exclude Patient 3.
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known changes in the rates of epileptiform spikes28,29. Herein, we
refer to spike rates as the rate of epileptiform spikes detected on
each electrode.

It is known that seizures and epileptiform spikes are often
modulated by circadian and multidien (>24 h) rhythms in a
patient-specific manner28,29. We hypothesized that the markers
of critical slowing down may also follow a rhythmic process. To
assess the temporal properties of the autocorrelation signal, a
Fourier transform (FT) of the autocorrelation signal was
computed. The peaks in the FT demonstrated that all patients
had strong circadian rhythms, and some also had strong
multidien rhythms with peaks between 3 and 30 days (Supple-
mentary Fig. 3).

Using the information derived from the FT, we divided the
data into two temporal scales: short rhythms with periods of one
day or less and long rhythms with periods with >2 days. We
investigated the relationship between seizures and the spike rates,
autocorrelations, and variances derived from the iEEG on these
two temporal scales.

A case study of critical slowing down in epilepsy. Figure 2b
shows the raw autocorrelation, variance and spike rate signals
(gray), along with the long (orange), and short (dark blue) cycles
of a sample channel for a representative patient, Patient 1. The
coincident signal phases and seizure times were used to assess the
relationships between seizures and the signals. Figure 2c illus-
trates the relationship between seizures and the long cycles. In
each polar plot, the colored lines represent the normalized dis-
tribution of phases of the entire signal and the histogram repre-
sents the distribution of phases at the sample prior to the seizure
times relative to the autocorrelation (gray), variance (red), and
spike rate (cyan) signals. For this patient, seizures predominately
occurred on the rising phases of the three signals and rarely
occurred on the falling phases. Figure 2d similarly illustrates the
relationship between seizures and the short cycles, also showing a
predominance of seizures occurring on the rising phases of the
signals.

Above each polar plot are the synchronization indices (SIs) for
the signals (black) and for the seizure histograms (colored). The
SI (not to be confused with signal synchrony across channels) is a
measure of phase uniformity in a signal (the tendency of a signal
to have all phases uniformly distributed on a circle), or the
synchrony between a rhythmic signal and events (seizures). For
the seizure histograms, a SI close to one indicates greater
synchrony at a single phase. For Patient 1, the high SI across all
the three signals demonstrated that there was a strong relation-
ship between seizures and a rising phase of the signal cycles.

Critical slowing in 14 patients. Seizures tended to occur on the
rising phase of the autocorrelation and variance signals (Fig. 3a).
While the cycles observed in the three measures might not be
directly linked to epilepsy (i.e. a circadian cycle would be expected
irrespective of epilepsy), the results show there is a strong rela-
tionship between the phase of the cycles and seizure onset. It is
possible that an increase in autocorrelation and variance is
descriptive of an increase in overall brain excitability. A gradual
increase in the autocorrelation and variance signals, suggestive of
critical slowing down, was observed in the tens-of-minutes to
hours prior to lead seizures in most patients (9 of 14 patients;
Supplementary Fig. 4). In a few patients (Patients 8, 9, 11, and
13), most seizures occurred when the autocorrelation and var-
iance signals were decreasing (Supplementary Figs. 12, 13, 15, and
17). The circadian cycle was the dominant rhythm in these
patients as illustrated by a low SI for the long rhythms. In these
patients, it is possible that the circadian cycle modulates whether

the brain exists in a mono-stable or bi-stable regime, thereby
controlling when seizures can occur. This scenario is described in
more detail in the Supplementary Note 2.

The SI was used to identify the electrodes that best captured the
relationships between seizures and the underlying long and short
cycles. The SIs across patients for long and short cycles are shown
in Fig. 3a. The SIs were >0.5 for the short cycles for nearly all
patients, suggesting a strong relationship between seizures and
the short rhythms. Some patients also had a strong relationship
between seizures and the long cycle (see Supplementary Figs. 6–
19 for patient summaries). The average short cycle duration was
0.64 ± 0.16 days, and the average long cycle duration was 10.5 ±
4.1 days (Supplementary Fig. 20A).

Visual inspection of the autocorrelation signal in each patient
showed that the signal tended to be similar across electrodes.
Conversely, for the spike rate signal, the rates tended to be
variable across electrodes. We quantified the similarity of the
three signals by computing a mean cross-correlation for the three
signals independently across all channel pairs (Fig. 3b). The
autocorrelation signal was significantly higher than the variance
and the spike rate signals suggesting that the autocorrelation
signal was consistent across the recorded brain areas. The
autocorrelation might therefore represent a measure describing a
state change throughout the brain, rather than a change in a
localized brain region as is the case with epileptiform spikes.

It is well recognized that seizures tend to cluster30,31. We
sought to examine the relationship between the autocorrelation
and variance signals and seizure clusters. We found that 9 of the
14 patients had clusters of seizures that occurred within a short
interval of a lead seizure. For a subset of these patients, the
autocorrelation and variance signals slowly tended back to
baseline after lead seizures over a period (hours to days) well
beyond the duration of the individual seizures. During this time,
there was an increased susceptibility to more seizures. Figure 3c
shows an example of this relationship for Patient 1 (see also
Fig. 3d, e top row for Patients 6, 10, and 12).

For another subset of patients, both the autocorrelation and
variance signals steadily increased after lead seizures. During this
period there was an increased seizure susceptibility (Fig. 3d, e
middle rows), which was reduced when the autocorrelation and
variance signals began to decrease.

The increases in autocorrelation and variance following a lead
seizure may be representative of an overall increase in brain
excitability, where seizures are more likely to keep occurring.
Exceptions to this trend were Patients 7 and 13. Patient 7 showed
an increase in seizure rate following lead seizures, despite
decreased autocorrelation and almost no change in variance.
For Patient 13, there was only an increase in variance and almost
no change in autocorrelation (Fig. 3d, e bottom rows).

Seizure forecasting. We evaluated the performance of a seizure
forecasting algorithm based on the detected rhythms of the
autocorrelation, variance, and spike rate signals. We consider two
approaches:

● Method M1: Anti-causal filtering was used and potential
forecasting performance was evaluated using all the available
data. In this case, we evaluated the optimal level that a
forecaster may perform using within-sample optimization,
where prior knowledge of seizure susceptibility relative to the
phase of the signals was computed using all the data. This
method tests the performance of combining autocorrelation,
variance, and spike rate signals in a forecaster and represents
the best possible performance outcome of a forecaster.

● Method M2: Seizure rhythms were computed iteratively with
a causal filter such that the forecaster for a given patient was

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-15908-3 ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:2172 | https://doi.org/10.1038/s41467-020-15908-3 | www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


based on information provided only by previous seizures.
This approach tested out-of-sample forecasting performance
in a pseudoprospective manner. Forecasting using this
method began after the 10th seizure. This method represents
a forecaster based on the same signals but computed in a
manner that is applicable to a clinical setting, where the
algorithm learns iteratively as data becomes available.

The relationships between seizures and signal phases were used
to calculate the probability of a seizure. Figure 4a depicts the
probability of a seizure occurring for Patient 1 using Method M1.
Specifically, this is the probability of a seizure given the phases of
the long and short cycles

P SeizurejA1;A2ð Þ ð1Þ
where A1 and A2 refer to the phases of the long and short cycles,
respectively. From the probability distribution, the seizure
probability versus time was calculated by multiplying the
individual distributions under the assumption that each prob-
ability distribution was independent, since there was insufficient
data to characterize the joint distributions accurately (Fig. 4b,
top). In an approach similar in nature to the original trial of the
seizure advisory system that gave rise to the data considered
here24, our forecaster was designed such that, at any given time, a
patient would be placed in a risk category: low, medium, or high

risk. In practice, indicating the current risk level to a patient can
be used to help guide their daily activities and encourage them to
move to safety when seizure risk is high.

Using the seizure probability described above, two thresholds
that optimally separated the low, medium, and high-risk
categories were computed and used to categorize risk state over
time (Fig. 4b, bottom). A risk level defines the risk of a seizure
occurring after the next sample, which provides a 2–4 min
prediction horizon. For Patient 1 and using Method M1, 3% of
seizures occurred during low risk, and 90% occurred during high
risk. The proportion of time spent in the high-risk category was
3% and in the low-risk category was 95%.

To simulate a realistic situation that could be applied to clinical
practice, we computed and updated the seizure probability
distributions and risk levels iteratively after each new seizure
(Method M2). Figure 4c shows the risk level assigned to each
seizure (gray) and a moving average over five seizures (black) for
Patient 1. The average risk level assigned to all seizures using
Method M2 was 2.7. For Patient 1 and using Method M2, 15% of
seizures occurred during low risk and 83% during high-risk
categories. The proportion of time spent in the high-risk category
was 8% and in the low-risk category was 91%. A receiver
operating characteristic (ROC) was also computed for both
methods, which is presented in log scales to emphasize the
performance during periods of low risk (Supplementary Fig. 20B).
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Figure 5a illustrates Method M2 approach applied to the data
of the remaining patients (except for Patient 5 due to too few
seizures). The average risk level assigned to seizures was 2.5 or
greater for every patient, demonstrating that Method M2
achieved good performance. Figure 5b, c quantifies the perfor-
mances of the two forecasters and compares it to a random
predictor. Significantly better predictions were observed using
Methods M1 and M2 compared to the chance model. No
significant differences in the amount of time spent in each risk
state was observed.

To compare the overall performances of the methods, the
product of the proportion of seizures in the high-risk category
and the proportion of time spent in the low-risk category was
used, which is hereafter called the “performance product”. In the
ideal case, the performance product would be close to one.
Methods M1 and M2 performed significantly better than chance.
There was no significant difference between Methods M1 and M2
(Fig. 5d). ROC curves were also computed across all patients
(Supplementary Fig. 20C, D).

Seizure forecasting performance was compared using measures
from critical slowing down versus spike rates alone, and then the
combined measures (Supplementary Fig. 21), and to the
performance of the original trial (Supplementary Table 1).
Method M1 achieved a higher sensitivity and specificity overall
compared to Method M2 and the original trial. Finally, we
compared our pseudoprospective forecasting results to other
pseudoprospective algorithms previously developed on the same
dataset. This included a machine-learning algorithm32, a
predictor based on circadian rhythms and logistic regression33,
and multiple algorithms based on a crowd-sourced approach to
seizure prediction34. Method M2 scored higher on sensitivity

(seizures in high risk), and a lower time-in-high for all patients
except Patients 7 and 14 (Supplementary Table 2).

Discussion
Prior to this study, seizures were theorized to occur via a critical
transition3,16,18,20. However, there has been little empirical evi-
dence for this hypothesis in humans. We previously demon-
strated that critical slowing down is present prior to seizures in
work focused on in vitro and in vivo models35. The current paper
is a unifying progression where we have investigated the interplay
between critical slowing down, long-term rhythms, interictal
spikes, and seizures in humans.

In the present study we report findings supporting the notion
that the seizure onset constitutes a critical transition from normal
to a seizure brain state. On a small time-scale, two markers of
critical slowing down—autocorrelation and variance—showed
changes close to the seizure onset which indicated the presence of
a critical transition in 13 of the 14 patients (Supplementary
Fig. 2). Over a longer time-scale, increases in both signals were
observed in most patients (9 of 14 patients) over periods ranging
from tens-of-minutes to days (Supplementary Fig. 4). The mar-
kers used to detect critical slowing down could be combined with
rates of epileptiform spikes to create a powerful forecasting tool.
The long-term and continuous nature of the data used in this
study was extremely important, as the relationship between sei-
zures and the signals changed over much longer time scales than
would normally be obtained in a clinical setting. Our work con-
tributes four major findings to the field:

1. Evidence that seizures onsets involve critical transitions, as
suggested by computational models of epilepsy18,21,36. This

Autocorrelation

Fa
lli

ng

Falling

R
is

in
g

Rising

0

0

Lo
ng

S
ei

zu
re

 p
ro

ba
bi

lit
y

R
is

k 
le

ve
l

10–10

10–20

10–30

3

2

260 270 280

Days into study Seizure number
290 300

Seizures

0

1

2

R
is

k 
le

ve
l

3

cb

a

151

1

Short

�

�
–�

–�

Variance

Fa
lli

ng

Falling

R
is

in
g

Rising

0

0

Lo
ng

Short

�

�
–�

–�

Spikes

Fa
lli

ng

Falling

0

S
eizure probability

4 × 10–6

R
is

in
g

Rising

0

0

Lo
ng

Short

�

�
–�
–�

Fig. 4 Seizure forecasting examples for Patient 1. a The probability distributions of seizures given phases of the long and short cycles for the
autocorrelation, variance, and spike rate signals. Brighter color corresponds to higher probability. b The distributions from a were used to compute the
probability of a seizure over time (top). Two thresholds separated low from medium risk (solid red) and medium from high risk (dashed red). The risk
levels over time are shown in the bottom plot indicated by the heights of the blue bars; seizure times are indicated by red triangles. c Pseudoprospective
Method M2, where risk level at the time of each seizure is shown by the gray line and the black line denotes the five-seizure moving average risk (the black
bar on the top-right denotes the length of the moving average).

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-15908-3 ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:2172 | https://doi.org/10.1038/s41467-020-15908-3 | www.nature.com/naturecommunications 7

www.nature.com/naturecommunications
www.nature.com/naturecommunications


provides important validation of the mathematical models
used in epilepsy that have so far proved difficult to verify in
humans.

2. Changes in the autocorrelation over long time scales were
not confined to a localized region in the brain, suggesting
that changes in susceptibility are detectable across broad
areas of the brain.

3. Seizures tended to occur on a narrow phase of the periodic
autocorrelation, variance, and spike rate signals. These
signals provide a powerful forecasting tool that can be used
to determine seizure susceptibility.

4. Seizures tended to cluster after lead seizures. The period
during clusters was also characterized by a sustained
increase in the autocorrelation, which is consistent with
an increase in overall brain excitability. This result provides
a mechanistic basis for seizure clusters.

Critical slowing down has been observed prior to seizures in
experimental studies18,35,37 and at the end of most seizures in
humans15. Two human studies showed evidence of linear and
nonlinear changes in intracranial signals prior to seizures, pro-
viding some evidence for seizures as a critical transition38,39. In
contrast, two recent studies found little evidence of critical
slowing down prior to seizures20,40. Our results do not contradict
these recent observations, but instead suggest that the warning
signals fluctuate over longer temporal scales (hours and days)
than those regarded in their study (seconds to minutes). Fur-
thermore, our previous work has demonstrated the lack of signal

stability in the weeks following surgical implantation which could
contribute to the differences observed41,42.

Figure 1a illustrates how a bifurcation can lead to critical
slowing in the EEG signal43. While other bifurcations (mono-
stable or multi-stable models) are also plausible, noise-induced
fluctuations are expected to increase in intensity near any critical
(i.e., second or higher order) phase transition and display the
characteristic features of critical slowing down18. The example in
Fig. 1a may be oversimplified, but it captures an essential aspect
of the dynamical changes that are supported by our results. The
example demonstrates how the seizure onset can be characterized
in terms of the system time constant and how the time constant
changes near a critical point. The transition into the seizure state
can occur from a steady approach to the critical point, from a
strong perturbation that triggers seizures in a probabilistic
manner, or from a mixture of both3,35. In reality, it is unlikely
that the complex repertoire of brain dynamics can be described
by a simple one-dimensional model. Figure 1c, d showed evidence
of critical transitions occurring within the seizure itself, high-
lighting the complex nature of seizures and the presence of higher
dimensional transitions.

For most patients, both the autocorrelation and variance sig-
nals remained high for a prolonged time after a lead seizure, far
longer than the duration of the seizure itself (Fig. 3c–e). This led
to a state where seizures were more likely to keep occurring,
leading to seizure clusters. While the mechanisms for seizure
clusters are poorly understood, it has been suggested that an ictal
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focus becomes more excitable, or less inhibited following a first
seizure30,31. This observation is supported by our results, where a
high autocorrelation and variance following a lead seizure would
suggest that the brain remains in a more excitable state—a state
that is less capable to recover from external perturbations.

There is accumulating evidence that suggests seizures are
mediated by long cycles44. Seizures and subclinical epileptic
activity, such as spike discharges, have been found to be dis-
tributed into circadian cycles29,30. More recently Baud et al. 28

and Karoly et al. 45 found that epileptiform activity and seizures
fluctuate with daily and multidien rhythms. The current study
builds on these previous analyses by showing that the auto-
correlation and variance signals fluctuate with similar rhythms to
those found in epileptiform activity, and that these rhythms are
closely linked to seizure likelihood. Furthermore, the rhythms
related to critical slowing down were detectable across most
electrodes. This was in contrast to the rates of epileptiform
activity, which tended to be localized to specific electrodes
(Fig. 3b).

In this study, two methods for seizure forecasting were
explored: Method M1, where seizure rhythms were calculated
using all available data, and Method M2, where seizure prob-
abilities were iteratively computed based on past seizure occur-
rences. Both methods could accurately forecast seizures (average
sensitivity 84 ± 16% and 77 ± 8%, respectively), performing sig-
nificantly better than chance (9.6%). In the original study24, 72 ±
13% of seizures were correctly classified as high risk during the
training phase. However, the performance dropped to 58 ± 25%
during the advisory phase (Supplementary Table 1). The per-
centage of time spent in high risk in the original study was greater
than in the current study: 31 ± 8% and 25 ± 10% during the
training and advisory phases, respectively, cf. 8 ± 6% and 9 ± 8%
using Methods M1 and M2, respectively. It should be noted that
the original trial used only a subsample of the data used in the
current study.

Here, we have applied a theoretical approach, critical slowing
down, to the forecasting of seizures. This approach outperformed
all previous attempts to predict seizures on the same dataset
(Supplementary Table 2). It is important to note that previous
studies have not made use of the longer rhythms. The longer
rhythms are most likely the main contributor to the improved
outcomes as the long cycles could be used to greatly reduce the
time in high. Furthermore, it is important to note that the time in
high risk was defined differently for the various studies, hence
they may not be directly comparable. Our approach has been
designed to give a warning at the sample prior to a seizure (i.e.
2–4 min prior to a seizure).

Seizures occurred in a patient-specific and probabilistic man-
ner relative to the two warning signals. Forecast performance
significantly improved when the combination of autocorrelation,
variance, and spike information was included compared to using
spike rates alone (Supplementary Fig. 21), demonstrating the
power of using additional predictors. The need for combining
statistical priors is a framework that is being accepted in the
seizure forecasting community and new methods for combining
multiple predictors are emerging2,34. The future of seizure fore-
casting will undoubtedly include multi-modal information,
combining a patient-specific mixture of implanted and wearable
technologies1,2,46.

The underlying mechanisms that modulate seizure suscept-
ibility remain unknown. A few patients had ~12 or ~24-h cycles,
which could be influenced by hormonal fluctuations, such as
changes in cortisol and melatonin47,48. Anti-epileptic drugs play
an important role in modulating cortical excitability49 and, thus,
likely influence the patterns observed in this study. However,
Patient 6 was not on medication, yet had a strong circadian cycle,

demonstrating that the circadian influence on seizures was not
modulated by anti-epileptic drugs in this patient. The multidien
cycles observed for most patients highlight the presence of slow
variables (>24 h) that influence seizure susceptibility28,45,50. The
causal factors of these slower cycles may be regulated by the
body51 or relate to external factors such as weather52 or beha-
vior53. Identification of the causal factors will undoubtedly
improve our understanding of seizures and improve techniques
that make seizures predictable.

Seizure forecasting has the potential to transform the clinical
approach to the treatment of epilepsy. An accurate forecast could
be used to provide the patient a warning and also trigger inter-
ventions. It is clear from this, and other recent studies28,45 that
long-term monitoring in epilepsy will be necessary to create
patient-specific clinical treatments. A clinical device could be used
to intervene during periods of high risk by, for example, applying
deep brain stimulation as required. Future interventions that
incorporate forecasting will undoubtedly pave the way towards
improved outcomes for people living with epilepsy.

Methods
Human data. A total of 15 patients with focal epilepsy participated in the first-in-
human study (for patient details, see Cook et al.24). All data were collected with
ethics approval from Human Research Ethics Committees at the participating
institutes. The seizure advisory system captured continuous iEEG recordings on 16
electrodes at 400 Hz sampling rate (Fig. 2a). Patients were implanted with 16
electrodes placed near the presumed epileptogenic zone. A board-approved epi-
leptologist reviewed each patient’s iEEG and annotated the seizures and their
durations. Only clinically correlated and clinically equivalent seizures, as defined by
Cook et al.24, were considered.

Epileptiform spikes in the data were detected using a correlation-based
algorithm that compared the iEEG signal to a patient-specific template which has
been described and benchmarked previously29. In short, ~100 candidate
epileptiform spikes were detected and verified by a board approved epileptologist,
individually for every electrode in every patient. The average waveform was used as
a template to automatically detect epileptiform spikes. Spikes were detected by
computing the correlation between a sample iEEG and the template. Sections of
iEEG with a correlation above 0.85 were considered new spikes. Example spikes for
Patient 1 are shown in Fig. 6a.

Data selection and pre-processing. All analysis and data manipulation were
conducted using MATLAB (MathWorks 2017a). Three second snapshots of iEEG
recordings separated by 2 min were obtained on each channel. The 3 s segments
were filtered using a low-pass filter (finite impulse response filter) with a cutoff of
170 Hz. This was implemented to remove an ~200 Hz artifact in the data that
appeared when the patients charged their devices. After filtering, the first and last
second of data was discarded, leaving 1 s snapshots of iEEG data separated by 2
min (Fig. 2a). In each segment, the signal variance (Eq. (2)) and autocorrelation
(Eq. (3)) were computed

Vy ¼
1
T

XT

t¼1

yt � �yð Þ yt � �yð Þ ð2Þ

Cλ ¼
1
T

PT�λ
t¼1 yt � �yð Þ ytþλ � �y

� �

Vy

ð3Þ

Here, T represents the number of samples in the signal y, and �y represents the
signal mean. Cλ represents the autocorrelation function of signal y as a function of
the lag value λ: The autocorrelation measure used in the study was taken as the
width at the half maximum of the autocorrelation function (Fig. 2b). We also
investigated the lag 1 autocorrelation measure20 and found that it gave approxi-
mately similar results. However, the autocorrelation width produced a larger
dynamic range of values from which to observe changes in the signal. Two
examples of the autocorrelation function are shown for two seconds of iEEG in
Fig. 6b.

After computing the autocorrelation, variance, and spike rates for the entire
dataset, a causal moving average filter was applied with a window of 2 days
(1440 samples) to identify long rhythms in the data. The filtered data was then
subtracted from the unfiltered data to identify short rhythms. This signal was then
smoothed using a causal moving average filter of length 20 samples (40 min). A
Hilbert transform (MATLAB’s hilbert function) was applied to the long and short
rhythms to compute the analytic signal, from which signal phases could be derived.
All results, unless otherwise stated, used causal moving average filters.

The autocorrelation and variance signals were also computed in a 5 s moving
window with half a second overlap between windows. These were computed from
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3 h prior to and after each seizure (i.e. Fig. 1c, d and Supplementary Fig. 2). These
data were used to investigate critical slowing down and evidence of state transitions
on a fine temporal scale. The changes in ACFW for all seizures were compared
across patients. Due to the variability across seizures and patients, the ACFW was
first normalized by a baseline period 5 min prior to the seizure onset (Fig. 6c). The
ACFW peak (red dot) and subsequent trough (green dot) were then computed and
compared for all seizures across all patients (Supplementary Fig. 2).

Descriptive model. Throughout the text we give examples of a bi-stable dynamical
system and use it to predict the changes in system time-constant and auto-
correlation that should be seen at a critical transition (Fig. 1a and Supplementary
Fig. 5). The model we use is given by the following differential equation:

dz
dt

¼ �z3 þ ð1 ´ 10�3Þrz þ ð1 ´ 10�3Þk: ð4Þ

The equilibria of this equation describes a manifold as shown in Fig. 6d. By
fixing the value of r, the bi-stable system from Fig. 1a can be generated (black line).
For a fixed value of k, the system shown in Supplementary Fig. 5A can be generated
(red line). To generate the system in Fig. 1a we set r= 500 and varied k over ±200.
To compute the system time constant, we linearized Eq. (4) by evaluating the
Taylor series and solving for z. This model is a purely descriptive system and other
dynamical systems, such as mono-stable or multi-stable systems, are also plausible.
However, this model provides an intuitive way to analyze what occurs near a
critical point, then test any predictions in the data. The effects close to the critical
point generalize for a wider class of models that describe a critical transition.

Missing data. Over the course of the study, many data dropouts occurred when
the recording system was not fully recharged or when data was not regularly
retrieved. As a result, all patients had gaps in their data, lasting from minutes to
days. In most cases, the dropouts were short segments. In one case (Patient 3), the
segments of dropout data accounted for almost 80% of the total recording duration,
so this patient was removed from analysis. With Patient 3 removed, gaps in the

data comprised 26% of the total data (minimum: 1.25%, maximum: 40.11%;
Table 1).

Short sections (<2 h) in the autocorrelation, variance, and spike rate signals that
contained dropouts were filled with Gaussian noise. The mean and standard
deviation of the noise was computed from the remaining data without dropouts.
Sections with larger gaps were left as missing values. These missing values were
ignored when computing averages.

When computing the Hilbert and the FT, missing data were first filled with
Gaussian noise (as with the shorter sections). This has the effect of introducing
noise into the FT and the Hilbert transform. When computing the signal phases
from the analytic signal, 60 samples (2 h) either side of dropouts were removed
from analyses to reduce the effect of boundaries.

Synchronization index (SI). The phases at the times of the seizures (Fig. 2c, red
triangles) were used to calculate the SI54. Each phase, given by the analytic signal
derived from the Hilbert transform, is represented by a complex number that can
be drawn on polar axes as a vector (Fig. 6e, thin arrows). The SI is given by

SI ¼ 1
N

XN

n¼1

Xn

�����

�����;Xn ¼ eiθn ð5Þ

where Xn represents the complex-valued analytic signal (magnitude omitted) of the
autocorrelation, variance, or spike rate signals at the sample number n, and θn is
the phase of the signal. i ¼ ffiffiffiffiffiffi�1

p
and N represents either the total number of

seizures, or the length of the signal depending whether the SI was being used to
compute the seizure histograms, or the phase uniformity of the signal (Fig. 2d, e). If
all seizures occur at nearly the same phase of the filtered signal, then the SI will be
close to 1 (e.g. dark blue vector in Fig. 6e). If seizures occurred on random phases
of the filtered signal, the SI will be close to 0 (e.g., the green vector in Fig. 6e). The
SIs reported in this study were computed at the sample prior to each seizure.
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Similarity between electrodes. The similarities between the three signals across
electrodes were compared using a correlation coefficient. The autocorrelation,
variance, and spike rate signals were first smoothed using a causal moving average
filter of length 20 and sections containing missing values were removed. A cross-
correlation (MATLAB corrcoef function) was then computed between the signals
on each electrode. The cross-correlation produces a 16 × 16 matrix representing the
correlation between each electrode combination. The matrix was transformed into
a vector with the diagonal and duplicate values excluded, and the mean correlation
was then computed and compared (Fig. 3a).

Seizure clusters. Seizure clusters were determined by analyzing the inter-seizure
intervals for each patient. We plotted a histogram of seizure intervals with a bin
spacing of 1 h. Patients that did not have at least five seizures within an interval of
1 day (Patients 2, 4, 5, and 14) were not considered to have seizure clusters. For the
remaining patients, we used the histogram to determine the seizure lead times. The
histograms showed two types of responses: (1) there was an exponential decay from
time zero or (2), there were multiple peaks at regular intervals. For example, Patient
1 had a peak close to zero and an exponential decay without any other obvious
peaks. Patient 9 had multiple peaks at daily intervals (Supplementary Figs. 6 and
13). For cases where there was an exponential decay, we set the lead time to be
1 day. For patients where there were multiple peaks, we set the lead time to the first
trough between peaks. For example a lead time of 0.6 days, or 14.4 h was chosen for
Patient 9. Seizure clusters were investigated relative to the autocorrelation and
variance signals on the channel with the highest SI.

Seizure forecasting. Seizure risk was computed for each patient using a prob-
ability distribution of seizures relative to signal phase. The resulting probability
density was used to compute seizure probability over time, from which three risk
levels were determined: low risk, medium risk, and high risk. The risk levels over
time were computed by thresholding the seizure probability such that the following
criteria were optimized:

C1. Maximize the time spent in low-risk periods.
C2. Maximize the number of seizures classified in high-risk periods.
C3. The time spent in low risk is greater than time spent in medium risk. The

time spent in medium risk is greater than time spent in high risk
C4. The number of seizures occurring during low risk is less than the number

occurring during medium risk. The number of seizures occurring during
medium risk is lower than the number occurring during high risk.

The optimization was conducted by maximizing the product of C1 and C2. For
Method M1, the product of C1 and C2 at points where C3 and C4 were not satisfied
was set to zero. For Method M2, setting these points to zero often resulted in no
optimal solution being found, hence optimization was only conducted on C1 and C2.
Since the search space was small, the thresholds could be optimized quickly using a
brute-force approach. Figure 6f shows the search space for Patient 1. Threshold 1
(Th1) corresponds to the threshold separating the low and medium risk states.
Threshold 2 (Th2) separates the medium and high risk states. The combinations of
thresholds that best achieved the above criteria are shown by a red circle.

Method M1. The potential to forecast seizures was evaluated using the short and
long rhythms of all three signals (autocorrelation, variance, and spike rate) over all
the data. The probability of a seizure given phase was computed using the phase
estimated from the analytic signal. The phases between �π ≤ θ < π were broken
up into 20 equally spaced windows. A probability given phase was computed by
evaluating the number of seizures that occurred in a phase window (Sθ) divided by
the number of times the phase appeared in the signal (Nθ):

PðSjθÞ ¼ Sθ
Nθ

ð6Þ

The probability density for the combined short and long rhythms, and for the
combined autocorrelation, variance, and spike rate signals were computed by
multiplying the probabilities together.

Pseudo-prospective seizure forecast (Method M2). Forecasts using Method M2
employed causal filtering to identify the short and long rhythms, and to estimate
the phase relationships between seizures and the signals. The risk level for each
seizure was determined iteratively using the seizure rhythms and risk level
thresholds that were determined from past seizure information bootstrapped using
data from the first 10 seizures. When a new seizure occurred, the relationship
between seizures and the signal phases were recalculated and used to re-estimate
the seizure probability distribution, which remained fixed until the next seizure.
Due to non-stationary effects in the signals42, the seizure probability distribution
was calculated over a 50-day window.

Random predictor. The performance of the two forecasting methods were com-
pared to a random predictor using a random Markov model. To compute the
random model, the transition probabilities for each risk state were first computed
(based on Method M1); i.e., the probability of transition from low risk to medium
risk, medium to high risk, etc. Then, a model that randomly transitioned between
the three risk states was then generated using the transition probabilities. Statistical

differences in the data were computed using ANOVA followed by post-hoc ana-
lysis using Tukey–Kramer comparison, where necessary, with α= 0.01.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Seizures and some segments of the data used in this study are currently publicly available
on the online platform Epilepsyecosystem34. Other segments of the data can be made
available upon reasonable request.

Code availability
Code, sample data, and examples to generate some figures used throughout this paper
can be found at https://github.com/matiasim/Critical_Slowing_Epilepsy.
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