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Abstract. The modulus switching technique has been used in some cryptographic applications as well
as in cryptanalysis. For cryptanalysis against the Learning with Errors (LWE) problem and the Learning
with Rounding (LWR) problem, it seems that one does not know whether the technique is really useful or
not. This work supplies a complete view of the impact of this technique on the decoding attack, the dual
attack and the primal attack against both LWE and LWR. For each attack, we give the optimal formula for
the switching modulus. The formulas get involved the number of LWE/LWR samples which differs from
the known formula in the literature. We also attain the corresponding sufficient conditions saying when
we should utilize the technique. Surprisingly, restricted to the LWE/LWR problem that the secret vector
is much shorter than the error vector, we also show that performing the modulus switching before using
the so-called rescaling technique in the dual attack and the primal attack make these attacks worse than
only exploiting the rescaling technique as reported by Bai and Galbraith for their attack at ACISP 2014.
As an application, we theoretically assess the influence of the modulus switching on the LWE/LWR-based
second round NIST PQC submissions.

1 Introduction

Quantum computers that are machines exploiting quantum-mechanical phenomena are supposed to be more
powerful than conventional computers. If such a machine is built, despite that the machine will be very useful
in many beneficially real applications thanks to its power, it can also be used in compromising the digital world
and hence the real world. In fact, if a large-scale quantum computer becomes real, many of the public-key
cryptosystems that based on classical hard problems (e.g., the Integer Factorisation Problem or the Discrete
Logarithm Problem or the Elliptic Curve Problem) currently in use could be broken due to the quantum
computers’ capacity in efficiently solving mathematical problems that are difficult or intractable for classical
computers [48]. Under the threat of quantum computers, lattice-based cryptography, among others [17], has
become a leading candidate for being against the power of these quantum machines.

Among many lattice problems, LWE has been becoming a very important problem in lattice-based cryp-
tography since its introduction in the seminal work of Regev [46] in 2005. The problem uses a noise sampled
from some distribution (typically, Gaussian distribution) to hide the secret key. So far, the problem has been
well-studied and has been playing a crucial role as an underlying hard problem utilized to built various public-
key cryptosystems [33,45,46]. A disadvantage of the original LWE problem is that the noise is drawn from the
discrete Gaussian distribution which is costly to implement in practice. In 2010, a de-randomization variant
of LWE using a rounding operation to conceal the secret key instead of a discrete Gaussian noise, the LWR
problem, was introduced by Banerjee, Peikert and Rosen [16]. The LWR problem has also several applica-
tions in lattice-based cryptography such as pseudorandom functions [16], lossy trapdoor functions, reusable
extractors [10], key homomorphic pseudorandom functions [22], etc.

In order to prepare for the upcoming post-quantum era, National Institute of Standards and Technology
(NIST) processed a competition called NIST Post-Quantum Cryptography (NIST PQC) Standardization in
November 2017. Among 82 candidate packages in total were submitted to NIST at the beginning of the pro-
cess, 69 submissions were accepted as First-Round Candidates on December 20, 2017. After that from these
submissions, 26 packages were chosen to be the Second-Round NIST PQC Candidates (we also refer them as
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Table 1: The Second-Round NIST PQC Submissions based on LWE and
LWR problems

Cryptosystems LWE/LWR variants

CRYSTALS-Kyber Module-LWE (MLWE)
FrodoKEM LWE

LAC Ring-LWE (RLWE)
NewHope RLWE
Round5 General LWR
SABER LWR

ThreeBears ILWE (Integer version of MLWE)
CRYSTALS-Dilithium RLWE

qTESLA RLWE

the second round NIST PQC submissions) of the competition as announced on January 30, 2019, by the NIST
organiser [1]. It is noteworthy to know that there are up to 9 Second-Round NIST PQC Candidates that are
based on LWE/LWR and their variants (see also Table 1 for a summary), whereas the remaining candidates (17
submissions) are NTRU-based, multivariate-based, code-based, hash-based ones, and so forth. Remark that the
security, cost and performance, and algorithm and implementation characteristics are criteria that NIST con-
sidered in selecting the second round candidates [1, Subsection 2.3]. Same as other lattice problems, LWE/LWR
variants enjoy very strong security proofs based on worst-case hardness, relatively efficient implementations,
as well as great simplicity (cf. [43]). These characteristics make LWE/LWE-based candidates important and
leading ones for the NIST’s consideration.

For more details in the security aspect, the hardness of LWE has been well studied in the literature [5,24,46].
Regev [46] showed that the LWE problem is as hard to solve as several worst-case lattice problems. Also, for
LWR, there are some analyses of its hardness based on reducing LWR to LWE under certain constraints on
parameters such as [9, 10, 16, 21]. And, until now, the only known approach in attacking LWR is to transform
an LWR instance to an LWE instance. Most of the strategies for breaking LWR are able to be adapted from
attacks against an LWE modulo q instance [14, 29] such as the dual attack, the decoding attack, the primal
attack, algebraic attacks [12] and so on (cf. [5] for more details).

In this work, we just focus on the decoding attack, the dual attack and the primal attack. While the first
attack was mentioned in our preliminary work [38], the second and the third are attacks often mentioned in
security analyses of lattice-based NIST PQC submissions. Compared to the decoding attack, the dual attack
and the primal attack are much better, especially in the case that the secret (and the noise, the error) is sampled
from (even sparse) small sets and that not many numbers of samples are given. For example, the secret key of
Round5, a second round NIST PQC candidate, is sampled according to a fixed Hamming weight distribution
of support {−1, 0, 1}, named Hn,k(h), from which each drawn vector of length n · k has exactly h non-zero
components [14].

The modulus switching technique was used for the first time aiming to speed up the homomorphic encryption
operations [25]. Then the technique was also used to evaluate the classical hardness of LWE problem [24].
Recently, the technique was modified to combine with the Blum-Kalai-Wasserman (BKW) algorithm on LWE [3].
The technique allows to transform an LWE modulo q instance to an LWE modulo q′ instance with q′ (called
the switching modulus) is typically chosen as

q′ ≈ σs
σ
·
√

n

12
· q, (1)

where n is the length of the secret and σs, σ are standard deviations of the secret and the error of the original
LWE modulo q instance, respectively (cf. [5, Lemma 2]). Remark that, Eq. (1) does not involve the number of
LWE samples m. It is noteworthy to know that the number of LWE samples plays an important role in the
success of attacks against the LWE problem. The authors of [19] analyzed the hardness of LWE instances given
a restricted number of samples. Since then, they extended the LWE-Estimator of [5] which is a software tool
used to estimate the hardness of concrete LWE instances and to choose parameters for lattice-based primitives.
Furthermore, they also showed the impact of restricting the number of available samples.

Obviously, Eq. (1) just supplies us a commonly used switching modulus q′ not aiming to strengthen the
power of known attacks. Also, note that the effect of the modulus switching technique on attacks against the
LWE/LWR problems as well as on other techniques, e.g., the so-called rescaling technique, has not been studied
carefully so far. The present work is to try to close the gap we have mentioned.
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Table 2: Choose the optimal switching modulus q′ for some typical attacks against LWE and LWR
problems

Attacks Literature [5]
Our work

Optimal modulus Notations

Decoding

q′ ≈
√

nσ2
s

12σ2 · q

q′ ≈
√

(m−n)N
nM

N = nσ2
s

Dual
q′ ≈

√
mN
nM

LWE: M := Mlwe =
12σ2

lwe
q2

≈
√
N/M

Primal q′ ≈
√

(m+12)N
(n+1)M

LWR: M := Mlwr = q2+2q
p2q2

≈ 12σ2
lwr
q2

,

σlwr =
√

q2+2pq
12p2

Our contribution This paper is the extended version of our CANS 2018 paper [38]. In general, the present work
extends our approach in [38] to the dual attack and the primal attack for not only LWR but also LWE. We
processed a complete consideration of the impact of the modulus switching technique being used to solve both
LWE and LWR on these typical attacks. More specifically,

(i) We set up a common framework for both problems. To do that, we scrutinized in details transforming
from an LWR instance to a corresponding LWE instance as well as the behavior of the induced LWR error.
Furthermore, the successful range in which a search LWR instance can be solved by the decoding attack
associated with Babai’s Nearest Plane algorithm was also determined. Based on the successful range, we take
LWR instances that are consistent with our experiments. This is the completed work of [38].

(ii) We obtained the optimal value for the switching modulus with respect to each attack (see Table 2
for a summary) accompanied with the sufficient condition for exploiting the modulus switching technique in
attacking the LWE/LWR problems. Our optimal formulas for the switching modulus get involved the number
of LWE/LWR samples which is different from Eq. (1) (see Table 4 for a summary and see also Table 5 for a
comparison between the values of the switching moduli according to each attack summarized in Table 2 and
the values of q′ according to Eq. (1) with some specific parameters).

(iii) We compared the efficacy of the modulus switching and that of the so-called rescaling technique which
is mentioned in attacks against LWE/LWR in the case that the secret is much smaller than the error (e.g., the
secret is a binary or trinary vector) (see Table 3 for a summary).

(iv) We also assessed the effect of the modulus switching technique on the rescaling technique. Our compu-
tation theoretically confirms again the result by Bai and Galbraith at ACISP 2014 [15] that their attack which
exploits the rescaling technique is weakened by applying the modulus switching.

(v) Finally, based on our theoretical results, we also evaluated how the LWE/LWR-based NIST PQC sub-
missions are impacted by the modulus switching.

To the best of our knowledge, this work is the first attempt to evaluate carefully the modulus switching’s
influence on attacks breaking the LWE/LWR problems. We expect that our work will not only provide with
a different perspective in exploiting the modulus switching technique to attack LWR/LWE but also gets more
attention in other application scenarios.

Organisation Section 2 gives some background knowledge necessary to our work later on. In Section 3, we first
remind the typical way we transform an LWR instance into an LWE instance, then determine the distribution
of the induced LWR error. We also estimate the successful range for the decoding attack against LWR in this
section. We will review the modulus switching technique applied to LWE and LWR in Section 4. Choosing the
optimal switching modulus for the decoding attack, the dual attack and the primal attack will be conducted in
Section 5. In Section 6, we compare the modulus switching with the so-called rescaling technique when applied
separately to attacks. A valuation on the impact of the modulus switching to the efficacy of the rescaling
technique will be done in Section 7. Section 8 presents some experimental results relating to using the modulus
switching technique in solving the LWR problem. Section 9 is devoted to summarize the second round NIST
PQC candidates which rely their security on the hardness of the LWE/LWR variants and evaluate theoretically
the impact of the modulus switching on them. Section 10 is to conclude our work.
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Table 3: The sufficient condition for that the modulus switching technique is better than the
rescaling technique

Attacks Sufficient condition

Dual
(

12σ2

σ2
s

)n
≥ (m+n)m+n

mm
· σ2n

σ
2(m+n)
s

Primal
(

12(N+mσ2)
m+n+1

)m+n+1

≥
(

(m+12)N
n+1

)n+1

·
(
q2M

)m · σ2m
s
σ2m

2 Preliminaries

2.1 Notations

In this work, we represent (column) vectors in lower bold letters, e.g., vector a, matrices in upper bold letters,
e.g., matrix A. We write vt (resp. At) as the transpose of the vector v (resp. the matrix A). The norm of a
vector v is the standard Euclidean norm computed as ‖v‖ =

√
〈v,v〉.

If S = {a1, · · · , am} with ai ∈ R then k · S = {k · a1, · · · , k · am} for any k ∈ R. The logarithm of base 2
of a positive real number x will be written as log(x). We use U(S) to indicate the uniform distribution over
the set S. The rounding operation bae outputs the integer closest to a and in the case of a tie, it outputs the
integer next to a. For any positive integer q, we denote by Zq = {0, 1, · · · , q − 1} the set of integers modulo q.
By “a := b” we mean defining the new variable a by assigning its value to be b

We write x ← χ to say that the random variable x follows the probability distribution χ or x is sampled
from the distribution χ. Let v be a vector, A be a matrix and f be a polynomial. Notations like v ← χn,
A ← χm×n, f ← χn, etc., say that v, A and f are sampled element-wise or coefficient-wise according to the
distribution χ. For a real number k, the notation y ← k · χ means that y = k · x for some x that follows the
probability distribution χ.

2.2 Lattices

The lattice L = L(A) generated by the column matrix A = [a1, · · · ,am] ∈ Rn×m of m linearly independent
vectors is defined to be the set of all linear integral combinations of ai’s, i.e., L(A) = {A.x : x ∈ Zm} =
{
∑m
i=1 xiai : xi ∈ Z} . We call the matrix A a basis of L and call each ai a basis vector. The rank of the lattice

is the number of basis vector (i.e., m). The dimension of the lattice is the number of entries in each basis vector
(i.e., n). If m = n, the lattice is called to be full-rank. Notice that, every lattice has infinitely many bases up
to a unimodular matrix of determinant ±1. Hence, if A and B are two different bases of the lattice L, then
det(AtA) = det(BtB). We call det(L(A)) :=

√
det(AtA) the determinant (or volume) of the lattice L(A).

The Gram-Schmidt matrix A∗ = [a∗1, · · · ,a∗m] for a basis A = [a1, · · · ,am] is defined by setting a∗1 =

a1 and a∗i = ai −
∑i−1
j=1 µi,j · a∗j , where µi,j = 〈ai,a∗j 〉/‖a∗j‖2, for i = 2, · · · ,m. We can prove that det(L(A)) =∏m

i=1 ‖a∗i ‖. The fundamental parallelepiped associated with a basis A = [a1, · · · ,am] is P1/2(A) =
{∑m

i=1 xiai : xi ∈
[
− 1

2 ,
1
2

)}
.

We define the fundamental parallelepiped P1/2(A∗) for the Gram-Schmidt matrix A∗ in the same way.
There always exist non-zero vectors having the smallest norm and non-zero vectors having the second smallest

norm in a lattice L. We call these norms the first minimum λ1(L) and the second minimum λ2(L), respectively.
Let L be a lattice of rank m and S be a measurable subset of the corresponding space Rm, Gaussian Heuristic

says that #S∩L ≈ vol(S)/det(L). Consequently, we have the following estimation for the length of the shortest
non-zero vectors of L:

λ1(L) ≈
√

m

2πe
det(L)1/m,

where e is the mathematical constant being the base of the natural logarithm.
For integers q,m, n (m ≥ n), given a random matrix A ∈ Zm×nq , we consider q-ary lattices

Λq(A) = {u ∈ Zm : u = As mod q for some s ∈ Zn}

and
Λ⊥q (A) =

{
x ∈ Zm : xt ·A = 0 mod q

}
.

It is well known that det(Λq(A)) = qm−n and det(Λ⊥q (A)) = qn with high probability.
In lattice-based cryptography, there are two very important problems: The Shortest Vector Problem (SVP)

and the Closest Vector Problem (CVP).
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– SVP is to find a lattice vector of the first minimum given a basis of a lattice.
– CVP is given a basis of a lattice and a target vector to search for a lattice vector that is closest to the target

vector.

Almost attacks against LWE and LWR can be reduced to solving these problems over some lattice.

2.3 Lattice Basis Reduction Algorithms and Root Hermite Factor

A basis of a lattice can be reduced using the so-called lattice basis reduction (LBR) algorithms to obtain a new
basis consisting of short and nearly orthogonal lattice vectors. Among some, the LLL algorithm [39] and the
Block-wise Korkine-Zolotarev algorithm (BKZ) [47] are two algorithms typically used in practice. The former is
a polynomial-time algorithm while the latter can be considered as a block version of the former with exponential
complexity. We briefly remind them in the following.

The LLL Algorithm The LLL algorithm, named after Lenstra, Lenstra and Lovász, is a polynomial algorithm
used to reduce a lattice basis to a δ-LLL-reduced basis A = [a1, · · · ,am] with the reduction factor 1

4 < δ < 1
satisfying both the following conditions:

– (Size-reduced condition): |µi,j | ≤ 1
2 for all 1 ≤ j < i ≤ m,

– (Lovász condition): δ‖a∗i−1‖2 ≤ ‖a∗i + µi,i−1a
∗
i−1‖2 for all 2 ≤ i ≤ m.

The BKZ Algorithm The BKZ algorithm is an algorithm that on input a lattice basis outputs a (δ, β)-BKZ-
reduced basis with factor 1

4 < δ < 1 and blocksize 2 ≤ β ≤ m. Additionally, we define the orthogonal projection
over (b1, · · · ,bi−1)⊥ by πi : Rn → span(b1, · · · ,bi−1)⊥ for 1 ≤ i ≤ m. Particularly, π1 is considered as the
identity map. A basis A = [a1, · · · ,am] is called (δ, β)-BKZ-reduced if the following hold:

– It is a δ-LLL reduced basis,
– The Gram-Schmidt vector a∗i is the shortest vector in the projective sublattice generated by A[i:j] :=

[πi(ai), · · · , πi(aj)], (i.e., ‖a∗i ‖ = λ1(L(A[i:j])) for all 1 ≤ i ≤ m and j = min(i+ β − 1,m).

Root Hermite Factor Let L be a lattice of rank m and A be a reduced lattice basis obtained using some LBR
algorithm, say A, the root Hermite factor (rHF) δA of A with respect to A is the constant given by

δA =

(
||u1||

det(L)1/m

) 1
m

, (2)

where u1 is a shortest non-zero vector in A. Gama and Nguyen in [32] attempted to estimate the rHF of LLL
and BKZ for random matrices. Namely, they estimated that the rHF of LLL is δLLL ≈ 1.0219 on average in
high dimension ≥ 100 while that of BKZ with blocksize β = 20 is δBKZ ≈ 1.0128.

Unfortunately, however, these experimental results of [32] for random matrices may be not perfectly fit for
q-ary lattices. That is the reason why Kudo et al. in [37] conducted intensively an experiment on q-ary lattices
to estimate the quantity of minmi=1 ‖b∗i ‖ from which they defined an alternative measure as follows:

cA :=

(
minmi=1 ‖b∗i ‖

det(Λq(A))1/m

) 1
m

, (3)

where b∗i ’s are Gram-Schmidt vectors of a basis of the q-ary lattice Λq(A), say B = {b1, · · · ,bm}, that is already
reduced by some LBR algorithm A. Clearly, cA ≤ 1 since minmi=1 ‖b∗i ‖ ≤ (

∏m
i=1 ‖b∗i ‖)1/m = det(Λq(A))1/m.

Especially, Kudo et al. [37] estimated that cLLL = 0.9775 whereas using BKZ with blocksize β = 20, they got
cBKZ = 0.9868 (cf. [37, Table 1]).

If we still denote the rHF for q-ary lattices by δA then it seems that δA ≈ 1/cA. For instance, with
cLLL = 0.9775 and cBKZ = 0.9868, we have 1/cLLL = 1.0230 and 1/cBKZ = 1.0139, respectively, that are
quite close to the rHF for random matrices mentioned above.

We will use (3) to reach an important heuristic that is useful for our work (see Subsection 5.2).

2.4 Probability

Variance of Random Variables We denote the variance of a random variable X by σ2
X . For a, b ∈ Z,

the variance of a random variable X following the discrete uniform distribution U({a, a + 1, · · · , b − 1, b}) is
σ2
X = ((b − a + 1)2 − 1)/12. If X follows the continuous uniform distribution U(a, b) then σ2

X = (b − a)2/12.
Assume that Z = X + Y where X,Y are independent random variables then σ2

Z = σ2
X + σ2

Y . Finally, for every
random variable X and for every constant k ∈ R, let Y = kX, then we have σ2

Y = k2σ2
X .
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Table 4: The sufficient condition for using the modulus switching
makes attacks stronger than without using the technique.

Attacks Sufficient condition

Decoding
(

12σ2

σ2
s

)n
≥ mm

(m−n)m−n

Dual
(

12σ2

σ2
s

)n
≥ (m+n)m+n

mm

Primal
(

12(N+mσ2)
m+n+1

)m+n+1

≥
(

(m+12)N
n+1

)n+1

·
(
q2M

)m

Gaussian Distribution The continuous Gaussian distribution Dµ,σ of mean µ and standard deviation σ > 0
is defined by its probability density function (pdf)

Dµ,σ(x) =
1√

2πσ2
· e−

(x−µ)2

2σ2 ,∀x ∈ R.

In this paper, we will also mention to the discrete Gaussian distribution on Z centered at 0 and width parameter
αq, denoted by DZ,αq. The standard deviation of the distribution is roughly σ = αq/

√
2π.

Convolution of Two Distributions Let X and Y be continuously distributed independent random variables
with probability density functions fX and fY . Then the pdf of the random variable Z = X+Y is the convolution
of fX and fY given by

fZ(z) = (fX ∗ fY )(z) =

∫ +∞

−∞
fX(t)fY (z − t)dt

=

∫ +∞

−∞
fX(z − t)fY (t)dt.

(4)

2.5 LWE Problem and LWR Problem

The LWE problem proposed by Regev in 2005 [46] has been playing a significant role in lattice-based cryptog-
raphy. In the original LWE by [46], the given LWE secret vector is chosen uniformly at random over Znq while
the LWE error follows a discrete Gaussian distribution over a lattice. However, there is a reduction from the
original LWE problem to a LWE variant whose both secret and error following the same distribution [11]. Thus,
in the following, we will generally define the LWE problem whose secret that follows the distribution χs and
error that follows the distribution χe in which these two distributions may be identical.

Definition 1 (LWE Sample). Let χs and χe be two distributions over Zq. Given a secret vector s← χns where
χs has variance σ2

s , an LWEn,q,χs,χe sample is obtained by choosing a vector a ← Znq uniformly at random,
sampling an error term e← χe and outputting (a, c = 〈a, s〉+ e mod q) ∈ Znq × Zq.

If we have such m samples (ai, ci = 〈ai, s〉+ ei) for i = 1, · · · ,m, we can collect them as (A, c = A · s + e)
in which A is an (m× n)- matrix whose i-th row is ai, c = (c1, c2, · · · , cm)t, and e = (e1, e2, · · · , em)t. We call
(A, c = A · s + e) an LWE modulo q instance.

Definition 2 (LWE Problems). Given an LWE modulo q instance (A, c = A · s + e) ∈ Zm×nq × Zmq .

– The search-LWE (sLWE) problem is to find the secret s.
– The decision-LWE (dLWE) problem requires to distinguish the LWE instance from the uniform pair (A, c) ∈

Zm×nq × Zmq .

Stress that, sLWE and dLWE are equivalent in the sense that if one can solve one problem then one will be
able to solve the another by [46, Lemma 4.2].

The LWR problem, a de-randomization variant of LWE, was also introduced by Banerjee, Peikert and Rosen
in [16] to avoid using Gaussian distribution which is quite complicated to sample and also suffers side channel
attacks. Let p and q be two moduli such that 2 ≤ p ≤ q. We define the (q, p)-modulo rounding operation,
denoted by b.eq,p, as follows: for x ∈ Zq, bxeq,p = b(p/q) · xe ∈ Zp. As usual, we can extend the operation for
vectors, matrices as well as polynomials by taking it component-wise, such as for x = (x1, · · · , xn) ∈ Znq , we
have bxeq,p = (bx1eq,p, · · · , bxneq,p) ∈ Znp .
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Table 5: We compute the value of the optimal switching modulus q′ according to literature using Eq. (1) and
our formulas summarized in Table 2. We can see that, for the decoding attack, our formulas cannot compute
q′ when if m < n (we denote that by “–”) while for the dual attack and the primal attack, we always have the
optimal q′ even with m = 1. The modulus q′ computed via Eq (1) does not depends on the number of samples
m.

n m bit size of q bit size of p σs log(q′) (Eq. (1)) log(q′) (decoding) log(q′) (dual) log(q′) (primal)

60 61 15 11 2/3 13.66 10.70 13.67 13.79
60 166 15 11 2/3 13.66 14.07 14.39 14.43
60 1 15 11 2/3 13.66 – 10.70 12.54

80 209 18 13 2/3 15.86 16.21 16.56 16.59
80 30 18 13 2/3 15.86 – 15.16 15.39
80 2 18 13 4 17.16 – 14.49 15.89
80 79 18 13 4 17.16 – 17.15 17.241

100 147 20 15 2/3 18.02 17.48 18.31 18.36
100 120 20 10 14 15.23 14.06 15.36 15.42
100 40 20 10 10 14.98 – 14.32 14.50

Definition 3 (LWR Sample). For a secret vector s← χns where χs is some distribution over Zq of variance
σ2
s , an LWRn,q,p,χs sample is obtained by choosing a vector a ← Znq uniformly at random and outputting

(a, c = b〈a, s〉eq,p) ∈ Znq × Zp.

Assume that we have such m LWR samples then we can write them as (A, c = bAseq,p) ∈ Zm×nq × Zmp , where
A is a matrix whose rows are ai and c is a column vector whose elements are ci. We call (A, c = bAseq,p) an
LWR modulo (q, p) instance.

Definition 4 (LWR Problems). Given an LWR modulo (q, p) instance (A, c = bAseq,p) ∈ Zm×nq × Zmp .

– The search-LWR (sLWR) problem is to find the secret s.

– The decision-LWR (dLWR) problem requires to distinguish the LWR instance from the uniform pair (A, c) ∈
Zm×nq × Zmp .

3 Reducing the LWR modulo (q, p) to the LWE modulo q

The following reduction, called q-reduction, is used to transform an LWR instance consisting of samples of the
form (a, c = b〈a, s〉eq,p) ∈ Znq × Zp to an LWE modulo q instance of the form (a, c1) ∈ Znq × Zq in which

c1 =

⌊
q

p
· c
⌉

mod q

=

⌊
q

p
.

(
p

q
· (〈a, s〉+ qu) + e1

)⌉
mod q

= (〈a, s〉+ e) mod q = 〈a, s〉 mod q + e,

(5)

where e1 ∈
(
− 1

2 ,
1
2

]
, u ∈ Z, and e := b(q/p) · e1e. For short, we call the error e q-error.

Note that, in the reduction above, we used the following assumption:

Assumption 1 We assume that in our work, the error induced in the process of the reduction from an LWR
instance to a corresponding LWE instance is not changed by a modulo operation. Formally, for an LWE sample
(a, (〈a, s〉+ e) mod q) ∈ Znq × Zq, we assume that

(〈a, s〉+ e) mod q = 〈a, s〉 mod q + e.

This assumption was also used in many previous works relating to LWE such as [23,25,26,37]. We still use this
assumption later on.
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3.1 Distribution of the q-Error e

The q-reduction above has been typically considered in recent works relating to the LWR problem (see, e.g.,
[14, 27, 31]). In these works, it is heuristically assumed that e is continuously uniform over (−q/(2p), q/(2p)].
If so, the variance is just σ2

lwr ≈ q2/(12p2). In this section, we show that e is actually distributed according
to a discrete uniform distribution over the set {− bbq/2c/pe , · · · , bbq/2c/pe}, hence its variance is actually
σ2
lwr ≈ (q2 + 2pq)/(12p2) which is significantly greater than q2/(12p2) in the case q � p.

To begin with, we state a simple lemma on the rounding operation via the discrete uniform distribution.

Lemma 1. Given a non-zero real number b. Set b0 := −bbe, b1 := −bbe+ 1, · · · , bt−1 := bbe − 1 and bt := bbe
and define the set B := {b0, · · · , bt}. Let x be a real number taken uniformly at random from [−b, b]. Then

Pr[bxe = bi|bi ∈ B] = Pr[bxe = bj |bj ∈ B], for all i, j ∈ [t− 1].

In particular,
Pr[bxe = b0] = Pr[bxe = bt] ≤ Pr[bxe = bi|bi ∈ B],∀i ∈ [t− 1].

Proof. The idea for the proof is easy. Firstly, note that, for 1 ≤ i ≤ t− 1, we have

Pr[bxe = bi] = Pr[x ∈ [bi − 1/2, bi + 1/2)],

which implies the first statement in the lemma. Secondly, since b0 = −bbe and bt = bbe, so b0 − 1/2 ≤ −b <
b0 + 1/2 and bt − 1/2 ≤ b < bt + 1/2,

Pr[bxe = b0] = Pr[x ∈ [−b, b0 + 1/2)]

≤ Pr[x ∈ [b0 − 1/2, b0 + 1/2)],

and

Pr[bxe = bt] = Pr[x ∈ [bt − 1/2, b]]

≤ Pr[x ∈ [bt − 1/2, bt + 1/2)].

Now we give the theorem describing the behaviour of the q-error e.

Theorem 1. Set b := bq/2c
p and A := {− bbe+ 1, · · · , bbe − 1}. Also let e be the q-error defined as in (5). Then

we have:

Pr[e = a|a ∈ A] =
1

2b
,

and

Pr[e = −bbe] = Pr[e = bbe] =
b− bbe+ 1

2

2b
≤ 1

2b
.

However, less precisely, we can say that e is uniform over

B := {− bbe ,−bbe+ 1, · · · , bbe − 1, bbe} .

Then the variance of the q-error e is

σ2
lwr ≈

(
2
⌊
bq/2c
p

⌉
+ 1
)2
− 1

12
≈ q2 + 2qp

12p2
. (6)

Proof. First, we show that the error e1 appearing in Eq. (5) is distributed uniformly over 1
q×{−bq/2c, · · · , bq/2c}.

Note that, we fix the secret s which is sampled from some probability distribution χs beforehand. It is true that
if we take a ∈ Znq uniformly at random then (〈a, s〉mod q) is also uniform over Zq. Hence, pq × (〈a, s〉mod q) is
also uniform over

p

q
· Zq = {0, p/q, · · · , p · (q − 1)/q}.

Suppose that 〈a, s〉mod q = k, for some k ← U({0, · · · , q − 1}). There always exist integers w and v such that
kp = qw + v, −bq/2c ≤ v ≤ bq/2c, and 0 ≤ w ≤ p. Certainly, v is uniform over the set {−bq/2c, · · · , bq/2c}.
Thus, (p/q) · (〈a, s〉mod q) = kp/q = w + v/q, where

−bq/2c/q ≤ v/q ≤ bq/2c/q.
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Consequently, b(p/q) · (〈a, s〉mod q)e = w ∈ {0, · · · , p}, and hence

e1 :=
p

q
(〈a, s〉mod q)−

⌊
p

q
(〈a, s〉mod q)

⌉
=
v

q

is uniform over (1/q)·{−bq/2c, · · · , bq/2c}. As a result, (q/p)×e1 = v/p is uniform over {−bq/2c/p, · · · , bq/2c/p}.
Recall that, the q-error e = b(q/p) · e1e .Applying Lemma 1 to b := bq/2c/p,B := {− bbe ,−bbe+ 1, · · · , bbe − 1, bbe}

and x := (q/p) · e1 and e := bxe, the theorem follows. The variance of e is computed using the discrete uniform
distribution over B ⊂ Z as in Subsection 2.4.

Remark 1. In Eq. (6) we will have the equality, i.e., σ2
lwr = (q2 +2qp)/(12p2) if q and p are power of two. This is

the case used in Round5 [14], SABER [28] for computational efficiency. In this case, our formula returns the more
exact result (and identical to the variance of the discrete uniform distribution over an interval, see Subsection
2.4) in comparison with the formula proposed by [44] saying that σ2

lwr should be computed by ((q/p)2 − 1)/12
which makes σ2

lwr smaller than it is.

3.2 Estimating the Successful Range for the Decoding Attack in Solving LWR

Our purpose in this section is to find a condition of q so as to the LWRm,n,q,p,χs instance can be solved by
the decoding attack. The condition depends only on the dimension n, the used LBR algorithm A (through its
constant cA defined as in Eq. (3)) as well as the bit ratio between q and p. According to the q-reduction, we
say that a search-LWRm,n,q,p,χs instance is solvable by the decoding attack if the corresponding LWE modulo
q can be solved by the strategy.

Let (a, c = b〈a, s〉eq,p) ∈ Znq×Zp be an LWRm,n,q,p,χs instance and its corresponding LWE instance computed
by (5), the q-error e has variance σlwr defined as in (6). By Heuristic 1 (see Subsection 5.2), we need 2σlwr ≤
cmA · q(m−n)/m to happen with probability 1. Notice that σlwr =

√
(q2 + 2qp)/(12p2) ≤ q/(2p) as pq ≤ q2,

yielding that 2σlwr ≤ q/p. To estimate the successful range, we should consider the following slightly stronger
condition

q

p
≤ cmA · q(m−n)/m,

from which we obtain qn/pm ≤ cm2

A . Given 0 < ζ < 1 such that p = qζ , from the previous equation we get

(mζ − n) log(q) ≥ −m2 log(cA). (7)

It is easy to see that Eq. (7) just makes sense as long as m > n
ζ . So with this condition, we can rewrite (7) as

log(q) ≥ −m2 log(cA)/(mζ − n).

Hence we have that

log(q) ≥ −4n log(cA)/ζ2,

since

min
m

{
−m2 log(cA)/(mζ − n)

}
= −4n log(cA)/ζ2

obtained at m = 2n/ζ. For given ζ, let qmin be the integer such that

log(qmin) =

⌈
−4n log(cA)

ζ2

⌉
, (8)

then log(qmin) is a function in n whose graph is a straight line (called the boundary line). The line divides
the plane into two half-planes: the upper half-plane indicates the successful range in which LWR instances are
solvable by the decoding attack, while the lower half-plane indicates the failure range in which LWR instances
are unsolvable by the decoding attack, (see Figure 1).

Remark 2. It is easy to see from Eq. (8) that either n grows or/and ζ decreases makes the value log(qmin)
increase. This seems to mean that large n and/or smaller ζ should be chosen for LWR-based cryptosystems.
However, as we will see later in our experiments, larger n and/or smaller ζ provide our modulus switching
approach with more advantages.
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Fig. 1: We plot the graphs of the lines log(qmin) = d−4n log(cA)/ζ2e corresponding to ζ = 11/15 and ζ = 1/3.
For LLL, we use cLLL = 0.9775 and for BKZ of blocksize 20 we use cBKZ = 0.9868.

The Optimal Number of LWR Samples for the Decoding Attack The optimal number of LWR samples m should

be chosen such that the right-hand side of 2σ ≤ cmAq
m−n
m is maximum. So the optimal value of m should be:

m =

⌊√
n log(q)

− log(cA)

⌉
. (9)

Remind that, the optimal number of samples typically used in attacking LWE problems (e.g., see [40], [43]) is

m =
⌊√

n log(q)/ log(δA)
⌉
, which along with Eq. (9) again convince us that δA ≈ 1/cA (see Subsection 2.3).

4 Modulus Switching on LWE and LWR

4.1 Modulus Switching on LWE

Let (a, c = 〈a, s〉+e mod q) ∈ Znq ×Zq be an LWE modulo q sample where s follows some distribution χs of vari-
ance σ2

s and the secret e is sampled from a distribution of variance σ2
lwe. Using the modulus switching, we consider

the LWE instance (ã, c̃) := (b(q′/q).ae, b(q′/q).ce) ∈ Znq′ × Zq′ where we can write c̃ as c̃ = 〈bãe , s〉 mod q′ + ẽ,
with ẽ := e2 + (q′/q).e + e3, e2 := 〈(q′/q)a− b(q′/q)ae , s〉 mod q′ and e3 ∈ (−1/2, 1/2]. The variance of e3
is σ2

3 = 1/12 . The variance σ2
2 of e2 can be approximated as sum of n summands in which each summand is

uniform on (−σs/2, σs/2] where σs is the variance of the secret s. Hence σ2
2 = nσ2

s/12. Assume that e2, e3 and
(q′/q) · e are three independent random variables, the variance of ẽ can be estimated as

σ′
2
lwe =

(nσ2
s + 1)

12
+
σ2
lwe

q2
q′2 ≈ 1

12
(Mlweq

′2 +N), (10)

with Mlwe = 12σ2
lwe/q

2 and N = nσ2
s . Particularly, if χe = DZ,αq then σ2

lwe = α2q2/(2π) and Mlwe = 6α2/π.
Recall that, in the literature, one typically chooses q′ such that |e2| ≈ (q′/q)|e| yielding

q′ ≈ σs
σlwe

√
n

12
q

(cf. [5]).

4.2 Modulus Switching on LWR

We will analyze the so-called q′-reduction which reduces an LWRm,n,q,p,χs instance to an LWE modulo q′

instance. Let (a, c = b〈a, s〉eq,p) ∈ Znq × Zp be an LWR sample. We reduce this LWR sample to the LWE
sample modulo q′ of the form (a′, c′ = 〈a′, s〉 + e′) ∈ Znq′ × Zq′ with c′ = b(q′/q) · ce clarified below where
a′ = b(q′/q) · ae. We call the error e′ q′-error. We now take a closer look into the process of generating e′.
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Recall that, c = b〈a, s〉eq,p = (p/q) · 〈a, s〉 + p · u + e1 for some u ∈ Z, where e1 ← (1/q) × U (T ) with
T = {−bq/2c, · · · , bq/2c} (see Eq. (5) and the proof of Theorem 1).

Now with the q′-reduction we will obtain

c2 :=
q′

p
· c =

〈⌊
q′

q
a

⌉
, s

〉
+

〈
q′

q
a−

⌊
q′

q
a

⌉
, s

〉
+ q′ · u+ e4,

where e4 := (q′/p) · e1 ← q′/(pq) · U(T ), with e1 as in Eq. (5). Hence

c′ : = bc2e mod q′

=

〈⌊
q′

q
a

⌉
, s

〉
mod q′ +

〈
q′

q
a−

⌊
q′

q
a

⌉
, s

〉
+ e4 + e6,

where e6 ∈ [−1/2, 1/2). The q′-error is e′ := e4 + e5 + e6, with e5 := 〈(q′/q)a− b(q′/q)ae , s〉.

Distribution of q′-Error e′ The behaviour of the q′-error is mainly affected by that of e4 (following a
uniform distribution (cf. Section 3.1)) and e5 (following a Gaussian distribution via Central Limit Theorem
(cf. [5, Lemma 2])). Then, using the Eq. (4) on the convolution of two distributions, the probability density
function of e′ can be approximated by

f(y) =
p
√

6

q′
√
πnσ2

s

∫ q′
2p

− q′
2p

exp

(
−6(x− y)2

nσ2
s

)
dx

=
p

q′
√
π

∫ √
6

(
q′
2p
−y

)
√
nσs

√
6

(
− q
′

2p
−y

)
√
nσs

exp(−ζ2)dζ

=
p

2q′
·

erf

√6
(
q′

2p − y
)

√
nσs

+ erf

√6
(
q′

2p + y
)

√
nσs

 .
Its derivative is

f ′(y) =

√
6p

2
√
πnq′σs

×

×

−exp

−6
(
q′

2p − y
)2

nσ2
s

+ exp

−6
(
q′

2p + y
)2

nσ2
s


 .

The function f(y) is symmetric through origin and its graph is a convex bell-shaped curve reaching its
highest value h(q′) = (p/q′) × erf

(
(
√

6q′)/(2p
√
nσs)

)
at y = 0. It is easy to see that the functions f ′(y) and

h(q′) tend to 0 as q′ increases. Thus, if q′ � p, the error e′ will tend to follow a uniform distribution. By
contrast, when q′ ≈ p, the error e′ will tend to be distributed via a Gaussian distribution (see Figure 2 for an
illustration).

The behavior of the q′-error e′ is complex, therefore we cannot use Eq. (13) or Eq. (14) to estimate the
success probability of the decoding attack in solving the LWE modulo q′. Also, on the other hand, we cannot
compare the success probability of the decoding attack on the LWE modulo q′ with that on the LWE modulo
q using the formula (13) or (14). This is why we need to use Heuristic 1 (see Subsection 5.2).

Fig. 2: Distribution of the q′-error with respect to q′ given p. We consider two cases: (p, q′) = (27, 210) and
(p, q′) = (27, 213) . In the first case, the graph of pdf is in bell shape like the graph of Gaussian pdf while in the
second case the graph consists of a long straight segment in its middle.
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Variance of q′-Error We consider the variances of e4, e5 and e6. The variance of e4 will be

σ2
4 :=

(
q′2/(q2p2)

)
·
((

(2bq/2c+ 1)
2 − 1

)
/12
)
.

Same as the case of LWE, we assume that e4, e5 and e6 are three independent random variables, then the
variance of e′ is estimated by

σ′
2
lwr ≈

1

12

(
nσ2

s +
q2 + 2q

q2p2
· q′2 + 1

)
≈ 1

12

(
Mlwr · q′2 +N

)
,

(11)

where Mlwr := (q2 + 2q)/(p2q2) and N := nσ2
s . Notice that, we can approximate

Mlwr ≈
12σ2

lwr

q2
, (12)

with σ2
lwr as in Eq. (6).

5 Known Attacks and Optimally Choosing the Switching Modulo q′

In this section, we will give the optimal formula for the switching modulus q′ according to each attack. Further-
more, we will also provide a corresponding sufficient condition under which one is able to decide whether one
should use the modulus switching on the LWE/LWR instances or not. We focus on three typical attacks: the
decoding attack, the dual attack and the primal attack.

5.1 Our Framework and Notations

For convenient, we will establish a common framework for both LWE and LWR under the modulus switching.
More specifically, we consider two LWE versions: one is the LWE modulo q, the other is the LWE modulo q′.
The former is with respect to the original LWE modulo q and the LWE modulo q obtained from reducing LWR
modulo q to the LWE modulo q without using the modulus switching. The latter is the LWE instance obtained
by applying the modulus switching to the LWE modulo q and to the LWR modulo (q, p). More specifically,

– Without the modulus switching: In this case, the LWE modulo q instance we deal with consists of m LWE
samples of the form (a, c) ∈ Znq × Zq where c = 〈a, s〉 mod q + e and the error e has variance of σ2. We call
each specific attack against this LWE instance the q-attack, for instances the q-decoding attack, the q-dual
attack and the q-primal attack.

– With the modulus switching: In this case, the LWE modulo q′ instance we deal with consists of m LWE
samples of the form (a′, c′) ∈ Znq′×Zq′ where c′ = 〈a′, s〉 mod q′+e′ and a′ = b(q′/q) · ae , and the q′-error e′

has variance of σ′2 =
(
Mq′2 +N

)
/12. We call each specific attack against this LWE instance the q′-attack,

for instances the q′-decoding attack, the q′-dual attack and the q′-primal attack.

Remark 3. From now on, we abuse the notations M,N, σ, σ′ without caring about which original problem
(the LWE modulo q or the LWR modulo (q, p)) we are dealing with. In particular, for LWR, we will replace

M = 12σ2/q2 with Mlwr = 12σ2
lwr/q

2, σ2 with σ2
lwr = (q2 + 2qp)/(12p2) and σ′

2
with σ′

2
lwr as in Eq. (11).

Likewise, for LWE, M will be replaced with Mlwe = 12σ2
lwe/q

2, σ2 will be replaced with σ2
lwe, and σ′2 with

σ′
2
lwe as in Eq. (10). Still, N = nσ2

s is the same for both LWE and LWR.

In what follows, according to each attack, we try to choose q′ such that the q′-attack is “optimal” in the
sense that the success probability of this attack on LWE modulo q′ is highest. Then, we find a condition under
which the q′-attack is more powerful than the q-attack.

We assume that the number of samples m is kept the same for both the q-attack and the q′-attack. Note
that, for each attack, the optimal m will be chosen corresponding to the LWE modulo q. Such a choice of m
will be theoretically optimal to the q-attack not the q′-attack. However, this implies that the q′-attack can be
stronger if one appropriately choose for it the optimal m.
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5.2 The Decoding Attack

The decoding attack proposed by Lindner and Peikert [40] is based on the close relation between the search-LWE
problem and the BDD problem. Given a lattice and a target vector unusually close to the lattice, the BDD
problem asks to find the lattice vector closest to the target.

Let (A, c = As + e mod q) ∈ Zm×nq × Zmq be an LWE modulo q instance. We set

Λq(A) = {u ∈ Zm : u = As mod q for some s ∈ Zn}

to be the q-ary lattice spanned by columns of A and we call it the associated q-ary lattice of the search-LWE
problem (A, c). If the error e is sufficiently short then c is closest to some lattice point u = As mod q ∈ Λq(A)
since we have e = c−As. Thus, finding the secret s is equivalent to finding u, i.e., solving a CVP problem over
q-ary lattice Λq(A). The most basic tools used in solving search-LWE via the decoding attack are some basis
reduction algorithm, say A (e.g., LLL or BKZ), and the Babai’s Nearest Plane (BNP) algorithm. The BNP
algorithm takes as input the vector c and a basis B = {b1, · · · ,bm} of Λq(A) that is already reduced by A and
outputs the lattice point u ∈ Λq(A) such that e = c− u ∈ P1/2(B∗).

From now on, by “the decoding attack”, we mean the solving strategy associated with the BNP algorithm
described above. Note also that, the decoding attack needs m > n, and the optimal m is approximated by Eq.
(9).

The Decoding Attack and Root Hermite Factor It is conventional that the quality of a reduced basis (which is
characterized by the rHF obtained using by some LBR algorithm) has the most significant effect on the success
probability of the BNP algorithm (see, e.g., [5, Section 5.4], [20, 34]), hence the decoding attack. Namely, a
smaller rHF means that the corresponding basis is reduced better, hence the BNP algorithm may return the
closest vector more precisely, so the efficacy of the decoding attack may be higher. Assume for example that
the decoding attack deploys the LBR algorithm named A. Also, suppose that we want to compare the efficacy
of the decoding attack in solving a search-LWE problem (A1, c1) with that in solving a search-LWE problem
(A2, c2). Then instead of success probability, we can compare the rHFs of A with respect to the reduced bases
of the associated q-ary lattices Λq(A1) and Λq(A2).

Success Probability of the Decoding Attack The success probability of the decoding attack in solving search-
LWE can be measured by the probability of the event that the error e lies in P1/2(B∗). Depending on which
distribution the error e follows, we have some formulas to compute the probability in the literature: (i) if e is
uniform then we can estimate the probability by

Pr
[
e ∈ P1/2(B∗)

]
=

m∏
i=1

(
e‖b∗i ‖
2σe
√

3

)
, (13)

(ii) in the case of a Gaussian error e, we can use the formula taken from [40]

Pr
[
e ∈ P1/2(B∗)

]
=

m∏
i=1

erf

(
e‖b∗i‖
2σe
√

2

)
, (14)

where σ2
e is the variance of the error e according to its distribution and erf(·) is the Gaussian error function

erf(z) =
2√
π

∫ z

0

exp(−t2)dt, z ∈ [0,+∞].

However, Eq. (13) and Eq. (14) are really not helpful for our work. We cannot use either Eq. (13) or Eq. (14)
if the error e has a complex behavior. Such a kind of error is the q′-error that we saw in Section 4. Therefore,
we have to look for another way to estimate the success probability for the decoding attack regardless of the
error’s distribution. Fortunately, we can use a heuristic analysis appeared in [37] as follows:

We have

Pr
[
e ∈ P1/2(B∗)

]
= Pr

[
|〈e,b∗i 〉| <

‖b∗i ‖2

2
,∀i = 1, · · · ,m

]
.

Using the heuristics that |〈e,b∗i 〉| ≈ ‖e‖·‖b∗i ‖/
√
m and ‖e‖ ≈ σe ·

√
m, we have 2σe ≤ ‖b∗i ‖ for all i = 1, · · · ,m,

which is equivalent to
2σe ≤ min

i=1,··· ,m
‖b∗i ‖. (15)

Combining Eq. (15) with Eq. (3) yields the following heuristic that will be very useful for our analysis on the
decoding attack:
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Heuristic 1 Let cA is defined as in Eq. (3). Heuristically, the success probability for the decoding attack
in solving search-LWE problem (A, c = As + e mod q) ∈ Zm×nq × Zmq can be measured by the probability

Pr
[
2σe ≤ cmA · det(Λq(A))1/m

]
, namely, Pr

[
2σe ≤ cmA · q(m−n)/m

]
, which is equivalent to

Pr

[
qm−n

σme
≥ 2m

cm
2

A

]
,

where A is the LBR algorithm used within the decoding attack.
According to the heuristic, the success probability of the q-decoding attack is

Pr

[
qm−n

σm
≥ 2m

cm
2

A

]
.

Similarly, that of the q′-decoding attack is

Pr

[
q′m−n

σ′m
≥ 2m

cm
2

A

]
.

Set P ′ := q′m−n/σ′m and P := qm−n/σm. Our goal is to choose q′ maximizing P ′ and with the chosen q′, we
check the condition when P ′ ≥ P . In other words, we choose q′ such that

P ′ is maximum, (denote P ′max),

and P ′max ≥ P . The condition P ′ ≥ P is equivalent to

q′m−n ·
√

12m√
(Mq′2 +N)m

≥ qm−n

σm
. (16)

Now, it is the time to state the main result for applying the modulus switching to the decoding attack.

Theorem 2. Let m,n,M,N, q, q′, σ, σ′, σs as mentioned in Subsection 5.1 and required that m > n. Assume
that we apply the modulus switching technique to the decoding attack against the LWE/LWR problems. Then

(i) The optimal switching modulus q′ for the decoding attack is

q′ ≈
√

(m− n)N

nM
. (17)

(ii) The q′-decoding attack is stronger than the q-decoding attack if the following sufficient condition holds:(
12σ2

σ2
s

)n
≥ mm

(m− n)m−n
. (18)

Proof. It is easy to see that q′ =
√

(m− n)N/(nM) maximizes h(q′) := q′m−n
√

12m/
√

(Mq′2 +N)m. Then
the maximum of h(q′) is √

(m− n)m−n · nn · 12m

mm ·Nn ·Mm−n .

After some calculations, we get from Eq. (16) that(
12σ2

m

)m
≥
(
N

n

)n
·
(
q2 ·M
m− n

)m−n
. (19)

By Remark 3 and some arrangements, Eq. (19) can be rewritten as Eq. (18).

Remark 4. We remark that the statement (ii) of Theorem 2 differs from [38, Theorem 2 (ii)]. In the effort of
simplifying the Eq. (19), we made a mistake to claim in the proof of [38, Theorem 2 (ii)] that the function
x ln(x) is concave over (0,+∞). Actually, that claim is not correct and simplifying is unnecessary. In the proof
for Theorem 2 (ii) of the present paper, we do not use that claim and only transform Eq. (19) into Eq. (18)
using Remark 3.
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5.3 The Dual Attack

The dual attack aims to solving the decision version of LWE and LWR. Namely, to distinguish an LWE instance
(A, c) ∈ Zm×nq × Zmq with the uniform (A, c) ∈ Zm×nq × Zmq , the attacker considers the q-ary lattice

Λ⊥q (A) =
{

(x,y) ∈ Zm × Zn : xt ·A = yt mod q
}
,

and then uses an LBR algorithm, again named A, to get a reduced basis of the lattice and then get a short
vector, let’s say u0 = (x0,y0). Notice that if (A, c) is uniform then

z := 〈x0, c〉 = 〈y0, s〉+ 〈x0, e〉 mod q

is also uniform modulo q. By contrast, if (A, c) is LWE, i.e., we have c = A · s + e mod q then z tends to be
distributed via a Gaussian distribution of mean 0 and its variance σ2

z ≈ ‖u0‖2σ2 as n increases, where σ2 is the
variance of the error e. This suggests the attacker to check whether the value z is small or not.

A reasoning in [8, Section 6.4] says that the dual attack has the distinguishing advantage upper bounded
by 4exp(−2π2σ2

z/q
2) = 4exp(−2π2‖u0‖2σ2/q2). As a result, the success probability of the dual attack depends

heavily on the quantity ‖u0‖σ/q. The smaller quantity is better for the dual attack. Assume that we try to
exploit the modulus switching technique in the dual attack. We should choose the new modulus q′ such that
the quantity is smallest.

Now we give more details.

– In the q-dual attack: The error e has the variance σ2. Since we can estimate ‖u0‖ ≈ δAm+nqn/(m+n) by Eq.
(2), we have

‖u0‖σ
q

=
δA

m+nqn/(m+n)σ

q
.

– In the q′-dual attack: The corresponding error e′ has the variance σ′2 = (Mq′
2

+ N)/12. Same as above,

we can estimate ‖u′0‖ ≈ δA
m+nq′

n/(m+n)
, hence

‖u′0‖σ′

q′
=

1√
12
δA

m+nq′
−m
m+n

√
Mq′2 +N.

We come to the following theorem for the dual attack giving the optimal switching modulus optimal and a
condition to efficiently exploit the modulus switching technique in this attack.

Theorem 3. Let m,n,M,N, q, q′, σ, σ′, σs as mentioned in Subsection 5.1. Assume that we apply the modulus
switching technique to the dual attack against the LWE/LWR problems. Then

(i) The optimal switching modulus q′ for the dual attack is

q′ ≈
√
mN

nM
. (20)

(ii) The q′-dual attack is stronger than the q-dual attack if the following sufficient condition holds:(
12σ2

σ2
s

)n
≥ (m+ n)m+n

mm
. (21)

Proof. We should choose q′ such that g(q′) := q′
−m
m+n

√
Mq′2 +N is minimum. It is easy to see that such a q′ is

q′ =

√
mN

nM
.

Then the minimum of g(q′) is √(
mN

nM

)− m
m+n

· (m+ n)N

n
.

Now, we suppose that ‖v′0‖σ′/q′ ≤ ‖v0‖σ/q, which is equivalent to(
mN

nM

)− m
m+n

· (m+ n)N

n
.

1

12
≤ q2n/(m+n)σ2

q2
,

i.e., (
12σ2

m+ n

)m+n

≥
(
N

n

)n
·
(
q2 ·M
m

)m
,

which can be rewritten as Eq. (21) using Remark 3.
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Remark 5. We can see that differing from the decoding attack, we do not need m > n but the arbitrary
integer m > 0. We also can choose the optimal m for the dual attack by finding m minimizing the quantity
δA

m+nqn/(m+n) given n, q, δA. Namely,

m =

⌊√
n log(q)

log(δA)

⌉
− n. (22)

5.4 The Primal Attack

The primal attack solves the search-LWE problem by transforming the problem into an Unique Shortest Vector
Problem (uSVP). Let γ > 1 be a real number, the uSVPγ problem is to find the shortest non-zero vector of a
lattice L given that the gap λ2(L)/λ1(L) ≥ γ. It is folklore that the bigger the gap λ2(L)/λ1(L) is, the easier
the uSVP is. (See more discussions in [4, 32].)

Let (A, c = A · s + e) ∈ Zm×nq × Zmq be an LWE instance, we have A · s + e − c = 0 mod q. Consider the
q-ary lattice

Λ =
{
v ∈ Zn+m+1 : (A|Im| − c)v = 0 mod q

}
.

Then v0 = (s|e|1) will be an unusual short vector in the lattice if s and e are short. It is known that if the gap
between two minima λ2(Λ) and λ1(Λ) is sufficiently large then the short vector v0 may be found using an LBR
algorithm. Recall that we can estimate λ2(Λ) =

√
(m+ n+ 1)/(2πe) · q

m
m+n+1 by Gaussian Heuristic, whereas

λ1(Λ) = ‖(s|e|1)‖ =
√
‖s‖2 + ‖e‖2 + 1 ≈

√
nσ2

s + 1 +mσ2 ≈
√
N +mσ2.

Now if we use the modulus switching technique on the LWE, we attain a new LWE instance (A′, c′ =
A′ · s + e′) ∈ Zm×nq′ × Zmq′ where A′ = b(q′/q) ·Ae , hence a corresponding q′-ary lattice.

Λ′ =
{
v′ ∈ Zn+m+1 : (A′|Im| − c′)v′ = 0 mod q′

}
.

Same as above, the shortest vector of the q′-ary lattice is v′0 = (s|e′|1). Accordingly, λ2(Λ′) =
√

(m+ n+ 1)/(2πe)·
q′

m
m+n+1 and

λ1(Λ′) = ‖(s|e′|1)‖ =
√
‖s‖2 + ‖e′‖2 + 1

≈
√
nσ2

s +mσ′2 =
√
Pq′2 +Q,

where

Q = (m+ 12)N/12, σ′2 = (Mq′2 +N)/12, P = mM/12. (23)

We have the following theorem:

Theorem 4. Let m,n,M,N, q, q′, σ, σ′, σs as mentioned in Subsection 5.1. Assume that we apply the modulus
switching technique to the primal attack against the LWE/LWR problems. Then

(i) The optimal switching modulus q′ for the primal attack is

q′ ≈

√
(m+ 12)N

(n+ 1)M
. (24)

(ii) The q′-primal attack is stronger than the q-primal attack if the following sufficient condition holds:(
12(N +mσ2)

m+ n+ 1

)m+n+1

≥
(

(m+ 12)N

n+ 1

)n+1

·
(
q2M

)m
. (25)

Proof. We will choose q′ optimal such that the ratio

λ2(Λ′)

λ1(Λ′)
=

√
m+n+1

2πe · q′
m

m+n+1√
Pq′2 +Q

,

is maximum, i.e., the function f(q′) := q′
m

m+n+1√
Pq′2+Q

is maximum. It is easy to obtain that such a q′ is

q′ =

√
yQ

(1− y)P
=

√
(m+ 12)N

(n+ 1)M
,
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with y := m
m+n+1 and the maximum of f(q′) is√

yyQy−1

(1− y)y−1P y
.

Now, we need

max

(
λ2(Λ′)

λ1(Λ′)

)
≥ λ2(Λ)

λ1(Λ)
,

which is

(n+ 1)n+1 · 12m+n+1

(m+ n+ 1)m+n+1 · (m+ 12)n+1 ·Nn+1 ·Mm

≥ q2m

(N +mσ2)m+n+1
,

equivalently, (
12(N +mσ2)

m+ n+ 1

)m+n+1

≥
(

(m+ 12)N

n+ 1

)n+1

·
(
q2M

)m
.

Remark 6. Same as the dual attack, we do not need m > n. And we can choose the optimal m satisfying that

m+ n+ 1 =
⌊√

n log(q)
log(δA)

⌉
, i.e.,

m =

⌊√
n log(q)

log(δA)

⌉
− n− 1, (26)

by using the arguments in [15, Section 4.2].

6 The Modulus Switching vesus the Rescaling

In this section, we will revisit the dual attack and the primal attack that were presented in Subsection 5.3 and
Subsection 5.4. However, we will focus only on the LWE instances (A, c = A · s + e) ∈ Zm×nq × Zmq whose
‖s‖ � ‖e‖. As we will see later in Section 9, Round5 [14] and SABER [28] are two NIST PQC submissions
having this characteristic. We will compare the efficacy of the so-called rescaling technique to that of the modulus
switching on these attacks. The main idea of the rescaling technique that was proposed in [15, Subsection 6.1]
and further analyzed in [14, 27] is to re-balance the contributions of summands relating to the secret and the
error in the corresponding context of each attack. As we will see below, this technique changes the volume of
the lattice (due to the change of the modulus), and also slightly changes the norm of the shortest vector in the
corresponding CVP instance. One expects that the Hermite factor of the problem might be increased and if so
the successful range of the lattice attack is widened. That is why the rescaling technique is also considered as a
technical solution to enhance the power of the lattice attacks. Apparently, the technique looks like the same as
the modulus switching technique. Therefore, we will consider in details the rescaling technique applied to the
dual attack and the primal attack and then have a comparison between these two techniques to get a condition
under which the modulus switching is better than the rescaling. For convenient, we also refer all notations to
Section 5.

The Dual Attack For the dual attack, using the rescaling technique, instead of the lattice as in Subsection 5.3,
we construct the following alternative lattice of the form:

Λω(A) =

{(
x,

y

ω

)
∈ Zm × 1

ω
· Zn : xt ·A = yt mod q

}
.

We call ω the rescaling factor. Define qω = q/ω, then vol(Λω(A)) = qnω. Using an LBR algorithm A of the
root Hermite Factor δA, we can find the short vector of the form u0,ω = (x0,y0/ω) ∈ Λω(A) and ‖u0,ω‖ ≈
δA

m+n(qω)n/(m+n). The rescaling factor ω will be chosen to equalize the contribution of s and e, namely we
can choose ω = σ/σs. Then z := 〈x0, c〉 = 〈y0, ωs〉+ 〈x0, e〉 mod q. Again, we pay our attention to the quantity

‖u0,ω‖σ
q

=
δA

m+nq
n/(m+n)
ω σ

q
.



18 H. Q. Le et al.

Recall that, in the case of using the modulus switching with the modulus q′, we have

‖u′0‖σ′

q′
=

1√
12
· δAm+nq′

−m
m+n

√
Mq′2 +N,

which is minimum of 1√
12
· δAm+n

√(
mN
nM

)− m
m+n · (m+n)N

n at q′ =
√
mN/(nM).

So as to compare the modulus switching with the rescaling, we compare ‖u0,ω‖σ/q with ‖u′0‖σ′/q′: Assume
that the former is bigger than the latter (i.e., the modulus switching is better than the rescaling), we have

qn/(m+n)
ω

σ

q
≥ 1√

12

√(
mN

nM

)− m
m+n

· (m+ n)N

n
.

Simplifying the above equation, we attain(
12

m+ n

)m+n

· σ2m · σ2n
s ≥

(
N

n

)n
·
(
q2 ·M
m

)m
,

i.e., (
12σ2

σ2
s

)n
≥ (m+ n)m+n

mm
· σ2n

σ
2(m+n)
s

.

The Primal Attack For this attack, using the rescaling technique, we construct the following lattice instead of
the lattice as in Subsection 5.4:

Lω =
{
vω ∈ Zn+m+1 : (A|ωIm| − c)vω = 0 mod q

}
,

with ω = σ/σs. Then v0,ω = (s|ω−1 · e|1) will be an unusual short vector in Lω. Set qω := ω−1q, then we have

λ2(Lω) =
√

m+n+1
2πe · q

m
m+n+1
ω and λ1(Lω) = ‖v0,ω‖ =

√
N +mσ2

s .

Again, if we use the modulus switching, we get the q′-ary lattice

L′ =
{
v′ ∈ Zn+m+1 : (A′|Im| − c′)v′ = 0 mod q′

}
,

with A′ = b(q′/q) ·Ae , and λ2(L′) =
√

m+n+1
2πe · q′

m
m+n+1 , λ1(L′) ≈

√
Pq′2 +Q, where σ′2, P , and Q as in Eq.

(23).
We compare the modulus switching with the rescaling by determining when the condition λ2(L′)/λ1(L′) ≥

λ2(Lω)/λ1(Lω) holds (i.e., when the modulus switching is better than the rescaling), which is equivalent to

(n+ 1)n+1 · 12m+n+1

(m+ n+ 1)m+n+1 · (m+ 12)n+1 ·Nn+1 ·Mm

≥ q2mω
(N +mσ2

s)m+n+1
.

Simplyfing the equation we obtain, (
12(N +mσ2)

m+ n+ 1

)m+n+1

≥
(

(m+ 12)N

n+ 1

)n+1

·
(
q2M

)m · σ2m
s

σ2m
.

To summary, we have the following theorem:

Theorem 5 (Modulus Switching vs Rescaling). Let m, n, M , N , q, q′, σ, σs as mentioned in Subsection
5.1.

(i) For the dual attack, the modulus switching outperforms the rescaling technique if the following requirement
holds (

12σ2

σ2
s

)n
≥ (m+ n)m+n

mm
· σ2n

σ
2(m+n)
s

. (27)

(ii) For the primal attack, the modulus switching outperforms the rescaling technique if the following require-
ment holds
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Table 6: How to choose parameters and proceed with our experiments in Section 8?

1. First, we choose ζ. The first ζ = 11/15 is inspired from choosing parameters in the work of [14],
the last one ζ = 1/3 comes from [29] whilst two middle ones ζ = 2/3 and ζ = 1/2 are additionally
suggested by us. Then choose n and compute log(qmin) by (8) (for the decoding attack). We focus
on n = 60, n = 80 and n = 100.
2. Next, choose log(q) to be around log(qmin) (in the case of the decoding attack), from which we
have q and p. After that we compute q′ by (17).
3. Choose m: For the decoding attack, we compute m by (9), while for the primal attack we choose
m by (26).
4. With chosen parameters, we check the condition (18) or the condition (25) depending on the
attack we are considering.
5. For each tuple (ζ, n, q, p, q′), we sample 10 LWR instances. The small secret s is drawn uniformly
at random over {−1, 0, 1}n.
6. For each LWR instance, transform it to the LWE modulo q and the LWE modulo q′.
7. Finally, run the attacks on these two LWE instances.

(
12(N +mσ2)

m+ n+ 1

)m+n+1

≥
(

(m+ 12)N

n+ 1

)n+1

·
(
q2M

)m · σ2m
s

σ2m
.

(28)

Remark 7. Considering Eq. (28) together with Eq. (25), we can see in the case σs < σ that if Eq. (25) holds
we will also have Eq. (28) to hold. This turns out that for the primal attack against LWE/LWR instances, if
we can apply the modulus switching to it (i.e., Eq. (25) holds) then the modulus switching is a better than the
rescaling. However, for the dual attack, the relation between Eq. (27) and Eq. (21) is not clear since when σs < σ

we still do not whether σ2n/σ
2(m+n)
s is larger than 1 or not. In the case that the ratio is smaller than 1 and Eq.

(21) holds, for the dual attack against LWE/LWR instances, if we are able to use modulus switching (i.e., Eq.
(21) holds) then the modulus switching is a better choice rather than the rescaling technique. Take SABER [28]

as an example, with the proposed parameters σs, σ and m = n (see Table 9) we have σ2n/σ
2(m+n)
s < 1. Thus

using the modulus switching technique is better rather than the rescaling technique in the dual attack against
SABER.

7 The Impact of the Modulus Switching on the Rescaling

Again, in this section, we consider the LWE modulo q instances (A, c = A·s+e) ∈ Zm×nq ×Zmq whose ‖s‖ � ‖e‖
and only focus on the dual attack and the primal attack. For convenient, we also refer all notations to Sections
5 and 6. Assume that we perform the modulus switching with the switching modulus q′ first and then we apply
the rescaling technique on the LWE instance. We will show that such a combination of these two techniques
will make both the dual attack and the primal attack worse. Stress that the same phenomenon was reported by
Bai and Galbraith in [15] for the primal attack. However, we will base our work on new theoretical arguments
other than that of [15].

The Dual Attack For the dual attack, first we do the modulus switching to reduce the LWE/LWR problem
modulo q to the LWE problem modulo q′ =

√
mN/(nM), and then we do the rescaling on the new LWE modulo

q′ with the rescaling factor

ωmod =
σ′

σs
=

√
Mq′2 +N

12σ2
s

,

where σ′ is the standard deviation of the q′-error (see Subsection 5.1). Then the resulting lattice Λmod,ω(A′),
which is {(

x,
y

ωmod

)
∈ Zm × 1

ωmod
· Zn : xt ·A′ = yt mod q′

}
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with A′ = b(q′/q) ·Ae, has volume of qnmod with

qmod := ω−1mod · q
′ =

q′ · σs
σ′

.

Sames as the arguments in Subsection 6, we can find the short vector u0,mod,ω ∈ Λmod,ω using an LBR
algorithm A of the root Hermite Factor δA and by Gaussian Heuristic we have

‖u0,mod,ω‖σ′

q′
= δA

m+n · qmod
n

m+n · σ′

q′

= δA
m+n ·

(
σ′

q′

) m
m+n

σ
n

m+n
s ,

while only exploiting the rescaling without the modulus switching we get the short vector u0,ω = δA
m+n · q

n
m+n
ω .

Hence

‖u0,ω‖σ
q

= δA
m+n · q

n
m+n
ω · σ
q

= δA
m+n ·

(
σ

q

) m
m+n

σ
n

m+n
s .

Again, thus, we just need to compare σ′

q′ with σ
q . We have

σ′

q′
=
Mq′2 +N

12q′
=

√
(m+ n)M

12m
>

√
M

12
=
σ

q
,

yielding that
‖u0,mod,ω‖σ′

q′
≥ ‖u0,ω‖σ

q
.

This claims that if we use the modulus switching first and we apply the rescaling alter, then the dual attack
will be weaker than the dual attack only using the rescaling.

The Primal Attack For the primal attack, only using the rescaling technique we have

λ2(Lω)

λ1(Lω)
=

√
m+n+1

2πe · qω
m

m+n+1√
N +mσ2

s

,

with ω = σs/σ and qω = q/ω = qσs/σ as in Section 6.

Now, assume that first we do the modulus switching to reduce the LWE/LWR problem modulo q to the
LWE problem modulo q′ =

√
(m+ 12)N/((n+ 1)M) , and then the rescaling is performed on the new LWE

modulo q′ with the rescaling factor

ωmod =
σ′

σs
=

√
Mq′2 +N

12σ2
s

,

where σ′ is the standard deviation of the q′-error (cf. Subsection 5.1). Then the resulting lattice Lmod,ω, which
is {

vmod,ω ∈ Zn+m+1 : (A′|ωmodIm| − c)vmod,ω = 0 mod q′
}

with A′ = b(q′/q) ·Ae, has volume of qnmod with

qmod := ω−1mod · q
′ = σs ·

√
12(m+ 12)

(m+ n+ 13)M
.

Since 12/M = q2/σ2, we have

qmod =
q · σs
σ
·
√

m+ 12

m+ n+ 13
<
q · σs
σ

= qω. (29)
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Observe that v0,mod,ω := (s|ω−1mod ·e′|1) will be an unusual short vector in Lmod,ω. Thus λ1(Lmod,ω) = λ1(Lω) =√
N +mσ2

s . Then

λ2(Lmod,ω)

λ1(Lmod,ω)
=

√
m+n+1

2πe · qmod
m

m+n+1√
N +mσ2

s

.

Due to Eq. (29), we obtain

λ2(Lmod,ω)

λ1(Lmod,ω)
≤

√
m+n+1

2πe · qω
m

m+n+1√
N +mσ2

s

=
λ2(Lω)

λ1(Lω)
.

The result in this subsection again confirms the observation of [15] that using the modulus switching (in
which they chose q′/q ≈ 1/8 (cf. [15, Section 5]) before performing their attack (which is the same as the primal
attack accompanied by the rescaling technique) will make the attack worse.

8 Implementation and Experimental Results

We implemented the decoding attack and the primal attack on LWR problem to evaluate the efficacy of the
q′-attack in comparison with the q-attack. In our experiments, we used SageMath version 8.1 [49] to implement
these two attacks. The LBR algorithm used in our experiments is LLL [39]. We used the function“.LLL()” to
call the floating point implementation of LLL in the fplll library which is included in SageMath with the default
reduction parameter 0.99. By using such an LLL algorithm, we have the corresponding constant mentioned in
Eq. (3) is cLLL = 0.9775 (see Section 2.3).

The experimental results are summarized in Tables 7 - 8. We refer to Table 6 for generating parameters,
sampling LWR instances, as well as how to run attacks on the corresponding LWE instances.

We highlight some noticeable things from our experimental results:

– For the decoding attack, in all cases, the rHF of the q-attack is always bigger than that of the q′-attack.
Interestingly, the rHF of the q′-attack becomes smaller once ζ declines while the rHF of the q-attack does
not seem to change, namely, rHF(q′) ≈ 1.0201 for all considered ζ’s. Recall that, smaller root Hermite factor
means that the LWE modulo q′ instance is more easily solved by attacks than the LWE modulo q instance
(see Subsection 5.2). For the primal attack, the case of ζ = 11/15, sometimes we have rHF(q′) >rHF(q).

– When ζ is close to 1, such as ζ = 11/15, the q′-attack does not outperform the q-attack much. In contrast,
when ζ is closer to 0 than 1, e.g., ζ = 1/3, q′ approach is much efficient than the q-attack in terms of success
probability, rHF and even running time (we add the runtime data in Table 8 ) since q′ is quite close to p
and smaller than q.

– The bit size log(q′) is quite close to log(p). Namely, in all considered cases, we have log(q′)− log(p) equals
to 3 or 4. It seems that the difference log(q′)− log(p) increases (but slowly) once either n increases or/and
ζ decreases.

9 Accessing the Impact of Modulus Switching on LWE/LWR-based Round 2
NIST PQC Submissions

Among 17 public-key encryption and key-establishment schemes and 9 digital signature schemes that was
released as candidates for the second round NIST PQC Standardization, there are up to 9 submissions based on
LWE/ LWR variants [1]. Each candidate proposes some tuples of parameters fulfilling one or more target security
categories. In this section, we first give some more necessary notions and then review all the LWE/LWR-based
second round submissions and try to check whether or not we should apply the modulus switching to them.

First, we give the definition of the centered binomial distribution (see, for example, [41, Section 2.4 ] or [28,
Section 2.1]). The distribution is used in some NIST PQC Submissions as an alternative to the Gaussian
sampling which is costly to implement in practice and also impacted by the side channel attacks.

Definition 5 (Centered Binomial Distribution). The centered binomial distribution of parameter η, de-
noted as Ψη, samples two bits a and b from the binary set {0, 1} then outputs a− b with the following condition:
the probability of the output 0 is (2− η)/2 and the probability of each of the outputs 1,−1 is η/4. The standard
deviation of this distribution is

√
η/2.
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Table 7: We compare q′-decoding attack with q-decoding attack against LWR: ζ is the bit ratio of p
and q, i.e., ζ = log(p)/ log(q); n is the dimension of the secret; log(qmin) is the smallest bit size of q computed
by (8) given ζ, n; log(q′), log(q), log(p) are the bit size of the modulus q′ computed by Eq. (17), of moduli q
and p, respectively; m is the optimal number of LWR samples for the decoding attack computed by Eq. (9) (we
use the same number of samples m in both the q-decoding attack and q′-decoding attack); the columns entitled
“succ(q)”, “succ(q′)”, “rHF(q)” and “rHF(q′)” represent the success probability of the q-decoding attack and
of the q′-decoding attack, the rHF’s of the q-attack and of the q′-attack, respectively. Note that, rHF(q) and
rHF(q′) are computed using Eq. (3). We did not count the running ttime for this experiment. We ran this
experiment on a MacBook Pro (Retina, 13-inch, Early 2015) installing macOS High Sierra version 10.13.3 with
Memory 8GiB 1867 MHz DDR3, Processor 2.7GHz Intel Core i5, Graphics Intel Iris Graphics 6100 1536 MB.

ζ
LWR parameters (p = qζ) Switching modulus Success Probability Root Hermite Factor Satifying

(n, log(qmin)) m log(q) log(p) log(q′) succ(q) succ(q′) rHF(q) rHF(q′) Eq. (18)

11
15

(60,15) 166 15 11 14 0% 60% 1.0202 1.0200 Y
(60,15) 176 17 12 15 100% 100% 1.0203 1.0197 Y
(80,20) 204 17 12 15 0% 0% 1.0209 1.0200 Y
(80,20) 209 18 13 16 20% 80% 1.0205 1.0200 Y
(80,20) 221 20 15 19 80% 100% 1.0209 1.0200 Y
(80,20) 232 22 16 20 100% 100% 1.0205 1.0200 Y
(100,25) 247 20 15 19 20% 60% 1.0210 1.0203 Y
(100,25) 276 25 18 22 100% 100% 1.0212 1.0195 Y

2
3

(60,18) 171 16 11 14 80% 80% 1.0203 1.0199 Y
(60,18) 176 17 11 14 20% 60% 1.0201 1.0188 Y
(60,18) 181 18 12 15 100% 100% 1.0202 1.0191 Y
(80,24) 226 21 14 18 20% 100% 1.0203 1.0187 Y
(80,24) 237 23 15 19 40% 100% 1.0215 1.0180 Y
(80,24) 242 24 16 20 100% 100% 1.0208 1.0183 Y
(100,30) 270 24 16 20 0% 80% 1.0211 1.0184 Y
(100,30) 281 26 17 21 0% 100% 1.0211 1.0179 Y
(100,30) 292 28 19 23 100% 100% 1.0213 1.0182 Y

1
3

(60,71) 299 49 16 20 0% 100% 1.0215 1.0091 Y
(80,95) 386 61 20 24 0% 100% 1.0214 1.0088 Y

(100,119) 424 59 20 24 0% 100% 1.0213 1.0091 Y

1
2

(60,32) 218 26 13 17 0% 100% 1.0210 1.0142 Y
(60,32) 234 30 15 19 20% 100% 1.0201 1.0140 Y
80,43) 256 27 14 18 0% 80% 1.0208 1.0146 Y
80,43) 292 35 18 22 0% 100% 1.0209 1.0140 Y

(100,53) 307 31 16 20 0% 60% 1.0214 1.0143 Y
(100,53) 336 37 19 23 0% 100% 1.0213 1.0138 Y

LAC [41] with its latest version submitted to the second round NIST PQC submission changes to exploit the
so-called fixed weight centered binomial distribution in which the Hamming weight of a random vector following
the distribution is fixed.

Definition 6 (Fixed Weight Centered Binomial Distribution). The fixed weight centered binomial dis-
tribution of parameter (η, n, h) is a n-ary centered binomial distribution, denoted as Ψn,hη when (0 < h < n/2),
outputs trinary vectors of length n whose the number of is 1 and of −1 is h/2, respectively, and the number of
0 is n− h. The standard deviation of this distribution is

√
h/n and also is equal to

√
η/2 .

Besides LWE and LWR, many NIST PQC submissions also base their security on other algebraic vari-
ants of LWE and LWR, namely Ring-LWE/Ring-LWR (RLWE/RLWR), Module-LWE/Module-LWR (ML-
WE/MLWR), or even an integer variant of MLWE called ILWE. In these variants, instead of vectors, one
uses a number of polynomials drawn from some polynomial ring [42]. Specifically, we usually consider the ring
Rq := Zq[x]/〈xn + 1〉, where n is power of two.

So far, there has been no special attacks that exploit the algebraic structure of these variants. The typical
way to attack these algebraic instances is to consider them as “standard” LWE/LWR instances in which a
polynomial can be considered as a vector of its coefficients and a product of two polynomials can be represented
as a matrix-vector multiplication. By “standard” LWE/LWR we mean the LWE/LWR problems defined as in
Subsection 2.5. Formally, we will give some more definitions below. Here, let χs and χe be distributions over
Rq.
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Fig. 3: Using data in Table 9, we evaluate the impact of the modulus switching again the second round NIST
PQC Submissions under the dual attack. “LHS”, “RHS” mean the left-hand side and the right-hand side,
respectively, of Eq. (21). The line represents the case of the equality LHS=RHS. A point which is over the line
means that an instance of the corresponding submission will be affected by the modulus switching. We see that
all points are under the line, so the modulus switching is not available to apply to the dual attack in breaking
the hard underlying problems of the NIST PQC submissions listed in Section 9 with proposed parameters.

Fig. 4: Same as Figure 3, except that we consider Eq. (25) with respect to the primal attack.
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Table 8: We compare the q′-primal attack with the q-primal attack against LWR: Notations are same
as in Table 7. We note some more things: log(q′) is the bit size of the modulus q′ computed by Eq. (24), m
is the optimal number of LWR samples for the primal attack computed by Eq. (22) (we use the same number
of samples m in both the q-primal attack and the q′- primal attack); the columns entitled “time(q′)” represent
the running time of the q-primal attack and of the q′-primal attack (in seconds), respectively. The last column
is to check the condition in Eq. (25): “Y” means the condition is satisfied while “N” means not. We ran this
experiment on a desktop computer installing Ubuntu 16.04 LTS, with Memory 15.7GiB, Processor Intel Core
i7 CPU870@2.93Ghz × 8, Graphics NVA8.

ζ
LWR parameters (p = qζ)Switching modulus Success ProbabilityRoot Hermite Factor Running time Satisfying
n m log(q) log(p) log(q′) succ(q) succ(q′) rHF(q) rHF(q′) time(q) time(q′) Eq. (25)

1
2

60 131 20 10 14 0% 80% 0.9869 0.9787 17961 sec 9093 sec Y
80 176 27 14 18 0% 60% 1.0213 0.9832 146812 sec 68110 sec Y
100202 30 15 19 0% 40% 1.0203 0.9854 506745 sec240675 sec Y
100217 33 17 21 0% 80% 1.0201 0.9825 534835 sec304330 sec Y

2
3

60 111 16 11 14 80% 100% 0.9876 0.9839 11436 sec 6397 sec Y
80 135 19 13 17 60% 100% 0.9869 0.9850 52615 sec 38645 sec Y
100165 23 15 19 20% 100% 0.9857 0.9834 336873 sec245531 sec Y

11
15

60 36 5 4 7 0% 0% 1.0185 1.0189 56 sec 76 sec N
60 94 13 10 13 20% 60% 0.9854 0.9869 3957 sec 3900 sec Y
80 117 16 12 15 60% 80 % 0.9867 0.9868 26448 sec 24014 sec Y
100 23 5 4 6 0% 0% 1.0152 1.0159 62 sec 77 sec N
100147 20 15 19 0% 80% 0.9859 0.9849 144161 sec120588 sec Y
100114 15 11 14 0% 0% 1.0152 1.0159 62 sec 77 sec N

Definition 7 (RLWE Problems). Given an RLWE instance (a, c = a · s+ e) ∈ Rq × Rq where a← U(Rq),
s← χs and e← χe:

– The search-RLWE (sRLWE) problem is to find the secret s.

– The decision-RLWE (dRLWE) problem requires to distinguish the RLWE instance from the uniform pair
(a, c) ∈ Rq ×Rq.

Definition 8 (MLWE Problems). Given an MLWE instance (A, c = A · s + e) ∈ Rm×nq × Rmq where
A← U(Rm×nq ), s← χns and e← χme :

– The search-MLWE (sMLWE) problem is to find the secret s.

– The decision-MLWE (dMLWE) problem requires to distinguish the MLWE instance from the uniform pair
(A, c) ∈ Rm×nq ×Rmq .

Definition 9 (RLWR Problems). Given an RLWR instance (a, c = ba · seq,p) ∈ Rq×Rp, where a← U(Rq),
and s← χs:

– The search-RLWR (sLWR) problem is to find the secret s.

– The decision-RLWR (dLWR) problem requires to distinguish the ring-LWR instance from the uniform pair
(a, c) ∈ Rq ×Rp.

Definition 10 (MLWR Problems). Given an MLWR instance (A, c = bAseq,p) ∈ Rm×nq × Rmp , where
A← U(Rm×nq ), and s← χns :

– The search MLWR (sMLWR) problem is to find the secret s.

– The decision MLWR (dMLWR) problem requires to distinguish the ring-LWR instance from the uniform
pair (A, c) ∈ Rm×nq ×Rmp .

At the moment, we are ready to review the LWE/LWR-based candidates for the second round NIST PQC.
Remark that there are some changes in choosing parameters appearing in some candidates submitted to the
second round NIST PQC in comparison with they were in the first round. In the following, we also try to update
those changes basing on the latest versions of the second round submissions.
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CRYSTALS-KYBER [13] KYBER is a family of key encapsulation mechanisms (KEMs) whose security (in
the latest version submitted to the second round NIST PQC) is based on the sMLWE problem over the ring
Z3329[x]/〈x256 + 1〉. The secret and the noise of KYBER are drawn from the centered binomial distribution of
parameter 2 for its all proposed version including KYBER512, KYBER768 and KYBER1024. In the version of
KYBER submitted to the first round of the NIST PQC competition, KYBER worked on the polynomial ring
of a bigger modulus Z7681[x]/〈x256 + 1〉 and the parameters of the centered binomial distributions from which
its secrets and noises are drawn vary from 3 to 5.

FrodoKEM [7] FrodoKEM is also a family of KEMs that uses algebraically unstructured lattices. The security
is based on the LWE problem. The secret and the noise are sampled from a discrete, symmetric distribution on
Z, centered at zero and with small support, which approximates a rounded continuous Gaussian distribution
(see [7, Definition 2.11]).

LAC [41] LAC is a cryptosystem based on the RLWE problem. The special point of LAC is that LAC makes
use of the very small modulus q = 251. In the first round, the scheme used centered binomial distributions
of small parameters for secrets and errors to guarantee the difficulty of the RLWE problem with such a small
modulus. However, the scheme submitted to the second round NIST PQC has some changes. One of them is
that besides the centered binomial distribution, the scheme also mainly uses the so-called fixed weight centered
binomial distribution (see Definition 6). The authors of LAC assure that using such the distribution will not
affect the security and concrete security of LAC [41, Section 5.2].

NewHope [6] NewHope is a cryptosystem of KEMs, based its hardness on the RLWE problem. The scheme uses
power-of-2 cyclotomic rings with a common modulus q = 12289. The secrets and errors are sampled from the
centered binomial distribution of parameter 8.

Round5 [14] The security of Round5 relies on the General Learning with Rounding (GLWR) problem of power-
of-two moduli q and p to unify the LWR problem and RLWR problem over prime-order cyclotomic polynomial
rings, namely, xn + · · ·+ x+ 1 with n+ 1 is a prime number. The secrets of Round5 are sampled according to
a fixed Hamming weight distribution of support {−1, 0, 1}, named Hn,k(h), from which each drawn vector of
of length n · k has exactly h non-zero components. Hence, the standard deviation of the secret is computed by
σs =

√
h/(nk). As mentioned in Remark 1 instead of following [44] to compute the standard deviation of the

LWR error as in [2, Section 5] by
√

(q2/p2 − 1)/12, we use the formula in Eq. (6).

SABER [28] SABER is a family of PKEs and KEMs, whose security based on the quantum hardness of the
MLWR problem. The scheme uses modules of varying rank over a fixed power-of-2 cyclotomic ring with fixed
dimension, namely Z1024/〈x256 + 1〉. The MLWR secret distribution is the centered binomial distribution.

ThreeBears [36] ThreeBears relies its security on an integer variant of the MLWE problem modulo q = 1024
(cf. [35] or [36, Section 4.1]). Instead of MLWE over a polynomial ring with an indeterminate x as usual, the
indeterminate x is evaluated, yielding instead an integer LWE over a ring modulo an integer N which is a large
generalized Mersenne prime and then all computations take place modulo N . The noise modulo N is sampled
from a special distribution of fixed variance σ2 by expanding a seed to one byte per digit, and then converting
the digit to an integer with the desired variance (cf. [36, Subsection 2.4.2]).

CRYSTALS-DILITHIUM [30] Dilithium is a lattice-based signature scheme whose security comes from the
hardness of the MLWE problem over the fixed ring Z8380417[x]/〈x256 + 1〉. The secret and the noise of Dilithium
are sampled according to a uniform distribution over the interval [−γ, γ]. For DILITHIUM-II, γ = 6, for
DILITHIUM-III, γ = 5, and for DILITHIUM-IV, γ = 3.

qTESLA [18] qTESLA is a family of post-quantum signature schemes based on the hardness of the dRLWE
problem. qTESLA is proposed to utilize two different ways in generating parameters. The first way aiming to
a heuristic parameter generation results in qTESLA-I, qTESLA-II, qTESLA-III, qTESLA-V and qTESLA-V-
size. The second way following a provably-secure parameter generation according to existing security reductions
results in qTESLA-p-I and qTESLA-p-IIII3. The secret and the noise of qTESLA are drawn according to
the centered discrete Gaussian distribution for c ∈ Z with standard deviation σ is defined as follows: Dσ =
ρσ(c)/ρσ(Z), where σ > 0, ρσ(c) = exp(−c2/(2σ2)), and ρσ(Z) = 1 + 2

∑∞
c=1 ρσ(c).

3 We do not include the parameters of qTESLA-V, qTESLA-V-size, qTESLA-p-I and qTESLA-p-IIII in the Table 9
because they are too large to plot in the same ratio as the other parameters.
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Table 9: Parameters of the LWE/LWR-based submissions in the second round NIST PQC

NIST Security Hard Zq[x]/〈φ(x)〉 dimension#samplesmodulomodulostd. of errorstd. of secret
Submissions CategoriesProblems φ(x) =? n m q p σ σs

CRYSTALS-Kyber

KYBER512 1
MLWE x256 + 1

512 512 3329 −− 1.00 1.00
KYBER768 3 768 768 3329 −− 1.00 1.00
KYBER1024 5 1024 1024 3329 −− 1.00 1.00

FrodoKEM

Frodo640 1
LWE

640 640 215 −− 2.8 2.8
Frodo976 3 976 976 216 −− 2.3 2.3
Frodo1344 5 1344 1344 216 −− 1.4 1.4

LAC

LAC-128 1,2
RLWE xn + 1

512 512 251 −− 0.71 0.71
LAC-192 3,4 1024 1024 251 −− 0.5 0.5
LAC-256 5 1024 1024 251 −− 0.71 0.71

NewHope

NewHope512 1
RLWE xn + 1

512 512 12289 −− 2.00 2.00
NewHope1024 5 1024 1024 12289 −− 2.00 2.00

Round5

R5ND1KEM0d 1

RLWR xn + · · ·+ x+ 1

618 618 211 28 2.58 0.41
R5ND3KEM0d 3 786 786 213 29 4.90 0.70
R5ND5KEM0d 5 1018 1018 214 29 9.52 0.65
R5ND1KEM5d 1 490 490 210 27 2.58 0.58
R5ND3KEM5d 3 756 756 212 28 4.90 0.57
R5ND5KEM5d 5 940 940 212 28 4.90 0.66

R5N11KEM0d 1
LWR

594 594 213 210 2.58 0.63
R5N13KEM0d 3 881 881 213 210 2.58 0.52
R5N15KEM0d 5 1186 1186 215 212 2.58 0.78

R5ND0KEM2iot −−

RLWR xn + · · ·+ x+ 1

372 372 211 27 4.90 0.70
R5ND1KEM4longkey −− 490 490 210 27 2.58 0.58

R5ND1PKE0d 1 586 586 213 29 4.90 0.56
R5ND3PKE0d 3 852 852 212 29 2.58 0.50
R5ND5PKE0d 5 1170 1170 213 29 4.90 0.44
R5ND1PKE5d 1 508 508 210 27 2.58 0.52
R5ND3PKE5d 3 756 756 212 28 4.90 0.57
R5ND5PKE5d 5 940 940 212 28 4.90 0.66

R5N11PKE0d 1

LWR

636 636 212 29 2.58 0.42
R5N13PKE0d 3 876 636 215 211 4.90 0.71
R5N15PKE0d 5 1217 1217 215 212 2.58 0.62

R5N13PKE0smallCT −− 757 757 214 29 2.58 0.71

SABER

LightSABER 1
MLWR x256 + 1

512 512 213 210 2.58 2.24
SABER 3 768 768 213 210 2.58 2.00

FireSABER 5 1024 1024 213 210 2.58 1.73

ThreeBears

BabyBear (cca 0) 2

ILWE q312 − q156 − 1

624 624 1024 −− 1.00 1.00
BabyBear (cca1 ) 2 624 624 1024 −− 0.75 0.75
MamaBear (cca 0) 5 936 936 1024 −− 0.94 0.94
MamaBear (cca 1) 4 936 936 1024 −− 0.64 0.64
PapaBear (cca 0) 5 1248 1248 1024 −− 0.87 0.87
PapaBear (cca 1) 5 1248 1248 1024 −− 0.56 0.56

CRYSTALS-Dilithium

DILITHIUM-II 1
MLWE x256 + 1

768 768 8380417 −− 3.74 3.74
DILITHIUM-III 2 1024 1024 8380417 −− 3.16 3.16
DILITHIUM-IV 3 1280 1280 8380417 −− 2.00 2.00

qTESLA

qTESLA-I 1
dRLWE xn + 1

512 512 4205569 −− 22.93 22.93
qTESLA-II 2 768 768 8404933 −− 9.73 9.73
qTESLA-III 3 1024 1024 8404993 −− 10.2 10.2
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In Table 9, we summarize main parameters relating to the underlying hard problem of the second round
NIST PQC submissions mentioned above: the dimension of the corresponding lattice n, the number of samples
m, the moduli q and p, the standard deviation of the error σe and the standard deviation of the secret σs. Using
this data we evaluate the impact of the modulus switching technique on the primal attack and the dual attack
against the Second-Round NIST PQC Candidates. Substituting the real values of parameters as in Table 9 into
Eqs. (21) and (25), we compute the left-hand side (LHS) and the right-hand side (RHS) of these equations, we
then compare these two sides for each equation. The plotted results are shown in Figure 3 and Figure 4. We
can see from the figures that, the plotted points for Round5 are closest to the straight lines (the boundary lines)
than those of the other submissions, especially in the primal attack. This implies that many instances of Round5
might be impacted most by the modulus switching technique. In contrast, FrodoKEM, qTESLA, ThreeBears
and Dilithium are submissions whose many instances that are farthest from the boundary lines. And hence the
modulus switching may have the least influence on these instances.

10 Conclusion

In this paper, we concentrated on evaluating the effect of the modulus switching technique on some attacks
against LWE and LWR problems as well as the impact of this technique on the so-called rescaling technique.
We gave the suitable formulas for choosing the best switching modulus for the decoding attack, the dual attack
and the primal attack. We also showed the corresponding conditions under which using the modulus switching
technique make each attack stronger than without using this technique. Using the conditions, we theoretically
assessed the security of the second round LWE/LWR-based NIST PQC submissions under the modulus switching
technique.

Although our work does not give any serious warning to the security of the LWE/LWR-based NIST PQC
submissions in the second round, it suggests that the modulus switching technique should be carefully considered
in choosing parameters and security analyses of prospective LWE/LWR-based cryptosystems.

11 Related own conference publication

The present paper is an extended version of our paper presented at CANS 2018 [38] which originally focused
on the BDD attack (another name of the decoding attack) against LWR. This paper significantly expands
our approach to the dual attack and the primal attack against both the LWE and the LWR problems. Also,
based on some results of [38] we investigated the relation between the modulus switching technique and the
rescaling technique. As an application, we use our results to evaluate the influence of the modulus switching to
LWE/LWR-based NIST submissions accepted as the second round candidates.
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8. Alkim, E., Ducas, L., Pöppelmann, T., et al.: Post-quantum Key Exchange - A New Hope. In: Proceedings of the
25th USENIX Security Symposium. pp. 327–343. USENIX Association (2016))

9. Alperin-Sheriff, J., Apon, D.C.: Dimension-preserving reductions from lwe to lwr. IACR Cryptology ePrint Archive
2016, 589 (2016), https://eprint.iacr.org/2016/589

10. Alwen, J., Krenn, S., Pietrzak, K., et al.: Learning with Rounding, Revisited. In: Canetti, R., Garay, J.A. (eds.)
Advances in Cryptology – CRYPTO 2013. pp. 57–74. Springer Berlin Heidelberg, Berlin, Heidelberg (2013)).
https://doi.org/10.1007/978-3-642-40041-4 4, https://doi.org/10.1007/978-3-642-40041-4 4

11. Applebaum, B., Cash, D., Peikert, C., et al.: Fast Cryptographic Primitives and Circular-Secure Encryption Based
on Hard Learning Problems. In: Halevi, S. (ed.) Advances in Cryptology - CRYPTO 2009. pp. 595–618. Springer
Berlin Heidelberg, Berlin, Heidelberg (2009))

12. Arora, S., Ge, R.: New Algorithms for Learning in Presence of Errors. In: Aceto, L., Henzinger, M., Sgall, J. (eds.)
Automata, Languages and Programming. pp. 403–415. Springer Berlin Heidelberg, Berlin, Heidelberg (2011))

13. Avanzi, R., Bos, J., Ducas, L., et al.: CRYSTALS-Kyber (2017)), Available from: https://csrc.nist.gov/Projects/
Post-Quantum-Cryptography/Round-2-Submissions. Accessed on April 19, 2019.

14. Baan, H., Bhattacharya, S., Garcia-Morchon, O., et al.: Round5: KEM and PKE based on (Ring)
Learning with Rounding (2019)), Available from https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/
Round-2-Submissions. Accessed on April 19, 2019.

15. Bai, S., Galbraith, S.D.: Lattice Decoding Attacks on Binary LWE. In: Susilo, W., Mu, Y. (eds.) Information Security
and Privacy. pp. 322–337. Springer International Publishing, Cham (2014))

16. Banerjee, A., Peikert, C., Rosen, A.: Pseudorandom Functions and Lattices. In: Pointcheval, D., Johansson, T. (eds.)
Advances in Cryptology – EUROCRYPT 2012. pp. 719–737. Springer Berlin Heidelberg, Berlin, Heidelberg (2012))

17. Bernstein, D.J.: Introduction to post-quantum cryptography. In: Bernstein, D.J., Buchmann, J., Dahmen,
E. (eds.) Post-Quantum Cryptography. pp. 1–14. Springer Berlin Heidelberg, Berlin, Heidelberg (2009)).
https://doi.org/10.1007/978-3-540-88702-7 1, https://doi.org/10.1007/978-3-540-88702-7\ 1

18. Bindel, N., Akleylek, S., Alkim, E., et al.: Lattice-based digital signature scheme qTESLA (2019)), Available from:
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-2-Submissions. Accessed on April 19, 2019.
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