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Abstract
Novel water-based nanolubricants using TiO2 nanoparticles (NPs) were synthesised by adding
sodium dodecyl benzene sulfonate (SDBS) and glycerol, which exhibited excellent dispersion
stability and wettability. The tribological performance of the synthesised nanolubricants was
investigated using an Rtec ball-on-disk tribometer, and their application in hot steel rolling was
evaluated on a 2-high Hille 100 experimental rolling mill, in comparison to those without
SDBS. The water-based nanolubricant containing 4 wt% TiO2 and 0.4 wt% SDBS demonstrated
superior tribological performance by decreasing coefficient of friction and ball wear up to
70.5% and 84.3%, respectively, compared to those of pure water. In addition to the lubrication
effect, the suspensions also had significant effect on polishing of the work roll surface. The
resultant surface improvement thus enabled the decrease in rolling force up to 8.3% under a
workpiece reduction of 30% at a rolling temperature of 850 ◦C. The lubrication mechanisms
were primarily ascribed to the formation of lubricating film and ball-bearing effect of the
TiO2 NPs.

Keywords: water-based nanolubricant, TiO2 nanoparticle, tribological performance, hot steel
rolling

(Some figures may appear in colour only in the online journal)

Original content from this workmay be used under the terms
of the Creative Commons Attribution 3.0 licence. Any fur-

ther distribution of this work must maintain attribution to the author(s) and the
title of the work, journal citation and DOI.

1. Introduction

The green manufacturing and its sustainable development are
becoming increasingly important in the field of manufacturing
engineering, such as rolling of steels [1]. Friction and wear
inevitably occur during rolling process, which leads to loss
of energy and wear of work rolls [2–4]. Lubricants, including
traditional neat oils [5–7] and oil-in-water emulsions [8, 9],
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have thus been applied to solve these issues due to their excel-
lent lubricating properties. The use of oil-containing lubric-
ants, however, unavoidably generates contamination to the
environment, especially when burnt and discharged [6]. There-
fore, it is desirable to develop high-performance green lubric-
ants to substitute the traditional ones. In this regard, applic-
ation of nanotechnology provides an orientation to develop
candidate lubricants. Among all the options, one practical
way is to reduce the oil percentage in the oil-based lubric-
ants by adding nanoparticles (NPs) as compensation [10–12].
Although the coefficient of friction (COF) and wear of tools
can be decreased significantly because of the contribution of
the NPs, the presence of oil still poses environmental hazards
and recycling issues. In view of these disadvantages, water-
based lubricants are expected to serve as potential alternatives,
and they behave not only as lubricants but also as coolants
for tools.

It is acknowledged that water has poor lubricity due to its
insufficient film thickness. Adding nanomaterials into water
has become a promising approach to enhance the lubricity of
water. The cooling ability of water can also be improved by
this way [13]. These nanomaterials include metals [14, 15],
metallic oxides [16–18], nonmetallic oxides [19, 20], metal
sulphides [21, 22], ceramics [23–25], composites [26–30] and
carbon materials [31–34]. Specifically, it has been reported
that metal oxides account for the largest proportion at 26%
in the statistics of NPs served as lubricant additives [35]. Of
all these nanoadditives, nano-TiO2, as one of the best candid-
ate nanomaterials, has drawn significant attention, owing to its
low cost, nontoxicity, superior dispersion stability in base lub-
ricant, excellent lubrication performance, and practical poten-
tial in the engineering applications [36]. However, the tribolo-
gical performance and load-carrying capacity of current water-
based TiO2 nanolubricant need to be further improved, espe-
cially when used in steel rolling under heavy loads.

In our previous studies, the tribological behaviour of water-
based nanolubricants containing TiO2 NPs on smooth, rough
and oxidised steel surfaces have been investigated under dif-
ferent testing conditions [36–38]. In order to further enhance
their comprehensive lubricating properties and performance,
water-based nanolubricants with innovatively optimised for-
mula were proposed in present study. Their application in hot
steel rollingwas then examined, and corresponding lubrication
mechanisms were discussed.

2. Experimental details

2.1. Materials

A ball made of E52100 chrome steel and a low-alloy steel disk
(namely Q345 with yield stress of 345 MPa) were used as a
friction pair in a ball-on-disk tribometer. The ball represen-
ted the roll material, while the disk represented the strip steel.
The chemical compositions of these two materials are listed in
table 1. The balls being used had a diameter of 9.5 mm and a
surface roughness of 0.02 µm in Ra. The disks were machined
to a dimension of Φ40 mm × 8 mm with a surface roughness
of 0.14 µm in Ra. The Vickers hardness values of the ball and

Table 1. Chemical compositions of the ball and disk materials
(wt%).

Materials C Si Mn Cr Cu Ni Mo Nb + V + Ti

Ball-E52100 1.0 0.25 0.35 1.5 0.3 0.2 0.1 —
Disk-Q345 0.16 0.25 1.5 0.02 0.01 0.006 0.007 < 0.02

disk are around 780 and 160 HV, respectively. Surface mor-
phologies and 3D profiles of the friction pair are displayed in
figure 1. It can be seen that the ball surface is relatively smooth,
while the disk surface possesses apparent scratches. The rough
surfaces were obtained to represent the actual surface condi-
tions of steels [39].

The steel Q345 was also used as workpiece in hot rolling
test. Before each test, the workpiece was machined to dimen-
sions of 300 (length)× 91 (width)× 8.5 (thickness) mm3 with
a tapered edge for an easy roll bite. Both sides of the workpiece
were then ground and polished to generate identical surfaces
with a roughness of 0.5 µm in Ra. Later on, the workpiece was
cleaned with acetone to remove any residuals retained from
machining.

The novel water-based nanolubricants being used in this
study are composed of TiO2 NPs (type P25), SDBS, glycerol
and distilled water. P25 is a mixture that contains 75% of
anatase and 25% of rutile with approximately 20 nm in dia-
meter [38]. SDBS is an organic dispersant with hydrophilic
group to improve the dispersion stability, wettability and vis-
cosity of the nanolubricants [40–42]. Glycerol is a colorless,
odorless and viscous liquid that facilitates the enhancement
of suspension viscosity [43]. The synthesis procedure of the
water-based nanolubricants can be found elsewhere, showing
excellent dispersion stability [44]. The chemical compositions
of the applied nanolubricants are shown in table 2. For com-
parison purpose, distilledwater and the nanolubricants without
SDBS were also used.

2.2. Tribological and rolling tests

An Rtec MFT-5000 Multi-functional Tribometer was used
to evaluate the tribological performance of applied lubric-
ants under the ball-on-disk tribo-testing configuration (see
figure 2). The COF and the wear of ball were thus obtained
after each test. This configuration was consistent to that repor-
ted in our previous study [36] where the disk surface was
covered by a layer of lubricant with a fixed volume of 2 ml
prior to each tribological test. By doing this, the initial condi-
tions of the tribological tests can be well controlled. Both the
ball and disk were cleaned in an ultrasonic ethanol bath for
2 min before and after each test. The tribo-testing conditions
employed are listed in table 3. Varying loads of 20, 30, 50 and
80 N were applied on the ball to slide against the rotating disk
for a period of 10 min. The linear speed and radius of the wear
track were 50 mm s−1 and 14 mm, respectively. It is worth
noticing that a relatively low sliding speed hereby was adop-
ted to minimise the hydrodynamic effect on the testing results
[37]. The time histories of COF were recorded during testing,
and the wear of ball was then evaluated after the test. For each
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Figure 1. Surface morphologies and 3D profiles of (a), (b) E52100 Cr steel ball, and (c), (d) Q345 disk.

Table 2. Chemical compositions of applied lubricants.

Lubrication
type

Description

W Distilled water
A 2.0 wt% TiO2 + 10 wt% glycerol + balance water
B 4.0 wt% TiO2 + 10 wt% glycerol + balance water
C 2.0 wt% TiO2 + 10 wt% glycerol + 0.2 wt%

SDBS + balance water
D 4.0 wt% TiO2 + 10 wt% glycerol + 0.4 wt%

SDBS + balance water

condition, the same test was conducted three times to ensure
repeatability.

Beside the tribological tests, the effectiveness of all the lub-
ricants was assessed during hot steel rolling on a 2-high Hille
100 experimental rolling mill. The work roll has a dimen-
sion of Φ225 mm × 254 mm and a surface roughness of
2.88 µm in Ra. The Q345 workpieces were heated in a high-
temperature electric resistance furnace at 900 ◦C for a soak-
ing period of 30 min inside an atmosphere of nitrogen. The

hot workpieces were then rolled at an estimated temperature
of 850 ◦C with a reduction of 30% and a rolling speed of
0.35m s−1 under different lubrication conditions asmentioned
in table 2. After rolling, the steel strips were cooled down
in air. As described in the previous studies [43–45], the dis-
tilled water and water-based nanolubricants were sprayed onto
the pre-cleaned work roll surfaces prior to each rolling test
until a uniform and saturated layer of liquid film was formed.
Each hot rolling test was performed three times to minim-
ise data scattering of rolling force, and average values were
thus obtained.

2.3. Analytical techniques

The dispersion stability of as-synthesised water-based nanol-
ubricants was evaluated using a UV-1800 ultraviolet visible
(UV–vis) spectrophotometer. The UV intensities of the nanol-
ubricants were measured in terms of the NP sedimentation
rate. The relative concentration was calculated by the ratio
between the initial intensity of NP concentration and the fol-
lowing intensity on different days.

3
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Figure 2. Schematic diagram of the ball-on-disk configuration used
for tribological test.

Table 3. Tribo-testing conditions at room temperature.

Load Linear speed Radius of wear track Duration

20, 30, 50 and 80 N 50 mm s−1 14 mm 10 min

The dynamic viscosity of as-synthesised water-based
nanolubricants was measured at room temperature using a
rheometer (AR-G2 TA Instrument) with a stainless steel cone-
plate which had a geometry of 40 mm in diameter. The shear
rate used for viscosity measurement was 0.1 to 1000 s−1. Each
measurement was conducted at least three times to ensure
repeatability.

Wear scars of the balls generated after the tribological tests
were observed under a KEYENCE VK-X100 K 3D Laser
Scanning Microscope. The wear of ball was evaluated by
the calculation of wear scar areas. Wear tracks of the disks
were observed using a JSM-7001 F Scanning Electron Micro-
scope (SEM) equipped with an energy dispersive spectrometer
(EDS) to investigate the lubrication mechanisms.

The rolling force data was recorded during hot rolling using
two individual load cells assembled at the drive and operation
sides on the rolling mill. The data acquisition was completed
via MATLAB xPC technology (2009).

The wettability of the lubricants was characterised by
the measurement of contact angles using a Rame-hart 290
Goniometer. The lubricant microdroplets that spread on the
surface of roll material (high speed steel, abbreviated as HSS)
were observed with an amplified profile projection, followed
by an angulation in the affiliated software.

3. Results

3.1. Dispersion stability

Figure 3 shows the dispersion stability of the synthesised
water-based nanolubricants in a period of 5 d. It is noted that
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Figure 3. Dispersion stability of various water-based nanolubricants
evaluated by using UV–vis spectrophotometer within 5 d.

the relative concentration at 1.0 indicates perfect stability of
the nanolubricants without particle sedimentation. For lub-
ricant A, the relative absorption drops continuously until it
reaches around 85% on the fifth day. In contrast, the relative
absorption in lubricant B declines a bit more slowly than that
of lubricant A, suggesting better stability. With the addition
of SDBS into lubricants A and B, by comparison, lubricants
C and D exhibit higher relative adsorption on each day, and
the final value is over 87% after standing for 5 d. It is also
evidently shown that the dispersion stability of lubricant D is
superior to that of lubricant C. These results reveal that all the
as-synthesised water-based nanolubricants demonstrate excel-
lent dispersion stability within 120 h, and the stabilisation of
the nanolubricants with SDBS can be greatly improved.

3.2. Coefficient of friction

Figure 4(a) shows the COF curves over sliding time under dif-
ferent lubrication conditions. It can be seen that the use of
distilled water enables a COF curve with significant fluctu-
ation throughout the entire sliding process, and the COF curve
begins to maintain at a stable level after a running-in period of
300 s. In contrast, the COF curve generated using lubricant A
exhibits a lower level with much smaller fluctuation than those
of water, and it continues to decline with lubricant B being
used. Meanwhile, the running-in period is shortened from 300
to 150 s. The COF level can be further lowered down signi-
ficantly under lubricants C and D, demonstrating minor fluc-
tuations after a running period of 50 s. The variations of aver-
aged COF values from the stable stages of the COF curves are
shown in figure 4(b). It is found that water presents the highest
COF value of 0.356, which can be reduced continuously by
using lubricants A and B. The use of lubricants C and D, by
contrast, can further reduce the COF to an even larger extent,
suggesting super-low COF values at around 0.1. It is worth
noting that lubricant D appears to trigger a slightly lower COF

4
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Figure 4. (a) COF curves over sliding time, and (b) averaged COF values obtained from the stable stages of sliding against Q345 disk under
different lubrication conditions (30 N, 50 mm s−1, 10 min).
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Figure 5. Surface morphologies of the worn balls obtained under (a) water, (b) lubricant A, (c) lubricant B, (d) lubricant C, (e) lubricant D,
and (f) comparison of averaged wear scar areas (30 N, 50 mm s−1, 10 min).

than that of lubricant C, which therefore maximally reduces
the COF of water by 70.5%.

3.3. Wear of ball

Figures 5(a)–(e) show the surface morphologies of the worn
balls obtained under different lubrication conditions. It can
be observed that all the wear scars are elliptical, and they
have continually decreasing scratches with the water-based
nanolubricants being used. The corresponding wear scar areas
(WSA) of the balls are averaged and shown in figure 5(f).
It is evident that the variation trend of WSA is consistent
with that of COF (see figure 4(b)), indicating that the ball
wear caused by water can be reduced up to 84.3%. From

figures 4(b) and 5(f), it can also be found that lubricant B out-
performs lubricant A in terms of tribological performance.
Additionally, lubricants C and D with SDBS are superior to
lubricants A and Bwithout SDBS according to decreased COF
and ball wear.

3.4. Load-carrying capacity

In consideration of exceptional tribological performance of
lubricant D, it is of great significance to investigate its load-
carrying capacity under increasing normal loads. It can be seen
in figure 6(a) that all the COF curves coincide perfectly with
each other under varying loads from 20 to 80 N throughout
the whole sliding process. The averaged COF values remain
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Figure 7. Variations of (a) work roll roughness and (b) corresponding rolling force under water and lubricant D at 850 ◦C.

almost constant at approximately 0.1 with the increase in
applied load, as shown in figure 6(b). These results indicate
that lubricant D exhibits superb load-carrying capacity, which
provides enormous potential in the engineering application
involving high load.

3.5. Application in hot steel rolling

Due to the superior tribological performance and load-
carrying capacity of lubricant D, its application in hot steel
rolling was evaluated in comparison to that of water. Figure
7(a) shows the variation of work roll roughness after rolling
with water and lubricant D by turns to compare their lub-
rication effectiveness. It can be seen clearly that the use of

water prompts a decrease in work roll roughness to a certain
extent. The subsequent use of lubricant D enables a continu-
ous decrease in work roll roughness. Once the water is reused
afterwards, however, the roughness tends to increase instead.
On the contrary, the following reuse of lubricant D eventually
results in a decreased work roll roughness. These results illus-
trate that lubricant D has a significant effect on the polishing of
work roll surface. The corresponding variation of rolling force
obtained under water and lubricant D (see figure 7(b)) is con-
sistent with that of work roll roughness (see figure 7(a)). Spe-
cifically, the rolling force can be decreased up to 8.3% when
spraying lubricant D onto the polished work roll surface. It is
noted that the rolling force varies even though the same lub-
ricant is applied, owing to the different surface conditions of
work rolls.

6



Int. J. Extrem. Manuf. 2 (2020) 025002 H Wu et al

4. Discussion

4.1. Wettability

As one of the most important lubricant characteristics, wettab-
ility can be illustrated as a tendency of a lubricant to cover a
solid surface [46]. In general, the magnitude of contact angle
is used to characterise the wettability, and a smaller contact
angle means a better wettability [47]. It has been reported that
enhancement of wettability is conductive to the formation of
protective film, which can separate the friction pair from direct
contact [26, 48].

Figure 8 shows the values of contact angle measured on
HSS surface using different lubricants. It reveals that distilled
water generates the largest contact angle (73.6◦) on HSS sur-
face. The addition of TiO2 NPs into water (see lubricants A
and B) enables an evident decrease in contact angle from 73.6◦

to 55.2◦. In particular, a higher TiO2 concentration induces
a smaller contract angle, which is consistent with the results
obtained elsewhere [49, 50]. In another case, the addition of
SDBS into lubricants A and B can further decrease the con-
tact angle to 46.6◦, suggesting better wettability of lubricant D
than that of lubricant C. To explain this phenomenon, the dis-
sociation of SDBS in water produces phenyl sulfonic group
that is adsorbed around the NPs, which in turn increases the
net negative charge of the NP surface, and therefore increases
the repulsive forces between NPs [41]. As a result, the NPs
can be well separated with smaller size, exhibiting superior
dispersion stability (see figure 3). Meanwhile, smaller size
indicates larger surface area, and thus the wettability of nanol-
ubricants can be significantly improved. In addition, increased
SDBS tends to largely restrain the agglomeration of NPs, lead-
ing to enhanced wettability [42]. As discussed in our previ-
ous study [44], the lubricants that have better wettability are
inclined to accommodate more effective amounts of TiO2 NPs
adhered onto the work roll surface, and rolling force can thus
be reduced due to decreased friction in the contact zone. The
tribological performance of the water-based nanolubricants
will be discussed next.

4.2. Analysis of worn surface

Figure 9 shows the SEM images of the wear tracks produced
after tribological tests using lubricants A and B. It can be
observed in figures 9(a) and (c) that there exist TiO2 NPswhich
spread over the wear tracks with nearly spherical shapes. In
addition, nanoscratches can be found with the width that is
close to the diameter of the TiO2 NPs, and some NPs are
deposited in the nanoscratches. The presence of both TiO2 NPs
and nanoscratches hereby reveals the phenomenon of ball-
bearing effect [51–53], which is the main cause to reduce the
COF and ball wear of using water. The high-resolution SEM
images shown in figures 9(b) and (d) indicate that the TiO2

NPs rolling on the disk with lubricant A are larger than those
rolling on the disk with lubricant B. In this regard, the use of
lubricant A results in a higher COF and more ball wear than
those obtained by using lubricant B due to the agglomeration
of NPs [54, 55]. In addition to the comparison of wettability
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Figure 8. Contact angle values measured on HSS surface using
different lubricants.

(see figure 8), lubricant B hence brings forth a lower rolling
force than that of lubricant A during hot steel rolling.

Figure 10 presents the SEM images and EDS mappings
of the wear tracks produced after tribological tests using lub-
ricants C and D. As can be seen in figure 10(a), there are
small island-like nano-TiO2 films that are distributed on the
wear track. The high-resolution SEM image reveals a loose
structure of the lubricating film, which separates the ball and
disk from direct contact. This nano-TiO2 lubricating film is
supposed to have similar lubrication effect to the protective
film formed in the oil-based lubricant, leading to significant
decreases in COF and ball wear [56–59]. When the nano-TiO2

and SDBS concentrations rise to 4 wt% and 0.4 wt%, respect-
ively (see figure 10(b)), block lubricating films with larger
sizes can be formed, which may prevent more asperities from
contacting each other. Perhaps the primary reason is that the
increases in both NPs and SDBS enable the enhancement of
wettability, and therefore facilitate the decrease in COF due to
the ease of forming lubricating film in the contact area [26, 48].
Another contributing factor is that the addition of SDBS serves
the purpose of increasing the viscosity of nanofluids [40],
which also results in decreased COF [53]. It is noted that the
lubricating film formed is superior to the rolling effect of TiO2

NPs. Because of this, the lubricants with SDBS (C and D)
have better lubrication performance than those without SDBS
(A and B).

4.3. Lubrication mechanisms

Prior to the understanding of possible lubricationmechanisms,
it is imperative to determine the lubrication regime in the test-
ing condition. As is well-known, there are three types of lub-
rication regimes as defined from the Stribeck curve, including
boundary lubrication, mixed lubrication and hydrodynamic
lubrication [7]. The lubrication regime can be approximately
determined by the lambda ratio (λ) in equation (1), where λ is
the minimum film thickness (hmin) in relation to the combined
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(a) (b)

(c) (d)

TiO2 NPs 

Nanoscratch 

Nanoscratch 

TiO2 NPs 

TiO2 NPs 

Nanoscratch 

TiO2 NPs 
Nanoscratch 

Figure 9. SEM images of the wear tracks produced after tribological tests using (a), (b) lubricant A and (c), (d) lubricant B (30 N,
50 mm s−1, 10 min).

(a)

(b)

Nano-TiO2 film 

Nano-TiO2 film 

Nano-TiO2 film 

Figure 10. SEM images and EDS mappings of the wear tracks produced after tribological tests using (a) lubricant C and (b) lubricant D
(30 N, 50 mm s−1, 10 min).
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Figure 11. Schematic illustration of the lubrication mechanisms using (a) lubricants A and B, and (b) lubricants C and D.

surface roughness of the friction pair (R ′
q). hmin can be calcu-

lated based on the Hamrock–Dowson model [60], as shown in
equation (2). R ′

q is calculated following equation (3), in which
Rq1 and Rq2 are the surface roughness values (Rq) of the ball
and disk, respectively.

λ= hmin/R
′
q (1)

hmin = 2.8R ′(ηµe/E
′R′)

0.65
(
Wy/E

′R
′2
)−0.21

(2)

R ′
q =

√
Rq1

2 +Rq2
2 (3)

1/E ′=
((
1−V2

1

)
/E1 +

(
1−V2

2

)
/E2

)
/2, (4)

where η is the dynamic viscosity of the lubricant. µe is the
sliding speed. E′ represents the effective elasticity modulus,
which can be calculated in equation (4). Therein, E1, V1 and
E2, V2 are the Young’s modulus and Poisson ration of the ball
and disk, respectively. R′ is the radius of the ball. Wy indic-
ates the normal load applied on the Cr steel ball. It has been
reported that boundary lubrication occurs if λ is lower than
one; mixed lubrication exists when λ ranges from 1 to 3; the
value of λ above three corresponds to hydrodynamic lubric-
ation [26]. Calculated from equations (1)–(4), the minimum
film thickness obtained when using lubricants A, B, C, and D
is approximately 0.463, 0.488, 0.482 and 0.622 nm under the
lubrication conditions shown in figure 4 (30 N, 50 mm s−1,

10 min). The corresponding values of λ obtained by using
lubricants A, B, C and D are about 0.0026, 0.0027, 0.0027
and 0.0034, respectively, all indicating a boundary lubrica-
tion regime in the contact zone. Under varying loads from
20 to 80 N, the lubrication regime of using lubricant D can
also be determined as boundary lubrication. Together with the
results obtained in figures 9 and 10, the lubrication model of
the water-based nanolubricants is schematically illustrated in
figure 11. For the water-based nanolubricants without SDBS
(see figure 11(a)), the TiO2 NPs act as ball bearings that can
roll in the contact zone between the Cr steel ball and the Q345
disk. As a result, some peaks of asperities on the surfaces of the
ball and disk can be separated, while some other peaks can still
contact each other due to limited film thickness. When SDBS
is added into the nanolubricant, in contrast, both the wettab-
ility and the viscosity can be enhanced, which promotes the
formation of lubricating films, as shown in figure 11(b). This
greatly helps increase the film thickness, and therefore further
restrain the friction pair from contacting each other, leading to
decreased COF and ball wear to a large extent. There should be
an emphasis on the best lubrication effectiveness using lubric-
ant D, which is mainly attributed to the increases in both thick-
ness and size of the lubricating film. Therefore, it is expected
that lubricant D has great potential to be successfully applied
in practical hot steel rolling by largely decreasing rolling force
and wear of work rolls.

5. Conclusions

In this study, the tribological performance and rolling lub-
rication properties of novel water-based nanolubricants were
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investigated using a ball-on-disk tribometer and a 2-high Hille
100 experimental rolling mill. The main conclusions can be
drawn below.

(a) The as-synthesised water-based nanolubricants exhibited
excellent dispersion stability and wettability.

(b) The water-based nanolubricant without SDBS showed
moderate lubrication effectiveness on the reduction of
COF and ball wear, owing to the ball-bearing effect of
TiO2 NPs.

(c) Thewater-based nanolubricant containing 4wt%TiO2 and
0.4 wt% SDBS exhibited superior tribological perform-
ance by decreasing COF and ball wear up to 70.5% and
84.3%, respectively, compared to those of pure water, due
to the formation of nano-TiO2 lubricating films.

(d) The use of water-based nanolubricant containing 4 wt%
TiO2 and 0.4 wt% SDBS had significant effect on polish-
ing of the work roll surface, and thus decreased the rolling
force up to 8.3% at a rolling temperature of 850 ◦C with a
workpiece reduction of 30%.

(e) The lubrication performance was significantly improved
with transition from ball-bearing effect to lubricating film
by adding SDBS into TiO2 water-based nanolubricant, and
a boundary lubrication regime was confirmed during tri-
bological and hot steel rolling tests.
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