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Abstract. Deep convolutional neural networks show a good prospect in the fertility detection
and classification of specific pathogen-free hatching egg embryos in the production of avian
influenza vaccine, and our previous work has mainly investigated three factors of networks
to push performance: depth, width, and cardinality. However, an important problem that feeble
embryos with weak blood vessels interfering with the classification of resilient fertile ones
remains. Inspired by fine-grained classification, we introduce the attention mechanism into our
model by proposing a dense pixelwise spatial attention module combined with the existing
channel attention through depthwise separable convolutions to further enhance the network
class-discriminative ability. In our fused attention module, depthwise convolutions are used for
channel-specific features learning, and dilated convolutions with different sampling rates are
adopted to capture spatial multiscale context and preserve rich detail, which can maintain high
resolution and increase receptive fields simultaneously. The attention mask with strong semantic
information generated by aggregating outputs of the spatial pyramid dilated convolution is
broadcasted to low-level features via elementwise multiplications, serving as a feature selector
to emphasize informative features and suppress less useful ones. A series of experiments
conducted on our hatching egg dataset show that our attention network achieves a lower
misjudgment rate on weak embryos and a more stable accuracy, which is up to 98.3% and
99.1% on 5-day and 9-day old eggs, respectively. © 2020 SPIE and IS&T [DOI: 10.1117/1.JEI
.29.2.023011]

Keywords: hatching eggs; fertility detection; convolutional neural network; classification;
spatial attention; depthwise separable convolution; dilated convolution.
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1 Introduction

The most mature and safe avian influenza vaccine cultivation method, recognized by academia
and industry, is the chicken embryo method. Currently, avian influenza vaccines are usually
produced by brewing live influenza strains from pathogen-free eggs. During the live hatching
process, dead embryos can easily breed bacteria and contaminate other embryos. The cost and
damage caused by dead embryos can be great. Therefore, the embryo activity detection and
classification is a significant research goal for the production of avian influenza vaccine.
Fertility detection of hatching eggs can usually be divided into four periods: 5-day, 9-day,
14-day, and 16-day, whereas hatching eggs have different features during different hatching peri-
ods. Currently, the detection and classification of egg embryo fertility use traditional methods,
e.g., by manually determining whether embryonic vascular characteristics of eggs are viable.
This approach requires a large amount of labor and time. The results are also susceptible to
bias based on subjective factors. In addition, due to the high-intensity work pressure, workers
experience visual fatigue and low detection efficiency, resulting in a high rate of false detections
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and missed inspections, which is difficult to meet the high standard requirements of the modern
embryo detection and classification industries.

There are many traditional methods of detecting embryo activity in eggs. Bioelectrical
detection1 began in the 20th century. Ultrasonic image-based detection2 soon followed, which
led to hyperspectral imaging technology.3–5 Finally, multi-information fusion technology6,7

developed from the abundance of technological imaging and detection methodology.
Romanoff and Frank1 designed a radio-frequency-based measurement circuit to determine the
electrical conductivity and dielectric constants of the embryos; from these features, they were
able to determine the activity of the embryos. Mcquinn et al.2 introduced ultrasonic imaging
technology to detect the embryonic activity; they successfully solved the problem of poor vis-
ibility of embryos after a 5-day incubation. A hyperspectral imaging system that measured egg
activity was proposed by Smith et al.3; this method was the first to use the hyperspectral images
and data to detect the hatching eggs. Jones et al.4 developed an artificial network algorithm to
detect embryonic from hyperspectral images, but the method had low accuracy due to a lack of
samples. Liu and Ngadi5 developed a near-infrared hyperspectral imaging system to detect the
activity of young embryos via textural information that was extracted from egg hyperspectral
images. Then, Wei et al.6 proposed a method that fuses a computer vision technique and an
impact excitation technique, where the computer vision model adopts a learning vector quan-
tization artificial neural network. Xu et al.7 also established a back propagation neural network
by fusing the images that contained the egg embryo blood vessels, black spots extracted from
RGB space, mean and standard of each component in the Lab color space, temperature, and
transmittance. In recent years, some innovative approaches adopting machine vision technology
based on blood vessel processing have been proposed to improve the detection efficiency of
hatching eggs in industrial production. In 2014, the SUSAN operator, a multilayer feature extrac-
tion method, was employed to remove high-brightness speckle noise to more accurately extract
the blood vessel information. Then, the percentage of the vascular region was calculated to deter-
mine the activity of the embryonic eggs.8 A weight fuzzy C-means algorithm was also used by
Shan9 for adaptive segmentation and to extract the major vascular information. Despite the success
of these methods mentioned above, these technologies are either destructive or based on tradition-
ally complicated image processing, such as image enhancement, image segmentation, etc. Due to
the low efficiency of feature extraction, these approaches cannot be applied in actual production.

With the development of frameworks based on deep learning, many modern convolution
networks10–13 have been developed for image classification tasks. In previous work, we have
modified several convolutional neural networks (CNNs) based on existing popular models for
specific period hatching-egg activity detection. In 2017, the TB-CNN,14 a CNN-based structure
that was divided into two branches, was raised to realize the 5-day old hatching-egg classification.
The feature extraction, by adopting a series of convolutional layers based on deep learning,
achieved a commendable detection accuracy. Later, a hatching-egg classification method, based
on CNN with a channel weighting method and joint supervision model,15 was proposed for
9-day eggs. We also tried predicting embryos viability by detecting heartbeat signals based on
fully convolutional networks and a gated recurrent unit method.16 Even though we have proposed
several CNN-based models to solve classification of our hatching eggs via vascular information,
most of them internally treat all types of information equally and may not efficiently distinguish the
most discriminative characteristic. The remaining problem is that weak embryos with local thin
blood vessels, which are similar to the fertile embryos, interfere with the classification accuracy.

Recently, the benefits of neural networks combined with attention mechanisms have been
shown across a range of tasks in the vision field. One work17 introduced a novel attention mecha-
nism in language understanding and processing and achieved the best accuracy among all
sentence encoding methods at that time. The authors in another work,18 which was related to
a recurrent neural network (RNN), considered the attention problem as the sequential decision of
a goal-directed agent interacting with a visual environment. Long short-term memory network19

(LSTM), which is a special type of RNNs, can capture the long-term dependencies information
of the sequential inputs. It is the attention capability that makes it popular in processing the
dataset with spatial–temporal features like video sequences for action recognition. For example,
the existing works20,21 use RNNs and CNNs combined with LSTM attention module to enhance
the network to focus selectively on informative parts of the video frames using the memory cell
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and obtain promising results. Similarly, another work22 develops the cross-link layers that embed
the attention to guide the spatial-stream to pay more attention to the human foreground areas and
be less affected by background clutter. Meanwhile, attention mechanisms are increasingly
applied in image recognition.

But image recognition is essentially different from the above because image classification
tasks aim to explore and capture the semantic information and pixels correlation in a single
image instead of sequential inputs. Several works23,24 presented attention-based models for
recognizing multiple objects and image captioning, which were capable of learning to both adap-
tively localize and recognize the most relevant regions of the input images.

Inspired by these attention mechanisms, in our work, we introduce effective encoding layers
as the attention module and attempt to use soft-attention mechanisms of deep convolutional
neural networks (DCNNs) to guide the network to the most discriminative features learning and
the most relevant regions localizing. We take both channel and spatial relationships into con-
sideration and propose an end-to-end deep convolution neural attention network. It can enhance
feature representations with large receptive fields and enlarge the feature scope for decision
making.

To summarize, our main contributions of this work are threefold:

1. We propose a fused attention network to enhance the feature discriminative ability and
achieve more stable and superior classification performance both on 5-day-old and
9-day-old egg embryos.

2. We validate the effectiveness of our module by integrating our attention into the
existing CNNs.

3. Furthermore, we conduct extensive ablation experiments, and our results indicate that our
method has a higher confidence coefficient for the final prediction compared with previous
methods and reduces the error rate of weak embryo classification.

2 Related Works

2.1 Attention Mechanisms

Spatial attention can be interpreted as a pixelwise weighting operation and a learning mechanism
that can help capture spatial correlations. The algorithm learns the most informative features and
assigns more available computational resources to the focus area. DCNNs have their own func-
tion of attention mechanism; for example, in classification tasks, the pixels learned and activated
in deep-level feature maps are concentrated on the discriminant region of an image naturally.

Several prior attempts25–27 to strengthen the representation of CNNs by attention mechanisms
have been made in classification tasks. Wang et al.27 proposed the residual attention network
that performed large-scale classification well and was also robust to noisy labels. The attention
module cascades a bottom-up and a top-down structure to explore fine-grained feature maps. The
bottom-up feedforward structure produces low-resolution feature maps with strong semantic
information. Then, the top-down architecture, which aims to generate the weight mask, employs
deconvolution28 to recover the resolution.

In our work, by contrast, we disassemble the process and compute the channel and spatial
attention, respectively, rather than directly learning the mixed 3D spatial attention map. First, we
generate the channelwise attention map by utilizing the existing squeeze-and-excitation
(SENet),25 which has been proved to perform well. In particular, we tactfully adopt the depthwise
separable convolution13,29 to connect the channelwise attention and continue to learn the spatial
attention. We find that the depthwise convolution operation effectively increases representation
efficiency. Unlike the method adopted by Ref. 27, we also argue that the approach of adopting
downsampling and then upsampling will result in loss of spatial information, and motivated by
dense prediction issues like semantic segmentation, we exploit multiscale features by adopting
multiple parallel dilated filters30–32 with different sampling rates to maintain spatial resolution
and produce the spatially dense attention mask. The dilated convolution provides an efficient
mechanism for controlling the receptive field size and seeking the best balance between accurate
location (small field-of-view) and context assimilation (large field-of-view).32
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2.2 Squeeze-and-Excitation Networks

The SENet, which we call the SE block, focus on the channel relationships with the goal of
improving the quality of representations. The architecture comprises a lightweight gating mecha-
nism and explicitly models channel interdependencies in a computationally efficient manner.25

The network can make dynamic channelwise feature recalibration and boost the feature discrim-
inability. The structure of the SE building is depicted in Fig. 1.

In Fig. 1, we can see that the structure of the SE block is simple and can be integrated directly
with existing state-of-the-art architectures. First, the structure adopts a global pooling (called GP
in Fig. 1) to shrink the 3D feature maps through spatial dimension to a 1D vector. Second, a fully
connected (FC) layer is used to reduce parameters; the reduction ratio r is set to 16. Then, the
output is sent to a RELU function to increase nonlinearity and another FC layer to restore the
feature size to its original dimension. Finally, the values are normalized to [0, 1] via a sigmoid
activation as a set of per-channel modulation weights, which is used to rescale the transformation
output U. Formally, we assume that U ¼ ½u1; u2; : : : ; un� with ui ∈ RW×H, i ¼ 1; 2; : : : ; n

denoting a set of n channel features, so we can illustrate the outputs as Û ¼ ½û1; û2; : : : ; ûn�
with ûi ∈ RW×H i ¼ 1; 2; : : : ; n, where

EQ-TARGET;temp:intralink-;e001;116;412ûi ¼ αi · ui i ¼ 1; 2; : : : ; n; (1)

Here, α is the weight for the channelwise attention. The final output is the channel-refined
feature maps shown in Fig. 1, where each color represents a specific channel.

3 Methods

Our attention module is a sub-branch splitting from the trunk. We employ residual units as our
backbone to perform downsampling and feature processing, then the attention structures (DPSA)
make deeper and more specific feature extraction for particular object categories (class discrimi-
native features), as layers going deeper. The resulting fine-grained saliency maps with normal-
ized weight superimposed on the output of the backbone help to make the informative features
more highlighted and suppress noises at the same time. The deeper the layers, the more selec-
tively the attention model will activate and focus on object-specific goals that are helpful for
classification. Therefore, integration of our DPSA modules into the backbone at different stages
gradually enhances the class-specific features representation (Fig. 2).

Fig. 1 Architecture of SE block.

Fig. 2 Overview of our attention mechanism.
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3.1 Dense Pixelwise Spatial Attention Module

The SE block applies unequal weight to each channel by dynamic learning and recalibrates the
channelwise features adaptively. Although the method decides “which” channel to concentrate
on, we also need to explore and focus on the most informative components in spatial locations.
It is difficult for a classification task when key features are not spatially dominant. Therefore,
we argue that it is equally important to fully extract spatial information from each channel further
and explore spatial attention. We describe our fused attention module in detail below.

Our proposed DPSA architecture can be divided into three parts. First, to take better advan-
tage of already generated channelwise attention maps and enhance spatial encodings, we adopt a
depthwise convolution layer to split the channels that are already weighted. As shown in Fig. 3,
we can see the features, which are reweighted along channels with different channelwise impor-
tance output through the SE block. Then, we aim to make spatial feature learning along channels;
a single 3 × 3 filter with a stride of 1 is applied to each channel. However, it only filters input
channels and ignores the semantic hierarchy between different channels. Therefore, a 1 × 1

(pointwise) convolution layer needs to be used to fuse the output and generate new features.
Equations (3)–(5) (⊙ denotes the elementwise product) have illustrated the mathematical
formulation of standard convolutions and depthwise separable convolutions, where K denotes
the kernels with channels of N and x denotes the input features:

EQ-TARGET;temp:intralink-;e002;116;513ConvðK; xÞði;jÞ ¼
XL;M;N

l;m;n

Kðl;m;nÞ · xðiþl;jþm;nÞ; (2)

EQ-TARGET;temp:intralink-;e003;116;452Depthwise ConvðK; xÞði;jÞ ¼
XL;M
l;m

Kðl;mÞ⊙xðiþl;jþmÞ; (3)

EQ-TARGET;temp:intralink-;e004;116;410Pointwise ConvðK; xÞði;jÞ ¼
XN
n

Kn · xði;j;nÞ: (4)

The factorized convolution has indicated that our features have both fairly independent
channels and highly correlated spatial locations. In our work, depthwise separable convolutions
help us make full use of weighted channels and extract the features completely. Meanwhile, this
kind of convolution increases computational efficiency by converting high-dimensional features
into low-dimension ones. For example, the kernel size is Kconv × Kconv × Cin and the size of the
output is Nout × Nout with channels Cout. The computational cost of the depthwise separable
convolution, which is the total of the depthwise and pointwise (1 × 1) convolutions, is as follows:

EQ-TARGET;temp:intralink-;e005;116;298Kout × Kout × Cin × Nout × Nout þ 1 × 1 × Cin × Nout × Nout × Cout: (5)

Fig. 3 The architecture of our proposed DPSA module.
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Compared with the standard convolutions, the ratio in calculation consumption is as follows:

EQ-TARGET;temp:intralink-;e006;116;723

Kconv × Kconv × Cin × Nout × Nout þ 1 × 1 × Cin × Nout × Nout × Cout

Kconv × Kconv × Cin × Nout × Nout × Cout

¼ 1

Cout

þ 1

K2
conv

: (6)

Second, we consider that the quality of attention mask with salient features is related to the
diversity of features, so we use dilated convolutions with various rates for dense feature extrac-
tion, which is based on the fact that dilated convolutions support exponential expansion of recep-
tive fields without loss of resolution or coverage.30 For our egg embryos, the blood vessels are
discriminant features for the network to make prediction, so the detailed information gained for
small targets is especially significant, which requires denser resolution and multiscale informa-
tion. Even though DCNNs have shown to be successful for classification tasks, the repeated
combination of network pooling and striding at consecutive layers remarkably reduces the spa-
tial resolution and loses local detail information of the resulting features maps. Deconvolutional
layers have been employed to recover the spatial resolution33,34 but it it difficult to restore the lost
detail. Therefore, we advocate the use of “dilated convolution,” which not only obtains reso-
lution enhancement but also enlarges the receptive fields to incorporate larger semantic context.
We have clarified the algorithm’s operation in 1D with a simple example illustrated in Fig. 4
(modified from Ref. 32), and the mathematic formulation is as follows:

EQ-TARGET;temp:intralink-;e007;116;511P½i� ¼
XM
m¼1

s½iþ r · m�f½m�; (7)

where s½i� represents the input signals, f½m� is the filter of length M, and r denotes the dilation
rates we use to sample the input.

Our approach is inspired by the atrous spatial pyramid pooling in Refs. 32 and 35 for the
task of semantic segmentation. In our work, we simplify the architecture further and call this
revised method simplified atrous spatial pyramid pooling (SASPP), which is illustrated in Fig. 3.
In general, classification networks are able to identify one or small discriminative parts with a
high response naturally for correctly recognizing images. Meanwhile, we also argue that dilated

Fig. 4 Illustration of dilated convolution in 1D (modified from Ref. 29): (a) sparse feature extraction
with standard convolution and (b) dense feature extraction with dilated convolution with a rate
r ¼ 2.
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convolution with multiple rates can help to capture richer contextual detail and produce dense
and reliable target object localization effectively. We adopt spatially small convolution kernels
3 × 3 to resample features with various dilated rates 2k−1, k ¼ f1; 2; : : : ; kg. In our attention
module, the largest resolution is only 56 × 56, so the maximum value of k is set to 4. We should
avoid the condition that the receptive fields are too large to preserve local detailed information.
We also add a batch normalization (BN)36 layer after each dilated convolution, which can accel-
erate deep network training by reducing internal covariate shifts. However, as the layers go
deeper, if we use the same sampling rate r, the valid region over which the filter weights are
applied becomes smaller because there are r − 1 padded zeros. So, we stack our DPSA module
in four stages of our design and the sampling rate varies as the layer deepens. The complete
setting of the parameters will be provided and discussed in Sec. 4.6.

Third, to produce the final attention maps, the features from the parallel dilated convolution
branches are interpolated bilinearly to the original features’ resolution. These resulting features
are then concatenated and passed through another 1 × 1 convolution to reduce the channel
dimension. A sigmoid activation function is applied to normalize the weights to the interval
[0, 1] and generate the attentive weight mask. During the elementwise multiplication step, the
weight values of the 3D spatial attention mask are broadcasted to each pixel for each channel of
previous features. As illustrated in Fig. 3, each small square with a different color represents a
pixel with a different weight in each channel. We can obtain the spatial-domain-refined features,
which achieve global emphasis across spatial dimension. In addition, we also add a shortcut to
connect the channel-refined features’ output by SENet, as in the deep residual network
algorithm.11 We argue that the practice enables the information from low and high levels to fuse
better while making the significant features more emphasized. In conclusion, the final output of
the dense pixelwise attention module is

EQ-TARGET;temp:intralink-;e008;116;447Hi;cðxÞ ¼ ½1þ Si;cðxÞ�⊙Ci;cðxÞ; (8)

where Si;cðxÞ and Ci;cðxÞ represent the dense spatial attention mask and the channel-refined
features, respectively, i denotes the index of the pixel, which ranges over all spatial positions,
and c refers to the index of the channels.

3.2 Network Design

We have adopted the widely used residual units to construct our basic architectures, according to
the size and characteristics of the dataset. The input image size is 224 × 224, and our network
begins with a 7 × 7 convolution layer, followed by four stages, which are made of bottleneck
templates with different numbers. The template is composed of two 1 × 1 convolution layers and
a 3 × 3 convolution layer. We add a BN layer and RELU activation after each convolution layer.
The first stage contains two bottleneck blocks and maintains a 56 × 56 resolution. The feature
size of the subsequent stages is halved, and the number of the blocks following is three, four,
two, respectively. The last layer ends with a global average pooling layer and a two-way FC layer
with a softmax activation function (see Table 1 below for the network design).

The overall design of our network and the related hyperparameters setting can be found
above. Our architecture is built by inserting our attention modules into different resolution stages
of the basic network, which is illustrated in Table 1. Now, we list related parameters of the
SASPP (see Fig. 3 for illustration) submodule in the DPSA structure (Table 2).

4 Experiments

4.1 Data Preparing and Preprocessing

Data acquisition is the first step of deep learning. To obtain sufficient image data of egg embryos,
we have set up an image acquisition system. The system is composed of a sterile dark box,
an LED light source, industrial cameras, and automation equipment. In our work, according to
the structural design and the embryo size characteristics, the HIKVISION (model MV-CE013-
50GC) is a color camera that was selected to collect data with a resolution of 1.3 million. The
lens is an MVL-HF0828M-6MP model with a focal length of 8 mm. There is a light source under
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each egg and a rubber above. When an egg is photographed, the light source of the other eggs is
off. A plate of 72 eggs is run through the conveyor belt and is sent to the dark box, which triggers
industrial cameras. An embryo can be captured from both sides to increase the number and
feature diversity of samples. The image size generated by the system is 1280 × 960, which
contains all of the regions of a single egg. In the actual production process, the egg embryo
formation activity detection is divided into several stages. Therefore, our dataset has different
kinds. The 5-day embryo images, which can be categorized as either fertile or infertile as early as
the embryonic stage, have the least obvious characteristics. This is why it is difficult to determine
viability in industrial production. Nine-day embryos, which are the first batch of embryos to be
inoculated, can be classified as living and dead. Our dataset is shown below.

Figures 5 and 6 are the original samples. It can be seen that the embryo images obtained
directly from the data acquisition system have information about adjacent eggs, so the data need
to be simply processed. To train our model better, first, we set the threshold value and carry out
binarization. Then, we find the edge information of the rubber from top to bottom. In addition,
we set the lowest point of the rubber border as the center and set a constant width. We cropped

Table 2 The SASPP structure details in our DPSA module. The parameter r denotes the n × n
dilated convolutional kernel with a sampling rate of r , which specifies the number of zeros
(or holes) between pixels and then the kernel size is ½n þ ðn − 1Þðr − 1Þ�. The r ¼ ð1; 4; 8Þ means
employing the rates ¼ 1, 4, and 8 for the three parallel branches.

SASPP structure Parameters

Stage I 1 × 1 conv; 3 × 3 dilated conv, r ¼ ð1;4; 8Þ, stride 1

Stage II 1 × 1 conv; 3 × 3 dilated conv, r ¼ ð1;2; 4Þ, stride 1

Stage III 1 × 1 conv; 3 × 3 dilated conv, r ¼ ð1;2; 4Þ, stride 1

Stage IV 1 × 1 conv; 3 × 3 dilated conv, r ¼ ð1;2Þ, stride 1

Table 1 The table depicts the layers of our network integrated with DPSA modules.
Downsampling is conducted by Conv2_1, Conv3_1, and Conv4_1 layers with a stride of 2.

Layer name Layer type Related parameters Output size

Conv1 Convolution 7 × 7, 64, stride 2 112 × 112

Pool Max pooling 3 × 3, 64, stride 2 56 × 56

Conv1_x Convolution

2
4

1 × 1; 64; stride1
3 × 3; 64; stride1
1 × 1;128; stride1

3
5 × 2 56 × 56

DPSA Attention — 56 × 56

Conv2_x Convolution

2
4
1 × 1; 128; stride1 or2
3 × 3;128; stride1
1 × 1;256; stride1

3
5 × 3 28 × 28

DPSA Attention — 28 × 28

Conv3_x Convolution

2
4
1 × 1; 256; stride1 or2
3 × 3;256; stride1
1 × 1;512; stride1

3
5 × 4 14 × 14

DPSA Attention — 14 × 14

Conv4_x Convolution

2
4
1 × 1; 512; stride1 or2
3 × 3;512; stride1
1 × 1;1024; stride1

3
5 × 2 7 × 7

DPSA Attention — 7 × 7

Pool Average pooling 7 × 7, stride 1 1 × 1

FC Inner product 2D 1 × 1
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the feature regions, which are labeled by yellow lines, and then resized images to 227 × 227 to
remove the adjacent interference as much as possible (Fig. 7).

4.2 Implementation Details

Our implementation is based on the Caffe37 framework. In the input layer, we follow standard
practices and perform data augmentation by randomly cropping an image to down to the size of
224 × 224 pixels or conducting horizontal flip and random mirror. Our input training and testing
batch sizes are set to 64 and 16, respectively. Each input image is normalized via mean RGB-
channel subtraction by the training dataset mean file. Optimization is performed using stochastic
gradient descent with a momentum of 0.9 and a weight decay of 0.0005. Our base learning rate is
set to 0.001, and the update strategy follows the multistep policy with the gamma (“γ”) of 0.1:

EQ-TARGET;temp:intralink-;e009;116;120lr ¼ base_lr � γ
�� iters
step value

��
: (9)

We set the step value parameters to 20,000, 35,000, 50,000, and 60,000. When the iteration
reaches one of these values, the learning rate is decreased according to the equation lr. As

Fig. 5 The dataset consisting of 5-day-old egg embryos. (a, b) The samples shown are the fertile
egg embryos, while (c, d) the samples shown are the infertile.

Fig. 6 The dataset consists of 9-day-egg embryos. (a, b) The samples shown are living samples
and (c, d) the samples shown are the dead.

Fig. 7 Data processing: (a) binary image and (b) cropped feature regions.
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reported in a work38 and observed in our experiments, we find that the method of “MSRA”38

filter weights initialization better accommodates RELU activation than “Gaussian”39 or
“Xavier”40 in our network. We also have made analysis theoretically and assumed that the
response of a convolution layer can be expressed as follows:

EQ-TARGET;temp:intralink-;e010;116;687yl ¼ w1x1 þ w2x2þ · · · þwnxn þ b ¼ WlXl þ b; (10)

where w is the weight of filters and x denotes the inputs. Let us assume random variables w and x
are independent and each of their elements shares the same distribution. In particular, w has zero
mean. Then, we can obtain variance:

EQ-TARGET;temp:intralink-;e011;116;621Var½yl� ¼ nVar½wnxn� ¼ nVar½wn�E½x2n�: (11)

We use l to denote the index of a layer. For the RELU activation, we have Xl ¼ fðYl−1Þ; then
we can calculateE½x2l � ¼ 1

2
Var½yl−1�, and putting this into Eq. (12), then we have

EQ-TARGET;temp:intralink-;e012;116;562Var½yl� ¼
1

2
nVar½wl�Var½yl−1�: (12)

According to the above equation, to keep the variance of data at each layer consistent, the
weight should meet the following:

EQ-TARGET;temp:intralink-;e013;116;496

1

2
nVar½wl� ¼ 1; ∀ l: (13)

In the final, we get a zero-mean Gaussian distribution whose standard deviation (std) is
ffiffi
2
n

q
.

This is our way of “MSRA” initialization w ∼ G½0;
ffiffi
2
n

q
�.

4.3 Image Classification on Hatching Eggs

In this section, to evaluate our proposed DPSA block, we first perform an ablation experiment on
our 5-day-old and 9-day-old egg embryo datasets, respectively. Our 5-day embryo dataset com-
prises 8200 training images and 2725 validation images. We also obtain a final result from the
2680 testing images. Meanwhile, we further perform experiments on the 9-day old egg dataset,
which comprises 20,000 images. We randomly select 12,000 samples for the training set and
4000 for validation; the final accuracy is gained on the 4000 testing images. All of the datasets
are from two classes. We train the dataset on the original basic network, the basic network inte-
grated with SE blocks (basic network + SE), and the basic network integrated with DPSA mod-
ules (basic network + DPSA). Each experiment is trained for 100,000 iterations from scratch.

Figure 8 has depicted the training curves on the 5-day embryos; the green line is the result
of our fused attention model and the red one is the result of only a single channel attention.

Fig. 8 (a) The accuracy and (b) loss curves during 5-day-old embryos training.
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We can observe that our proposed method has achieved the highest accuracy. Meanwhile,
we evaluate our method on 9-day-old embryos; the performance in Fig. 9 has verified the
effectiveness of our attention mechanism as well. We also can conclude that our dense pixelwise
spatial attention (DPSA) combined with SENet can push the performance of SE blocks.
We argue that the accuracy gains are due to the self-recalibration on features, which guides the
network to localize the most class-specific and relevant targets better.

4.4 Integration with Modern Architectures

We find that the light-weight and efficient network MobileNet13 is a streamlined architecture,
which is based on depthwise separable convolutions instead of standard convolutions. This

Fig. 9 (a) The accuracy and (b) loss curves during 9-day-old embryos training.

Fig. 10 Training curve comparisons between different baseline architectures with their DPSA
module counterparts. (a) AlexNet and AlexNet + DPSA and (b) MobileNet and MobileNet + DPSA.
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motivates us to integrate our fused attention modules with the MobileNet and further evaluate the
effectiveness of our attention mechanism. In our experiments, we insert our DPSA module into
the model once at each different resolution stage. In addition, we also attempt to integrate our
fused attention modules with the classic and shallow AlexNet39 for performance exploration
(Fig. 10).

Through a series of ablation experiments, we have validated the effectiveness of our dense
pixelwise attention module. However, it cannot be denied that the improvement of performance
is at the cost of increasing training time. To explore the impact of our attention module to the
practical runtime, we make further study to compare the added time when integrating it into
existing architectures. We print and display results every 1000 iterations during training for
a total of 100,000 iterations. According to the saved logs, the results are reported in Fig. 11
(Table 3).

We can observe that for different baseline networks, the increase in time is different. For
lightweight MobileNet, our attention modules brought a little extra time. Meanwhile, even
though the increased training time, which is about 1.8 h (6700 s), induced by our attention mod-
ules in the AlexNet is obvious, it can also be accepted. In conclusion, the relationship between
performance improvement and runtime increase is reasonable. The results are consistent with the
fact that the SE block and depthwise separable convolution are low computational overhead
operations.

Fig. 11 Training time of (a) baseline architectures and (b) their DPSA counterparts.
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4.5 Comparisons with State-of-the-Art Models

Currently, there are many existing networks achieving good performance in classification tasks.
In this section, we conduct comparative experiments with several state-of-the-art models on our
dataset. In our work, all of the models are trained from scratch. The setting of training strategies
and other hyperparameters (like batch size, initial learning rate) follows the same principle. But
due to different conditions, we could not reproduce the results in the same way that the original
papers demonstrate. We report the final results on the test set in Table 4.

Compared with the state-of-the-art methods and our previously proposed structure SJ-CNN
(SE module and joint supervision based on a convolution neural network), our attention network
achieves good and stable performance both on the 5-day and 9-day old embryos. Despite the
success of DenseNet and residual attention network in the original papers, the deep networks are
difficult to train well on our small-scale and simple datasets and are prone to overfitting. SJ-CNN
(in 2018), the model trained specially for 9-day old eggs detection, has a poor generalization on
5-day eggs. Our DPSA-integrated structure has an increased accuracy of 5.1% and 0.7% com-
pared with SJ-CNN. Although the improvement of our network performance is not very huge,
it still makes sense in the classification of embryos because we require as high an accuracy rate as
possible to prevent the weak and dead embryos from being misjudged and contaminating the
living.

For further qualitative analysis, we adopt the gradient-weighted class activation mapping
(Grad-CAM)41 to make “visual explanations” for decisions from CNN-based models. The
method can use the gradient information of the final convolutional layer to produce a coarse
localization map highlighting the important regions and spatial locations in the image for pre-
dicting the concept, which is able to evaluate the effectiveness of our proposed DPSA. In our
work, we randomly select six egg embryo images from two classes (the weak embryos belong to
the dead) with different characteristics to evaluate our model. The results are shown below.

From the results shown above, we can see the area that is enhanced and emphasized by our
attention mechanism. The red zone is the field where the network learns discriminative features

Table 3 The performance comparison of several architectures equipped with DPSA modules.

Networks Top-1 accuracy (%) Time/h (100k iteration)

AlexNet 93.2 13.5

AlexNet (fused attention) 94.6 15.3

MobileNet 95.1 10.0

MobileNet (fused attention) 95.8 10.6

Table 4 Comparison with other state-of-the-art methods on our 5-day-old and
9-day-old egg embryo datasets.

Method 5-day/9-day Accuracy rate (%)

DenseNet10 5-day 94.3

9-day 96.2

SJ-CNN15 5-day 93.2

9-day 98.4

Residual attention network27 5-day 96.8

9-day 98.7

Proposed method 5-day 98.3

9-day 99.1
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and applies additional weight on the selective parts. Thus, Grad-CAM tells us, in the form of a
heat map, which pixels the model focuses on to determine whether the image is of a living or
dead embryo. We can clearly see that the red zone in the last column, which is learned by our
proposed architecture, is larger than in others. More importantly, we observe in the second row
that the blood vessels are not exactly in the center of the image. Our structure has learned all of
the fields according to blood vessels rather than only a corner, which is learned by other
networks. The third row shows that our previous proposed SJ-CNN performs poorly when the
detected egg is interfered with by surrounding eggs. Though each of the four models has made
the correct decision for the images of the first four rows, the confidence score c (where c denotes
the softmax score of each network for the truth label) of our proposed architecture is higher than
its counterparts, as illustrated in Fig. 12.

Fig. 12 Grad-CAM visualization results on 9-day-old embryos.
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Likewise, as we mentioned before, the remaining trouble we face is that weak embryos some-
times are judged to be living ones. Our model has alleviated the problem. We can see from the
last two rows in Fig. 12 that weak embryos have several locally thin vessels. Unfortunately, when
the model only locates and learns this small region, the final prediction tends to be that it is a
living embryo (in fact, it belongs to the class of dead while the probability of being judged dead
is only 0.42265). Conversely, when the region of class-discriminative feature localization is
larger, the final decision perhaps is different. To put it in a simpler way, it is hard to make
a prediction when we put our eyes close to the back of animals to distinguish between a donkey
and a horse. Our DPSA integrated residual network covers a much larger area of the target object
regions and is more precise; therefore, it reduces the error rates for the weak embryos. The
proposed DPSA maps, which aggregate multiscale contextual information, help boost the
ability to explore the highly class-discriminative features (the blood vessels in living embryo)
with larger field-of-view and accurately and densely localize object regions. In conclusion,
our figures above have evaluated the model credibility and provided reasonable explanations
for why the network embedded with our DPSA modules has a better performance in the
experiments.

To validate that our network mitigates the problem of weak embryo misjudgment, we have
selected 4000 images for the test set, which comprises 2000 living embryos and 2000 dead
embryos. In particular, among the 2000 dead samples, there are 123 weak embryo images.
We have evaluated our attention network model and previous SJ-CNN on the test set. Figure 13
shows the confusion matrix for the classification results of the two models. It is obvious that our
attention network has achieved better performance in recognition accuracy, and the number of
weak embryos being misjudged in dead embryo samples is reduced by half.

4.6 Effect of Different Multirates for SASPP

In this section, we conduct experiments to analyze the effects of different dilation rate groups for
the four network transformation stages. SASPP with various sampling rates helps us capture
multiscale information and expand spatial density. Yet, in Ref. 35, researchers noticed that
as sampling rates increase, in other words, the zeros inserted in the pixels of the feature map
are more, the amount of valid filter weights (the weights applied to the informative feature

Fig. 13 Confusion matrix for the experimental results: (a) SJ-CNN and (b) the proposed method.
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regions, rather than the filled zeros) decreases. In our work, our kernel size is 3 × 3 with rates
associated with the values in set {1, 2, 4, 8}. Therefore, we attempt to employ dilation rates
depending on the resolution of the feature map in our network, e.g., the lower layers have larger
sampling rates than the upper layers. We conduct five group experiments by testing a combi-
nation of different factors and measure the effects on 9-day embryo classification accuracy.
We list the five strategies in Table 5.

As illustrated in Table 5, the SASPP structure at stage 4 in our network has only two parallel
dilated convolution layers, which employs smaller rates r ¼ f1; 2g because the features’
resolution is only 7 × 7. We attempt to set the maximum rate to be 8 because the largest
resolution is 56 × 56 during the four stages transformation (introduced in Table 1). When the
rate ¼ 2, the 3 × 3 filter is enlarged to 5 × 5 and it equals the standard convolution when the
sampling rate ¼ 1. In our experiment, the maximum number of parallel dilated convolution
layers in SASPP architecture is set to be 3; we have not experimented with more branches
(Fig. 14).

From the histogram above, we can obviously find that the performance of three parallel
branches is better than that of two. We adopt the same sampling rates ¼ f1; 2; 4g at the first
three stages and yield 1.2% better than employing two parallel branches. Furthermore, we also
attempt to use larger rates ¼ f1; 4; 8g at different stages, and the results show that the first stage
employing the rates ¼ f1; 4; 8g outperforms that employing rates ¼ f1; 2; 4g. The performance
improves from 98.4% to 99.1%. Therefore, we have experimented with the next two strategies
by employing rates ¼ f1; 4; 8g at the second or the third stage. However, when we train the
model employing larger rates at more stages simultaneously, the performance has a consistent
drop. We observe that strategy 3 yields the best performance; thus, strategy 3 is selected as our
final choice.

Table 5 Different strategies on employing multiple rates for parallel branches of SASPP.

Method Stage I Stage II Stage III Stage IV

Strategy 1 (2,4) (2,4) (2,4) (1,2)

Strategy 2 (1,2,4) (1,2,4) (1,2,4) (1,2)

Strategy 3 (1,4,8) (1,2,4) (1,2,4) (1,2)

Strategy 4 (1,4,8) (1,4,8) (1,2,4) (1,2)

Strategy 5 (1,4,8) (1,4,8) (1,4,8) (1,2)

Fig. 14 Results of different strategies on 9-day-old embryo classification.
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5 Conclusions

In this paper, instead of a single attention mechanism design, we introduce an attention-based
feature refinement along both dimensions: channel attention and spatial attention. To generate
the attention mask, our key idea is to employ parallel dilated convolutions with different
sampling rates to achieve denser feature extraction and field-of-view enlargement. Similar to
channelwise attention, which is based on an adaptive recalibration of features between channels,
our spatial attention is pixelwise weighting and the refinement process. The weight mask with
strong semantic information can help emphasize useful features and dismiss unimportant ones.
Our network achieves a steady and superior accuracy, which is up to 98.3% and 99.1% on 5-day
and 9-day embryos, respectively, through the attention optimization procedure, providing
evidence that the feature refinement process of our attention modules is effective. Nevertheless,
there are still some limitations in our attention network, and we still need to do a lot. In the future,
we will research compatibility with other models, and as the samples of weak embryos increase,
we will attempt to classify weak embryos into a single class. In addition, the multimodel fusion
method that combines a sequence of embryonic heartbeat signals with images will be considered
to optimize our detection task.
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