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Highlights 
 

• Novel metrics are designed to quantify the building-to-grid demand response flexibility and 
investigate the behaviour of heating units following DR events. 

• Power and energy paybacks following a heating load curtailment can vary from 0% to 50%.  

• Dwellings with high thermal inertia show a smaller payback magnitude but a longer payback 
period. 

• Installing a hybrid heating system, reduces power and energy paybacks to less than 20% with a 
maximum comfort loss of 0.5℃. 

Abstract 
Increased flexibility has been identified as a key requirement in future power systems. Much flexibility 
could be provided by energy vectors other than electricity. In particular heat may be a valuable source 
of flexibility, as electrification of space and water heating introduces highly flexible resources such as 
electric heat pumps. However, current methods for assessing aggregated demand side flexibility, 
particularly from residential buildings, may not be adequate given the variety of different grid services 
that flexibility may be used to provide to different stakeholders, and considering relevant comfort 
constraints. On these bases, in this work several metrics, relevant to different stakeholders, are 
introduced to quantify building-to-grid demand response flexibility from heat pump aggregations. 
Specific control algorithms for the aggregations are also proposed and tested through a multi-energy 
residential energy consumption tool. A number of case studies are carried out to demonstrate the 
value of the proposed metrics and algorithms, especially in relation to flexibility exploitation with long 
sustain times (e.g., reserve services), which can noticeably affect user comfort. Our results indicate 
that the payback behaviour of heating units following a demand response event can vary substantially 
with different types of dwellings. More specifically, the power payback is negligible in dwellings with 
high thermal inertia, while the increase of power magnitude and energy consumption can reach 10% 
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and 50%, respectively, in dwellings with low thermal inertia. The benefits from hybrid (electric + gas) 
heating, which can reduce energy payback and comfort loss, are also demonstrated. For instance, in 
a cluster of dwellings with low thermal inertia, the energy payback following a DR event is reduced 
from 50% to 20% and the maximum comfort loss of the participants is decreased from 1.6 ℃ to 0.5 
℃. 

Key words: Flexibility, demand response, electric heat pump aggregation, high-resolution building 
modelling, hybrid heating 

Glossary 

ASHP air source heat pump 

BaU business as usual 

CHP combined heat and power 

COP coefficient of performance 

DR demand response 

DHW domestic hot water 

DNO distribution network operator 

DSO distribution system operator 

EHP electric heat pump 

HVAC heating and ventilation air conditioning 

NG National Grid 

STOR short term operating reserve 

SO system operator 

TNO transmission network operator 

UK United Kingdom 

Nomenclature 

Indices 

𝑛, 𝑁 dwelling number, set of dwellings in cluster 

𝑚, 𝑀 dwelling rank in selection algorithm, set of selected dwellings for DR application 

𝑡, 𝑇 simulation time step, set of simulation time steps (minutes) 

𝑤, 𝑊 window of ancillary service, set of ancillary service windows (hours) 

Variables 

𝐴𝐷𝐷 average disruption duration (minutes) 

𝐴𝑃𝐶 average power contribution (kW per dwelling) 

𝑐 worse comfort level (°C) 

𝐶𝑀𝑅 constant to maximum ratio (%) 

𝐸𝑃𝑅 energy payback ratio (%) 
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𝐼𝐷𝑃 impacted dwellings percentage (%) 

𝑁𝐸𝑇𝑅 net energy transfer ratio (%) 

𝑂𝐶𝑛,𝑡 occupant’s comfort level (°C) 

𝑂𝐶𝐹𝑛,𝑡 occupant’s comfort flag (0 or 1) 

𝑂𝐶𝑉𝑛 daily maximum comfort loss/gain (°C) 

𝑃𝑛,𝑡
𝐸_𝐵𝑎𝑈 input electrical power of an EHP in a business as usual case (kW) 

𝑃𝑛,𝑡
𝐸_𝐷𝑅  input electrical power of an EHP in a demand response case (kW) 

𝑃𝑛,𝑡
𝐺_𝐵𝑎𝑈 input rating of gas boiler in a business as usual case (kW) 

𝑃𝑛,𝑡
𝐺_𝐷𝑅 input rating of gas boiler in a demand response case (kW) 

𝑃𝑜𝐶𝑉𝑐
− comfort loss probability distribution (%) 

𝑃𝑜𝐶𝑉𝑐
+ comfort gain probability distribution (%) 

𝑃𝑃𝑅 power payback ratio (%) 

𝑟𝑡
𝑈𝑃,𝑃;𝑟𝑡

𝐷𝑁,𝑃; 

 𝑟𝑡
𝑈𝑃,𝐹;𝑟𝑡

𝐷𝑁,𝐹 

average upward/downward reserve service capacity per EHP in a cluster with 
Partial/Full service procurement mechanism (kW) 

𝑅𝑡
𝑈𝑃;𝑅𝑡

𝐷𝑁 upward/downward reserve service requirement (kW) 

𝑡𝑓𝑡
𝑈𝑃;𝑡𝑓𝑡

𝐷𝑁 maximum available upward/downward flexibility of a EHPs cluster (kW) 

𝑇𝑛,𝑡
𝑖𝑛_𝐵𝑎𝑈 indoor temperature of a dwelling in a business as usual case (°C) 

𝑇𝑛,𝑡
𝑖𝑛_𝐷𝑅  indoor temperature of a dwelling in a demand response case (°C) 

𝑇𝑛,𝑡
𝑖𝑛𝑏𝑎𝑛𝑑

 indoor temperature dead-band (°C) 

𝑇𝑛,𝑡
𝑖𝑛𝑇𝐺

 indoor target temperature (°C) 

𝑇𝑛,𝑡
𝑖𝑛𝑠𝑒𝑡𝑏𝑎𝑐𝑘

 indoor temperature setback point (°C) 

𝑇𝐸𝐶𝑅 total energy change ratio (%) 

𝑢𝑛,𝑡
𝐸_𝐵𝑎𝑈 commitment states of EHP in a business as usual case (0 or 1) 

𝑢𝑛,𝑡
𝐸_𝐷𝑅 commitment states of EHP in a demand response case (0 or 1) 

𝑢𝑛,𝑡
𝐺_𝐵𝑎𝑈 commitment states of gas boiler in a business as usual case (0 or 1) 

𝑢𝑛,𝑡
𝐺_𝐷𝑅  commitment states of gas boiler in a demand response case (0 or 1) 

1 Introduction 
Due to the threat of global warming and climate change, many jurisdictions have set ambitious targets 
for energy conversion from renewable technologies. However, generation variability and uncertainty 
from several renewable technologies mean that more flexibility1 will be required to integrate these 
technologies successfully [1]. In a traditional power system, flexibility is contributed by flexible 

 

1 In this work we define flexibility as the increase/decrease in electrical power (compared to a business-as-usual baseline) 

that can be provided by reducing/increasing load, respectively. 
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generators and large-scale storage (e.g., pumped hydro). Currently, with communication technologies 
advancing, significant amounts of flexibility may now be available from the demand-side, and in 
particular the residential sector, particularly given electrification of heating [2].  

Multiple actors could benefit from this demand side flexibility. For example, system operators could 
be interested in the potential of residential resources (particularly electro-thermal thermostatically 
controlled loads) to provide various frequency control services, of which more will be required in the 
near future [3]. System services of interest include fast frequency response [4]/regulation services [5] 
and slower reserve products [6]. Besides services to the system operator, network operators may also 
need flexibility to address network congestion [7], or may consider flexibility from demand side to 
minimise the cost of network expansion [8]. Retailers can also benefit from using residential flexibility 
to bid on energy markets to maximise their profits [9].  

Understanding the potential of DR from the residential sector and particularly buildings to provide 
“building-to-grid” flexibility required by various power system actors requires two steps, namely, 
design of appropriate metrics and quantification of those metrics. Metrics may simply relate to the 
power that can be shifted/curtailed/increased, such as discussed in [10–13]. In these examples the 
flexibility of specific types of load can be assessed using software with bottom-up methods. For 
instance, EnergyPlus is used to simulate the energy consumption of commercial buildings and 
apartments in [10]. In that work, sensitivity studies are carried out with different building parameters 
and target temperature ranges to demonstrate the numerical distribution of potential flexibility of 
single building blocks for DR applications. On the other hand, there are many general metrics for 
flexibility quantification. Examples of other appropriate metrics are the appliance flexibility index and 
acceptable delay time metrics, as shown in [11] and [12], respectively. These two metrics measure 
flexibility as the acceptable time shifting of appliances’ operation. Moreover, since the random 
behaviour of occupants may affect the individual appliance’s flexibility, it is also important to quantify 
the flexibility of loads at the aggregate level. Hence, in [13] a metric called flexibility index of aggregate 
load is introduced, which is used to indicate the probability of demand increase or decrease of a group 
of loads. A further metric denoted as percentage flexibility level, which determines the amount of 
flexible demand for DR applications, is also given in [13]. Recognising that provision of flexibility 
products with long sustain times (e.g., few hours) can have an adverse effect on user comfort, the 
comfort level satisfaction of occupants is also used as the metric to correspond to the DR capacity as 
shown in [14]. Following another approach, the comfort level is considered intact if the temperature 
indicator is within the pre-defined bounds [15].  

Other publications have focused on the utilisation of flexibility for practical applications, such as 
renewable integration, network congestion and capacity support. In [16], the flexibility of generic 
electric heating units is used to increase the renewable penetration level at a microgrid scale, while a 
sensitivity study is performed with different occupancy profiles and weather patterns. The 
effectiveness of domestic DR based on real-time price signals has also been investigated, as shown in 
[17]. The flexibility of electric heating can also actively participate in ancillary service markets by 
means of a novel thermostat technology which takes into consideration the uncertainties from both 
demand and generation sides [18]. Case studies in the field can also provide valuable information. For 
example, a field trial undertaken in Belgium [19] found that potential upward and downward 
flexibilities per household are 65 W and 430 W respectively. Extrapolating this to the national level 
implies that domestic flexibility could equal 1.8% (upward) and 12.1% (downward) of installed 
generation capacity in the country. In a New York State study [20], it has been found that the system 
capability of integrating wind generation can increase to 5 GW, which is equivalent to a 33% wind 
penetration level in the grid of New York State, if the EHP penetration level reach 20%. In the UK case 
[21], it has been found that system peak demand can be reduced by 7 GW (equivalent to 9% of the 
peak) by 2050 with the utilisation of the flexibility from domestic appliances and EVs. Despite the 
breadth of current research, a common gap in the above literature [10–18] is the neglect of the impact 
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of DR in the period after service provision. Where this impact is considered, such as in the high-level 
case studies [19–21], there is no quantitative analysis on the payback effect of DR. In addition, 
continuous operation of DR can lead to the saturation of flexibility and the synchronisation of 
appliances, so that the service provision can eventually become unsustainable. Further, the recovery 
of flexibility in the post-DR period can lead to power spikes and additional energy consumption due 
to the synchronisation of appliances state, which can subsequently challenge system security. This 
behaviour is of significant interest to network and system operators. Hence, a comprehensive set of 
metrics for assessment of residential DR is clearly missing. 

In order to cover the gaps mentioned above, this paper presents a unified framework to assess the 
flexibility of current and future residential heating technologies and their performance in providing 
building-to-grid demand response. Specific contributions include:  

1) Several general flexibility metrics which are specifically designed to assess the benefits and 
impact of building-to-grid DR activities to different stakeholders in both electricity and gas 
sectors. In addition, the potential comfort loss of occupants due to DR is specifically 
investigated.  

2) Two control algorithms of Electric Heat Pump (EHP) operation are introduced which are used 
to determine the on/off states of aggregated EHPs in the provision of ancillary services. 

3) Simulation and assessment of DR from residential EHP aggregation for services with long 
sustain times is carried out. 

4) The performance of EHP-only and hybrid (electricity-gas) heating systems is compared in 
different DR applications. 

The rest of the paper is organized as follows: In Section 2, specific metrics are presented to assess EHP 
and hybrid heating systems’ performance on grid services applied to different stakeholders, alongside 
the implemented DR control mechanisms. In Section 3, an overview of a high-resolution (one-minute) 
residential energy consumption model is presented, which is used to simulate the operation of EHPs 
and the comfort level of occupants. In Section 4, a grid reserve service is selected and various case 
studies are carried out to investigate the effectiveness and impact of DR on technical and economic 
perspectives. Section 5 concludes the findings of this paper and future works. 

2 Methodology 
In this section, the metrics which are used to quantify the operational flexibility of EHPs are explained. 
Then, various service impact metrics, classified by the energy system actors for which they will be of 
use, are described. Lastly, two service provision algorithms (‘Full’ and ‘Partial’) for controlling the EHP 
aggregation are introduced, which may lead to different values of the metrics in practice. Note that 
the approach described here is specifically for an EHP heated domestic building (in case with a gas 
boiler back-up), but that the approach is generalizable to other arrangements. 

2.1 Flexibility metrics and quantification  
Before the introduction of the metrics designed for different stakeholders in DR activities, it is 
necessary to define the quantity of EHPs’ flexibility, which can be deployed for services provision. The 
amount of flexibility (in kW) provided by EHPs depend on their capacity and operational level. In the 
numerical applications carried out here, for the sake of simplicity, we assume that EHPs modulates 
between two states (on-off), as many devices actually do. However, these EHPs will normally cycle 
within the dead-band settings of the thermostat [22], with an equivalent average power output over 
the time windows of interest similar to that of heat pumps that are inverter-driven and can thus adjust 
their output level more finely. While the specific numerical results may change slightly, the general 
conclusions and the utilization of the metric set developed should not be affected. 

 



Accepted version, Applied Energy 

The upward/downward flexibility is equal to the amount of EHPs aggregated electric power input that 
can be reduced/increased to a minimum/maximum operational level starting from the current level. 
The terms “upward” and “downward” used here are in analogy to the power system’s upward and 
downward reserve services that are normally provided by conventional generators, for which 
“upward” is associated to ramping “up” and downward to ramping “down”. The maximum available 

upward/downward flexibility (𝑡𝑓𝑡
𝑈𝑃/𝐷𝑁

) of a cluster with N EHP units is calculated as the sum of the 

flexibility from each unit, as shown in (1) and (2). 𝑃𝑛,𝑡
𝐸  represents the input electrical power rating of 

the EHP, while the binary variable 𝑢𝑛,𝑡  indicates the commitment states of the EHP. It should be 

mentioned that the calculated flexibility is the instant value based on the original operation schedule 
of the unit at each time step. It means that any disruption of the unit’s operation schedule may 
subsequently alter its flexibility quantity in the following hours. If the flexibility of EHP is used for DR 
application more than once within a day, the original flexibility quantity can be changed after the first 
flexibility utilisation, as the EHP needs to increase or reduce its heat generation to compensate the 
heat loss or over-heating phenomenon. In this work, only one DR application per day is considered, as 
continuous DR application within a day may severely diminish the consumer’s experience. 
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2.2 Metrics and relevance to stakeholders 
Several different parties can be stakeholders (e.g., sellers or buyers) in DR activities. These are: system 
operator (SO), transmission network operator (TNO), distribution network operator (DNO) (or, in the 
future, Distribution System Operator (DSO)), retailer, aggregator, and consumer. In this section, 
metrics are separately designed for each stakeholder to quantify the impact of service provision 
activities during deployment and/or in post-service periods. The variables in the DR and business as 

usual (BaU) cases are differentiated (i.e., the input power of EHP (𝑃𝑛,𝑡
𝐸_𝐵𝑎𝑈  and 𝑃𝑛,𝑡

𝐸_𝐷𝑅 ) in order to 

compare the heating units (i.e., EHPs, gas boilers) operation profiles of two scenarios. 

2.2.1 DNO/DSO, TNO and SO 
Although DR is used to support power system operation, a side effect of DR applications may be 
compromise of system security if there is not proper management, as the operation of EHPs can be 
synchronised after the service period. In the case of an upward service (that is, in the presence of a 
system imbalance due to generation shortage), the EHP cluster could potentially even switch off to 
decrease the demand and reduce the system imbalance. However, this will lead to indoor temperature 
drop that will require additional “payback” power to re-establish the desired temperature after the 
service has been called off. With regards to a downward service (system imbalance with generation 
excess), standby EHPs are ramped up/turned on to increase the system electric demand, which will 
lead to overheating and higher than desired temperature. Based on the explanation above, the 
changes of peak power due to DR activity are crucial information to network operators. A metric called 
Power Payback Ratio (𝑃𝑃𝑅) is created to quantify the variation of peak power. The PPR metric is 
calculated as the ratio of the maximum electrical power of the cluster in the DR and BaU cases within 

a day, as shown in (3), which is calculated with the input power of EHP (𝑃𝑛,𝑡
𝐸_𝐵𝑎𝑈 and 𝑃𝑛,𝑡

𝐸_𝐷𝑅) and the 

corresponding operating states (𝑢𝑛,𝑡
𝐸_𝐵𝑎𝑈  and 𝑢𝑛,𝑡

𝐸_𝐷𝑅), in BaU and DR cases. This metric can inform, for 

example, the DNO and TNO to avoid potential network congestion, and allow the SO to schedule an 
appropriate generation capacity. As mentioned above, DR applications can lead to the synchronisation 
of the EHPs’ operation and subsequently increase the peak of electricity consumption. Therefore, the 
coincidence factor can be another important and generic metric for network operators [23]. 
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In ancillary services markets it is common to procure a specific service for a certain duration over a 
given time ‘window’. This means that the level of flexibility provided (i.e., the kW value of ancillary 
service that is provided) must be guaranteed over such time window. In this case, the Constant to 
Maximum Ratio (CMR) may be of interest. The CMR metric is calculated with the average service 

capacity of an EHP (𝑟𝑛,𝑡
𝑈𝑃/𝐷𝑁

) and the maximum available flexibility of an EHP cluster (𝑡𝑓𝑡
𝑈𝑃/𝐷𝑁

) as 

shown in (4). The calculation of average service capacity (𝑟𝑛,𝑡
𝑈𝑃/𝐷𝑁

) is given in the Section 2.3. The CMR 

indicates the proportion of a cluster’s flexibility that is not being exploited due to the requirement to 
provide the same amount of flexibility throughout the window. 
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2.2.2 Retailer 
Retailers can also benefit from specific DR applications, as it can reduce the imbalance of a retailer’s 
position by temporarily adjusting customer demand. However, the payback effect of DR application 
can also lead to further changes on energy consumption of customers following the end of service 
provision. This payback is caused by the synchronisation of appliance operation as explained in Section 
2.2.1. Three energy quantity related metrics are introduced to assess the impact of DR on retailer’s 
bidding strategy in energy markets. The first metric is the Energy Payback Ratio (𝐸𝑃𝑅), which is 
calculated as the payback energy consumption divided by the energy volume of deployed 

upward/downward flexibility. As shown in (5), 𝐸𝑃𝑅 is calculated using the input power of EHP (𝑃𝑛,𝑡
𝐸_𝐵𝑎𝑈 

and 𝑃𝑛,𝑡
𝐸_𝐷𝑅) and the corresponding operating states (𝑢𝑛,𝑡

𝐸_𝐵𝑎𝑈  and 𝑢𝑛,𝑡
𝐸_𝐷𝑅) in BaU and DR cases, and the 

average service capacity of an EHP (𝑟𝑡
𝑈𝑃/𝐷𝑁

).  This metric can be used to inform retailers of the 

potential changes of electricity consumption following DR events, which should be considered in the 
retailer’s bidding strategy. The Total Energy Change Ratio (𝑇𝐸𝐶𝑅) is calculated as the ratio of the EHP 

cluster’s electricity consumption in DR and BaU cases, which involve the input power of EHP (𝑃𝑛,𝑡
𝐸_𝐵𝑎𝑈 

and 𝑃𝑛,𝑡
𝐸_𝐷𝑅) and the corresponding operating states (𝑢𝑛,𝑡

𝐸_𝐵𝑎𝑈  and 𝑢𝑛,𝑡
𝐸_𝐷𝑅) in BaU and DR cases as shown 

in (6). This metric can be used to assess the overall increase or reduction of electricity consumption 
caused by service provision. The TECR metric is valuable to retailers because this information can 
inform their decision on how much to bid in energy markets and the potential revenue changes 
associated with the electricity consumption of customers. The third metric is designed for hybrid 
heating system with both gas and electricity consumptions. For a hybrid heating system with an 
auxiliary gas boiler, it is possible to use the gas boiler to maintain the heat supply without much 
comfort loss. Therefore, the ratio of the net changes of gas and electricity consumption (the Net 

Energy Transfer Ratio - 𝑁𝐸𝑇𝑅 ) is calculated in (7) with the input rating (𝑃𝑛,𝑡
𝐺_𝐵𝑎𝑈  and 𝑃𝑛,𝑡

𝐺_𝐷𝑅 ) and 

operating states (𝑢𝑛,𝑡
𝐺_𝐵𝑎𝑈 and 𝑢𝑛,𝑡

𝐺_𝐷𝑅) of the gas boiler in BaU and DR cases, the input power of EHP 

(𝑃𝑛,𝑡
𝐸_𝐵𝑎𝑈 and 𝑃𝑛,𝑡

𝐸_𝐷𝑅) and the corresponding operating states (𝑢𝑛,𝑡
𝐸_𝐵𝑎𝑈  and 𝑢𝑛,𝑡

𝐸_𝐷𝑅) in BaU and DR cases. 

This metric is important to retailers because many retailers may supply several energy types rather 
than electricity only. Therefore, the potential changes of customer energy consumption on other 
energy vector may cause concerns to retailers. The consumer may also be interested in the TECR and 
NETR metrics, as they will inform the energy bill changes due to DR activities. 
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2.2.3 Aggregator 
The aggregator is responsible for extracting the flexibility from individual consumers and providing 
various services to DR buyers. The aggregator will make payments to the individual consumers based 
on the committed flexibility amount.  To do this fairly the aggregator must consider the impact of DR 
activity on the dwelling’s EHP operation. For a cluster of EHPs, the impact of DR activities can be 
summarised according to three factors: the Impacted Dwellings Percentage ( 𝐼𝐷𝑃 ); the Average 
Disruption Duration (𝐴𝐷𝐷) and the Average Power Contribution (𝐴𝑃𝐶). The IDP metric indicates the 
percentage of the dwellings with a different duration of EHP activation compared with BaU case, as 

calculated in (8) with the operating states of EHPs (𝑢𝑛,𝑡
𝐸_𝐵𝑎𝑈 and 𝑢𝑛,𝑡

𝐸_𝐷𝑅) in BaU and DR cases. This metric 

informs the aggregator of how many dwellings in the cluster should receive compensation due to 
deployment. The ADD metric can be used to measure the average change of EHP activation time across 

the service deployment period, which is also calculated using the operating states of EHPs (𝑢𝑛,𝑡
𝐸_𝐵𝑎𝑈  

and 𝑢𝑛,𝑡
𝐸_𝐷𝑅) in BaU and DR cases, and IDP metric as shown in (9). The APC metric is calculated in (10) 

using the input power of EHP (𝑃𝑛,𝑡
𝐸_𝐵𝑎𝑈 and 𝑃𝑛,𝑡

𝐸_𝐷𝑅) and the corresponding operating states (𝑢𝑛,𝑡
𝐸_𝐵𝑎𝑈  and 

𝑢𝑛,𝑡
𝐸_𝐷𝑅) in BaU and DR cases, which determine the average service contribution from one dwelling with 

an EHP. The ADD and APC metrics can help an aggregator to calculate the payment to individual 
participants. 
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2.2.4 Consumer 
The consumer is the essential source of demand-side flexibility. During the service provision process, 
the direct impact to the consumer would be the variation of their living comfort. Therefore, a metric 
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is required to properly assess the probability of a dwelling experiencing a certain level of comfort loss 
or gain following a service provision. A metric is defined here, which is called Probability of Comfort 
Variation (𝑃𝑜𝐶𝑉). The first stage in the calculation of POCV is to define the Occupant’s Comfort Flag 
(𝑂𝐶𝐹𝑛,𝑡). 𝑂𝐶𝐹𝑛,𝑡 indicates the validity of the comfort change measurement with default value of zero 

and it is set to 1 when discomfort is experienced. This allows two circumstances to be excluded: 

• The indoor temperature ( 𝑇𝑛,𝑡
𝑖𝑛_𝐵𝑎𝑈 and 𝑇𝑛,𝑡

𝑖𝑛_𝐷𝑅 ) is within the target temperature ( 𝑇𝑛,𝑡
𝑖𝑛𝑇𝐺

) 

plus/minus dead-band (𝑇𝑛,𝑡
𝑖𝑛𝑏𝑎𝑛𝑑

) range  

• The indoor temperature is dropping from set point to setback point (𝑇𝑛,𝑡
𝑖𝑛𝑠𝑒𝑡𝑏𝑎𝑐𝑘

) during the 

transition from active occupancy to inactive occupancy period  

The rest of the time steps should be considered as uncomfortable periods, as shown in (11). Then the 

occupant’s comfort level (𝑂𝐶𝑛,𝑡
𝐵𝑎𝑈/𝐷𝑅

) in these specific periods for DR and BaU cases are calculated in 

(12). This measures the deviation of the indoor temperature (𝑇𝑛,𝑡
𝑖𝑛_𝐵𝑎𝑈and 𝑇𝑛,𝑡

𝑖𝑛_𝐷𝑅 ) from the target 

temperature range which is calculated with the target temperature (𝑇𝑛,𝑡
𝑖𝑛𝑇𝐺

) plus/minus the dead-band 

( 𝑇𝑛,𝑡
𝑖𝑛𝑏𝑎𝑛𝑑

). Afterwards, the daily maximum comfort loss/gain ( 𝑂𝐶𝑉𝑛 ) of BaU and DR cases are 

determined with occupant’s comfort level (𝑂𝐶𝑛,𝑡
𝐵𝑎𝑈/𝐷𝑅

) as shown in (13). The negative value of 𝑂𝐶𝑉𝑛  

represents the worse comfort level in the DR cases and vice versa for positive value, which means 
comfort level improvement. Then, 𝑂𝐶𝑉𝑛  of each dwelling in the cluster is processed through 
cumulative probability distribution. The PoCV metric needs to be divided into two parts, which are the 
comfort loss and gain. 𝑃𝑜𝐶𝑉𝑐

− indicates the probability of a household having a certain level of worse 
comfort experience (denoted as 𝑐 in °C) following its flexibility deployment, and vice versa for 𝑃𝑜𝐶𝑉𝑐

+, 
which measures the probability of a comfort level gain. 𝑃𝑜𝐶𝑉𝑐

− and 𝑃𝑜𝐶𝑉𝑐
+ are defined in (14) and 

(15) respectively.  
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2.2.5 Metrics summary 
Based on the above discussion, Table 1 summarizes all the metrics introduced in this paper. These 
metrics can be used as a generic method in assessing not only the flexibility of EHPs, but also any 
flexible domestic appliances. More importantly, the metrics cover the assessment from multiple 
perspectives, such as technical, economic and social ones. For the technical part, metrics are 
presented which are used to assess the variation of peak demand and the shift of energy consumption. 
This information is essential for system and network operators to take preventive measures in order 
to prepare for energy and power payback following DR activation or even to alleviate payback through 
rescheduling the domestic appliances operation. It also indicates the average disruption time, which 
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can be used to inform the economic question of how to quantify incentives paid to the contributors 
of flexibility. From the social perspective, the maximum deviation of comfort level caused by DR 
application is presented in a probabilistic way, which can be used to inform practical inconvenience 
which flexibility providers may experience in exchange for incentives. 

Table 1. The summary of metrics designed for different stakeholders 

Stakeholders Metric name Related content 

Operators (system and network) 

Power payback ratio (PPR) Electrical power 

Coincidence factor Electrical power 

Constant to maximum ratio (CMR) Electricity 

Retailer 

Energy payback ratio (EPR) Electricity 

Total energy change ratio (TECR) Electricity 

Net energy transfer ratio (NETR) Gas and electricity 

Aggregator 

Impacted dwelling percentage (IDP) Time 

Average disruption duration (ADD) Time 

Average power contribution (APC) Electrical power 

Consumer Probability of comfort variation (PoCV) Temperature 

2.3 Service provision mechanism 
As highlighted above, the magnitude of potential flexibility in individual dwellings is relatively small, 
in the range of few kilowatts. In addition, the flexibility of a single house with an EHP can vary 
significantly in a short period due to the random behaviour of individual households. Therefore, it is 
necessary to aggregate thousands of houses into one cluster to increase the diversity of profiles. In 
addition, the information regarding the forecast of these operational profiles needs to be passed to 
system or network operators in advance, who contract residential flexibility to provide ancillary 
services. When the service is called, the aggregator remotely controls the individual appliances (i.e., 
EHPs) based on the capacity and sustain time requirements of the service. Moreover, the metrics 
should be assessed by aggregator to inform the potential impact of DR applications to other 
stakeholders. In Section 1, it is mentioned that two control algorithms are separately designed for 
system ancillary services and alleviation of network congestion. With regard to ancillary service 
provision, it is possible that only part of the EHP cluster’s flexibility can be used for service bidding. 
Taking the UK power system as an example, the provision of these services requires a large and 
constant volume of flexibility to be available at specific time windows2, but the potential flexibility of 
a cluster can vary across the day. Thus, this algorithm, which is designed to deliver a constant service 
capacity, is called “Partial” in the rest part of the paper. The maximum contract volume of Partial 
algorithm is the minimum available load reduction/increase from the EHPs during those windows. 
Another algorithm introduced here is focused on other DR products which require the cluster to offer 
the maximum flexibility to mitigate the issues in the system. The algorithm for this case is denoted as 
“Full” in this paper. 

A flow chart of the service provision control is shown in Figure 1. An aggregator can use one of the 
two control algorithms depending on specific applications. If the Partial algorithm is chosen, a priority 
list of dwellings is required to determine the switching on/off order of the EHPs. The list is created by 
comparing a specific indicator, such as indoor temperature. In the upward service case, the EHP of 
dwellings with higher indoor temperature (𝑻𝒏,𝒕

𝒊𝒏 ) should be turned off first in order to minimise the 
impact of service operation on the occupant’s comfort level and load diversity [5], and vice versa for 

 

2 Taking the short term operating reserve (STOR) as an example, the service windows are from 07:00 
to 13:00 and 16:00 to 21:00 at half hour interval [36]. 
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the downward service case. After the EHP operation schedules of first M dwellings are altered, whose 
total flexibility equals to the service requirement (𝑹𝒕

𝑼𝑷/𝑫𝑵), the control is looped again for next time 
step. With regard to the Full control mechanism, the instant flexibility of one cluster would be fully 
utilised, therefore all EHPs in this cluster are completely turned off/on for upward/downward service.  

 

 Figure 1. Flow chart of DR control mechanism 

The average service capacity contributed by an EHP in the Partial/Full algorithms (𝑟𝑡
𝑈𝑃/𝐷𝑁,   𝑃/𝐹

) are 

determined in (16) and (17) respectively. The individual dwelling’s flexibility is calculated with the 

cluster’s upward or downward flexibility (𝑡𝑓𝑡
𝑈𝑃/𝐷𝑁

) within service windows (𝑤) and the number of 

dwellings in the clusters (N). The service window periods are denoted as 𝑊. 
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3 Model structure 
To assess flexibility from electric heating resources an understanding of the underlying physical 
constraints is important. The approach used here is to consider a ‘bottom-up’ model, starting from 
the capability and constraints of individual units. This model should be multi-energy in nature, to allow 
assessment of flexibility from energy vector shifting [24]. An example of such a model is that which is 
presented in [23]. This is a multi-energy, physically-based high resolution model that includes detailed 
building thermal modelling and can generate different energy vectors for households given a mix of 
technologies, partially built on the electricity-only model presented in [25]. Crucially for the 
assessment of flexibility potential, this model considers the thermal inertia of the building and heating 
system. A similar approach was followed in [26].  
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In this work an evolution of the  residential energy consumption model presented in [23] is applied to 
simulate the performance of heating technologies (i.e., EHPs, gas boilers). As described by Figure 2, 
the constituent models are driven off key physical and user-related parameters which engender the 
ability to simulate a variety of cases, as desired. First of all, the input profiles are composed of 
parameters which can be randomly generated based on statistics. The “squares” in each module refer 
to the predefined parameters based on the model operator’s choices on dwelling, emitter and season 
types, etc. An arrow between two sub-squares indicates the dependency of a parameter on another. 
An arrow between two modules in different steps indicates that the previous one is considered as an 
input for the analysis conducted in the following module. The space heating and domestic hot water 
(DHW) demands are considered as the two main heat consumptions. Following the end-user heat 
demand analysis, five distinct models are utilised: heat generation, cooking, electrical appliance, 
electric vehicle and photovoltaic. The “heat storage parameters”, within the dashed line box, indicates 
that the storage is an optional configuration for the heating system of the dwelling. Correlations 
between the service demands are cultivated through the models’ common basis in user activity 
profiles and environmental parameters. Further interactions between the models (such as between 
cooking and heat demand through cooking incidental heat gains) are also captured. Finally, the 
mapping between energy service demand profiles and dwelling energy profiles elucidates the multi-
energy aspect of the model. Note that the mapping of heat and cooking profiles to electricity and gas 
profiles depends on the heating and cooking technology selections.  

The building and its heating system are modelled as electrical analogues with several nodes as 
explained in [23]. The value of the parameters, such as the thermal capacitance of indoor 
environment, the thermal resistance of walls, were initially generated with Design Builder and Build 
Desk U software. Then, a calibration of parameters’ value was carried out by using the survey data 
given in National Energy Efficiency Data framework until the difference of the dwelling’s gas 
consumption in the simulation and the survey reference is less than 5%. This can provide reassurance 
that, when considering aggregated results, the key uncertainties (which relate to building and heat 
emitter thermal characteristics) are not significant. The operation data of EHP is retrieved from [27] 
for modelling purpose, which considered the influence of source temperature and flow water 
temperature on input power and COP of the heat pump. In addition, the defrost cycle of heat pump 
in cold conditions is modelled based on the information provided in [28]. 
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Figure 2. Structure of the residential energy consumption model 

4 Case studies and results 
For this case study both upward and downward flexibility services are designed based on National 
Grid (NG)’s short term operating reserve (STOR) product. As stated in the NG document [29], there 
are two relevant requirements for reserve service provision: First of all, the bidding capacity of reserve 
services needs to be more than 3MW generation or equivalent demand reduction from one tender. 
However NG also clarified that the capacity can be contributed from more than one site, which gives 
the possibility of the participation of an aggregator across different geographical regions or clusters. 
Secondly, the aggregator should be able to provide the bidding capacity during any STOR window 
listed in [30] with maximum two hours sustain periods. In order to examine the worst impact, the 
service sustain period is set to two hours following each window. 

The configuration of dwellings and services in each scenario is shown in Figure 3. The scenarios are 
organised in such way to allow comparison in one dimension without influence from the variation of 
other factors. The examined four dimensions are explained as follows: 

• Energy vector for heating 

• Thermal inertia of dwelling and its heating system 

• Deployed flexibility type 

• Flexibility procurement mechanism 

 

Figure 3. Configuration of scenarios compared from different perspectives. 

Every dwelling is equipped with an air source heat pump (ASHP). The reason of choosing ASHP as the 
primary heating unit is that this type of EHP accounted 75% of heat pumps installation in the United 
Kingdom (UK) [31]. The power rating of ASHP is determined according to the thermal load of dwellings 
in the design conditions [23]. In the hybrid heating scenarios, a gas boiler acts as back up to the ASHP. 
Two types of dwelling and emitter combinations are investigated to represent buildings with different 
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thermal inertia. The old detached dwelling and new flat represent the highest and lowest thermal 
demand dwellings in the database of the model [23]. Each flat has installed a radiator, while underfloor 
heating is used in the old detached house. A 300 litre buffer is installed with an underfloor heating 
system in order to reduce the cycling of the ASHP [22]. The indoor target temperature is set to 21°C 
during the occupant active period and 17°C for inactive period. A threshold control is applied to the 
heat provision for space heating buffer and DHW tank. The upper and lower temperature limits are 
55 and 48°C respectively. The environmental parameters include the external temperature profile 
which is retrieved from historic data given in [32]. The weather pattern is for a typical UK winter 
weekday, which has a temperature range from 0.3 °C to 5.4 °C as depicted in [32]. This temperature 
profile is uniformly applied to all dwellings, as we assume that the aggregator has procured the service 
from EHPs which are geographically close to each other in this case, also to address local network 
aspects. The solar irradiance data is generated by the model described in [33]. The number of 
dwellings in the cluster is set to 1000, which is sufficiently large to give diversified results, as discussed 
in [23]. 

Both upward and downward reserve services with Full and Partial algorithms are examined in electric 
heating only scenarios, while only upward service with Full algorithm is analysed in the hybrid heating 
scenarios. This is because there is no shortage of heat supply in downward scenarios, which can be 
covered by the heat generation from gas boilers. In addition, the result of Full algorithm scenarios can 
indicate the upper limit of metrics in hybrid heating scenarios. 

In the following content, the flexibility provision of the clusters is presented before the designed 
metrics are investigated for different scenarios displayed in Figure 3. External environment 
temperature profiles and an occupant’s activity are the two factors which can result in different 
operation schedules of a dwelling’s heating system and can consequently vary the value of different 
metrics. Therefore, the impact of these uncertainty factors on simulation results is also investigated 
in the following assessments. The external temperature is set as the random factor in the analysis of 
aggregator’s metrics. This is because aggregators are interested in the potential disruption of DR 
participators’ activity at different periods. Therefore, simulations are performed by setting DR 
activities at different service windows but with the same set of 1000 occupancy profiles in all scenarios 
to ensure a consistent comparison regarding the heat demand of occupants. Although the DR activity 
may involve more than 1000 dwellings in practice, the heating demands of occupants are well-
diversified after reaching 1000 dwellings based on the results shown in [34]. For system and network 
operators, and retailers, the main challenges (such as capacity shortage and network congestions) 
generally happen at peak hours. Further, the peaks of heat demand and electricity are coincident, 
which means the comfort loss of DR participators can also be at the highest level during the evening 
peak period. Thus, the service window is fixed to 18:00 for the analyses of system/network operator, 
retailer and consumer related metrics. On the other hand, the impact of randomised occupant 
behaviour is considered in the assessment of operators, retailer and consumer related metrics. A 
Monte-Carlo simulation is performed to quantify the distribution of metrics value with different 
occupancy profiles. 500 rounds of simulation are undertaken for each scenario by randomly allocating 
occupancy profiles from a database composed of 5000 occupancy profiles. 

4.1 Flexibility provision 
The metrics related to aggregators are only analysed in electric heating only scenarios, while the 
results of the simulations in the hybrid heating scenarios (marked as ‘.h’) are not presented here. This 
is because the auxiliary heater is only constantly activated when the heat loss rate of the dwelling is 
too high (i.e., in extreme cold days) or when the primary heating unit is not available (i.e., during DR 
events). However, the aggregator related metrics are evaluated based on the flexibility of the ASHPs 
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operating in a normal condition before the service deployment. Therefore, the performance of ASHPs 
in both electric only and hybrid scenarios have almost the same performance3. 

First of all, the upward flexibility of the ASHPs cluster and average indoor and external temperature 
profile are shown in Figure 4. It can be noticed in Figure 4 that the upward flexibility is substantially 
increased in 06:00-08:00 and 16:00-18:00, which is coincident with the period of occupants becoming 
active. In addition, the average indoor temperature is rising in these two periods as the heat supply 
increases. On the other hand, the flexibility decreases around midday. This is due to the heat demand 
reduction caused by a smaller temperature difference between indoor and external environments and 
the less active occupants in the dwelling on a weekday. 

The average flexibility contributions from a dwelling in the clusters with the Full and Partial algorithms 
are depicted in Figure 5. For the Full algorithm, the service capacity is equal to the maximum available 
flexibility at each time step, which is marked as continuous line in. With regard to the Partial algorithm, 
the flexibility contribution is determined from the flexibility availability in all service windows and the 
service sustain period. For example, the upward service capacity with the Partial algorithm equals to 
the amount of available flexibility at 15:00 (Window 13:00 plus two hours sustain time), while the 
downward contract volume is determined by cluster’s flexibility amount at 19:00. Moreover, the 
dwellings in scenarios A and B (left figure in Figure 5) have higher capacity contribution on both 
upward and downward services compared to scenarios C and D (right figure in Figure 5). This is due to 
the high thermal demand of the old detached dwelling compared with the new flat, which leads to a 
higher power rating of the EHP.  

 

Figure 4. Maximum upward flexibility of EHPs in an old detached house (left) / a new flat (right), and the corresponding 
average indoor and outdoor temperature 

 

3 Although, the auxiliary heater may be shortly activated when the occupants are inactive for more 
than few hours and the emitter temperature is too low such that the emitter temperature can be 
brought back to a specific level quicker. But based on the analysis result this has minor impact on the 
ASHPs flexibility quantity and consequently ignored for this case study.  
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Figure 5. Average service provision capability from an EHP in an old detached house (left) / a new flat (right) 

4.2 Aggregator metrics 
The values of the three aggregator metrics (IDD, ADP and APC) are shown in Figure 6 and Figure 7, 
which separately consider the service provision from different clusters. For the IDP metric, the 
variation of its value in the scenarios with the Partial algorithm (A.2, B.2, C.2 and D.2) is more volatile 
in the morning services windows compared to the metric value in afternoon and evening ones, as 
shown in Figure 6 and Figure 7. This phenomenon indicates that more customers are expected to be 
interrupted for services provision with the Partial algorithm in the morning. The reason for the higher 
customer interruption percentage is that the Partial algorithm uses the indoor temperature level to 
decide the switching ranking of ASHPs in the service provision process. In the morning, the state of 
dwellings (i.e., indoor temperature) are ‘synchronised’ after an overnight inactive period. This causes 
the ranking list in the algorithm to be frequently adjusted after the disruption of heating activity. 
Consequently, the range of impacted customers is widened. On the other hand, the IDP value in the 
upward service scenarios with the Full algorithm (A.1 and C.1) identifies the percentage of customers 
with heat demand, while the value of the metric in the downward service scenarios (B.1 and D.1) 
indicates the percentage of customers whose heating system is operating intermittently. As seen in 
Figure 6 and Figure 7, the variation of the IDP metric across the day shows a contrary trend in upward 
and downward scenarios. For example, the IDP metric in A.1 and C.1 scenarios reaches its peak values 
at around 07:00 and 18:00, while the peak of IDP metric in B.1 and D.1 scenarios happens at 13:00. 
This finding indicates the highest and lowest heat demand periods in the service windows. 

The value of ADD metric is also shown in Figure 6 and Figure 7. Based on the ADD metric value in the 
scenarios with the Full algorithm (A.1, B.1, C.1 and D.1), it can be interpreted that the average 
operating duration of the ASHP at each window is in the range of 60 to 90 minutes. The maximum 
ASHP operation duration happens at 07:00 and 18:00, while the minimum duration occurs at 13:00. 
These time windows are also coincident with the “peak and valley” times of customers heat demand.  

The value of the APC metric is shown in Figure 6 and Figure 7 as well. The APC metric shows a constant 
performance in scenarios C and D, while scenario B has a higher APC metric value than the result in 
scenario A. This is due to the additional buffer component in the old detached house case, which gives 
the possibility of reaching higher water temperature in the heating system for downward reserve case 
and consequently higher input power of EHP to enable same level of heat with low coefficient of 
performance (COP) [35]. 
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Figure 6. Aggregator metrics performance of a 1000 old detached dwelling cluster at service windows 

 

Figure 7. Aggregator metrics performance of a 1000 new flats cluster at STOR windows 

4.3 Operators and retailer metrics 
The metrics designed for SO, TNO, DNO and retailer are analysed with the simulation of different 
scenarios. Firstly the CMR metric is analysed to show how much flexibility is not exploited by an 
ancillary service, especially when the service capacity is required to be the same across the window. 
Subsequently, other metrics are considered. Because the operators and retailer are more concerned 
of the worst impact caused by services provision (such as network congestion and market bidding 
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imbalance), only the scenarios with the Full algorithm are investigated in this section, which deployed 
all available flexibility in the cluster.  

4.3.1 CMR metric 
By comparing the deployable flexibility in the two algorithms shown in Figure 5 the values of CMR 
metric can be calculated (4). It can be seen in Figure 8 that the maximum value of CMR metric is only 
47.2% for upward reserve service provision from the old detached dwellings cluster. This means that 
only 47.2% of available upward flexibility of EHPs installed in a detached house is being used for the 
corresponding grid service provision. This can lead to the conclusion that the maximum volume 
contracted by an aggregator for a STOR-type service is substantially smaller than the sum of the 
clusters’ available flexibility. 

 

Figure 8. CMR metrics of different dwelling clusters with upward/downward services provision 

4.3.2 Electric heating only cluster 
First of all, the performance of the ASHP only clusters is analysed. The PPR, EPR and TECR values are 
plotted in normal distribution and shown in Figure 9. With regard to the PPR metric, when the value 
of PPR metric is negative it indicates a reduction of the peak power of the cluster with the DR activation, 
and vice versa for the positive value. In Figure 9, only the scenario A.1 has a negative median value (-
5%), while the maximum PPR metric median value is 35% in the scenario D.1. For the upward service 
scenarios (A.1 and C.1), it can be noticed that the change of peak power is different for cases A.1 and 
C.1, with reduction in the scenario A.1 and increase in the scenario C.1. This is due to the thermal 
characteristics of the dwellings and their corresponding heating system in the cluster.  

 

Figure 9. Distribution of operator and retailer’s metrics value, in ASHP only cluster, with Full algorithm service provision 
between 18:00 and 20:00 

In order to facilitate the understanding of different payback phenomenon, the synchronisation rate, 
average input power of ASHP and, in the upward service scenarios (A.1 and C.1), the average indoor 
temperature are shown Figure 10. The value of synchronisation rate shows the percentage of 
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activated ASHP in the cluster, while the input power for individual ASHP is determined with the 
external air temperature and return water temperature in the heating system, as explained in [23]. It 
has been detailed in [23], the building model uses electrical analogues to capture the thermal 
characteristics of both dwellings and installed emitters. Therefore, the delay of heat transfer from 
heating generation to emitters has been properly represented, which produces a realistic variation of 
indoor temperature following a DR event. The aggregated input power of the cluster is determined 
using the average input power and the activated ASHP in the cluster. A negative PPR value in scenario 
A.1 is caused by two factors: 1) Small synchronisation rate increase; 2) Slow ASHP input power 
recovery. The underfloor heating system is designed for continuous operation and the synchronisation 
rate is already high (around 85%) in the BaU case, therefore the increment of synchronisation rate 
following an upward DR event is relatively small. Meanwhile, the temperature of the return water in 
the heating system is substantially reduced during a DR period. Also, the temperature recovery of the 
heating system takes longer in a high thermal inertia system (such as old detached house equipped 
with underfloor heating), which subsequently leads to a slower increase of ASHP input power. Thus, 
the payback power peak is reduced in high thermal inertia scenario A.1. On the other hand, a higher 
power peak is detected in the low thermal inertia scenario C.1, while the cluster’s daily peak power 
can increase 12.5%, which is caused by a larger synchronisation rate increase and a faster input power 
recovery as seen in Figure 10. More importantly, two distinct phenomena can be observed by 
comparing the indoor temperature of scenario A.1 and C.1. Comparing the indoor temperature results 
in Figure 10 show that the temperature decreases slower during the service provision period and 
slower recovery after service provision completed in scenario C.1 compared to scenario A.1. This is 
due to the different levels of thermal inertia of dwellings. In scenario A.1, the high thermal inertia of 
old detached house has helped to maintain the indoor temperature without heat supply from ASHPs. 
However, due to its high thermal inertia, the indoor temperature of old detached house is also harder 
to be increased. Unlike the old detached house, the low inertia new flat means that the indoor 
temperature is more responsive to heat supply adjustment. 

For the downward services, the PPR metric value can reach to 25.5% and 40% in scenarios B.1 and D.1 
respectively, as seen in Figure 9. The downward service can be called by retailers to reduce its market 
bidding imbalance, or by system operators to absorb excess renewable generation. However, the 
system and network operators also need to recognise the potential risk posed by downward services 
on network congestions due to high power paybacks. The impact of randomness of occupancy 
activities on the PPR metric value is shown in Figure 9. The standard deviation of the PPR value 
distribution in the upward service provision scenarios (A.1 and C.1) are around 0.7% to 1.2%, while 
the downward services scenarios (B.1 and D.1) have 1.5% standard deviation. 
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Figure 10. Synchronisation rate and average ASHP input power for Scenario A.1 (left) and Scenario C.1 (right) in normal 
operation or with Full upward reserve between 18:00 and 20:00 

Secondly, for the EPR metric, a positive value implies an increase of electricity consumption after a DR 
event and vice versa for the scenarios with a negative EPR. In Figure 9, the scenario A.1 has a negative 
EPR with -2.2% median value. This is because of the slower recovery of ASHP input power in the high 
thermal inertia dwellings as discussed above, so there is no payback effect for the upward service 
provided by the old detached houses cluster. In the scenario with new flats, the EPR median value in 
the scenario C.1 is 50%, which indicates that half of the electricity curtailment in DR event is 
“recovered” in the following hours after the service provision. The EPR values in the downward service 
scenarios (B.1 and D.1) can reach to -45% and -70% respectively. The reason for the higher reduction 
in electricity consumption following the downward service event (corresponding to -70% EPR values) 
in the scenario D.1 is that the new flat has a better insulation level and consequently lower thermal 
loss during the service period. In the downward service provision process, the indoor temperature 
increases due to the excess heat generation and the preservation of stored heat in the well-insulated 
dwelling, which leads to the reduction of heat requirement in the following hours. The standard 
deviation of EPR metric values is in the range of 0.5% to 1% which is slightly smaller than the standard 
deviation shown in the PPR metric values distribution. 

The TECR metric is analysed in different scenarios. It can be seen in Figure 9 that the maximum 
magnitude of TECR metric in scenario A.1 and C.1 are -13% and -8% respectively. The higher reduction 
of total energy consumption in scenario A.1 is caused by the no payback effect in scenario A.1 while 
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the EPR in scenario C.1 is 50%. It also needs to be emphasised that this metric informed the potential 
revenue loss of retailers due to the DR service carried by aggregators, as retailer’s turnover mainly 
depends on the amount of customer’s energy consumption. The TECR metric in downward service 
scenarios has a smaller magnitude, with median value less than 2%. This is because the downward 
flexibility is limited between 18:00 and 20:00, which leads to a smaller total energy consumption 
change in DR event compared with BaU case. 

At the network planning stage, one of the most important indicators for network design is the 
coincidence factor. The coincidence factor can measure the diversification of electricity consumption 
profiles of individual households in the same network, which determines the rating requirement of 
lines and transformers in the network. The simulation has been carried out one thousand times for 
each number of houses. Only the maximum coincidence factor of the results in these one thousand 
rounds is preserved which should reflect the worst situation of the network congestion. The base load 
profile from residential appliances is also included to produce the full electricity consumption profile 
of dwellings. Figure 11 shows the variation of the coincidence factor against the number of dwellings 
in four scenarios (A.1, B.1, C.1 and D.1). The load profiles in the BaU scenario represent the electricity 
consumption of the corresponding dwellings (old detached houses/new flats) without DR application. 
Firstly, it can be noticed that the coincidence factor in the old detached dwellings BaU scenario is 0.525 
at one thousand dwellings aggregated level. This is higher than the coincidence factor at same 
aggregated level in new flats scenario, which equals to 0.333. The coincidence factor is higher in the 
old detached dwellings with underfloor heating scenario, because the ASHPs are operating more 
frequently in this cluster, which results in a higher synchronisation rate in the left subfigure of Figure 
10. In addition, the coincidence factors of the scenarios with/without DR application overlap with each 
other at low aggregated level (e.g. 10-15 dwellings). This means the DR application would not lead to 
a substantial increase in coincidence factor for a small number of buildings, although the power 
increase due to payback effect needs to be considered in the network rating determination process. 
Furthermore, the upward service provision is also not leading to a substantial variation on the 
coincidence factor. For example, the coincidence factor is only increased by 0.003 at the saturated 
level in scenario C.1 compared to its BaU scenario, while the coincidence factor is reduced by 0.015 in 
the scenario A.1. On the other hand, the provision of downward service at peak hour can lead to a 
substantial increase on the coincidence factor. As shown in Figure 11, the coincidence factor has 
increased to 0.613 and 0.399 in scenarios B.1 and D.1 respectively. Therefore, the potential network 
congestion issue needs to be considered during the downward DR activation periods.  
 

  

Figure 11. Coincidence factor of the BaU and reserve provision between 18:00 and 20:00, old detached houses with 
underfloor heating (left) and new flats with radiator (right) 

4.3.3 Hybrid heating cluster 
In addition, the performance of a hybrid heating system is also simulated and the corresponding 
metrics value is depicted in Figure 12. The first metric introduced is the NETR, which is only relevant 
for the hybrid heating scenario as it concerns electricity and gas consumption. Its value in upward 
metrics is around 195%. This means gas consumption in upward reserve scenario is around twice of 
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the electricity consumption in the BaU case during reserve provision period. With regard to downward 
reserve scenarios, it can be noticed that even with additional heat supply due to ASHP ramping up, 
Scenario B.1.h has almost no gas consumption reduction while the reduction of gas in Scenario D.1.h 
is also only around 70% of the quantity of additional electricity consumption. The reason for the low 
gas saving in downward reserve scenario is that the idle ASHPs, which is used to provide downward 
reserve, may belong to the dwellings without heat demand after reserve provision period. However, 
the gas reduction is more visible (70%) in the radiator scenario (Scenario D.1.h) compared with the 
underfloor heating scenario (Scenario B.1.h). This is because the emitter temperature and the indoor 
temperature are maintained to the required level in the dwelling with high thermal inertia heating 
system, while the gas boiler is occasionally activated in the radiator scenario due to the low thermal 
inertia in both flat building fabric and the emitter. The PPR metrics in hybrid heating scenarios are also 
shown in Figure 12. It can be noticed that there is no difference on the distribution of PPR values in 
the downward scenarios (Scenarios B.1.h and D.1.h) compared to the results of the hybrid heating 
cluster in Figure 12 and the results of the EHP only cluster in Figure 9. This is because no extra heat 
provision is required for the downward service scenarios and there is consequently no impact or 
benefit of the gas boiler’s existence. For the upward scenarios, the median value of the PPR metric are 
increased from -5% to 0% and from 7.5% to 15% in Scenario A.1.h and C.1.h respectively. This is 
because the indoor temperature and the temperature of buffer/radiator are maintained at a higher 
level compared with the EHP only scenarios, such that the initial input power of the ASHP is higher in 
the hybrid heating scenarios and lead to a higher payback. For the EPR metric, the distribution of the 
value in the downward scenarios is similar to the EHP only scenarios and its median values are 45% 
and 65% for Scenario B.1.h and D.1.h respectively. However, the energy payback is increased in 
Scenario A.1.h because the gas boiler has maintained the buffer temperature, which results in a higher 
initial ASHP input power as explained above. For Scenario C.1.h, the median value of energy payback 
metric is reduced from 50% to 18% in comparison with the result of the electric heating only scenario 
(Scenario C.1), as the heat supply of the gas boiler during reserve provision period has reduced the 
heat requirement in the post reserve period. 

  

Figure 12. Distribution of NETR, PPR and EPR metric values, hybrid system, Full algorithm between 18:00 and 20:00 

4.4 Consumer metric 
Figure 13 depicts the probability distribution of a household’s comfort variations in different reserve 
provision events. For upward reserve provision scenarios (Scenarios A.1 and C.1), the maximum 
comfort loss can reach to -1.1 °C. Although, the probability of having same level of the comfort loss is 
lower in a high thermal inertia dwelling (Scenario A.1) compared to a low thermal inertia one (Scenario 
C.1). For example, there is 80% probability of having a comfort loss in a detached dwelling compared 
with 90% in the new flat scenario, as shown in Figure 13. It shows that the combination of high thermal 
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inertia dwelling and heating system can help to reduce the impact of heat supply shortage on 
occupant’s comfort. In addition, there is even a small possibility of comfort gain in the upward reserve 
provision events, which are 1% and 2% for Scenarios A.1 and C.1 respectively. This heat gain 
phenomenon only happened to a dwelling with small heat demand curtailment when this load 
curtailment accidently induced a new operation cycle of the heating system, which subsequently leads 
to a slightly better comfort level. For the downward reserve scenarios (Scenarios B.1 and D.1), the 
probability of having a comfort loss is smaller than the upward reserve scenarios.  Moreover, a high 
thermal inertia dwelling has no comfort loss possibility and maximum probability of a comfort gain is 
20%. This is due to the lack of spare capacity during peak periods. As depicted in Figure 10, the 
synchronisation rate of the ASHPs reached 85% between 18:00 and 20:00 in Scenario B.1 and 
therefore less idle ASHPs are activated and supply unnecessary heat to dwellings. However, in the low 
thermal inertia dwelling scenario, the probability of comfort loss and gain reaches to 10% and 30% 
respectively, and the comfort gain can be as high as 1.5°C. This means the downward reserve provision 
has achieved a better occupant’s comfort in the following hours and there is even a possibility with 
overheating by 0.5°C as shown in Figure 13. As mentioned above, the comfort loss of a dwelling with 
a hybrid heating system is also analysed and shown in Figure 14. In upward reserve provision scenarios 
(A.1.h and C.1.h), the maximum comfort loss is tremendously decreased from -1.1 °C to -0.4 °C and -
0.3 °C respectively. Furthermore, the probability that a dwelling has a comfort loss has reduced to 20% 
and 10% in Scenarios A.1.h and C.1.h. With regard to downward reserve provision, by comparing 
Scenarios B and D in Figure 13 and Figure 14, it can be concluded that the additional gas boiler does 
not have a significant impact on the probability distribution of occupant comfort loss. 

 

Figure 13. Probability distribution of maximum occupant’s comfort changes, EHP only system, Full reserve between 18:00 
and 20:00  

 

Figure 14. Probability distribution of maximum occupant’s comfort changes, hybrid system, Full algorithm between 18:00 
and 20:00  



Accepted version, Applied Energy 

5 Conclusion 
This paper has proposed a unified framework to assess the building-to-grid flexibility embedded in 
future residential EHP clusters and the corresponding potential to provide different DR services to 
different stakeholders. As a key contribution, several metrics have been proposed to comprehensively 
assess the performance of EHP clusters in providing services from the perspective of the different 
stakeholders involved. These metrics are designed to concisely communicate how DR will impact each 
stakeholder. For the system and network operators the PPR and coincidence factor metrics define 
how peak power demand and load diversity will be affected. Further, the CMR metric describes how 
much flexibility is not accessed due to the requirement to provide the same amount of flexibility across 
the service window. For retailers, there are metrics that define the changes in energy consumption. 
These include changes in electricity consumption as a function of the amount of DR delivered, the 
absolute changes and the amount switched to the alternative energy vector, gas. For aggregators, 
metrics provide means to remunerate consumers for the provision of DR. For consumers the PoCV 
metric defines the loss of comfort due to DR provision, which is crucial to understanding the value of 
DR provision to the consumer. Additionally, two service deployment methods, which employ different 
trade-offs between efficacy and privacy, have also been introduced.  

In order to demonstrate the metrics and algorithms introduced, a physically based residential energy 
consumption model was adopted. Case study applications in the UK context were run and analysed, 
which demonstrated the utility of the proposed framework. Case studies show how the maximum 
utilised percentage of aggregated EHP flexibility for the STOR service is less than 50% in winter, as the 
maximum value of the CMR metric is 47.2% in scenario A. This is due to the variability of the 
aggregated load of EHP clusters and STOR service requirement. This is an important result as it 
demonstrates how a restrictive ancillary service product definition can result in available flexibility 
being unused. We also found that a cluster’s upward reserve provision activity does not necessarily 
result in positive energy and power paybacks for ASHP installed in dwellings with high thermal inertia, 
such as the old detached dwelling with underfloor heating system and buffer shown above. By 
providing downward reserve, the cluster can also substantially reduce its electrical demand in the 
following hours, which demonstrated the effectiveness of using EHP cluster to absorb excess 
renewable generation. This information of demand variation can be vital to SOs and NOs whose are 
responsible for balancing the system and avoiding network congestion. In this case, the SOs and NOs 
can be prepared for the activation of EHP DR applications. The probability distribution of the 
occupant’s comfort loss shows that the effect of reserve provision is on the occupancy state of the 
dwelling before reserve deployment period. In the case studies examined above, the maximum 

comfort loss can reach to 1.1C. Last but not least, the usage of additional gas boiler can switch the 
heat supply from electricity to gas. This would reduce both payback phenomenon on electrical system 
and comfort loss.  

Based on the results shown above, several recommendations may be made to improve the operation 
and planning of energy systems with flexible heat pump clusters: 

• Considering the flexibility potential of the domestic sector, regulation should be updated to allow 
maximum deployment this flexibility in ancillary services markets. 

• The clusters can be used to relieve the burden on conventional generators to provide ancillary 
services, so that generators can operate at a more efficient point with less cycling times and 
consequently bring economic and environmental benefits to the power system. Based on 
increasing interactions between different energy vectors, coordination of the multi-energy 
system should be carried out to minimise overall cost across different energy systems. 

• There are side effects of DR provided by flexible electric heating, such as payback and comfort 
loss, which also vary with the characteristic of dwellings. Optimisation algorithm could be 
designed based on the models developed that could strike a fine balance between maximising 
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flexibility deployment and minimising the corresponding negative impact. This will be a focus of 
future work. 

6 Acknowledgement 
This work was developed with the contribution of the UK EPSRC MY-STORE project (ref. no 

EP/N001974/1).  

7 Reference 
[1] Zhang L, Capuder T, Mancarella P. Unified Unit Commitment Formulation and Fast Multi-

Service LP Model for Flexibility Evaluation in Sustainable Power Systems. IEEE Trans Sustain 
Energy 2016;7:658–71. doi:10.1109/TSTE.2015.2497411. 

[2] Department for Business Energy and Industrial Strategy. Energy Consumption in the UK. 
London: 2016. 

[3] Sharma S, Huang S-H, Sarma N. System Inertial Frequency Response estimation and impact of 
renewable resources in ERCOT interconnection. 2011 IEEE Power Energy Soc. Gen. Meet., IEEE; 
2011, p. 1–6. doi:10.1109/PES.2011.6038993. 

[4] Qazi HW, Flynn D. Analysing the impact of large-scale decentralised demand side response on 
frequency stability. Int J Electr Power Energy Syst 2016;80:1–9. 
doi:10.1016/j.ijepes.2015.11.115. 

[5] Lu N, Zhang Y. Design considerations of a centralized load controller using thermostatically 
controlled appliances for continuous regulation reserves. IEEE Trans Smart Grid 2013;4:914–
21. doi:10.1109/TSG.2012.2222944. 

[6] Nistor S, Wu J, Sooriyabandara M, Ekanayake J. Capability of smart appliances to provide 
reserve services. Appl Energy 2015;138:590–7. doi:10.1016/j.apenergy.2014.09.011. 

[7] Liu W, Wu Q, Wen F, Ostergaard J. Day-Ahead Congestion Management in Distribution Systems 
Through Household Demand Response and Distribution Congestion Prices. IEEE Trans Smart 
Grid 2014;5:2739–47. doi:10.1109/TSG.2014.2336093. 

[8] Hejeejo R, Qiu J. Probabilistic transmission expansion planning considering distributed 
generation and demand response programs. IET Renew Power Gener 2017;11:650–8. 
doi:10.1049/iet-rpg.2016.0725. 

[9] Dagoumas AS, Polemis ML. An integrated model for assessing electricity retailer’s profitability 
with demand response. Appl Energy 2017;198:49–64. doi:10.1016/j.apenergy.2017.04.050. 

[10] Yin R, Kara EC, Li Y, DeForest N, Wang K, Yong T, et al. Quantifying flexibility of commercial and 
residential loads for demand response using setpoint changes. Appl Energy 2016;177:149–64. 
doi:10.1016/j.apenergy.2016.05.090. 

[11] Vivekananthan C, Mishra Y, Ledwich G, Li F. Demand response for residential appliances via 
customer reward scheme. IEEE Trans Smart Grid 2014;5:809–20. 
doi:10.1109/TSG.2014.2298514. 

[12] Safdarian A, Fotuhi-Firuzabad M, Lehtonen M. Benefits of Demand Response on Operation of 
Distribution Networks: A Case Study. Syst Journal, IEEE 2014;PP:1–9. 
doi:10.1109/JSYST.2013.2297792. 



Accepted version, Applied Energy 

[13] Sajjad IA, Chicco G, Napoli R. Definitions of Demand Flexibility for Aggregate Residential Loads. 
IEEE Trans Smart Grid 2016;7:2633–43. doi:10.1109/TSG.2016.2522961. 

[14] Abiri-Jahromi A, Bouffard F. Contingency-Type Reserve Leveraged Through Aggregated 
Thermostatically-Controlled Loads Part I: Characterization and Control. IEEE Trans Power Syst 
2016;31:1972–80. doi:10.1109/TPWRS.2015.2466175. 

[15] Lu N, Chassin DP. A State-Queueing Model of Thermostatically Controlled Appliances. IEEE 
Trans Power Syst 2004;19:1666–73. doi:10.1109/TPWRS.2004.831700. 

[16] Korkas CD, Baldi S, Michailidis I, Kosmatopoulos EB. Occupancy-based demand response and 
thermal comfort optimization in microgrids with renewable energy sources and energy 
storage. Appl Energy 2016;163:93–104. doi:10.1016/j.apenergy.2015.10.140. 

[17] Chassin DP, Rondeau D. Aggregate modeling of fast-acting demand response and control under 
real-time pricing. Appl Energy 2016;181:288–98. doi:10.1016/j.apenergy.2016.08.071. 

[18] Chassin DP, Stoustrup J, Agathoklis P, Djilali N. A new thermostat for real-time price demand 
response: Cost, comfort and energy impacts of discrete-time control without deadband. Appl 
Energy 2015;155:816–25. doi:10.1016/j.apenergy.2015.06.048. 

[19] D’hulst R, Labeeuw W, Beusen B, Claessens S, Deconinck G, Vanthournout K. Demand response 
flexibility and flexibility potential of residential smart appliances: Experiences from large pilot 
test in Belgium. Appl Energy 2015;155:79–90. doi:10.1016/j.apenergy.2015.05.101. 

[20] Waite M, Modi V. Potential for increased wind-generated electricity utilization using heat 
pumps in urban areas. Appl Energy 2014;135:634–42. doi:10.1016/j.apenergy.2014.04.059. 

[21] Li P-H, Pye S. Assessing the benefits of demand-side flexibility in residential and transport 
sectors from an integrated energy systems perspective. Appl Energy 2018;228:965–79. 
doi:10.1016/j.apenergy.2018.06.153. 

[22] Green R. The Effects of Cycling on Heat Pump Performance. Chester: 2012. 

[23] Good N, Zhang L, Navarro-Espinosa A, Mancarella P. High resolution modelling of multi-energy 
domestic demand profiles. Appl Energy 2015;137:193–210. 
doi:10.1016/j.apenergy.2014.10.028. 

[24] Mancarella P, Chicco G. Real-Time Demand Response From Energy Shifting in Distributed Multi-
Generation. IEEE Trans Smart Grid 2013;4:1928–38. doi:10.1109/TSG.2013.2258413. 

[25] Richardson I, Thomson M, Infield D, Clifford C. Domestic electricity use: A high-resolution 
energy demand model. Energy Build 2010;42:1878–87. doi:10.1016/j.enbuild.2010.05.023. 

[26] McKenna E, Thomson M. High-resolution stochastic integrated thermal–electrical domestic 
demand model. Appl Energy 2016;165:445–61. doi:10.1016/j.apenergy.2015.12.089. 

[27] Dimplex renewables. Dimplex heat pump. 2012. 

[28] Wang W, Xiao J, Guo QC, Lu WP, Feng YC. Field test investigation of the characteristics for the 
air source heat pump under two typical mal-defrost phenomena. Appl Energy 2011;88:4470–
80. doi:10.1016/j.apenergy.2011.05.047. 

[29] National Grid. STOR general descrition of the service. 2015. 

[30] National Grid. SHORT TERM OPERATING RESERVE ANNUAL MARKET REPORT 2012 / 13. 2013. 



Accepted version, Applied Energy 

[31] Department of Energy & Climate Change. 
RHI_monthly_official_statistics_tables_31_December_2015 2016. 

[32] Chartered Institute of Building Services Engineers. Environmental Design: CIBSE guide A. 7, 
illustr ed. CIBSE; 2006. 

[33] Richardson I, Thomson M. Integrated simulation of photovoltaic micro-generation and 
domestic electricity demand: a one-minute resolution open-source model. Proc Inst Mech Eng 
Part A J Power Energy 2012;227:73–81. doi:10.1177/0957650912454989. 

[34] Good N, Zhang L, Navarro-Espinosa A, Mancarella P. High resolution modelling of multi-energy 
domestic demand profiles. Appl Energy 2015;137. doi:10.1016/j.apenergy.2014.10.028. 

[35] Chapman N, Zhang L, Good N, Mancarella P. Exploring flexibility of aggregated residential 
electric heat pumps. 2016 IEEE Int. Energy Conf., IEEE; 2016, p. 1–6. 
doi:10.1109/ENERGYCON.2016.7514082. 

[36] National Grid. Short Term Operating Reserve - General Description of the Service 2017. 
doi:10.1017/CBO9781107415324.004. 

 

 


