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Abstract 

Every year, many poor health outcomes are the result of patients missing their medication, 

as prescribed by their healthcare providers. Guidance and reminders to these patients 

would result in better health outcomes and significant financial savings to the economy. 

This thesis utilizes accelerometers and gyroscopes, which are widely available inside 

devices (e.g., smart phones and watches) to actively monitor patient activities, including 

those related to adherence to medication regimens. Different machine learning techniques 

are compared for recognizing when a pill bottle has been opened. Such actions could 

remind the patient to take their medication if an opening were not detected. An artificial 

neural network (ANN) model will be compared with a support vector machine (SVM) and 

a K-nearest neighbor (KNN) classifier. The models are trained on data collected by former 

University of Oklahoma students. Raw (normalized) sensor data is used, without extensive 

data processing or feature extraction. A neural network proves the most promising with an 

accuracy of 98.12%, as well as the greatest flexibility in data pre-processing requirements. 

KNN achieved high accuracy, although results were likely due to overfitting limited data 

with the simple model. SVM did not perform as well as the others, however; it did achieve 

similar results to previous research utilizing the approach (e.g., ~95% accuracy). Data 

collected from a greater number of gestures and additional test subjects is needed to verify 

generalization. A medication adherence system utilizing the developed model would be an 

acceptable approach. 
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1. Introduction 

The low costs and small sizes of modern digital technology have allowed for a proliferation 

of smart devices. More devices are in the hands of people and more data is available than 

ever before. One approach, termed Internet of Things (IoT), aims to connect these 

embedded devices to send and receive data automatically, allowing us to improve quality 

of life by focused application of the data. IoT has been used extensively in the medical field, 

ranging from simple self-monitoring of sleep and heart rate to weight sensing and 

redistribution for overweight patients to prevent ulcers, and from monitoring vital signs in 

hospitals and alerting nurses to identifying problems arising in patient care. 

Many IoT devices are equipped with accelerometers and gyroscopes, facilitating the 

measurement of 3-dimmensional linear accelerations and angular velocities. The 

applications of these sensors are many, but here we consider the use of the sensors to 

recognize specific human movements, such as smoking and opening a bottle of medication, 

to change behaviors leading to adverse health outcomes. Human motion recognition is an 

active area of research with many challenges. Dynamic variation occurs within each 

movement, allowing for slow or fast, as well as exaggerated or subtle movements. Another 

challenge is generalizing the test-user’s data to multi-users who may have slight differences 

in their individual movements. Several processing steps are typically needed before the data 

can be used effectively.  
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A major area of concern in healthcare is medication adherence. Of all medication-related 

hospital admissions in the United States, 33 to 69 percent [3] are due to poor medication 

adherence, totaling more than $100 billion annually in increased medical costs.[4] Since 

pharmaceutical treatments are critical in today’s healthcare system, adhering to the 

medication as prescribed is very important. A myriad of factors contribute to this 

problem—from suboptimal health literacy and lack of patient involvement in the decision-

making process to absence of social/economical support, as well as complex prescription 

regimens and communication barriers, among many other reasons. The proliferation of IoT 

devices allows providers to intervene automatically, sending reminders to patients that 

could benefit from notifications. 

This thesis aims to solve this problem by reporting on the use of a wrist-worn inertial sensor 

that recognizes when a bottle of medication has been opened. Sensing could eventually be 

developed further into a functionality that utilizes the inertial sensors commonly available 

in smart watches to automatically send reminders to patients when medication opening is 

not detected. 
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2. Background 

2.1 Medical Applications of IoT devices 

IoT devices are a growing industry in healthcare. Their proliferation has facilitated a shift 

in healthcare paradigms away from conventional hub-based services and towards a more 

personalized approach. Figure 1 demonstrates a system level view for personalized 

healthcare utilizing IoT. 

 

Figure 1. Service-oriented architecture layers for personalized healthcare [5]. 
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With the ubiquity of IoT devices, more healthcare-relevant data is available than ever 

before. Wearable devices commonly come equipped with accelerometers, gyroscopes, 

barometric, and magnetic field sensors; these technologies enable the collection of linear 

accelerations, angular rotational velocities, altitude, and location with higher spatial 

resolution, respectively. More advanced wearables (e.g., physiological sensors like blood 

pressure cuffs, electrocardiograms, spirometers [air flow rate and lung volume], and 

electrooculography [eye movement tracking]) are available, although they are usually 

limited to use in healthcare settings. Other devices are deployed, rather than worn, to 

collect ambient data in a healthcare setting (e.g., thermometers, hygrometers, window and 

door sensors, light switches, Zigbee for location data, and RFID or NFC tags for object 

interaction sensing) [5]. 

Data processing is required to glean useful information. Machine learning is commonly 

used to improve some aspect of a patient’s health outcomes. Data-driven approaches 

include supervised and unsupervised learning techniques. In supervised learning, the 

machine learns a complex function for mapping data as an input to a specific output based 

on training data; this requires labeled outputs in the data. Supervised learning techniques 

include, but are not limited to, artificial neural networks (ANN), support vector machines 

(SVM), K-nearest neighbor (KNN) classifiers, decision trees, hidden Markov models 

(HMM), and Gaussian mixture models (GMM). In unsupervised learning, the computer 

draws inferences from input data with no labeled outputs. Common unsupervised learning 

techniques include, but are not limited to, clustering techniques, such as K-means and 
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DBSCAN, anomaly detection, and expectation maximization. This thesis focuses on 

supervised learning with ANN, SVM, and KNN. 

Several approaches have attempted to address the problem of medication adherence. One 

attempt involves using a smart pill bottle/stand that provides alerts to notify the patient to 

take their medication [6]. Another approach utilizes a smart medication dispenser to 

administer the prescribed medication at a predetermined time [7], although the dispenser 

does not validate that the medication was administered. Several approaches attempt to use 

computer-vision to solve the adherence problem [8-10]; however, these approaches prove 

inflexible and require a patient to take their medication in the view of the camera. A multi-

sensor system was proposed in [11] and consists of a motion sensor, a wearable device, and 

a bed sensor. Although the system performed well, its complexity makes the system 

difficult to set up and operate. Another approach utilizes a wrist-mounted inertial sensor 

to determine when a pill bottle is opened, along with a camera to assist in the data training 

phase [12]. This approach combines the flexibility of a single wearable device with the use 

of a camera for augmenting the training and increase accuracy. The researchers utilized an 

HMM to achieve some level of success after extensive processing. 

This thesis reports the use of a wrist-mounted inertial sensor for determining when a pill 

bottle has been opened. Camera assisted training was forgone to increase flexibility. 

Machine learning classification techniques (e.g., ANN, SVM, and KNN classifiers) were 

used. Models are presented, and current research on gesture recognition is reviewed. 

Models are compared for accuracy and the ability to reject other motions. During training, 

100 repetitions of the movement were tracked. Further development is necessary for real-



6 
 

time tracking capability. Preprocessing was minimal, and training was accomplished 

utilizing 100 repetitions, including gyroscope and accelerometer data as a 6-dimensional 

time series. For differentiation, compared movements include opening a pill bottle and 

smoking. The classification aspect, rather than the full medication adherence system, is the 

targeted focus of the investigation. 

2.2 K-Nearest Neighbor 

The first classifier used was KNN—a non-parametric learning algorithm, meaning no 

underlying assumptions are made about the distribution of data [13]. Although the method 

was first developed in the 1950s, widespread use occurred in the 1960s after increased 

computing power was available. Given today’s computing power, this method is widely 

used for pattern recognition.  

The KNN method is based on human learning by analogy, comparing data points with 

those that are in the immediate vicinity. Each data point resides in an n-dimensional space. 

KNN calculates distances and searches for the K-closest points in the n-dimensional sample 

space to determine similarity between data points. Many distance metrics, including 

Minkowski, Euclidean, and Manhattan, are available. This thesis considers Euclidean 

distances of two objects described by n attributes. The Euclidean distance between 

𝑋ଵ 𝑎𝑛𝑑 𝑋ଶ points is defined as 

𝑑(𝑋ଵ, 𝑋ଶ) =  ඨ෍ (𝑥ଵ௜ − 𝑥ଶ௜)ଶ
௡

௜ୀଵ
(1) 
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The algorithm works by determining a test set of correctly labeled training data in the form 

𝐷 = (𝑋௜ , 𝑦௜), where 𝑋௜ ∈ ℝ௡ is the measured input data, and 𝑦௜ ∈ ℝ is the corresponding 

class label. For each point in test dataset T, distances are calculated to every point in the 

training set using (1). The closest K points for each test point are selected, and the most 

frequent class label among the K points is chosen as the estimate for the class label of the 

test point. When choosing between two classes, an odd K should be used to avoid a tie 

situation.  

 

Figure 2. K-nearest neighbor algorithm visualization [30]. 

The KNN classifier is simple, yet powerful, requiring no training other than having correctly 

labeled available data. This simplicity can be a significant advantage, as training the data 

can be the most time-consuming activity of many classification techniques. However, 

simplicity comes at a cost when classifying new points, as the distance to every training 

point must be calculated. Hence, if 𝑘 = 1 and 𝐷 is a dataset with |𝐷| points, the number of 

computations required is 𝑂(|𝐷|). Utilizing search trees can decrease the number of 

computations to 𝑂(log|𝐷|). Parallel implementation can further reduce running time to a 



8 
 

constant, 𝑂(1), which means number of calculations required is independent of the size of 

D. 

2.3 Support Vector Machine 

The next classification technique under review was SVM [13]. This technique was first 

presented in 1992 by Vladimir Vaprik et al., although the groundwork had been available 

since the 1960s. Training times for SVMs can be slow, albeit for many applications results 

are highly accurate because SVM can map complex nonlinear decision boundaries. 

The idea behind any SVM is leveraging a nonlinear mapping to transform the dataset into 

higher dimensions. With this increased dimensionality comes increased separation 

between classes, when done correctly. SVM aims to find the hyperplane that separates the 

classes (i.e., a decision boundary). Support vectors (i.e., essential training points) and 

margins are used.  Overfitting is much less likely to occur in SVMs when compared with 

other methods. The learned model can be compactly described using the support vectors. 

SVMs are commonly used in a variety of areas (e.g., handwritten digit recognition, object 

recognition, and speaker identification, as well as benchmark time-series prediction tests). 

To illustrate how SVMs work, a linearly separable case is shown below in Figure 3. 
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Figure 3. Linearly separable training data set example [13]. 

In the figure above, an infinite number of possible linear decision boundaries are available. 

The task is choosing the best one. The line proves to be a plane or hyperplane in higher 

dimensions. To solve this problem, SVM searches for the maximum margin hyperplane. 

Figure 4 demonstrates the concept.  

 

Figure 4. Two possible decision boundaries and their associated margins [13]. 
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The figure above demonstrates that the margin is the distance orthogonal to the decision 

boundary to the closest points of the two classes. Mathematically, the decision boundary 

can be written as 

𝑾 ∙ 𝑿 + 𝑏 = 0 (2) 

where 𝑾 ∈ ℝ௡ is a weight vector, and b is a scalar bias. In two dimensions, this reduces to 

𝑤ଵ𝑥ଵ + 𝑤ଶ𝑥ଶ + 𝑏 = 0 (3) 

The sides of the margins can then be defined by 

𝑦௜ = ൜
+1, 𝑤ଵ𝑥ଵ + 𝑤ଶ𝑥ଶ + 𝑏 ≥ 1 

−1, 𝑤ଵ𝑥ଵ + 𝑤ଶ𝑥ଶ + 𝑏 ≤ −1
(4) 

The test points above or below the boundaries are sorted into the respective classes. The 

distance from the decision boundary to either margin hyperplane is ଵ

||𝑾||
. Because both 

margin hyperplanes are equidistant to the decision boundary, total width of the margin is 

ଶ

||𝑾||
. Support vectors are the points in the training data set that lie on the margin 

hyperplane and can compactly describe the SVM. The decision boundary is orthogonal to 

the line connecting the support vectors, and the margin width is the magnitude of the 

distance between the points. To solve this problem and find the maximum margin 

hyperplane and support vectors, a Lagrangian formulation is used to convert the problem 

into a constrained convex quadratic optimization. Exact details for this process are beyond 

the scope of this work, although they can be found in [13].  
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When the training data is linearly inseparable, a nonlinear transformation into a higher 

dimensional space is required. Kernel functions are used for transforming the data. 

Commonly used kernel functions are polynomials, gaussian radial basis functions, and the 

sigmoid function. These nonlinear SVMs compute the same decision boundaries as 

corresponding neural network classifiers. For instance, an SVM with a Gaussian radial basis 

function (RBF) gives the same decision hyperplane as a type of neural network known as a 

radial basis function network. An SVM with a sigmoid kernel is equivalent to a simple two-

layer neural network known as a multilayer perceptron (with no hidden layers). 

There are no general rules for choosing a kernel function to maximize the accuracy of the 

classifier. Typically, the choice does not make a significant difference. The training process 

for SVMs means that the SVM always finds the global minimum. 

2.4 Artificial Neural Networks 

Neural networks [13] are simply a set of connected input-output units called neurons, each 

with their own weight and activation function. A neuron collection connected in complex 

ways can “learn” by adjusting the weights of each neuron connection to model a 

complicated nonlinear function, mapping input data to output data. Neural networks were 

originally the domain of psychologists and neurobiologists and served as a tool for 

comparing a computational analogy to a real neuron. Recently, however, the field has 

proliferated in the data science community. Neural networks typically require large data 

sets and long training times, which can limit the scope of their applications. When feasible, 

though, few machine learning techniques are as flexible or powerful.  
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Several other advantages to neural network classifiers include a high tolerance to noise in 

the training data, as well as the ability to classify novel patterns. Also, very little knowledge 

on relationships between classes and attributes is needed, as relationships are 

automatically trained into the network. Neural networks are much better suited for 

continuous valued data when compared with other classifiers, such as decision trees. They 

have seen a wide variety of real-world applications, from recognizing handwritten 

characters to pathology and diagnostics in medicine, as well as for training computers to 

pronounce English words more naturally. Due to neural network’s inherent parallel 

structure, the training process time can be drastically decreased by utilizing parallelization 

and GPUs. Recently, new techniques have been developed to extract rules from trained 

neural networks, allowing us to gain new insights into the situation, as well as to determine 

exactly what neural networks learn to recognize. An example of a fully connected neural 

network is shown below in Figure 5. 

 

Figure 5. Neural network fully connected architecture. 

In the example above, there are three inputs, six neurons in the first hidden layer, four 

neurons in the second hidden layer, and a single output neuron to determine the output 
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class. Several different neural network architectures and training algorithms exist. This 

thesis focuses on a fully connected multi-layer feedforward network. The most popular 

network training algorithm is backpropagation. At first, network weights initialize to 

random values. Backpropagation forces the network to learn by iteratively processing data 

points in the training data, and then comparing the output to the true class. The algorithm 

adjusts neuron weights after each data point to decrease the mean-squared error of the 

prediction. Modifications are made starting with the output layer and working backwards. 

Convergence is not guaranteed, although weights, in general, will eventually converge. 

Given a neuron, j, located in a hidden or output layer, the net input, 𝐼௝, to neuron j is given 

by 

𝐼௝ = ෍ 𝑤௜௝𝑂௜ + 𝜃௝

௜

(5) 

where 𝑤௜௝ is the weight of the connection to the ith neuron on the preceding layer; 𝑂௜ is the 

output of the ith neuron in the preceding layer; and 𝜃௝  is the neuron bias. The bias term 

acts as a threshold for varying neuron activation. Each neuron takes the net input from all 

neurons in the preceding layer, and then applies an activation function. Many different 

activation functions are used, with the most common being sigmoid, hyperbolic tangent, 

or rectified linear unit (ReLU). 
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Figure 6. Common activation functions. 

Error is propagated backwards by updating weights and biases in each layer as you move 

backwards to reflect the error of the network’s prediction.  

For neuron j in the output layer, error is determined by the equation 

𝑒௝ = 𝑂௝൫1 − 𝑂௝൯൫𝑇௝ − 𝑂௝൯ (6) 

where 𝑂௝ is the actual output of the neuron, and 𝑇௝ is the known true class of the training 

point. One should note that 𝑂௝൫1 − 𝑂௝൯ is the derivative of the sigmoid function. 

For a neuron in the hidden layers, error of a neuron j is given as 

𝑒௝ = 𝑂௝൫1 − 𝑂௝൯ ෍ 𝑒௞𝑤௝௞

௞

(7) 
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where 𝑤௝௞ is the weight of the connection from neuron j in the current layer to neuron k in 

the next highest layer, and 𝑒௞ is the error of neuron k. 

For each training point, weights are updated using the following error values: 

𝑤௜௝ = 𝑤௜௝ + 𝜆𝑒௝𝑂௜ (8) 

where 𝜆 is the variable known as the learning rate, which is typically between 0 and 1. 

Backpropagation works by utilizing a gradient descent to minimize mean squared error of 

the network’s prediction. This method can get stuck in local minima, which is why a 

variable learning rate is utilized. A too small learning rate leads to unnecessarily long 

training, while too large of a learning rate can lead to oscillations. 

The biases are updated each iteration according to 

𝜃௝ = 𝜃௝ + 𝜆𝑒௝ (9) 

Network training stops when the weights change less than given threshold, the accuracy 

reaches a set value, or a set number of epochs has expired. 

2.5 Related Work 

Gesture recognition has seen a recent proliferation of research. This thesis utilized 3D 

gyroscope and accelerometer-based gesture recognition. Three main strategies have been 

proposed by the research community:  1) probabilistic signal modeling, 2) temporal 

warping, and 3) machine learning-based classification.  
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The probabilistic gesture recognition approach has mainly utilized discrete [14-16] and 

continuous HMMs [17]. Kela et al. [16] use discrete HMMs (dHMM) from gesture velocity 

profiles. Raw data must be clustered first to reduce dimensionality and build a feature 

codebook. The second step consists of creating a discrete HMM using the sequences of 

vector codebook indexes. A correct recognition rate of 96.1% was obtained with 5 HMM 

states and a codebook from eight gestures performed by 37 people. In his approach to 

probabilistic gesture recognition, Pylvänäinen [17] proposed a system based on continuous 

HMM (cHMM) achieving a recognition rate of 96.76% on a dataset with 20 samples for 10 

gestures performed by seven people. 

The second approach is based on time warping samples using a set of reference gestures 

for guidance [18-20]. Liu et al. [19] presented a method using Dynamic Time Warping 

(DTW) from pre-processed signal data that offered gesture recognition and user 

identification rates of 93.5% and 88%, respectively. 

The third strategy is based on machine learning-based classifiers [21-25]. Hoffman et al. [21] 

proposed a linear classifier and AdaBoost, resulting in a user-independent recognition rate 

of 98% for 13 gestures performed by 17 participants.  

Sung-Jung Cho et al. [22] utilized a two-stage recognition algorithm consisting of a 

Bayesian belief network, followed by an SVM for confusing cases. Results showed a very 

high recognition rate, with 100 users the system achieving an average recognition rate of 

96.9% on 11 gestures. This classifier worked on accelerometer data alone and was installed 

in Samsung cell phones, starting in 2005. 
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Wu et al. [23] proposed a classifier based on SVM. Each gesture was segmented in time, 

and then statistical measures (e.g., mean, energy, entropy, standard deviation, and 

correlation) were calculated for each time segment to synthesize final feature vectors. 

Resulting recognition rate was 95.21% for 12 gestures made by 10 individuals, which 

outperformed DTW results. 

A recent study by Lefebvre et al. [24] proposed a method based on bidirectional long-short-

term memory recurrent neural networks (BLSTM-RNN). Trained on data from 22 

individuals performing 14 gestures, the BLSTM-RNN classifier was able to achieve a 

recognition rate of 95.57%. 

A study by Stefan Duffner et al. [25] proposed a method based on a convolutional neural 

network (CNN) with a specific structure involving a combination of 1D convolution, 

averaging, and max-pooling operations. The work directly classified the fixed-length input 

matrix, composed of the normalized sensor data. The ConvNet proposed in [24] met or 

surpassed the methods in [21-23], showing promise for neural network use in gesture 

recognition. 

CNN were also utilized by Sojeong Ha and Seungjin Choi [26] with data from 10 subjects 

performing 12 gestures, wearing three accelerometers (e.g., chest, right wrist, left ankle) 

and two gyroscopes (e.g., right wrist, left ankle). The novel CNNs recognized 91.94% of the 

test set. In this study, 10,000 gestures were used for training and demonstrated that in order 

for more gestures to be recognized, more training is required. Given the goal of picking out 

a single gesture, accuracy must be increased.  
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Casey Cole et al. [27] utilized an Apple Watch’s accelerometer and an ANN for recognizing 

the gesture of smoking a cigarette at an accuracy of 85-95%. The goal of the study was 

providing a way to recognize smoking and intervene or reduce the number of cigarettes 

consumed per day. This investigation is similar to this thesis in that improving health 

outcomes was the primary motivator. With a similar goal of smoking cessation, Abhinav 

Parate et al. [28] used multiple IMUs, trajectory-based methods, and a probabilistic model 

to detect smoking gestures at 95.7% accuracy. 

2.6 Thesis Contributions 

This thesis compares SVM, KNN, and ANN classifiers to map out and classify gesture 

movements. The models in this study were built with the idea of minimizing the burden of 

data preprocessing and utilizing open-source python packages, with the neural network 

model using a dense, fully connected structure. Study data was limited to two gestures:  

smoking and opening a pill bottle. Each dataset consisted of 100 repeated gestures.  

Data is linearly interpolated so that the datasets for the two gestures and the two data types, 

namely gyroscope and accelerometer, are equal in length. After interpolation, data was 

standardized to remove the mean and scale to unit variance. The input signal is not 

partitioned into smaller time segments or sequentially processed, like with HMMs [13- 16], 

time warping based methods [17- 19], or recurrent neural networks [22]. Models were 

trained on a randomly sampled set of 100 repeated gestures of equal length. Training on a 

large number of repeated gestures enables the models to effectively learn an individual’s 

motions without complicated preprocessing or feature extraction.  
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In this study, features were automatically learned from the raw (i.e., standardized) input 

signal. Thus, no synthesized feature design, such as for HMM codebooks or statistical 

descriptors, are required. Limitations of this dataset prevent testing on a user independent 

basis. Because each gesture was performed by a different individual, unique differences in 

our dataset result in easily classifiable data, as well as an overestimation of recognition 

accuracy. 

3. Methodology 

3.1 Data Collection 

Gestures collected included smoking and opening a pill bottle [1]. TI SensorTag IoT Demo 

Kit was used to collect the necessary data. This small, self-contained module was composed                                      

of multiple connectivity options and a variety of sensors. TI CC2650 SimpleLink SensorTag 

hardware performed data acquisition. SensorTag utilizes Bluetooth to communicate with a 

user’s cell phone, and an app is used as the control interface.  

Sensor default data sampling rate was 0.3 seconds with “wake on shake” enabled. To maximize 

data collection, the “wake on shake” feature was disabled, and data sampling rate was changed 

to 0.1 seconds. Data could be viewed in real time via the app and output to a data file. 

The device contained a number of sensors: light, temperature, accelerometer, gyroscope, 

magnetometer, pressure, humidity, microphone, and magnetic. Of these, only the 

accelerometer and gyroscope were used in this study. Accelerometers are primary sensors for 

classifying movement and are extremely useful for indicating orientation (e.g., SensorTag 

accelerometer measures x, y, and z acceleration in G’s). The SensorTag gyroscope measures 
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rotation around the x, y, and z axes in degrees per second. Gyroscopic data was determined to 

be especially useful, given the rotational nature of opening pill bottles. 

 

Figure 7. SensorTag Axes orientation; red dot indicates TI icon location [1]. 

Data was collected when test subjects performed 100 repetitions of the desired gesture at an 

accommodating repeatable pace. A TI SensorTag was placed on the wrist of each subject’s hand 

that was performing the gesture. Each gesture was recorded as one individual’s sensor data, 

with each gesture performed by a different person. The accelerometer and gyroscope data were 

collected at 10 Hz and saved to comma separated value (.csv) files for analysis. 

3.2 Data Processing 

Data labelled in .csv files were imported into python using the pandas data science package. 

The dataset for the pill bottle gesture contained 1047 x, y, and z accelerations and 1201 x, y, 

and z rotational velocities. The dataset for the smoking gesture contained 1771 x, y, and z 

accelerations and rotational velocities. Accelerations were recorded as multiples of G in the 

range [-1.0, 1.0]; rotational velocities were measured in degrees per second. The raw data is 

presented below as a histogram in Figures 8 thru 13. 
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Figure 8. First 10 seconds of gyro data for bottle opening gesture. 

 

Figure 9. First 10 seconds of accelerometer data for bottle opening gesture. 

 

Figure 10. Data histogram (e.g., gyro left, accelerometer right) for bottle opening gesture. 
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Figure 11. First 10 seconds of gyro data for smoking gesture. 

 

Figure 12. First 10 seconds of accelerometer data for smoking gesture. 

 

Figure 13: Data histogram (e.g., gyro left, accelerometer right) for smoking gesture. 
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The main difference between sensors is readily apparent in the dataset histograms. 

Accelerometer measurements can read only in 0.1 G’s, which is much less precise than the 

gyroscope that measures to a sensitivity of 0.1 degrees. 

Gyroscope data for the bottle opening gesture had a significantly larger spread in the X axis, 

slightly more spread in the Y axis, and roughly equal spread in the Z axis when compared 

with the smoking gesture. A larger spread was observed only in the Z direction for the 

accelerometer data.  

A fast Fourier transform (FFT) was computed for the dataset to investigate noise level. FFT 

was then passed through a low-pass filter to eliminate any high frequency noise from the 

signal. An inverse FFT was computed to retrieve the filtered signal in the time domain. 

Figure 14 shows a selection of analysis results. 

 

Figure 14. Fourier analysis for bottle opening gyro data in Z axis (See left graphs) and 

smoking accelerometer data in Y axis (See right graphs). 
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 Fourier analysis results indicated that filtering was unnecessary, as the filter introduced 

unwanted distortion in the signal and a large high frequency noise component was not 

present.  Next, the dataset was standardized to remove the mean and scale to unit variance. 

The mean of each attribute is given by equation 10, where k is the dimensional index; i is 

the sample index; and n is the number of samples. 

𝜇௞ =
1

𝑛
෍ 𝑥௞௜

௡

௜ୀଵ

(10) 

The standard deviation for each dimension is given by Equation 11:  

𝜎௞ = ඨ
1

𝑛
෍ (𝑥௞௜ − 𝜇௞)ଶ

௡

௜ୀଵ
(11) 

Each data point had the dimensional mean subtracted, and the result was divided by the 

dimensional standard deviation to standardize the dataset. 

𝑥௞పതതതത =
𝑥௞௜ − 𝜇௞

𝜎௞

(12) 

Standardization was performed on an axis-by-axis basis. Each standardized sensor axis 

measurement had a mean of zero and a standard deviation of one.  

After standardization, a principal component analysis (PCA) was performed on the data. 

First, a 2D PCA was run, which was followed by a 3D PCA. Principle component 

representation of the data is given below in Figure 15. 
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Figure 15. Dataset visualized by PCA. 

The KNN classifier was used to determine the effect of the number of principle components 

on the classifier accuracy, which proved a way to measure interclass separation. The KNN 

model achieved accuracies of ~92% for n=2 and ~95% for n=3, as pictured above. Results 

for all six PCA possibilities are presented below in Figure 16. 

 

Figure 16. Model recognition accuracy vs. number of principle components included. 
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Overall, accuracy increased as the number of principal components increased, which was 

expected. This demonstrates an increase in inter-class separation in relation to intra-class 

separation as more principal components are included. Diminishing return on accuracy 

improvement was due to the fact that principle components are ordered according to their 

contribution to the total signal. Less information is added with the addition of each 

principle component. Nearly all information was added by n=4. A hypothesis to explain 

this behaviorthat the first three principle components were dedicated to the 3D motion; a 

fourth allowed a layer of redundancy, with further redundancy limiting its effect. In the 

end, PCA was not used to reduce the dimensionality of the dataset, as a 6D dataset is not 

computationally expensive to process. 

3.3 Model Details 

Three models, namely KNN, SVM, and ANN were used to classify gestures. Each model 

demonstrated unique advantages and disadvantages.  

KNN requires only labeled data of equal length. Technically, no training occurs. At each 

new point tested, distances to each training point must be calculated and compared to 

select the K nearest. Although this method is simple, it can be a burden computationally 

given large amounts of data or neighbors.  

The KNN model was first tested using 70% of the dataset for training and the remaining 

30% for testing. Number of neighbors included in the calculation was varied. Results are 

plotted below in Figure 17. 
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Figure 17. KNN accuracy as a function of neighbors included. 

The plot shows that the highest accuracy was attained with the case K=1—the simplest 

nearest neighbor classifier. This is advantageous computationally, although results are 

skeptical due to a user set limited to two.  

Next, accuracy was calculated for varying values of the test ratio—the portion of the dataset 

devoted to testing. Results are shown below in Figure 18. As the test ratio increases, less 

data is devoted to training; hence, accuracy is expected to decrease. 
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Figure 18. K-Nearest neighbors accuracy as a function of test ratio. 

The KNN classifier holds steady near ~99% accuracy at low test ratios (i.e., high number of 

training points) and declines slowly (~98%) through the mid test ratios, with a precipitous 

drop at very high-test ratios, although the drop was only limited to 94%.  The accuracy of 

this classifier indicates overfitting the dataset. More individuals should be tested to fully 

validate KNN for gesture recognition on normalized raw sensor data. 

The SVM algorithm guarantees a “globally” optimal solution, given its hyperplane decision 

boundary. While this might not be the globally optimal solution, it should be noted that 
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this method does not rely on random initializations—only random sampling for training. 

SVMs can take some time to train, but once trained, evaluations can quickly be performed.  

First, four different kernel functions were tested:  1) the Gaussian radial basis function 

(RBF), 2) polynomial, 3) linear, and 4) sigmoid function. Accuracies of the different kernel 

functions were evaluated using 30% of the dataset for testing. Results are shown below in 

Figure 19. 

 

Figure 19. Gesture recognition accuracy for different kernel functions. 

Through this analysis, the Gaussian radial basis function proved the best choice for the 

SVM kernel function. Next, accuracy was calculated for varying values of the test ratio, as 

was done above for the KNN classifier. Results are shown below in Figure 20.  
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Figure 20. SVM recognition accuracy as a function of dataset test ratio. 

The shape of the function is like that of KNN, although, notably, there is a quicker decrease 

in accuracy beginning in the middle training ratios; accuracy remains high throughout. The 

shape of the SVM plot is closer to expected, and an accuracy of ~95% is reasonably good 

without being suspiciously high. 

ANNs can automatically learn features from raw data, as they map complex nonlinear 

functions from the input sensor space to the output class space. ANNs can take a long time 

to train, although parallelization leveraging GPUs can reduce computation time. The ANN 

is implemented in keras for python running tensorflow on the backend. The ADAM 
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optimizer was chosen, as it resulted in higher accuracies and faster convergences. Details 

about the optimizer can be found in [31]. 

 

Figure 21. Effect of neuron number in the first hidden layer on recognition accuracy. 

Next, the number of neurons in the first hidden layer was varied, and the change in 

accuracy was observed. Seventy percent of the dataset was used for training, and the 

remaining 30% was used for testing. The network was trained for 100 epochs with batches 

of 20 samples. All parameters, other than number of neurons in the first hidden layer, were 

held constant. Accuracy was calculated five times with various initialized weights, and 

results were plotted in a box plot. Results are shown above in Figure 21. 



32 
 

Accuracy held roughly constant for the range tested, with a slight increase given additional 

neurons. Accuracy can be improved by increasing the number of training epochs. Notably, 

trends in accuracy were more important than accuracy itself at this stage. Additional 

training epochs will be used when evaluating the final model. Observed variation was likely 

due to the randomization of connection weights at the start of training.  

For the ANN model, 12 neurons were determined to be the optimal choice. According to 

the plot above, any neurons in the range of six to 13 would be acceptable. Twelve were 

chosen due to high accuracy with lower variance and also because it was optimal for an 

object with six degrees of freedom to provide complete information about motion in 12 

states. The procedure above was repeated for the second hidden layer, and results are 

shown below in Figure 22.  

 
Figure 22. Effect of neuron number in the last hidden layer on recognition accuracy. 
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In the second hidden layer case, nine neurons were chosen due to the occurrence of highest 

average; however, significant variation was not observed across the various number of 

neurons. Overall, the final design includes an input layer with six neurons for the six input 

data dimensions; a first hidden layer with 12 neurons; a second hidden layer with nine 

neurons; and an output layer with one neuron. Each layer is fully (i.e., densely) connected 

to the layers immediately preceding and succeeding. The final ANN diagram is shown 

below in Figure 23. 

 

Figure 23. Neural network diagram. 

The ANN was trained for 300 epochs with a training batch of 20 (i.e., the approximate 

motion frame size). ANN training history is shown below in Figure 24. 
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Figure 24. Training history for ANN (See accuracy left and MSE right). 

The accuracy (or loss) of the models increases (or decreases) sharply at the beginning of 

the training and levels out as the training epoch number increases. As with the other 

models above, the dataset testing ratio was varied, and a subsequent change in accuracy 

was observed. Results are given below in Figure 25. 

 

Figure 25: ANN accuracy vs dataset test ratio. 
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As expected, a gradual decrease in accuracy was observed as the testing portion increased 

and training portion decreased. ANN was still quite accurate at ~95% even when only 10% 

of the dataset was used for training. 

4. Results and Discussion 

A comparison was conducted between KNN, SVM, and ANN model training. The three 

methods were simultaneously evaluated for various numbers of dataset samples. KNN had 

k=1; SVM used a Gaussian radial basis kernel function; and ANN was trained for 300 epochs 

with a training batch size of 20 (i.e., the approximate motion frame size). Included data 

was the first X sequential data samples in time, with X as the independent variable. Data 

was included sequentially, not through random sampling. After the initial selection, 70% 

was used for training and 30% was used for testing. Accuracy for each model was computed 

five times for each model, and then averaged. Results are shown below in Figure 26. 

 

Figure 26. Gesture recognition accuracy vs. samples included for the three models. 
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Accuracies for each model asymptotically approached a maximum. Only SVM was 

significantly affected at < 80%. The best accuracy for KNN was 98.95%; the best for SVM 

was 95.74%; and the best for ANN was 98.12%. Model order remained unchanged across all 

samples included, with KNN leading, followed by ANN, and SVM last.  

All three classifiers distinguished between a smoking gesture and the opening of a pill 

bottle gesture by way of raw standardized inertial measurements. KNN performed the best 

and required no real training, although computations were sometimes taxed given a large 

number of training points. ANN followed closely behind with a longer training time (e.g., 

54.4 secs for ANN; 20 ms for KNN) and quicker evaluation time (e.g., 9.9 ms for ANN; 24.9 

ms for KNN). 

4.1 K-Nearest Neighbor 

The final configuration of the KNN classifier used k = 1 with 70% of the dataset used for 

training and the remaining 30% used for testing. The classifier was executed 1,000 times to 

mitigate the effects of the random training sampling. Averages for 1,000 test results are 

presented in Tables 1 and 2 below. 

Table 1. Confusion Matrix for KNN Classifier 

Confusion Matrix: 
Predicted Class   

Bottle Smoking Recall: 

True Class 
Bottle 527.3 4.0 0.9925 

Smoking 7.3 524.4 0.9863 

  Precision: 0.9863 0.9924   
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Table 2.: Classification Report for KNN Classifier 

Report: 

  precision recall f1-score support 

Bottle 0.9863 0.9925 0.9894 531.3 

Smoking 0.9924 0.9863 0.9893 531.7 

avg 0.9894 0.9894 0.9894 1063 

accuracy 0.9895     1063 

The KNN classifier performed extremely well when distinguishing between the two 

gestures. Overall accuracy was 98.95%. Precision for recognizing the bottle was 98.63%, 

while recall for the bottle was 99.25%.  The high recall indicates that the model is very likely 

to detect when the bottle is actually being opened. The slightly lower precision value 

(though still quite high) indicated that it is slightly less likely to misclassify the bottle 

opening gesture for a smoking gesture, rather than vice versa. The averaged confusion 

matrix demsonstrates this well, as false positives (e.g., bottle opening gesture erroneously 

detected for smoking gesture) was 7.3 higher than false negative 4.0.  

Overall, results should be further verified. The limited dataset suggests that the classifier is 

overfitted to the two indiviuals and their performed gestures. KNN used k=1, the most 

simple case (i.e., the model simply assigned unkown points based on which training point 

was closest). Doing so worked well for this particualar model, as both gestures resided in 

different domains of the sample space. It is doubtful, however, the model will generalize 

well given additional individuals and more gestures. 
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4.2 Support Vector Machine 

The final configuration of the SVM classifier utilized a Gaussian radial basis function as its 

kernel function for increasing dimensionality. Seventy percent of the dataset was used for 

training with the remaining 30% used for testing.  The model was trained 1,000 times, and 

averages were calculated in order to reduce the effects of the random training sample 

selection. Results are shown below in Tables 3 and 4. 

Table 3. Confusion Matrix for SVM Classifier 

Confusion Matrix: 
Predicted Class   

Bottle Smoking Recall: 

True Class 
Bottle 514.5 17.7 0.9667 

Smoking 28.1 502.7 0.9471 

  Precision: 0.9482 0.9660   

Table 4. Classification Report for SVM Classifier 

Report: 

  precision recall f1-score support 

Bottle 0.9482 0.9667 0.9574 532.2 

Smoking 0.9660 0.9471 0.9564 530.8 

avg 0.9571 0.9569 0.9569 1063 

accuracy 0.9574     1063 

The SVM classifier performed well when distinguishing between the two gestures. Overall 

accuracy was 95.74%. Precise recognition the bottle gesture was 94.82%; recall was 96.67%.  
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High recall indicates that the model satisfactorilly recognized the gesture. A slighly lower 

precision value (although still quite high) indicated that SVM is more likely to misclassify 

the smoking gesture as a bottle opening gesture than the other way around. The averaged 

confusion matrix demsonstrates this phenomenon well, as the false positives (i.e., bottle 

opening gesture detection as a smoking gesture) at 28.1; false negative were 17.7.  

Results proved realistic: ~95% accuracy was measured in other studies that utilized an SVM 

for classifying human gestures [21, 22]. These results are more believable than the 99% 

accuracy indicated with KNN. SVM can’t overfit as badly as KNN because SVM must 

consider all training datapoints, while KNN with k=1 only considers the nearest training 

samples for evaluation. 

4.3 Artificial Neural Network 

The ANN classifier used an architecture with six input neurons, 12 neurons in the first 

hidden layer, nine neurons in the second hidden layer, and a single output neuron for 

estimating the class. All layers were densely connected. The model was trained in 300 

epochs using a batch size of 20 data samples (i.e., approximate gesture period). Seventy 

percent of the dataset was used for training with the remaining 30% used for testing.  ANN 

was trained 10 times, and averages were measured to reduce effects of random weight 

initialization. 
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Table 5. Confusion Matrix for ANN Classifier 

Confusion Matrix: 
Predicted Class   

Bottle Smoking Recall: 

True Class 
Bottle 526.6 6 0.9887 

Smoking 16.8 513.6 0.9683 

  Precision: 0.9691 0.9885   

Table 6. Classification Report for ANN Classifier 

Report: 

  precision recall f1-score support 

Bottle 0.9691 0.9887 0.9788 533 

Smoking 0.9885 0.9683 0.9783 530 

avg 0.9788 0.9785 0.9785 1063 

accuracy 0.9812     1063 

The ANN classifier performed extremely well when classifying both gestures. Overall 

accuracy was 98.12%. Precision for recognizing the bottle opening gesture was 96.91%, 

while recall was 98.87%.  The slightly higher recall value (although precision was still quite 

high) indicated that the model was slightly more likely to misclassify a smoking gesture as 

a bottle opening gesture than the other way around. The averaged confusion matrix 

demsonstrated this well, as false positives (i.e., smoking gesture detected as a smoking 

gesture) at 16.8 were higher than the false negatives at 6. Although more false positives is 

unfortunate, the results demonstrated a small number compared to overall samples.  
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Results of this investigation are promising. ~98% accuracy was reported in papers that 

utilized neural networks to classify human gestures [24-26]. To fully verfiy the results, more 

data is needed for a greater number gestures and additional individuals. 

5. Conclusion and Future Work 

This thesis compares the ability of three common classifier models, namely KNN, SVM, and 

ANN, to recognize a bottle opening gesture for improving medication adherence. Recall of 

the bottle opening proved the most important metric, with precision as a support metric. 

If recall is higher than precision, more false positives than false negatives are reported. This 

is important for medication adherence so that a system will not misclassify other gestures 

as a bottle opening gesture and falsely assume that the patient administered the 

medication.  

Overall KNN accuracy was 98.95%. KNN precision for recognizing the bottle opening 

gesture was 98.63%, while KNN recall for the bottle opening gesture was 99.25%. Overall 

SVM accuracy was 95.74%. In this case, precision for recognizing the bottle opening gesture 

was 94.82%, while SVM recall for the bottle opening gesture was 96.67%. Overall ANN 

accuracy was 98.12%. ANN precision for recoginzing the bottle opening gesture was 96.91%, 

while ANN recall for the bottle opening gesture was 98.87%. ANN results continue to show 

promise [24-26]. Results show that KNN and ANN were more accurate than the SVM, 

although all models classified the gesture with an accuracy greater than 95%. SVM results 

matched closely with related recent work:  ~95% accuracy is possible with this method.   
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Results for KNN are the least promising, despite high accuracy. In previous studies, much 

more data processing was needed for good results, which contradicts these findings. 

Results for KNN are probably due to overfitting the data, which was only available for two 

gestures performed by two individuals. More data is needed for a greater number gestures 

performed by additional individuals to validate that KNN is viable for classifying raw 

accelerometer and gyroscope data.  

ANN results are very promising. ANN and SVM training results in a type of hyperplane. In 

this research, SVM finds the hyperplane for data processed with a Gaussian radial basis 

function. ANN experienced the same, though time histories can be accounted for. SVM 

treats all points as existing simultaneously in the sample space, while ANN can learn time 

dependecies in the data.  

All three models could prove useful for medication adherence. While the KNN model 

requires more data and testing to realize an improvement in gesture recognition, the model 

performs extremely well given a two-gesture, two-individual classifation case study. Results 

are likely to deteroriate in the presence of more gestures or more diverse sampling. SVM 

alone might not reach a  level of commercial accuracy, which is why this method was used 

to suplement the Bayesian network in [22].  

The ANN approach is the most promising, offering the greatest flexibility and ability to 

learn features without extensive preocessing. More validation would be useful to ensure 

performance remains high when more gestures and additional individuals are included in 

the study. 
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Overall, this thesis demonstrates that all three chosen classification models perform well 

for the given task. Whether these models will generalize to a more varied population 

remains to be seen. For medication adherence, more work is needed to translate the 

classifiers into a system that benefits patients. Even though the methods tested are easily 

implemented, more work is be needed for real-time IoT medication adherence monitoring 

by a commercial off-the-shelf (COTS) service.  

Future work will focus on testing ANN with additional participants and a greater number 

of gestures. Eventually, the final aim would be to incorporate machine-learning models 

into a usable system for medication adherence. The best way to reach as many patients as 

possible is developing a user-friendly, smart watch application for continuously monitoring 

patients administer medication. Utlizing cloud-based data processing could ease the 

computational burden on devices. More data processing is needed to slice live data streams 

from the smart watch into manageable windows for classification. Many researchers are 

currently investigating these solutions. Thus, a user-friendly, robust medication adherence 

system should be available in the near future.  
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