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Abstract 

People perform complex visual tasks.  Airplane pilots land planes safely on the ground 

and baseball players swing bats at speeding fastballs. Drivers weave through traffic and 

sports fans skillfully track the movements of their favorite team.  These are examples of 

visual search, the process of looking for something.  Classic experiments have provided 

much information about characteristics affecting search efficiency (i.e., efficiency 

=display size/speed; Treisman & Gelade, 1980), but visual search literature is split on the 

underlying mechanisms involved in visual search.  Visual search may be random (Wolfe, 

2007), memory-driven (Zelinsky, 2008), or self-similar over time (Aks, Zelinsky, & 

Sprott, 2002).  These standpoints assign memory at least some role in determining search 

behavior—the current work explores this possibility by looking for evidence of 

nonlinearity in visual search response times.  Participants performed 250 visual search 

trials in one of three conditions, ascending-first, descending-first, or random.  Ascending-

first participants performed 125 searches increasing in difficulty, then 125 searches 

decreasing in difficulty.  Descending-first participants completed 125 searches decreasing 

in difficulty, then 125 searches increasing in difficulty.  Random participants completed 

250 searches pseudo-randomly varying in difficulty.  We constructed hysteresis plots for 

each condition and nonlinearity emerged in the data that does not fit traditional concepts 

of memory, practice, and fatigue.  The findings suggest that the term memory may not be 

a useful concept for describing the visual search process.  Hysteresis in visual behavior 

indicates history-dependence—we suggest the term history as a replacement for memory.  
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Hysteresis in Eye Movement Patterns 

 People perform complex visual tasks.  Pilots guide aircraft to the ground, 

coordinating complex visual cues with motor behavior.  Drivers navigate through traffic, 

avoiding other motorists, pedestrians, and unforeseen road construction.  Athletes rely on 

vision for many tasks, gauging the distance to a goal, “reading” golf greens, and swinging 

bats at 95 mph fastballs.  Often visual behavior is less extreme, but equivalently complex.  

Friends recognize one another across a crowded room; storm watchers detect subtleties in 

cloud formations; and pub-crawlers find differences between complex visual scenes 

while sitting on a bar stool.  These are all examples of visual search—the process of 

looking for something—and imply that visual behavior is flexible and adaptive.  This 

description has recently faced critique as some contend visual behavior exhibits task-

independent structure (e.g., Over, Hooge, Vlaskamp, & Erkelens, 2007).  Task-

independent structure is inconsistent with the view that memory steers search behavior.  

The current work explores the possibility that visual behavior may also be context-

dependent—visual behavior may exhibit nonlinear fluctuation according to photometric 

scene characteristics and specific task demands.  Nonlinear fluctuation may indicate 

history-dependence (i.e., hysteresis).  Hysteresis in visual search questions current 

assumptions regarding the part memory plays in directing search, while providing an 

possible explanation for seeming task-independence.   

  Visual search means looking for something.  The visual search literature often 

calls that something a target and anything else a distractor.  The same literature 

distinguishes between types of visual search—feature, conjunction, and natural (or real-

world) search (e.g., Biederman, Glass, & Stacy, 1973; Brockmole & Henderson, 2006; 

Henderson, 2003).  Feature search tasks involve looking for simple targets such as 
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upright blue rectangles amidst many rotated from 90 degrees blue rectangles (e.g., 

Treisman & Gelade, 1980; Wolfe, 1998).  Conjunction searches involve detecting targets 

along more than one dimension such as rotated violet rectangles amidst rotated pink and 

blue rectangles.  Finally, natural search is generalized conjunction search because natural 

scenes (e.g., fields of wildflowers) present many complex conjunctions, and the 

distinction between target and distractor is blurry at best (Wolfe, Horowitz, Palmer, 

Michod, & Van Wert, 2010).  Natural search is easy to understand because people do this 

when they search for car keys, the remote, or a runaway earring back.  These perspectives 

have provided visual science with valuable information. 

 Visual search studies typically focus on search efficiency, a broad term 

referencing some speed by area measurement (e.g., Duncan & Humphreys, 1989).  

Researchers plot push-button response times against display size or area (e.g., number of 

distracters; Duncan & Humphreys, 1989; Treisman & Gelade, 1980; Treisman, 1991; 

Wolfe, 1998).  Without density measurements, display size only loosely relates to area—

one could have 25 1-cm2 search items on a 25-cm2 display or the same search items on a 

100-cm2 display.  Feature searches often result in flat efficiency curves—increasing 

display size does not affect search efficiency, providing putative support for parallel 

processing of visual stimuli (Müller, Heller, & Ziegler, 1995; Thornton & Gilden, 2007; 

Treisman & Gelade, 1995).  However, increasing display size during conjunction 

searches results in efficiency curves often interpreted as linearly increasing, supposed 

evidence of serial processing of visual stimuli.  The idea is that the increased distractor 

quantity and processing speed explain the linear increase observed for conjunction 

searches.   
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 Parallel processing expedites feature searches by allowing observers to scrutinize 

an entire scene at once, a relatively fast process (about 400 ms); whereas, serial 

processing slows visual search by forcing observers to examine each distractor one by 

one (response times are sometimes as high as 2400 ms; Treisman and Gelade, 1980).  

The argument is compelling—conjunction search appears dependent on display size 

because increasing the number of to-be-searched items increases search times linearly, 

but feature search appears independent of display size because increasing display size 

fails to precipitate increased response times.  Explicit in Treisman and Gelade (1980) and 

Wolfe (2008) is the idea that processing speed and storage limitations prevent observers 

from accruing information about search scenes—visual search is amnesic or random.   

 Some researchers interpret characteristic efficiency curves as evidence that visual 

search is random (Horowitz & Wolfe, 1998; Horowitz & Wolfe, 2003; Wolfe, 1998).  

This interpretation is understandable.  If visual search has a universal structure, then one 

might expect display size commensurate increases in search times for the simple and 

sufficient reason that a larger display requires more time to search.  However, this 

interpretation follows from the assumption that response times are linear.  Is this an 

accurate representation of efficiency curves?  The fractal (i.e., nonlinear) dynamics in 

response times have long been established (e.g., Thornton & Gilden, 2005; Van Orden, 

Holden, & Turvey, 2003) and researchers have begun to recognize that efficiency curves 

are not as linear as once thought (Wolfe et al., 2010).  For example, a striking non-

linearity appears in response time curves—linear predictions extending from small 

display sizes to large display sizes quickly increase in error as efficiency curves follow a 

curvilinear trajectory.  Such non-linear trends often indicate complex dynamics. 
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 Tools and concepts from dynamical systems theory may help explain non-

linearities in visual search and response time data and may reveal that experience is 

fundamental to visual search (Aks, Zelinsky, & Sprott, 2002).  One such method involves 

examining visual behavior for history dependence (i.e., hysteresis).  The following 

illustration explains the concept of hysteresis.  Imagine a mountain climber scaling an 

alpine summit—one could easily trace her path from the pitons left in the rock face as she 

makes her ascent.  However, tracing the descent might reveal a different trajectory. The 

mountain climber is not the same when beginning her ascent as when beginning here 

descent, and for that matter, neither is the mountain.  The mountain climber’s perspective 

has changed—seeing above a sheer drop is different than seeing beneath one.  The rock 

face has also changed—the eventual scree that falls from beneath the climber’s feet 

creates subtle changes in the rock formation that prevents precise backtracking.  These 

changes in perspective and form force the climber to alter her path from the peak relative 

to her path from the base.  Thus, the measurement of the climber’s path depends on the 

direction of measurement, and this property, this history-dependence is hysteresis.   

 The study of hysteresis originated in ferromagnetic material research (e.g., Ewing, 

1900), but since then the cognitive-perceptual domain and others have also applied the 

concept (e.g., Farrell, 1999; Holden, 1998).  For example, when researchers 

incrementally vary a simulated object’s motion path on a computer screen, people 

experience a perceptual flip from horizontal to vertical motion when the aspect ratio 

between horizontal and vertical motion length reaches a certain threshold (e.g., Hock, 

Bukowski, Nichols, Huisman, & Rivera, 2005).  One example is a motion quartet, a grid-

like structure containing four dots configured dark, light, dark, light.  Participants view 

the configuration as the dots blink between light and dark.  If the motion paths—the 
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distance between successive dots— are equivalent in the horizontal and vertical direction, 

an observer perceives this as directional motion.  Diners have been motioning people into 

their booths like this for years.  If researchers slowly change the horizontal/vertical aspect 

ratio, observers report perceptual change in motion direction at a critical point, like the 

point at which water transitions to ice.  Hysteresis occurs when researchers incrementally 

reverse the aspect ratio—perceptual flips occur at different aspect ratios when 

experienced in ascending versus descending order.  Thus, hysteresis occurs in more-or-

less pure visual perception.   

 Hysteresis also occurs in object wielding—people transition between holding an 

object with one hand and holding an object with two hands at different times depending 

on which action occurs first (e.g., Frank, Richardson, Lopresti-Goodman, &Turvey, 

2009).  Wielders may start to grasp an object with one hand but if researchers increase 

object size (i.e., length, mass, or density) to some critical point, then wielders switch to 

two-hand grasping.  Hysteresis occurs when wielders begin with a two-hand grasp 

because the critical size at which they switch to a one-hand grasp is different than the 

point at which they switched from a one-hand to a two-hand grasp.  Thus, hysteresis is 

also present in more-or-less pure motor behavior.  Given that hysteresis occurs in almost 

pure perceptual experience and motor behavior, it makes sense to examine visual 

behavior for hysteresis because perceptual and motor processes (i.e., eye movements and 

response times) comprise visual search.  However, this stance challenges conventional 

thoughts on the role memory plays in visual search. 

 Visual short-term memory is a hypothetical mental storage center for temporary 

stimulus representations (e.g., search images)—this storage serves to guide future search 

(e.g., Guided Search 4.0; Wolfe, 2007).  Suppose someone asked you to find an upright 
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“T” amidst an array of rotated “Ts”.  Your eyes would make an initial random sweep 

across the array collecting information (i.e., item representations).  What you may not 

know is this storage is quite small—capacity only spans about four items (Wolfe, et al., 

2010).  Therefore, one may have access to only about four “Ts” at any one time from 

visual short-term memory, but if you do not find the upright “T”, then the visual system 

guides you to another possible location and updates the storage center with new 

information.  You also might not be aware that you must transfer items from short-term 

to long-term memory if you want to use this information later.  This means you must 

constantly monitor visual short-term memory for relevant information and then send it to 

long-term memory, but this process is also taxing because there is a perceptual 

bottleneck—little information makes its way from the retina to long-term memory (e.g., 

Van Essen, Anderson & Felleman, 1992).  These supposed limitations to the visual 

system create challenges in understanding how memory guides visual search. 

Hysteresis provides an alternative lens for understanding visual behavior.  

Perspectives on memory’s prevalence in visual search span a wide continuum (cf. Aks, et 

al., 2002; Wolfe, 2007; Zelinsky, 2008).  One end of this continuum maintains that visual 

search is random (e.g., Horowitz & Wolfe, 1998), while the other end promotes memory 

as fundamental to visual search (e.g., Zelinksy, 2008).  The intermediate position simply 

posits a relationship between visual behaviors across time (e.g., Aks, et al., 2002).  Trial 

randomization in visual experiments expresses a tacit knowledge that visual search is not 

random—behavior experienced at one point time influences later behavior (i.e., practice 

effects).  However, the inability to improve search efficiency even when re-searching the 

same display for the same object (e.g., Kunar, Flusberg, & Wolfe, 2008) contradicts the 

viewpoint that memory plays a primary role in guiding visual search.  What then is visual 
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behavior’s temporal relationship?  If neither memory nor randomness is adequate to 

describe visual behavior, then hysteresis argues against randomness as an explanation and 

suggests a reason for memory-like effects.  The described here tests the hypothesis that 

visual behavior exhibits hysteresis. 

Method 

Participants 

 Eighty-three students volunteered for the experiment.  Students participated in 

exchange for course credit.  All participants reported normal or corrected-to-normal 

vision without color-blindness.  We discarded 28 participants’ data because of a minor 

task modification early in data collection.  We also discarded data from 25 participants 

because of failures in the calibration procedure and equipment malfunctions.  Our final 

sample was 30 participants (Female = 22).  The mean age of participants was 20.53 (SD 

= 0.45).  Four participants reported wearing glasses, seven participants reported wearing 

contact lenses, and three participants reported having had corrective eye surgery.  

Twenty-five participants reported being right-handed and twenty-three participants 

reported English as their first language.  Five participants reported their ethnicity as 

African American, four reported being Asian, fourteen reported being Caucasian, two 

reported being Hispanic, three reported being Native American, and two reported being 

Middle Eastern.  Participants were randomly assigned to experimental conditions such 

that 10 participants experienced each condition. 

Materials 

 The researcher constructed 245 original stimulus slides comprised of satellite 

imagery superimposed by golf balls (Figure 1).  The background satellite image remained 

constant across all 245 stimulus slides; however, golf ball images varied with respect to 
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opacity.  Target opacity varied with respect to stimulus background, ranging from 20 to 

100 percent, with 5 levels (20, 40, 60, 80, and 100 percent).  Stimulus slides were 

constructed such that 49 slides contained each level of opacity and were taken from a 

larger stimulus set.  The original stimulus set (1225 slides) varied opacity and size but 

preliminary analyses revealed no effect of size on difficulty rating.  Graduate students 

(six) and faculty (one) rated all 245 slides for difficulty using a method similar to S. S. 

Stevens (1957) magnitude estimation (see Appendix A).  Cluster analysis identified five 

distinct categories, interpreted as difficulty levels.  We assigned scores to each slide 

based on the cluster analysis and then selected 25 slides at random from each difficulty 

level to use in the experiment.  The final number of 25 slides per level was chosen so that 

participant engagement remained under thirty minutes.  This limitation ruled out expired 

vigilance as a possible confound. 

 

 

Figure 1. Example stimulus slide at 40 percent opacity.  Target is located in the 

lower-left quadrant. 
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Apparatus 

 An ASL series 5000 (Model 504) eye tracker captured eye movement behavior.  

This system (sampling rate = 60 Hz) uses near infrared corneal and pupil reflection to 

track participant gaze position relative to screen/scene location.  Participants performed 

searches on an 81.28 cm Elo Touchsystems LCD touch-screen monitor (refresh rate = 60 

Hz, resolution = 1024×768) from a distance of approximately 104 cm, subtending a 

visual angle of about 16.31° vertical and 21.32° horizontal, left and right of center.  

GazeTracker® software from Eye Response running on a Dell Optiplex® computer 

presented stimuli.  The laboratory was kept dark except for the ambient lighting produced 

by monitors and the eye-tracking equipment.  Participants used a mouse to advance trials 

and indicate when they located targets. 

Procedure 

 Upon entering the laboratory, each participant read an informed consent form 

explaining the procedure and any potential risks.  After reading the informed consent 

form, each participant printed and signed their name to indicate agreement with 

participation in the procedure.  The researcher then switched off the overhead light and 

began the calibration procedure.  Each participant followed the researcher’s instruction 

and looked at nine equally spaced points (i.e., three rows by three columns) in sequence.  

The background for the calibration points was solid blue-green, and each point was an 

off-white color superimposed by black numerals (1-9).  The eye-tracker recorded the 

focal point from each participant’s left eye as they looked at each point.  Once 

participants viewed all nine points, the researcher directed the participants’ attention to 

the calibration points again to ensure fixations were within 0.5 degrees, corresponding to 

the perimeter of each calibration point.  If any monitored fixation did not meet this 
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criterion, the researcher repeated the calibration until measurement error reached 

tolerance.   

  Each participant then read the instructions and completed 250 visual search trials, 

each separated by a 1000 ms interstimulus interval where they observed a slide of white 

noise constructed with Adobe Photoshop CS4 (see Appendix B for instructions).  

Participants in the ascending-first condition performed 125 visual searches that increased 

in difficulty from 1 to 5 and then 125 visual searches that decreased in difficulty from 5 

to 1.  Participants in the descending-first condition performed 125 visual searches that 

decreased in difficulty from 5 to 1 and then 125 visual searches that increased in 

difficulty from 1 to 5.  Participants in the random condition performed 250 visual 

searches that pseudo-randomly varied in difficulty ranging between 1 and 5.  Participants 

in all conditions viewed the same slides in block one as in block two such that the 

experimental conditions blocks were identical except for being in reverse order.  At the 

conclusion of the experiment, the researcher asked all participants if they were aware that 

the two blocks were identical.  This question probed whether explicit memory explained 

differential response time slopes between blocks one and two. 

Design 

 The design was a 2W (block) × 3B (direction) × 5W (difficulty) mixed design.  The 

first independent variable was block, with block one corresponding to first half trials and 

block two corresponding to second half trials.  The second independent variable is 

direction with three levels, ascending-first, descending-first, and random.  The third 

independent variable was difficulty and ranged between 1 and 5 according to the rating 

procedure discussed in the materials section.  The dependent variable was response time, 
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where the time difference between the beginning of a trial and a key-press response 

indicating that a participant had located. 

Results 

Eye Movement Data 

 Technical issues prevented the analysis of eye movement data.  The intention was 

to analyze acquisition time, the time difference between the beginning of a trial and the 

time participants fixated a target.  This measure relies on defining an area of interest, the 

area that contains each target.  However, participants often pressed the left mouse button 

to advance the trials before their gaze reached the target, preventing reliable calculation 

of acquisition time.  A solution to this problem in future research would be to use a gaze 

contingent display.  This would allow participants to control stimulus presentation with 

their eyes and provide an accurate measure of when and if participants located the target. 

Response Time Data  

  We tested the hypothesis that visual behavior collected during visual search 

would exhibit hysteresis.  Participants exhibited individual variability in response times 

so we standardized each participant’s response times by converting them to z-scores.  

Then we performed a 2W-block × 3B-direction × 5W-difficulty mixed analysis of variance.  

Mauchly’s test for spehericity was significant so we used a Greenhouse-Geisser 

correction to adjust degrees of freedom.  The analysis revealed a three-way interaction, 

F(2.63, 35.54) = 4.762, p = .009, partial eta squared = .261, observed power = .833.  The 

three-way interaction confounds the main effects of block and difficulty, as well as two-

way interactions, so we omit reporting or interpreting these statistics.  

 Nested within group variables create a challenge in interpreting the three-way 

interaction (Figure 2a and 2b).  We addressed this difficulty by computing change scores 
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such that change was the difference between block two and block one.  There is some 

concern about taking change scores because members from different groups may start at 

different values (e.g., Meltzoff, 1999).  A common treatment for this concern is 

converting raw data to delta scores, which take into consideration the correlation between 

initial and final values.  However, converting raw data to z-scores provides an equivalent 

solution because z-scores and delta scores are linearly related (Nunally & Bernstein, 

1994).  We converted raw data to z-scores for statistical tests, but used raw data to 

generate figures to aid interpretation (Figure 2c).  Negative change scores indicate 

quicker response times during block two compared to block one, whereas positive change 

scores reflect slower response times during block two compared to block one.  We 

followed up by performing a two-way 3B-direction × 5W-difficulty mixed analysis of variance.  

Again, Mauchly’s test of sphericity was significant so we adjusted degrees of freedom 

with a Greenhouse-Geisser correction.  The analysis revealed a significant two-way 

interaction, F (2.64, 35.65) = 4.75, p = .009, partial eta squared = .260, observed power = 

.832.   

 Paired-sample t-tests with Bonferroni correction (α = .01) clarified the interaction.  

Descending-first participants located targets more slowly at difficulty level four during 

block two (M = 2,931.10 ms, SD = 1,479.49 ms) than during block one (M = 1,279.50 

ms, SD = 431.81 ms) resulting in an average approximate difference of 1,650.00 ms (SD 

= 1,781.15 ms), t(9) = 2.93, p = .008 (Figure 3b).  However, descending-first participants 

found targets more quickly at difficulty level five during block two (M = 7,807.10 ms, SD 

= 4,096.75 ms) than during block one (M = 13,518.60 ms, SD = 6,643.68 ms), resulting 

in an average approximate difference of -5,711.50 ms (SD = 5,415.43 ms), t(9) = 3.34, p 

= .004 (Figure 3b).  Ascending-first participants located targets more quickly at difficulty 
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Figure 2. Plots of response times by difficulty in (a) block one and (b) block two.  Plot shows the 

response time differences (c) between blocks for each level of difficulty.  Lines represent between 

group levels.  Negative values indicate faster response times during block two compared to block 

one. 

level five during block two (M = 8,367.20 ms, SD = 2,672.64 ms) than during block one 

(M = 11,396.30 ms, SD = 3,953.95 ms), resulting in an average approximate difference 

of -3029.10 ms, t(9) = 8.52, p = .000 (Figure 3a).  Figure 3c indicates no differences in 

response times for the random condition between blocks one and two. 

Independent sample t-tests with Bonferroni correction (alpha = .01) assuming 

unequal variance helped decipher the three-way interaction.  Descending-first participants 

showed a larger change in performance at difficulty level four than ascending first 

participants, t(9) = 3.68, p = .001.  Descending-first participants also showed a larger 

change in performance at difficulty level five than ascending-first participants, t(9) = 

3.32, p = .005.  Descending-first and ascending-first participants had larger changes in 

a b 

c 
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Figure 2. Hysteresis plots of response times in the (a) ascending first condition, (b) the 

descending-first condition, and (c) the random condition. 

performance than the random group (M = -437.00 ms, SD = 3,494.08 ms) at difficulty 

level five, t(9) = 3.69, p = .001, and t(9) = 2.78, p = .008, respectively.  Finally, 

descending-first participants showed a greater change in performance than the random 

group (M = -310.00 ms, SD = 1,795.61 ms) at difficulty level four, t(9) = 2.45, p = .01. 

All participants reported being naïve to the identical slides in blocks one and two. 

Discussion 

The current work explored the possibility that visual behavior exhibits hysteresis.  

Hysteresis can be inferred based on nonlinear patterning of response times at nested 

levels of block and difficulty.  That is, response times that differ at the same difficulty 

level at different points in time may express a nonlinearity called hysteresis.  The current 

results suggest several ways that visual search response times exhibit a history-dependent 

a b 

c 
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quality.  First, the ascending-first and the descending-first conditions, when compared to 

the random group, produced faster response times at block two with respect to block one 

at the highest levels of difficulty (i.e., four and five; Figure 2a and b).  This finding 

implies that order of difficulty plays a role in search performance.  Second, the average 

benefit for the ascending-first group between blocks one and two at difficulty level five 

was about 3,000 ms; whereas, the descending group showed an even greater benefit at 

around 5,700 ms.  This disparity between ascending-first and descending-first conditions 

indicates that performance benefit may depend on experienced difficulty direction.  

Third, the descending-first condition experienced a cost of about 1600 ms at difficulty 

level four, a nonlinearity that seems contradictory to standard models of visual memory.  

Thus, there are at least three ways the current findings support our hypothesis that visual 

behavior exhibits hysteresis. 

The appearance of hysteresis gives evidence of nonlinear visual behavior, but this 

interpretation invites alternative explanations.  One possibility is that the observed 

difference in the descending-first group at difficulty level four is owing to fatigue.  

Descending-first participants may have responded slower during block two trials because 

they were tired, but this is a weak argument because the ascending-first and random 

conditions failed to demonstrate the same fatigue effect—the comparable time interval 

for the ascending-first condition gave the opposite trend.  Ascending-first participants 

performed faster at difficulty level two during block two than at the same level during 

block one.  If fatigue was the culprit behind the descending-first nonlinearity at difficulty 

level four, one would expect a similar trend in the ascending-first condition but improved 

block two performance by the ascending-first group opposes this interpretation and 

necessitates a separate account.   
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So-called practice effects may explain improved performance by the ascending-

first and descending-first groups during block two at difficulty level five—participants 

may have increased their search efficiency according to increased familiarity with the 

task constraints.  This interpretation is plausible but fails to address the observed findings 

for at least two reasons.  First, relegating performance to practice contradicts the 

interpretation that the nonlinearity observed in the descending-first group stemmed from 

fatigue.  If practice effects are sufficient to obscure fatigue trends in the ascending-first 

group, it follows that practice effects would have the same effect on the descending-first 

group—this was not the case as performance by the descending-first group slowed during 

block two at difficulty level four.  Second, participants in the random condition did not 

generate a patent improvement during block two at all levels of difficulty.  The same 

logic applied when exploring differences between the experimental groups applies here—

there is no why fatigue should overcome practice effects in the random group but not the 

ascending-first group.  Thus, practice effects and fatigue seem mutually exclusive in 

explaining the current findings.  If observed patterns come from practice effects alone, 

then the fatigue explanation for the descending-first group cost at difficulty level four 

falters.  If observed patterns stems from fatigue, then practice effect explanation for the 

ascending-first group benefits at difficulty levels four and five becomes indefensible. 

If fatigue and practice effects are inappropriate for explaining differences between 

experimental groups, then perhaps explicit (or declarative) memory may account for 

observed ascending-first improvement.  After all, participants viewed the same images in 

block one and block two, providing the opportunity to encode, store and retrieve each 

target location.  Again, there are at least two reasons why this interpretation is ineffective.  

First, we asked experimental group participants if they noticed that block one and block 
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two trials were identical—all participants reported being naïve to this fact.  Expectation 

effects might explain participant reported naïvety and we might make this concession 

were it not for the second reason an explicit memory interpretation is untenable.  

Expectation effects and explicit memory accounts fail to explain the performance cost 

observed for descending-first participants during block two at difficulty level four.  If 

participants relied on explicit memory stores to guide block two searches, we would have 

observed a consonant improvement in all three conditions (cf. the fatigue – practice 

argument above), but the descending-first nonlinearity muddies a clear relation to explicit 

memory.  

Failure to explain observed trends through explicit memory does not rule out 

implicit (also procedural) memory as the mechanism underlying ascending-first 

participants’ improvement during block two.  It is possible that participants accumulated 

a map of the unvarying background image, facilitating block two performance; however, 

this only makes sense when considering the ascending-first condition because random 

and descending-first participants showed decrements in performance during block two 

(Figure 3b and c).  In fact, implicit memory could only benefit search if participants had 

background image specific knowledge.  If any relation exists between theorized implicit 

memory stores and the observed within condition variability, then one might reason that 

interplay among implicit memory, explicit memory and whatever memory form is 

responsible for practice effects impaired its detection.  If this is the case, our experimental 

procedure lacks sufficient constraints to tease apart this relationship.  However, we argue 

that this is not the case because performance by the random group supports our 

interpretation.  Perhaps the difficulty in decoding memory’s contribution rests in the 

assumption that memory stores play a role in visual search (cf. Horowitz & Wolfe, 1998).   
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Contemporary visual search theories suggest that visual-short term memory can 

hold only about four objects at one time—such a visual system would be taxed to encode 

and store 125 unique target locations simultaneous to encoding and storing even a coarse 

background image map (Wolfe, et al., 2010; Rao, Hayhoe, Zelinksy & Ballard, 2002).  At 

least three reasons hint why this may be so in the current work.  First, natural terrain 

comprised the unvarying background image—natural imagery is often complex and 

provides a near infinite number of potential distractors.  Encoding and storing a natural 

scene would require vast processing and storage abilities—this seems inconsistent with a 

four-item visual short-term memory capacity, not to mention the perceptual bottleneck 

connecting short- to long-term memory.  Second, we introduced a stimulus mask between 

trials—a noise mask should overwrite visual-short term memory stores.  The mask then 

reduces the likelihood that the visual system would transfer information from visual 

short-term memory to permanent memory stores, implicit, explicit, or otherwise.  Third, 

we varied target opacity relative to background image, blurring the distinction between 

target and distractor—any background image map would include erroneous information 

because the presence of targets would render variable the unvarying background image 

map.  We hesitate to call a fluctuating map a map, at least in the traditional sense of a 

first order isomorphism.  It seems even approaches that assign memory only a limited 

role in visual search may not be suitable to address the current findings. 

Our interpretation of the current results with traditional memory concepts has 

fallen short in explaining the nonlinearities in our data.  Descending-first participants 

performed worse at difficulty level four during block two than during block one—if 

observers relied on memory to guide search during block two, then they should have 

experienced a marked benefit compared to block one.  They did not.  This is a clear 
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contradiction to memory-based models because participants performed the same searches 

in each block and there was no clear evidence of fatigue.  Also, descending-first 

participants showed greater benefit than either ascending-first or random participants at 

the most challenging searches—if experienced direction were trivial, then we should have 

observed equal benefit across experimental conditions from block one to block two.  We 

did not.  Furthermore, the fact that any differences exist between the random condition 

and the experimental conditions is remarkable—if simple practice conferred benefit to 

the experimental conditions, it should have conferred similar benefit to the random 

condition.  It did not.  Thus, we argue that hysteresis provides a more robust explanation 

for the nonlinearities that emerged from the current data.   

If one compares the concepts of memory and history-dependence (i.e., hysteresis), 

both terms impart the importance previous experience plays in shaping now and future 

behavior—organisms do change from interaction with their environments, as do the 

environments.  This idea is similar to the mountain climber example from earlier—the 

climber and the rock face changed from their interaction and this interaction made 

identical ascending and descending trajectories improbable if not impossible.  Memory 

models make specific—and so error prone—predictions about these trajectories but 

history-dependence makes no specific prediction about behavioral variability.  Hysteresis 

is by definition nonlinear and so is suited to describing the current findings.  Does this 

mean that visual search behavior is unpredictable?  Perhaps—hysteresis comes from the 

study of dynamical systems wherein long-term unpredictability is the norm rather than 

the exception (Sprott, 2003).  Does this also mean visual behavior lacks structure?  Not 

necessarily—many dynamical systems have complex structure that is not apparent (e.g., 

fractals).  The current findings support this perspective because traditional concepts failed 
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to predict response time variability, but consistent patterns emerged within each 

condition. 

The current findings provide support for hypothesis that visual behavior exhibits 

hysteresis.  Perhaps three methodological considerations are necessary for studying visual 

behavior.  First, the results indicate the need to study visual behavior over time—accurate 

characterization of visual behavior may only be possible through protracted observational 

windows.  Though the current work moved in this direction, response times may not be 

the ideal dependent variable because they include motor processes that occur after the 

search.  In addition, response time data is less reliable without a reliable without an 

indicator of target acquisition.  Eye movement data may provide a clearer description 

because eye-trackers have high sampling rates (60-1000 hz) and so may capture subtleties 

not apparent in response time data.  However, eye movements are correlated with 

response times (e.g., Zelinsky & Sheinberg, 1997), suggesting that eye movement data 

may generate similar patterns.  Second, visual researchers may consider revisiting well-

known experiments with new methodological and analytical approaches.  Technological 

advances in computing and motion tracking may reveal new information from classic 

experiments.  Advances in dynamical systems research stems from powerful computing, 

complex data modeling, and simulations—these tools may likewise benefit the study of 

visual behavior.  Third, the current results question the role memory plays in visual 

search and suggests that the term history may better reflect the visual process.  Future 

work will also address other cognitive tasks (e.g., word naming) for hysteresis.  History 

as a replacement term for memory may be a difficult concept to grasp.  We conclude by 

explaining how powerful history or persistent change can be. 



Running head: HYSTERESIS  22 

 

J. J. Gibson’s (1986) theory of direct visual perception suggests that everything 

needed to perceive exists within the light emanating from objects, surfaces, and mediums.  

This is because of affordances, features that offer something to an observer.  For 

example, the undulating pattern light makes as it reflects from a stream is unmistakable 

and water affords people hydration, cleanliness, and food.  Environmental features, as 

conceived by Gibson, do not possess invariant affordances, but affordances emerge from 

the interaction of an organism with its environment (Chemero, 2009; Gibson, 1986).  A 

packet of sugar is great in tea, but it also balances a wobbly table—table steadying is not 

an invariant quality of sugar packets but in right context an observer detects and exploits 

this affordance.   

Affordances make possible direct perception and explicit in Gibson’s (1986) 

theory is the idea that if animals directly perceive their environments, then there is no 

need to store memories of objects.  This does not mean that organisms do not learn—

Gibson suggested that perceptual systems attune to affordances.  This, in turn, does not 

mean representations are stored, but that perceptual apparatus flexibly adapt to 

environmental context.  Positing internal representations (i.e., memory) does not improve 

explanation or prediction despite the ability of representational systems to mimic 

behavior (e.g., computers, Chemero, 2009).  Memory is inextricably linked to a computer 

metaphor, one of input and output, a metaphor that obfuscates the role of intentional 

agents in fluctuating environments.  The current findings question the role of memory in 

visual search—perhaps visual search operates from history instead of memory. 

  



Running head: HYSTERESIS  23 

 

References 

Aks, D. J., Zelinsky, G. J., & Sprott, J. C. (2002). Memory across eye–movements: 1/f 

dynamic in visual search. Nonlinear Dynamics, Psychology, and Life Sciences, 6, 

1–25. 

Biederman, I., Glass, A. L., Stacy, E. W. (1973). Searching for objects in real-world 

scenes. Journal of Experimental Psychology, 97, 22-27. 

Brockmole, J. R., & Henderson, J. M. (2006). Using real-world scenes as contextual cues 

for search. Visual Cognition, 13, 99-108. 

Chemero, A. (2009). Radical embodied cognitive science. Cambridge, MA: The MIT 

Press. 

Ewing, J. A. (1900). Magnetic Induction in Iron and Other Metals. London: “The 

Electrician” Printing and Publishing Company. 

Farrell, P. S. E. (1999).The hysteresis effect. Human Factors, 41, 226-240. 

Frank, T. D., Richardson, M. J., Lopresti-Goodman, S., & Turvey, M. T. (2009). Order 

parameter dynamics of body-scaled hysteresis and mode transitions in grasping 

behavior. Journal of Biological Physics. 35, 127-147. 

Gibson, J. J. (1986). The ecological approach to visual perception. New York: 

Routledge. 

Henderson, John M. (2003). Human gaze control during real-world scene perception. 

TRENDS in Cognitive Sciences, 7, 498-504. 

Hock, H. S., Bukowski, L., Nichols, D. F., Huisman, A., & Mireya, R. (2005).  

Dynamical vs. judgmental comparison: hysteresis effects in motion perception. 

Spatial Vision, 18, 317-335. 



Running head: HYSTERESIS  24 

 

Holden, J. G.  (1998).  Hysteresis in hand-eye coordination.  Proceedings of the 4th 

Annual 

    Symposium on Human Interaction with Complex Systems, 124-130. 

Horowitz, T. S., & Wolfe, J. M. (1998). Visual search has no memory. Nature, 357, 575-

577. 

Horowitz, T. S., & Wolfe, J. M. (2003). Memory for rejected distracors in visual search? 

Visual Cognition, 10, 257-298. 

Kunar, M., Flusberg, S., & Wolfe, J. M. (2008) The role of memory and restricted 

context in repeated visual search. Perception and Psychophysics, 70, 314-328.  

Meltzoff, J. (1999). Critical thinking about research: Psychology and related fields. 

Washington, DC: American Psychological Association. 

Müller, H. J., Heller, D., & Ziegler, J. (1995). Visual search for singleton feature targets 

within and across feature dimensions. Perception & Psychophysics, 57, 1-17. 

Nunnally, J. C., & Bernstein, I. H. (1994). Psychometric theory. New York: McGraw-

Hill Inc. 

Over, E. A. B., Hooge, I. T. C.,  Vlaskamp, B. N. S., & Erkelens, C. J. (2007). Coarse-to-

fine eye movement strategy in visual search. Vision Research, 47, 2272-2280. 

Rao, R. P. N., Zelinsky, G., Hayhoe, M., & Ballard, D. (2002). Eye movements in iconic 

visual search. Vision Research, 42, 1447-1463. 

Stevens, S. S. (1957). On the psychophysical law. Psychological Review, 64,153–181. 

Thornton, T. L., & Gilden, D. L. (2007). Parallel and serial processes in visual search. 

Psychological Review, 114, 71-103. 

Thornton, T. L., & Gilden, D. L. (2005). Provenance of correlations in psychological 

data. Pscyhonomic Bulletin & Review, 12, 409-441. 



Running head: HYSTERESIS  25 

 

Treisman, A. M., & Gelade, G. (1980). A feature-integration theory of attention. 

Cognitive Psychology, 12, 97-136. 

Van Orden, G. Holden, J. G., Turvey, M. T. (2003). Self-organization and cognitive 

performance. Journal of Experimental Psychology: General, 132, 331–350. 

Van Essen, D. C., Anderson, C. H., Felleman, D. J. (1992). Information processing in the 

primate visual system: An integrated systems perspective. Science, 255, 419-423. 

Wolfe, J. M. (2007). Guided Search 4.0: Current Progress with a model of visual search. 

In W. Gray (Ed.), Integrated Models of Cognitive Systems (pp. 99-119). New York: 

Oxford. 

Wolfe, J. M. (1998). What can 1 million trials tell us about visual search? Psychological 

Science, 9, 33-39. 

Wolfe, J. M., Horowitz, T. S., Palmer, E. M., Michod, K. O., & Van Wert, M. J. (2010). 

Getting in to Guided Search. In V. Coltheart (Ed.), Tutorials in Visual Cognition. 

(pp. 93-120). Hove, Sussex: Psychology Press. 

Zelinsky, G. (2008). A theory of eye movements during target acquisition. Psychological 

Review, 115, 787-835. 

Zelinsky, G., J., & Sheinberg, D. L. (1997). Eye movements during parallel-serial visual 

search.  Journal of Experimental Psychology: Human Perception and Performance, 23, 

244–262. 

 

  



Running head: HYSTERESIS  26 

 

Appendix A 

Raters read the following instructions: 

 Welcome to the experiment! 

Following the instructions, you will be shown a series of pictures.  Within each 

picture, the researchers have hidden a round object similar to a golf ball.  The 

hidden object will vary in size, and camouflage.  Thus, some searches will be very 

easy and some searches will be very difficult.  You will have two tasks.  Your 

first task is to find the golf ball, and press the spacebar.  After you have found the 

golf ball, you will be given the opportunity to rate the difficulty of each search. 

Press the spacebar to continue the instructions. 

The rating procedure you will use is different than others you may have 

performed.  You will be shown examples of the search task along with ratings 

others have given them.  You may use the examples to develop your own rating 

scale.  The only requirements are that you rate each picture, and that each rating 

must be equal to or greater than zero.  A zero rating represents your easiest 

searches.  Let’s look at a few examples now.  Press the spacebar to continue. 

Participants then saw three consecutive examples of to-be-conducted searches.  Each 

example explained that another participant had given the search a specific rating.  Raters 

viewed the examples and then read these additional instructions: 

The first 50 searches will be for you to practice developing your rating scale. This 

will give you an idea of the range of difficulty the researchers will present.  Use 

the examples you were shown and your own ratings as a reference to rate other 

searches.  For example, you might think, “That last one was a 15, but this one was 

only a little more challenging, so I will give it a 25.”  One more note of caution 
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before you begin.  It is easy to think that a search is easy once you have found the 

object. Try to avoid using this logic as you create your scale.  Let’s practice.  You 

will be notified when the practice session has ended.  Press the spacebar to 

continue. 

After completing the practice session, participants read these final instructions: 

You are now ready to begin.  If you DO NOT understand what you are supposed 

to do, ask the researcher for clarification.  If you DO understand, press the 

spacebar to begin rating the pictures.  There are a large number of searches and 

you will be given breaks periodically throughout the experiment. 

Breaks were administered approximately every 300 trials to prevent participant fatigue.  

Because each participant generated their own magnitude estimation scale, we converted 

participant ratings to z-scores.  After obtaining z-scores, we used cluster analysis (Ward's 

method) to separate participant ratings into levels of difficulty.  Cluster analysis revealed 

five distinct clusters, treated here as five levels of difficulty.  Researchers then randomly 

selected 25 slides from each difficulty level to serve as the stimuli for the main 

experiment. 
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Appendix B 

 Upon completing a successful calibration, the researcher started the experiment 

and instructed the participant to read the following instructions as he read them aloud: 

Welcome to the Experiment! 

The researcher will now show a series of pictures.  Within each picture, the 

researchers have hidden another picture of a green golf ball.  Your task is to find 

the golf ball as quickly as possible.  When you have located the golf ball, press 

the left mouse button. Some searches will be easy and some will be difficult, so it 

is important that you try your best every time.  Also, once you locate the golf ball, 

keep looking at it until the screen goes turns black.  When you have finished 

reading these instructions, say, “I’m finished.”  

After the participants said, “I’m finished,” the researcher asked if they understood the 

task and if they were ready to begin.  The researcher answered any questions, and 

instructed participants to begin by pressing the left mouse button.   

 


