IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received November 19, 2019, accepted December 10, 2019, date of publication December 30, 2019,

date of current version January 8, 2020.

Digital Object Identifier 10.1109/ACCESS.2019.2963081

1/0 Schedulers for Proportionality and
Stability on Flash-Based SSDs in

Multi-Tenant Environments

JAEHO KIM"“, EUNJAE LEE"“2, AND SAM H. NOH"“2, (Senior Member, IEEE)

! Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA 24061, USA

2School of Electrical and Computer Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, South Korea

Corresponding author: Sam H. Noh (samhnoh @unist.ac.kr)

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea Government (MSIT) under

Grant NRF-2019R1A2C2009476.

ABSTRACT The use of flash based Solid State Drives (SSDs) has expanded rapidly into the cloud
computing environment. In cloud computing, ensuring the service level objective (SLO) of each server is
the major criterion in designing a system. In particular, eliminating performance interference among virtual
machines (VMs) on shared storage is a key challenge. However, studies on SSD performance to guarantee
SLO in such environments are limited. In this paper, we present analysis of I/O behavior for a shared SSD
as storage in terms of proportionality and stability. We show that performance SLOs of SSD based storage
systems being shared by VMs or tasks are not satisfactory. We present and analyze the reasons behind the
unexpected behavior through examining the components of SSDs such as channels, DRAM buffer, and
Native Command Queuing (NCQ). We introduce two novel SSD-aware host level I/O schedulers on Linux,
called A+-CFQ and H4-BFQ, based on our analysis and findings. Through experiments on Linux, we analyze
I/O proportionality and stability in multi-tenant environments. In addition, through experiments using real
workloads, we analyze the performance interference between workloads on a shared SSD. We then show
that the proposed I/O schedulers almost eliminate the interference effect seen in CFQ and BFQ, while still
providing I/O proportionality and stability for various I/O weighted scenarios.

INDEX TERMS Flash memory based SSDs, cloud computing, virtual machines, I/O schedulers, 1/O

performance.

I. INTRODUCTION
Flash memory semiconductors are increasingly being used
as storage devices in smart devices, consumer electronics,
and various computing platforms [1]. Recently, the growth of
new industries such as Internet of Things (IoT), autonomous
vehicles, big-data analysis and cloud computing is expected
to further increase the use of flash memory [2]-[7].
Although flash memory based storage devices have various
advantages such as high performance and low power con-
sumption, performance variation may occur due to physical
characteristics of storage media, sophisticated internal mech-
anisms and complicated management software [8]-[11].
Therefore, in areas where stable and consistent I/O perfor-
mance has a critical impact on the system, various analysis

The associate editor coordinating the review of this manuscript and

approving it for publication was Xiao-Sheng Si

VOLUME 8, 2020

and verification of the use of flash memory are needed [8],
[12], [13]. Although the use of flash memory based storage is
rapidly increasing, studies on practical use cases in this area
are still insufficient.

In particular, I/O performance is of critical importance for
cloud service providers [14]: “Amazon found every 100ms
of latency cost them 1% in sales. Google found an extra
0.5 seconds in search page generation time dropped traf-
fic by 20%. A broker could lose $4 million in revenues
per millisecond if their electronic trading platform is
5 milliseconds behind the competition.” Virtualization has
been a key technology in providing enhanced I/O perfor-
mance to customers. To further satisfy customers, it is imper-
ative that virtualization platform providers satisfy the service
level objectives (SLOs) of each virtual machine (VM). There-
fore, we analyze the I/O performance and present solutions in
the cloud computing platform, where the use of flash memory

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 4451

https://orcid.org/0000-0002-5268-0074
https://orcid.org/0000-0002-6974-5487
https://orcid.org/0000-0002-9152-0321
https://orcid.org/0000-0001-5226-9923

IEEE Access

J. Kim et al.: 1/0 Schedulers for Proportionality and Stability on Flash-Based SSDs in Multi-Tenant Environments

T B 10 — Ew T

<} VM-1 VM-4 o VM-1 VM-4 o VM-1 VM-4

- 8- vM2 VM-5 s 8 wvM2 VM-5 = 8 VM2 VM-5

<) 5 5

> 6 > 6 > 6

e 4 e 4 Rl

S S s

£ 2 € 2 i £ 2,

2 ' g | -

g o ' — & o el . "

< 0 50 100 150 & 0 50 100 150 @~ 0 50 100 150

Time (sec) Time (sec) Time (sec)

(a) YCSB-A (b) YCSB-D (c) Fileserver

Proportionality of /0 BW

VM-4
VM-5

VM-1

80 VM-2 80 VM-2 80 VM-2

60 60 60

40 40 40

20 20 20 -

Proportionality of 1/0 BW
Proportionality of I/O BW

ot |
150 0 50 100 150

Time (sec)

(f) Prn

0
150 0 50 100
Time (sec)

(e) Prj

L
0 50 100
Time (sec)

(d) MSN

FIGURE 1. Proportionality of 1/0 throughput (y-axis) resulting from using Cgroup for various workloads on a shared SSD. (Notation: VM-x, where x is
the 1/0 weight used to assign Cgroup proportion with higher x meaning more throughput is requested).

based SSDs has greatly increased but where research in the
area is still limited.

In this work, we empirically investigate internal compo-
nents of an SSD among VMs (or tasks) sharing the SSDs as
storage in terms of I/O proportionality and stability. Through
the analysis, we show the performance characteristics of
SSDs in a shared storage environment and figure out the rea-
sons of performance interference among VMs by examining
the components of an SSD such as channels, DRAM buffer,
and Native Command Queueing (NCQ). From the results,
we learn lessons about how these components influence SLO
satisfaction of VMs or tasks. In particular, we find that the
current Linux default I/O schedulers supporting I/O weights
do not satisfy I/O proportionality requirements as requested
by users and do not provide I/O stability due to performance
interference between VMs or tasks.

I/0 proportionality here refers to the relation among the
I/O throughput as observed by VMs (or tasks) competing for
I/O resources in a shared storage environment. I/O is said
to be proportional if each VM observes I/O throughput in
proportion to the relative weight of I/O resources that the
VMs request [15]. I/O disproportionality and instability are
particularly noticeable in fast storage devices such as SSDs.

We find that components of SSDs, the NCQ and the
cache in the SSD controller, hurt I/O proportionality and
stability. Based on our analysis, we solve the SLO problem
with two novel SSD-aware host level I/O schedulers [16],
called A+CFQ and H+BFQ, that extend the CFQ (Com-
plete Fairness Queueing) [17] and BFQ (Budget Fair Queue-
ing) [18] schedulers; these are the only two I/O schedulers
that provide I/O proportionality on Linux. We show sig-
nificant improvements in I/O performance proportionality
and stability through minimizing performance interference
between VMs with the proposed I/O schedulers. Then we
experimentally analyze the interference effects between con-
currently executing tasks in terms of I/O throughput, latency,
and proportionality with the characteristics of the workloads.
In existing I/O schedulers, severe performance interference
between tasks is observed. We show that the proposed sched-
ulers eliminate performance interference almost completely.

The primary contributions of this paper are as follows:
o We empirically examine internal components of a flash

based SSD shared by multiple VMs or tasks in terms
of I/O performance and proportionality. To the best of
our knowledge, our study is the first to analyze the

4452

performance impact of the internal components of the
flash SSDs as shared storage environment [16].

o We find that the Linux I/O schedulers do not meet the
SLO of each user in a shared SSD. Then, we present
two I/O schedulers, A+CFQ and H+BFQ, which are
designed to satisfy SLO requirements, based on the
lessons learned from the analysis.

« We extensively evaluate the existing and proposed I/O
schedulers through various workloads in terms of I/O
performance, proportionality, and stability on Linux
kernel 3.18.x.

« We also evaluate and analyze the performance interfer-

ence between tasks competing on a shared SSD.
The remainder of this paper is organized as follows.

In the next section, we present our motivation and summarize
related work. In Section III, we perform experiments and ana-
lyze 1/O proportionality on a shared storage. We discuss and
present the design of the A+CFQ and H4-BFQ I/O schedulers
in Sections IV and V, respectively. In Section VI, we dis-
cuss evaluation results. In addition, we analyze the perfor-
mance interference between concurrently running workloads
on SSDs in Section VII. Finally, in Section VIII, we conclude
the paper.

Il. MOTIVATION AND RELATED WORK

In this section, we present the motivation of this work by
conducting experiments. Then, an overview of flash memory
is presented, followed by a discussion on related work.

A. DISPROPORTIONAL I/O PERFORMANCE
Figure 1 depicts the motivation of this work, which shows the
disproportionality of I/O throughput of four VMs running the
same workload simultaneously for six different workloads.
Using Cgroup [19] in Linux, we assign different I/O weights
to the VMs denoted as VM-x, where x refers to the I/O
weight, and observe the I/O throughput allotted and measured
by each VM. Here, higher I/O weight means we expect to
be allotted higher bandwidth by Cgroup proportional to the
x value. Cgroup is known to match well in proportion to
CPU and memory resources as well as HDDs [20]. However,
the effectiveness of Cgroup with flash based SSDs has not
been explored much. Currently, we are aware of only one
study [21] in this regard, which we review in Section II-C.
To conduct experiments, we create VMs, which are
kernel-based virtual machines (KVM), and run the same

VOLUME 8, 2020

J. Kim et al.: 1/0 Schedulers for Proportionality and Stability on Flash-Based SSDs in Multi-Tenant Environments

IEEE Access

TABLE 1. KVM environment.

Description | Host | per VM resource
CPU core 8 1
Memory size 32GB 1GB
Ubuntu-14.x
(O] with KVM CentOS 7
200GB MLC SSD | 50GB partition

Storage

1TB HDD 100GB partition

TABLE 2. Characteristics of 1/0 workloads.

Request | Read Average

‘Workload Total Ratio | Req. Size
YCSB-A 96GB 0.99 132KB
YCSB-D 95GB 0.99 133KB
Fileserver 34GB 0.5 6.17KB
MSN 63.6GB | 0.51 40.4KB

Prj 92.8GB | 0.13 30KB

Prn 75.5GB | 0.79 17.6KB

workload on each VM. Each VM has the same capacity
(50GB partition) of a commodity MLC SSD with a SATA-3
interface. Table 1 shows the summary of the experimen-
tal environment. We use three real workload benchmarks
(YCSB-A and YCSB-D [22] and the Fileserver emulation in
FIO (denoted as Fileserver) [23]) and three I/O trace work-
loads (MSN [24], Prj [24], and Prn [24]). For the trace work-
loads, we use an open source tool that generates I/O requests
based on the trace workloads to drive the experiments [25].
Table 2 shows the characteristics of the I/O workloads.

From the results in Figure 1, we see that the mea-
sured I/O throughput does not correspond to the given I/O
weights. In particular, in case of YCSB workloads, as shown
in Figures 1(a) and (b), VMs with higher I/O weights
do not provide higher throughput. Moreover, for the File-
server results shown in Figure 1(c), VM-5’s I/O through-
put oscillates periodically and performance of VM-4 also
shows large fluctuations. In case of the MSN workload
shown in Figure 1(d), we see periodic spikes of performance
on VM-2, VM-4, and VM-5. Even though the difference
between the weights of VMs is up to 5 times, there is a
performance difference from 10 times to 35 times when per-
formance spike occurs. Finally, the workloads of Prj and Prn
show very irregular performance fluctuations. We observe
that I/O proportionality could deviate as high as around
100 times in excessive cases although the maximum assigned
I/O weight is 5.

From the evaluation results, we conclude that I/O propor-
tionality and stability are not being achieved with Cgroup on
SSDs as a shared storage. Given that previous reports have
shown Cgroup to work fairly well [20], we suspect that causes
of I/O disproportionality and instability comes from SSDs.
Our own results depicted in Figure 2, which compares the I/O
proportionality results when using an HDD (configuration set
as in Table 1) and the SSD that averages out the performance
over all times in Figure 1, support this conjecture.

VOLUME 8, 2020

OVM-1 @VM-2 @VM-4 BVM-5

NowoA o

(Relative to VM1)

Proportionality of 1/0 bandwidth

A

HDD SSD HDD SSD HDD SSD HDD SSD HDD SSD HDD SSD

YCSB-A YCSB-D Fileserver MSN Prj Prn

FIGURE 2. Proportionality of 1/0 performance relative to VM-1 for various
workloads.

Also, it is interesting to note that though the MSN, Prj, and
Prn workload results in Figure 1 show frequent, high spikes
and reversals of proportionality, the averaged out proportion-
ality results in Figure 2 appear not be as disproportionate.
This tells us that while the service provider can claim pro-
portionality to some degree, the actual service experienced
by customers at particular times of service can turn out to be
extremely dissatisfactory.

In the next section, we conduct experiments on a shared
SSD to figure out the reasons of the problem. Before so doing,
we present an overview of flash memory and related work.

B. FLASH AND SSD BASICS

Typical SSDs employ many NAND flash memory chips con-
nected via channels and ways as depicted in Figure 3(a).
NAND flash memory is internally comprised of dies and
planes, where planes consist of a fixed number of blocks
and multiple pages per block as shown in Figure 3(b). I/O
requests from the host can be interleaved across multiple
channels, and the requests can be further interleaved on mul-
tiple dies and planes. Such parallel access of those resources
allow SSDs to achieve high performance. Due to the char-
acteristics of flash memory, cleaning operations (also called
garbage collection) that cause performance degradation are
required [8], [9], [11], [26].

SSD Controller

‘Flash chlp‘ ‘F\ash ch\p‘
I I

Flash chip| [Flash chip| ===
Flash chip| [Flash chip| ===

Channel * Way

Processor

Host
Interface

SRAM
DRAM
buffer

(a) SSD internal

Controller

Chip/Channel

(b) Chip internal

FIGURE 3. SSD architecture.

C. RELATED WORK

Meeting the SLO requirements for VMs in cloud comput-
ing is an important criteria, with numerous studies taking
varied approaches being conducted [12], [27]-[33]. Isolating
the underlying hardware resources among the VMs is the

4453

IEEE Access

J. Kim et al.: 1/0 Schedulers for Proportionality and Stability on Flash-Based SSDs in Multi-Tenant Environments

common way to achieve SLOs. Numerous studies isolating
system resources for VMs have been introduced [12], [29],
[30], [32]. Commercial products such as VMware ESX server
hypervisor provide the ability to isolate CPU and memory
among the VMs [34], [35].

Studies to support I/O SLOs among VMs have also been
conducted [29], [30], [32], [33]. PARDA [29], mClock [30],
and Pisces [32] provide proportional-share fairness among
the VMs. IOFlow [33] introduces a new software-defined
storage architecture for ensuring QoS in multi-tenant data
centers. DeepDive identifies and manages performance inter-
ference among VMs sharing hardware resources [31].

Studies on managing an SSD cache shared by VMs have
also been introduced [27], [28]. A study shows that control-
ling the SSD from outside the SSD is difficult as one cannot
control the internal workings of GC [12]. In a similar context,
the study by Huang et al. also reports that SLOs are difficult
to achieve due to shared resources in SSDs [13]. The study
proposes a technique to isolate performance between multiple
tenants by allowing each tenant to use dedicated channels and
dies in SSDs. Recently, a study similar to our study was pro-
posed [21]. This work also provides weighted fair-sharing on
a shared flash-based storage and uses a throttling technique
to adjust the bandwidth proportionality. The key difference
between our study and this work are that this study uses a
throttling technique in Linux for I/O proportionality and does
not provide insights based on empirical observations of the
workings of the SSD.

Since SSDs involve GC, unlike HDDs, it is difficult to
ensure stable performance, which is one of the important
metrics of SLO [36]. Numerous studies have been con-
ducted to reduce the GC overhead for stable performance of
SSDs. Recently, Yan et al. proposed TTFlash to almost elim-
inate GC overhead by exploiting a combination of current
SSD technologies including the powerful flash controller,
the Redundant Array of Independent NAND scheme, and
the internal large RAM buffer within SSDs [8]. The study,
however, is limited in that they make use of the intra-plane
copyback operation that may cause reliability problems due
to skipping the ECC checks. Unfortunately, this issue is not
completely covered, hence requires further study. MittOS
proposed an SLO-aware interface that can predict and greatly
reduce I/O latency [37]. This study shows the importance
of SLOs of storage systems. Multi-stream SSD was also
proposed to reduce GC overhead by maintaining multiple
streams in an SSD according to the expected lifetime of the
data [38]. Approaches to reduce GC by managing flash mem-
ory directly from the host have also been proposed. Specif-
ically, LightNVM and Application-managed Flash eliminate
GC overhead by letting the host software manage the exposed
flash memories [39], [40].

Unlike previous studies, our study empirically analyzes the
effects of SSD internal components on performance SLOs.
Numerous studies on I/O scheduling have been conducted,
but most have not concentrated on proportionality. Most I/O
schedulers have done so by managing timeslice [17], [41]

4454

and controlling virtual time [42], [43] as the main resource
of I/O. The notion of timeslice has also been adopted for
I/O schedulers for flash-based SSDs [44], [45]. However,
we show in Sections IV that using timeslice as a resource
management unit on SSDs is inappropriate.

IIl. ANALYSIS OF 1/0 BEHAVIOR ON SSDS

In this section, we conduct a set of experiments to examine
how the internal components of SSDs affect the /O per-
formance of the VMs amongst each other. For the analysis,
we use the six workloads shown in Table 2. For the sake
of brevity of explanation in the analysis of each component,
we exclude similar results. In this work, the target com-
ponents of SSDs to explore are channels, the write cache,
and NCQ.

A. EFFECT OF CHANNELS

Typical commercial SSDs employ multiple channels to con-
nect a controller to flash memories for high performance
and large capacity. To examine the effect of the channels
on an SSD, we conduct the same set of experiments as in
Section II-A, except that we use an SSD that is set to use only
a single channel among the numerous channels. This feature
is not available to end users, but was done with cooperation
from the manufacturer.

10 T T T 100 T T
_@ VM-1 —— VM-4 - VM-1 —— VM-4
Tz O |VM2 - VM5 2 80 "VM-2 — VM5
c © =
om 6 sm 60
t0 £Q
8_— 4 = 40
. S«
2o 2 e
a i a 20 |
0 . . w o ek o) i
0 50 100 150 0 50 100 150
Time (sec) Time (sec)
(a) YCSB-A (b) MSN

FIGURE 4. Proportionality of 1/0 bandwidth on single channel SSD.

Figure 4 shows the results for the two workloads analyzed.
Compared to Figure 1(a), we observe that the overall trend
shown in Figure 4(a) is much more compliant to propor-
tionality according to the requested I/O weight. Of course,
the absolute performance drops significantly as only a single
channel is being used. (We quantify and discuss the perfor-
mance degradation later with Figure 8). In case of the MSN
workload, as shown in Figures 4(b), the variation of the I/O
throughput still occurs but also with longer intervals than
those in Figure 1(d).

Overall, we observe that using a single channel rather than
using multiple channels helps somewhat with I/O proportion-
ality. We discuss the main reason behind the effect of channels
in Section III-D. However, using a single channel does not
solve the problem of I/O proportionality completely, and also
incurs a significant performance drop.

VOLUME 8, 2020

J. Kim et al.: 1/0 Schedulers for Proportionality and Stability on Flash-Based SSDs in Multi-Tenant Environments

IEEE Access

10 T T 10 T T
- VM-1 —+— VM-4 VM-1 —— VM-4
£ 8 FVM-2 —— VM-5 . 8 FVM-2 —— VM-5 g
=
Sm 6 6
€L
s 4 4
o o
& 2 45, 2 e dis
0 i L | | 0 | L |
0 50 100 150 0 50 100 150
Time (sec) Time (sec)
(a) YCSB-A (b) Fileserver

FIGURE 5. Proportionality of /0 bandwidth on cache off SSD.

B. EFFECT OF THE CONTROLLER CACHE

SSDs generally utilize some amount of DRAM as cache
for improving performance. To examine the effect of the
cache on I/O proportionality, we turn off the cache on the
SSD controller. We conduct several experiments under this
change. Figure 5 shows the results of the experiments. The
proportionality of YCSB-A shown in Figure 5(a) is slightly
better than that of Figure 1(a), but performance variations
still occur. For the Fileserver workload shown in Figure 5(b),
performance fluctuations are mitigated and the period of the
fluctuations are longer than those of the typical SSD shown
in Figure 1(c).

To get a better understanding of these results and the peri-
odic performance fluctuation observed with the Fileserver
workload, we conduct some additional experiments. While
the read and write are divided equally for the Fileserver
workload for these experiments in Section II-A, in order to
clearly identify the effect of caching on reads and writes,
the Fileserver workload is adjusted to be read-only and
write-only.

400 . ; 50 50
VM-1 — VM-4 VM-1 VM-4

320 - ym-2 VM-5 40 - ym-2 VM-5

240 -

160 |

80 w7 10 {oion

0 L 0
0 150 300 0 150 300 0 150 300 450

Time (sec)

VM-1 VM-4
40 - ym-2 VM-5 1
30 |

20

Throughput (MB/s)
iy &

Throughput (MB/s)
Throughput (MB/s)

i

Time (sec)

(b) Fileserver (W)

Time (sec)

(a) Fileserver (R) (c) Fileserver

FIGURE 6. 1/0 bandwidth with cache disabled for Fileserver
(a) Read-only, (b) Write-only, (c) Read/Write 50/50 workloads.

Figures 6(a), (b), and (c) are the results with caching turned
off for read-only, write-only, and the 50/50 case, respec-
tively. In addition, we conduct experiments with Fileserver
workload over a long period of time to observe long-term
performance. Figure 6(a) reveals that performance still fluc-
tuates and the period of fluctuation is shorter for read-only
workloads, especially for VM-5. However, for the write-only
workload, as shown in Figure 6(b), the wild fluctuation
disappears though performance itself is dispersed across a
wide range and relatively very low due to the cache off.
Directly comparing Figure 1(c) and Figure 6(c) that make
use of the same workload, we observe that the overall trend
of periodic performance fluctuation is noticeably mitigated.

VOLUME 8, 2020

However, performance fluctuations still do occur though
the fluctuation period is lengthened and the amplitude is
reduced due to performance degradation as the cache is
turned off.

We again observe a significant performance drop with the
cache off. The conclusion from these experiments is that
while the cache of the SSD controller is effective at improving
performance, it has an unfavorable impact in supporting I/O
proportionality of shared SSDs.

C. NATIVE COMMAND QUEUEING

Native Command Queuing (NCQ) is a technique that is used
for the SATA interface to optimize performance of disks
through reordering read and write commands. As with two
previous components, we explore the effect of NCQ on I/O
performance proportionality.

10 T 100 T T T
- VM-1 —— VM-4 - YM-1 —— VM-4
2 8 VM2 - VM-5 =) 80 f'vM-2 - vM-5
© = c =
S@m 6 - S@m 60
£Q £Q
s 4 i 40
g0 | T g0
& A R SR = 20
0 | | ‘ R —
0 50 100 150 0 50 100 150
Time (sec) Time (sec)
(a) YCSB-A (b) MSN

FIGURE 7. Proportionality of 1/0 bandwidth with NCQ depth = 1.

We conduct the experiments with NCQ disabled, that is,
NCQ depth set to 1. We observe that I/O proportionality of
YCSB-A shown in Figure 7(a) is distinctly improved com-
pared to those of Figures 1(a). These results are encouraging
in terms of I/O proportionality although the I/O performance
deteriorates again since queue optimizations are disabled.

For the MSN workload shown in Figure 7(b), we see that
it does not do as well as the YCSB-A workload with the
bandwidth still fluctuating somewhat. We see, however, that
the results slightly improve in terms of proportionality even
though bandwidth spikes still remain.

Note that Figure 8 shows the total bandwidth for all VMs
on each SSD used in our analysis. The x-axis in the figure
denotes the workloads that we experiment with, while the
y-axis shows the total bandwidth normalized to the normal
SSD denoted as ‘SSD’. We see that SSDs denoted ‘NCQ off’,
‘1CH’ and ‘Cache off” representing an SSD with NCQ dis-
abled, single channel SSD, and write cache off, respectively,
show considerably reduced performance on most workloads.
For YCSB-A and YCSB-D workloads on ‘Cache off”’, there is
little performance degradation. Since YCSB-A and YCSB-D
are read intensive workloads, they are not affected by turning
off the cache in the SSD controller.

From the experiments, we reveal that NCQ has a strong
influence on I/O proportionality. This means that exploring
NCQ in detail might be the right direction for improving I/O
proportionality of a shared SSD.

4455

IEEE Access

J. Kim et al.: 1/0 Schedulers for Proportionality and Stability on Flash-Based SSDs in Multi-Tenant Environments

Wssp
INCQ off
OicH
O Cache off

Normalized total BW
o
=

0
YCSB-A YCSB-D Fileserver ~ MSN Prj Prn

FIGURE 8. Total 1/0 bandwidth normalized to that of a commercial SSD.

D. EXPANDING ON NCQ

By examining the performance effect of several components
of the SSD, we figured out that NCQ has a strong effect on
I/O proportionality on a shared SSD. In this section, we take a
closer look and figure out the principles that can be exploited
for improving I/O proportionality.

To find the reason behind the positive effect of NCQ on
I/O proportionality, we analyze and observe the behavior of
NCQ and its interaction with other layers. The conclusion of
our analysis, as we will show, is that the idle condition is the
major reason behind the problem.

100 100 100
80 80 80
60 60 60
40 40 40

20 20 20

Num. of requests (%)

03 6 912151821242730
NCQ depth
(c) 1CH SSD

P T ——
0 3 6 912151821242730 0 3 6 912151821242730
NCQ depth NCQ depth
(a) HDD (b) SSD

FIGURE 9. NCQ depth observed for four concurrent VMs each executing
the YCSB-D workload (x-axis: NCQ depth, y-axis: percentage in particular
NCQ depth).

First, let us briefly explain how NCQ’s working is related
to I/O proportionality and stability. The CFQ I/O scheduler
used in our analysis works in a work conserving manner.
In particular, CFQ maintains a request queue per VM, so if
the queue meets the idle condition, it immediately switches
to another queue. The idle condition for a queue are 1) if
there are no pending requests in the queue and 2) if there are
no outstanding requests waiting for completion from storage.
Since the SSD quickly serves multiple requests in parallel,
it greatly reduces the response time and empties the queue
quickly. Therefore, on SSDs that support NCQ, the queue
frequently reaches the idle condition, causing frequent queue
switching. In contrast, single channel SSDs and HDDs are not
fast enough to empty the NCQ often. This phenomenon can
be seen in Figures 9(a), (b) and (c) where they show the NCQ
depth, that is, the number of outstanding commands, for an
HDD, SSD, and single channel SSD (‘1CH SSD’), respec-
tively, when four VMs each running the YCSB-D workload
are executing. We observe that idle conditions rarely occur on
the HDD and 1CH SSD, but that they occur often on the SSD.
In addition, in case of the HDD and 1CH SSD, the requests

4456

fill the maximum NCQ depth in most cases (90% or more),
but for the SSD, the NCQ rarely fills up.

Such frequent queue switching due to the idle condition is
the main cause of I/O disproportionality and instability on a
shared SSD. Recall from YCSB-A in Figure 7(a) that NCQ
with depth one showed good I/O proportionality similarly to
the HDD. The reason for this is that if the NCQ depth is 1,
a pending request will always be waiting to be served in the
queue, therefore, the idle condition is rarely met. This also
implies why the single channel SSD improves 1/O propor-
tionality as shown in Figure 4.

In conclusion, we exposed the fact that I/O proportionality
and stability drops significantly due to excessive switching
between queues on a shared SSD. Based on this finding,
we design I/O scheduling policies to prevent such switching
for better I/O proportionality and stability.

IV. 1/0 SCHEDULERS FOR PROPORTIONALITY

In this section, we introduce a recent I/O scheduler called
Budget Fair Queuing (BFQ), which employs I/O anticipa-
tion [18], a notion introduced by Iyer and Druschel for
HDDs [46]. It turns out that I/O anticipation improves
I/O proportionality by preventing frequent queue switching.
A fundamental feature of BFQ is that it manages the storage
resource via an idea of a budget, which refers to the number
of sectors served. BFQ seems suitable as an I/O scheduler
for I/O proportionality. However, without careful attention
to budget allocation, I/O proportionality and stability may
deteriorate on SSDs. Through thorough analysis, we show the
reason behind this in Sections IV, VI, and VII.

In the following subsections, we explain the basic work-
ings of the BFQ I/O scheduler. Then, we present our own
improvement of CFQ, A4+CFQ, which is based on a similar
approach taken by BFQ, that is, I/O anticipation and bud-
get (sector) based resource management. We show that these
two I/O schedulers (BFQ and A+4CFQ) perform similarly
and that one can be better off than the other depending on
a variety of situations. More importantly, based on these
analysis, in Section V, we introduce an extension of BFQ,
called H+BFQ, which provides better I/O proportionality and
stability without performance sacrifice.

A. BFQ I/0 SCHEDULER

The BFQ I/O scheduler employs I/O anticipation and the
notion of a budget, which indicates the number of sectors
served. Also, BFQ employs the per-process (or per-task)
queue approach to support fair allocation of throughput like
CFQ. That is, when a queue is chosen among many, the task
associated with the queue will have exclusive access to stor-
age. When the task issues a synchronous /O to storage, BFQ
lets the task wait in idle state until the request is completed,
which is the core behavior of I/O anticipation. The queue
becomes inactive only when one of the following conditions
are met: 1) the task has no I/O requests, 2) the budget of the
queue is exhausted, or 3) the allotted time of the queue has
expired. When the queue becomes inactive, a new budget is

VOLUME 8, 2020

J. Kim et al.: 1/0 Schedulers for Proportionality and Stability on Flash-Based SSDs in Multi-Tenant Environments

IEEE Access

s 10 10

hel

3

2 8 8

8 =

2 s

e % :

> ¢

E = 4 4

23

S <

= 2 2

5

8

g

& 0 0
PR ¢ v o w @ 0 v v o
g 8 g 2 8 ¥ g g g g g g
=] =] 3 Qo 2 o % o G o
4 i 3 i i i
€ € £ £ E E
W.4k W.32k W.256k R4k R32k R.256k

(a) Random write in HDD (b) Random read in HDD

17 215

Ovm-1 Bym-2 Bym-4 Bym-5

!

0

IOPS
IOPS
10PS
I0PS
timeslice
IOPS

timeslice
timeslice

o n S~ o ©
timeslice ===l
timeslice

[T N
|
B
——
—
==
——
ju—}
ESSISETEN
|
=y
|—
pu—}
NS
—
—

timeslice

W.4k

=
o
]
=R
=
S
&
a
2

R4k R.32k R.256k

(c) Random write in SSD (d) Random read in SSD

FIGURE 10. Comparison of 1/0 performance between timeslice and I0PS mode.

assigned for the next round. BFQ chooses the next queue by
an internal fair queueing scheduler called B-WF2Q+ [18].
B-WF2Q+ maintains a virtual finish time for each application
as a metric for choosing the next application. The virtual
finish time is a function of the completion time of the last
served request and the actual serviced budget during queue
activation with a given weight. BFQ chooses the application
with the minimum virtual finish time as the next application.
In contrast, CFQ maintains either the time consumed (in
timeslice mode) or the number of requests served (in IOPS
mode) depending on the queue mode [17].

B. A+CFQ I/O SCHEDULER

In this section, we present the A+CFQ (Anticipation added
CFQ) I/O scheduler that we design based on lessons learned
from the analysis of Section III. The main features of A+CFQ
are basically the similar as BFQ in that it employs heuristic
I/O anticipation for fair share of I/O resources and that it
adopts sector-based management for fine-grained resource
allocation. We now discuss the design details.

1) SECTOR BASED SCHEDULING

Generally, I/O schedulers manage storage resources through
time (timeslice) or number of I/O requests (IOPS). Tra-
ditionally, most I/O schedulers focusing on performance
and fairness adopt timeslices as the mean of managing
resources [41], [42]. However, the timeslices approach has
limitations with I/O proportionality and stability when we
use fast storage such as SSDs. As discussed in Section III,
an SSD with NCQ, the I/O scheduler issues as many requests
as possible to storage concurrently. In situations where many
requests are handled in parallel, the I/O scheduler is not
able to accurately measure I/O usage with the timeslices.
Figure 10 presents how much I/O proportionality is affected
when timeslice and IOPS are adopted to measure I/O usage
at the I/0 scheduler for an HDD and an SSD. We conduct a
simple set of experiments with the same environment as in
Section II-A for workloads that issues random 4KB, 32KB,
and 256KB sized read and write requests. We observe in
Figures 10(a) and (b), in case of the HDD, I/O proportion-

VOLUME 8, 2020

ality matches well for both the timeslice and IOPS modes.
In contrast, in case of the SSD, we see that with timeslice
mode, I/O proportionality for large request sizes (32KB and
256KB) is distorted as presented in Figures 10(c) and (d). For
IOPS mode with SSD, I/O proportionality seems to perform
fairly well compared to that of timeslice mode as presented
in Figures 10(c) and (d). However, as shown in Figure 1,
it does not work well for all workloads. Note that all the
experiments in Section II-A were conducted with IOPS mode.

200 — 200

T
@ VM-4 @ VM-1 VM-4
o 160 b o 160 - -
= VM-5 = VM-2 VM-5
= 120 = 120
=3 =]
g g
S 80 S 80- i
3 g
£ 40 P .) S 40 smgeong .
= o R = 0 N et s o
0 50 100 150 0 50 100 150
Time (sec) Time (sec)
(a) IOPS (b) Sector

FIGURE 11. Comparison of 1/0 performance when unit of 1/0 usage
measurement is IOPS and sectors for Fileserver workload.

In contrast, Figure 11 shows the difference in perfor-
mance proportionality between when IOPS and sectors
based resource management is employed for the Fileserver
workload. From the figure, we observe that sector based
measurement shown in Figure 11(b) improves performance
proportionality and stability as well. We conclude that the unit
of I/O resource usage measurement for resource management
is a cause of disproportionality and fluctuation on a faster
storage. Since SSDs adopt a parallel architecture and rela-
tively large capacity cache within the controller resulting in
an order of magnitude faster performance than disks, both
IOPS and timeslice become a too coarse-grained unit to
accurately measure the usage of resources.

It turns out the sector unit is a finer and more precise unit
to measure resource usage. This is one of the reasons why
we choose to take the sector unit measurement similar to
BFQ. Even though A4-CFQ is similar to BFQ, the details in
the budget management is different. Specifically, in A+CFQ,
the history of resource usage, indicated as the number of

4457

IEEE Access

J. Kim et al.: 1/0 Schedulers for Proportionality and Stability on Flash-Based SSDs in Multi-Tenant Environments

<«——> : Granted timeslot according to given 1/O weight

WER:S Queue switching VM-1 <Q> Heuristic 1/0 anticipation

VM-2 <> VM2 <O,

VM4 38— VM-4 00

VM-5 «—A8—4%— VM5 « OO 00
@ crQ (6) A+CFQ

FIGURE 12. Comparison of timeslot usage for CFQ and A+CFQ 1/0
scheduler.

w
1=}
1S}

OVM-1 BVM-2 BVM-4 BVM-5

OHH| 11

YCSB-A YCSB-D File Server MSN

= = o
~ @ i
S S S

Inter-dispatch time(us)

-y
S

FIGURE 13. Average inter-dispatch time per VM.

sectors served, is maintained for each queue to provide fair-
ness among processes. The resource usage is accumulated
during queue activation. When the queue is deactivated,
the accumulated usage is transformed into a virtual time by
dividing the accumulated usage by the given I/O weight of
the queue. The queue with minimum virtual time is chosen
as the next queue when serving requests among processes.

2) HEURISTIC I/O ANTICIPATION

In a study many years ago, Iyer and Druschel introduced
Anticipatory scheduling of I/O to reduce excessive seek over-
head of disks (HDDs) for synchronous I/O requests [46]. The
study reveals an inefficiency of handling synchronous I/O
on disks and then propose a way to overcome the problem.
The inefficiency in handling synchronous I/O requests is
also related to idleness. When a task issues a new request
once completing the previous I/O request, there is a short
idle period between when a previous request completes
and issuing a new request. If a new request is issued by
another job during this idle period, the movement of the
disk head can cause excessive seek overhead. This situation
was referred to as deceptive idleness. Instead, if the task
takes a short period delay to anticipate a new request, then
issues the request, disk seek penalty is largely reduced due
to spatial locality of the task. I/O anticipation has also been
adopted in non-mechanical disks such as SSDs to ensure the
continuity of a task’s execution and to avoid violations of
fairness [44], [45].

As discussed, BFQ also employs I/O anticipation by
stalling for the synchronous I/O. A4+CFQ also adopts an
anticipatory policy, but again, differing in detail. Figure 12(a),
depicts a situation where queue switching occurs before the
granted timeslot ends when different I/O weighted VMs are
running concurrently for CFQ. Each VM is given a timeslot

4458

proportional to the given I/O weight. During handling I/O
requests, once the condition of the queue switching discussed
in Section III-D is met, queue switching occurs regardless the
allotted timeslot and continuity of task execution is broken.
The queue switching causes fluctuation of the I/O throughput
resulting in I/O disproportionality and instability. Naturally,
VMs with higher I/O weights tend to have more queue switch-
ing since they are allotted longer timeslots. Eventually, they
experience worse 1/O proportionality and stability.

Figure 12(b) depicts how we adopt I/O anticipation. Where
queue switching occurs, we employ heuristic I/O anticipation.
(This is where the A, for anticipation, of our name A+CFQ,
comes from). The key approach of heuristic I/O anticipation
is to maintain the average inter dispatch time for each VM and
if the waiting time after dispatching is less than the average
dispatch time, we continue to wait in anticipation of the next
request to arrive. Average inter-dispatch time is continually
kept while each VM is running. We observed the average
inter-dispatch time of the VMs for a set of our workloads.
Figure 13 presents the observed average time. The x-axis
is the workloads and the VMs, while the y-axis shows
inter-dispatch time in microseconds. We observe here that the
inter-dispatch time of each VM varies quite widely. Hence,
it is important that each VM be able to maintain it own
inter-dispatch time value so as to avoid deceptive idleness.

Algorithm 1 Heuristic I/0 Anticipation
1: Avg_Disp(VM;): Avg. inter-(request) dispatch time of
VM;
2: Wait_Time(VM;): Time between previous I/O completion
time and the next request dispatch

3: Idle_condition(VM;): Is VM; in idle condition?

4:

5: Dispatch request(VM;)

6: if Idle_condition(VM;) AND (Wait_Time(VM;) >
Avg_Disp(VM;)) then

7: switch to VM; queue /* VM queue is selected as next
queue */

8: else

9: keep VM; queue activated
10: /* Either not Idle or keep waiting due to Heuristic I/O
Anticipation ¥/
11: end if

The details of the heuristic I/O anticipation scheme is pre-
sented in Algorithm 1. Lines 1 and 2 represent the data struc-
tures that are maintained. We keep the average inter-dispatch
time for each VM; in Avg_Disp(VM;) and the interval
between the previous I/O completion time and the most
recent request dispatch time of VM; in Wait_Time(VM;).
Idle_condition(VM;), in line 3, holds true when VM; sat-
isfy the idle condition. As was discussed in Section III-D,
Idle_condition() becomes true when there is no request to
dispatch and there are no outstanding requests waiting for a
response. After every synchronous I/O request is dispatched
to an SSD (lines 5), the I/O scheduler decides whether to

VOLUME 8, 2020

J. Kim et al.: 1/0 Schedulers for Proportionality and Stability on Flash-Based SSDs in Multi-Tenant Environments

IEEE Access

[
w
=}
S

OGRP-1 B GRP-2 EGRP-4 mGRP-5

el o v

1/0 proportionality (Relative to GRP-1)
o) S
Q e——
Q s
Q=
1/0 bandwidth (MB/s)
o n w ey
o o o o
o 8 8 8 8
Q E——
Q E——
Q ey
Q e
Q
Q —

MSN Prj Prn MSN Prj Prn

(a) Proportionality (b) Total bandwidth

FIGURE 14. Comparison of CFQ, BFQ, and A+CFQ (a) proportionality
and (b) 1/0 bandwidth.

maintain the VM; queue (lines 8 and 9) or to switch to a
different queue (lines 6 and 7). The current queue is switched
to that of a different VM if the current VM,; is idle and the
wait is longer than the average dispatch time. Otherwise, that
is, if either VM; is not idle or the wait time was shorter than
the average dispatch time, the current queue is maintained.

C. A+CFQ PERFORMANCE EVALUATION

In this section, we evaluate I/O performance, proportionality,
and stability of A+CFQ by comparing with CFQ and BFQ on
Linux kernel 3.18.x. Since BFQ does not support an interface
to the virtualization system as shown in Table 1, we conduct
experiments by concurrently executing four tasks (or groups)
on a host (denoted GRP-x, where x is given I/O weight). From
here on, we only present results for three workloads, namely,
MSN, Prj, and Prn. This choice is made to present a consistent
set of results despite the limitations on the experimental envi-
ronment due to the fact that the VM interface is not supported
for BFQ. We note that the results of our proposed schedulers
reported here are consistent for the other workloads in various
experimental settings that we performed them in.

Figures 14(a) and (b) present the results for I/O propor-
tionality and performance in total bandwidth, respectively.
We observe that A+-CFQ guarantees I/O proportionality cor-
responding to the I/O weights while BFQ does not guaran-
tee it for Prj and Prn workloads. However, BFQ performs
slightly better than A4+CFQ in terms of throughput as shown
in Figure 14(b).

Let us now take a closer look by observing the I/O through-
put of each group over time. Figure 15 shows the distribu-
tion of the I/O throughput of BFQ and A+CFQ for the Prn
workload over time. We observe in Figure 15(a), in case of
BFQ, that large performance oscillations and even perfor-
mance reversals occur. In contrast, in case of A+CFQ shown
in Figure 15(b), I/O proportionality matches well according
to the I/O weight throughout its execution and overall perfor-
mance stability is also significantly better than BFQ.

Let us figure out where the I/O disproportionality and
instability of BFQ are coming from. The main cause of
this phenomenon is that I/O throughput on a shared SSD
tends to be significantly affected by the size of the request.

VOLUME 8, 2020

400

T
GRP-1 GRP-4
300 -GRp-2 GRP-5

T T T
GRP-1 —— GRP-4

300 GRP-2 GRP-5

200

100 -

Throughput (MB/s)
Throughput (MB/s)
N
o
o

0 50 100 150
Time (sec)

(a) BFQ on SSD

Time (sec)

(b) A+CFQ on SSD

FIGURE 15. Comparison of 1/0 bandwidth with respect to time for BFQ
and A+CFQ for the Prn workload.

This is exemplified by Figure 16(a), which shows the relation
between I/O throughput and average request size of each
group for the Prn workload throughout its execution with
BFQ. We observe that the I/O throughput of all groups to be
dependent on the size of requests. On the other hand, H4+-BFQ
that we introduce in the next section performs fairly well on
I/O proportionality and stability regardless of request size.

V. H+BFQ: HISTORY ADDED BFQ

In the previous section, we showed that I/O performance of
BFQ is excessively sensitive to the size of requests. In this
section, we introduce the H+-BFQ I/O scheduler we designed.
We show that I/O proportionality and stability of H+BFQ
outperforms BFQ.

Figure 17 compares the budget usage distribution of each
task for BFQ and H4-BFQ. The arrow lines for each group
denoted represent the allotted time (or rounds) to dispatch
requests to storage. Naturally, the higher the I/O weight x,
the more time slots are allocated. The bar denotes the number
of sectors served and the bar height represents the relative
number in comparison with other groups.

We observe in Figure 17(a), in case of BFQ, that the first
round budget (or number of sectors) of GRP-4 and GRP-5 are
allocated and serviced much more than GRP-1 and GRP-2.
Notice that the budget of GRP-4 and GRP-5 are replenished
to its full regardless of usage of the previous rounds. This
causes excessive allocation of budget, eventually resulting in
I/O disproportionality and, more seriously, instability among
the tasks sharing the SSD. The I/O instability is exacerbated
with fast storage devices such as SSDs due to frequent bud-
get allocations.

The solution to this problem is to use the budget usage
information of previous rounds in allocating budget for the
next round. We refer to the policy that we design incorporat-
ing this solution, H+BFQ (History added BFQ) as it makes
use of budget usage history. The policy is implemented by
checking the reason behind the deactivation of a task. Recall
that there can be three reasons for queue deactivation: 1) the
allocated time slot has expired, 2) there are no more requests
(idle), or 3) the task has run out of budget. H+BFQ behaves
the same as BFQ if the reason of task deactivation is either
1) or 2), that is, the budget is simply the remaining budget.
However, if the reason for deactivation is 3), H+BFQ regards
the task to have been too aggressive. As a result, a value lower

4459

IEEE Access

J. Kim et al.: 1/0 Schedulers for Proportionality and Stability on Flash-Based SSDs in Multi-Tenant Environments

GRP-1 GRP-2
160 160 160

80 80

| I\MM W ““"Mwm ‘

mmmmmmmmmmmmmmmm
mmmmmmmmmmmm

S5
5
i
{
‘;
&
Avg. Req. size (Sectors)

1/0 bandwidth (MB/s)

wwwwwwwwwwwwwwwww

—Bandwidth —Avg.Size —Bandwidth —AvgSize

GRP-4 GRP-5

mmmmmmmmmmmmm

/0 bandwidth (MB/s)
2 B
8 8
3
-
8 8
3 B
8 8
s 8
8 8
Avg. Req. size (Sectors)

wn
CATERNOIEIT NI B>

(a) BFQ

GRP-1 GRP-2
160 160 160 160 @
2 S
2 12 120 120 20 g
= &
2 w0 80 80 A
3 U J o8
§ 40 40 40 ﬂ W“\"‘V'\J 40 &
3 WV et A, g
Q o 1o 0 1o &
S T g
CTANYTOUR®O - NTNO RS CTANYOR©®OCNTNDO®R S <

—Bandwidth —Avg$ —Bandwidth —AvgS
GRP-4 GRP-5

400 400 400 400

300 300 300 300

200 200 200
100 MWANW 100 100 M’\M,ﬁ'"}m‘\ 100

BT R Y R NI N W
mmmmmmmmmmmmmm

1/0 bandwidth (MB/s)
8
8

Avg. Req. size (Sectors)

CRYGERBRIRTARI IS

—Bandwidth —Avg.Size

(b) H+BFQ

FIGURE 16. Relation between 1/0 throughput (black line) and average request size (gray line) of Prn workload.

Algorithm 2 H+BFQ Budget (Re)Allocation as Task T; is
Deactivated
1: One deactivation reason is set to TRUE: EXPIRE, IDLE,
EXHAUST
: EXPIRED: Queue timer has expired
: IDLE: Task has no requests
: EXHAUSTED: Queue budget has run out

: BUDGET(T;): Current budget of task T;
. Default_budget: Default budget size
: Min_budget: Minimum budget size set to Default_budget
divided by 32
9: Serviced_budget: Budget consumed during current task
activation period
10:
11: N: Number of tasks running concurrently

13: BUDGET(T;) <~ BUDGET(T;) - Serviced_budget

14: if (EXPIRED OR IDLE) AND (BUDGET(T;) <
Min_budget) then

15: BUDGET(T;) < Default_budget /Reset to Default
budget

16: else if EXHAUSTED then

17: BUDGET(T;) <«
Min_budget)

18: end if

MAX (Default_budget/N,

than the default budget is allocated as the new budget. For our
experiments, we assign this minimized budget to the greater
of the default budget divided by the number of tasks N, or
the Min_budget, which is the minimum budget allowed in
BFQ. Recall that Figure 16(b) presents the relation between
the I/O bandwidth and the request size dispatched to storage
on H4+BFQ. From the results, we see that the I/O band-
width remains fairly constant regardless of the size of the
request. The reason for this is that H+-BFQ prevents processes
from using excessive budgets through the management of the
newly allocated budget size.

4460

<> time spent I: Num. of sectors dispatched

ores Ill I“ I“ II “ ||
«—> > «—> > > >

II II II
= L

GRP-4
> >
GRP-2 e «ll
L [LLL
GRe-1 (L] ul

time

(a) BFQ (b) H+BFQ

FIGURE 17. Comparison of budget usage distribution between BFQ and
H+BFQ.

Algorithm 2 shows the procedure used to allocate a new
budget for the next round of a task when the current group
is deactivated. As explained, there are 3 conditions for deac-
tivating a queue: EXPIRE, IDLE, and EXHAUST of which
one will be set to true (lines 1 through 4). BUDGET(T;),
line 6, denotes the current budget of task T;. All tasks, as they
are initiated, are allocated the same default budget denoted
Default_budget (line 7). As shown in line 13, once the task
is deactivated, BUDGET(T;) is updated by subtracting the
serviced budget, Serviced_budget (defined in line 9), from
the current budget, BUDGET(T;). If the reason for deacti-
vation is either EXPIRE or IDLE and the remaining budget,
BUDGET(T;), is less than or equal to a threshold budget,
Min_budget (defined in line 8), the current budget is renewed
to the Default_budget (lines 14 and 15). Otherwise if the
reason for deactivation is EXHAUSTED, the budget is setto a
much smaller one by assigning it the Default_budget divided
by N, the number of tasks, or Min_budget, whichever is larger
(lines 16 and 17).

VI. EVALUATION OF H+BFQ

In this section, we conduct evaluations of H+BFQ by com-
paring with CFQ, BFQ, and A+CFQ in terms of 1/O pro-
portionality, stability and performance. For the evaluations,
we implement H+BFQ in the same experimental setting as
before. We present results of the three workloads, MSN, Prj,

VOLUME 8, 2020

J. Kim et al.: 1/0 Schedulers for Proportionality and Stability on Flash-Based SSDs in Multi-Tenant Environments

IEEE Access

©

OGRP-1 BGRP-2 BGRP-4 mGRP-5

o
o

o
o
=

o
N

0.074
0.0160.010

o

Performance Variation (PV)
o
w

H+BFQ

0

BFQ Ei
CFQ

CFQ

g g 9 ¢
5 & 5 &
T <

1/0 proportionality (Relative to VM1)
o N S~
I —

A+CFQ

g
=
T

<
%)
z

Prj Prn MSN

(a) I/O proportionality

.0
g g
o O

e

<

(b) I/O proportionality variation (PV)

500

O GRP-1 A GRP-2 B GRP-4 £ GRP-5

0.528
0.509 400

0346 300

200

1/0 bandwidth (MB/s)

100

>
CFQ)
)

0.01 001 0.021

=) — = 0
o o o o o
& @ S & =

+

I < T

Prj Prn MSN Prj Prn

(¢) I/O bandwidth

FIGURE 18. Comparison of (a) 1/0 proportionality, (b) 1/0 proportionality variation (PV), and (c) average 1/0 bandwidth with the minimum and maximum

denoted by the thin lines.

OGRP-1 EGRP-2 BGRP-4 mGRP-5 OGRP-1 BGRP-2 BGRP-4 HGRP-5

tandard deviation of latency (ms)
o
2

uuuuuuuuuuuuuuuuuuuuuuuuu

(a) Average latency (b) Latency standard deviation

FIGURE 19. Comparison of latency.

and Prn, as previously mentioned, concentrating on H+BFQ
and BFQ.

A. 1I/O PROPORTIONALITY
Figure 18(a) presents the results of I/O proportionality for
MSN, Prj, and Prn workloads. As shown in the figure, I/O
proportionality of H+BFQ corresponds to the I/O weight for
all workloads. A+CFQ also performs fairly well while CFQ
and BFQ suffer disproportionality on Prj and Prn workloads.
To quantify how well I/O proportionality matches with the
given I/O weights, we introduce a simple metric that we call
Proportionality Variation (PV) represented by the following
equation.

1
PV =~ 37 |prpiaca (GRP) = prpresun (GRPY)]
foralli

where N is the number of task groups considered,
PrPideal(GRP;) and prp,,,..:(GRP;) are the ideal proportion-
ality and the obtained proportionality, respectively, of GRP;.
Essentially, PV presents how much the measured I/O propor-
tionality deviates from the ideal proportionality. Therefore,
lower PV means that better I/O proportionality is achieved.
Figure 18(b) presents the PVs for each of the I/O schedulers,
where PVs of A+CFQ and H4+-BFQ are significantly lower
than CFQ and BFQ.

B. I/0 THROUGHPUT AND STABILITY
In this section, we discuss I/O throughput and stability with
experimental results. Figure 18(c) presents the I/O throughput

VOLUME 8, 2020

with minimum and maximum denoted by the thin line on
each bar of each task for the three workloads. The overall I/O
throughput of H4-BFQ is similar to BFQ for all three work-
loads in the result. GRP-5 performance of H4+BFQ is slightly
lower than that of BFQ, but the total performance is almost the
same. More importantly, we observe that H+BFQ achieves
the shortest range of minimum and maximum performance.
This means that H+-BFQ provides fairly stable throughput
without any performance penalty.

C. LATENCY AND STABILITY

Figure 19(a) shows the average latency of I/O requests for
the three workloads. We observe from these results that the
latency of H+BFQ is comparable with BFQ and that there
is no sacrifice in performance despite the I/O proportion-
ality improvement. Furthermore, as shown in Figure 19(b),
H+BFQ significantly reduces the standard deviation of the
I/O latency compared to that of other I/O schedulers for all
three workloads. This again confirms that H+BFQ improves
I/O stability as well.

D. IMPACT OF BUDGET SIZE OF H+BFQ

An important feature of the H4+BFQ scheduler is to provide
stable performance by preventing excessive budget usage of
a particular group. Recall that when service is deactivated
in case the budget is exhausted, a new budget is assigned
with the larger of the default budget divided by the number
of tasks N, or the minimum budget used in BFQ. In this
section, we discuss how the size of new budget affects I/O
performance in terms of throughput and latency. To do this,
we observe performance while the budget size is changed
with constant values when the budget is exhausted as in lines
16 and 17 in Algorithm 2. The experimental environment
and workloads are all the same as those of experiments of
H+BFQ in Sections VI-A through VI-C.

Figures 20(a), (b), (c), and (d) show the average through-
put, average latency, latency standard deviation, and maxi-
mum latency performance results, respectively. The x-axis
denotes the BFQ case and the constants, which are the new
budget size of H4+-BFQ, that are assigned to BUDGET(T;) in
line 17 of Algorithm 2 used in these experiments. The y-axis

4461

IEEE Access

J. Kim et al.: 1/0 Schedulers for Proportionality and Stability on Flash-Based SSDs in Multi-Tenant Environments

MsN Py Prn MSN P prr

(a) I/O throughput (b) Avg. latency

FIGURE 20. Impact of budget size of H+BFQ for various workloads.

500 0018
OmMsN Bprj Bpm

Omsn Epj ®prp 0016
400 - 0.014
0012
300 001
)
200 0008
< 0006
100 Z 0004
0002
0 a
g ¢ g ¢ g g o4
5 5 5 5 5 & s : S
¥ ¥ E: ¥ ¥ ¥
< I T <

Throughput (MB/s)

o
crQ g

g g g
& &

s —
H+BFQ =

A+CFQ
BFQ
HeBFQ

Individual Concurrent Individual Concurrent
(a) I/O throughput (b) Average latency

FIGURE 21. Comparison of individual and concurrent execution of
workloads on CFQ, A+CFQ, BFQ, and H+BFQ.

% ORead Mwrite

20
i .
i

Individual

(a) Average req. size (b) Requested amount

FIGURE 22. 1/0 request summary for concurrent execution of MSN, Prj,
and Prn workloads.

represents the measured performance, which is the sum of the
performance of the four groups running simultaneously.

Figure 20(a) shows that there are performance differences
on all workloads depending on the size of the budget. The
throughput of H+BFQ according to budget sizes are similar
to or differ slightly from BFQ. The budget sizes with the
largest performance drop are 2048, 512, and 2048 on the
MSN, Prj, and Prn workloads, respectively. Compared to
BFQ, the maximum performance degradation are 7, 7, and
4% on MSN, Prj, and Prn workloads, respectively. On the
other hand, the performance improvements of H+BFQ are
observed only for the MSN workload.

In the case of average latency as shown in Figure 20(b),
the latencies also vary with different budget sizes, but per-
formance gaps are not significant. For the MSN and Prj
workloads, the latencies are the shortest when the assigned
budget size is 128. In case of the Prn workload, average
latency increases by 3 to 7% compared to BFQ depending
on the assigned budget size.

One of the distinct benefit of H+BFQ is that the stan-
dard deviations of the latencies are reduced as shown
in Figure 20(c). We observe that the standard deviations are
considerably reduced, especially when budget size is small.

4462

(c) Std. dev. of latency

(d) Max. latency

14 OMsN @p;j Mprp

1/0 proportionality
(Relative to weight 1)
S

|
j— |

H+BFQ B

1

il

g
5

CFQ

cFQ B
A+CFQ B

BFQ &

CF
H+BF

g g
S &
B I

P

A

125 2:5:1 5:1:2

FIGURE 23. Comparison of 1/0 proportionality for concurrent execution
of MSN, Prj, and Prn workloads on CFQ, A+CFQ, BFQ, and H+BFQ. The
numbers below the x-axis indicate the 1/0 weights. x:y:z represents the
weights of the MSN, Prj, and Prn workloads, respectively.

This is because the budget size limits the use of the SSD, thus
preventing the overuse by a particular group.

Finally, Figure 20(d) shows the measured maximum laten-
cies. We see, as with the standard deviation results, that
maximum latency of H+BFQ decreases significantly, in par-
ticular, by up to 3.1, 2.1, and 5.5 times for MSN, Prj, and Prn
workloads, respectively, compared to BFQ.

Overall, we see that performance generally improves with
smaller budget values, with 128 showing the best for most
cases. This is because reducing the size of the budget prevents
one group from monopolizing the SSDs for a long time.

VIl. INTERFERENCE ANALYSIS ON REAL

TRACE WORKLOADS

In this section, we first discuss experimental results of run-
ning different workloads concurrently, which would be a
more realistic scenario. Notice that all evaluations prior to
this section are scenarios in which the same workloads are
running simultaneously. In particularly, we focus on the inter-
ference among tasks that are simultaneously executing.

A. CONCURRENT EXECUTION WITH THE

SAME I/0 WEIGHT

To analyze the performance impact of concurrently executing
different workloads on a shared SSD, we conduct a pair
of experiments. First, we run a task to drive MSN, Prj,
and Prn workloads independently, one by one and measure
their performance. Then, we run three tasks to drive these
three workloads concurrently and observe their performance.
These two experiments will, hereafter, be called Individual
and Concurrent, respectively. We conduct these experiments

VOLUME 8, 2020

J. Kim et al.: 1/0 Schedulers for Proportionality and Stability on Flash-Based SSDs in Multi-Tenant Environments

IEEE Access

(a) I/O throughput (b) Average latency

ML Mwﬂ {L;;HHHLHW.H.“MIMML b

Ouisn By Werm
OmsN Ep; Spp

g g g g 9 g 9 9 9 9 ¢ 9 9 g 9 9 ¢

251

(c) Std. dev. latency (d) Maximum latency

FIGURE 24. Comparison of 1/0 performance for concurrent execution of MSN, Prj, and Prn workloads on CFQ, A+CFQ, BFQ, and H+BFQ.

Time (sec)

(a) CFQ (b) A+CFQ

(d) H+BFQ

FIGURE 25. Comparison of 1/0 bandwidth of running the MSN, Prj, Prn workloads concurrently with 1/0 weights set to 1, 2, and 5, respectively, for CFQ,

A+CFQ, BFQ and H+BFQ.

on the host system described in Table 1 and are performed
with the CFQ, A+CFQ, BFQ, and H4+BFQ 1I/O schedulers
and all workloads have the same I/O weight.

Figure 21 shows the measured performance of the two
experiment sets, where the x-axis lists the I/O schedulers
with the left side being the results for the Individual case
and the right side is for the Concurrent case. In Figure 21(a),
where the y-axis denotes throughput, we see that for the
Individual case, I/O throughput of MSN, Prj, and Prn is
roughly 370, 460, and 270 MB/s, respectively, irrespective of
the I/O scheduler. However, for the Concurrent, we observe
that performance of each task is different depending on the
I/O scheduler used. Most notable here is that the throughput
of Prj is drastically decreased with CFQ in the Concurrent
experiment. In case of the other I/O schedulers, we see that
the results are quite similar although each scheduler show
somewhat different results for each of the workloads. We see
similar results for latency as shown in Figure 21(b) with Prj
performing considerably worse with the CFQ scheduler in the
Concurrent case.

Let us now see why Prj does so badly with CFQ in the
Concurrent case. To explain this, let us start with a cou-
ple of characteristics of the I/O requests. Figure 22 shows
the average request size and the total I/O requested by the
workloads for the Individual and Concurrent experiments.
In Figure 22(a), we notice that the average read request size of
Prj is significantly smaller than the other workloads for both
the Individual and Concurrent cases, while we see no signif-
icant difference in case of the write request size. In contrast,
Figure 22(b) shows the request amount of I/O. Here, in case
of the Individual, Prj workload has the smallest amount of
read requests and the largest amount of write requests com-
pared to other workloads. In the Concurrent case, however,
the requested amount for Prj is dramatically decreased, espe-
cially for write requests, while for other workloads it is only

VOLUME 8, 2020

decreased by roughly half. Now recall that, as was described
in Section IV-B.1, CFQ makes use of IOPS and the timeslice
as a measuring unit for I/O usage. This results in disk usage
being over-charged for small size requests as is the case for
Prj. Hence, we see the drastic performance drop for Prj when
running concurrently with other workloads. We note that this
problem is explained in Section IV-B.1 in detail and also
shown through experiments.

B. CONCURRENT EXECUTION WITH

DIFFERENT 1/0 WEIGHTS

In this section, we discuss experimental results of Concurrent
experiment with various I/O weight sets. Figure 23 shows the
proportionality of the measured I/O throughput for various
I/O weighted scenarios. From the figure, we see that, for all
I/0 weighted sets, CFQ fails to process I/O requests accord-
ing to the given I/O weight, while the results for BFQ are
partly correct. However, the A+CFQ and H+BFQ schedulers
show I/O proportionality that closely matches the given I/O
weights.

Figure 24 shows the actual observed I/O performance for
each I/O scheduler as the I/O weights are varied. Figure 24(a)
shows the throughput, while the average latency results are
shown in Figure 24(b). The standard deviation and maximum
latency results shown in Figure 24(c) and (d), show that
H+BFQ retains considerably more stable performance than
the other I/O schedulers.

Finally, Figure 25 shows I/O throughput throughout exe-
cution time when concurrently executing the MSN, Prj, and
Prn workloads with I/O weight set to 1, 2, and 5, respectively.
Hence, the x-axis is time in seconds, while the y-axis is the
I/O bandwidth. In the case of CFQ, as shown in Figure 25(a),
the measured bandwidth is not at all proportional to the given
I/O weight. We observe that the performance of Prj is less

4463

IEEE Access

J. Kim et al.: 1/0 Schedulers for Proportionality and Stability on Flash-Based SSDs in Multi-Tenant Environments

than that of MSN, even though Prj has twice the I/O weight
than that of MSN. Furthermore, for most of the execution Prn,
which has the highest weight, shows the lowest performance.
On the other hand, in case of A+CFQ, the performance of
all workloads is always proportional to the given I/0O weight
during execution time as shown in Figure 25(b). For BFQ,
the performance of all workloads are generally proportional
to the I/O weight, but we do observe occasional inversions in
performance as shown in Figure 25(c). Finally, for H+BFQ,
whose results are shown in Figure 25(d), we see that the
measured performance always coincides with the I/O weight
during execution time.

VIIl. CONCLUSION

I/O performance has a critical impact on user experience in
cloud computing platforms. Recently, the use of flash-based
SSDs in cloud servers has been rapidly increasing. However,
there are only limited studies on the effect of using SSDs on
cloud platforms in terms of SLOs.

In this study, we revealed that I/O proportionality of VMs
or task groups using HDD based approaches was not satis-
factory on a shared SSD. We analyzed and found the reason
behind this by examining the components of SSDs that affect
performance such as channels, DRAM buffer, and NCQ.
We presented two new SSD-aware host level I/0 schedulers
called A+CFQ and H+BFQ, which are improvements on
state-of-the-art 1/O schedulers CFQ and BFQ, respectively.
We showed that the schedulers significantly reduce perfor-
mance fluctuations and provide stable performance compared
to the Linux I/O schedulers without sacrifice of performance.
Furthermore, we analyzed the interference phenomenon of
I/O performance when multiple tasks simultaneously gener-
ate workloads having different characteristics. We found that
A+CFQ and H+BFQ eliminate the performance interference
seen in the CFQ and BFQ schedulers and greatly reduce
performance anomalies observed with shared SSD storages.

REFERENCES

[1] Statista. (2017). Flash Memory Market Revenues Worldwide
From 2013 to 2021. [Online]. Available: https://www.statista.com/
statistics/553556/worldwide-flash-memory-market-size/

[2] Sandisk. (2018). iNAND Automotive Embedded Flash Drives. [Online].
Available: https://www.sandisk.com/oem-design/automotive/inand

[3] Micron. (2017). Micron Reveals Critical Technologies for Autonomous
Vehicles. [Online]. Available: https://www.sandisk.com/oem-design/
automotive/inand

[4] PwC. (2015). The Internet of Things: The Next Growth Engine for the
Semiconductor Industry. [Online]. Available: https://www.pwcaccelerator.
com/pwcsaccelerator/docs/pwcs-accelerator-the-internet-of-things.pdf

[5] NetworkComputing. (2016). The Future of Data Storage: Flash and
Hybrid Cloud. [Online]. Available: https://www.networkcomputing.
com/storage/future-data-storage-flash-and-hybrid-cloud/396697859

[6] Forbes. (2016). Flash Memory for Data Centers and Clouds. [Online].
Available: https://www.forbes.com/sites/tomcoughlin/2016/04/27/flash-
memory-for-data-centers-and-clouds/#23f9953a489b

[71 Micron. (2018). When Does Cloud Computing Need Flash? [Online].
Available: https://www.micron.com/about/blogs/2018/july/when-does-
cloud-computing-need-flash

[8] S. Yan, H. Li, M. Hao, M. H. Tong, S. Sundararaman, A. A. Chien,
and S. H. Gunawi, “Tiny-tail flash: Near-perfect elimination of garbage
collection tail latencies in NAND SSDs,” in Proc. USENIX Conf. File
Storage technol. (FAST), 2017, pp. 15-28.

4464

[9]

[10]

(11]

[12]

(13]

[14]

[15]

[16]

(17]

(18]

[19]

(20]

(21]

(22]

(23]
(24]

(25]

(26]

[27]

(28]

(29]

(30]

(31]

(32]

N. Agrawal, V. Prabhakaran, T. Wobber, D. John Davis, M. Manasse, and
R. Panigrahy, “Design tradeoffs for SSD performance,” in Proc. USENIX
Annu. Tech. Conf. (ATC), 2008, pp. 57-70.

Y. Hu, H. Jiang, D. Feng, L. Tian, H. Luo, and S. Zhang, ‘‘Performance
impact and interplay of SSD parallelism through advanced commands,
allocation strategy and data granularity,” in Proc. Int. Conf. Supercomput.
(ICS), 2011, pp. 96-107.

F. Chen, D. A. Koufaty, and X. Zhang, ““Understanding intrinsic character-
istics and system implications of flash memory based solid state drives,”
in Proc. Int. Joint Conf. Meas. Modeling Comput. Syst. (SIGMETRICS),
2009, pp. 181-192.

J. Kim, D. Lee, and H. Sam Noh, “Towards SLO complying SSDs through
OPS isolation,” in Proc. USENIX Conf. File Storage Technol. (FAST),
2015, pp. 183-189.

J. Huang, A. Badam, L. Caulfield, S. Nath, S. Sengupta, B. Sharma,
and K. M. Qureshi, “FlashBlox: Achieving both performance isolation
and uniform lifetime for virtualized SSDs,” in Proc. USENIX Conf. File
Storage Technol. (FAST), 2017, pp. 375-390.

F. Khan. The Cost of Latency. Accessed: 2015. [Online]. Available:
https://www.digitalrealty.com/blog/the-cost-of-latency/

Y. Wang and A. Merchant, “‘Proportional-share scheduling for distributed
storage systems,” in Proc. USENIX Conf. File Storage Technol. (FAST),
2007, pp. 47-60.

J. Kim, E. Lee, and S. H. Noh, “I/O scheduling schemes for better I/O pro-
portionality on flash-based SSDs,” in Proc. IEEE 24th Int. Symp. Model-
ing, Anal. Simulation Comput. Telecommun. Syst. (MASCOTS), Sep. 2016,
pp. 221-230.

J. Axboe. (2016). CFQ 10 Scheduler. [Online]. Available:
https://www.kernel.org/doc/Documentation/block/cfq-iosched.txt

P. Valente and F. Checconi, “High throughput disk scheduling with
fair bandwidth distribution,” [EEE Trans. Comput., vol. 59, no. 9,
pp. 1172-1186, Sep. 2010.

Paul Menage. (2007). CGROUPS. [Online]. Available:
https://www.kernel.org/doc/Documentation/cgroups/cgroups.txt

P. Ondrejka, E. Majorinovd, M. Prpic, and D. Silas. (2016).
Managing System Resources on Red Hat Enterprise Linux 6. [Online].
Available: https:/https://access.redhat.com/documentation/en-US/Red
_Hat_Enterprise_Linux/6/html-single/Resource_Management_Guide/

S. Ahn, K. La, and J. Kim, “Improving I/O resource sharing of Linux
Cgroup for NVMe SSDs on multi-core systems,” in Proc. USENIX Work-
shop Hot Topics Storage File Syst. (HotStorage), 2016.

B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking cloud serving systems with YCSB,” in Proc. ACM Symp.
Cloud Comput. (SoCC), 2010, pp. 143-154.

J. Axboe. (2006). FIO. [Online]. Available: https://github.com/axboe/fio
D. Narayanan, A. Donnelly, and A. Rowstron, ‘“Write Off-loading: Prac-
tical power management for enterprise storage,” in Proc. USENIX Conf.
File Storage Technol. (FAST), 2008, pp. 253-267.

Y. Oh. (2015). Trace-Replay. [Online]. Available: https://bitbucket.
org/yongseokoh/trace-replay

A. Gupta, Y. Kim, and B. Urgaonkar, “DFTL: A flash translation layer
employing demand-based selective caching of page-level address map-
pings,” in Proc. Int. Conf. Archit. Support Program. Lang. Oper. Syst.
(ASPLOS), 2009, pp. 229-240.

T. Luo, S. Ma, R. Lee, X. Zhang, D. Liu, and L. Zhou, *“S-CAVE: Effective
SSD caching to improve virtual machine storage performance,” in Proc.
Int. Conf. Parallel Archit. Compilation Techn. (PACT), 2013, pp. 103-112.
F. Meng, L. Zhou, X. Ma, S. Uttamchandani, and D. Liu, “vCacheShare:
Automated server flash cache space management in a virtualization envi-
ronment,” in Proc. USENIX Annu. Tech. Conf. (ATC), 2014, pp. 133-144.
A. Gulati, I. Ahmad, and A. C. Waldspurger, “PARDA: Proportional
allocation of resources for distributed storage access,” in Proc. USENIX
Conf. File Storage Technol. (FAST), 2009, pp. 85-98.

A. Gulati, A. Merchant, and J. Peter Varman, ‘““mClock: Handling through-
put variability for hypervisor IO scheduling,” in Proc. USENIX Conf. Oper.
Syst. Design Implement. (OSDI), 2010, pp. 437-450.

D. Novakovic, N. Vasic, S. Novakovié, D. Kostic, and R. Bianchini, “Deep-
Dive: Transparently identifying and managing performance interference
in virtualized environments,” in Proc. USENIX Annu. Tech. Conf. (ATC),
2013, pp. 219-230.

D. Shue, J. Michael Freedman, and A. Shaikh, ‘“Performance isolation and
fairness for multi-tenant cloud storage,” in Proc. USENIX Conf. Oper. Syst.
Design Implement. (OSDI), 2012, pp. 349-362.

VOLUME 8, 2020

J. Kim et al.: 1/0 Schedulers for Proportionality and Stability on Flash-Based SSDs in Multi-Tenant Environments

IEEE Access

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

E. Thereska, H. Ballani, G. O’Shea, T. Karagiannis, A. Rowstron,
T. Talpey, R. Black, and T. Zhu, “IOFlow: A software-defined storage
architecture,” in Proc. ACM Symp. Oper. Syst. Principles (SOSP), 2013,
pp- 182-196.

VMware Inc. (2012). Distributed Resource Scheduler. [Online]. Available:
http://www.vmware.com/files/pdf/VMware-Distributed-Resource-
Scheduler-DRS-DS-EN.pdf

C. A. Waldspurger, “Memory resource management in VMware ESX
server,” in Proc. ACM SIGOPS Oper. Syst. Rev., vol. 36, 2002,
pp. 181-194.

X.-Y. Hu, E. Eleftheriou, R. Haas, I. Iliadis, and R. Pletka, “Write ampli-
fication analysis in flash-based solid state drives,” in Proc. ACM Int. Syst.
Storage Conf. (SYSTOR), 2009, pp. 10-1-10-9.

M. Hao, H. Li, M. H. Tong, C. Pakha, O. R. Suminto, A. C. Stuardo,
A. A. Chien, and S. Haryadi Gunawi, “MittOS: Supporting millisecond
tail tolerance with fast rejecting SLO-aware OS interface,” in Proc. 26th
Symp. Oper. Syst. Principles (SOSP), 2017, pp. 168-183.

J.-U. Kang, J. Hyun, H. Maeng, and S. Cho, “The multi-streamed solid-
state drive,” in Proc. USENIX Workshop Hot Topics Storage File Syst.
(HotStorage), 2014.

M. Bjgrling, J. Gonzalez, and P. Bonnet, “LightNVM: The Linux open-
channel SSD subsystem,” in Proc. USENIX Conf. File Storage Technol.
(FAST), 2017, pp. 359-374.

S. Lee, M. Liu, S. Jun, S. Xu, and J. Kim, “Application-managed flash,”
in Proc. USENIX Conf. File Storage Technol. (FAST), 2016, pp. 339-353.
M. Wachs, M. Abd-El-Malek, E. Thereska, and G. R. Ganger, “Argon:
Performance insulation for shared storage servers,” in Proc. USENIX Conf.
File Storage Technol. (FAST), 2007, pp. 61-76.

J. Bruno, J. Brustoloni, E. Gabber, B. Ozden, and A. Silberschatz, ‘“Disk
scheduling with quality of service guarantees,” in Proc. IEEE Int. Conf.
Multimedia Comput. Syst., vol. 2, 1999, pp. 400-405.

W. Jin, S. Jeffrey Chase, and J. Kaur, “Interposed proportional sharing for
a storage service utility,” in Proc. ACM Int. Conf. Meas. Modeling Comput.
Syst. (SIGMETRICS), 2004, pp. 37-48.

S. Park and K. Shen, “FIOS: A fair, efficient flash I/O scheduler,” in Proc.
USENIX Conf. File Storage Technol. (FAST), 2012, pp. 155-169.

K. Shen and S. Park, “FlashFQ: A fair queueing I/O scheduler for flash-
based SSDs,” in Proc. USENIX Annu. Tech. Conf. (ATC), 2013, pp. 67-78.
S. Iyer and P. Druschel, “Anticipatory scheduling: A disk scheduling
framework to overcome deceptive idleness in synchronous I/O,” in Proc.
ACM Symp. Oper. Syst. Principles (SOSP), 2001, pp. 117-130.

JAEHO KIM received the B.S. degree in infor-
mation and communications engineering from Inje
University, Gimhae, South Korea, in 2004, and
the M.S. and Ph.D. degrees in computer science
from the University of Seoul, Seoul, South Korea,
in 2009 and 2015, respectively.

He is currently a Postdoctoral Researcher with
the Department of Electrical and Computer Engi-
neering, Virginia Tech, Blacksburg, VA, USA.

His research interests include storage systems,
operating systems, and concurrency.

VOLUME 8, 2020

EUNIJAE LEE received the B.S. and M.S. degrees
in computer science from the University of
Seoul, Seoul, South Korea, in 2011 and 2015,
respectively.

He is currently pursuing the Ph.D. degree with
the School of Electrical and Computer Engineer-
ing, Ulsan National Institute of Science and Tech-
nology (UNIST), Ulsan, South Korea.

His research interests include server storage
technologies and graph processing systems.

SAM H. (HYUK) NOH received the B.S. degree
in computer engineering from Seoul National Uni-
versity, Seoul, South Korea, in 1986, and the Ph.D.
degree from the Department of Computer Science,
University of Maryland, College Park, MD, USA,
in 1993. He held a visiting faculty position at the
George Washington University, Washington, DC,
USA, from 1993 to 1994, before joining Hongik
University, Seoul, where he was a Professor with
the School of Computer and Information Engi-
neering until the spring 2015. In the fall 2015, he joined the Ulsan National
Institute of Science and Technology (UNIST), a young science and tech
focused national university, where he is currently a Professor (and a former
Dean from 2016 to 2018) with the School of Electrical and Computer
Engineering. From August 2001 to August 2002, he was a Visiting Associate
Professor with the Institute of Advanced Computer Studies (UMIACS), Uni-
versity of Maryland. His current research interests include operating system
issues pertaining to embedded/computer systems with a focus on the use of
new memory technologies, such as flash memory and persistent memory.
He has served as the General Chair, the Program Chair, Steering Commit-
tee Member, and Program Committee Member on a number of technical
conferences and workshops, including the ACM Eurosys, USENIX FAST
(Co-PC Chair), ACM SOSP, ACM EMSOFT, USENIX ATC, IEEE RTAS,
ACM ASPLOS, USENIX HotStorage (Co-PC Chair), USENIX OSDI, ACM
LCTES (General Chair), IEEE ICPADS and WWW, among others. He has
also been serving as the Editor-in-Chief of the ACM Transactions on Storage
since 2016. He is a Distinguished Member of the ACM and a member of
USENIX and KIISE.

4465

