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Abstract  

The goal of the current experiment was to investigate whether the addition of Motion Parallax 

will allow participants to make more accurate distance estimations, in both the real and virtual 

worlds, as well as to determine whether perception- and action-estimations were affected 

similarly. Due to rising number of COVID-19 cases in 2020, all in-person testing needed to cease 

with only one participant being tested with the full set of conditions in the final experimental 

configuration and one participant having been completed the motion parallax conditions only. As 

a result, the two participants were combined and only the motion parallax conditions were 

analyzed. Due to low statistical power, no significant main effects, nor significant interactions 

were discovered. Once the COVID-19 pandemic has subsidised, I am intending to collect data 

from all twenty-four participants with the full array of conditions in order to complete the current 

project. An increase in distance-estimation accuracy, especially in virtual reality conditions is 

still expected to be found.  

Keywords: Virtual Reality, Motion Parallax, Distance Estimation 
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Introduction  

     In today’s technologically advanced world, Virtual Reality (VR) is one of the fastest-growing 

technologies that will change the future (Oculus, 2019). The idea of VR, or the presentation of 

stereoscopic visual images, has a long history and, can be traced back to the early days of 

photography. An example of this historical “VR” is the Stereoscope (Figure 1), which dates back 

to the early 1830’s, which is a binocular apparatus for viewing a pair of stereoscopic images. The 

stereoscopic images, or photo pairs, are photographed using two cameras set apart laterally by 

the distance between the average person’s pupils (~6 cm).  

 

Figure 1. An image of a stereoscope. 

These offset cameras reproduce the respective views of the left and right eyes such that when 

viewed through a stereoscope, which optically superimposes the two images atop one another, a 

three-dimensional perception occurs (Figure 2, Parmeggiani & Parmeggiani, 2016). 

Unfortunately, little research was paid to these stereoscopic images and methods. It was not until 

over one hundred years later that, the concept of VR was introduced by Sutherland (1965) and 

the first Head-Mounted Displays (HMD) were invented. One of the unique features of VR, 
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beyond that seen in the earlier stereoscopes, is that it allows individuals to experience visual 

situations/simulations through the Head-Mounted Displays (HMD), which update their displays 

based on user’s own head movements. VR creates a dynamic scene, different than what you can 

get from a stereoscopic image, which is static, and giving users the impression of being 

immersed in an virtual environment (termed as telepresence, Napieralski et al., 2011).  

 

Image 2. An example of stereoscopic image. Adapted from Parmeggiani & Parmeggiani (2016). 

     Currently, virtual reality has seen an incredible expansion in the entertainment/gaming 

industry (Oculus, 2019), that many professions, such as designers/engineers, military/police 

forces, and medical personnel have greatly benefited from by using VR as a training tool 

(Naceri, Chellali & Hoinville, 2011). For instance, training of cardiac surgeons within VR has 

allowed them to reach, grasp and manipulate virtual objects, such that they can practice their 

medical skills within a controlled and safe virtual environment, without placing patients at risk 

(Peters et al., 2008). As the goal of VR training is to prepare professionals for real world tasks 

and reduce the probability of errors (Seymour, 2008), it is crucial that VR faithfully recreate all 

of the cues to depth perception that are present in the real world. (Hoffman, Girshick, Akeley, & 

Banks, 2008). 

     While this faithful reproduction has been the goal of VR systems for decades, recent research 

related to using VR as a training tool has suggested that current hardware is still plagued by 
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depth perception errors. For example, Aggarwal, Black, Hance, Darzi, and Cheshire (2006) 

investigated the effectiveness of VR simulation training on endovascular skills between eight 

expert surgeons (> 50 endovascular procedures) versus twelve surgeons with limited experience 

(< 10 endovascular procedures). All twenty surgeons performed a renal artery balloon 

angioplasty and stent procedure, with “extensive experienced” surgeons performing two 

sessions, whilst “inexperienced surgeons” performed six sessions. Overall, VR training was 

shown to be an effective tool for improving “inexperienced surgeon’s” endovascular skills as 

measured by a reduction in procedure time (Aggarwal at al., 2006). It should be noted, clinically 

relevant parameters, such as the accuracy of stent placement and sizing were not measured, two 

measures that should have been investigated in order to determine the effectiveness of VR 

surgical training. It was noted that even the “experienced” surgeons needed two sessions to 

effectively demonstrate their endovascular skills (Aggarwal at al., 2006). Thus, if the VR 

simulation was able to faithfully replicate the surgical conditions, including depth information 

cues, then the “experienced” surgeons should not have needed two sessions to adjust to the VR 

environment.  

     Similarly, Dayal et al. (2004) looked at the application of VR for training novice versus 

experienced surgeons in catheter-based skills. They discovered that within a total of twenty-one 

surgeons (five experienced and sixteen novice), although the time to complete a clinical scenario 

for novice surgeons had greatly improved after the training program, their time usages (23 

minutes) were still greater than those of expert surgeons (13 minutes) (Dayal et al., 2004). 

Surprisingly, even the experienced surgeons seemingly did not benefit from the VR training 

program (i.e., shortened time usage), which may be explained by the fact for not having enough 

clinical and tactile feedback from the VR simulator and the flaws embedded in VR rendering.  
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     Based on those results from the application of VR for medical training, even experienced 

surgeons seemed to not benefit from the training program (i.e., needed more training sessions to 

demonstrate their skills). As the current VR training program is still plagued with flaws of VR 

rendering (i.e., depth perception errors), one might reconsider adopting VR as a training tool for 

surgical training in an effort to prevent the potentiality of putting patients at unnecessary risk. 

Therefore, it is crucial for researchers to fully understand the depth perception errors within 

current VR hardware before it is implemented for extensive training purposes.  

      In order to investigate the depth perception errors within the current VR surgical training 

programs, it is important to narrow our focus down to studies that include peripersonal space, the 

distance within an individual’s reach without locomotion (Naceri et al., 2011). Armbürster et al. 

(2008) investigated depth perception in virtual environments by manipulating the aspects of: 1) 

the virtual world (no space vs. open space vs. closed space), 2) target distances (varied from 

40cm to 500cm), 3) the existence of a metric aid (with vs. without tape measure), and 4) the type 

of object presentation (single vs. ten). Participants’ depth perception accuracy was determined by 

having the participants verbally reported object distance in centimeters. Although the quality of 

the virtual world and the existence of a metric aid were shown to have no impact on participant’s 

depth perception, participants did however, have a general tendency to overestimate target 

distance within peripersonal space, demonstrating a depth perception issue. 

     Similarly, Murgia and Sharkey (2009) investigated distance estimation in virtual environment 

by using a virtual-matching task. First, participants were asked to study the size of a real cube 

and the size of a real sphere in order to establish an idea of the relative dimensions of the object 

for later testing. Then, participants were asked to stand in the centre of a virtual CAVE (Cave 

Automatic Virtual Environment), where they viewed a virtual cube and a virtual sphere of the 
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same dimensions. During the experiment, both real and virtual cubes and spheres disappeared, 

and participants were instructed to use a hand-held joystick to indicate the position where the 

virtual cube had appeared. In contrary to Armbürster et al. (2008), an overall underestimation of 

distances within the virtual environment was found amongst participants.  

     The VR depth perception literature, as limited as it is, seems to be rife with distance 

estimation errors that are seemingly contradictory. As these studies vary greatly in the 

methodology used for estimations (verbal, action, joystick-controlled pointers, etc.) and the 

distances tested, it may be that both of these factors have been contributing to the contradictory 

findings. In fact, distance does seem to have an effect on estimation error. Naceri et al. (2011) 

had participants indicate the location of a previously viewed object using their index finger. 

Interestingly, participant’s distance estimation errors were small when objects presented at 

distances less than 55cm; however, when target’s distances exceeded 55 cm, participants made 

more mistakes and tended to underestimate distances (Naceri et al., 2011). This distance effect 

could partially explain the contradiction in previous findings; however, addressing the estimation 

methodologies used previously, should likewise provided a clearer, more accurate “picture” of 

the depth perception issues plaguing virtual reality HMDs.  

     It is clear that a depth perception problem persists, but the results of previous research have 

lacked a general consensus. As mentioned above, this is likely due to the various, artificial means 

by which distance estimations have been reported. To address the artificiality employed in 

previous methodologies, it has been suggested that reaching and grasping should be used as the 

reporting method of distance perceptions (Lockwood, 2017), at least for those distances within 

peripersonal space. However, two distinct visual pathways have been found to have different 

functions towards visual stimuli, with the ventral visual pathway processes perceptual 
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information for the purpose of identifying an object. Whereas, the dorsal visual pathway serves 

the purpose of using visual information to guide bodily movement (Goodale & Milner, 1992). 

Consequently, due to the existence of two visual pathways, various reporting methods might 

affect the accuracy of distance estimations in VR (Lockwood, 2017).  

     To this end, a previous honor thesis project at Huron University College (Lockwood, 2017) 

investigated depth perception in both the real and virtual worlds by having participants perform 

what was referred to as “perception”- and “action-based” estimates within peripersonal space. To 

achieve these ethologically valid estimates, participants either indicated object distance by using 

the distance between their index fingertips (perception-based estimate) or by reaching out with 

an index fingertip, as if trying to touch the object (action-based estimate). It was determined that 

distance estimation errors occurred more so in the virtual world than in the real world, that 

perception-based estimations were worse than action-based estimations, and that the estimation 

errors grew as a function of distance from the head, with the worst errors being for objects at 

arm’s length in VR (Lockwood, 2017). These results demonstrated that even when using the 

most recently produced HMDs, spatial misrepresentation still exists and should be of concern 

when being used to train professionals where depth perception is critical (e.g. surgeons).     

           It is likely that these distance misrepresentations are due to a conflict between the depth-

related cues of the Accommodative Reflex. (a.k.a. the Near Triad). This reflex links vergence 

eye position, pupil size and accommodative state, such that they change in coordination with one 

another as a person views objects at varying distances. For example, if you were reading your 

book (which is sitting at arms length), your eyes would be heavily converged (rotated inward), 

your lenses would be thickened to increase their refractive power, and your pupils would be 

more constricted. If you were then to look at the moon up in the sky. Your eyes would diverge, 
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rotating until their respective views are parallel, your lenses would thin considerably, reducing 

their refractive power, and your pupils would dilate. The information from the accommodative 

and vergence eye position systems serve as depth cues and allow for accurate calculations of 

object distances (Goldstein, 2013). Due to the fact that all previously and currently manufactured 

HMDs only manipulate vergence eye position (same as stereoscopes from a hundred years ago) 

to create a perception of depth, the maintaining of a constant accommodative state, this pits the 

two major binocular depth cues against one another. This depth cue conflict is easily witnessed 

when viewing a 3D movie and you notice that you are having some difficulty focusing on objects 

represented at different distances. As your eyes rotate to verge to another distance, your eyes try 

to accommodate to that distance as well, just like while reading the book, then looking at the 

moon. However, the movie screen does not change distance, therefore your visual system must 

fight the Accommodative Reflex in order to maintain accommodation to only one distance while, 

despite all of the vergence eye movements. The exact same scenario is present in a HMD, albeit 

on a smaller scale. If the visual system uses the binocular depth cues of vergence eye position 

and accommodative state to determine object distance, then holding one of those cues at a 

constant is going to introduce error into depth perception. To counter this issue, the ideal HMD 

would not only use vergence eye position to create depth perception, but also alter the HMD 

optics such that the lenses of viewer’s eyes would need to accommodate appropriately, thereby 

maintaining the Accommodative Reflex and producing more accurate depth/distance estimates. 

     It is not only these two binocular cues that inform the visual system as to object distance, 

there are also numerous monocular cues as well, such as Motion Parallax. Motion Parallax is a 

depth perception cue that stems from the lateral head movements made by the viewer. More 

specifically, as a person’s head moves sideways, objects that are closer to the viewer, appear to 
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move faster (side-to-side) than do objects that are further away (Goldstein, 2013). For example, 

if you were sitting in a moving train and staring out of the side-window, your head would be 

moving sideways and closer objects such as the telephone posts nearest to the tracks, would 

appear to move rapidly by, whereas the mountains in the distance move much slower, whilst the 

sun would be perceived as not moving at all. This amount of side-to-side movement that differs 

as a function of object distance from the viewer has not been properly investigated in the VR 

depth perception literature (Kongsilp & Dailey, 2017). Moreover, many previous studies, such as 

Lockwood’s (2017) used head-fixed participants or used static images (i.e. stereoscopic images) 

in the virtual environment; therefore, eliminating motion parallax.  

     The goal of current study is to investigate whether the addition of Motion Parallax will allow 

participants to make more accurate distance estimations, in both the real and virtual worlds, as 

well as determine whether perception- and action-based estimates are affected similarly. It has 

been previously determined that even information stemming from microparallax (tiny postural 

adjustments of only a few millimeters) can be an important depth cue (Tiron & Langer, 2018). 

Accordingly, the current study will have participants make distance estimates while either being 

allowed to move their head laterally (i.e. motion parallax cues present), or while being head-

fixed (i.e. no motion parallax cues).   

Method  

1. Participants  

1.1) Participant Characteristics  

     Originally, this experiment required twenty-four participants for proper counterbalancing; 

however, due to the COVID -19 virus situation of 2020, only two participants took part in the 
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finalized version of this study prior to Huron University and Western University required that 

“in-person” participant testing be ceased. Therefore, with only two participants’ data collected, 

the corresponding lack counterbalancing and statistical power dictated that we treat these 

findings as “pilot” data and will be discussed as such.  

1.2) Inclusion/Exclusion Criteria  

     To ensure the validity of the data and the safety of those participating, several inclusion 

/exclusion criteria were implemented. First, participants were required to be right-handed to 

allow them to effectively interact with the testing apparatus (Appendix A). Second, participants 

were required to have normal or corrected-to-normal visual acuity (contact lenses or corrective 

surgery only), so that they could clearly see the target objects in all conditions. Those individuals 

whom only had glasses to correct their vision, they were excluded from the study, as glasses do 

not fit comfortably within the head mounted displays (HMDs) and may damage the HMD lenses. 

Third, participants were tested using the RANDOT Stereotests (Stereo Optical Company Inc.) to 

ensure that they had “normal” stereoacuity (i.e. depth perception; Figure 1). Similar to what has 

been used by others conducting depth/distance estimation research, such as Fawcett and Birch 

(2000), only participants with stereoacuity equal to or greater than 40 seconds of arc were 

allowed to proceed to the testing phase. Fourth, participants with a history of seizures/epilepsy 

were excluded from the study, as it has been previously reported that flashing images from 

HMDs may trigger seizures in persons suffering from photosensitive epilepsy (da Silva & Leal, 

2017). Lastly, any participant whom wore mascara to the testing session was excluded from the 

experiment, as mascara is difficult to remove from, and can potentially damage, the lenses of the 

HMDs.  
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Figure 1. RANDOT Stereotests (Stereo Optical Company Inc.). Only the ten Circles Stereotests 

(upper left) were used in the screening process.  

 

1.3) Participant Recruitment 

     It was initially proposed that participants would be recruited either from the Psychology 

Research Participation Pool (SONA) at Huron University College or from the family and friends 

of the researchers. Neither pool of participants had any previous knowledge of the hypotheses. 

Both male and female participants were qualified for recruitment in the current study. 

Participants from the Research Pool would receive 1.0 research credit toward their Psychology 

course (Psych1100E or Psych1000).  

2. Research Design  

     The current experiment manipulated four variables: Environment (Virtual Reality versus Real 

World), Estimation Method (Perception-Estimation versus Action-Estimation), Motion Parallax 

(Head Fixed versus Head Non-Fixed) and Target Distance (30 cm, 45 cm, and 60 cm). The 

combination of those three variables led to eight different testing conditions. The condition 
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orders for each participant were predetermined and designed using a MATLAB script, such that 

no one condition would follow any other condition systematically in order to control order 

effects. All estimation tasks (i.e. Action- and Perception-Estimation) were performed open-loop, 

such that no visual, haptic, nor terminal feedback were available to participants as they made 

their distance estimations. 

     The experiment was a within-subject design; therefore, each participant was tested in all eight 

conditions. Target distances (30cm, 45cm, 60cm) presented within each condition were also 

completely randomized (i.e. Virtual Reality: Perception-Estimation: Head-Fixed: 30cm, etc.). 

3. Materials and Apparatus  

3.1) Real-World Stimuli  

     The Real-World stimuli were three circular “bull’s-eye” targets set at 30, 45, and 60cm from 

the participants’ eyes (Figure 2). To ensure the accuracy of presentation distances, viewing 

distance was always measured prior to testing commencement. The diameter of the targets 

increased with egocentric distance such that the sizes of targets at different physical distances 

appeared the same on participants’ retina (i.e. retinal equivalence), such that object size could not 

be used as a cue to distance.  

 

 

      

 

 

Target Distance    60 cm                 45cm                             30 cm 

Target Diameter 10.58 cm             7.94 cm                       5.29 cm 
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Figure 2. Target egocentric distances and corresponding diameters. Images are not to scale.  

     Each circular target was glued to a plastic rod and inserted manually into a wooden dowel, 

which was secured onto a black-coated, wooden testing board (Figure 3). Insertion into dowel 

allows for swapping targets, dowel pivots such that target can be moved out of the way as 

participant reaches out during Action Estimation. Therefore, no accuracy feedback from 

touching the target.   

 

Figure 3. This image shows how a 30 cm distance target looks during testing (from above and to 

the right of the participant).  

3.2) Virtual Stimuli  

     The virtual testing environment was created using Unity, which is a software tool used for 

creating video games and other 3D interactive applications/ environments. This program allows 

users to combine the code and 3D models they have created elsewhere (e.g., Visual Studio and 

Blender), then combine these together to create a virtual environment.   
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     3.2.1) Virtual Testing Room: The version of Unity used to make the application was Unity 

2019.2.6f1. The virtual scene (Figure 4) was constructed by taking individual 3D model objects 

and aligning them in such a way as to reproduce the real-world testing room and equipment. 

Some of the objects used to create the scene were custom-made in Blender and Photoshop (e.g., 

target stimuli, black target backboard, light switch and thermostat). While other objects such as, 

the chair, table, walls, and floor were purchased from the Unity Asset Store. All virtual items 

were scaled to precisely match their real-world counterparts in order to faithfully reproduce the 

testing room, such that rendering size errors could not be used as an explanation to any distance 

estimation errors. 

 

Figure 4. An image of the virtual scene from the view of Unity editor camera.    

     3.2.2) Virtual Targets and Other Stimuli: Objects such as the target stimuli, black target 

board, and thermostat had to be custom made as these items were very specific to our testing 

room (Figure 5).  To create these custom assets for use in building the virtual Unity environment, 

Photoshop, and Blender were employed.   
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Figure 5. All three custom diffuse texture images were created or altered in Photoshop, then 

modeled in Blender.  

     Photoshop (Adobe Inc.) was first used to produce our custom assets, as it was required to 

either create or edit images that would become the diffuse texture for our 3D models.  A diffuse 

texture is an image that holds all the color information of an object. Once created, the diffuse 

texture image was exported from Photoshop as a PNG file to be applied to the surface of a 3D 

model in Blender (Figure 6).    

 

Figure 6. View from within Photoshop of target stimuli diffuse texture being created. 

     Blender (The Blender Foundation) was the last step in creating our custom 3D assets.  In 

Blender (2.82a), we created simple 3D objects such as cylinders for targets, and a rectangular 

cube for the black target backboard (Figure 7 a.). The thermostat required a bit more work by 
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needing slopped edges around its primarily square body (Figure 7 b.).  Blender also allowed us to 

set the size of our models based off our real-world measurements to help maintain accuracy.  

                     

a.                                                                               b.  

Figure 7.a) An example of creating the black target backboard in Blender, a diffuse texture (i.e., 

black testing board) was later applied to the rectangular cube above. b) A picture of the 

thermostat 

     3.2.3) Dimensions and Size Accuracy: To assure that the scale of the scene was accurately 

recreated within Unity, measurements were taken of all critical objects and structural elements 

within the room.  All dimensions were recorded in centimeters, as this would provide for the 

easiest conversion to Unity distance units, which is equal to 1-meter. For example, when setting 

the scale values for the black target backboard in Unity units, its values would be x = 0.61 y = 

0.91 z = 0.06 (Figure 8). 
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Figure 8.  Image on the left demonstrates the black target backboard with real dimensions and 

image on the right illustrates the table with real dimensions.  

     3.2.4) After-Image Paradigm: To ensure that virtual objects were rendered to accurate size 

when viewed in the Oculus Rift CV1 HMD, we created a scale testing in Unity, which we refer 

to as the After-Image Paradigm. The application creates an after-image in the real world that is 

then compared against the size of a VR calibration object.  If the size of the afterimage was equal 

to the VR calibration object, then we could be assured that VR scenes were being rendered size 

accurate. If these images were not of equal size, then scaling factors could be applied until size 

calibration was achieved. 

     The application required a flat-screen computer monitor, and the Oculus Rift CV1 HMD be 

connected to the same computer. The computer monitor rendered a bright green 30mm circular 

stimulus that would create an afterimage after a period of visual adaptation. Also, the computer 

monitor is a real-world object, we could verify the actual real-world size of our adaptation 
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stimulus. To create an effective after image, the bright green 30 mm adaptation circle (with 

fixation cross) was rendered against a black background on the computer monitor (Figure 9).   

 

Figure 9. The interface and adaptation stimuli on the computer monitor.  

     Within the VR HMD, a 30 mm black ring with a fixation dot at it’s geometric centre, was 

presented centrally on a white background for viewing (See Figure 10). Viewing this calibration 

stimulus allowed for the afterimage of the real-world afterimage to be superimposed onto the VR 

ring. If the afterimage filled the ring exactly, then this procedure verifies that the VR 

environment was rendering size accurate. However, if the afterimage failed to fill the VR ring 

stimulus, or extend beyond its’ boundary, then scaling modifications would be necessary within 

Unity to make the VR environment veridical. This process was only needed to be performed 

once prior to any testing, after which the system was calibrated, but could be verified throughout 

the testing process.  
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Figure 10. An image of what the researcher saw in the virtual HMD. A simulated afterimage has 

been applied in the form of a faded red circle for demonstration purposes. Note that the 

simulated afterimage failed to fill the calibration ring completely and would therefore require 

that the VR environment rendered by Unity would need to be scaled in order for the environment 

to become veridical. 

     3.2.5) Motion Parallax: In order to create motion parallax, it was necessary to track the 

Oculus Rift VR headset in all our Unity applications using the ‘Oculus Integration’ package 

provided by Oculus for Unity.  While there is some basic head tracking already built into Unity 

for VR headsets, we required support for Oculus’s Touch Controllers in order to calibrate our 

scene.  As such we required the ‘Oculus Integration’ for Touch Controller support (Figure 11).   

 

Figure 11. An image of the Oculus Integration package provided by Oculus.  
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3.3) Headsets  

     For all Virtual conditions, stimuli were presented using an Oculus Rift CV1 virtual reality 

headset (Oculus VR, 2016). In order to equate all HMD-related influences from the Virtual 

conditions to that of the Real-World conditions, a mock HMD with dimensions and weight 

equated to the Oculus CV1 was used (Figure 12). The mock HMD contained two plastic lenses 

with no refractive power. The use of these “lenses served two purposes: 1) they introduced some 

of the peripheral chromatic aberration seen in the Oculus CV1 lenses, and 2) restricted the Field-

of-View (FOV) to 100 degrees to match that of the CV1 headset.  Lastly, an opaque, black, 

plastic “door” was attached to the front of the mock HMD, such that the “door” could be flipped 

down/up by the researcher to control target viewing time (Figure 13). The virtual scene also had 

a black “blind-closing” animation added in order to mimic the mock HMD “door-closing” 

movement induced by the researcher. Both of the Virtual HMD and the mock HMD were 

adapted from Lindsay’s experiment (Lockwood, 2017).   

 

Figure 12. An image of Oculus Rift CV1 and the mock HMD developed for this experiment.  

Image adapted from Lockwood, 2017.  
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Figure 13. The image above demonstrates that the “door” on the mock HMD could flipped 

down/up by the researcher to control target viewing time. Image adapted from Lockwood, 2017. 

3.3) Distance Measurements              

     Participant’s distance estimations were recorded using an Optotrack motion tracking system 

(Optotrack Certus; sampling rate at 200 Hz; Figure 14). The system captured the three-

dimensional, real-world positions of four Infrared-Emitting-Diodes (i.e. IREDs; See Figure 15) 

whose data were used to calculate three distance measurements in the current experiment. The 

three distance measurements calculated were: 1) distance between left and right index fingertips, 

2) distance between the right-index fingertip to a point on the virtual reality HMD that was 

equivalent to eye distance from targets, and 3) distance between right-index fingertip to mock 

virtual reality HMD that was equivalent to eye distance from targets. Therefore, to calculate 

those three distance measurements, an IRED was attached to each of the participant’s left and 

right index fingertips (Perceptual-Estimations), as well as an IRED placed on both the Oculus 

Rift CV1 and the mock VR headset (for Action-Estimations). 

 

Figure 14. This is an image of the Optotrack motion tracking system.  
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Figure 15. An image of a pair of Infrared Emitting Diodes (IREDs).  

4. Procedure  

4.1) Preparation and Set-up 

     At the beginning of each testing day, an alignment file was collected for Optotrak Certus 

(frame rate 200/sec, IRED number 6; trail duration 7500 msec) to ensure that  real-world 

coordinated of the tracking IREDs could be calculated for the physical space in which the 

experiment was being conducted (Figure 16). This process involves placing a flat calibration 

board, embedded with four IREDs at specific distances from one another, onto the experiment 

table at a specific position. The position of this calibration board and it’s four IREDs is then 

recorded with the Optotrak system, the data of which is used to transform IRED position and 

distances into a real-world coordinate frame. 
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Figure 16. An image of Optotrack Alignment. Note: Parameters in the image are in default.  

     Due to the tracking system of the virtual HMD being setup each day (i.e. VR tracking 

cameras were not permanently mounted in the testing room), a calibration process was required 

prior to each testing day, so that the virtual room perfectly aligned to the real-world room. To use 

the calibration system, the researcher positioned themself at the real-world experiment table, then 

placed the Oculus Touch controllers against the two nearby corners of the table, thus 

landmarking the real-world coordinates of the experimental apparatus. Due to the fact that the 

VR controllers are accurately modeled and rendered in the VR scene, the researcher can see any 

misalignment between worlds as a space between the corners of the VR experimental table and 

the controllers. The researcher could then manipulate the VR controllers in such a way to allow 

the user to line up both front corners of the real-world table with that of the virtual table (See 

Appendix B for detailed calibration steps). This procedure, when coupled with the previously 
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described After-image Paradigm, ensures that the virtual world is accurately scaled and 

positioned so as to be veridical. 

4.2) Participant Screening 

     Upon arrival, participants were provided with a letter of information about the experimental 

procedure, including any associated benefits and risks, followed by an informed consent form. 

Following the signing of the informed consent, participants were asked to complete a brief 

questionnaire which included questions regarding demographic information and 

inclusion/exclusion criteria, as well as if there is any history of Epilepsy or seizure (See 

Appendix A). If participants did not have normal or corrected-to-normal acuity by way of 

contact lenses or corrective surgery, and/or had any history of seizures/epilepsy, they were 

excluded from testing. As was previously stated, flashing images from HMDs can cause seizures 

in persons suffering from photosensitive epilepsy (da Silva & Leal, 2017); therefore, poses a risk 

in some VR research. However, as the stimuli used in the current experiment did not contain any 

stroboscopic effects, the likelihood of inducing a seizure was remote. In order to eliminate all 

risk, any persons with a history of seizures were excluded from participating. In the event that a 

participant was excluded, they were provided with a debriefing form and were still rewarded 

with a participation credit.  

     After the completion of the questionnaire, a measure of participant’s stereoacuity was 

conducted using the RANDOT Stereotests (Stereo Optical Company Inc.). As discussed earlier, 

if stereoscopic acuity was found to be equal to or better than 40 seconds of arc, participants were 

allowed to proceed to the testing phase. Even if a participant did not pass the stereoacuity test, 
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they were still allowed to participate in the experiment; however, their data were excluded from 

statistical analysis.   

4.3) Testing   

     After the completion of all screening procedures, participants were randomly assigned to a 

pre-determined, randomized order of testing conditions. They were asked to sit in a chair with 

their chin either placed in the chin rest or slightly above the chin rest, depending on their first 

experimental condition. If their chin was placed in the chin rest, the height of the chin rest was 

adjusted until their eye height was equal to that of the center of the target stimuli. The chin rest 

was also moved either further or nearer to the target stimulus to ensure the distance was 

maintained as 60 cm in all testing sessions. Then, after receiving verbal consent from the 

participants, an IRED was tapped to each of the participants’ left and right index fingertips and 

one IRED was tapped to each of the HMDs. Participants were then given the appropriate headset 

(i.e., VR HMD or Mock HMD) depending on their first condition. Once participants put on the 

headset and properly fit it to their head, the first block of testing began.      

     The following is a description for all testing conditions. The procedure for a single trail 

differed slightly based on the condition. Once participants were properly fitted with the 

condition’s HMD, a series of tones were presented which served as indicators through each trial. 

At the onset of a trial, the participant heard three low tones and two high tones to indicate a 

target was about to appear. At the offset of a trail, the participant again heard three low tones and 

two high tones to indicate the target was about to go extinct and an estimation needed to be made 

upon hearing the last high tone (Figure 17).   
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Figure 17. This image shows the onset/offset of tones, each tone was 500ms in length. At the 

second high-tone, target appears. At the last high-tone, scene turns dark and estimation made.  

     For all Real-World conditions, the front cover of the mock HMD was opened manually by the 

researcher to view the target. Then, after hearing the last high tone (Figure 17), the cover was 

closed by the researcher and participant made an estimation of egocentric distance. Similarly, for 

all VR conditions, the virtual stimuli appeared after hearing the second high tone, and then, the 

virtual display turned into dark after hearing the last high tone, at which point, participants made 

an estimation of egocentric distance. 

     For all Action-Estimation conditions, participants reached forward to the perceived location 

of the target (performed open-loop) with participant’s right index finger held at the perceived 

target distance. Similarly, for all Perception-Estimation conditions, participants used the distance 

between their index fingertips to indicate object distance.  

     For all the Head-Fixed conditions (i.e., zero Motion Parallax), participants were asked to 

place their chin in a chin rest, the placement of which physically restricted head movement and 

provided participants with head movement feedback, thus adding to the elimination of motion 

microparallax. To further ensure that there was no motion parallax information provided, the 

virtual reality system had head tracking turned off during these conditions, such that the view of 

the target remained centered and fixed in the HMD, regardless of head movement. For all Head 
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Non-Fixed conditions, the chin rest was lowered to allow the participant to freely move their 

head from side-to-side. In the VR condition, head tracking was turned on so that motion parallax 

was rendered in the VR HMD. 

     Once participants completed 15 tails in a given block (i.e., five repeats of each target 

distance), the headset was switched as needed, and the next block of trials would begin. After 

completion of eight randomized condition blocks, a final block consisting of nine calibration 

trails was conducted, allowing MATLAB to record the actual distances of targets within the 

space, the data of which would be used to ensure accuracy of distance measures.  

Results 

     Due to the rising number of COVID-19 cases in 2020, it was recommended in early March, 

that “in-person” testing of participants be ceased at the Huron University and University of 

Western Ontario. Unfortunately, this timing coincided with the onset of data collection for this 

project. As a result, only one participant was tested with the full set of conditions in the final 

experimental configuration. In an effort to explore the data, this full dataset was combined with 

the partial dataset (Head Non-Fixed conditions only) of a final pilot subject. Therefore, data for 

only half of the experimental conditions was collected (Head Non-Fixed conditions only) and 

used in data analysis (N = 2). These data were analyzed using a three factor, within-subjects 

ANOVA with two levels of Environment (Real-World versus Virtual Reality), two levels of 

Estimation Type (Perception-Estimation versus Action-Estimation), and three levels of Target 

Distance (30 cm, 45 cm, 60 cm).  

     Figure 18 represents participant’s averaged performance across conditions, which clearly 

illustrates that there are likely no significant main effects of Target Distance, Environment, nor 
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Estimation Type. Likewise, no significant two-way interactions between Target Distance and 

Environment, Target Distance and Estimation type, and Environment and Estimation Type 

appears likely, nor does a three-way interaction between Target Distance, Environment and 

Estimation type. These observations are clearly supported by the statistical analysis results 

provided in Table 1.       

 

 

Figure 18. The figure above illustrates average estimates of target distances across the three 

condition factors: Target Distance, Environment and Estimation Type. NOTE: Error bars 

presented above are Standard Error of the Mean. 
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Table 1. This table illustrates the statistical results from the 2 x 2 x 3 within-subjects ANOVA.  

Discussion  

     From gaming industries to training health-care professionals, the application of Virtual 

Reality (VR) has become more and more practical, affordable and convenient in recent years. 

With this raising interest in the investigation of using VR technology as a training tool, recent 

research has suggested that current VR hardware is still plagued by distance misestimation errors 

(Armbürster et al., 2008; Narceri et al., 2011).  

The goal of the current experiment was to investigate whether the addition of Motion Parallax 

would allow participants to make more accurate distance estimations, in both the real and virtual 

worlds, as well as to determine whether Perception- and Action-Estimations were affected 

similarly. It was hypothesized that the addition of Motion Parallax would make participants’ 

distance estimations more accurate in VR as compared to when Motion Parallax was not present. 

Further, based on past findings (Lockwood, 2007), it was hypothesized that participant would be 

more likely to underestimate distance when using Perception-Estimation than using Action-
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Estimation that distance-estimation errors would increase as the target distance increased, and 

that Real-world estimates would be more accurate than those if the virtual-world. 

Expected Results  

     Due to rising number of COVID-19 cases in 2020, all in-person testing needed to cease and a 

full array of testing conditions on twenty-four participants could not be completed. As a result, 

only one participant was tested with the full set of conditions in the final experimental 

configuration. In an effort to explore the data, this full dataset was combined with the partial 

dataset (Head Non-Fixed conditions only) of a final pilot subject. Therefore, data for only half of 

the experimental conditions was (Head Non-Fixed conditions) used in data analysis (N = 2), 

which resulted in low statistical power. Likely leading to why no significant main effects, nor 

interactions were found.  

     Figure 19 illustrates the expected results if the full array of testing conditions on twenty-four 

participants were able to be collected. Clearly, the results indicate a main effect of distance, 

which suggests that estimation error increases as the target distance increases. A main effect of 

environment type, which demonstrates that participants perform better in Real-world than VR. A 

main effect of estimation type, which shows participants are ore likely to underestimate when 

using Perception-Estimation than Action-Estimation. Also, with the addition of Motion Parallax, 

less distance-estimation errors should be observed across all conditions. 
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Figure 19. Expected results across all conditions with red lines indicating Head Non-Fixed 

conditions; whereas, blue lines indicating Head-Fixed conditions. Solid lines represent Action-

Estimation conditions and round-dot lines represent Perception-Estimation conditions. Error bars 

represent the standard error.  

Limitations  

     Typically, there is a section discussing limitations of the project within a thesis. However, for 

the current experiment, we invested a great deal of time and effort into building testing stimuli 

and to developing a method for spatially matching the environmental dimensions between the 

Real-World and VR. Specifically, as discussed in the Method section: 1) all of the retinal images 

of the “bull’s-eye” targets subtended the same visual degrees so that object size could not be 

used as a cue to distance, 2) ensured that the scale of the virtual scene was accurately recreated 

within Unity, 3) ensured that the perceived size of objects was accurate when viewed through the 
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HMD by creating an After-Image Paradigm, which compares and contrasts the afterimages of 

real targets to ensure size accuracy in VR, and 4) all of our distance estimations were recorded 

using an Optotrack motion tracking system, which has a positional accuracy of up to 0.1 mm and 

resolution of 0.01 mm, the use of which would reduce any measurement errors that may be 

present when manual measurement methods are employed.  

Future Direction  

          Once the COVID-19 pandemic has subsidised, I intend on returning to the lab in order to 

fully collect data from all twenty-four participants and complete the current project. If I discover 

that with the inclusion of Motion Parallax does not eliminate the spatial representation errors, as 

we suspect, the lab intends to investigate the role of the conflict within the Accommodation 

Reflex that exists when using a VR HMD. This reflex links vergence eye position and 

accommodative state in such a way that they function in an orchestrated fashion and normally 

work together to calculate accurate object distance estimates (Emslie, Sachs, Claassens, & 

Walters, 2007). However, due to the fact that all previously and currently manufactured VR 

HMDs only utilize vergence eye position changes to drive a perception of depth, while 

maintaining a constant accommodative state, this pits the two depth cues of the Accommodative 

Reflex against one another. As vergence eye position and accommodative state are both used in 

the calculation of foveated object distance, forcing the individual to accommodate to a fixed 

distance should introduce error into distance estimates. This conflict is easily seen when viewing 

a 3D movie and you notice that you are having some difficulty focusing on the images presented, 

as your eyes verge to one distance, but are accommodating to another (Keller & Colucci, 1998). 

This is especially noticeable as you switch from verging to one virtual distance to another and 

you have some difficulty maintaining focus. The ideal VR HMD would not only use vergence 
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eye position cues, but also alter the HMD optics such that the lenses of viewer’s eyes would need 

to accommodate appropriately to the verged distance. This would eliminate the conflict between 

these two depth cues of the Accommodative Reflex and should result in more accurate 

perceptions of depth. In fact, my supervisor (Dr. Derek Quinlan) is currently working on an 

HMD prototype that would address this very issue and plans to conduct a study to determine 

whether distance estimates become more accurate once these two linked depth cues are brought 

into agreement. 
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Appendix A  

 

 

ELIGIBILITY QUESTIONAIRE 

 

Basic information  

 

Age: _____ 

 

Gender (Please Circle):          M           F     Identified as______ 

 

 

Eligibility information (please circle)  

 

1. Do you have normal, or corrected to normal vision? (20/20) 

 

Yes           No 

 

 

2. If you have corrected vision, please indicated which of the following applies to you at 

this moment.  

 

I am wearing contact lenses      I had corrective surgery     I am wearing glasses  

 

 

3. Are you right-handed?  

 

Yes    No   Ambidextrous  

 

 

4. Do you have epilepsy?  Or, have you had a seizure?  

 

Yes        No  

 

 

5. Have you had severe side effects, such as nausea, vomiting from exposure to virtual 

reality in the past?  

 

Yes        No  
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Appendix B 

CALIBRATION STEPS 

1) When the application loads, usually the view is way above the floor in the room.  

 

2) The researcher then positioned himself in the chair in front of the table being used for the 

study. The researcher placed the right-hand Oculus Touch Controller against the nearest 

right table corner. He pressed the inner trigger of the right-hand controller to set the 

height and position of the room. 

 

 

3) Next, the researcher rotated his right wrist on the yaw axis to change the orientation of 

the room until he has aligned the left-hand Touch Controller with the nearest left table 

corner. 
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  Result after fixing the orientation: 

 

 

 

4) After the room has been calibrated, the settings can be locked by pressing one of the 

right-hand controller’s face buttons. 

 

Out of alignment.  

Need to rotate 

toward left-hand 

controller. 
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(The end of calibration) 
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