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Abstract

Across the globe, the frequency and size of wildfire events are increasing. Research
focused on minimizing wildfire is critically needed to mitigate impending humanitar-
ian and environmental crises. Real-time wildfire response is dependent on timely and
accurate prediction of dynamic wildfire fronts. Current models used to inform deci-
sions made by the U.S. Forest Service, such as Farsite, FlamMap and Behave do not
incorporate modern remotely sensed wildfire records and are typically deterministic,
making uncertainty calculations difficult. In this research, we tested two methods
that combine artificial intelligence with remote sensing data. First, a stochastic cel-
lular automata that learns algebraic expressions was fit to the spread of synthetic
wildfire through symbolic regression. The validity of the genetic program was tested
against synthetic spreading behavior driven by a balanced logistic model. We also
tested a deep learning approach to wildfire fire perimeter prediction. Trained on a
time-series of geolocated fire perimeters, atmospheric conditions, and satellite images,
a deep convolutional neural network forecasts the evolution of the fire front in 24-hour
intervals. The approach yielded several relevant high-level abstractions of input data
such as NDVI vegetation indexes and produced promising initial results. These novel
data-driven methods leveraged abundant and accessible remote sensing data, which
are largely unused in industry level wildfire modeling. This work represents a step
forward in wildfire modeling through a curated aggregation of satellite image spec-
tral layers, historic wildfire perimeter maps, LiDAR, atmospheric conditions, and two
novel simulation models. The results can be used to train and validate future wildfire
models, and offer viable alternatives to current benchmark physics-based models used
in industry.
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Chapter 1

A Brief Overview of Forest Man-

agement and Wildfires with a Fo-

cus on North America

We describe the series of forest management polices that have likely re-

sulted in the modern day ’megafires’ burning through the Western half of

North America throughout the dry season. We then detail the change in

management that has lead to the importance of accurate and timely fire

modeling techniques. Following, w examine and compare existing wild-

fire models. Finally, we propose two novel models that address this need,

along with a curated data-set and open source API in which the models

are trained on.
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1.1 Forest and Wildfire Management

Strategies in North America

A natural component of many healthy ecosystems, wildfires help to maintain a bal-

anced carbon cycle. The burning of plant material cycles nutrients from aging plant

populations to the forest floor, encouraging new growth. In many ecosystems, wild-

fires are healthy and a part of any warm dry season [2, 3]. However, in the past

century, the United States has experienced an evolution of forest management poli-

cies, fundamentally altering the wildfire cycle. In the Eastern United States, wildfires

have historically been small and relatively not harmful to wilderness urban inter-

sections. This is due to a humid climate with ample precipitation throughout the

year. However, during westward expansion in the early 1800s, large wildfires began

to threaten European settlement [4]. Prior to European occupation of the great West,

Indigenous Native American tribes had coexisted with natural wildfires in arid cli-

mates for thousands of years. In fact, in select settings, indigenous cultures were

using controlled burns to manage prairies and forests to maintain agricultural prac-

tices. As Europeans began to migrate further west, sequestering indigenous lands,

these practices of using fire in land management were lost [5]. In the late 1880s, the

U.S. Army was the primary body responsible for responding to wildfires. The official

policy was to suppress every fire immediately after detection, regardless of the ecol-

ogy of the landscape. By 1905, the U.S. Forest Service was founded, and inherited

the same Universal Suppression Policy. This aggressive tactic was incredibly effective

at reducing the annual number of acres burned in North America. Between 1935

2



and 1960, the number of wild acres effected by wildfires dropped from 120, 000km2

to 8, 100km2 − 20, 000km2 annually [6]. However, many of the managed ecosystems

benefited from seasonal burning. The absence of periodic burning as a result of the

suppression policies established in the 1900s lead to unmatched tree growth. As trees

mature, they naturally shed layers of bio-material, barks, branches, leaves, etc. These

materials can build up on the forest floor. Over many seasons, the successive accu-

mulation of bio-material can inhibit new plant life and act as tinderbox for potential

wildfires. The material that collects underneath the tree canopy can aid in the growth

of thick understory, a collection of moss and shrub like vegetation. The combination

of decaying plant material and spreading groundcover vegetation can link together

disconnected components of the forest floor, making it easier for fire to spread through

the forest.

In the late 1900s, forest ecologists began to inform wildfire forest management pol-

icy, specifically the discovery that certain tree species actually required heat from fire

to grow defensive barks, such as the towering Sequoia Trees of the east high country

Sierra Nevadas. While the fire suppression policies reduced short term wildfire risk,

it left many wildlands primed for massive wildfires due to the accumulation of over

30 years of dry and dead plant material. In the past 50 years, alternatives to strict

fire suppression have made their way into forest management decision making. One

alternative to a strict suppression based policy is to allow naturally ignited wildfires

to "run their course". In response to negative effects of a strict suppression policy

for many ecosystems, the Wilderness Act of 1964 [7] prompted forest managers to

"preserve natural conditions" of forested areas. The Wilderness Act even referred to

fire as a management tool, calling for the inclusion of controlled burns to maintain
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and restore forests. The United States Forest Service released a guide to Wilderness

Fire Use, stating that "fire, as a critical natural process, will be integrated into land

and resource management plans and activities on a landscape scale and across ad-

ministrative boundaries". In Figure 1.1 we see the fall and subsequent rise of yearly

area effect by fire.

This change in strategy altered the ecology in many North American forests,

thinning out bio material. However, many areas are still effected by strict burn

policy and contain excessive flammable ground coverage [8].

In the current stage of wildfire management, we are still seeing less than historic

annual acres burned, but the fires that do happen are tending to be larger, hotter and

deadlier then ever before [9]. While there are fewer acres burned annually than in the

past centuries (prior to European Colonization), due to suppression tactics, there are

rising accounts of mega fires. Mega fires are wildfires characterised by their large size,

duration, complex burn behaviors, cost to contain, and risk fatality to firefighters and

community developments adjacent to wilderness areas [10].
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Figure 1.1: Early suppression tactics were incredibly effective at reducing the annual number
of acres burned, however, we are still feeling the negative effects today. The red time period
indicates fire suppression policy while the blue indicates data from post wilderness act. [1]

Current nationwide efforts to better understand the effects of forest management

on wildfires are being lead by The Fire and Smoke Model Evaluation Experiment,

FASMEE [11]. FASMEE is a large inter-agency organization that monitors artificial

and naturally ignited wildfires. They study how fuels, fire behavior and meteorology

interact to determine the dynamics of smoke plumes and vegetative response. FAS-

MEE collects observations from large prescribed fires by combining Light Detection

and Ranging (LiDAR), radar, ground monitoring, aircraft and satellite imagery, and

weather and atmospheric measurements. Their mission is both one of scientific in-

quiry as well as public safety, to better predict fire behavior, the effects of fire on

the landscape, and impacts of smoke. FASMEE represents a modern effort to lever-

age remote sensing technologies and a diverse team of scientists with backgrounds in

ecology, forestry, climatology and applied mathematics.
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1.2 Environmental, Societal and Eco-

nomic Impact of Wildfire

Each year, between 4 - 8 million acres of land are damaged by wildfires. Just in

the past 10 years, this has represented a $5.1 billion cost in infrastructural damage

repair [12].

Although there has been a clear increase in annual acres burned, this does not

directly translate to negative ecological impact. In some cases, a burned landscape

will act as a fire break in the next season, separating once connected components

of the forest. Future fire seasons are effected by fuel regrowth, human interference,

topography and a changing climate.

Wildfires have an distinct effect on local labor markets during fire season. Be-

ing one of the only natural disasters that humans try to manage, or perhaps fight,

communities see a small immediate bump in wages and earnings during a fire event.

This is followed by an equivalent depression. It has been observed that larger and

more frequent fires amplify this seasonal oscillation in temporary economic gain [13].

Allocating fire suppression to local agencies can help balance the economic hit from

infrastructure loss. According to a case study of fire events in Trinity, California,

local employment increased 1 percent during the first quarter of the fire for every 1

million spent in the county. Additionally, on average, 9% of suppression funding from

the Forest Service is spent in the county in which the wildfire occurred. Contracts

for suppression and support services are a central avenue for local capture. However,

local business capacity appears to limit the ability of rural and resource-dependent
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counties to capture suppression contracts.

Building predictive models to aid in wildfire preparation and containment efforts

is increasingly important. With the advance in computational resources, wildfire

modeling has become a key component to successfully forest management. Accurate

simulations of wildfires can inform best practices for forest management, as well as real

time response to wildfire events. In the past ten years, wildfire modeling has grown

from fully physical models to data driven models that leverage artificial intelligence

and increased coverage of fire events.

Traditional physical models are derived from the fundamental laws of physics

and chemistry. They model coupled dynamics of the physical systems like diffusion,

advection, radiation, etc. These dynamics are often described with sets of coupled

partial differential equations to compute how the system will evolve over time. In this

literature review, we will describe a select number of the benchmark physical models

that are currently used to guide forest management. Additionally, we will discuss the

limitations of these models and introduce some modern works that have inspired the

direction of this thesis.
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Chapter 2

Modeling Wildfires

2.1 Modeling Fire and Wildfires

The spread of fire over a landscape includes processes and mechanisms that act at

different physical and temporal scales. Energy is released in the form of heat due

to chemical reactions during combustion. The energy is transferred to nearby fuel

sources (vegetation) furthering material ignition. Modeling such complexity at vary-

ing temporal and spatial scales is not a trivial problem. The methods, assumptions

and results that support wildfire models are still heavily disputed and can even be

contradictory. As the impacts of wildfires are growing, and the complex dynamics of

wildfires are still being discovered, the treatment of wildfires as a complex multiscale

dynamical system is incredibly important.

We will briefly summarize the chemistry and physics that fundamental physical

models of fire spread are based upon. Then, we will show how these fundamentals

are applied in several different physical models, commenting on known limitations,

assumptions and model validation. A review of these methods helped inform and
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shape the direction of the original models presented in this thesis.

In their 1997 review, Grishin et. al [14] suggested four steps in the progression

of modeling a wild fire. In this time, models were primarily based on derivations of

physical systems in the form of coupled partial differential equations. Grishin’s four

steps are paraphrased below :

1. Instrument a physical analysis of wildfire spread by isolating the mechanism

that controls transfer of energy from the fire perimeter to adjacent entities.

2. Define a medium and then determine its reaction and thermophysical properties.

Derive a set of equations to satisfy these conditions.

3. Solve the set of equations using the best possible numerical methods.

4. Evaluate the accuracy of the model by comparing it to the real system.

In modeling many dynamical systems, one must make simplifying assumptions in

order to make the problem tractable and feasible to parameterize. Grishin’s four steps

are a general, albeit lofty, guide to modeling many physical systems. One component

that Grishin leaves out that is a particular challenge in physical modelling is capturing

edge cases.

Fire and Combustion

Many of the fire spreading models used by foresters and other practitioners are expan-

sions upon Rothermel’s [15] one dimensional spread model that predicts the surface

and crown rates of fire spread [16]. Rothermel’s equation form is given in Fig. 2.1.
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Figure 2.1: Rothermal’s Equation for Surface Spread Rate

Two dimensional models combine the work of Rothermel with Huygen’s principle

of propagating waves [17]. Such fundamentals are still present in practice in mod-

els such as Farsite [18], Firetec [19] and FlameMap [20]. Full simulations iterate

Rothermal’s equation over time to calculate fire acceleration.

Additionally, there are models that have received much praise from the wildfire

research community, but have not yet been implemented in forest management [21],

[22], [23]. Before examining a set of applied and well-known academic models, we

will review some of the treatments of the physical processes that lead to combustion

from an elementary physics perspective. We will paraphrase the treatment of typical

combustion reaction modeling found in the comprehensive review by Sullivan et al [24]

recounting modelling from 1970-2007.

The fuel sources of a wildfire are diverse and vary spatially. Thus there is a

large range of chemical compounds and biological fuel sources which alter the speed

of ignition and the spread of a fire across a landscape. Modern complete physical

models account for processes within the stratum of vegetation, and thus do require

a high resolution of fuel type. The treatment of vegetation stratum dynamics is

discussed.

The primary chemical components of wood fuel are cellulose, lignin, and hemi-

cellulose. The combustion and energy transfer from biomass is usually treated as

the sum of the fuel’s main components [25]. Additional inorganic matter inside the

vegetation can both inhibit and aid the combustion process.
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The process of burning will only occur after vegetation has been dried. Specifi-

cally, when the cellulose is heated up, the cell undergoes thermal degradation in one

of two forms. In the absence of oxygen, the vegetation will dry up and produce tar

substance as a result of the chemical reaction. If sufficient heat is present, the tar

can combust. The secondary possibility results in the formation of char and occurs

in the presence of moisture and low heat. These two processes compete with one

another [24] but at a threshold, the system will converge and support one.

The quantity of energy that determines whether or not a chemical reaction will

take place is referred to as the activation energy Ea. This is the amount of energy

required to catalyze a reaction. This in turn controls the rate of the reaction according

to the Arrhenius law

k = A
−Eg
RT (2.1)

where k is the reaction rate constant, A is a pre-exponential factor, R is the gas

constant and T is the absolute temperature of the reactants.

The physical processes that produce heat transfer are primarily radiation and

advection [ [14], [26]]. In the presence of winds, advection drives the spread of the

fire, while alternatively, fire spreads primarily from radiation. Radiant heat can be

simplified to the Stefan-Boltzmann radiant heat transfer equation (RTE) [24].
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q = σT 4 (2.2)

Where σ is the Stefan - Boltzmann constant and T is the temperature of the radi-

ating surface (K) [27]. However, recently there have been more complex adaptations

to the RTE treatment problem [28].

The processes of advection and fluid transport are typically handled through the

conservation of mass and momentum equations. We can write the change in density

over time of a fluid as a function of the fluids density and velocity.

2.1.1 Model Types and Review

There are many different scales in which to model wildfire. There is active research

in both short and long time scales. The dynamics of a flame can be examined over

the course of fractions of a micro-second [29], all the way up to 10,000 year long

simulations. Long term models hope to predict the effects of multiple millennia of

fire seasons [30]. This approach can help us understand the threshold at which fire

is beneficial in growing healthy forests, and can act as prevention for future natural

disasters. The primary interest of models used in the field lie in the day to week range,

as they are typically used in response to active wildfire spreading. However, micro

and macro temporal models are very useful in understanding additional underlying

dynamical properties of the system. Additionally, fire is modeled at varying spatial

resolution, altering the relevant fuel components. At a very high spatial resolution, we

are interested in materials down the vegetal stratum as discussed in the combustion
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section. However, when modeling a large section of a forest, this fine-grained focus

may not be feasible. In this case, we are interested in approximating the effect of

micro structures in combustion behavior by coarse graining to the surface vegetation

type level, such as the species of tree or bush, or perhaps the distribution of crown

and canopy height and resulting density. Now we see that this system is incredibly

complex, as there is an incredible spectrum of scales to consider examination within.

An additional distinction in modeling wildfire events is the treatment of the continuity

of space. Systems modeled in continuous space are described using coupled sets of

partial differential equations [31], [23], [32], [33], [34] Alternatively, models propagate

a fire front over discrete space. Both strategies are discussed in this review.

Table 2.2 highlights the primary models that are in development or current use

by wildfire fighting agencies to help predict evolving fire fronts. There are roughly

three classes of model present in this review, empirical, semi empirical and physical.

To begin this review of methods, we will examine models at varying scales of focus in

time and space. The focus of this review will be on short term models that predict

the spreading of the fire perimeter at the day to week resolution.
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Table 2.1: Model Review Reference Table

Model Description Year Reference

Farsite

Semi-Emprical Fire surface spreading simula-

tion based on Huygen’s Law applied to ex-

panding polygons along the fire perimeter

1998 -

Present
[18]

FlamMap
Geo spatial model that predicts time invariant

fire behaviors.
1999 [20]

MultiScale

A complete physical model that treats com-

bustion at three different interacting spatial

scales. Not validated at this time.

2014 [23]

WFR-SFIRE

Weather Research and Forcasting - Spread

Fire. Coupled atmospheric

and surface fire spreading model

2011 [22], [21]

Data Assimila-

tion

This was a precursor to WFR - SFIRE that

allows practitioners to update input data in

real time as the model is forecasting.

2009 [21]

WFDS

Wildland - Urban - Interface Fire Dynamics

Simulation. Computational fluid dynamics to

resolve buoyant flow, heat transfer, combus-

tion, and thermal fuel depletion.

2010 [35]

BehavePlus

Surface and crown fire spread, fire source

dependence, containment strategy sugges-

tion,tree death

2007 [36]

Table 2.2: Relevant wildfire forecasting models under use to historically used by the U.S.
Forest Service. Reported year indicates the year the initial paper introducing the model was
published. However, many models have been since initial publication.
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2.1.2 FlamMap and FARSITE

FlamMap is a well-known spreading model implemented in 2006 that is used in many

wildfire fighting communities in North America. The model is used to analyze spatial

variability in fire behavior and supports three different output sets. The necessary

inputs are mapped into the model using geographic information systems (GIS). The

landscape in which the fire spreads is discretized over a 2D grid. All fire calculations

assume that fuel moisture and wind velocity are constant in time. The model considers

the elevation, slope, fuel model, canopy cover, canopy height, crown base height and

crown bulk density. Each input variable is stored in a matrix where a given location

represents a cell on the landscape grid. Figure 2.2 is provided as a sample landscape

from the FlamMap documentation [20].

Figure 2.2: An example FlamMap input data structure composed of several matrix layers
containing numeric values representing geospatial environmental conditions such as eleva-
tion and aspect of the landscape topography. In addition to the pictured variables, winds are
either entered into the system as a fixed speed and direction for the entire landscape, or as
a spatial wind field, represented as two grids, one for speed and one for direction [1].

The first feature of FlamMap produces a set of basic wildfire behavior descriptions
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based on a constant set of environmental conditions for an entire landscape. The

output of this model feature are a set of rasters that provide fire behavior on the grid

cellular level. These layers include Fireline Intensity, Flame Length, Heat per unit

Area and Midflame Windspeed. Each of these layers is for a single time, as there is

no temporal aspect within FlamMap. Additionally, FlamMap is able to calculate fire

growth in the absence of any time varying environmental conditions. The path of fire

spread is calculated according to the the "Minimum Travel Time" algorithm [1].

Minimal Travel Time (MMT)

In an unweighted and undirected network, the minimum travel time between two

nodes is the number of edges that connect the nodes. In large networks, there will be

multiple paths that connect two nodes. However, when using a grid to model land

area, the nodes are regularly spaced and a fire event at one cell in the grid does not

imply burning or occupying all of the associated land area. In MMT, fire is able

to travel from cell corners. The fire boundary grows to maintain an elliptic shape

according to Huygen’s principle. Huygen’s principle assumes that each ellipse will

spread synchronously and independent from one another [17]. The ellipse’s spread

rate from a point source in the X and Y direction are given by Equation 2.4

∂X

∂t
= a sin (θ) (2.3)

∂Y

∂t
= b cos (θ) + c (2.4)

Each cell will exhibit different fire spread behavior according to local slope, fuel

types and wind behavior. The MMT algorithm returns the minimal time and path
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that the simulated fire will spread between a location of interest and the current

position of the fire. This data is output in the form of estimated arrival time contours.

MMT expands the fire front based on an application of Huygen’s law which will

expand the perimeter according to independent wavelets as described in Figure 2.3.

Figure 2.3: Elliptical fire spread rate dimensions(a,b,c) and angles (α, β, γ) for computing
fire travel times from the ignition point over an arbitrary distance defined by dX and dY.
Huygen’s law will produce the Xt and Yt, the spreading rates of the ellipse’s semi major and
minor axis [1].

The final component of the FlamMap system is a fuel treatment optimization

engine. This recalculates fire behavior by changing the fuel model based on the major

MTT pathways. This can help inform wildfire fighters in how to optimally place fire

breaks in a landscape given ensambled predicted trajectories of the fire. These three

features of FlamMap can help decision makers optimally treat fuel hazard and manage

oncoming fires. Alone, this model is not enough to show how a fire shape is most

likely to grow or change over time. It is typically joined with FARSITE, an alternative

method that is a full fire simulation system [18].
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The FARSITE model takes the same input parameters as FlamMap but calculates

the fire behavior characterizations over time, producing a real time simulation of a

wildfire evolution over a landscape.

Limitations of FARSITE and FlamMap

The FARSITE simulations are based on a set of coupled mathematical models that

approximate the relationship between fuel, topology, weather and fire behavior. In

the simplest cases, the system has produced very accurate results, given smooth

landscapes and atmospheric conditions [18,20]. Uniform surface fire spreading shape

assumption based models are able to reproduce behavior exhibited by real observed

fires. However, in non uniform terrain or during extreme weather events, these as-

sumptions start to wear on model performance. Validation studies [37] have shown

that FARSITE struggles to produce accurate results on extreme fire events such as

plume-dominated fires, fire whirls and mass fires.

Additionally, it is assumed that the spread of fire from one point to another oc-

curs independently from the dynamics of surrounding points of propagation. I.e. the

shape and length of a fire front is assumed to have no effect on the fire behavior at a

given point. However, it has been observed that fires frequently generate their own

local atmospheres, creating wind currents and even fire storm clouds that can pro-

duce lightning [38]. This fascinating positive feedback loop directly impacts observed

spreading patterns.
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2.1.3 Physical Models

Fully physical models are based on the balance of energy and mass during reaction-

diffusion, radiation and advection. The form of such models is a set of coupled partial

differential equations (PDEs). This review will focus on newer models from the age

of large scale numerical methods. While the models presented are not currently used

by the Forest Service to aid in fire prediction, they are well thought of in the research

community. A limitation of some academic models such as the work done by [32] is

that the derivations are not implementable and theoretic due to constraints on PDE

stability.

In a simplified model, a set of 2D reaction - diffusion equations are used to describe

the main spreading and burning processes. However, there are also "complete physical

models" which attempt to accurately model interaction between the atmosphere and

the fire environment, and specifically, how the fire can alter its own atmosphere [ [16],

[23], [32]]. These models are often not feasible to be simulated. Margerite et al [32]

proposed one of the first complete physical models which has since been simplified to

two dimensions and simulated computationally.

Sero - Guillaume Multi Scale Model

Sero-GullaumeO et al [23] proposed a multi-scale model that considers 2 phases,

solid and gas, in three regions of the forest- above, below and inside at three differ-

ent scales: microscopic(plant cell solid/gas), mesoscopic(twig, leaf and branch) and

macroscopic(forest canopy and atmosphere). 2.4 is pulled from their 2001 publication

to describe the interaction between these scales. This model simplifies combustion
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by limiting it to the gas phase. Phase transitions from solid to gas are modeled with

interface jump relations. Conservation of mass, momentum and energy are calcu-

lated from the mesoscopic solid phase and gas phase interaction. To describe events

at the macro scale, mesoscale properties are averaged by convoluting the mesoscopic

equations to a macroscopic scale.

The states of different fuel compounds inform processes at the mesoscopic scale.

The mesoscopic scale models the drying, decomposition and eventual combustion of

wild vegetation. They consider a generic vegetation covering composed of hemicellu-

lose, cellulose and lignin with liquid and gas components of water and air respectively.

When the area heats up, the vegetation begins to dry and generates a flammable gas.

The study derives a system of equations for the different phases of the vegetation

components as well as a set of "jump conditions" between the solid vegetation phase

and the flammable gaseous phase. Further, the proposed macroscopic scale models a

collection of mesoscopic reactions happening in coordination with one another.

Figure 2.4: Simulation Scale Interaction
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The product of this model is a large system of equations derived from the conser-

vation of energy, momentum and mass at each of the scales. Simplifying the system

under some relaxations produces the following system of equations for each phase of

the particle.

(1− Φ)ρpC
p
P

∂Tp

∂t
+∇ · (−λp∇Tp +Qpr) = Rpc − χ(Tf − Tp)

ΦρfC
f
P (∂Tf

∂t
+ Vf · ∇Tf ) +∇ · (−λf∇Tf +Qfr) = Rpc + χ(Tf − Tp)

See [23] for full model derivation. We describe the simplified version used in simulation

below as it is the one implemented in simulation.

Guillaume - Margerit Simplification and Simulation

Guillaume and Margerit propose a simplified 2 dimensional version of the theoretical

model proposed in their follow up publication [32].

The group produces a simulation that considers vegetation, slope of terrain and

wind as independent input variables. Drying and combustion of vegetation by re-

action - diffusion are considered mechanisms. This model is a bridge between two

dimensional reaction diffusion models and complete physical models. They propose

a bound on the size of the fire (L) given the height of the vegetation(δ), such that

δ

L
= ε (2.5)

is a small parameter. With this assumption held, then the vegetation is a boundary

layer between the fire and the surface.

The reduced model is derived by performing a matched asymptotic expansion of
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the process inside the vegetal stratum and an accompanying outer expansion for those

outside. The expansion is performed on the set of ordinary differential equations that

balance energy, mass and momentum. The bounded epsilon is then used to expand

all relevant quantities as :

f = f0(x, y; t; z1, t1) + εf1(x, y, t; z1, t1) + ε2f2(x, y, t; z1, t1) + ... (2.6)

The expansion results in the following set of equations.

(1− Φ)ρpC
p
p

∂Tp

∂t
= λpδsTp −∇s ·Qrp +Rcp + χ′(Tf − Tp) +Mr (2.7)

∂

∂t
((1− Φ)(1− Ep)Sawp) = −(1− Φ)(1− Ep)Sawpkwp(Tp) (2.8)

∂

∂t
((1− Φ)(1− Ep)Sacpρcp) = (1− Φ)(1− Ep)Sawpkwpcpρwp(Tp) (2.9)

∂

∂t
((1− Φ)(EpSalp)) = −(1− Φ)EpSalpklpvgp(Tp) (2.10)

*with (2.11)

Cp
P = (1− Ep)(Saw

ρwp

ρp

Cp) (2.12)

However, this model is further reduced for simulation. In implementing the model,

the authors neglect the difference between Mr and Qr, the internal radiation heat

source and the external. They progress the system of equations through time using

the explicit Euler method. The main contribution of this model is the treatment of the

radiative heat flux. In the supposed complete model, not simulated in the publication,

the radiative heat flux is evaluated as a convolution integral. The authors note that

the implemented model does not reflect a fire’s behaviors due to this limitation but

offer the full model derivation in the paper [32]. No validation is provided.
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Mandel et al, Data Assimilation

This paper considers a simple 2 equation model with the goal of assimilating real time

environmental data into the model as a means of course correction. This way, as the

model is running, new data can be added to increase the accuracy of the predictions.

Specifically, Dynamic Data Driven Application (DDDA) System techniques were em-

ployed. This allows the program to add and subtract real time data. The current

model solves a system of reaction - convection - diffusion equations. The reaction

rates are determined by the Arrhenius Equation developed by Svante Arrhenius in

1889 [39]. This equation k = Ae
−Ea
RT shows the relationship between change in tem-

perature and a reaction rate as several chemical species interact with one another.

The model is derived from the conservation of energy, balance of fuel supply and the

fuel reaction rate:

dT

dt
= ∇(k∇T )− ~v∇T + A(Se

B
(T −Ta) − C(T − Ta))

dS

dt
= −CsS

−B
(T −Ta)
s , T > Ta;

The DDDA allows for the coefficients of the model equations to by dynamically

updated to account for the new data.

To break down the set of equations we define each of the terms.

1. ∇(̇∇T ) models the short range transfer of heat due to radiation

2. ~v∇̇T represents heat redistribution from wind gusts (advection)

3. The term Se
B

(T −Ta) represents the rate at which fuel is being burned.
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4. The AC(T − Ta) models heat lost to the atmosphere through convection.

5. Finally, the reaction rate term is adjusted from the Arrhenius law [39] in the

exponent to force zero reaction at ambient temperature. Giving way to e
B

(T −Ta)

The derivation of the system of PDEs is described below. The system is based on

the fundamental conservation of energy and fuel reaction rate. The chemical reactions

that take place from fuel combustion releases heat. The transfer of heat is due to the

radiation and convection to the atmosphere. Short range heat transfer is modeled by

diffusion. The two dimension heat flux through a segment per unit length is given by

:

~qr = −ki∇T (Wm−1) (2.13)

As the rate of the reaction is only dependent on the temperature, the rate at which

the fuel is lost is proportional to the rate of reaction and the amount of fuel available.

The rate of reaction is given by Csr(T ) where Cs is a coefficient of proportionality

and r is dimensionless.

dF

dt
= −FCsr(T ) (2.14)

Then the heat generated per unit area must be proportional to the amount of fuel

that is lost

qg = A1FCsr(T ), (Wm−2) (2.15)
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Other studies have examined special cases of the model presented. Weber et al [26]

completes a formal expansion of the Arrhenius reaction model to determine the wave

speed and predict small fire’s spreading capability. [40] Another study predicts the

wave speed upon fuel ignition and fire extinction. The stability of combustion waves

are analyzed using asymptotic expansion by [41].

2.1.4 Mandel et al 2011, Coupled WRF - SFIRE

Mandel et al, [22] propose the Weather Research Forecasting and Surface Fire Spread

(WFR-SFIRE) model. The WRF-SFIRE model accounts for the effect that the fire

has on the local atmospheric and the resulting positive feedback loop. High winds

contribute greatly to a growing fire and in turn the heat output from the fire causes

air to rise rapidly to balance densities, this causes additional air to be pulled into the

the empty space from nearby introducing a new current. The WFR - SFIRE model

hopes to capture these coupled dynamics between the atmosphere and the fire.

The physical model consists of functions that calculate the rate of fire spread and

offset heat fluxes. There are 13 different fuel type categories that the model can

handle based on Burgan’s [42] fuel index categories .

The fire spread rate is given by the modified Rothermel formula

S = R0(1 + φW + φS) (2.16)

Where R0 is the rate prior to wind and φW is the effect of wind and φS is the effect of

slope. As the fire spreads over a landscape, the fuel at a given position F (t) decays

exponentially over time. The fire is propagated by integrating the partial differential
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level set equation. The integration is handled by Heun’s method, a second order

Runga- Kutta method.
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Chapter 3

Case Study 1: Genetic Program-

ming, Cellular Automaton and Syn-

thetic Data

3.1 Modeling spatial spreading process

with statistical learning

To reduce computation time, increase accuracy and leverage the advances in satel-

lite imagery, recent work has modeled wildfire dynamics with machine learning or

evolutionary strategies. This area has seen great success with increased accuracy of

perimeter prediction from historic fires [43], [33]. Crowley et al [34] applied a set

of reinforcement learning algorithms to learn spreading policies from satellite images

within an agent based model.

Radke et al proposed a deep neural network algorithm titled FireCast that pre-
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dicts 24 hour wildfire perimeter evolution based on Satellite images and local historic

weather [33]. FireCast achieves a 20% higher average accuracy compared to the

Farsite model [18] used in current practice.

Spatial spreading processes are commonly simulated using cellular autamaton

(CA) [44], [45], [43] and agent based models ABMS [46], [47]. ABMs can been

used to simulate complex systems by prescribing rule sets to independent agents.

In the case of a wildfire model, each cell on fire represents an agent that can spread

across the landscape and ignite neighboring cells based on a probability distribution

that considers information about the current neighborhood. By evolving the func-

tion that governs agent behavior, agent based models can be used to predict system

level spreading based on ground truth data. System level behavior is predicted by

fine tuning agent decision functions. For example, Zhong et al [48] modeled evacua-

tion crowd dynamics by evolving the agent rule set. This work aimed to predict the

decision making process of an individual in an emergency evacuation of a building.

Agents choose which exit to leave a building from based on distance, probable safety

and volume of other agents headed that way. An optimal rule set will balance each of

those variables to optimize the likelihood that all agents are able to leave the building

safely. Fitting a symbolic regression to simulation results using an evolving rule-set

exposes a population probability distributions that optimally weigh the considered

variables. A number of fields have used this method to build realistic simulations

used for further system prediction [49], [50], [51].

We propose a CA that trains a series of genetic programs to replicate seen and

unseen wildfire simulations. We first introduce the mechanics of the CA, then give

an overview of the evolutionary process and experimental design. We show that the
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underlying spreading behavior can be learned and replicated by a genetic program

based on synthetic environmental features.

3.2 Methods

We fit a symbolic regression to data generated by wildfire simulations. Agents repre-

sent instances of fire that spread according to a function of their local Von Neumann

neighborhood [52]. We propose a naive spreading function and examine how well the

regression can reproduce the spread patterns generated. We compare different genetic

programs embedded in a CA by calculating how well they reproduce synthetic burns.

We will first describe the CA that simulates the spread of fire and the generation

of the synthetic data, then we will discuss the different evolutionary algorithms that

attempt to learn the rules that govern the spread of fire.

3.2.1 Cellular Automaton

CAs were initially proposed by Von Neumann and are used to model spreading dy-

namics in discrete time and space [53]. CAs are well suited for simulating spreading

on a grid. Each site on the grid has attributes that describe its unique state. The

behavior of interest spreads across the grid when cells adapt according to their neigh-

bors. In modeling a wild fire, we are interested in the relations between ignition

probability and a number of local environmental factors, such as wind speed and

direction, temperature, and relative humidity. Over time fire spreads from one cell

to another based on a probability distribution that treats these factors as (learnable)

parameters.
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Figure 3.1: At each time-step of the simulation, all cells that are adjacent to a cell on fire are
considered for ignition. The probability of ignition is determined by passing features from
the cites Von Neumann neighborhood into an ignition probability distribution. Features are
calculated from the 6 layers present in the visualized data structure, temperature, humidity,
state, wind direction, wind speed and elevation.

As we show in Fig.3.1, each position on the landscape grid has six attributes:

elevation, wind direction, wind speed, temperature, humidity, and burn state. The

burn state attribute represents the state of the cell, in this case either on fire or

not. The Von Neumann neighborhood is defined as the four orthogonal cells as

indicated by white arrows in Fig. 3.1. Spreading behaviors on a grid surface are often

modeled using this type of neighborhood [52]. At each time-step, the attributes of

the neighborhood of each cell that borders the fire front contribute to the probability

that the cell will catch fire.

In traditional CA models, the probability distribution that determines if a cell

will adapt the behavior of its neighbor is static and prescribed by the CA designer.

However, in this work, we evolve the spreading function through symbolic regression.
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In each simulation, the CA runs for t time-steps and each cell updates its state based

on its neighbors’ attributes. At the end of a time-step, the perimeter of the fire

expands probabilistically. At the end of the simulation, we retain an array of the

coordinates of ignited cells.

Synthetic data generation

We simulate fires that spread over landscapes made of the six layers described in 3.1.

The state layer is a binary matrix indicating whether a site is on fire or not. To

build all other layers we generate matrices of smoothed-random floating points by

implementing the Perlin noise algorithm [54] [55]. This iterative technique allows for

the user to control how smooth or rough the generated spatial distribution is.

Fig.3.2a - Fig.3.2d shows the evolution of a Gaussian sample from random

noise to a smoothed landscape. Over many iterations, the random sample begins to

resemble a realistic smooth landscape, as seen in Fig. 3.2, which is the result of

100 iterations of this procedure.

We generated each layer of a landscape using Perlin noise due to its abilities to pro-

duce natural gradients and its longstanding use in computer generated images [56,57].

We generated a single layer for each attribute considered in the model (topography,

wind speed and direction, etc). We define a binary state layer that changes over the

course of a simulation. The binary state layer encodes the state of every cell at a

given time as either on fire (1) or not (0). These matrices are then stacked together

to form a landscape in which a fire can be simulated on.
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(a) Random noise, t0 (b) Perlin Noise, t24

(c) Perlin noise, t49 (d) Perlin noise, t99

Figure 3.2: Random values are sampled from Gaussian distributions and embedded over
a matrix. We interpolate slopes between neighboring sites within the matrix, and their
neighbors to describe smooth gradients over the sampled values.We use the quintic fade
function 6t5 − 15t4 + 10t3 to interpolate smooth curves between all sites and those within
their neighborhood

Feature engineering

Using the six attributes layers – elevation (Z), wind direction (wd), wind speed (ws),

humidity, and burn states (S), we generate a set of four features that describe how

the neighborhood affects the ignition likelihood of a central cell. In the case of the

temperature and humidity, we take the average over the neighborhood, producing
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features θ, φ, respectively. Since fire is more likely to spread uphill then down, the

elevation feature, γ, weighs fire that is downhill from the central cell more than fire

that is uphill from the central cell as fire moves uphill more quickly as reported by

the Verisk Wildfire Analysis group, [12]. Thus, we have

γ =
∑

i

I(Si = 1)e−∆Zi (3.1)

∆Zi = Zi − Z0, (3.2)

where Zi is the elevation of the i-th neighbor or the central cell, Z0 is the elevation

of the central cell, and I(Si = 1) is an indicator variable that is 1 when the i-th

neighbor is on fire and 0 otherwise.

Akin to elevation, we define a wind feature that reflects the fact that fire spreads

downwind more readily than upwind. The wind feature, ω weighs fire that is upwind

more than fire that is downwind. The wind feature is given in equations Eq.3.3,

Eq.3.4, where ws represents wind speed, wd represents wind direction with i and j

represent the spatial coordinates of the cell on the grid.

ω =
∑

i

I(Si = 1)ewi (3.3)

wi = wsi ∗ (cfi ∗ cos(wdi) + sfi ∗ sin(wdi)) (3.4)

where cfi is a horizontal factor and sfi is a vertical factor, corresponding to

cosine and sine evaluation. Both factors are based on the relative position of the i-th

neighbor to the central cell and are used to include the component of the wind that is
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blowing toward (or away from) the center cell. For example, if the neighbor is north

of the central cell, then cfi = 0 and sfi = −1.

These features then become inputs to a probability distribution that determines

if a given cell will catch fire based on its neighborhood.

Spread probability distribution

To generate the burn history included in the synthetic data sets, a 5 parameter fixed

balanced logistic function is used, See Eq.3.5. Feature vector [ω,γ,θ, φ] is given by
~F .

Logistic Model: logit[p(~F )] = β + 0.8ω + 6γ + 0.2θ − 0.2φ (3.5)

This probability distribution is sampled during fire simulations to build synthetic

burn perimeters, as displayed in 3.3. Once this data was generated, our focus is to

see how well the genetic program can evolve a set of functions that reproduces burn

patterns. We compare three different models: a null constant model, a logistic model

and an unrestricted algebraic model. The null model is composed of a single tunable

bias parameter β0 that is fit to the data. The model, thus, determines only the rate of

fire spread, regardless of the neighborhood. Additionally, we consider a 5 parameter

logistic model whose β parameters are evolutionary fit to synthetic data. The output

of these functions are probabilities that a given site will catch fire.
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Null Model: p(F ) = β0 (3.6)

Logistic Model: logit[p(~F )] = β0 + β1ω + β2γ + β3θ + β4φ (3.7)

The unrestricted algebraic model is free to take any form given the bank of potential

operators and terminals. The length of the expression is limited to a tree depth of

17 [58]. We will refer to this model as the genetic program model. Comparing these

three models represents a good scope of expected performance. The constant model

is a baseline, while the logistic model serves as an upper bound on the accuracy of the

genetic program model, as it already has the same functional form as the underlying

spreading function, and must only tune coefficients. All three models are evolved

under the same set of hyper-parameters and learning schemes.

3.2.2 Implementation of Genetic Program

Validity and fitness of expressions are subsequently used to select ideal solutions

and discard poor ones using tournament selection, with tournament size 4. The

best performing individuals will be further subjected to cross-over and mutation.

Evolution was implemented using the python library DEAP [59] according to the

basic genetic programming as specified by [58].

An individual in the population represents a candidate probability distribution

for fire ignition with fitness determined by how well it can reproduce a known fire

event using the cellular automata.

Individuals are represented as syntax trees constrained to nodes of primitive oper-
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ators and terminals. The operator set contains addition, subtraction, multiplication,

protected division, negation, and basic trigonometric functions (sin, cosine). The

terminal set is comprised of the features from of any given positions neighborhood

(e.g. floating point values denoting that positions attributes: elevation, temperature,

humidity, wind speed, and wind direction) as well as ephemeral constants in the range

[-10,10]. Additionally, the tree is limited to a depth of 17. We impose this limitation

to reduce code bloat and over-fitting, a common problem for genetic programs [60].

After a function is evaluated on a cells neighborhood features, a sample from the

standardized normal distribution is drawn. If the output exceeds the sample, then

the cell will ignite.

3.2.3 Evaluation of candidate models

Evaluation of the genetic program is conducted under two primary schemes: by eval-

uating over initial and final states of multiple landscapes, or by evaluating over each

time-step of a simulation on a single landscape. This approach captures the ability of

an individual to perform well at two timescales, reducing heterogeneity of solutions.

Experiment one: Learning from multiple landscapes

To calculate the fitness of an individual, the individual is used to simulate a set of

fires across a set of landscapes. The burn simulation produces a predicted burn data

set comprised of final states maps for each landscape. From the resulting data, the

average intersection over the union (IoU) of the true and predicted state maps for

each landscape is calculated. The IoU is commonly used as a cost function in re-

inforcement learning and image detection settings [61] [62]. The magnitude of the

36



IoU indicates how well the individual predicted the spread of fire in the allotted time

window. To generate the reported experimental results, the GP was trained on 10

landscapes and tested on 10 additional landscapes. Training on multiple landscapes

puts evolutionary pressure on solutions being able to generalize to different environ-

ments. This approach also prevents the GP from simply learning the Perlin noise

distributions that generated the synthetic landscapes. We discuss and report the

results of this experiment in Figs. 3.4,3.5,3.6.

Experiment two: Learning over single timesteps

Alternatively, we introduce another fitness function that considers how well an indi-

vidual can train on one time-step to predict the next. One time step is defined as

the period in which each cell on the landscape grid is considered for ignition once. In

this way, we hope to capture (and subsequently evolve) the behavior of the wildfire

on that one specific landscape at any given time-step rather than its behavior overall.

For example, the evolving model is given the burn state of the first time-step of a

ground truth burn for a specific landscape, asked to predict the second, then given

a fitness equivalent to the IoU of that prediction with respect to the true burn state

of the second time-step. These preliminary finesses are found using each time-step in

the training data, then averaged to provide an overall measure. The only time-step

omitted from this process is the last (as there is no subsequent time-step to provide

a basis for calculating IoU). This approach was therefore attempted on a separate

set of data than the first experiment, but this data was seeded, generated, and given

a ground truth ’burn’ using the same methods as the initial / final landscape state

method.
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3.3 Results

We first describe the behavior of fixed spreading distributions that are used to gener-

ate synthetic burn patterns. We then describe how well the genetic program, constant

and logistic models performed under two experiments with the goal of reproducing

the burn patterns.

3.3.1 Behavior of biased spread functions

To design a function used to create realistic spreading behavior, we considered features

one at a time, and visually analyzed their effect on spreading. Fig. 3.3 shows

spreading according to three biased models and the result of the final balanced logits

model as described in 3.5.

In Fig. 3.3c, we see the fire spreading uphill along a positive gradient of the

landscape. Alternatively, in Fig. 3.3d, we see the fire following the wind current,

moving North West. By balancing the contributions of the different features, we see

the spreading behavior in Fig. 3.3a , with fire spreading in the direction of the

wind current with discrimination to the elevation change. The balanced function

accounts for all attributes of the landscape and generates more nuanced behavior.

3.3.2 Model performance of training on multi-

ple landscapes

Simulations were run with a training and test set both of size 10. The evolution lasted

50 generations with populations of size 100. This was done for both the constant and
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(a) Balanced function (b) constant function

(c) Elevation-biased function (d) Wind-biased function

Figure 3.3: Probability distributions that bias burn probability toward specific environmental
features. The balanced distribution 3.3a gives equal weight wind and elevation. While the
constant function 3.3b causes fire to spread stochastically in every direction.
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logistic models, followed by the experimental GP model. Each used optimal hyper

parameters found from parameter tuning as displayed in Table 3.1.

Figure 3.4: The GP model shows an initial fitness of 0.19, lower then both the constant and
Logistic model. Both alternative models have implicitly bounded output while the GP must
learn the correct domain over time.

In Fig. 3.4 we see that the constant model shows no change in the distribution

of mean fitness of new individuals. Alternatively, the logistic model shows an up-

ward trend; individuals resulting from crossover or mutation thus improved in mean

fitness. The genetic programming model demonstrates poor fitness in early function

evaluations but very fast improvement.
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Figure 3.5: While the GP model initially displays a faster learning rate, the two models
converge in performance after 26 generations. The constant model indicates a reference
baseline performance of 43%, constant over generations.

Fig. 3.5 shows the mean and standard deviation of the best fitness of each gener-

ation, across 16 repetitions.

We expect in the long run for the logistic model to eventually find the right logits

to match the true spreading model. Once this happens, the GP will have a difficulty

competing because its solutions are much more complex. We discuss methods to

reduce this complexity in the discussion section.

Fig.3.6 presents the distribution of maximum fitnesses per repetition from the

three models in addition to the ground truth model. The true model is the "balanced

logits" model that was used to generate the burn. Due to the stochastic nature of
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the burn simulation, this model fitness represents optimal fitness. The logistic model

comes close to the performance of the true model, as expected. The constant model

represents the performance of an extremely simple model. We have separated the

training and testing results. While typically, the training results in evolutionary

algorithm methods are worse than the validation results, we believe that the variance

in the environmental layers me be favoring the validation set.

Figure 3.6: The Logistic and GP models come within %10 of producing the same burn
pattern as the underlying spreading function. This indicates that the GP has learned the
short term spreading pattern in this environment.
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3.3.3 Single landscape, multiple time-step eval-

uations

Another characteristic of a well fitting spreading distribution is the ability to foresee

short term changes in the fire front as there are a number of ways that a fire could

burn to the final perimeter. We employee the same evolution scheme as the prior

experiment but use a different cost function to drive evolution. Individuals are eval-

uated for fitness after any single time-step of the simulation. We run a simulation

according to an individual distribution an evaluate its success at predicting one time

step ahead by taking the IoU between the predicted burn set and the true burn set.

We use a population of 100 individuals, each run for 100 generations within each

repetition. Again, the results of each repetition were saved, yielding a total of 20 runs

from which data could be extracted. Mutation and crossover rates were 0.08 and 0.8

respectively. We first examine the fitness with respect to each generation, see Fig.

3.7:
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Figure 3.7: The logistic model learned to 83% accuracy within the first 20 generations. The
GP shows a much slower learning rate but approaches the same average fitness. All models
display highly variant results as indicated by present error bars.

The constant model did not change fitness throughout the entirety of the evolu-

tionary run and with each passing evaluation or generation. However, the GP and

logistic models demonstrated different behavior than reported in the first experiment,

with the logistic method outperforming the GP model in both number of evaluations

to convergence and overall maximum fitness reached. Even considering the variance

of each model’s data, the logistic method demonstrated a far stronger advantage in

the multi time-step experiment.
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Figure 3.8: The constant model demonstrated abnormally high performance; even outper-
forming the GP model in the beginning of the evolutionary run. The GP models grows in
fitness over evaluations and approaches the performance of the logistic model.

The constant model demonstrated expected performance, while the logistic and

GP models performed similarly to one another. However, the fitness over generations

showed high variance in in Fig. 3.7 with error bars covering just over a full tenth

of the fitness scale (0.1). Furthermore, we examined the overall performance of the

models over the course of 20 repetitions in Fig. 3.9.
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Figure 3.9: The constant and GP models demonstrated comparable training fitnesses, while
the logistic model dominates. The true distribution is used to recreate a 20 fires to represent
the true stochastic upper bound on performance.

While being tested on unseen environments, the constant model performed signif-

icantly worse, while the GP and logistic model performed comparably.

3.4 Discussion

We developed a model that learns the spreading behaviors of synthetic wildfires based

on environmental, atmospheric data coupled with historic fire burn perimeters. These

data-sets can be synthetic or real. We have shown that the macro spreading behaviors

can be learned by evolving the spreading function at differing temporal resolutions.

We show that the uninitialized population of algebraic expressions can evolve to
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produce prediction accuracy’s comparable to the true underlying spreading function.

We will next discuss some of the structural components of the evolution process.

3.4.1 Parameter tuning

An essential part of optimizing evolutionary algorithms is setting the correct hyper

parameters. We choose to consider mutation and crossover for tuning. Using a grid

search, crossover and mutation rate were both tuned to optimize final fitness on a

held out validation set. A 5 fold cross validation was used. These parameters were

tuned for the constant and logistic null models under an initial/final landscape fitness

function scheme.

The genetic program was tuned by finding the optimal crossover rate sweeping

over values [0.5, 0.6, 0.7, 0.8] while holding the mutation rate constant at 0.1. The

optimal crossover rate was then used to find the optimal mutation rate sweeping over

values [0.1, 0.2, 0.3, 0.4, 0.5] with the same experimental design described in Section

2.3. In future work these hyper-parameters would also be tuned with a grid search.

Table 3.1: Optimal Hyper-Parameters

Model Crossover Rate Mutation Rate
Constant 0.7 0.8
Logistic 0.4 1.0
GP 0.8 0.08

We note that the optimal mutation rate for the Logistic Model is 1. This indicated

that the Logistic model is primarily evolving from selection and mutation.

Additionally in the presented result sets, the constant and logistic model often

held initial fitnesses significantly higher then the the GP model. We determined
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that this was due to the GP needing to learn the optimal distributions of outputs

to become a true probability distribution. Initial distributions can feasibly contain

negative numbers resulting in no spreading. Alternatively, the logistic model will

implicitly produce a distribution bounded in [0, 1].

3.4.2 Optimal Function Forms

While the accuracy distributions of the fittest indicated that the GP can learn a

function that will reproduce the spreading patterns, we are also interested in the

functional form of the solutions and how close they are to the balanced logistic func-

tion. We track the mean and max length of the fittest individuals over 20 reps for

100 generations. The results are displayed in Fig. 3.10
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Figure 3.10: Over time, the size distribution of solution increases. This type of trend
can indicate code bloat. However, there is a reduction in size acceleration after the 40
generations.

We note that as the population evolves, the individuals grow larger in length.

Code-bloat is a problem common to genetic programs and can lead to over fitting

and loss of model generalization. To reduce this problem, in future iterations of the

project stricter tree depth or node count limitations could be enforced. A fundamental

problem present at this resolution of simulation is heterogeneity of solutions. I.e.

multiple solutions can potentially generate the same behavior, achieving the same

fitness. Heterogeneity makes uncovering any causal relationships very difficult. We

present two example expressions sampled from the final evolved population.
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True Solution : logit[p(~F )] = −7 + 6ω + 0.2γ + 0.2θ + 0.8φ

Fitness = 0.80 : logit[p(~F )] = −3.88 + 0.43ω + 5.25γ + 0.10θ − 0.43φ

Fitness = 0.85 : logit[p(~F )] = −7.52 + 7.15ω + 0.22γ + 0.27θ + 0.87φ

We see that both evolved solutions produce high fitnesses but use different coefficients.

While this may be suitable for pure prediction tasks, we note that this is a drawback

to this method. We conjecture that this may have to do with the simplistic nature of

the synthetic data-sets. Further, the the full genetic program produces wild results

as shown below.

True Solution : logit[p(~F )] = −7 + 6ω + 0.2γ + 0.2θ + 0.8φ

Fitness = 0.71 : (−0.32 + φ) ∗ φ

Fitness = 0.79 : ω
4 ∗ φ
γ
− 9.76 ∗ θ

These solutions do not closely resemble the true solution, despite having high fitness

values. In future iterations, we would like to constrain the complexity of the solution

as a second objective to fitness.

3.4.3 Limitations and Future Steps

As is the case with many models, there are many assumptions that are held in this

model that could be relaxed with additional environmental layers. Most importantly,

we have considered fuel sources to be homogeneous and all landscapes are comprised

50



of tree fuel beds. Of course in reality, there are complex distributions of fuel types

and this can have a huge effect on fire spreading behavior. Additionally, we assume

uniform tree height, which has also been shown to be an important factor in heat

transfer and material ignition [63]. We also assume that fire can only spread between

neighboring cells on the grid; however, embers can spread to disconnected patches of

vegetation starting "spot fires". While these assumptions are clear limitations to the

applicability of the model, adding these features to a future model is highly feasible

and would not introduce a noticeable increase of complexity.

The obvious next step of this project is further optimization, then validation of

the method using real wildfire data. There are several suitable datasets that are

available to validate this method, including the 2011 Richardson Wildfire and 2016

Fort McMurray wildfire, both of which took place in Northern Alberta. These data

sets are openly available through the NASA’s EarthExplorer Data Portal [64]. The

accompanying weather data is available through the Canadian Weather service [65].

The results of this experiment could then be directly compared to the recent work

by [34]. These two fires serve as a perfect train and test set as they took place in a

very similar climate at different times.

Additionally, we hope to apply both experiment one and experiment two as a joint

multi object fitness function. This way, individuals that can do short and long term

prediction are selected for evolution.
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3.5 Conclusions

We propose a genetic program embedded inside a cellular autamata simulating wild-

fires in different synthetic landscapes. We found that the genetic program is able

to capture the behavior of the wildfire to produce burns on synthetic data sets that

are realistic to burns generated by the underlying spreading function. We summarize

some of the main takeaways from this work.

• On average, the GP is well suited to recapture the spreading patterns produced

by the balanced logistic function. The GP produces average accuracy’s within

15% - 30% of the true spreading function for experiments 1 and 2 respectively.

• Macro spreading behaviors can be learned by tuning the spreading function at

differing temporal resolutions

• Evolved solutions are subject to code bloat and do not represent the realistic

driving rule-set.

While some of the typical problems with black-box prediction are still present in this

model, it is exciting to see that synthetic spreading behavior can be predicted with a

moderate accuracy.

This research adds to a new avenue for evolutionary methods to learn spreading rules

for cellular automaton simulating spreading events based on geo-spatial datasets. In

the future, we would like to validate this method on a data-set of ground truth remote

sensing atmospheric and historic fire perimeter images. Further

The source code for this project is available at the public github repository at :

https://github.com/maxfieldEland/EC_2019_FinalProject
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Chapter 4

Case Study 2 : Deep Learning and

24 Hour Front Prediction

Branching off of the work recently done by Radke et al [33] in developing the DeepFire

model, we propose a data driven fire simulation based on a deep convolutional neural

network that predicts the evolution of a fire front in 24 hour periods. We attempt

to reproduce the results reported from the FireCast model publication and generate

notable improvements using an alternative model architecture and prepossessing step

that we believe will help the model learn the fire behaviors. Additionally, we produce

an atmospheric geo-spatial API that can automatically collect, curate and pre-process

all input data from their native third party web databases. This research offers

two primary products, a statistical model for forecasting wildfire spread and a fully

functional API with an example curated data set. The RESTful API can be used in

adjacent research efforts to produce clean geo-synchronized digital elevation models,

satellite spectral bands, land cover maps, atmospheric history and time series of

wildfire perimeter maps.

53



As this type of modeling is quite data intensive, an API that pulls together disjoint

data sets that may use differing projection systems,encodings and meta data is a

great resource to not only our team but also future analysts and modellers. The API

documentation is included in the open source repository for this modeling project.

4.1 Deep Learning and Fire Perimeter

Prediction

Deep learning models that leverage the abundance of remote sensing data available

have made a recent impression on wildfire modeling [33], [34]. Modern models are

becoming capable of maintaining the precision and accuracy of traditional physical

methods while offering more flexibility towards learning different environmental re-

gions and timescales, solving two of the problems that historic fire models have faced.

Models discussed in the literature review largely suffer from inflexibility and require

a large overhead to be tuned to multiple climates.

Further, applications of deep learning in atmospheric weather events such as pre-

cipitation [66–68] have seen recent success. The work of [69] is particularly relevant

to modeling wildfire spread over time. The MetNet algorithm outperformed current

state of the art fully physical models using only historic local atmospheric conditions

and topography. Employing recursive layers to capture the temporal features of pre-

cipitation events and axial attention to encourage the model to focus on pertinent

bounding boxes within the image based feature set, the model was able to learn high

dimensional and robust features. MetNet serves as an example of the power of deep

neural models to make generalized long term associations between remote sensing
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data and natural physical processes.

4.1.1 A Review of FireCast

The FireCast system is a data driven wildfire spreading model that learns spreading

behavior by implicitly associating the wildfire perimeter changes with atmospheric

conditions, spectral images and elevations. The model learns to predict the state

of a geolocated pixel from a satellite image after 24 hours based on a 300m2 sized

neighborhood of states and environmental characteristics. Atmospheric conditions

include temperature, wind speed, wind direction, humidity, dew point, atmospheric

pressure and precipitation. These data are sourced from the National Oceanic and

Atmospheric Association (NOAA) [38]. In addition to atmospheric conditions, the

model uses a digital elevation model to account for spatial variance in elevation. The

digital elevation model is used to derive a landscape aspect in which each location

contains a degree from north for the direction the ground is facing. Additionally, four

of the eight spectral layers captured by the Landsat 8+ satellite instrument are used.

The four layers include the red, blue, green and infrared spectra. The combination

of these satellite bands have been reported to represent abstract vegetation health

indexes, such as he Normalized Difference Vegetation Index (NDVI) [70]. The ground

truth fire perimeters are geo-located shape files. For a given fire in the training set,

the model is shown the initial fire perimeter and the fire perimeter after 24 hours. A

subset of examples are withheld for validation purposes. FireCast is used to make

predictions about fires in a small region of the Colorado Rocky Mountains. We

hope to extend this model to several climate types within the Sierra Nevada’s of

California. This area encounters a growing severe fire season each year. We aim to
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reproduce the dataset nature used to train the FireCast model as close as possible to

maintain comparability in results, however there are a number of data preprocessing

steps that are not discussed in the publication. FireCast produces remarkable results

in comparison to FARSITE and other industry level simulation software. FireCast

produced significantly high F-Scores than Farsite while predicting a 5 day wildfire in

the Rocky Mountains of Colorado.

4.2 Data Curation

We have curated a dataset that covers a large span of wildfires in the Eastern Sierra

of California, an area that is heavily effected every year by disastrous wildfire events.

The data set in its final form is a cleaned, processed and geo-synchronized collection of

LiDAR(Light Detection and Ranging) , satellite spectral layers, fire perimeter maps

and timely atmospheric conditions. This data set can be used as a training and testing

set for learning models in addition to an analysis of correlation between recorded

perimeter dynamics and environmental conditions. The overhead for collection of

these data is comparatively extensive and its open source availability provides future

modellers to train and validate different forecasting systems. The LiDAR data used

in this study is aggregated into a digital elevation model with a 30x30m spatial

resolution. The raw elevations are provided by The National Map [64] which produces

a large variety of geo-spatial data products.All LiDAR products posses a 1/3 arc

second resolution in the form of a GeoTiff files. Each pixel in the data product is

referenced in UTC (Universal Trans Mercator) coordinates. During preprocessing,

this coordinate systems is reprojected into the local ESPG latitude and longitude
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projections of the accompanying area. The spectral layers aggregated for this project

are originally captured by the Landsat 8+ satellite instrument that orbits the globe

on a 99 minute period. However, the instrument passes over our area of interest

about every 16 days. While the geospatial layers may not be stored in the same

data structure or represented in the geographic projection, they are simply matrices

storing geo-located floating points.

In some cases, the fire perimeter may spill over between satellite image tiles, in

which case up to four tiles are aligned and joined to build a mosaic raster. The same

is true of the DEM.

After collection, for a given fire event, the data layers are stacked atop one another

using a common EPGS projection. We crop the data stack to the extent of the largest

stage of the fire perimete including a 300m buffer on all sides. Between different fire

data-sets the final dimensions of the data stack will vary depending on the maximal

extend of the fire.

Data collection is a common difficulty in data intensive deep learning applications.

The DeepFire API will lift this weight for future research efforts in this area. The

API allows a user to specify the approximate latitude and longitude of the historic fire

and a time series of fire perimeters, atmospheric conditions, satellite spectral images

and a digital elevation model are returned.

4.3 Methods

We describe the generation of training data using a weighted spatial sampling method

as well as the architecture of the neural network being trained.
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4.3.1 Data Preprocessing

Prior to model input, all input features go through a normalization process to optimize

model performance. In this case, data normalization is used to scale the data into

the same range of values for each input distribution.

All input features are normalized by the transformation specified in Eq. 4.1, which

is commonly referred to as the Z Normalization [71].

(x− µx)
σx

(4.1)

By using this particular transformation, we are affording a light assumption that

these time-series are in fact stationary. However, it is more likely that they are in a

wide sense stationary, there are physical upper bounds to these processes, although

they may not be observed in the training set.

An exception to this treatment is the wind direction variable. As opposed to calcu-

lating the Z feature, we convert the source degrees to radians and normalize with the

cos(x) transformation as indicated in Eq. 4.2.

X ′ = cos (x ∗ π180 ) (4.2)

4.3.2 Stochastic Weighted Spatial Sampling

Post prepossessing, the input data is drawn from the data set by performing a

weighted random sample from the landscape. At least 60% of the total image is sam-

pled for each fire data set. A spatial weight is imposed on the point sampling that
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encourages points near the perimeter of the fire to be sampled over points far away

from the perimeter. The weighting distribution is drawn from a smooth Gaussian

and all points are still possible to draw. Sampling is performed without replacement,

this way, it is impossible for the same location to be drawn twice from the same time

step.

We will refer to these sampled points as "points of interest" (POI). Once POI

has been selected, its 30 pixel neighborhood is stored, as displayed visually in Fig.

4.1. For training and validation, a set of neighborhoods and their corresponding POI

label in the next time step is sampled from every fire in the data set and from every

available 24 hour period.

To generate additional data and variance in the data set, we perform data aug-

mentation on the data stacks. Transformations are currently limited to rotation and

mirroring.

Figure 4.1: Example sample instance from the King Fire near Lake Tahoe CA.
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These neighborhoods are the input to a deep convolutional neural network that

is learning to predict state of the center pixel 24 hours in the future.

Model Architecture

The model architecture was initially inspired by the model reported in the FireCast

publication [33]. The FireCast architecture is a series of 3 convolutional layers that

are eventually flattened and then concatenated with a 1D array containing the at-

mospheric information. A series of dense layers are finally passed through a sigmoid

function which provides the prediction value for the sampled pixel of interest. The

FireCast publication reports very high validation accuracy’s, up to 95% when pre-

dicting the perimeter dynamics of unseen fires during short prediction windows.

However, we found that the performance of the particular architecture was not

very high and under-fit the data. This is likely not due to misreporting in the publica-

tion and likely due to differences in data preprocessing and unreported model hyper-

parameters. Moving from the FireCast architecture, we proceeded to add parame-

ters until the model was over-fit. By adding regularization,data augmentation and

dropout, the performance of the model improved greatly. The model used to generate

results in Figs 4.2a,4.2b,4.4a, 4.4b is described by Table 4.1.
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Layer Operation Kernel/Pool Size Feature Maps
1 Convolution 3 x 3 32
2 Convolution 3 x 3 32

Max Pooling 2 x 2 -
3 Convolution 3 x 3 64
4 Convolution 3 x 3 64

Max Pooling 2 x 2 -
Dropout - -

4 Convolution 3 x 3 128
5 Convolution 3 x 3 128

Max Pooling 2x2 -
Dropout - -

6 Convolution 3 x 3 256
7 Convolution 3 x 3 256

Flatten - 1152
Concatenate* - -

8 Dense - 264
9 Dense - 128
10-out Dense 1

Table 4.1: The DeepFire Model Architecture is based on FireCast with a few alterations
adding non-linearity and using a max pooling downsampler instead of an average pool-
ing.*Atmospheric tensor is concatenated directly to flattened output of the 7th convolution
layer

This model was implemented in Python 3, using the Keras and Tensorflow Deep

Learning Frameworks [72].
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4.4 Results

Initial reported results are generated by training the model on 24 hour intervals

sampled from all time steps of the recorded King Fire of 2014 in the city of Pollock

Pines, California. Figs. 4.2a, 4.2b show the accuracy and loss as the model learned

on batches of training data. As a first pass, this result indicates that the model is

able to learn. Moreover, this task is quite difficult as there are potential spreading

properties that are expressed in the early, middle and late stages of the fire uniquely.

(a) Training accuracy shows a promising up-
ward trend while validation accuracy shows an
early convergence at approximately 0.58 accu-
racy. This suggests an over-fit model.

(b) Both training and validation loss drop towards
zero. We see that the validation loss is unstable
throughout

While this initial result is not very promising, it does provide a proof of concept

and a launch point to diagnose some of the problems that the network may be expe-

riencing in learning semantic associations between the input and the fire perimeter

evolution. The over-fitting of the model suggests that there are enough parameters
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present. The confusion matrix describing the models predictions on the validation

set in provided in Fig. 4.3.

Figure 4.3: Confusion matrix for model trained across fire duration. Model shows very poor
performance and appears to favor false negatives.

We see that the model favours false positives. We note that this may be explained

by the difficult class balance as discussed in Fig. 4.7. The next step is to re-frame the

question in a way that is more tractable to gradient descent. To make the problem a

little easier, we split training sets by the day and ask the model to learn the dynamics

unique to only one time period. The learning curves for a model trained on a single

random 24 hour periods are presented in Fig. 4.4a and 4.4b. We hypothesize that

there are dynamics unique to the changes of the perimeter at different stages of

the fire. Thus, the loss landscape is much easier for the model to navigate through

gradient descent for a single time period than it is for all days of the King Fire.

These results indicate that the model is capable of learning short term associations.

Both the validation and training learning rates fully converged. The next step is to

examine how the model trained an a given time period will generalize to an unseen

period. A confusion matrix of the models predictions on the validation set is presented
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(a) Training accuracy fully converges to an accu-
racy of 100% while validation converges slightly
below at 97%.

(b) Both training and validation loss drop to zero
instantly

in Fig. 4.5a. Further, we use the model to predict the 24 hour evolution from one

day ahead of the training period. The results of this experiment are present in Fig.

4.5b.

The results in Fig. 4.5aare from predicting the fourth day of the King Fire from the

conditions on the third day. The model shows relatively few incorrect classifications,

with 118 false negatives and 15 false positives. Alternatively, the results in Fig. 4.5b

demonstrate the ability of the model to predict the fifth day of the King Fire, from

the conditions of the fourth with the weights learned from the dynamics of the 3rd-

4th 24 hour period. The model performs worse at this task, with severe false positive

predictions. However, this result is particularly insightful when we look at some of

the differences in the change in fire perimeter area between the three days considered.

This discussion is further examined in the Discussion section in conjunction with Fig.

4.7.
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(a) Confusion matrix from validation set predic-
tion results.

(b) Confusion matrix for predicting fire perimeter
on 09/15 based on input from 9/14 from model
trained on only 9/13-9/14 data.

4.5 Discussion

4.5.1 Class imbalance and training bias

One ongoing question about the sampling strategy is how to best consider the class

imbalance. The FireCast publication reports that a fully random sample was taken

from the landscape. The true class balance from each training fire is unique and

dependent on how much of the landscape the full extent of the fire occupies. The

training space is defined by a bounding box that buffers the largest extent of the final

fire perimeter by 30 pixels. Thus in many cases, a fire will occupy a small portion of

the sample space for the beginning of the data time series.

65



(a) September 16 (b) September 17

(c) September 18 (d) October 8

Figure 4.6: Example crop for the California King Fire of 2014. The final extent of the fire
shown in 4.6d. This perimeter map represents 97, 000 acres burned as a result of the fire
event. Figures 4.6a,4.6b, 4.6c show the development of the fire over the 2nd, 3rd and 4th
days.

The sample space from which training data is drawn is somewhat arbitrarily con-

stricted. The size of this space around a wildfire directly effects the corresponding
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class imbalance. Four example time steps of the 2014 California King Fire are pre-

sented in Figure 4.6. As the images are cropped to the extent of the largest fire, the

class balance shifts over time. Note the difference in change between September 16 in

4.6a and September 17 in 4.6b and the change between September 17 and September

18 in 4.6c. In a single day, the class balance changes by over 20%. Alternatively,

previous and subsequent days do not contain such a high change in burn area.

In the case of the King Fire, the sample space at a maximum would be is restricted

to a 2000x2000 cell grid. The initial fire occupies very little of the sample space while

the final fire occupies approximately 30% of the sample space. Figure 4.7 show how

the area of one fire pixels changed over the extent of the King Fire event.

Figure 4.7: Changing class balance within the sample space of pixel values representing the
King Fire.

We see that as the fire burns a majority of its total area within the first 7 days,

leaping from 8% burn area to 23% burn area in one day. We further examine the

difficulty of predicting the fire behavior during that day of fast spreading. See Fig.

4.9d for the learning curves of a model trained on just the We also note the reduction

in area. This aspect of the data is not currently understood as the interior of the

fire never decays. However there are instances in which the perimeter fluxes, creating
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more or less area within the shape. We have contacted the folks that prepared the

GeoMAC [73] data to better understand the process of shape creation and await a

response.

Diagnosing the Network

To determine which components of the problem are readily tractable to gradient

descent, we break the general problem into smaller sub problems by eliminating the

temporal generalization requirement. By training eight models across eight twenty

four hour periods and comparing their validation performance, we find that the large

changes in fire diameter in a given period are correlated with worse results. We

visualize these results in Fig. 4.8.

68



(a) Training Accuracy (b) Validation Accuracy

(c) Training Loss (d) Validation Loss

Figure 4.8: We see that the model struggles with the samples that contain greater differences.
There is also high instability present in both the training and validation accuracies, which
is reflected in the loss minimization.

The non constant nature of the perimeter growth over time as suggested in Figure

4.7 have potential modeling implications. By stratifying the training data into day
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dependent samples and training unique models on each sample set, we see that the

days with greater change in perimeter are much harder for the model to learn. Figure

4.8 shows the models converging fully on the second and third days of the wildfire.

Alternatively, the final days from the training set are a much great challenge for the

model. We see that the validation and the training learning curves are unstable and

have not converged. Next we make an additional change to the input data.

4.5.2 Learning from Distributions of Input

In previous results presented, the model was given access to the mean atmospheric

conditions from 24 hours prior to the prediction time period. We suspect that the

history at a higher resolution may provide useful additional information. As opposed

to feeding the model a statistic that describes a time series distribution of input data,

we input the full distribution.

We retrain the model with additional training data including a full tensor tracking

24 hourly updates on 7 atmospheric variables per training time segment.

Holding the model itself constant, and only varying the aggregate atmospheric

input data between daily mean and hourly distribution, we find some interesting

results. The results of this alteration are displayed in Fig. 4.9.
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(a) Day 2 (b) Day 3

(c) Day 4 (d) Day 5

Figure 4.9: In each of the sub experiments, that the distributional tensor input of the at-
mospheric time-series only harms validation accuracy. Training is stopped when there is no
longer changes in the validation loss after 25 consecutive epochs.

The learning curves from adding the all weather tensor to the training examples

indicate that the model is perhaps suffering from a lack of tunable parameters with
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(a) With added tunable parameters, all 8 days
sampled from the training space converge to
100%

(b) All validation accuracies converge within
75%-98%

the additional data. We hypothesise that the additional data added to the training

set will require a more complex model. To test this hypothesis we add additional

dense layers after the weather tensor is concatenated to the convectional output. The

result of this change is presented in Fig. 4.10a and Fig. 4.10b.

After adding additional layers to the model, we see a significant change in training

and validation performance. The accuracies are bounded between 0.75% and 98%.

By changing one component of the model or input data at a time, we improved

weaknesses to produce quality intermediate results. The results displayed in 4.10a

were also a result of tuning the learning rate and drop out probabilities using a grid

search. The learning rate associated with the greatest performance was 0.00001 using

the Adam gradient descent optimization algorithm. Further, the dropout was set to

0.3.

It is hard to compare the performance of this method with the reported perfor-

mance of alternative methods as the input data and output are different. However, as
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far as classifying pixels correctly over a 24 hour period, DeepFire shows comparable

performance to the FireCast algorithm.

Modeling wildfires far into the future is a challenge for nearly every model, fully

physical or data driven. The performance of FireCast, the methods discussed in

Crowley, et all 2018 [34] and the benchmark physical models such as Farsite [18] all

degrade over time. Producing accurate long term forecasts is one of the greatest

challenge’s in this deep learning task.

4.6 Conclusions, Limitations and Future

Work

In this section, we described a model currently in development that predicts the

evolution of The King Fire front in 24 hour segments. In addition to the structure

and performance of the model we also discussed the curation of a large atmospheric

and environmental data set that is used to train models. The data set currently

contains the geo-referenced LiDAR, spectral layers, fire perimeter map, atmospheric

data and ground cover maps,for nine major fires in the California Sierra Nevada’s that

occurred between 2010 and 2017. The current fires represented include the King,

Cascade, Cedar, Rocky, Stone, Tubbs, Camp, Redding and Kincade Fire. These

instances account for 102 days of burning fire and over 900,000 burned acres. The

functional DeepFire API can be used to collect additional wildfire data from anywhere

within the United States.

The model that is produced by this work is able to predict a wildfires development

over a 24 hour period with up to 95% validation accuracy. This accuracy decays as
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the model makes further future predictions and is not robust to all 24 hour windows.

Model Assumptions and Biases

Like many models, DeepFire holds many physical and theoretic assumptions about

the incoming data and how it may represent reality. In addition to underlying as-

sumptions, we produce several instances of bias through the data pre-processing and

collection step.

We assume that the spectral layers accurately represent the vegetal landscape, that

fire spreads asynchronously and that the local weather system behaves independently

from the fire itself. It has been shown that in fact there can be positive feedback loops

between the local atmosphere and heat from a wildfire. This in turn can influence how

the fire will spread. One benefit of a black box model, is that we are not attempting

to make any inference about the relationship between the input parameters and the

response variable. In coupled fully physical models of wildfire spread, processes like

advection and heat transfer are idealized. Idealization can be a convenient way to

model something in uniform conditions, however its a strong assumption to think that

idealizations will produce accurate results during realistic non uniform conditions.

This is particularly true of non linear systems that exhibit a sensitive dependence on

initial condition, which can be true of wildfire spread under realistic conditions [74].

Additionally, there are several elements of bias present in this analysis. Foremost,

the treatment of the landscape sample space biases sampling. A birds eye view

snapshot of earth represents a subset of the globe. If there is a fire spreading within

the bounds of the snapshot, the relative area within the snapshot that the fire occupies

is dependent on the bounds. Larger bounds produces a smaller relative area. The
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original bounds of the satellite image are anywhere from 100-400 square miles in area

depending on the position of the fire within one to four raster tiles. As our data

collection method involves randomly sampling from a raster tile, the class balance

is heavily effected by the size of the raster with respect to the size of the fire. We

choose to limit the size of the processed rasters based on the size of the largest extent

of a given fire event. This biases the model towards getting more examples of fire

during sampling, than sampling the uncropped raster. In this way, we introduce some

oversampling bias.

A fundamental problem with these types of black box models are edge cases. It

is possible that there are many wildfire dynamics that happen in reality that are

not contained within the training set. These types of anomalies will likely not be

handled well by the model. Additionally, there may be assumptions made during the

collection raw collection process that the authors of this work may not be aware of.

Future Work

The primary weakness of the final model is the ability to forecast further into the

future than 24-48 hours. Thus, the focus of further research will be on using a more

complex model to try and learn an explicit temporal embedding. Specifically, we

plan to use Long Short Term Memory (LSTM) blocks to help the model learn the

sequential nature of the fire progression. Adding a temporal encoding changes the

fundamental treatment of this problem as a Markov chain.

Further the use of a binary mask output describing the future states of more than

one location in the grid is an additional logical next step. This type of mask output

is used in segmentation tasks such as cancer detection as exampled in the work of
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Sirinukunwattana et al [75].

Additionally, adding explicit grid cell level information like land cover class, and

the ability for the model represent extinguishing fire are two future improvements.

The raw, preproccessed and cleaned data set is currently being hosted on a gitlab

repository which can be accessed at the following URL : https://gitlab.com/

maxfieldeland/deep_fire_data. The full API wrapper is also hosted on the

repository.
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