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Abstract

Hat guessing games—logic puzzles where a group of players must try to guess the
color of their own hat—have been a fun party game for decades but have become of
academic interest to mathematicians and computer scientists in the past 20 years.
In 2006, Søren Riis, a computer scientist, introduced a new variant of the hat guess-
ing game as well as an associated graph invariant, the guessing number, that has
applications to network coding and circuit complexity. In this thesis, to better under-
stand the nature of the guessing number of undirected graphs we apply the concept
of saturation to guessing numbers and investigate the extremal and saturation num-
bers of guessing numbers. We define and determine the extremal number in terms
of edges for the guessing number by using the previously established bound of the
guessing number by the chromatic number of the complement. We also use the con-
cept of graph entropy, also developed by Søren Riis, to find a constant bound on the
saturation number of the guessing number.
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Chapter 1

Introduction, Background,

and Definitions

1.1 Introduction

The Guessing Number of a graph is a graph invariant developed by Sören Riis, a com-

puter scientist, that is related to a type of “hat guessing game” also introduced by

Riis. The guessing number was originally developed as a tool to work on problems in

network coding [19] and circuit complexity [17], but has also been of interest to math-

ematicians working strictly in combinatorics. Work has been done by mathematicians

to find or bound the guessing numbers of various classes of graphs, including perfect

graphs [7], triangle-free graphs [6], and odd cycles [2]. However, to my knowledge, no

work has been done on extremal questions of the guessing number. Extremal problems

are a class of combinatorial problems stemming from Turán type questions of how

global graph parameters, typically the number of edges, influence local substructure.

Classically they are of the form of avoiding or guaranteeing a specific subgraph [15].
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Here we use extremal problems of guessing numbers to refer to problems of graph sat-

uration of the guessing number. Briefly, we say that a graph is saturated with respect

to some property, such as a given guessing number, if it does not have that property,

but adding any edge would result in a graph with that property. In this thesis, we

establish the extremal number, that is, the most number of edges possible in a graph

while avoiding a given guessing number, and an upper bound of the saturation num-

ber, the least number of edges possible while remaining saturated with respect to a

given guessing number. These questions are previously unaddressed in the literature.

Given the application of guessing numbers, they yield some insight into the question

of information flows on networks. By establishing bounds on the guessing number in

terms of the number of edges, this work also establishes a guarantee on the amount

of information that can be transferred through a network simply from the number

of edges. In the remainder of this chapter we go over in more detail the background

of the problem, including hat guessing games, extremal graph theory, and previous

work on the guessing number. We also provide the definitions and earlier results that

this work builds upon.

1.2 Background

1.2.1 Hat Guessing Games

The group of logic puzzles often known as “Hat Guessing Games” are puzzles where

a group of players are all randomly assigned some state, usually a color of their hat,

and then try to guess their color based on what they see or how the other players
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react. The origins of these types of games are unclear, but appear as early as 1958 in

the form of a logic puzzle in George Gamow and Marvin Stern’s book Puzzle Math.

In one section, they describe a group of train passengers trying to guess if they have

soot on their faces by the reactions of the other passengers [10]. A few years later,

in 1961 Martin Gardner presented an identical puzzle in his book The 2nd Scientific

American Book of Mathematical Puzzles and Diversions (with a nod to Gamow and

Stern’s presentation) using colored hats [9]. In this hat guessing problem, players are

given at random, independently and identically distributed, either red or green hats,

and asked to raise their hand if they see a red hat, and leave the room if they figure

out the color of their own hat. Gardner goes on to describe another variation of the

hat guessing game where the players know the initial set of hats assigned (just not

which player has which hat) and guess in rounds [9].

Although this and similar games have long been passed around casually [24], hat

guessing games became of professional interest to mathematicians when, in 1998,

Todd Ebert applied a similar hat guessing game to a problem in computer science

in his Ph.D. thesis [20]. Ebert’s game was slightly different. Here, players cannot

communicate, they can only decide upon a strategy for guessing beforehand, and

they win if at least one player guesses their own hat correctly. In this version, the

group of players wants to maximize the probability that there is at least one correct

guess. Ebert applied this game to a problem in complexity theory and sparked popular

discussion of the game [20]. One other early variant of the problem, written up in

2001 by Peter Winkler, a researcher at Bell Labs, bears mentioning. It has an almost

identical setup to Ebert’s. The team can determine a strategy to use but cannot

communicate after the hat assignment has been given. It differs in two ways from

3



Ebert’s game. First, the hats are distributed not randomly but by an adversary who

knows their strategy and must be foiled, Second, in Winkler’s version, any player who

guesses their hat incorrectly is executed, so the players try to ensure the maximum

number of correct guesses, rather than maximizing the probability that there is at

least one correct guess [24].

In 2006 Søren Riis introduced a new hat guessing game variant. This guessing

game was originally developed by Riis and Mikkel Thorup in 1997 [19]. Similarly to

some of the other games, players are assigned hat colors at random, can decide on a

strategy beforehand but cannot communicate after the hats have been assigned, and

all guess simultaneously. Riis introduces a new win condition: The players are trying

to maximize the probability that every player guesses correctly. Like the other hat

guessing games, it initially seems hard to do better than random, but Riis introduces

a clever solution. What follows is a slightly different presentation than what Riis first

gives, which is quite general. His more general definition will be supplied later.

Suppose you have 10 players assigned either red or blue hats. If players guess

their hat color randomly, the probability that every player will guess correctly is 1
210 ;

however, the group can do much better. The following strategy is optimal: Players

assign a value of 1 to red hats and 0 to blue hats and agree to assume that the “sum”

of all the hats is an even number. This strategy is deterministic; a player will see

the hats of their fellow players and add the corresponding sum to find either an even

or odd number. If the number is even, then they will guess that their hat is blue

(adding 0 to the sum, keeping the sum an even number), and if the number is odd,

they will guess that their hat is red. This means that every player guesses correctly

if the distribution is such that the “sum” of all the hats is even. Thankfully, this
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happens much more frequently than 1
210 , with probability 1

2 !

1.2.2 Guessing Games on Graphs and the

Guessing Number

Riis presents his guessing game more generally: rather than a group of players in a

room, the game is played on a graph, a type of combintorial object.

Definition 1.2.1. A graph, G = (V,E), is a pair of sets representing vertices and

edges. V is some finite set, and E ⊆ V 2 := {{x, y} : x, y ∈ V }. A graph is said to

be undirected if the edges are unordered pairs, and directed if the edges are ordered

pairs. A graph is said to be simple if there can be only one edge between any two

vertices, and there can be no edge between a vertex and itself. A graph that is not

simple is called a pseudograph.

The results of this paper consider only simple undirected graphs, however Riis

presents the guessing number using directed psuedographs.

Vertices of a directed pseudograph are randomly assigned values from an s-sided

die and guess their own values using a pre-designated protocol, or a series of functions

with one for each vertex. We begin by quoting Riis’s original definition of a guessing

game and a guessing strategy or protocol.

Definition 1.2.2. Guessing Game: Riis’s Original Presentation [19] Assume that we

are given a directed graph G = (V,E) on a vertex set V = {1, 2, . . . , n} representing n

players. We define the cooperative guessing game, denoted by GuessingGame(G, s) as

follows: Each player v ∈ {1, 2, . . . , n} is randomly assigned a die value ∈ {1, 2, . . . , s}.
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Each player sends the value of their die to each player w ∈ {1, 2, . . . , n} with (v, w) ∈

E. In other words, each node w receives die values from a set Aw := {v ∈ V :

(v, w) ∈ E}.

Definition 1.2.3. Guessing strategy: Riis’s Original Presentation [19] A (coopera-

tive) guessing strategy for the game GuessingGame(G,s) is a set of functions

fω : {1, 2, . . . , s}Aω → {1, 2, . . . , s} with ω ∈ {1, 2, . . . , n}

Notice that each player (node) ω is assigned exactly one function fω.

The particular guessing game outlined by Riis allows him to develop a new graph

invariant, the guessing number of a graph. The guessing number of a graph is a

measure of how good of a strategy exists on a graph; that is, how much better than

random guessing the strategy allows.

Riis originally defined the guessing number as follows:

Definition 1.2.4. Guessing Number: Riis’s Original Presentation [19]

A graph G = (V,E) has for s ∈ N guessing number k = k(G, s) if the players in

GuessingGame(G, s) can choose a protocol that guarantees success with probability

(1
s
)|V |−k. It is interesting (and important) to note that the guessing number is not

always an integer.

In this thesis we use instead a slightly more explicit set of definitions which will

be provided later.
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1.2.3 Network Coding

Network coding is a subfield of information theory and coding theory originating in

a paper by Rudolf Ahlswede, Ning Cai, Shuo-Yen Robert Li, and Raymond W. Ye-

ung from 2000 [13]. It involves a new approach to transmitting information through

computer networks. Under a classical routing approach, messages are immutable and

pushed through the network like cars on a road. Under a network coding approach,

an information network does not simply route packets through nodes and edges. In-

stead, nodes compute functions of the packets that they receive, the outputs of which

are then transmitted instead of the received packets. Network coding solutions, as

opposed to classic packet routing, can be a more efficient way to transmit information

through certain networks. The classic example of how network coding yields more

efficient solutions is the butterfly network (Fig. 1.1)1 [1]. Here the goal is to transmit

each of the two messages, m1 and m2, to both of the output nodes, with each edge

transmitting a signal only once. Further, each node can broadcast only one signal

to every edge. In a traditional routing approach, the bottleneck posed by node 1

means that either o1 cannot receive m2 or o2 cannot receive m1 (Fig. 1.1a). However,

with network coding, node 1 can send a combination of the two messages, which

each output node can then decode with the single message that it receives from its

corresponding input node (Fig. 1.1b).

Using this we define a new class of problems to ask about networks: the informa-

tion network flow problem.
1In the figures for the butterfly network we use the circuit representation of the network [19],

which is not the standard presentation in network coding; however, the principle demonstrated
remains the same. This alternative representation was chosen as it is, I believe, more straightforward
for those without a background in computer networks.
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(a) Sending a message through the butterfly
network with classical routing
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m1 +m2 m1 +m2

(b) Sending a message through the butterfly
network with network coding

Figure 1.1: The butterfly network

Definition 1.2.5. An information network flow problem involves a network, N , for

which some n ∈ N messages (where N refers to the natural numbers), selected from

an alphabet A, must be sent from n input nodes to n output nodes. Each edge

can transmit only one message and all edges from a node v must transmit the same

message. In the information flow problem, each input node will be assigned a message

from an alphabet A with |A| = s elements and needs to transmit it to a specific and

unique output node. A problem can be said to have a solution for an alphabet A if

any selection of n messages or elements from A, can be transmitted to each input

node’s paired output node.

As Riis proved in [19], this problem is equivalent to his guessing game played with

an alphabet (or coloring) of size n on a graph derived from the original network. This

will be stated explicitly in section 1.4.
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1.2.4 Extremal Graph Theory

Extremal graph theory is an area of graph theory that is typically thought of as being

related to questions connecting global graph parameters to the existence of specific

substructures [15], but can be considered as encompassing all questions related to

extreme—that is, maximum and minimum—values of graph parameters [5]. The

questions related to extremal values of guessing numbers falls in that latter category,

but we will, for historical reasons, first define the key concepts of extremal graph

theory in terms of the existence of specific substructures. After a brief discussion of

key results in extremal graph theory, it will be clear how these terms generalize to

other graph parameters.

First recalling our definition of a graph (definition 1.2.1), we define a related

object, the subgraph.

Definition 1.2.6. A subgraph, H, of a graph G = (V,E) is pair of sets V ′ ⊆ V and

E ′ ⊆ E.

Now we define the concept of graph saturation. This is a more general concept

that extremal graph theory can be built upon.

Definition 1.2.7. A graph, G, is considered saturated with respect to a subgraph

H, or H-saturated, if H is not a subgraph of G but is a subgraph of G + e for any

e ∈ V 2 \ E.

Next we define two special types of saturated graphs that are of particular interest:

extremal graphs and minimally saturated graphs.

Definition 1.2.8. A graph, G, on n vertices is said to be extremal with respect to a

9



subgraph H if G is saturated with respect to H and has the largest possible number

of edges of any graph on n vertices which is saturated with respect to H.

The concept of graph saturation is unnecessary for the definition of extremal;

it would suffice to say that G is extremal if it a graph on n vertices that has the

largest possible number of edges for any graph on n vertices that does not have H

as a subgraph. However, we use the above language for symmetry with the next

definition.

Definition 1.2.9. A graph, G, on n vertices is said to be minimally saturated with

respect to a subgraph H if G is saturated with repsect to H and has the smallest

possible number of edges of any graph on n vertices which is saturated with respect

to H.

The number of edges of these two types of saturated graphs are called the extremal

number and the saturation number respectively, and are commonly studied. We

provide definitions below.

Definition 1.2.10. The extremal number of an integer n and a subgraph H is the

number of edges of an extremal graph on n vertices with respect to subgraph H. It

is denoted by ex(n,H).

Definition 1.2.11. The saturation number of an integer n and a subgraph H is the

minimum number of edges possible in a graph on n vertices saturated with respect

to a subgraph H. It is denoted by sat(n,H).

The classic result of what became extremal graph theory is Turán’s theorem from

1941, which gives exactly the extremal number for graphs saturated with respect to

a special type of subgraph, cliques.

10



Definition 1.2.12. A complete graph on n vertices, denoted by Kn is a graph, G

where |V | = n and E = V 2. This is a graph with every possible edge included. When

a graph has a subgraph with r vertices that is a complete graph, we refer to that

subgraph as a clique of size r.

Turán’s theorem is itself a generalization of an earlier theorem first proposed by

Mantel in a 1907 issue of Wiskundige Opgaven [12] a collection of exercises published

by the Royal Mathematics Society of the Netherlands. It was published along with

solutions from Mantel and two other mathematicians [22]. While the problem was

originally phrased geometrically, the proof was provided in the language of graph

theory. The theorem, as applied to graphs states that every triangle-free graph on n

vertices can have no more than n2

4 edges. Putting this in the notation defined above,

we have ex(n,K3) = bn2/4c.

This was extended in 1941 by Turán, who looked at avoiding cliques of any size,

and determined both the extremal number, and the set of extremal graphs. First,

Turán constructs the Turán graph for r, a graph on n vertices which is saturated with

respect to Kr+1. The Turán graph, denoted by T (n, r) is formed by partitioning the

n vertices into r sets in as close to equal size as possible, then adding edges to form a

complete r-partite graph with the above partitions (Fig. 1.2). We denote the number

of edges in the Turán graph as t(n, r).

Theorem 1.2.1 (Turán 1941). For all positive integers n and r,

ex(n,Kr) = t(n, r−1), and every graph extremal with respect to Kr is a Turán graph,

T (n, r − 1).

This means that not only is the extremal number known, but Turán graphs com-

pletely characterize the graphs that are extremal with respect to cliques.

11



Figure 1.2: T(13,4)
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In 1946 Erdős and Stone proved a more general result [8] concerning complete

multipartite graphs. We use a formulation of the theorem, of which there are many,

from Pach and Agarwal [14].

Theorem 1.2.2 (Erdős-Stone 1946). Let r, t ∈ N and ε > 0. Then there exists some

N = N(r, t, ε) such that for all n ≥ N , ex(n,Kr
t ) = n2

2

(
1− 1

r−1 + ε
)
where Kr

t is the

complete multipartite graph with r classes each of size t.

The Erdős-Stone theorem is sometimes called the fundamental theorem of ex-

tremal graph theory [5]. This work on subgraphs is the foundation of extremal graph

theory. Our work, while connected, is of a different kind. As observed by Bollobás,

“most extremal problems in graph theory are of a rather different kind [than subgraph

problems]” [4].

1.2.5 Graph Entropy and Guessing Numbers

Our proof for the bound of the saturation value for guessing numbers relies on the

concept of information entropy, or the entropy of the random variable, introduced by

Claude Shannon [21] in 1948. In 2007 Riis used the concept of information entropy

to define the entropy of a graph and applied it to the problem of guessing numbers

[16]. First we define the concept of random variables and the entropy of a collection

of random variables.

Definition 1.2.13. For some set of events, Ω with probability measure, P, a random

variable is a function X : Ω → S where S ⊆ R is the state space of the random

variable.

13



Definition 1.2.14. Let (Xi)n
1 be a collection of random variables each taking val-

ues from the same finite set A. Then for some appropriately chosen base, b, the

information entropy of the collection H(X1, . . . , Xn) is defined as

H(X1, . . . Xn) = −
∑

{(x1,...xn) : xi∈A}
P(X1 = x1, . . . Xn = xn) logb P(X1 = x1, . . . Xn = xn)

Shannon developed this to define a quantity to measure the rate that “information”

is produced, first coming up with a collection of desirable properties and finding the

only such measure that would satisfy the three necessary assumptions [21]. The choice

of the base of the logarithm b determines the units of entropy used (for example, when

the natural logarithm is used, the units are “nats”, and when the base 2 logarithm

is used, the units are the more familiar “bits”). The base can be chosen to simplify

mathematics or to better elucidate a problem of interest [11], as will be done in

this thesis. Along with defining information entropy, Shannon also developed some

basic inequalities that can be combined to form various inequalities useful for work

in information theory. These can be presented in various ways, but we will use the

following presentation taken from [16] as the basis for our entropy work.

Theorem 1.2.3. Let X1, X2, and X3 be random variables taking values from the

same finite set. Then

H(X1, X2, X3) +H(X3) ≤ H(X1, X3) +H(X2, X3).

From here we can derive another classic inequality:

Corollary 1.2.3.1. Let X1 and X2 be random variables taking values from the same

14



finite set. Then

H(X1, X2) ≤ H(X1) +H(X2).

Riis’s concept of the entropy of the graph is linked to random selections of elements

from an alphabet (or random colorings) that satisfy some sort of constraint. Before

presenting Riis’s graph entropy, we first explicitly define the following notation. This

exactly mirrors the notation and definitions from [16].

Definition 1.2.15. Let A be a finite alphabet2 of size s. Then

An = {(a1, a2 . . . an) : ai ∈ A}

This means that when we say v ∈ An, v is some tuple of n elements of A.

Definition 1.2.16. Let A be some finite alphabet, n be some positive integer, v =

(vi)n
1 ∈ An and S = {s1, s2, . . . , su} ⊆ {1, 2, . . . , n}. Let p(S, v) be the probability that

some x = (xi)n
1 ∈ An is selected where xs1 = vs1 , xs2 = vv2 , . . . , xsu = vsu . Here Riis’s

language differs from the classic probability theory definition of entropy. Instead we

could say let X be a random variable that gives the assignment of of elements of A

to the subset S. Then

p(S, v) = P(X = (xi)n
1 ).

Notice that the exact value of p(S, v) depends on the probability distribution used for

selecting (xi)n
1 from An. While any distribution can be used, and we will not define a

specific distribution in this section, in this thesis we pick selections of messages from

alphabets, or random colorings, from the uniform distribution.
2This can also be thought of as a color set for a graph coloring.

15



Notice that we can think of S as a subset of vertices in a graph. Next, Riis defines

the entropy function Hp.

Definition 1.2.17. Let G be a directed graph where |V (G)| = n. Let A be a finite

alphabet of size s. For some S ⊆ {1, 2, . . . , n} define an entropy function Hp by

Hp(S) :=
∑

v∈An

p(S, v) logs

(
1

p(S, v)

)

Riis next defines a special set of entropy functions of a given graph. For a given

vertex j ∈ V (G), let {i1, i2, . . . , id} be the set of all vertices in V (G) such that the

edges (i1, j), (i2, j), . . . (id, j) are in E(G). Then we consider the following entropy

function

Hp(j|i1, i2, . . . , id)

to be the entropy of a vertex (j) given the values of the vertices in the graph that

have edges with heads in j.

Definition 1.2.18. We call the equation

Hp(j|i1, i2, . . . , id) = 0

an information constraint determined by G. We call the set of n information con-

straints for each v ∈ G the information constraints determined by G.

Now Riis defines the private entropy, or entropy of a graph, E(G, s):

Definition 1.2.19. The (private) entropy of a graph G over an alphabet, A, of size

s is the supremum of all entropy functions Hp over a that satisfy the information

constraints determined by G.
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In [16] Riis develops this further along with several other alternative types of

entropy for graphs, and a key theorem:

Theorem 1.2.4. [16] For each directed graph G and for each s ∈ {2, 3, 4, . . . , } the

guessing number equals the entropy of the graph.

In his proof, Riis uses an alternative way of thinking about the graph entropy

related to the fixed points of guessing strategies. This conception of graph entropy

has been used to bound the guessing numbers of certain undirected graphs [7], [2]. In

section 1.4.3 we will go over this proof following the presentation of Atkins, Rombach,

and Skerman [2].

1.3 Definitions

In this thesis we use the following set of definitions related to guessing games and

guessing numbers of undirected graphs. The definitions presented above were pro-

vided by Riis in his original work on the guessing number and so are provided for

a complete background, but we use slightly modified definitions for consistency and

readability.

First we replace Riis’s definition of the guessing game with the following set of

more explicit definitions.

Definition 1.3.1. In a graph G with vertex set V and edge set E, a vertex v ∈ V is

said to have neighborhood N(v), where N(v) = {x ∈ V : (v, x) ∈ E}.

Definition 1.3.2. A color set of size s is the set of elements of Zs, the group of

integers modulo s. It is alternatively referred to as the set of die values in Riis’s
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presentation of the guessing game or the elements of a finite alphabet when thinking

of applied problems in network coding.

Definition 1.3.3. Let G be a graph of order n. A coloring of G with s colors is

an n-tuple of elements of Zs, c = (c1, c2, . . . , cn) ∈ Zn
s where ci refers to the color

assigned to a vertex vi in an ordering of V (G).

Definition 1.3.4. A protocol or strategy for graph G with respect to a color set of

size s is a set of functions, F = {fi}n
1 where each fi is a function fi : Z|N(vi)|

s → Zs

associated with a vertex vi ∈ V (G). Then we can think of the strategy itself as a

function F : Zn
s → Zn

s where n = |V (G)|.

Definition 1.3.5. A guessing game played on graph G of order n with color set of

size s denoted by GuessingGame(G, s) refers to the assignment of a random coloring

c ∈ Zn
s on G chosen from the set of all possible colorings of G independently identically

distributed with the goal of finding a protocol that maximizes the chance that for

every vi ∈ V (G), fi(c) = ci where ci is the color assigned to vertex i. What we are

asking is to maximize the chance that every vertex “guesses” its color.

We then use the following definition of the guessing number, styled after

Christofides and Markström.

Definition 1.3.6. An undirected graph G has for s ∈ N guessing number gn(G, s) =

k where k is the largest value such that there exists a protocol F for GuessingGame(G, s)

where every vertex guesses its own value with probability 1
s|V (G)|−k .

The fixed point definition of the guessing number, first introduced Wu, Cameron,

and Riis in 2009 [25] is also useful. A protocol, defined above as function F : Zn
s → Zn

s
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guesses correctly whenever F(c) = c, or when c, a coloring, is a fixed point of F (that

is to say that F maps that coloring to itself). This allows us to define the guessing

number in terms of the fixed points of a strategy.

Definition 1.3.7. The guessing number of a graph G with respect to an s-guessing

game is

gn(G, s) = logs max
F
{fix(F)}

Where fix(F) is the number of fixed points of a strategy F .

This definition is equivalent to the classic definition of the guessing number.

Although extremal graph theory is typically about guaranteeing the existence or

nonexistence of a subgraph, this can be expanded to statements about various graph

invariants such as the guessing number. In this paper we are interested in the concept

of graph saturation with respect to guessing numbers. That is, a given graph, G =

(V,E), is saturated with respect to having gn(G, s) ≥ a if it currently has guessing

number less than a and adding any edge e ∈ V 2 \E means that gn(G+ e, s) ≥ a. We

then, in a logical way, define the extremal and saturation values of a guessing number

in the spirit of the subgraph extremal definitions from section 1.2.4.

Definition 1.3.8. The extremal value of the guessing number is denoted by

ex(n, gn(G(n), s) ≥ a) and is the largest number of edges on a graph of n vertices

such that the graph G is saturated with respect to having guessing number greater

than or equal to a.

Definition 1.3.9. The saturation value of the guessing number is denoted by

sat(n, gn(G(n), s) ≥ a) and is the smallest number of edges on a graph of n vertices
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such that the graph G is saturated with respect to having guessing number greater

than or equal to a.

An interesting result of this thesis is that the saturation number is a constant for

large enough n, which is not always the case with saturation values in general. It

should also be noted that neither the extremal number nor the upper bound of the

saturation number depend on s, although the saturation number itself may depend

on s.

1.4 Prior Results on Guessing Numbers

In this section we go over key results on the guessing number used in this thesis and

of general interest to the study of the guessing number.

1.4.1 Riis’s First Results on Guessing Numbers

Although this thesis is not on the application of guessing numbers to network coding,

we will start with Riis’s key theorem linking the guessing number to the information

network flow problem defined above.

Theorem 1.4.1. [19] Let N be an information network with input nodes {ij}n
1 and

output nodes {oj}n
1 . Let GN be the directed graph constructed by identifying input

node ij with output node oj. Then the information network flow problem for the

network N has a solution for any alphabet A with |A| = s if and only if gn(GN , s) ≥ n.

This connection between the network problem and an easier-to-state pure graph

theory problem is quite deep, and Riis states this explicitly with a second theorem.
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Theorem 1.4.2. [19] For an information network N the solutions (that is, a set of

coding functions for nodes allowing them to transmit combinations of messages) of

the information network flow problem for alphabet A with |A| = s are in a one-to-

one correspondence with the optimal protocols for GuessingGame(GN , s)—that is,

the protocols F where logS(fix(F)) = gn(GN , s).

We will now look only at results related to the guessing number. Riis and others

have written extensively about the application of guessing numbers to network coding,

circuit complexity, and other problems in information theory. I suggest interested

readers start with Riis’s papers on network coding, available and helpfully sorted on

his website [18].

While Riis’s initial paper focused on applying the guessing number of graphs to

a problem in network coding [19], he makes some important observations about the

guessing number of (directed) graphs. First, while graphs have separate guessing

numbers for each s, many have a guessing number that is independent of s. Looking

back at the definition of the guessing number, this does not mean that a graph (using

an optimal strategy) will guess correctly with the same probability regardless of s, but

instead that the graph guesses better than random with the same frequency relative

to s. Riis then makes a few observations about directed graphs without rigorous

proofs that become simple but powerful lemmas for working with guessing numbers

of both directed and undirected graphs.

First, Riis observes that a graph does better than random—that is—better than

uncoordinated guessing, if and only if the graph has a directed loop. In the undirected

case, this becomes the statement that a graph does better than random if and only

if it has an edge. Riis then sharpens this to say that not only does having a directed
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loop means that a graph does better than random, but that a graph with a directed

loop (or an edge in a undirected graph) has guessing number at least 1. We supply a

proof for the undirected version of the lemma.

Lemma 1.4.3. (adapted from [19]) A graph G has guessing number gn(G, s) ≥ 1 if

and only if |E(G)| ≥ 1.

Proof. Let G be a simple, undirected graph with edge xy. Play a guessing game

with an alphabet of size s on G with the following strategy: Let fx(cy) = s − cy,

fy(vx) = s − cx, and fa({cv : v ∈ V (G)}) = 1 for all a ∈ V (g) \ {x, y} where cx and

cy are the values assigned to x and y respectively, and cv denotes the value assigned

to any other vertex. This strategy yields a correct guess whenever cx + cy = s and

cv = 1 for all other vertices in G. This “good” assignment happens with probability
1

s|V (G)|−2 · 1
s

= 1
s|V (G)|−1 which implies that gn(G, s) ≥ 1. To prove sufficiency, simply

observe that a graph with no edges has guessing number 0.

This leads to an easy lower bound of the guessing number based on disjoint loops

in the directed case and matchings in the undirected case. First we state the lemma

for the directed case and then state it for the undirected case and supply a proof.

Lemma 1.4.4. [19] (directed case) If a graph, G, has k disjoint directed loops, then

gn(G, s) ≥ k

Lemma 1.4.5. (undirected case adapted from [19]) If a graph, G, has a matching of

size k (that is a set of k edges such that no two edges in the set share a vertex), then

gn(G, s) ≥ k.

Proof. Let G be a simple, undirected graph with matching M of size k. Play a

guessing game with an alphabet of size s on G with the following strategy: For pair
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xy in M let fx(cy) = s − cy, fy(cx) = s − cx, and let fa({cv : v ∈ V (G)}) = 1 for

all a ∈ V (G) where a is unmatched. This strategy yields a correct guess whenever

cx+cy = s for xy inM , and cv = 1 for all other vertices inG. This assignment happens

with probability 1
s|V (g)|−2k · 1

sk = 1
s|V (G)|−k , which implies that gn(G, s) ≥ k.

Finally, Riis makes an observation related to multigraphs with self loops (pseudo-

graphs). A pseudograph is said to be reflexive if every node has a self loop.

Lemma 1.4.6. [19] A pseudograph is reflexive if and only if it has guessing number

|V (G)|.

A reasonable assumption to make based on this is that a simple graph never has

guessing number |V (G)|. This turns out to be true, and a proof will be supplied later.

1.4.2 Key Results on the Guessing Number of

Undirected Graphs

Much of the foundational work purely on the guessing number was done by

Christofides and Markström in 2011. Their initial bounds and exposition on some of

the fundamentals of the guessing number of undirected graphs are indispensable for

this paper. Key results that help elucidate the essence of the guessing number and

results used in this thesis are presented below.

First, Christofides and Markström formalize and generalize the optimal strategy

in Riis’s initial example of the guessing game: the clique protocol. First we define a

strategy for complete graphs, Kn.

Consider GuessingGame(Kn, s). Define the following protocol F . For v ∈ V (G)

define a corresponding function
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fv(c) = s−
∑

ci∀i∈V (G)\v
ci

where we consider the addition operation from the group Zs. If this sum (mod s) is

0 then every vertex guesses its color correctly. This happens with probability 1
s
. By

definition 1.3.6 this means that gn(Kn, s) ≥ n− 1. This turns out to be the guessing

number of the complete graph and the upper bound for guessing numbers of simple

undirected graphs.

Lemma 1.4.7. For any simple undirected graph G, gn(G, s) ≤ n− 1.

Proof. In GuessingGame(G, s) each vertex is assigned a color at random uniformly

and independently distributed. This means that for v ∈ G, the probability of any

given color being assigned to v is 1
s
. Further, since colors are assigned independently,

information about the color of any other vertices does not make v guess its color with

any more likelihood than 1
s
. This means that the probability that a protocol yields a

correct guess for the whole can be no greater than 1
s
. By definition 1.3.6 this means

that such a protocol would yield gn(G, s) = n− 1.

This lemma makes it clear that the guessing strategies are strategies of

coordination—no one vertex can ever guess its own color any better than a random

guess. Rather, it simply helps the whole graph guess correctly together. This answers

the question posed above after Riis’s observations about the guessing number of

reflexive pseudographs. With the strategy denoted above this gives us the guessing

number of complete graphs.

Corollary 1.4.7.1. For all n and s, gn(Kn, s) = n− 1.
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In fact, complete graphs are the only graphs with guessing number n− 1, a result

analogous to Riis’s result on the guessing number of reflexive pseudographs. However,

to proceed simply we first need a lemma from Christofides and Markström. Lemma

2.6 of [7] provides a simple upper and lower bound for any graph and is used for the

proof of the extremal and saturation numbers. First we must develop the clique cover

protocol. The clique protocol generalizes into a (not necessarily optimal) protocol for

any graph: the clique cover protocol. First, we define a clique cover which is an

essential element of the clique cover protocol.

Definition 1.4.1. A clique cover, C, of a graph G is a partition of V (G) into disjoint

sets such that the induced subgraph of C for every C ∈ C is a clique.

This allows us to develop the following general strategy:

Definition 1.4.2. For a graph, G, and clique cover C, define the following protocol,

called the clique cover protocol, F for GuessingGame(G, s) with random coloring c.

Each v ∈ G is in some C ∈ C. Define fv as follows:

fv(c) = s−
∑

ci∀i∈C\v
ci

where we consider the addition operation from the group Zs.

For each subgraph H induced by C ∈ C, gn(H, s) = |C| − 1. This can give

us a bound on the guessing number for any graph, but first we need the following

(straightforward) lemma from Wu, Cameron, and Riis [25].

Lemma 1.4.8. If a graph G has two disjoint subgraphs, H1 and H2, gn(G, s) ≥

gn(H1, s) + gn(H2, s).
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Proof. Let gn(H1, s) = k1 and gn(H2, s) = k2. By the fixed point definition of the

guessing number (definition 1.3.7), this means that there is a protocol F1 on H1 with

sk1 fixed points and a strategy F2 on H2 with sk2 fixed points. Define a new protocol

F on G as follows: On vertices in H1, follow the F1 protocol. On vertices in H2,

follow the F2 protocol. Have all other vertices guess 1 always. Let X be a fixed point

of F1. Then there are sk2 corresponding fixed points in F , one for every fixed point

of F2, or instance that F2 would lead to a correct guess. This means that the total

number of fixed points in F is (sk1) · (sk2) = sk1+k2 . By the fixed point definition of

the guessing number, this means that g has guessing number at least k1 + k2.

This fact allows us to use the general strategy developed above to get the following

bound on the guessing number:

Corollary 1.4.8.1. Let G be a graph on n vertices with clique cover c1, c2, . . . cm

where clique ci has size ai. Then gn(G, s) ≥ ∑m
i (ai − 1) = n−m.

Let cp(G) be the clique cover number of G, or the size of the smallest clique cover

of G. Then the clique cover strategy gives the following lower bound on all undirected

graphs.

Corollary 1.4.8.2. [7] For every graph G, gn(G, s) ≥ n−cp(G).

Christofides and Markström combine this fact with a general upper bound related

to the size of the largest independent set of a graph, G, denoted by α(G).

Lemma 1.4.9. [7] For every graph G, gn(G, s) ≤ n− α(G).

Proof. Let G be an undirected graph with maximum independent set I. Let F be a

protocol for GuessingGame(G, s). Then, for all u ∈ I, the value of fu is determined
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only from the colors assigned to v ∈ V (G)\I in a given random coloring. This means

that for each random s-coloring on V (G)\I there is only 1 possible coloring on G such

that F guesses correctly for all u ∈ I. This means that maxF{fix(F)} ≤ s|V (G)\I|.

These two bounds together give us the following useful theorem

Theorem 1.4.10. [7] For every graph G on n vertices,

n− cp(G) ≤ gn(G, s) ≤ n− α(G).

This determines the guessing number for every graph G where cp(G) = α(G).

One such class of graphs is perfect graphs. This also allows us to prove that the

graphs on n vertices with guessing number n − 1 are exactly the complete graphs

with little complication.

Lemma 1.4.11. An undirected graph, G, on n vertices is complete if and only if

gn(G, s) = n− 1.

Proof. Consider a graph G on n vertices with guessing number n−1. By lemma 1.4.9

this means that α(G) ≤ 1. However the only graph with α(G) ≤ 1 is the complete

graph.

1.4.3 Entropy of Random Colorings and the

Guessing Number

We end this chapter with a powerful result linking the guessing number to the entropy

of a random variable. We consider the random variable that picks uniformly from the
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set of colorings that are fixed by a given guessing strategy (recall definition 1.3.7).

We define the random variable in question explicitly as follows:

Definition 1.4.3. For a graph, G, and positive integer s, let F be a nontrivial

guessing strategy for GuessingGame(G, s). Let XF = (X1, X2, . . . , Xn) be a random

variable representing picking a coloring uniformly at random from the fixed points of

F where Xi is the color of vertex i.

Let H be Shannon’s entropy function (definition 1.2.14) with base s. Then

H(X) = H(X1, X2, . . . Xn).

Lemma 1.4.12. [7] For a graph, G, and positive integer s, let F be a nontrivial guess-

ing strategy for GuessingGame(G, s). Consider some XF and S = {vs1 , vs2 , . . . vsu} ⊆

V (G). If vsi
∈ S and N(vsi

) ⊆ S, then

H(Xs1 , Xs2 , . . . Xsi−1 , Xsi
, Xsi+1 , . . . Xsu) = H(Xs1 , Xs2 , . . . Xsi−1 , Xsi+1 , . . . Xsu).

Proof. Since we are picking from fixed points of a deterministic strategy F , the ran-

dom variable that that gives the color of a vertex vsi
, Xsi

, is determined exactly by

the colors of its neighbors. This means that the probability of the coloring of S being

chosen from the set of fixed points of F is the same as the probability of the coloring

of S \ vsi
, and so the entropy values are the same.

Atkins, Rombach, and Skerman link the special case when this random variable

is picking from an optimal strategy to the guessing number.
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Lemma 1.4.13. [2] Let F be the best (optimal) nontrivial strategy on a graph G

for GuessingGame(G, s) and let X be a random variable chosen uniformly at random

from fix(F). Then

gn(G, s) = H(X).

Proof. From lemma 2.7 in [2] we have that H(X) = logs fix(F). From definition 1.3.7

this means that H(X) = gn(G,S).

We rely on one last fact about the entropy of graphs.

Lemma 1.4.14. [2] Let F be the best (optimal) non trivial strategy on a graph G

for an s-guessing game and for v ∈ V (G), let Xv be a random variable that gives the

color assigned to v in a randomly selected fixed point of F . Then

H(Xv) ≤ 1.
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Chapter 2

The Extremal Number

In this chapter we determine the value of the extremal number in terms of edges for

the guessing number of undirected graphs. We determine the value for all guessing

numbers, even noninteger guessing numbers.

2.1 A Few Extremal Numbers

The extremal case is rather straightforward. It turns out that the extremal number

does not depend on s, the number of colors used in the guessing game. Because of this

we drop the s in our notation of guessing numbers to increase readability. We begin

with what could be considered the upper and lower limits of the guessing number,

ex(n, gn(G(n)) ≥ n − 1) and ex(n, gn(G(n)) ≥ 1). First we begin with the more

straightforward upper limit. As established earlier in lemma 1.4.7,

gn(G(n)) ≤ n − 1 for all graphs with n vertices so this is indeed the upper limit, so

to speak.

Lemma 2.1.1. For all n, ex(n, gn(G(n)) ≥ n− 1) =
(

n
2

)
− 1.
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Proof. From corollary 1.4.7.1, we know that the unique graph on n vertices and
(

n
2

)
−1

edges has guessing number n−1. It remains to show that there exists some graph, G,

on n vertices and
(

n
2

)
− 1 edges where gn(G) < n− 1. This graph, G, is also unique,

the complete graph with one edge missing. Clearly, cp(G) = 2, and so by corollary

1.4.8.2, gn(G) ≤ n− 2.

The lower limit is trivial and follows from an initial result of Riis.

Lemma 2.1.2. For all n, ex(n, gn(G(n)) ≥ 1) = 0

Proof. As proven in lemma 1.4.3, a graph has guessing number at least 1 if and only if

it has at least one edge, so the extremal graph will be a graph without any edges.

Our last result before the general case, ex(n, gn(G(n)) ≥ 2), is given for a few

reasons. First, it is the smallest nontrivial example; second, both it and the upper

limit of the extremal number are the same as the respective saturation numbers

and so form a nice envelope for the saturation spectrum; and third, it illustrates

the straightforward extension of our general extremal result to noninteger guessing

numbers. First, two lemmas:

Lemma 2.1.3. The star graph on n vertices has guessing number 1.

Proof. First, it is evident that the largest independent set in the star on n vertices,

S, is of size n − 1. It is also obvious that the minimum cardinality clique cover is

n − 1 (one clique of size 2 that includes the center vertex, and n − 2 cliques of size

1). Following theorem 1.4.10 we have

1 = n− (n− 1) = n− cp(S) ≤ gn(S, s) ≤ n− α(S) = n− (n− 1) = 1.
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Therefore gn(S, s) = 1.

Lemma 2.1.4. A graph, G, on n vertices and n edges has a matching of at least size

2.

Proof. Let g be a graph on n vertices and n edges. Suppose there is no matching of

size 2. Then all edges must share a common vertex, and there is some vertex v with

degree n. This implies that there are n+ 1 vertices in the graph, a contradiction.

Now we can determine the extremal number:

Theorem 2.1.5. ex(n, gn(g(n)) ≥ 2) = n− 1.

Proof. As shown above in lemma 2.1.4, a graph with n vertices and n edges has

guessing number of at least 2. All that remains to be shown is that there is a graph

with n−1 edges and guessing number 1. As proven above (2.1.3), that is the star.

2.2 A General Solution for the

Extremal Number

However, guessing numbers need not be integers, so what are the extremal numbers

of guessing numbers between 1 and 2? As our definition of the extremal number for a

guessing number k means that we are only concerned with avoiding having guessing

number at least k, the extremal value stays the same for those non-integer guessing

numbers; that is, for 1 < k < 2, ex(n, gn(G(n) ≥ k) = n − 1. The star has guessing

number 1, which is less than k for 1 < k < 2. After adding an edge, the resulting
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graph has guessing number 2, greater than k. This same argument applies to the

general extremal number, presented below.

First, we define notation for the graph formed from a complete graph with the

edges of a clique removed.

Definition 2.2.1. Let Kn−r ⊕ Er denote the graph formed from a complete graph

on n− r vertices joined to an independent of set of size r, that is, include every edge

xy where x is in the independent set and y is in the n− r clique.

We now find the guessing number of Kn−r ⊕ Er.

Lemma 2.2.1. For all n and r, α(Kn−r ⊕ Er) = r.

Proof. There is a clearly an independent set of size r. Suppose there is an independent

set of size x > r. Then more than
(

r
2

)
edges would have to have been removed, a

contradiction.

Lemma 2.2.2. For all n and r, cp(Kn−r ⊕ Er) = r.

Proof. Define a clique cover consisting a clique of size n− r+ 1, formed by the Kn−r

and one of the vertices from Er, and the other r-1 vertices of Er in cliques of size

one. This is a clique cover of size r. As Er is an independent set, every clique cover

will need at least r distinct clique for these vertices, so no smaller clique cover is

possible

Lemma 2.2.3. Kk ⊕ En−k has guessing number k.

Proof. Let G = Kk ⊕ En−k (Fig. 2.1). By the above lemmas and theorem 1.4.10,

k = n− (n− k) = n− cp(G) ≤ gn(G) ≤ n− α(G) = n− (n− k) = k.
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3

n− k

...

Kk

Figure 2.1: The graph Kk ⊕ En−k

To find the general extremal number we use the clique cover bound of the guessing

number, along with an interesting connection between the clique cover of a graph to

parameter of its complement, the chromatic number.

Definition 2.2.2. The chromatic number of a graph G, denoted χ(G), is the smallest

number of colors such that there exists a coloring on G where no two vertices that

share an edge have the same color.

Definition 2.2.3. The complement of a graph G with vertex set V and edge set V

is a graph with vertex set E and edge set V 2 \ E. It is denoted by Ḡ.

Next we have the following connection between clique cover numbers chromatic

numbers

Lemma 2.2.4. [23] For a graph, G, cp(G) = χ(Ḡ).

Proof. Let G be a graph with cp(G) = k. Then there exists some clique cover C

of size k. For each clique, ci in C, the vertices of the clique are an independent set

in Ḡ and thus can all be given the same color, and so Ḡ is colorable with k colors.
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If χ(Ḡ) = k′ < k, then consider the partition of the vertices into sets of the same

color. Each of these k′ sets are necessarily independent, and so are a clique in G.

This means there is a clique cover of size k′ < k, a contradiction.

Along with these fact we use another bound of the chromatic number from Diestel’s

book.

Theorem 2.2.5 (Diestel Theorem 5.2.1 [15]). Let G be a graph with m edges, then

χ(G) ≤ 1
2 +

√
2m+ 1

4 .

Now we are prepared to find the extremal number for all guessing numbers.

Theorem 2.2.6. For all n, ex(n, gn(G(n)) ≥ k) =
(

n
2

)
−
(

n−(dke−1)
2

)
.

Proof. Above we have an example of a graph with n vertices,
(

n
2

)
−
(

n−(dke−1)
2

)
edges,

and guessing number dke − 1. It remains to show that every graph with
(

n
2

)
−(

n−(dke−1)
2

)
+ 1 edges has guessing number at least k.

Consider a graph, G, on n vertices and
(

n
2

)
−
(

n−(dke−1)
2

)
+ 1 edges. Then

|E(G)| =
(
n− (dke − 1)

2

)
− 1 = 1

2(n− (dke − 1))(n− (dke − 1)− 1)− 1.

By theorem 2.2.5 this means that

χ(Ḡ) ≤ 1
2 +

√
(n− dke+ 1)(n− dke)− 2 + 1

4 .

which is less than n− (k − 1) whenever n− (dke − 1) ≥ 2.

However,

n− (dke − 1) ≥ 2⇒ dke ≤ n− 1
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and for all graphs gn(G) ≤ n−1 (lemma 1.4.7). This means that our inequality holds

within the entire domain of interest.

As the chromatic number and the clique cover number are both strictly integers,

this means that

χ(Ḡ) < n− k + 1⇒ χ(Ḡ) ≤ n− k.

Since the clique-cover number is equal to the chromatic number of the complement,

by corollary 1.4.8.2, this means that

gn(G) ≥ n− χ(Ḡ) ≥ n− (n− k) = k.

This determines the extremal value for all guessing numbers, integer or not. The

extremal examples in lemmas 2.1.1 and 2.1.5 are in fact of the type of the extremal

graphs described above.

2.3 The Extremal Graph

The example given above (Fig. 2.1) is in fact unique—all extremal graphs are of the

form of a clique of size k and an independent set. To prove this we need the following

fact, again from Diestel:

Lemma 2.3.1 (Corollary 5.2.3 in Diestel [15]). Every graph G has a subgraph of

minimum degree at least χ(G)− 1

Theorem 2.3.2. Every graph G on n vertices and ex(n, gn(G(n)) ≥ k) edges with

gn(G) ≤ k is a Kk−1 ⊕ En−k+1.
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Proof. Let G be a graph on n vertices, ex(n, gn(G(n)) ≥ k) edges with gn(G) < k.

Then

n− χ(Ḡ) ≤ gn(G) < k ⇒ n− k < χ(Ḡ).

Since the chromatic number is an integer χ(Ḡ) ≥ n−dke+1. Ḡ has
(

n−(dke−1)
2

)
edges.

By the above lemma, this means that Ḡ has a subgraph of minimum degree at least

n − dke. However the only graph with minimum degree n − dke and no more than(
n−(dke−1)

2

)
edges is the complete graph on n−dke+1 vertices. So Ḡ is a clique of size

n−dke+ 1 and k− 1 isolated vertices. This means that G is a Kdke−1⊕En−dke+1

This means that the extremal graphs with ex(n, gn(G(n)) ≥ k) edges are charac-

terized as exactly the graphs of the form Kk−1 ⊕ En−k+1.
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Chapter 3

The Saturation Number

In this chapter we investigate the saturation number in terms of edges for the guessing

number of undirected graphs. We start with two known saturation numbers and then

provide a construction that serves as a constant bound on the saturation number.

3.1 Found Saturation Numbers

We now move to the saturation number, which is the smallest number of edges a

saturated graph can have. We begin with the saturation numbers for gn(G(n)) ≥ 2

and gn(G(n)) ≥ n− 1.

Lemma 3.1.1. For all n, sat(n, gn(G(n)) ≥ 2) = n− 1.

Proof. Suppose there is a graph, G, on n vertices with less than n − 1 edges and

guessing number 1. As proven above, it cannot have a triangle or a matching of size

2. This means we have 3 types of vertices in G: isolated vertices, vertices connected

only to a vertex x, and the central vertex x. There must be isolated vertices if we

have less than n−1 edges. We can add an edge from any isolated vertex to x without
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increasing the guessing number (simply making a bigger star). So G is not saturated

with respect to guessing number n. Recalling lemma 2.1.5 we know that there is a

saturated (in fact, an extremal) graph on n vertices, and n−1 edges, so the saturation

number is not larger than n− 1.

This is the same as the extremal number for gn(G(n) ≥ 2), and we find the same

thing when looking at ex(n, gn(G(n)) ≥ n− 1).

Lemma 3.1.2. For all n, sat(n, gn(G(n)) ≥ n− 1) =
(

n
2

)
− 1.

Proof. By lemma 1.4.11, the only graph with guessing number n− 1 is the complete

graph on n vertices. Therefore, the only graph saturated with respect to gn(G(n)) ≥

n− 1 has one less edge then the complete graph, or
(

n
2

)
− 1 edges.

These two results give us that for gn(G(n)) ≥ 2 and gn(G(n)) ≥ n − 1, the

saturation number is the same as the extremal number. However, for other guessing

numbers there is in fact a very large divergence between the extremal number and

the guessing number. Interestingly, with the exception of sat(n, gn(G(n)) ≥ 2), for n

large enough, the saturation number does not depend on n. We begin by looking at

saturation with respect to gn(G) ≥ 3.

Consider the 5-cycle. Christofides and Markström bound the guessing number for

all s with the following theorem:

Theorem 3.1.3. [7] For s and k integers, gn(C2k+1, s) ≤ 2k+1
2 .

When k = 2 we find gn(C5, s) ≤ 2.5. Adding an edge forms a triangle among

3 vertices and the resulting graph has a clique cover of that triangle and an edge

between the remaining 2 vertices (Fig. 3.1b). By lemma 1.4.8, this means that
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gn(C5 + e, s) ≥ 3. Similarly, if there is a graph with a C5 and some isolated vertex

and add an edge between it and the cycle, the resulting graph has a matching of

size 3, and thus guessing number at least 3 (Fig. 3.1a). Of course, if you add some

isolated edge the resulting graph has guessing number at least 2.5 + 1. This allows

us to find more bounds on the saturation number of various guessing numbers by

composing disjoint copies of the 5-cycle. The graph consisting of 2 disjoint copies

of the 5-cycle has guessing number less than 5 but if we add any edge by the clique

cover strategy the resulting graph has guessing number at least 5. This gives us the

following bound:

Lemma 3.1.4. For all n, sat(n, gn(G(n)) ≥ 5) ≤ 10.

A collection of k disjoint 5 cycles will be saturated with respect to some guessing

number, not necessarily an integer. As odd cycles do not have the same guessing

number for all given s, the exact bounds on saturation that can be found by composing

disjoint 5 cycles gives are not easy to describe in a general result. However the

example of the 5-cycle does inform a more general bound. This type of graph, with

the desirable quality of being saturated with isolated vertices, can be expanded to a

general saturation bound. We simply need to find a maximal triangle-free graph with

an odd cycle spanning its vertices.

3.2 A Bound on Saturation

Consider a collection of n = 2a + 1 vertices. Label and order the vertices v0, . . . v2a.

label each pair of vertices v2i−1, v2i as Pi. Notice that v0 remains unpaired and that

we have a total pairs. For each i such that 1 < i < a, add edges v2i−1v2j and v2iv2j−1
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v5

v4

v3 v2

v1

v6

(a) Adding an exterior edge

v5

v4

v3 v2

v1

(b) Adding an interior edge

Figure 3.1: Adding an edge to a C5

for 1 ≤ j ≤ a. Notice that in doing so we have an edge v2i−1v2i between every pair.

Finally add edges v0v1, v2av0 and v2v2a−1. Call this graph G (Fig. 3.2). Notice that

G has a2 + 1 edges.

Lemma 3.2.1. For the graph G, as described above, gn(G, s) ≤ a+ 2
3 .

Proof. Notice that {v2i}a
1 and {v2i−1}a

1 are both independent sets. This means that

H(G) = H(v0, v1, {v2i}a
1)

H(G) = H(v0, {v2i−1}a
1, v2a)

and

H(G) = H(v0, {v2i−1}a
1)
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v0

v2a

v2a−1

v2a−2

v2a−3

v2iv2i−1

v4

v3

v2

v1

Figure 3.2: The generic saturated construction. Blue (thick edges) represent pairs of the
type Pi. Red edges are edges between two different pairs. Dashed lines are interpair edges
to “generic” pairs, that is, there are any number of vertices of the form v2i−1, v2i that the
shown pairs in the graph connect to. Black edges are the edges connected to v0.
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3 · gn(G) = 3 ·H(G)

= H(v0, {v2i−1}a
1, v2a) +H(v0, v1, {v2i}a

1) +H(v0, {v2i−1}a
1)

≤ H(v0, {v2i−1}a
1, v2a) +H(v0, v1, {v2i}a

1) +H(v0) +H({v2i−1}a
1)

above by corollary 1.2.3.1

≤ H(v0, {v2i−1}a
1, v2a) +H(v0, v1, {v2i}a−1

1 ) +H(v0, v2a) +H({v2i−1}a
1)

above by theorem 1.2.3

= H(v0, {v2i−1}a
1, v2a) +H(v0, v2a) +H(v0, v1, {v2i}a−1

1 ) +H({v2i−1}a
1)

above by lemma 1.4.12

≤ H(v0, {v2i−1}a
2, v2a) +H(v0, v1, v2a) +H(v0, v1, {v2i}a−1

1 ) +H({v2i−1}a
1)

above by theorem 1.2.3

= H(v0, {v2i−1}a
2) +H(v1, v2a) +H(v0, {v2i}a−1

1 ) +H({v2i−1}a
1)

above by lemma 1.4.12

≤ a+ 2 + a+ a by lemma 1.4.14

= 3a+ 2

Which means that gn(G) ≤ a+ 2
3 .

Lemma 3.2.2. Let G be the above construction. Then for any e ∈ Ḡ gn(G + e) ≥

a+ 1.

Proof. Let e ∈ Gc. Then there are three possible types of edges that e can take.

Case 1: e = v1v2a. Then G + e has the following clique partition {v0, v1, v2a} and
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v0

v2a

v2a−1

v2a−2

v2a−3

v2iv2i−1

v4

v3

v2

v1

Figure 3.3: Clique cover for G + v1v2a

{{v2i, v2i+1}}a−1
1 . This is a− 1 cliques of size 2 and 1 clique of size 3. By 1.4.8.1, this

means that gn(G+ e) ≥ a+ 1 (Fig. 3.3).

Case 2: e = vxv0. Then x is not 1 or 2a. If x = 2i for some 1 ≤ i ≤ a− 1 then G+ e

has the following clique partition: {v0, v1, v2i}, {{v2j, v2j+1}}i−1
1 and {{v2j−1, v2j}}a

i+1.

This is a− 1 cliques of size 2 and 1 clique of size 3 (Fig. 3.4a).

If x = 2i − 1 for some 2 ≤ i ≤ a then G + e has the following clique partition.

{v0, v2i−1, v2a}, {{v2j−1, v2j}}−1
1 and {{v2j, v2j+1}}a−1

i . This is a − 1 cliques of size 2

and 1 clique of size 3 (fig 3.4b).

By lemma 1.4.8.1, this means that gn(G+ e) ≥ a+ 1.

Case 3: Suppose that e = vxvy where neither x nor y equals 0. Then without loss

of generality vx ∈ Pi and vy ∈ Pj where i < j. Suppose that vx = v2i. This means

that vy = v2j as v2iv2j−1 ∈ E(G). Then G + e has the following clique partition:

{v2i, v2j−1, v2j}, {{v2k−1, v2k}}a
j+1 (a − j cliques), {{v2k, v2k+1}}i−1

0 (i cliques), and
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v0
v2a

v2a−1

v2a−2

v2a−3

v2iv2i−1

v4

v3

v2

v1

(a) From an even vertex

v0
v2a

v2a−1

v2a−2

v2a−3

v2iv2i−1

v4

v3

v2

v1

(b) From an odd vertex

Figure 3.4: Adding an edge to vo

{{v2k−1, v2k}}j−1
i+1 (j− i− 1 cliques). This is a collection of a− j+ i+ j− i− 1 = a− 1

cliques of size 2 and 1 clique of size 3 (Fig. 3.5).

Now suppose that vx = 2i− 1. This means that vy = v2j−1 as v2i−1v2j ∈ E(G).

Then G + e has the following clique partition: {v2i−1, v2j, v2j−1}, {{v2k, v2k+1}}a−1
j

(a−j cliques), {v2a, v0} {{v2k−1, v2k}}i−1
1 (i−1 cliques), and {{v2k−1, v2k}}j−1

i+1 (j−i−1

cliques). This is a collection of a− j + 1 + i− 1 + j − i− 1 = a− 1 cliques of size 2

and 1 clique of size 3. By 1.4.8.1, this means that gn(G+ e) ≥ a+ 1.

Lemma 3.2.3. For a graph G′ consisting of a subgraph G as described above and

{vi}n
1 isolated vertices, for any e = vxvy where vi is isolated in G′, gn(G′+ e) > a+ 1.

Proof. If vy is isolated then {Pi}a
1 ∪ {{vi, vx}} is a matching of size a+ 1 in G′ + e.

Suppose vy ∈ G where vy = v0. Then {Pi}a
1 ∪ {{vx, v0} is a matching of size a+ 1

in G′ + e.

Now suppose y = 2i for some 1 ≤ i ≤ a. Then {{v2j, v2j+1}}i−1
0 , {{v2j−1, v2j}}a

i+1

and {vx, v2i} is a matching of size a+ 1 in G′ + e.
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v0

v2a

v2a−1

v2a−2

v2a−3

v2iv2i−1

v4

v3

v2

v1

Figure 3.5: Clique cover for G + v2iv2j

v0

v2a

v2a−1

v2a−2

v2a−3

v2iv2i−1

v4

v3

v2

v1

Figure 3.6: Clique Clover for G + v2i−1v2j−1
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Suppose vy ∈ G where y = 2i − 1 for some 1 ≤ i ≤ a. Then {{v2j−1, v2j}}i−1
1 ,

{{v2j, v2j+1}}a−1
i , {{v2a, v0}, {vx, v2i−1}} is a matching of size a + 1 in G′ + e. This

means that gn(G′ + e) ≥ a+ 1.

As a corollary to this work we get the following bound on the saturation number:

Theorem 3.2.4. For all n we get sat(n, gn(g(n)) ≥ a+ 1) ≤ a2 + 1.

And so we have bounded the saturation number with a constant bound.
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Chapter 4

Discussion and Conclusions

Unfortunately, the ease and clarity of the extremal number is not matched by the

saturation number. While the bound on the saturation number found is a nontrivial,

it is not clear as to how it could be refined to an exact saturation number or even

a better bound. Still, I believe this thesis yields some insight into the nature of the

guessing number. While this insight is limited, the guessing number has a somewhat

pernicious quality to it. The guessing number has an interesting connection to the

theory of information. Moreover, like many other combinatorial problems, it has a

seemingly straightforward presentation, but is actually quite complex and, for large

classes of graphs, no firm handle can seem to be found. While the insight of this

thesis may be lacking, it is my hope and belief that further extremal work will lead

to new advances in what we know about the guessing number. In this chapter I will

speculate as to what lessons this has for the concept of the guessing number and for

the field of network coding, as well as what other questions might be worth pursuing

in the future.
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4.1 The Extremal Number

The extremal number was the first result of this paper and is quite straightforward,

as evidenced by the lack of length in chapter 2. The claim that became theorem 2.2.6

was put forward very early on in this research after the construction of the saturated

example of the graph Kn ⊕ En−k. Initial attempts at the proof relied on using the

extremal number for complete graphs (the Turán number) and for matchings of size

k. This worked for n of a certain size, but we were beginning to think that to refine

the claim for all n we would need to use prior work on the extremal number to

avoid all possible clique covers that would lead to a guessing number that was too

high. While this had the moral advantage of being tied to prior extremal work on

forbidding subgraphs, it was becoming an unwieldy proof. In the world where this

path was followed, chapter 2 would certainly be a much longer chapter with more

ties to the literature of extremal numbers for subgraphs. However, after becoming

frustrated with the elusiveness of what had initially promised to be a straightforward

proof, I began looking at bounding the guessing number by the chromatic number

of the complement. Thanks to the connection between the clique cover number of

a graph and the chromatic number of its complement, I was hoping that the clique

cover number bound of the guessing number could be combined with the large amount

of work on the chromatic number in a fruitful way. My inquiry was short. I began

to refamiliarize myself with work done on the chromatic number by returning to my

introductory text on graph theory, Graph Theory by Reinhard Diestel [15]. And,

lo and behold, I immediately came across what I was looking for: a bound on the

chromatic number based on the number of edges (theorem 5.2.1 in [15]). Even better,
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it worked!

While having the exact value of the extremal number is satisfying, the important

question is what insight this yields as to the nature of the guessing number. This

is less straightforward—although the proof shows the power of using the chromatic

number of the complement to bound the guessing number, this is essentially another

way of working with the clique cover strategy, which is well understood. Not only is

the clique cover bound used in the proof of the extremal number, but the extremal

graph is one where both the extremal graph in question (Kn⊕En−k) and the resulting

graph after adding an edge are both graphs where cp(G) = α(G), and so the clique

cover strategy is optimal. This is, I think, the most interesting result of the thesis:

The extremal graph with respect to gn(G(n)) ≥ k is exactly of the form of a clique of

size k−1 connected to an independent set. This graph and the graph formed when an

edge is added is one that is straightforward both in structure and in optimal guessing

strategy. I hope that it indicates that as the extremal number is approached, the

saturation graphs become more like the simple form of the extremal graph.

4.2 The Saturation Number

The bound of the saturation number is most interesting in the fact that it does not

depend on n, which is not always the case for saturation numbers. The idea for the

saturated construction came originally from the 5-cycle. While trying to come up

with saturated graphs, I quickly came across a common problem of isolated vertices.

Usually isolated vertices can be connected to a component without increasing the

guessing number (Fig. 4.1). While it’s not necessary that a graph be saturated while
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Figure 4.1: Two graphs with the same guessing number

having any number of isolated vertices, it was a problem when trying to come up with

saturated examples. However, I found that the 5-cycle, C5 is saturated even when

it is the only connected component in a graph with any number of isolated vertices.

Pursuing this, I looked at the C7. This, unlike C5, is not saturated, as it is possible to

add edges between vertices of the cycle without making a triangle. The easy solution,

which of course I pursued, was to add edges to C7 till it was maximally triangle-free.

Lo and behold, it worked, and a straightforward entropy argument could be used to

bound the new construction. However, could it be generalized for arbitrary guessing

numbers?

To do this, I looked at creating a maximal triangle-free graph on an odd number

of vertices such that there was a cycle on all of the vertices. I took inspiration from

The Typical Structure of Maximal Triangle-Free Graphs by Balogh, Liu, Petříčková,

and Sharifzadeh [3]. There they prove that many maximal triangle-free graphs have
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the form of a collection of a perfect matching and an independent set. Each matching

is connected once to each edge in the independent set. The general inspiration I took

from this was having a matching in which every pair in the matching is connected to

every other one, and at it wasn’t long till I was able to formalize into the construction

in this thesis.

4.3 Future Work

The most obvious direction for this work to be taken in the future is the saturation

number—is there a non-trivial lower bound? I have no suggested line of attack for

this question, but I do have a related one that should be more approachable. While

my saturated construction does not rely on n, it does require a large number of

vertices compared to the guessing number (2a+ 1 for guessing number a+ 1). There

are graphs with fewer vertices that are still saturated with respect to that guessing

number (for example, the extremal case). If we fix some n not much larger than our

target guessing number, is there a better saturation number that can be found? I

suspect the answer is yes.

The second suggestion I have is the saturation spectrum—that is, a characteriza-

tion of all graphs saturated with respect to a given guessing number. This is a big

question, and hard to approach. I am hopeful that our characterization of the ex-

tremal graph is a helpful starting point; however, the existence of stranger saturated

graphs without clear guessing numbers makes this a potentially large question.

Finally, a natural extension is directed graphs. The problem of the guessing

number was originally formulated for directed graphs and calculating the extremal
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and saturation numbers for guessing numbers of directed graphs has the potential for

better applicability to problems of information flows in computer networks. However,

it is a harder problem then the undirected case. As Christofides and Markström

observe, there is not a clear analogue of the clique cover strategy. While you can

similarly partition a graph into disjoint graphs of known or well-bounded guessing

number, directed graphs have no similarly useful family of graphs with well-known

guessing number like the clique graphs in the undirected case [7]. The clique cover

strategy is so powerful because much is known about determining the size of the

maximum clique cover of a graph. One can, however, get a bound by partitioning

the graph into disjoint directed cycles which function similarly to a matching in the

undirected case [19]. That is the only angle of approach I can suggest at this point—

but I hope the approach could be fruitful.
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