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Abstract

With the rise of social media, researchers have become increasingly interested in un-
derstanding how individuals inform, influence, and interact with others in their social
network and how the network mediates the flow of information. Previous research on
information flow has primarily used models of contagion to study the adoption of a
technology, propagation of purchase recommendations, or virality of online activity.
Social (or “complex”) contagions spread differently than biological (“simple”) conta-
gions. A limitation when researchers validate contagion models is that they neglect
much of the massive amounts of data now available through online social networks.
Here we model a recently proposed information-theoretic approach to measuring the
flow of written information in data. We use an idealized generative model for text
data – the quoter model – which naturally incorporates this measure. We investi-
gate how network structure impacts information flow and find that the quoter model
exhibits interesting features similar to those of complex contagion. Finally, we of-
fer an analytical treatment of the quoter model: we derive approximate calculations
and show dependence on model parameters. This thesis gives rise to new hypotheses
about the role of the social network in facilitating information flow, which future
research can investigate using real-world data.
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Chapter 1

Introduction

Online social media platforms have seen explosive growth in the recent years. These

platforms connect people from all over the world and allow almost instantaneous

communication. A report from January 2020 [2] indicates the monthly active users

for prominent social media platforms are: Facebook 2.4 billion, YouTube 2 billion,

Instagram 1 billion, and Reddit, Twitter, and LinkedIn at 300 million. Consequently,

these platforms generate immense amounts of data every day; for example, Twitter

sees nearly 500,000 new tweets every minute. In 2013 it was estimated that 90% of all

data had been created within two years. Much of this data is publicly accessible to

researchers, and thus these platforms provide the ability to examine human behavior

at an unprecedented scale.

Along with the rise of social media, there has been increased interest in under-

standing how individuals inform, influence, and interact with others in their social

network and how the network mediates the flow of information. Previous research on

information flow has studied the adoption of a technology [3], propagation of purchase

recommendations [4], virality of online activity, [5], and communication during emer-
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gencies [6]. The study of information flow is important because it allows researchers

to predict the spread of social contagions and may further be motivated by poten-

tial marketing applications. Modern concerns of information flow include the role

and prevalance of: misinformation, bots, echo chambers, and filter bubbles [7–10].

Finally, understanding information flow and social contagion may provide insight as

to how biological contagions spread. For example, recent research suggests models

for social contagion are useful in modeling biological contagion [11, 12]. Also, in-

cluding individual behavioral responses to epidemics in these models helps improve

predictions [13, 14].

A standard method of measuring information flow on a social network is to treat

information as discrete “packets.” For example, one might study how information

flows on Twitter by tracing the spread of a particular URL or keyword. We could

create a quantitative model to predict the spread of the URL or keyword and then

validate the model by comparing with real-world data. Such models have tradition-

ally borrowed from epidemiology, treating a response or adoption of a behavior as

an infection, and modeling the spread of the social contagion. A contagion is typi-

cally classified as either a simple contagion or a complex contagion, with biological

contagions traditionally being treated as simple and social contagions being treated

as complex [15]. With simple contagions, the likelihood of a individual becoming

infected increases linearly with the number of infected neighbors. Hence, simple con-

tagions always have the potential to infect an individual upon a single exposure. On

the other hand, with complex contagions, the likelihood of being infected increases

nonlinearly with the number of infected neighbors. In complex contagion, multiple

exposures from different sources are required for the contagion to spread. In so-

2



cial sciences, this mechanism is called social reinforcement [16]. This mechanism is

intuitive – an individual is more likely to watch a certain TV show if five friends

recommend it to them, as opposed to if one friend recommends it to them five times.

The approach of focusing on a proxy for information and applying contagion mod-

els circumvents the challenge of defining an objective measure for information, which

would ideally encompass all aspects of how humans influence each other. Addition-

ally, it also avoids the challenge of processing and quantifying natural language. The

immediate drawback of this approach is that only a small portion of available data

is used to measure and model information flow. Furthermore, people may influence

each other without prompting a measurable response, i.e. an individual may visit a

link they saw on Twitter but not retweet it. In light of these drawbacks, this the-

sis studies a more intricate approach to measuring and modeling information flow

in online social networks which can incorporate all the text data available. Our ap-

proach borrows quantitative measures of uncertainty and influence from the field of

information theory, which will be reviewed in Chapter 2.

In this thesis, we examine how network properties can affect information flow

when taking an information-theoretic perspective, and compare our results to those

of traditional contagion models. In particular, we study the quoter model [1], an

idealized model for individuals generating text data within social media, and apply

information-theoretic estimators to the model text. Using both random graph mod-

els and real-world network data, we compare compare and contrast the results of

this information theoretic approach with the results of traditional simple and com-

plex contagion models. Interestingly, we find that the quoter model exhibits several

phenomena which are characteristic of complex contagion, despite lacking an explicit
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social reinforcement mechanism, the key component of complex contagion.

The rest of this thesis is organized as follows. In Chapter 2 we provide a brief re-

view of important concepts from network science, network dynamics, and information

theory. We then discuss similar research on information flow. We conclude the chap-

ter by introducing our approach to measuring information flow – the cross-entropy

– along with the quoter model. In Chapter 3 we simulate the quoter model on ran-

dom graph models and real networks to investigate how network structure impacts

information flow, as measured by the cross-entropy. We also simulate traditional

contagion models and compare with our approach to modeling information flow. In

Chapter 4 we provide an analytical treatment of the quoter model. We begin by of-

fering approximate calculations for the the cross-entropy when the network is a single

directed link. We also mention a connection between the quoter model and a more

well-known model, the voter model. In Chapter 5 we summarize our contributions

from Chapter 3 and Chapter 4 and mention possible directions for future work.
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Chapter 2

Background

2.1 Network structure

We use the terms network and graph interchangeably. A network, denoted G =

(V,E), consists of a set of nodes V and a set of links E ⊆ V × V . Networks are

very powerful modeling tools; in a very abstract view, V is a set of objects and E

is a set of pairwise relationships between those objects. This thesis explores social

networks, where nodes represent people and a link (u, v) indicates that a social tie

exists between individual u and individual v.

2.1.1 Basic network statistics

Real-world networks are generally large (many networks of current study consist of

millions of nodes) and thus there is a need to summarize the network. Such summary

statistics should contain “important” information about the network, and offer a way

to compare two networks.
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Two immediate network statistics are the number of nodes N = |V | and number of

linksM = |E|. These characterize the size of the network. Note that in comparing two

networks G1, G2, both N and M should be taken into consideration. For example, if

N1 � N2 and G1, G2 are equally “dense” then it is not surprising thatM1 �M2. This

leads to two definitions of density: (i) the average degree 〈k〉 ≡ 1
N

∑
u∈V ku = 2M/N

where ku is the degree – the number of neighboring nodes – of node u (ii) the edge

densityM/
(
N
2

)
. Definition (i) tells us how many links on average each node has while

(ii) is a number in [0, 1] telling us the fraction of all possible links which exist.

2.1.2 Properties of complex networks

A complex network is loosely defined as a network which exhibits at least one of the

following nontrivial structural properties.

Broad degree distribution In the Erdős-Rényi (ER) random graph model, each

link exists independently with probability 0 ≤ p ≤ 1. Consequently, the probability

that a particular node has exactly k neighbors follows a binomial distribution, p(k) =(
N−1
k

)
pk(1− p)N−1−k, which is a polynomial in p. However, real-world networks often

have a more heterogeneous degree distribution of the form p(k) ∝ k−α where α > 0.

These networks are termed “scale-free,” and are marked by the presence of many low

degree nodes and a few “hubs” – highly connected nodes which, for example, could

be celebrities on Twitter.

Barabási and Albert proposed a random graph model, with only one parameter

m, which grows networks that have a scale-free degree distribution (p(k) ∝ k−3).

The model starts with m nodes and no edges and repeatedly adds nodes. Each new

6



node forms m links according to preferential attachment, leading to a rich-get-richer

process.

Clustering and the small-world phenomenon Another important property,

especially for social networks, is clustering. A highly clustered network is a network

in which “a friend of your friend is also your friend.” That is, the network is populated

by many triangles. The clustering coefficient is a measure of the number of triangles

in a network. There exist several definitions, but the one we use is the transitivity

C4 given by

C4 ≡
# closed triples

# triples = 3× # triangles
# triples .

Similar to edge density, C4 is a number in [0, 1] which counts the fraction of all

possible triangles which are observed in the network.

Real-world social networks have high clustering, but at the same time a low diam-

eter (maximum distance between nodes) or average shortest path length (the average

distance between two nodes). This combination is atypical – generally high clustering

indicates that the network is structured (i.e. a lattice), whereas low diameter suggests

the network is not structured (i.e. an ER network). Watts & Strogatz proposed a

random graph model which generates networks that can exhibit this property [17],

which they termed the small-world property. The model starts with a lattice, and

then rewires each link with probability p. Increasing pmonotonically decreases the ex-

pected clustering and diameter, but for small (but nonzero) values of p, the resulting

network has both high clustering and low diameter.

Community structure and modularity People can naturally be classified based

on group-belongings: political affiliation, social class, hobbies, etc. In a network,
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a community is loosely defined as a group of nodes which has more within-group

connections than connections to other groups. A network is said to have community

structure/be modular if it has communities which are distinctly separate from each

other. The most common way to quantify the existence of community structure is by

defining a function f(G,P) on the network, with P a partition of the network into

groups. This function f , when maximized over all P , should be larger for modular

networks. A popular function is modularity, Q [18]. Suppose we have a partition

P = {ci}Ni=1 where ci is the community which node i belongs to. Modularity is

defined as

Q ≡ 1
2M

∑
(i,j)∈V×V

(
aij −

kikj
2M

)
δ(ci, cj)

where A = [aij] is the adjacency matrix of the network (aij = 1 if (i, j) ∈ E , aij = 0

if (i, j) 6∈ E), ki is the degree of node i, and δ is the Kronecker delta, The optimal

partition can found using a community detection algorithm [19].

The stochastic block model (SBM) is the prototypical random graph model for

creating networks with community structure [20, 21]. The model is specified by the

number of nodes N , the number of communities r, a community labelling {ci}Ni=1 ∈

{1, . . . , r}N of the nodes, and P which is a r × r matrix such that Pij gives the

probability those a node in community i connects to a node in community j. For

every pair (u, v) ∈ V × V , with probability Pcucv the edge (u, v) is present.

Assortative mixing Another property of social networks is that similar people

tend to link with similar people. Generally, similar means “similar degree,” and this

phenomena is termed homophily in the social science literature or assortative mixing

in the network science literature [22]. If other information (metadata) is known about
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the nodes, then that may also explain the network structure. The degree assortativity

coefficient γ ∈ [−1, 1] is defined as the Pearson correlation of the degree of endpoints

u, v over all links (u, v). When γ is negative, the network is said to be disassorative –

low degree nodes tend to link to high degree nodes. When γ is positive the network

is said to be assortative – high degree nodes link with high degree nodes, low degree

link with low degree. Social networks tend to be assortative whereas technological

networks are often disassortative [22].

2.2 Network dynamics

Here we define some of the traditional models of information flow. We divide this

section into three parts. In Sec. 2.2.1 we treat models coming from, or inspired

by, the study of biological contagion. In Sec. 2.2.2 we study the dependence of

these models on network structure and highlight the interesting features of complex

contagion. In Sec. 2.2.3 we introduce models from the field of “opinion dynamics.”

For comprehensive reviews, see [23, 24] on models from epidemiology and [25, 26] on

models from opinion dynamics.

2.2.1 Epidemiology and information flow

Simple contagion In epidemiology, the most commonly used models for predicting

and understanding disease spread belong to a class called compartmental models [23].

These models divide a population into compartments based on the state of each

individual, and within each compartment all individuals are considered identical. The

first compartmental models were proposed in 1927 by Kermack and Mckendrick [27]
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and in 1928 by Reed and Frost, though not published until the 1950s [28]. In the SI

model, possible states include (S)usceptible and (I)nfected. Susceptible individuals

move to the infected state after being exposed to an infected individual, which occurs

with some constant rate α. In the SIR model, a (R)ecovered state is included, in

which individuals are effectively removed from the population. Infected individuals

move to the recovered state with some constant rate β. An underlying social network

constrains interactions between individuals. There are numerous variants of these

models, such as the SIS model in which infected individuals can become susceptible

again.

Complex contagion Social (or “complex”) contagion are better explained by thresh-

old models [29,30]. Like the SI model, there are two states: susceptible and infected.

However, the probability for a node u to become “infected” is a nonlinear function

of the number of neighbors which are already infected. A threshold φ is specified at

the beginning of a simulation, and the probability of a susceptible node u becoming

infected is nonzero only if the fraction of infected neighbors of u is greater than φ. A

stochastic version of this model allows for specifying a distribution of thresholds. In

a social context, this thresholding process is intended to mimic social reinforcement

– that is, the behavior of an individual is determined by the fraction of their neigh-

bors which they see already engaging in that behavior. This seemingly innocuous

mechanism is critical for explaining how information and ideas spread in social net-

works. [31, 32]. An interesting model introduced by Dodds & Watts [33] was shown

to interpolate between simple contagion models and threshold models.

10



Information cascades Another similar model is the Independent Cascades (IC)

model for information diffusion. The dynamics of the IC model are in fact equivalent

to the famous bond percolation model, and the final state can be mapped to that of an

SIR model [34,35]. The IC model is well-studied in the computer science community

for its theoretical “influence maximization” problem [4, 36]. As with the previous

models, the IC model involves starting with an initial seed of infected nodes. At

each discrete time step t, every newly activated node u gets one chance to infect each

uninfected neighbor v, and succeeds with probability puv, a parameter specified at the

start of the simulation. If u infects v then in time step t+ 1, node v will get a chance

to infect its neighbors. This process continues until no more spreading is possible.

The resulting collection of edges traced by the infection forms a tree (because if u

infects v and v infects w, it is impossible that w infects u). In [36] the authors showed

how the IC model could be extended to complex contagion. Kempe et al. applied the

IC model to modeling the propagation of recommendations [36], Gomez-Rodriguez

et al. used the IC model to study how information flows through blogs [37], and

Goldenberg et al. studied the dependence of the IC model on network structure [38].

2.2.2 Features of complex contagion

The simple contagion models used to describe biological contagion and complex con-

tagion models used to describe social contagion contrast greatly in their resulting

dynamics. Namely, Watts proposed a model for complex contagion and showed there

exists a cascade window where the final outbreak size is non-monotonically related

to the network density [30]. That is, increased network density can inhibit diffusion

whereas in simple contagion increased network density always promotes diffusion. It
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should be highlighted that this feature depends on the threshold and is not observed

in all complex contagion models [39]. Closely related to network density, clustering

plays an important and distinct role in the spreading of contagion. In simple con-

tagion, it is well-known that clustering inhibits diffusion [40]; however, the role of

clustering in the spreading of complex contagion is less clear. In fact, studies show

that clustering can either promote or inhibit contagion [23, 39, 41]. Finally, in com-

plex contagion, long ties (edges which bridge communities) can inhibit diffusion [42],

giving rise to the saying “weakness of long ties.” This entirely opposes the “strength

of weak ties” result [43] that shows long ties are extremely important to the efficient

spreading of simple contagion.

2.2.3 Social and opinion dynamics

There is a breadth of literature in the field of social/opinion dynamics, which also

attempts to model information flow. Here the state of a node is its opinion, and at

each time step a node(s) updates their opinion. The first goal is to understand if

the system will reach consensus on an opinion or if there is coexistence. If there is

consensus, the second goal is to determine how quickly the system reaches consensus.

DeGroot learning The DeGroot model [44] assumes that each individual i has

a continuous-valued opinion xi(t) ∈ [0, 1] which is updated in time step t + 1 by

averaging all of i’s neighbors’ opinions at time t. This can compactly be represented

by the equation

x(t+ 1) = Ax(t)

12



where A is the adjacency matrix of the network (normalized by dividing each row

by ki so that each row sums to unity). Then A is a stochastic matrix and the above

equation describes a Markov chain. Familiar conditions for the convergence of Markov

chains [45] give corresponding conditions for when there is consensus on an opinion

x(∞) ∈ [0, 1]N .

Voter model Unlike the DeGroot model, the traditional “voter model” [46, 47]

supposes each individual i has a discrete opinion xi ∈ {0, 1}. For example 0/1 may

represent the democratic/republican candidates. The voter model is a Markov process

which can be described in discrete or continuous time. In the discrete time version, at

time t+ 1 an individual i is chosen uniformly at random to be updated. One of their

neighbors j is chosen uniformly at random, and xi(t+1)← xj(t). The dynamics stop

after T time steps and the quantity of interest is the average density of 1’s,

ρ(T ) ≡ 1
N

N∑
i=1

xi(T ).

An unrealistic feature of the voter model is that on any finite network ρ will reach

0 or 1 starting from any initial configuration. That is, everyone eventually shares

the same opinion. To deal with this unrealistic issue, several variants of the voter

model have been proposed in which consensus is either slowed or prevented altogether.

Some variants include: noise (random changes in opinion), multiple states, zealots &

contrarians (individuals that never change their opinion or that tend to go against

their neighbors), aging/inertia (the longer an individual has had an opinion, the

lower their chance of copying a neighbor), nonlinear rates (the chance of copying

is a nonlinear function of the fraction of neighbors holding opposing opinions), and
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concealed & public opinions. See [48] for a survey of voter models.

Axelrod model The Axelrod model [49] was introduced as a model for the dis-

semination of culture. We cover it here because it incorporates a desirable property,

social homophily, and gives rise to interesting dynamics which could be applicable to

information flow. It is based on two principles: (i) individuals become more similar

when they interact, (ii) individuals interact more often with people that are similar to

them. The model assumes each node u has F cultural traits σf (u) where f = 1, . . . , F .

Each trait can take on values in {1, . . . , q} and thus a node’s state is represented by

a vector σ(u) ∈ {1, . . . , q}F . In a single time step, a node u and a neighbor v are

selected at random. The average overlap between their states is computed as

ω(σ(u), σ(v)) ≡ 1
F

F∑
f=1

δ(σf (u), σf (v)).

With probability ω(σ(u), σ(v)), nodes u and v interact and one of the traits f which is

different is selected at random. The update puts σf (v)← σf (u), i.e. the trait spreads

to the neighbor. An interesting feature of this model is that the dynamics depend

heavily on the number of options for each trait, q. When q is small, individuals

initially share many traits and so consensus is quickly reached. When q is large,

interactions are rare and fragmented cultural domains emerge.

2.3 Information theory and entropy

The goal of this section is to introduce the field of information theory and some

of the relevant information-theoretic measures, concluding with the estimator which
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will be our focus. Throughout this section, we use capital letters to denote random

variables. Specifically, we are interested when X is a discrete random variable with

finite support X (also called the alphabet of X) and probability mass function (PMF)

denoted p(·). For this section, we assume all logarithms are base-2.

2.3.1 Information theory

Information theory is a discipline that was born out of Claude Shannon’s 1948 paper

A Mathematical Theory of Communication [50]. The main goal of the discipline is

to rigorously prove limits of data compression and communication. Consider the

following setting (this example has been adopted from [51]): a source produces a

sequence of symbols X1, X2, . . . , which are drawn according to some distribution X

with support X . For now suppose X = {a, b, c} and p(a) = 0.7, p(b) = p(c) = 0.15.

We wish to encode the string X1, X2, . . . in binary. That is, we want to devise a

function C(x) which maps from X to finite length strings of {0, 1}. The function

should satisfy the prefix condition, that is the codeword C(x1) does not appear at

the start of any other codeword C(x2) (i.e. C(x1) = 0 and C(x2) = 01 break the

condition). Since there are only 3 symbols, a possibility is to use 2 bits for each

symbol. We could have C(a) = 00, C(b) = 01, and C(c) = 10. The expected

length of a codeword is 2 bits per symbol. We can improve this by exploiting the

fact that symbol a occurs very often. Hence we could give a single bit to a, i.e.

C(a) = 0, and then set C(b) = 10, C(c) = 11. Now the expected code length

is only 0.7 × 1 + 0.15 × 2 + 0.15 × 2 = 1.3 bits per symbol. It turns out we can

improve this further by encoding two symbols at once and assigning C(aa) = 0, since

p(aa) = 0.72 = 0.49 means that half the sequence will be aa. Encoding other pairs
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according to the (optimal) Huffman encoding scheme results in a average code length

of 1.20. Shannon proved that the optimal code length is equal to the entropy of the

source H(X) which will be defined in the next section. Encoding triples and so on

via Huffman encoding can produce average code lengths which are arbitrarily close

to the entropy, although this will increase compression time.

2.3.2 Entropy

The entropy of a discrete random variable X is a measure of the uncertainty in X.

It can be derived either as we saw above or as the only functional which satisfies four

desirable properties of information [50]; however, we will not detail this approach

here. The entropy is defined as the expected surprise, − log p(X).

H(X) ≡ Ep[− log p(X)]. = −
∑
x∈X

p(x) log p(x).

In the example from the last section,

H(X) = −0.7 log(0.7)− 0.15 log(0.15)− 0.15 log(0.15) = 1.18

which was nearly achieved by the pair encoding, having an average code length of

1.20. There is a long list of interesting mathematical properties of H(X). We only

note that H(X) ≥ 0 for any random variable X, and that for a fixed support X ,

H(X) is maximized when X is the uniform distribution on X (with H(X) = log |X |)

and minimized when X is a point mass (with H(X) = 0).

Commonly we wish to quantify the dissimilarity between two probability distri-
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butions. Suppose X and Y are random variables with PMFs p and q, respectively,

defined on the same support X (we can relax this by assuming only that X is abso-

lutely continuous with respect to Y , i.e. q(x) = 0 implies p(x) = 0 so that division by

zero never occurs). The Kullback-Leibler (KL) divergence is an asymmetric measure

which is a natural extension of the Shannon entropy. It is defined as

DKL(p || q) ≡ −
∑
x∈X

p(x) log q(x)
p(x) = −Ep[log q(X)] + Ep[log p(X)] = H(p, q)−H(X)

where H(p, q) is the cross-entropy between p and q defined as

H(p, q) ≡ H(X) +DKL(p || q) = −Ep[log q(X)] = −
∑
x∈X

p(x) log q(x).

The cross-entropy is the expected surprise in Y , where the expectation is incorrectly

taken according to X’s distribution. This quantifies the expected number of bits to

encode Y , given that we incorrectly believe Y follows X ′s distribution; while the KL

divergence is the additional number of bits. It is easy to see that H(X, Y ) ≥ H(X).

Other useful quantities are the joint entropy, conditional entropy, and mutual

information. The joint entropy of X, Y is simply the expected surprise in the joint

random variable (X, Y ) and is defined as

H(X, Y ) ≡ −
∑

(x,y)∈X×Y
p(x, y) log p(x, y).

The conditional entropy of X given Y is

H(X|Y ) ≡ −
∑

(x,y)∈X×Y
p(x, y) log p(x|y).
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The mutual information in X and Y is defined as

I(X;Y ) ≡ −
∑

(x,y)∈X×Y
p(x, y) log p(x, y)

p(x)p(y) .

Notice if X and Y are independent then the argument of the logarithm is 1 and so

I(X;Y ) = 0. In fact, I(X;Y ) = 0 if and only if X and Y are independent. The

mutual information thus measures the independence of X and Y . Another useful way

to write I(X;Y ) is

I(X;Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X).

Suppose now that we have a sequence of random variables X1, X2, . . . (not neces-

sarily identically distributed) and we want to quantify the long-time uncertainty. In

the context of dynamical systems, Xn may be the predicted temperature on day n

and we want to quantify our uncertainty in the weather forecasts. It does not seem

appropriate to use our uncertainty in predicting the temperature today or tomorrow

as an estimate of the “uncertainty in the weather,” rather we should use a average

over time. The information rate is defined as the limit of the joint entropy per symbol

h({Xn}) ≡ lim
n→∞

1
n
H(X1, . . . , Xn).

For stationary processes this reduces to

h({Xn}) = lim
n→∞

H(Xn|X1, . . . , Xn−1).

The information rate is a key concept in the Asymptotic Equipartition Property [52];
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allowing us to classify sequences as either typical or atypical.

Entropy and related quantities have many applications to dynamical systems. For

two stochastic processes X and Y , the transfer entropy TX→Y describes the uncer-

tainty in predicting the future of Y given the past of X [53]. It is a non-linear,

model-free generalization of Granger causality [54, 55]. Transfer entropy has been

applied in neuroscience, geoscience, and finance. An extension, the causation entropy

CX→Y |Z , is the transfer entropy conditioned on a third process Z [56,57]. Unlike the

transfer entropy, the causation entropy allows for determining indirect influence.

One of the challenges of information-theoretic approaches is in efficiently estimat-

ing the measures set forth. Generally a significant amount of data is required for the

estimators to converge. This is of concern in neuroscience where data is expensive, al-

though not so concerning for the application to social media. Much research has been

done on improving the computational and data efficiency of information-theoretic es-

timators such as conditional mutual information, cross-entropy, and transfer entropy.

For example, symbolic transfer entropy (STE) has been developed as an efficient

alternative to transfer entropy [58].

We now present the estimator which will be the focus of the following work. For

context, suppose we have text data which was generated on an online social media

platform such as Twitter or Facebook. Each word can be encoded as an integer, and

we can interpret the text as a random process indexed by the position of each word.

We wish to calculate the entropy rate h of this process. It is challenging to estimate

the entropy rate h for natural language data because information is present in both

the ordering of the words and the relative frequencies of words [59]. To this end,
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Kontoyianni et al. [60] proved that the estimator

ĥ ≡ T log T∑T
t=1 Λt

, (2.1)

converges to the true entropy rate h of the text, where T is the length of the text and

Λt is the match length of the prefix at position t: it is the length of the shortest string

of words starting at t that has not previously appeared in the text. Alternatively, it

is one more than the length of the longest string of words starting at t that appears

in the past text.

2.4 Measuring information flow:

the cross-entropy

Equation (2.1) generalizes to an estimator of the cross-entropy h× between two

texts A and B [61, 62]:

ĥ×(A | B) ≡ TA log TB∑TA
t=1 Λt(A | B)

, (2.2)

where TA and TB are the lengths of the two texts, and Λt(A | B) is the length

of the shortest substring [At, At+1, . . . , At+Λt(A|B)+1] starting at position t of text A

not previously seen in text B. Previously, in this case, refers to all the words of

B written prior to the time when the tth word of A was written. Specifically, we

compute Λt(A | B) by searching for each substring [At], [At, At+1], ... within B:t ≡

[Bj | time(Bj) < time(At)], the ordered sequence of words in B that appear before
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the time of the t-th word in A, until the first substring [At, . . . , At+Λt(A|B)+1] that is

not seen in B:t. By matching the future text of A (words posted at times ≥ time(At))

against the past text of B (words posted at times < time(At)) at every t, only B’s

past predictive information about A’s future is estimated and temporal precedence is

satisfied. We can then measure the information flow from individual B to individual

A by computing the cross-entropy ĥ×(A | B) using their two text streams. Low

values of ĥ×(A | B) indicate that B is very predictive of A, which we associate

with information flow. Higher ĥ×(A | B) indicates B is not predictive of A, which

suggests low information flow from B to A. We briefly note that this estimator can be

generalized beyond the pairwise setting, just as causation entropy generalizes transfer

entropy. Implementation details are described in [62].

We introduce one last information-theretic measure which is functionally equiva-

lent to the entropy (or cross-entropy). The predictability, Π, is obtained from Fano’s

Inequality [52], and offers an upper bound on how accurately an ideal predictive al-

gorithm can perform when working with data of a given entropy. The predictability

is the probability that such an algorithm will correctly predict the next word.

h(Π) + (1− Π) log(z − 1) ≥ h× (2.3)

where h(Π) ≡ −Π log(Π)− (1− Π) log(1− Π) and z is the cardinality of the sample

space; in our problem, this is the vocabulary size or number of unique words for the

quoter model (Sec. 3.1.1). The predictability is then given by finding numerically the

largest Π that satisfies Eq. (2.3). Equation (2.3) demonstrates that h× and Π are

functionally equivalent (and inversely related, with higher h× corresponding to lower

Π and vice versa) as z is a constant for the model we study here. Higher values of Π
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(lower h×) correspond to higher amounts of information flow.

2.5 Modeling information flow:

the quoter model

We now introduce the quoter model, which was first proposed by Bagrow and Mitchell

in [1]. The quoter model is an idealized model for how people communicate and

generate text through online social media platforms such as Twitter or Facebook,

although it may afford itself to more general communication. The idea behind the

quoter model is that people tend to copy (quote) other people. This may occur

for one of two reasons: (i) the individual is reposting/retweeting someone else (ii)

the individual is replying to someone else and is borrowing a short phrase. For an

example of the latter, if Bob asks Alice “would you like to get lunch tomorrow,” Alice

may reply ”I would love to get lunch.” The words “to get lunch” are quoted, and

“love” is roughly a rewording of “like.” The quoter model takes a social network and

generates text streams for each individual by a combination of sampling from a given

vocabulary distribution or by quoting words from their neighbors. The dynamics of

the model are dependent on the quote probability, q, which determines the frequency

of quoting as opposed to random sampling. In the case q = 0, the text streams

are completely random and there will be no information flow, and no dependence on

network structure. Implementation details are discussed later in Sec. 3.1.1. The result

of simulating the quoter model for T time steps, is a collection of N text streams,

which we can apply our pairwise measure of information flow – the cross-entropy.
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2.6 Related work

An information-theoretic approach was used to study the dynamics of human co-

ordination in [63]. The authors used symbolic transfer entropy (STE) to quantify

temporal correlations between Twitter users. The collection of tweets consisted of

posts related to “collective events” such as those containing a hashtag pertaining to a

protest. The value of STE notably depends on a temporal resolution parameter, and

the authors found that these events were marked by a change in “temporal scale”.

That is, they found that the maximum STE was found at a different temporal reso-

lution. Closely related, Ver Steeg and Galstyan (2012) used transfer entropy to study

influence on Twitter, and consequently infer social networks [64]. We crucially men-

tion that both of these studies employ information-theoretic measures only to the

timings of tweets, and do not examine the textual content of the tweets. Ver Steeg

and Galstyan (2013) extended their previous approach to involve topic modeling [65].

They used transfer entropy on the timings and the topics extracted from the text to

quantify influence. De at al. [66] proposed a model for opinion dynamics in which

individuals hold a latent continuous opinion and post new messages based on the en-

tire history of their neighbor’s messages before updating their opinion. This model is

similar to the quoter model and the DeGroot model. Although the dynamics depend

on the entire history of the process, the quantity of interest is only the final opinion.

Finally, the cross-entropy estimator has been used to study the limits of predictability

of mobility patterns and social media posting. [62, 67].
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Chapter 3

The quoter model and

complex contagion

In this chapter, we simulate the quoter model on various synthetic and real-world

networks to assess the impact of network structure on information flow. We make

comparisons with simple and complex contagion models. This study was published

in [68].

3.1 Materials and methods

Here we describe the methods used to simulate the quoter model and measure infor-

mation flow over a network. We describe the network features we study in relation to

information flow, and we provide the details on the synthetic (random graph models)

and real-world network datasets we study.
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3.1.1 Simulating the quoter model

The following section describes the parameters of the quoter model and the process

used to simulate the quoter model. The quoter model requires a network G = (V,E)

with |V | = N nodes and |E| = M edges. In our simulations, at each time step t

a node v (also called the ego) is randomly selected. A message length m is chosen

randomly according to a Poisson distribution with mean λ. Node v generates text

(encoded as an integer in {1, . . . , z}) according to one of two mechanisms:

• Quoting a neighbor. With probability q, node v picks a random neighbor u (also

called the alter) to quote from. A contiguous block of m words is randomly

chosen from node u’s text up to and including time t− 1.

• Randomly generating new content. With probability 1 − q, node v generates

m words at random according to their vocabulary distribution. We assume the

vocabulary distribution follows a Zipf law which is commonly observed in real-

world language usage patterns [1]. The Zipf law says that the probability of

observing word w with rank rw ∈ {1, . . . , z} is given by W (w) = H−1
z,αr

−α
w where

α > 0 is the Zipf exponent and Hz,α = ∑z
r=1 r

−α is the generalized harmonic

number.

In either case, the m words are appended to node v’s text and marked with a time

stamp t (these time stamps are only important when computing h×). Time then

increments by one, and the process repeats until T = 1000N time steps have elapsed

so that each node has created a text stream of approximately 1000λ = 3000 words.

The choice of T = 1000N was made so that the entropy estimator would converge

(see [60, 61] for convergence proofs). For our simulations, unless otherwise specified,
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we assume q = 1/2, λ = 3, z = 1000, α = 1.5 as used in [1]. We investigate other

parameter choices in Sec. 3.2.4 and App. A.1.

3.1.2 Measuring information flow over the net-

work

The result of simulating the quoter model is N text streams approximately of length

3000. We then compute and record h×(v|u) for all (u, v) ∈ E, according to the

cross-entropy estimator (Eq. 2.2). We perform several simulations for a fixed network

and then compute 〈h×〉 and Var(h×), the mean and variance of h× respectively. The

mean and variance are thus computed over several edges for a single simulation, and

over several simulations. In App. A.2 we investigate the distribution of h× and give

support for using the mean and variance as appropriate summary statistics. Since h×

is negatively correlated with information flow (higher h× implies lower information

flow) we also compute the predictability Π, which is obtained from Fano’s Inequal-

ity [52], and is functionally equivalent to h× (since the vocabulary distribution is the

same for all nodes), but is positively correlated with information flow. This quantity

allows us to directly compare our view of information flow with traditional contagion

approaches.

3.1.3 Simulating contagion models

To compare and contrast information flow in the quoter model, we also simulate

traditional models of information flow, specifically simple and complex contagion.

For simple contagion we simulate a stochastic SIR model on different networks (1000-
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node Erdős-Rényi and Barabási-Albert networks, as well as a sample of real-world

networks) using [69]. For the simulations here we set the transmission rate 20 and

recovery rate 1. We initialize with a random 5% of the nodes infected, and run 10

outbreaks on 100 realisations of the network for each choice of average degree 〈k〉.

For complex contagion we use exactly the same parameters, except we introduce a

threshold function for transmission as in [30], where the transmission rate is set to

zero if the proportion of infected neighbors is below some threshold φ (and we set

φ = 0.18 following [30]). For all simple and complex contagion simulations we measure

the peak outbreak size, noting that larger outbreak sizes conventionally correspond

to greater information flow.

3.1.4 Assessing the impact of structure on dy-

namics

In this work we use a number of network models (random graphs) tailored to control

for various network properties such as density, clustering, and modular structure.

Here we describe the models and properties we study in relation to information flow

in the quoter model.

Density and average degree To explore how network density relates to infor-

mation flow, we create Erdős-Rényi and Barabási-Albert networks of N nodes with

varying average degree, 〈k〉, allowing us to the tune their densities. For the Erdős-

Rényi networks we add edges independently with probability p = 〈k〉/(N−1). For the

Barabási-Albert model we start with m = 〈k〉/2 nodes with no edges and add nodes

which each form m links with previous nodes according to preferential attachment.
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Here we measure how cross-entropies varies with the densities of the networks using

their average degree 〈k〉 and edge density M/
(
N
2

)
where M is the total number of

edges in the network. To complement the Erdős-Rényi and Barabási-Albert results,

we also compare the densities of real networks with their average cross-entropy.

Degree heterogeneity To assess the role of degree heterogeneity on information

flow, we study the simplest random graph model with tunable degree heterogeneity,

termed “dichotomous networks” in [70,71]. Dichotomous networks are generated via

the configuration model. They have only two types of nodes – those with degree k1

and those with degree k2. We assume there are N/2 nodes of each degree and fix

k1 + k2 so that the average degree is fixed. The mean and variance of the degree

distribution, respectively, are given by µ = 1
2 (k1 + k2) and σ2 = (k1− k2)2/4. We are

interested in how the cross-entropy varies with k1/k2. When k1/k2 = 1 the network

reduces to a random k-regular graph (σ2 = 0), while σ2 →∞ as k1/k2 → 0.

Clustering We studied the role of clustering using two methods. First, we con-

structed “small-world” networks using the Watts-Strogatz (WS) model described in

Sec. 2.1.2. We varied the rewiring probability p to generate networks with varying

clustering and diameter.

As mentioned in Sec. 2.2.2, previous research has showed mixed results when

studying the impact of clustering on spreading. These mixed results are due to

the challenge of generating networks with tunable clustering but for which other

properties, such as density or diameter, can be controlled for. We thus should be

careful in drawing conclusions from one demonstration. With this skepticism, we

turn to another method: we apply the established stochastic rewiring or “x-swap”
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method [72–74] to real-world networks. The x-swap method repeatedly chooses two

links at random and two randomly selected endpoints of those links are swapped

(provided that the number of links does not change by swapping and the network does

not become disconnected). The resulting network has lower clustering but the degree

distribution is preserved. We performed 5M swaps for each real network, where M is

the number of edges, and then compared h× for the original and x-swapped networks

to assess the role of clustering on information flow.

Community structure and modularity To investigate the importance of com-

munity structure in information flow, we generated networks according to the stochas-

tic block model, explained in Sec. 2.1.2. Each network has N nodes and two planted

blocks of nodes, denoted A and B, of equal size m ≡ N/2. Here there are two

connection probabilities: p0 (the within-block connection probability) and p1 (the

between-block connection probability) governing the probability for a link to form

between nodes in the same block and in different blocks, respectively. The expected

modularity in this two-block stochastic block model is

Q = 1
2

(
p0 − p0m+ p1m

p0 − p0m− p1m

)
.

Our main quantities of interest are the average cross-entropy on within-block edges,

〈h×(within)〉, the average cross-entropy on between-block edges 〈h×(between)〉 and

their difference, ∆h× ≡ 〈h×(between)〉 − 〈h×(within)〉. These quantities describe to

what extent information flows within and between communities.

We also computed modularity for real networks using the Louvain method [19].

The Louvain method is a hierarchical community detection algorithm that finds a
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partition of nodes that maximizes modularity. As commonly done, we initialize each

node in its own community.

A heterogeneous population Previous research [75, 76] has shown that hetero-

geneity in the dynamical parameters (such as recovery rates in the SIR model) can

be as important as structural heterogeneity. Communities offer an obvious way to

implement such heterogeneity. We again use the two-block SBM, but now distinguish

the two groups A and B by giving them different Zipf exponents αA, αB, respectively,

for their vocabulary distributions. A larger α (steeper distribution) corresponds to a

less diverse vocabulary, and could capture a group of people that is more consistent

and repetitive in their dialogue. In contrast, a lower α (shallower distribution) may

describe a group of people that use more diverse words.

3.1.5 Network datasets

To supplement the above graph models, we also studied contagion and quoter model

dynamics on real-world networks. We developed a corpus of 10 social networks span-

ning a range of sizes and densities that were used as the basis for simulation. See

App. B for details on network sources and processing. Table 3.1 shows several de-

scriptive statistics for the networks we analyzed.

3.2 Results

Here we compare information flow in the quoter model with traditional simple and

complex contagion (Sec. 3.2.1), then investigate how degree heterogeneity (Sec. 3.2.1),
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Table 3.1: Descriptive statistics for real-world networks used in this study. ASPL: Average
Shortest Path Length. Modularity computed using the Louvain method [19].
Network |V | |E| 〈k〉 Density Transitivity ASPL Modularity Assortativity
Sampson’s monastery 18 71 7.9 0.464 0.53 1.54 0.29 −0.07
Freeman’s EIES 34 415 24.4 0.740 0.82 1.26 0.07 −0.15
Kapferer tailor 39 158 8.1 0.213 0.39 2.04 0.32 −0.18
Hollywood music 39 219 11.2 0.296 0.56 1.86 0.20 −0.08
Golden Age 55 564 20.5 0.380 0.53 1.64 0.45 −0.13
Dolphins 62 159 5.1 0.084 0.31 3.36 0.52 −0.04
Terrorist 62 152 4.9 0.080 0.36 2.95 0.52 −0.08
Les Miserables 77 254 6.6 0.087 0.50 2.64 0.56 −0.17
CKM physicians 110 193 3.5 0.032 0.16 4.24 0.61 0.11
Email Spain 1133 5452 9.6 0.009 0.17 3.61 0.57 0.08

clustering (Sec. 3.2.2) and network modularity (Sec. 3.2.3) affect information flow. We

also study how heterogeneity in the parameters affects information flow compared to

the effects of network structure (Sec. 3.2.4).

3.2.1 Information flow and models of contagion

In Sec. 2.2.2 we reviewed the distinguishing features of simple and complex contagion.

We know increased density is associated with increased spreading in simple conta-

gion, while complex contagion exhibits a non-monotonic relationship with density.

Figures 3.1A,B illustrate this difference. For the traditional contagion models we use

the average peak size of the outbreak to measure information flow. For the quoter

model we use the average predictability, Π. It should be noted that it is unclear

what the mapping between average peak size and predictability is. Thus we limit our

conclusions to qualitative statements about how the trends compare. From Fig. 3.1A

we see that density promotes information flow in simple contagion. Figure 3.1B con-

firms a non-monotonic trend with density; density promotes spreading up to a certain

point (indicated by the dashed line), and then subsequently shows an opposite effect,
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Figure 3.1: Denser networks are associated with higher information flow for simple con-
tagion but lower information flow for both complex contagion and the quoter model. Here
density is measured by average degree 〈k〉 for Erdős-Rényi (ER) & Barabási-Albert (BA)
model networks. (A) Simple contagion: SIR model. (B) Complex contagion: SIR model
with thresholding mechanism as in [30], with threshold φ = 0.18. (C) Quoter model. (Panel
C, inset) Average cross-entropy on links; higher cross-entropies correspond to lower pre-
dictabilities and lower information flow, unlike for contagions where higher average peak
sizes correspond to higher information flow. Networks consisted of N = 1000 nodes and
each point constitutes 200 simulations; parameters for simulating information flow in these
models are described in full detail in Sec. 3.1.

which is mimicked by the quoter model in Fig. 3.1C. These results are supported by

simulations on real-world networks shown in Fig. 3.2.

In Fig. 3.1C we see that Erdős-Rényi (ER) and Barabási-Albert (BA) networks

are qualitatively indistinguishable in terms of information flow. It is rarely the case

that dynamical processes on ER and BA networks show similar outcomes. Hubs

generally play an important role in mediating diffusion. We investigate this further

by examining the variance of h× in ER and BA networks in Fig. 3.3A. We observe

that h× is slightly more variable in BA networks than ER networks, and that this

difference is exaggerated for smaller networks.

To further explore the role of degree heterogeneity, we investigate dichotomous

networks (Sec. 3.1.4). Here half the nodes have degree k1 and the other half have

degree k2. We vary the degree ratio k1/k2 to tune the variance of the degree distri-
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Figure 3.2: Information flow on real-world networks. (A) Simple contagion: SIR model.
(B) Complex contagion: SIR model with thresholding mechanism as in [30], with threshold
φ = 0.18. (C) Quoter model. Here information flow measures (average peak size, average
text predictability) are compared to network density M/

(N
2
)
. The association between infor-

mation flow and density, either positive (simple contagion) or negative (complex contagion,
quoter model), is significant (Wald test on non-zero regression slope, p < 0.05). Each point
constitutes 300 simulations. Parameters for simulating information flow in these models
are described in full detail in Sec. 3.1.

bution. In Fig. 3.3B we observe that degree heterogeneity has little impact on the

average cross-entropy, as we saw in Fig. 3.1C. The average degree plays the largest

role in mediating information flow. A minor observation is that smaller networks

seem to have slightly higher information flow. Figure 3.3C again shows that degree

heterogeneity relates to the variance of the cross-entropy. Heterogeneous networks

have more heterogeneous h×. That is, there exists overly influential (or overly pre-

dictable nodes). Which nodes are overly predictable? We answer this by computing

conditional expectations of h× conditioned on degree of the ego (the node being pre-

dicted) and alter (the node predicting). In Fig. 3.3D we see that the degree of the

ego but not the alter plays a role in the information flow: degree-k1 egos have more

information flow than degree-k2 egos regardless of the degree of the alter.
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3.2.2 Interplay of clustering and information

flow

We now study how clustering (measured according to 2.1.2) affects information flow.

Clustering plays a complicated role in both simple and complex contagion [39,40] and

we report interesting, if mixed, results in Fig. 3.4 with the quoter model’s information

flow.

In Fig. 3.4A we create Watts-Strogatz networks with tunable clustering. From the

top panel, we see that lower rewiring, and thus higher clustering, is associated with

increased information flow. This result is robust to different choices for the average

degree and network size. Network size again plays a negligible role. The bottom

panel shows how the rewiring probability changes the clustering and average shortest

path length (ASPL) simultaneously. Matching the top and bottom panels, we see

the largest change in information flow occurs when the clustering starts to drop but

the ASPL is relatively constant. This observation supports that clustering, and not

ASPL, is the cause of increased information flow.

In Fig. 3.4B we show the result of applying the x-swap randomization procedure to

real-world networks. We compute h× on both the original and x-swapped networks.

The x-swapped networks have lower clustering than the original. Half of the networks

show a decrease in h× while half show an increase, weakening the previous results on

small-world networks.

In Fig. 3.4C we address the challenge in making causal statements about the

relationship between network structure and dynamics – many network properties

are inherently linked. As a result, the x-swap method also destroys other network
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properties simultaneously. We compare four network properties in the original and

x-swapped networks, and observe that the x-swap method affects clustering but also

the ASPL, modularity, and assortativity. This means the changes in information flow

seen in Fig. 3.4B may be due to changes in a combination of these (and possibly

other) network properties.

3.2.3 Community structure and the weakness of

long ties

The effects of long-range links on information flow have been investigated for some

time, from Granovetter’s seminal “strength of weak ties” observation in simple con-

tagion [43] to Centola’s contrasting “weakness of long ties” observation in complex

contagion [42]. We use the stochastic block model described in Sec. 3.1.4 to elucidate

this effect in the quoter model.

In Fig. 3.5 we measure information flow between and within groups. In Fig. 3.5A

we see that as the within-block connection probability p0 increases, the network den-

sity increases too, and thus it is not surprising that h× increases. However, we note

that the cross-entropy between blocks is always higher, supporting the weakness of

long ties result. In Fig. 3.5B the difference in information flow ∆h× increases due to

between-block links containing less and less predictive information. In Fig. 3.5C we

see that this result is completely explained by the modularity, and not the individual

connection probabilities p0, p1. A surprising result is that even when p0 < p1, the

quantity ∆h× is positive. This suggests that even when there are no well-defined

communities (i.e. a bipartite graph with a few extra links added in one bipartition)
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within-block edges always contain more predictive information.

3.2.4 The role of dynamic heterogeneity

Previous research [75, 76] has highlighted the importance of including heterogeneity

in the dynamical parameters of a model. We investigated how information flows

in the stochastic block model when the nodes in the two blocks have different Zipf

exponents: nodes in block A have exponent αA and nodes in block B have exponent

αB.

Figure 3.6 shows how information flow changes when the two blocks have dif-

ferent vocabulary distributions (Fig. 3.6A,C) compared with the same distribution

(Fig. 3.6B). For illustration, we show the Zipfian vocabulary distributions for the two

groups as insets in Fig. 3.6. We observe a much larger trend in how cross-entropy

changes with modularity when the exponents are not equal compared to when they

are equal. This underscores how structural features (the degree of modularity) greatly

magnifies the effects of intrinsic dynamic heterogeneity (different vocabulary distribu-

tions). While modularity plays a role even when the two groups have identical vocab-

ulary distributions (Fig. 3.5), this difference is challenging to detect in Fig. 3.6B when

viewed on the scale of groups with different vocabulary distributions (Fig. 3.6A,C).
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Figure 3.4: Mixed effects of clustering on information flow. (A) Information flow on small-
world networks of size N ∈ {200, 400} and average degree k ∈ {6, 12}. As network rewiring
increases (and clustering decreases) h× increases. This suggests that clustered networks
promote information flow. Rewiring a small-world network changes the diameter (L) as
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clustering begins to drop, not when diameter begins to drop. Each point constitutes 300
trials. (B) Average cross-entropy versus transitivity for real-world networks. By randomiz-
ing networks using the standard “x-swap” method (Sec. 3.1.4), we can lower the transitivity
and investigate how h× changes. Some networks show little change in h× on randomized
networks compared with the original networks, while others show a slight decrease in h×.
This is especially visible in the inset comparing h× directly. Each point constitutes 300
simulations. (C) Several network properties before and after the x-swap method. While the
x-swap method lowers transitivity, it also alters other important network properties, making
it challenging to isolate the role of clustering from other properties.
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Figure 3.6: Effects of dynamic heterogeneity on information flow in the stochastic block
model. Nodes in group A have Zipfian vocabulary distribution with exponent αA while nodes
in B have exponent αB. The between-block connection probability is fixed (p1 = 0.15) and
the within-block connection probability p0 is varied to generate a range of modularities. Since
the structure is symmetric (subgraphs A and B have the same size and expected density),
we only show the result of fixing αA = 2 and varying αB. Each point constitutes 150 trials.
(A) The vocabulary distribution of group A has a lower Shannon entropy than of B, and
this difference is visible from examining links A → A and B → B. When examining links
A → B and B → A, the cross-entropy is mainly dependent on the vocabulary distribution
of the alter. As modularity increases, differences between the predictabilities of various
nodes are exaggerated. (B) In homogeneous communities, the cross-entropy does not vary
with modularity at such a scale. (C) The vocabulary distribution of group A has a higher
Shannon entropy than of B. Similar mirror results are seen as in panel A.
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Chapter 4

Analysis of the quoter model

In this chapter we present some analytical results for the quoter model. The quoter

model in its general form is challenging to analyze for several reasons. First, it is

nontrivial to write down as a stochastic process since we must keep track of the entire

history of the process and the length of the process is variable (due to the message-

length distribution). What exactly is a state, and how do we specify transition rates?

Second, on arbitrary networks, we need to account for feedback loops and indirect

influences (i.e. u quotes v and v quotes w, so information flows indirectly from u to

w). Third, the quantity h× (from the cross-entropy estimator) is difficult to compute

unless the exact text is known. Even if we assume the length of the text generated at

time t is exactly tλ, when computing Λt we need to consider all possible partitions of

(T−t)λ future words: (i) into messages of lengthsm1,m2, ... such that∑mi = (T−t)λ

and (ii) into types, quote or random, for each message. Nonetheless, if we make some

simplifying assumptions and restrict ourselves to special cases of the quoter model,

we will find interesting analytical results.
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4.1 One link

Here we study the most basic network: two nodes u, v connected by one directed link

(u, v). That is, v quotes u but u does not quote v. Approximate calculations of h× for

this scenario were given in [1]. We restate them here and offer some improvements.

The probability that Λt = ` is obtained from the law of total probability.

P(Λt = `) = P(Λt = ` | quote)P(quote) + P(Λt = ` | random)P(random)

≡ qP(ΛQ = `) + (1− q)P(ΛR = `).

In the first line, we condition on whether the message at position t was quoted or

randomly generated. We then denote P(ΛQ = `) = P(Λt = ` | quote), where we have

suppressed the dependence on the position t. Taking the expectation of both sides

over `, we get Λt, the expected longest match length at position t.

Λt = qΛQ + (1− q)ΛR

with ΛQ and ΛR denoting the appropriate conditional expectations. We thus need to

estimate ΛQ and ΛR.

ΛR: Suppose t words have been posted by the ego in total (thus approximately t

words have been posted by the alter also), and assume that the next message posted

by the ego is randomly generated. We now ask, what is the probability that the next

m words posted by the ego match somewhere in the alter’s text? The probability
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that the ego’s next word matches a specific location in the alter’s text is

d ≡
z∑
i=1

W (wi)2

which is the Simpson index of the vocabulary distribution. There are t−m + 1 ≈ t

(when t � m) positions in the alter’s text where a match of length at least m can

occur, and each occurs with probability dm. Hence the expected number of matches

of length at least m is tdm, which we denote C(m). The expected longest match

length m∗ should satisfy C(m∗) ≥ 1 and C(m∗ + 1) < 1. That is, we will be likely to

see a match of length m∗ but not of length m∗ + 1. Solving for C(m∗) = 1 we find

m∗ = log(t)
log(1/d) .

Finally, ΛR is one more than the longest match length.

ΛR = log(t)
log(1/d) + 1.

ΛQ: Again suppose the ego and alter have posted t words, and assume that the next

message posted by the ego is a quote of length λ. Then, clearly Λt ≥ λ + 1. What

is the expected amount that random chance extends this match length? There are

(t − λ)dλ + 1 ≈ tdλ + 1 copies of the original quote in the alter’s text including the

original quote itself. The expected number of matches of length at least m which

follow any copy of the quote, is then (tdλ + 1)dm ≡ C(m). Solving C(m∗) = 1 as

before, we get

m∗ = log(tdλ + 1)
log(1/d) .
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It is not accurate to say that ΛQ equals λ + m∗ + 1. If λ + m∗ + 1 � ΛR then it

is likely that the match is solely due to the quote at position t. We then expect

Λt+1 = Λt− 1, Λt+2 = Λt− 2, and so on until random matching is again likely. Based

on an observation from [1], we find that ΛQ decays linearly back down to ΛR. We

thus derive the average ΛQ at position t to be

ΛQ = 1
λ̃− ΛR + 2

λ̃−ΛR+1∑
j=0

(λ̃− j + 1) = 1
2

[
λ+ log(tdλ + 1)

log(1/d) + log(t)
log(1/d) + 2

]

with λ̃ = λ+ log(tdλ+1)
log(1/d) .

We now use the formula Λt = (1− q)ΛR + qΛQ and approximate Λ ≡ ∑t Λt by an

integral.

Λ =
T∑
t=1

Λt

≈
∫ T

0
{(1− q)ΛR + qΛQ} dt

=
∫ T

0

{
(1− q)

[
log(t)

log(1/d) + 1
]

+ q · 1
2

[
λ+ log(tdλ + 1)

log(1/d) + log(t)
log(1/d) + 2

]}
dt

= T

log(1/d)

{
(1− q)

(
log T

d
− 1

)
+ q

2

[
log T

dλ+2 +
( 1
Tdλ

+ 1
)

log(Tdλ + 1)− 2
]}

The cross-entropy h× can be computed by substituting Λ into the estimator in Sec. 2.4.

By a standard asymptotic analysis we find

lim
T→∞

h× = log(1/d).
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This expression is equivalent to the Rényi entropy of the vocabulary distribution

hα = 1
1− α log

(
z∑
i=1

W (wi)α
)

with α = 2. The Rényi entropy with α = 2 is always lower than the Shannon entropy,

which is the limiting case as α → 1. One might think that h× would converge to

the Shannon entropy of the vocabulary distribution, since the frequency of words in

the alter’s and ego’s texts will converge to the common vocabulary distribution, and

the cross-entropy H(W,W ) is equivalent to the Shannon entropy. This indicates that

there is reduced uncertainty due to the time ordering, and thus the quoter model

has interesting temporal features which the estimator used here captures because it

satisfies temporal precedence. The Rényi entropy also appears in the longest common

subsequence problem with non-iid sequences [77]. Shockingly, the limiting behavior

of the cross-entropy only depends on d and does not depend on q or λ. However,

for finite time we shall find that h× does exhibit noticeable dependence on q and λ.

Figure 4.1 shows qualitative agreement between theoretical and actual values of h×.

There are some discrepancies at extreme values of q, which appear to be exaggerated

at higher values of z (higher diversity vocabularies). We see that h× decreases as q

and λ increase. On the other hand h× increases with z. This is intuitive based on

the definition of the estimator; more frequent, longer copying, in concert with a lower

diversity vocabulary leads to long match lengths and ultimately lower h×.

44



0.0 0.2 0.4 0.6 0.8 1.0
Quote probability, q

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

h
×

A

z = 2, = 3
z = 2, = 6
z = 2, = 9

z = 4, = 3
z = 4, = 6
z = 4, = 9

z = 8, = 3
z = 8, = 6
z = 8, = 9

z = 2, = 3
z = 2, = 6
z = 2, = 9

z = 4, = 3
z = 4, = 6
z = 4, = 9

z = 8, = 3
z = 8, = 6
z = 8, = 9

0.0 0.2 0.4 0.6 0.8 1.0
Quote probability, q

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

B

Figure 4.1: Theoretical (lines) and empirical (symbols) values of h× in the quoter model for
varying parameter values q, λ, z.This figure has been adopted from [1]. Symbols represent
empirical h× averaged over 100 simulations. The vocabulary distribution is discrete uniform
on {1, . . . , z}. (A) T = 1000, so that the length of the text is ≈ 1000λ, (B) T = 10000, so
that the length of the text is ≈ 10000λ

4.2 New contributions

Here we provide fresh insights into the approximations presented in the previous

section. Firstly, in calculating ΛR in Sec. 4.1 it was implicitly assumed, when solving

for m∗, that the remainder (or at least the immediate future) of the ego’s text was

entirely random. Suppose that there are t = 1500 alter words prior to the ego’s

current word and d = 1/2, then m∗ = log 1500
log 2 ≈ 10.55 which extends 3+ messages

of length λ = 3. Unless q is very low, it is likely that the ego makes a quote within

these next 3 messages. If quoting at the second message, there is a slightly higher

probability of extending the previous match of length m, than if the message was

random. This is because the quote can come immediately after (any copy of) the

previous match in the alter’s text. This occurs roughly with probability dm since

there are ≈ tdm copies of this match and the probability of quoting at any particular
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Figure 4.2: The match length Λt given that the next two messages are (R)andomly generated
or (Q)uoted. When conditioning on the status of next two messages, we call this a “2nd
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are 300 simulations and the curves are the result of binning t and computing an average Λt
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position is 1/t. In calculating ΛQ we similarly assumed the immediate future after

the quote was randomly generated. Although this seems like a naive approximation,

Fig. 4.2 suggests that the benefit from further partitioning the ego’s future text into

R and Q is negligible. We see that Λt primarily only depends on the whether the first

message is random or quoted. Also, when the second message is a quote, Λt is only

slightly larger as we expected. This (non-) result motivates us to look elsewhere for

improvements.

It turns out, solving C(m∗) = 1 in calculating ΛR and ΛQ is only a heuristic, for

which there exist better approximations. Two well-studied problems in probability
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theory which bear a resemblance to ours are the “longest common substring” problem

[77, 78] and the “longest run of heads” problem [79, 80]. In the former, given two

random sequences of length n we want to calculate the expected longest consecutive

subsequence which appears in both sequences. This problem has direct applications

to DNA sequence comparison – with the longest common substring being a measure

of similarity between two DNA sequences. A simpler problem is: suppose a fair

coin is flipped n times, what is the expected length of the longest run of heads,

Rn?. Note that a run of heads is necessarily preceded by a tail, which occurs with

probability 1/2. Thus the expected number of “head runs” is n/2. We can model

each independent head run as a geometric random variable with parameter p = 1/2.

The longest head run Rn is then given by the maximum of n/2 iid geometric random

variables. Although there here is no explicit formula for the maximum of geometric

random variables [81], an approximation leads to [79,80]

Rn ≈ log2(n/2) + γ

log 2 −
1
2 .

where γ ≈ 0.577 is the Euler-Mascheroni constant. This can easily be generalized to

the case of a biased coin with probability of heads p and tails q = 1− p. We have

Rn ≈
log(nq)
log(1/p) + γ

log(1/p) −
1
2 .

We now make the connection to the quoter model. The longest match length start-

ing at position t is equivalent to the longest run of heads in t tosses (each toss

corresponding to a position in the alter’s text), where the probability of a head is

d = ∑z
i=1 W (wi)2. However, a match does not need to be preceded by a non-match.
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Figure 4.3: Old (theory 1) and new (theory 2) approximations for ΛR at position t. There is
very good agreement between the new approximation and empirical values. The parameters
for the quoter model are q = 0, λ = 3, and T = 20000. The vocabulary distribution is
discrete uniform on {1, . . . , z} with z ∈ {2, 8}. There are 500 simulations and the curves
are the result of binning t and computing an average Λt in each bin

That is, every position t in the alter’s text is capable of being the start of a match,

regardless of their previous text. This contrasts with the coin-flipping example, in

which if a heads is seen previously then the current position cannot be the start of

a run and if a tails is seen previously then the current position must mark the start

of a run. This means the term log(nq)/ log(1/p) becomes log(n)/ log(1/d). We now

have

ΛR = log t
log(1/d) + γ

log(1/d) + 1
2

where we have added 1 because Λ is one more than the longest match. This is precisely

the expression we had before, but with the added constants γ
log(1/d) −

1
2 . In Fig. 4.3

we show the improvement in calculating ΛR when q = 0.

Similar reasoning suggests that the approximation for ΛQ can be improved by

including these constants. That is, in calculating ΛQ we had tdλ + 1 iid geometric
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Figure 4.4: Old (theory 1) and new (theory 2) approximations for ΛQ at position t. There
is improved agreement between the approximation and empirical values when z = 2, but
notable error when z = 8 (when the vocabulary is more diverse). The parameters for the
quoter model are q = 1, λ = 3, and T = 20000. The vocabulary distribution is discrete
uniform on {1, . . . , z} with z ∈ {2, 8}. There are 500 simulations and the curves are the
result of binning t and computing an average Λt in each bin

random variables. Thus ΛQ should be

ΛQ = 1
2

[
λ+ log(tdλ + 1)

log(1/d) + log(t)
log(1/d) + 2

]
+ γ

log(1/d) −
1
2 .

In Fig. 4.4 we see that this is an improved approximation when z = 2, but there is

noticeable error when z = 8. Both approximations appear to be growing faster than

the empirical ΛQ, implying there is error which is not due to the additional constants.

Therefore it is hard to judge whether or not these constants should be included. We

subsequently will choose to use the old approximation for ΛQ in calculating h×.

Finally, in Fig. 4.5 we show the impact of these new approximations on the overall

quantity of interest, h×. There is nearly exact agreement when q is small, as we

expected based on Fig. 4.3. However, when q is large there are discrepancies which

seem to be exaggerated as higher values of z, coinciding with our observations in
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Figure 4.5: Comparing the old (theory 1) and new (theory 2) approximations for h× for
varying parameter values q, λ, z. The newly developed approximation shows slight improve-
ment for some parameter combinations. Symbols represent empirical h× averaged over 100
simulations. The vocabulary distribution is discrete uniform on {1, . . . , z}. (A) T = 1000,
so that the length of the text is ≈ 1000λ, (B) T = 10000, so that the length of the text is
≈ 10000λ.

Fig. 4.4.

We briefly address some possible future improvements. Including a “second order”

approximation as discussed earlier, may help to improve this approximation. Using

the law of total probability, one would arrive at an expression

P(Λt = `) =
∑
m1

∑
m2

λm1+m2e−2λ

m1!m2!

(
P(`|Q,Q,m1,m2)q2

+ P(`|R,R,m1,m2)(1− q)2 + P(`|Q,R,m1,m2)q(1− q)

+ P(`|R,Q,m1,m2)(1− q)q
)

where for instance P(`|R,Q,m1,m2) is the probability Λt = ` given that the next

two messages are random and then quoted, and of lengths m1, m2 respectively. This
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could be simplified by assuming m1 = m2 = λ and then one only needs to calculate

P(`|R,Q). However, it is still not obvious how to calculate these terms. If the next

two messages are both of length λ, one must consider the probability that the match

ends before the first message, between the first and second messages, or after the

second message. Thus P(`|R,Q) would be defined piecewise and require calculating

the probability of each of these three cases. From the condition log t
log(1/d) < λ we can

determine t < eλ

d
. That is, for t sufficiently small it is unlikely that the longest

match extends more than the first message. Another place for improvement would

be to make rigorous our heuristic argument for incorporating the observed decay

of ΛQ following the start of a quote. Lastly, we neglected the fact that the alter’s

text is growing simultaneously, and so a match could arise within the extended text;

however, this should only have a minor effect. In summary, the quoter model in a

simple setting (one directed link) provides an interesting and challenging theoretical

problem which has ties to other well-studied problems in probability theory. Although

our approximations do not show significant improvement, we have at least put this

problem on a more rigorous footing and identified places for improvement.

4.3 Connection to the voter model

One may criticize the quoter model for being too novel, both in its dynamical rules

and observable, h×. We now argue that this is not the case, and in fact the dynamical

rules of the quoter model are roughly a generalization of a voter model variant.

Suppose that the message length distribution is p(λ′) = δ(λ′ − λ), where λ > 0

is fixed. Furthermore let quotes be taken from the immediate past rather than the
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entire past. That is, when copying, individuals will always quote the last λ words of

their neighbor. Notice that the λ words in each message are all independent, i.e. the

first word is only ever copied from the first word of a neighbor, and not influenced

by words two, three, etc. That is, the nodes are essentially voting on what the first

word of the message should be, and separately voting on what the second word of

the message should be, and so on for all λ words. Note this special case highlights

the simplicity of our language model – there is no correlation between words. We

can thus represent this case as λ iid realizations of a noisy voter model with multiple

states [82]. Here there are z states corresponding to the z unique words, and the level

of noise is determined by 1− q plus the vocabulary distribution.

We can learn a lot from looking at one realization since, by independence, statistics

of the λ realizations can be calculated as a product. We momentarily drop our

study of the cross-entropy and focus on the distribution of words (i.e. the fraction of

individuals using word i at time t). Much research has been done on the noisy voter

model and its extensions. The model is very general and has attracted researchers

from finance, biology, and physics. The remainder of this section will be devoted to

reviewing the noisy voter model. We specifically adapt the noisy voter model for our

context and provide complete derivations.

The noisy voter model is a Markov process, usually described in continuous time.

The process is specified by the initial number of nodes in each state, and by transition

rates. Let xi; i = 1, . . . , z be the fraction of nodes using word i, which depends on

time and is the typical quantity of interest in voter models. Let εi ≡ W (wi) be

the probability of word i via the vocabulary distribution. Consider the case of the

complete graph. Let δ ≡ 1/N . In a single update event we have either xi → xi + δ
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(xi raises by δ) or xi → xi − δ (xi lowers by δ). The transition xi → xi + δ occurs

with rate

Ri(x) = N
∑
j 6=i

(qxjxi + (1− q)εixj)

= N [q(1− xi)xi + (1− q)εi(1− xi)]

where x ≡ (x1, . . . , xz). The first term in the sum is the contribution when quoting:

xixj is the probability of first choosing a node using word j 6= i and a neighbor

using word i to copy. The second term is the contribution when not quoting: xj is

the probability of choosing a node using a word j 6= i, then the probability of using

word i according to their vocabulary distribution is εi. The factor of N in front is

a conventional time rescaling that ensures O(N) events per unit time. Similarly the

transition xi → xi − δ occurs with rate

Li(x) = N
∑
j 6=i

(qxixj + (1− q)εjxi)

= N [q(1− xi)xi + (1− q)(1− εi)xi]

Notice that the rates only depend on i and therefore we can define a closed birth-death

process for each species (word).

The master equation [83,84] describing the evolution of P(xi, t) is

∂P(xi, t)
∂t

= Ri(xi − δ)P(xi − δ, t) + Li(xi + δ)P(xi + δ, t)

− [Ri(xi) + Li(xi)]P(xi, t).

The first two terms describe the inflow to state xi, where the last term is the outflow
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to other states.

Following a similar calculation as in [85] we expand to the second order in δ to ob-

tain the Fokker–Planck equation (forward Kolmogorov equation). The Fokker-Planck

equation is the continuous analog to the master equation, in which the probability

mass function P(xi, t) becomes a probability density function. To help with readabil-

ity, we suppress the index i and the dependence of R, L, P on xi, t. All derivatives

on the right-hand side are partials with respect to xi.

∂P
∂t

=
(
R− δR + δ2

2 R
′′
)(

P− δP′ + δ2

2 P′′
)

+
(
L+ δL+ δ2

2 L
′′
)(

P + δP′ + δ2

2 P′′
)

− (R + L)P

= −δ [(R− L)P′ + (R− L)′P] + δ2

2 [(R + L)P′′ + 2(R + L)′P′ + (R + L)′′P]

= − ∂

∂x
[δ(R− L)P] + ∂2

∂x2

[
δ2

2 (R + L)P
]

≡ − ∂

∂x
(vP) + ∂2

∂x2 (DP)

where

v(xi) = δxi [Ri(xi)− Li(xi)]

= (1− q)(εi − xi)

D(xi) = δx2
i

2 [Ri(xi) + Li(xi)]

= 1
2N [2q(1− xi)xi + (1− q)(εi + (1− 2εi)xi)]
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are the drift and diffusion coefficients. We could have also derived this equation imme-

diately from a Kramers-Moyal expansion of the master equation [83,84]. The Fokker-

Planck equation cannot be solved analytically. However, we can derive the stationary

state probability distribution P(xi). In the stationary state, one has ∂P/∂t = 0. This

implies

0 = − ∂

∂x
(vP) + ∂2

∂x
(DP)

0 = (−v′P− vP′) + (D′′P + 2D′P′ +DP′′)

0 = P′′ + −v + 2D′
D

P′ + −v
′ +D′′

D
P.

The above is a second-order linear homogeneous ODE with varying coefficients. The

solution is given by [82,86]

P(xi) = Ci exp
(
−
∫ xi

0

−v(y) +D′(y)
D(y) dy

)

where Ci is a normalization constant. Using numerical integration we plot the sta-

tionary distribution for various values of q, N , and α, with εi ∼ Zipf(1000, α) as in

the quoter model simulations. Since there are i = 1, . . . , 1000 marginals, we only

show the marginals corresponding to the rank 1 and rank 2 words. Words of lower

rank have distributions similar to the rank 2 word. Figure 4.6 shows the well-known

transition of the stationary distribution P(xi) from a unimodal to bimodal shape.

For low values of N or high values of q we see a bimodal shape in word 1, roughly

meaning that either nobody or everyone is using word 1. For high values of N or low

values of q we see a unimodal shape, where the most probable state involves a nonzero

fraction of people using word 1. For word 2, the most probable state is that nobody
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Figure 4.6: Marginal stationary distributions P(xi) of the noisy voter model on the complete
graph KN . The distribution P(xi) gives the probability that the fraction of nodes using word
i is xi in the stationary state. Parameter ranges are chosen to illustrate the transition of
P(xi) from a unimodal to bimodal shape. In the left column, N varies and q = 0.95, α = 1.5.
In the middle column, q varies and N = 20, α = 1.5. In the right column, α varies and
N = 20, q = 0.95. The second row is plotted on a log-log scale.

is using it. We conjecture that the approximate power-law regimes are the result of

the power-law noise (from the vocabulary distribution), which to our knowledge has

not been implemented in other studies of the noisy voter model.
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Chapter 5

Discussion

In this thesis we studied a recent, information-theoretic approach to measuring and

modeling information flow. Previous work has not fully utilized the massive amount

of data available. Similar work has looked at the timings of tweets, but has not

looked at the text itself. The cross-entropy estimator (Eq. 2.2) gives a measure of

information flow which can incorporate the full text data available through online

social media platforms, while simultaneously satisfying temporal precedence. We use

the quoter model to test hypotheses about how information flows in social networks

and to what extent the network structure mediates the flow of information.

In Chapter 3 we studied the quoter model on complex networks. We used random

graph models and real-world networks to test how the degree distribution, clustering,

and modularity play a role in information flow. We found that increased density

inhibits information flow, which is also observed in traditional complex contagion

models. In studying the importance of clustering, we simulated the quoter model

on Watts-Strogatz networks and found that clustering promoted information flow.

However, when applying a network randomization algorithm to real-world networks,
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we found clustering often decreased information flow. These mixed results on the

role of clustering in spreading align with the mixed results from complex contagion

approaches. Ultimately, it is challenging to determine the effect of clustering on

spreading because it is inherently confounded by other network properties such as

density, average shortest path length, and modularity. Another result we found was

that the quoter model replicated the “weakness of long ties” result from complex

contagion. That is, ties that bridge communities tend to decrease information flow.

Finally, we briefly studied the importance of parametric heterogeneity. In summary,

despite not defining a thresholding/reinforcement mechanism, the quoter model, in

combination with the cross-entropy, can produce features similar to those of complex

contagion. This study suggests a more nuanced, information-theoretic measure of

information flow can complement the study of information flow just as well as the

increased complexity of models.

We mention some limitations of the study presented in Chapter 3. We only consid-

ered undirected, unweighted networks. In the context of social networks, this implies

all relationships are reciprocal and equal in strength. Future work should extend to

directed, weighted networks. Also, we only studied information flow by examining

pairs of text streams. Information could flow from u to v and v to w, but not directly

from u to v. The cross-entropy h×(w | u) would be lower than expected, but u does

not directly influence w. To address this, we could apply an analog of causation

entropy to identify spurious flows [56], although this introduces the issue of needing

to estimate high dimensional conditional entropies [1]. Lastly, while we observed a

number of features that are signatures of complex contagion, there were features that

were not revealed by the quoter model. Specifically, in [87] it was shown that there
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is an optimal modularity Q which maximizes spreading in the threshold model.

In Chapter 4 we first study the quoter model on a simple network – one directed

link. We review the calculations for h× presented in [1]. We find this simple case

has connections to the “longest run of heads” problem studied in probability theory.

Borrowing from this line of research we were able to improve the calculations for ΛR,

and ultimately h×, but still noted discrepancies in ΛQ. Future research should look

to improve ΛQ, possibly by a “second order” approximation. Also, a feasible next

step may be to extend the analysis to larger networks, such as a three node “fork”

or “collider.” Secondly, we noted a connection between simplified case of the quoter

model and the noisy voter model. We adapted prior calculations to our scenario and

observed the well-known transition of the stationary distribution from a unimodal

to bimodal shape. It is unclear how, if at all, these parameter regimes exist in the

quoter model when quotes can be taken from the entire history of a neighbors text.

This connection warrants further research.

We briefly mention a few other areas where our information-theoretic approach can

be improved. Information-theoretic measures, such as the cross-entropy are inherently

model-free which means no assumptions are made about how two individuals are

related. The result is, we know we can use Alice’s past text to help predict Bob’s

future text, but we do not know how to predict Bob’s future text. After addressing

this shortcoming, it may be possible to apply our approach to predict online social

media activity. This is of great intrinsic interest to researchers at Facebook, Twitter,

etc., but should also prompt concerns of data privacy and algorithmic personalization.

Additional work may also make the quoter model a more realistic language model,

i.e., by introducing correlations between words, or may seek to fit model parameters
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to real-world data. It may be valuable to translate previous results on information

flow, such as influence maximization, to this new approach.

In conclusion, this modern measure and model exhibits many desirable properties

of preexisting models for social contagion and information flow, while taking into ac-

count the massive amount of text data available. We have also explored and revealed

several exciting new properties not known by researchers in the field. Future research

should continue testing hypotheses about information flow in social networks and val-

idate these findings with real-world data. We note that along with this new approach

comes the need for new analytical techniques and more efficient estimators. Following

this approach, there are still many interesting open questions (both theoretical and

practical) for future research on information flow to address.
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Appendix A

Further investigations of the

quoter model

A.1 Quoter model parameters

To support our results, here we explore other choices of quoter model parameters (q

and λ). The simulations are done on smaller networks to make it less computationally

expensive to do a wide sweep of the parameter space. We first simulate the quoter

model on ER, BA, and small-world networks for q ∈ {0.1, 0.5, 0.9} and vary 〈k〉 or

the rewiring probability, p, to support results from Sec. 3.2.1 and Sec. 3.2.2. We then

simulate the ER, BA, and small-world experiments again for various combinations

of the quote probability q and mean quote length λ. We evaluate the robustness of

results for ER networks as follows. For each combination of (q, λ), we calculate the

difference 〈h×〉k=20 − 〈h×〉k=6, whereby 〈h×〉k=20 we mean the average cross-entropy

on ER networks of average degree k = 20. The quantity will be positive if density

inhibits information flow. This allows us to assess the how the magnitude of our
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Figure A.1: Trends in information flow in ER, BA, and small-world networks for q ∈
{0.1, 0.5, 0.9}. With the exception of very low quote probabilities, we see qualitatively similar
trends. (A) ER & BA networks of size N = 100 with varying average degree. Each point
constitutes 200 simulations. (B) Small-world networks of size N = 200 with k = 6 with
varying rewiring probability. Each point constitutes 500 simulations.

results vary with (q, λ), although it does not confirm a monotonic trend holds.

We repeat these calculations with the BA networks and extend them to the small-

world networks by replacing 〈k〉 with p ∈ {0, 1}. In general, we find in Figs. A.1 and

A.2 that our results are qualitatively robust to parameter choices, with the exception

of very small values of q, as we expect.

A.2 Summarizing the cross-entropy

In this work, we summarized h× by the mean 〈h×〉 and variance Var(h×). In Fig. A.3,

we see that this choice was appropriate: examining the distributions of h× for various

networks shows that they are approximately normal. We also find the mean and

median h× to be approximately equal.
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Figure A.2: Effects of quoter model parameter choices on observed trends. Information flow
is lower for denser ER and BA networks across a range of q and λ with the effect being
more pronounced at higher values of q and λ. Likewise, for small-world networks, more
clustering (lower p) exhibits higher h× than less clustering (higher p), with the effect being
most pronounced at q > 0.5 regardless of λ. Here, ER & BA networks had N = 100 and
small-world networks had N = 200 and k = 6. Each cell constitutes 100 simulations.
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Figure A.3: The distributions of h× for quoter model simulations on various networks. Ex-
amining the distributions supports using 〈h×〉 and Var(h×) as summary statistics, although
some real networks show a small bimodality (an excess of h× < 3 bits). We also remark
that the mean and median are approximately equal (solid line shows 〈h×〉, dashed line shows
median h×) for all networks. ER & BA networks have N = 1000 nodes with 〈k〉 = 12, and
200 simulations as in Fig. 3.1. Small-world networks have N = 200 nodes with k = 6 and
p = 10−4, and 500 simulations as in Fig. 3.4A. Real-world networks are from 300 simu-
lations as in Fig. 3.2 and Fig. 3.4B,C. Quoter model parameters are given in Sec. 3.1.1.
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Appendix B

Network corpus

All networks studied here can be found through the Index of Complex Networks

(ICON) [88]. We converted any directed or weighted networks to undirected (bi-

directional) and unweighted. Details for each of the ten networks:

1. Les Miserables co-appearances [89] [Undirected, Weighted].

2. Hollywood film music [90] [Undirected, Weighted]. This is a bipartite network;
we converted it to a one-mode projection (nodes are composers and two com-
posers are linked if they worked with the same producer).

3. Freeman’s EIES dataset [91] [Directed, Weighted]. We used the “personal rela-
tionships (time 1)” network.

4. Sampson’s monastery [92] [Directed, Weighted]. We used the Pajek dataset.
The weight of a directed link represents how an individual rates the other. The
rating can be positive (1,2,3 = top 3 ranked) or negative (-1,-2,-3 = worst 3
ranked). We chose to only keep links which were positive.

5. Golden Age of Hollywood [93] [Directed, Weighted]. We used the aggregated
network over 1909-2009.

6. 9-11 terrorist network [94] [Undirected, Unweighted].

7. CKM physicians social network [95] (1966) [Directed, Unweighted]. We used
“CKM physicians Freeman” networks hosted by Linton Freeman, and chose the
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"friend" network (i.e., the third adjacency matrix). We took only the giant
component.

8. Kapferer tailor shop [96] (1972) [Undirected, Unweighted]. We used the “Kapferer
tailor shop 1” Pajek dataset (kapfts1.dat).

9. Dolphin social network [97] (1994-2001) [Undirected, Unweighted].

10. Email network (Uni. R-V, Spain, 2003) [98] [Directed, Unweighted]. We used
the “email-uni-rv-spain-arenas” network.
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