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Abstract

A matroid abstracts the notions of dependence common to linear algebra, graph
theory, and geometry. We show the equivalence of some of the various axiom systems
which define a matroid and examine the concepts of matroid minors and duality
before moving on to those matroids which can be represented by a matrix over any
field, known as regular matroids. Placing an orientation on a regular matroid M
allows us to define certain lattices (discrete groups) associated to M . These allow us
to construct the Jacobian group of a regular matroid analogous to the Jacobian group
of a graph. We then survey some recent work characterizing the matroid Jacobian.
Finally we extend some results due to Eppstein concerning the Jacobian group of a
graph to the case of regular matroids.
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Chapter 1

Introduction

The theory of matroids were first developed by Hassler Whitney in his 1935 paper

“On the Abstract Properties of Linear Dependence” [19] in order to examine the

commonalities between linear algebra and graph theory. Whitney develops the theory

of matroids from the simple observations that,

(i) Given a linearly independent set of columns of a matrix, any subset will also be

linearly independent.

(ii) Given any two sets of linearly independent columns Np and Np+1, with p and

p + 1 columns respectively, then Np along with some column in Np+1 is also

independent.

Whitney notes several similarities between these relations and those between edges

of a graph, where a subset of edges are considered to be dependent if and only if

they contain a cycle. The language of matroid theory frequently reflects its origins in

these two areas and they provide a useful introduction to the idea of a matroid, but

the theory itself extends further to a more abstract notion of dependence which also
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applies in a discrete geometric setting.

Matroid theory has been an area of great activity, expanding beyond Whitney’s

original considerations to become a more general theory of independence within a

given set system. One of the strengths of matroid theory is its remarkable flexibility;

matroids can be characterized by many different axiom systems which arise in different

mathematical contexts.

In this thesis, we develop the basic theory of matroids, showing the equivalence

of some of the various axiom systems which can be used to define a matroid. We

then discuss matroid duality and minors of matroids, two fundamental aspects of the

theory that will allow us to define the class of regular matroids. Regular matroids are

those which can be represented by a totally unimodular matrix over R; in Chapter

4 we will show that this is equivalent to being representable over any field. Finally

we summarize some fundamental results related to the Jacobian group of a matroid,

a finite abelian group and generalize certain results due to David Eppstein on the

Jacobian of a graph to the Jacobian of a matroid.

In what follows, we will assume that all sets (other than the reals, integers, etc.)

are finite. We use XE to denote the set of functions from X to E; in particular, 2E is

the power set of E. We use − rather than \ to denote set subtraction, reserving \ for

a particular matroid operation. When we have a set X and wish to add an element

y, we write simply X ∪ y rather than X ∪ {y}. Although we develop the basics of

matroid theory at length, we assume basic results from linear algebra, graph theory

and elementary group theory, ring theory and field theory.
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Chapter 2

Matroid axiom systems

This chapter is primarily concerned with developing some of the basics of matroid

theory, in particular the various axiom systems which define matroids. As the equiv-

alence of the matroid axiom systems is in many cases not immediately apparent,

the majority of this chapter will be concerned with showing these equivalencies; we

will also establish some additional theory which will prove useful in later chapters.

Throughout, we provide examples which demonstrate how matroids arise in different

mathematical contexts.

That our initial examples will come from linear algebra and graph theory is no

surprise, as the commonalities between these two areas was precisely the motivation

behind Whitney’s original development of the theory [19]. One should bear in mind

however that the theory extends beyond these two settings. To that end we include an

example of a matroid with no corresponding graph and in another example explicitly

demonstrate the connection between matroids and finite geometry. (In a later chapter

we shall see an example of a matroid with no matrix representation.)

Roughly speaking, the axiom systems in the first section most directly reflect the
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theory’s origins in linear algebra and graph theory, while the second section contains

those axiom systems with a more geometric character. In the current literature, it is

common to first define matroids in terms of their independent sets and we shall do

the same. Following that, our general approach will be to show the equivalence of

each other axiom system to that of independent sets. A standard reference for the

material found in this section is Oxley [11].

2.1 Independent sets, circuits, and bases

2.1.1 Independent Sets

Let E be a set and I a collection of subsets of E satisfying the following three axioms:

(I1) I 6= ∅.

(I2) If I1 ∈ I and I2 ⊆ I1, then I2 ∈ I.

(I3) If I1, I2 ∈ I and |I2| < |I1|, then there exists an element x ∈ I1 − I2 such

that I2 ∪ x ∈ I.

We say that M = (E, I) is a matroid on the ground set E. When it is clear from

the context we simply write M and assume the existence of an appropriate E. The

members of I are the independent sets of the matroid. We shall usually simply write

I, when it is necessary to distinguish the independent sets of a particular matroid

M , we write I(M). A subset of E which is not independent is called dependent. The

rank of M , denoted r(M) is the cardinality of the largest independent set in M . In

general, we denote the cardinality of E by m and denote the rank of M as r.
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If one recalls the notion of linear independence, the relationship between matroids

and linear algebra is fairly evident from this set of axioms. Indeed, as noted in the

Introduction, Whitney’s initial investigation of a matroid was partially motivated by

the observation that the independent subsets of a vector space satisfy properties (I2)

and (I3). The following proposition formalizes this observation.

Proposition 2.1.1. Let E be the set of column labels of an n ×m matrix A over a

field K and let I be the set of all subsets of E which are linearly independent in Kn.

Then M = (E, I) is a matroid.

Proof. We show that M satisfies the independent set axioms. We have ∅ ∈ I, hence

M satisfies (I1). Removing an element from a linearly independent set does not affect

linear independence so (I2) is also satisfied. To show (I3), we proceed by contradiction.

Let I1 and I2 be linearly independent subsets of E such that |I1| < |I2| but (I3) fails,

i.e., suppose there is no x ∈ I2 − I1 such that I1 ∪ x ∈ I. Let V be the subspace of

Kn spanned by I1 ∪ I2, so the dimension of V is at least |I2|. By assumption, I1 ∪ x

is linearly dependent for all x ∈ I2 − I1. Then V is entirely contained in the span

of I1 ∪ x, implying that |I2| ≤ dim V ≤ |I1|, a contradiction. We conclude that I

satisfies (I3) and M is a matroid.

A matroid obtained from the linearly independent columns of a matrix A in the

manner described above is called a vector matroid and is denoted M(A).

Example 2.1.2. Let A be the following matrix with coefficients in R:


1 0 0 1 1

0 1 0 1 0

0 0 1 1 0
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with columns indexed left to right by E = [5]. Then M(A) has independent sets

I = {∅, {1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}, {2, 3, 5}, {3, 4, 5}, {1, 2}, {1, 3}, {1, 4},

{2, 3}, {2, 4}, {2, 5}, {3, 4}, {3, 5}, {4, 5}, {1}, {2}, {3}, {4}, {5}}.

Observe that r(M(A)) = 3; all 4-element subsets of E contain a dependent subset.

Let A be an n×mmatrix over a field K, and index the columns of of A by E = [m].

Assuming that we keep the column labeling fixed, we may perform elementary row

operations, interchange columns, scale columns by non-zero elements of K, and add

or remove a zero row without changing the linear dependencies among the elements

of E. It follows that the vector matroid M(A) will remain the same. Thus, given

a matrix A, we may reduce A to a matrix of the form [Ir|D], where Ir is the r × r

identity matrix and D is an r× (n−r) matrix without changing the associated vector

matroid M(A). Taking the columns of Ir as a basis for the columns space of A shows

that r(M(A)) = r. A matrix of the form [Ir|D] is called the standard representation

of M(A).

2.1.2 Circuits

Now that we have defined a matroid M in terms of its independent sets, it is natural

to consider the dependent sets of M . The minimal dependent subsets of E are called

circuits; , i.e., C is a circuit if and only if C is dependent and all proper subsets of C

are independent. A singleton dependent set is called a loop. We denote the circuits

of E as C. As was the case with independent sets, we shall usually simply write C,

when it is necessary to distinguish the independent sets of a particular matroid M ,
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we write C(M).

Proposition 2.1.3. Let M be a matroid with independent sets I and circuits C.

Then C has the following properties:

(C1) ∅ /∈ C.

(C2) If C1, C2 ∈ C and C1 ⊆ C2, then C1 = C2.

(C3) (circuit elimination) If C1, C2 are distinct elements of C and e ∈ C1 ∩ C2, then

there exists an element C3 ∈ C such that C3 ⊆ (C1 ∪ C2)− e.

Proof. (C1) follows from the fact that ∅ ∈ I. (C2) follows from the definition of

C ∈ C as a minimal dependent set. To show (C3), we proceed by contradiction.

Suppose I2 = (C1 ∪ C2) − e does not contain a circuit, i.e., I2 ∈ I. Note that by

(C2), there exists an element f ∈ C2 − C1. Let I1 ∈ I be such that I1 ⊂ C1 ∪ C2,

I1 contains C1 − f , and I1 is of maximum cardinality. By construction, f /∈ I1. Also

there exists g ∈ C2 − C1 such that g /∈ I1, otherwise C2 ⊆ I1. Then

|I1| ≤ |(C1 ∪ C2)− {f, g}| = |C1 ∪ C2| − 2 < |(C1 ∪ C2)− e| = |I2|.

Therefore, by (I3), there exists h ∈ I2 − I1 such that I1 ∪ h ∈ I, contradicting the

maximality of |I1|. We conclude that (C3) holds.

The previous proposition shows that the circuits of a matroid are determined

by its independent sets. The following theorem shows that we can likewise define

the independent sets of a matroid in terms of its circuits, i.e., (C1)-(C3) exactly

characterize the subsets of E which are the circuits of a matroid on E. It follows
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from this that we may also view M as being uniquely determined from its collection

of circuits. Thus (C1)-(C3) give a second system of axioms which define a matroid.

Theorem 2.1.4. Let E be a set and let C be a collection of C ⊆ E which have

properties (C1)-(C3) as given above. Define I to be the collection of all I ⊆ E that

do not contain any C ∈ C. Then (E, I) is a matroid and C is its collection of circuits.

Proof. The proof is in two parts. First we show that the members of I are the

independent sets of a matroid M on E, then show that the elements of C are indeed

the set of circuits of M .

By (C1), ∅ /∈ C, hence ∅ ∈ I and (I1) is satisfied. If I1 ∈ I, then I1 contains no

C ∈ C. Then if I2 ⊆ I1, I2 contains no such C, thus I2 ∈ I and and (I2) is satisfied.

To prove that (I3) holds, we proceed by contradiction. Let I1, I2 ∈ I such that

|I1| < |I2| but (I3) fails. Then for all x ∈ I2 − I1, I1 ∪ x /∈ I. Let I3 ⊆ I1 ∪ I2 and

I3 ∈ I such that |I3| > |I1| and |I1 − I3| is minimum but nonzero - this must be the

case as (I3) fails. Let e ∈ I1− I3. For f ∈ I3− I1, define Tf := (I3 ∪ e)− f . Note that

Tf ⊆ I1 ∪ I2, and |I1 − Tf | < |I1 − I3|. By minimality of |I1 − I3|, Tf /∈ I, hence Tf

contains some circuit Cf and f /∈ Cf . Also e ∈ Cf , otherwise Cf ⊆ I3.

Now let g ∈ I3 − I1 and define Cg as above. If Cg ∩ (I3 − I1) 6= ∅, then Cg ⊆

((I3∩I1)∪e)−g ⊆ I1, contradicting the independence of I1. Therefore there exists an

element h ∈ Cg ∩ (I3− I1), so we may define Ch. Note that Cg 6= Ch and e ∈ Cg ∩Ch.

By (C3), there exists some circuit C ⊆ (Cg ∩ Ch) − e. But Cg and Ch are both

contained in I3 ∪ e, hence C ⊆ I3, contradicting the fact that I3 ∈ I. Therefore it

must be the case that (I3) holds, hence M = (E, I) is a matroid.

We now confirm that C is the set of circuits of M . Observe that C is a circuit of

M if and only if C /∈ I but C − x ∈ I for all x ∈ C. The latter holds if and only if C

8



has no proper subset which is also an element of C and this is the case exactly when

C ∈ C.

The following proposition further illustrates the relationship between the circuits

and independent sets of a matroid.

Proposition 2.1.5. Let I be an independent set of a matroid M and e ∈ M such

that I ∪ e is dependent. Then M has a unique circuit C ⊆ I ∪ e and e ∈ C.

Proof. If I ∪ e is dependent it must contain a circuit and that circuit must contain e.

To see that this circuit must be unique, suppose that there exist two distinct circuits

C1, C2 ⊆ I∪e. Then by (C3), (C1∪C2)−e contains a circuit C3 ⊆ I, a contradiction.

So C1 = C2.

The use of the term circuit for a minimal dependent set of a matroid is reminiscent

of graph theory and, as previously noted, this is no coincidence. We have already

established that the linearly independent columns of a matrix define a matroid; the

next proposition shows that, if we take the edge set E of a graph G to be the ground

set, the cycles of G define a matroid. Such a matroid is called a cycle matroid of G.

Note that, while the circuits of the cycle matroid of a graph G are the cycles of G,

the correspondence is not exact.

Proposition 2.1.6. Let G be a graph and let E be the set of edges of G. Define C to

be the set of edge sets of cycles of G. Then C is the collection of circuits of a matroid

on E.

Proof. (C1) and (C2) are clear. To see that (C3) holds, let C1 and C2 be distinct

cycles in G and e ∈ C1 ∩ C2. Say e has endpoints u, v. Let P1 be a path from u to v

9



e2

e1

e4

e3

e5

Figure 2.1: The graph G in Example 2.1.7.

with edges in C1− e and likewise define P2. Beginning at u, travel through P1 to the

first vertex w incident to an edge in P1−P2. From w continue to travel on P1 towards

v until reaching a vertex x incident to an edge in P2 - we must reach such a vertex,

as both P1 and P2 end at v. Concatenating the section of P1 from w to x and the

section of P2 from x to w gives a cycle C ⊆ (C1 ∪C2)− e hence (C3) is satisfied.

Example 2.1.7. Let G be the graph shown in Figure 2.1 and let M = M(G) be

the cycle matroid on the edge set E(G) = {e1, e2, e3, e4, e5}. Then M has circuits

C = {{e1, e5}, {e1, e2, e3, e4}, {e2, e3, e4, e5}}. All three element subsets of E not

containing {e1, e5} are independent. It is not hard to see that M(G) satisfies the

circuit elimination axiom (C3): e1 ∈ {e1, e5} ∩ {e1, e2, e3, e4} and {e2, e3, e4, e5} ⊆

({e1, e5} ∪ {e1, e2, e3, e4})− e1.

Recall the matroid M(A) from Example 2.1.2. This was the vector matroid asso-

ciated to the matrix

A =


1 0 0 1 1

0 1 0 1 0

0 0 1 1 0

 .

10



Index the columns of A from left to right by c1, . . . , c5. Define a bijection by ϕ(ci) = ei

for i ∈ [5]. It is not difficult to see that under this bijection, M(A) and M(G) have

the same circuits and (equivalently) the same independent sets. We can illustrate the

same circuit exchange relationship using the minimal dependent sets of columns of

A. We have C1 = c1 + c2 + c3 − c4 = 0 and C2 = c1 − c5 = 0, hence C3 = C1 − C2 =

c2 + c3 − c4 + c5 = 0.

In the previous example we saw two matroids which were "the same" under a given

bijection. Given two matroidsM1 andM2, if there exists a bijection ϕ from E(M1) to

E(M2) such that, for all X ⊆ E(M1), ϕ(X) is independent in M2 if and only if X is

independent inM1, we say that the two matroids are isomorphic and writeM1 ∼= M2.

Informally, this means that a matroid isomorphism amounts to a relabeling of the

ground set. A matroid which is isomorphic to the cycle matroid of a graph is said to

be graphic. A matroid isomorphic to the vector matroid of a matrix over a field K

is representable over K. If a matroid M is representable over any field, we say M is

regular.

2.1.3 Bases

The third axiom system we consider defines a matroid in terms of its maximal inde-

pendent sets or bases. First we show that the bases of a matroid are determined by

its independent sets and vice versa.

Proposition 2.1.8. Let M be a matroid with independent sets I. Define B to be the

collection of maximal elements of I. Then B has the following properties:

(B1) B 6= ∅.

11



(B2) If B1 and B2 are in B and x ∈ B1−B2, then there exists y ∈ B2−B1 such that

(B1 − x) ∪ y ∈ B.

Proof. (B1) follows from the definition of B ∈ B as a maximal element of I. To see

(B2), let B1, B2 ∈ B and x ∈ B2. Note that |B1| = |B2|. Suppose not; say |B1| < |B2|.

By (I3), there exists some e ∈ B2 − B1 such that B1 ∪ e ∈ I, contradicting the

maximality of B1. Let I1 = B1− x and I2 = B2, then |I1| < |I2|. Again using (I3) we

find y ∈ I2 − I1 such that I1 ∪ y = (B1 − x)∪ y ∈ I. Note that |(B1 − x)∪ y| = |B1|,

hence (B1 − x) ∪ y ∈ B.

Property (B2) is known as the basis exchange axiom. Observe that (B1) and the

observations made in the above proof imply that all bases of a matroid have the same

cardinality. There may be elements of E which are in all bases; such an element is

called a coloop or sometimes an isthmus.

We shall usually simply write B, when it is necessary to distinguish the indepen-

dent sets of a particular matroid M , we write B(M).

We now show that members of B are exactly the maximal independent sets of a

matroid.

Theorem 2.1.9. Let E be a set and define

B := {B ⊆ E : B satisfies (B1) and (B2) }.

Define I := {I ⊆ B ∈ B}. Then (E, I) is a matroid with bases B.

Proof. (B1) implies that I satisfies (I1). Say I ∈ I; then by definition, I ⊆ B for

some B ∈ B. If I ′ ⊆ I, then clearly I ′ ⊆ B hence I ′ ∈ I. Hence I satisfies (I2).

12



To see that I satisfies (I3), we proceed by contradiction. Let I1, I2 ∈ I and

without loss of generality, say |I1| < |I2|. There exists B1 ⊇ I1 and B2 ⊇ I2 with

B1, B2 ∈ B. Note that B1 − I1 6= ∅ by assumption on the cardinality of I1. Let

x ∈ B1 − I1. By (B2), there exists y ∈ B2 −B1 such that B′1 = (B1 − x)∪ y ∈ B and

B′1 ⊇ I1. If y ∈ I2, we are done as I1 ∪ y ⊆ B′1 implies that I1 ∪ y ∈ I. So say y /∈ I2.

Assume B2 is such that |B2 − (B1 ∪ I2)| is minimal.

We claim that B2 − (B1 ∪ I2) = ∅. Suppose not and say y ∈ B2 − (B1 ∪ I2) 6= ∅.

By (B2), there exists some z ∈ B1 − B2 such that B′2 = (B2 − y) ∪ z ∈ B. Then

B′2 ⊇ I2 and |B′2 − (B1 ∪ I2)| = |B2 − (B1 ∪ I2)| − 1, a contradiction. This proves the

claim. So it must be the case that y ∈ I2; if y ∈ B2 − I2, then |B2 − (B1 ∪ I2)| 6= 0.

So y ∈ I2 − I1 and B′1 ⊇ I1 ∪ y. Then I1 ∪ y ∈ I hence I satisfies (I3).

Note that Proposition 2.1.7 and Theorem 2.1.8 together with Proposition 2.1.3

and Theorem 2.1.4 show the equivalence of the three axiom systems for matroids we

have seen so far.

Similarly to the axiom systems for independent sets and circuits, the basis axioms

have natural analogies with graph theory and the theory of vector spaces, as the

following example shows.

Example 2.1.10. Consider the vector matroid M(A) in Example 2.1.2. The bases

of this matroid are the 3-element sets of I. Recall that this matroid is isomorphic

to M(G), the cycle matroid of the graph G in Figure 2.1, seen in Example 2.1.7.

The bases of M(G) are the maximal subsets of E(G) not containing a cycle which

correspond to the 3-element subsets of E(G) which do not contain an {e1, e5} subset.

These are exactly the spanning trees of G. Recall the well-known exchange property

for spanning trees, which states that given a graph G for any two spanning trees
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T1, T2, for every edge e ∈ T1 − T2, there exists an f ∈ T2 − T1 such that (T1 − e) ∪ f

is a spanning tree of G. Comparing this with axiom (B2) makes the character of a

matroid basis clear.

The following results makes plain the connections between graphs, linear algebra,

and matroids.

Proposition 2.1.11. Let G = (V,E) be a graph with vertices v1, ..., vn and edges

e1, ..., em. Fix an arbitrary orientation of the edges of G. If an edge e is oriented

from vertex u to vertex v, we say that u is the tail of e, and v is the head of e. Let A

be the n×m matrix with (i, j) entry either 1 if vi is the head of ej, -1 if vi is the tail

of ej, or 0 if vi is not incident to ej. Let M(A) be the vector matroid on A. Then

the circuits of M(A) (the minimal linearly dependent sets of columns of A) precisely

correspond to the cycles of G. Furthermore, the independent sets of columns of A

correspond to the forests of G, and the maximal linearly independent sets of columns

(bases) are the spanning forests of G (spanning trees if G is connected).

Proof. Fix an orientation on G such that all cycles have a counterclockwise orienta-

tion. Let C = {c1, . . . , ck} be a circuit of M(A). By construction of A, the cj sum

to the zero vector if and only if each vertex vi with non-zero entries in some cj has

entries of the opposite sign in some other element of C. This occurs exactly when vi

is the head of some edge e and the tail of another edge f in G. So every such vi has

degree 2 and this describes a cycle in G. Note that if |C| = 1, C is a loop; if |C| = 2,

we have parallel edges with opposite orientations.

Now suppose Z is a cycle in G. Then the set of column vectors C = {c1, . . . , ck}

corresponding to the edges in Z sum to zero as described above. To see that C is

minimal as a dependent set in A, simply remove an edge from Z. This corresponds
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to removing some column vector cj from C, but then the remaining vectors in C no

longer sum to zero. If Z is a loop, then some vertex is both the head and tail of some

edge, hence the corresponding column is the zero vector.

From the above, we see that a set of column vectors I in A is independent if and

only if it corresponds to an edge set of G which contains no cycles and this is precisely

the definition of a forest of G.

Assume G is connected. Let B = {b1, . . . , bk} be a maximal set of linearly inde-

pendent columns of A. Adding any other column in A to B produces a dependent set

of column vectors, which corresponds to a cycle in G. Thus B corresponds to a maxi-

mum cardinality acyclic set of edges in G, i.e., a spanning tree. If G is not connected,

then each component of G will correspond to a submatrix of A. Working with each

such component submatrix individually then taking the union of the spanning trees

of each component gives a spanning forest of G.

The following result extends the graph theoretic notion of a fundamental cycle

associated to a spanning tree to matroids.

Proposition 2.1.12. Let B be a basis for a matroid M . Then for every e ∈ E −B,

B ∪ e contains a unique circuit C(e, B) and e ∈ C(e, B)

Proof. This follows from Proposition 2.1.5.

The circuit C(e, B) described in the above proposition is called a fundamental

circuit of e with respect to B.

At this point the only examples of matroids we have seen are both graphic and

representable. Observe that the incidence matrix of a graph described in Proposition

2.1.11 (although originally defined over R) can serve as a representation ofM(G) over
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F3; taking the entries mod 2 gives a representation over F2. When a matroid M is

representable over F2, we say that M is binary; when M is representable over F3, we

say that M is ternary. However, not all representable matroids are graphic, as the

following example shows.

Example 2.1.13. A matroid M on n elements such that all r-element subsets of M

are independent is called a uniform matroid and denoted Ur,n. Consider the matroid

U2,4. This matroid can be represented by the following matrix over R.

1 0 1 1

0 1 1 2



Suppose that M = U2,4 has a graph G. We may assume that G is connected, as

the cycles of the graph determine the matroid and G will contain the same cycles if

disconnected. The ground set E of M has 4 elements and the independent sets of M

have at most 2 elements, hence the bases of M have 2 elements. Then G has 4 edges

and a spanning tree of G has 2 edges. Because a spanning tree for a graph with n

vertices has n − 1 edges, G must have 3 vertices. So |E(G)| = 4 and |V (G)| = 3,

hence G must have a loop or a pair of parallel edges. But a loop or pair of parallel

edges is a dependent set of cardinality 1 or 2 respectively, contradicting the fact that

the independent sets ofM are all sets of cardinality less than or equal to 2. Therefore

M is not graphic.
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2.2 Rank, Flats, and Closure

Any of the three axiom systems already seen can define any matroid, but there are

several other axiom systems commonly used in the literature. In this chapter we give

two related axiom systems for matroids which emphasize their geometric character,

then use these axioms to define certain families of subsets of the ground set of a

matroid.

2.2.1 Rank

Recall that the rank of a matroid, r(M), is the size of the largest independent set in

E. We can extend this to a rank function r : 2E → Z≥0 given by

r(A) = max
I⊆A
{|I| : I ∈ I}.

Under this definition, the rank of the matroid is the rank of the ground set which is

the cardinality of a basis of a matroid: r(M) = r(E) = r(B) = |B|.

Proposition 2.2.1. Let E be a set and define a function r : E → Z≥0 as described

above. Then r is the rank function of a matroid M on E if and only if, for X, Y ⊆ E,

(R1) 0 ≤ r(X) ≤ |X|.

(R2) If X ⊆ Y , then r(X) ≤ r(Y ).

(R3) r(X ∪ Y ) + r(X ∩ Y ) ≤ r(X) + r(Y ).

Before proving the proposition, we define the notion of a restriction of a matroid.

Let X ⊆ E. Then the restriction of M to X, denoted M |X , is simply the matroid we
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obtain by restricting the independent sets, etc. of M to elements of X. For example,

the independent sets of X are I(M |X) = {I ∩X : I ∈ I(M)} with bases and circuits

defined similarly.

Proof. The first two properties are clear. Property (R1) follows from the definition

of the rank function - the rank of a set cannot be greater than its cardinality. The

second property similarly follows from the fact that if X ⊆ Y , then |X| ≤ |Y |.

It remains to show property (R3). Let B1 be a basis of M |X∩Y . Then B1 is an

independent set contained in a basis B2 of M |X∪Y . Note that B2 ∩X is independent

in M |X ; similarly B2 ∩ Y is independent in M |Y . By definition of the rank function,

r(X) ≥ |B2 ∩ X| and r(Y ) ≥ |B2 ∩ Y |, hence r(X) + r(Y ) ≥ |B2 ∩ X| + |B2 ∩ Y |.

Note that

|B2 ∩X|+ |B2 ∩ Y | = |(B2 ∩X) ∪ (B2 ∩ Y )|+ |(B2 ∩X) ∩ (B2 ∩ Y )|

= |B2 ∩ (X ∪ Y )|+ |B2 ∩X ∩ Y | = |B2|+ |B1|.

Therefore r(X) + r(Y ) ≥ |B2|+ |B1| = r(X ∪ Y ) + r(X ∩ Y ).

The next theorem shows that a matroid can be defined in terms of its rank func-

tion.

Theorem 2.2.2. Let E be a set and let r : 2E → Z≥0 be such that r satisfies properties

(R1)-(R3). Define I := {I ⊆ E : r(I) = |I|}. Then (E, I) is a matroid on E with

rank function r.

The proof of this theorem requires the following lemma.

18



Lemma 2.2.3. Let E be a set and r a rank function on E. If X, Y ⊆ E such that

r(X ∪ y) = r(X) for all y ∈ Y −X, then r(X ∪ Y ) = r(X).

Proof. Say |Y −X| = k for some integer k. The proof is by induction on k. If k = 1,

the result is immediate. Say the result holds for k = n. We will show that the result

holds for n+ 1. By induction, using (R2) and (R3),

r(X) + r(X) = r(X ∪ {y1, . . . , yk}) + r(X ∪ yk+1)

≥ r((X ∪ {y1, . . . , yk}) ∪ (X ∪ yn+1)) + r((X ∪ {y1, . . . , yk}) ∩ (X ∪ yn+1))

= r((X ∪ {y1, . . . , yk+1}) + r(X)

≥ r(X) + r(X).

Because equality must hold throughout, we have r(X ∪ {y1, . . . , yk+1}) = r(X).

We may now prove Theorem 2.2.2.

Proof. By (R1), we have 0 = r(∅) = |∅|, thus ∅ ∈ I and I satisfies (I1). Let I1 ∈ I,

so r(I1) = |I1| and let I2 ⊆ I. By (R3),

r(I2 ∪ (I1 − I2)) + r(I2 ∩ (I1 − I2)) = r(I1) + r(∅) ≤ r(I2) + r(I1 − I2).

By (R2), r(I2) ≤ |I2| and r(I1 − I2) ≤ |I1 − I2|. Hence,

|I1| ≤ r(I2) + r(I1 − I2) ≤ |I2|+ |I1 − I2| = |I1|.

The equality in the above equation must hold throughout, thus r(I2) = |I2|. So I2 ∈ I

and I satisfies (I2).
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To show that I satisfies (I3), we proceed by contradiction. Let I1, I2 ∈ I such

that |I1| < |I2|, but for all x ∈ I2 − I1, I1 ∪ x /∈ I. By definition of I, we know that

|I1| = r(I1) = r(I1 ∪ x) for all x ∈ I2 − I1. It cannot be the case that |I2 − I1| = 1,

otherwise, I1 ∪ x = I2, and r(I1 ∪ x) = r(I2) ≤ |I2|. So |I2 − I1| = k for some k > 1.

By the above lemma, r(I1 ∪ {x1, . . . , xk} = |I1|. But then I1 ∪ {x1, . . . , xk} = I2,

hence r(I1 ∪ {x1, . . . , xk}) = r(I2) = |I2| ≤ |I1| < |I2|, and we have a contradiction.

Therefore I satisfies (I3).

The preceding theorem and proposition show the equivalence of the rank axioms

(R1)-(R3) with the independent set axioms and thus with the other axiom systems

previously shown.

2.2.2 Closure

The rank function can be used to define another function on 2E. Let M be a matroid

on a ground set E and define a function cl : 2E → 2E given by

cl(X) = {x ∈ E : r(X ∪ x) = r(X)}.

The function cl is the closure operator ofM ; we call the set cl(X) the closure of X. If

X ⊆ E such that cl(X) = E, we say that X is a spanning set of M . It is immediate

from the definition of a spanning set that a basis is a minimal spanning set.

Following the now familiar pattern, we next establish the equivalence of a set of

properties of the closure operator with the independent set axioms.

Proposition 2.2.4. Let M be a matroid on ground set E. The closure operator on

M has the following properties:
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(CL1) If X ⊆ E, then X ⊆ cl(X).

(CL2) If X ⊆ Y ⊆ E, then cl(X) ⊆ cl(Y ).

(CL3) If X ⊆ E then cl(cl(X)) = cl(X).

(CL4) If X ⊆ E and x ∈ E, and y ∈ cl(X ∪ x)− cl(X), then x ∈ cl(X ∪ y).

The proof of (CL3) uses the following lemma:

Lemma 2.2.5. Let E be the ground set of a matroid M . For all X ⊆ E, r(X) =

r(cl(X)).

Proof. Let B be a basis for X. For all x ∈ cl(X)−X,

r(B ∪ x) ≤ r(X ∪ x) = r(X) = |B| = r(B) ≤ r(B ∪ x).

Hence r(B ∪ x) = r(B) = |B| < |B ∪ x|, so B ∪ x is a circuit of M . It follows that B

is also a basis of cl(X) and the result follows.

We now prove Proposition 2.2.4.

Proof. The first property follows from the definition of the closure operator. To see

that (CL2) holds, say X ⊆ Y and x ∈ cl(X)−X, then r(X) = r(X ∪ x). If B1 is a

basis of X, B1 must also be basis of X∪x and we can extend B1 to a basis B2 of Y ∪x.

Note that x /∈ B2, thus B2 is also a basis of Y . Therefore r(Y ∪ x) = |B2| = r(Y )

hence x ∈ cl(Y ).

To show (CL3), note that it is immediate from (CL1) that cl(X) ⊆ cl(cl(X)).

Now let x ∈ cl(cl(X)). By the above lemma, r(cl(X) ∪ x) = r(X). Then, by (R2),

r(cl(X) ∪ x) = r(X) ≥ r(X ∪ x) ≥ r(X).
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Thus x ∈ cl(X), hence cl(cl(X)) ⊆ cl(X).

Finally, we show (CL4). Let y ∈ cl(X ∪ x)− cl(X). So r(X ∪ x ∪ y) = r(X ∪ x)

and r(X ∪ y) 6= r(X). Note that, by (R2) and (R3), r(X) ≤ r(X ∪ x) ≤ r(X) + 1.

Combining this with the previous inequality shows that r(X ∪ y) = r(X) + 1. Then

r(X) + 1 = r(X ∪ y) ≤ r(X ∪ y ∪ x) = r(X ∪ x) ≤ r(X) + 1

which shows that r(X ∪ y ∪ x) = r(X ∪ y), i.e., x ∈ cl(X ∪ y).

The following proposition further illustrates the relation between the independent

sets of a matroid and its closure operator.

Proposition 2.2.6. Let M be a matroid with independent sets I. If I ∈ I but I ∪ x

is not, then x ∈ cl(I).

Proof. Because I ∪ x /∈ I, there is some y ∈ I ∪ x such that y /∈ cl((I ∪ x) − y).

If y = x, we’re done. Assume not. Note that (I ∪ x) − y = (I − y) ∪ x and

y ∈ cl((X − y) ∪ x)− cl(X − y). By (CL4), x ∈ cl((I − y) ∪ y) = cl(I).

We will make extensive use of this proposition in the proof of the following theo-

rem.

Theorem 2.2.7. Let E be a set and let cl : 2E → 2E be a function satisfying (CL1)

- (CL4). Define

I = {X ⊆ E : x /∈ cl(X − x) for all x ∈ X}.

Then M = (E, I) is a matroid with closure operator cl.
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Proof. By definition, we have ∅ ∈ I, so (I1) is satisfied. For (I2), suppose I ∈ I and

J ⊆ I. Let x ∈ J , then x ∈ I hence x /∈ cl(I − x). By (CL2), cl(J − x) ⊆ cl(I − x),

so x /∈ cl(J − x) and J ∈ I.

To show that (I3) is satisfied, we proceed by contradiction. Let I1, I2 ∈ I with

|I1| < |I2| but for all x ∈ I2 − I1, I1 ∪ x /∈ I. Choose I1, I2 such that |I1 ∩ I2| is

maximal among all such pairs. Let y ∈ I2− I1 and consider I2− y. If I1 ⊆ cl(I2− y),

by (CL2) and (CL3), cl(I1) ⊆ cl(I2 − y). Then y /∈ cl(I1). By the above proposition,

I1 ∪ y ∈ I, so (I3) holds for I1, I2. So I1 is not contained in cl(I2 − y). Then there

exists z ∈ I1 such that z /∈ cl(I2− y), hence z /∈ I1− I2. Then (I2− y)∪ z ∈ I by the

proposition above. Because |I1∩(I2−y)∪z| > |I1∩I2|, for some x ∈ ((I2−y)∪z)−I1,

I1 ∪ x ∈ I. But x ∈ I2 − I1, hence (I3) holds and M = (E, I) is a matroid.

It remains to be shown that cl is indeed the closure operator of M . Let clM be

the closure operator of M . Let x ∈ cl(X) − X. So r(X ∪ x) = r(X). Let B be

a basis of X, then B ∪ x /∈ I and by the above proposition x ∈ cl(B). By (CL2),

cl(B) ⊆ cl(X), hence x ∈ cl(X). This shows that clM(X) ⊆ cl(X). Now suppose

x ∈ cl(X)−X and let B be a basis of X. Then for all y ∈ X −B, B ∪ y /∈ I. Again

using the above proposition, we have X ⊆ cl(B). Then cl(X) ⊆ cl(B). So x ∈ cl(B)

and B ∪ x /∈ I, so B is a basis for X ∪ x and r(X ∪ x) = r(X) = |B|. So x ∈ clM(X)

thus clM(X) ⊆ cl(X).

2.2.3 Flats

We may use the rank and closure functions to characterize two important classes of

subsets of a matroid M on a ground set E. A subset F of E is called a flat or closed

set of M if r(F ∪ x) > r(F ) for all x /∈ F . Equivalently, F is a flat if and only if
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cl(F ) = F . We denote the collection of flats of a matroid as F . Note that it is always

the case that E ∈ F .

A flat H is a hyperplane of M if r(H) = r(M) − 1; this is equivalent to the

statement that H is a maximal non-spanning set. The next proposition gives a

graphic characterization of a hyperplane.

Proposition 2.2.8. Let M(G) be a matroid on a graph G. Then H is a hyperplane

in M(G) if and only if E(G)−H is a minimal cut in G.

Proof. Suppose E(G)−H is a minimal cut in G. Then all e ∈ E(G)−H connect two

components of G. This implies that H ∪ e is a spanning set of M(G) for all, hence

H is a maximal non-spanning set, i.e. a hyperplane.

Let H be a hyperplane in M(G). Then H is a maximal non-spanning set, i.e.

the edges of H do not span G. Thus E(G) − H has two components, but H ∪ e is

connected for all e ∈ E(G)−H. Hence E(G)−H is a minimal cut in G.

An important characteristic of F is that the collection of flats forms a lattice

under inclusion, as the following proposition shows. Recall that a lattice is a partially

ordered set (E,≤) such that every pair of elements x, y ∈ E have a join and a meet.

The join of x and y, denoted x∨ y, is defined as min{z : x ≤ z and y ≤ z}. The meet

of x and y is defined as x ∧ y : max{z : z ≤ x and z ≤ y}. If x ≤ y and there is no

element of the poset between x and y, we say that y covers x.

Proposition 2.2.9. Let M be a matroid. Then the collection of flats F of M form

a lattice under inclusion, in particular given F1, F2 ∈ F , F1 ∧ F2 = F1 ∩ F2 and

F1 ∨ F2 = cl(F1 ∪ F2).
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Proof. First we need to show that F1 ∩ F2 ∈ F . To see that this is the case, suppose

there is some x ∈ cl(X ∩ Y ) − (X ∩ Y ). Then r((F1 ∩ F2) ∪ x) = r(F1 ∩ F2). Say

X is a maximal independent set in F1 ∩ F2. Then X ∪ x contains a circuit, hence

(F1 ∩ F2) ∪ x contains a circuit and x is a element of that circuit. This implies that

x ∈ cl(F1) ∩ cl(F2), but cl(F1) ∩ cl(F2) = F1 ∩ F2, contradicting the assumption that

x /∈ F1∩F2. Hence F1∩F2 ∈ F . If F1∩F2 is not the meet of F1 and F2, then there is

some element in F1 and F2 not in F1∩F2, a contradiction. Therefore F1∧F2 = F1∩F2.

If F1 ∩ F2 = ∅, then F1 ∧ F2 is the zero element of the poset, i.e. the empty set, and

the result holds.

Now consider F1∨F2; F1∪F2 may not be a closed set but cl(F1∪F2) certainly is.

We claim that cl(F1∪F2) is the smallest flat containing F1 and F2, hence cl(F1∪F2) =

F1 ∨F2. To see this, suppose there exists some flat F ⊇ F1 ∪F2 but F + cl(F1 ∪F2).

Then F ∩ cl(F1 ∪ F2) is a flat containing F1 ∪ F2 but contained in cl(F1 ∪ F2), a

contradiction.

Note that later in this paper, we consider a lattice in the sense of a free abelian

group; it is this group-theoretic lattice rather than the order-theoretic lattice defined

above that is our main focus in this paper.

Example 2.2.10. Consider the graph G = K4, the complete graph on four vertices,

with edges labeled as in Figure 2.2. Take E = E(G) and define a matroid M(G) on

E. Then the bases are all 3-element subsets of E(G) which are not cycles in G; these

are exactly the spanning trees of G. It follows that r(M(G)) = 3. The circuits are

the edge sets of the cycles in G and all subsets of E(G) which contain at least one

cycle. The independent sets are the bases plus all singleton and 2-element sets. The

hyperplanes are the sets of 2 non-adjacent edges. The other flats of M(G) are the
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Figure 2.2: K4, the complete graph on 4 vertices, with edges labeled as in Example 2.2.9.

singleton subsets of E, the 3-cycles of G, and E itself.

Now consider the following matrix A over the real numbers:


1 0 0 1 0 1

0 1 0 1 −1 0

0 0 1 0 1 1

 .

Label the columns of A as E = {e1, . . . , e6} and define a matroid M(A) on E. It

is easy to see that if we associate each column of A to the correspondingly labeled

edge in G, it is easy to see that A and G generate the same matroid. For example,

a natural basis for the column space of A is B = {e1, e2, e3}, and this corresponds to

a spanning tree T of G. Adding any other column to B gives a linear dependency,

hence a circuit in M(A); likewise, adding any edge to T generates a cycle.

By adding rows of A and then scaling columns, we obtain the following matrix

A′ =


1 0 0 1/3 0 1/2

0 1/2 0 1/3 1 0

1 1 1 1 1 1
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Figure 2.3: M(K4), the cycle matroid associated to K4, with elements labeled to correspond
to the edge labeling of K4 in Figure 2.2.

which is equivalent to the matrix A, and keep the same labeling of the columns. We

shall show in a later chapter that performing elementary row and column operations

on a matrix does not affect the associated vector matroid, so in this case M(A′) =

M(A) = M(K4). By taking each column of A′ as a vector in R3 and projecting onto

the plane z = 1, we obtain the geometric representation of M(K4) shown in Figure

2.3. Observe that three colinear points represent a circuit, as do any four non-colinear

points; any three non-colinear points give a basis. Note that the coordinates in the

projections of the column vectors of A′ give the position of the corresponding point

in the plane; this is reflected in the position of the elements in Figure 2.3.
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Chapter 3

Duality and minors

As is the case with many areas of matroid theory, the notions of matroid duality and

minors can be intuitively but not precisely understood by analogy with the graph

theoretic notions of the same name. Duality, like many of the basics of matroid

theory, was originally investigated by Whitney [19]; the theory of matroid minors was

developed at length by Tutte, see e.g. [15]. These topics are covered extensively in

standard references such as [11] and [17].

3.1 Duality

Let M be a matroid with ground set E and bases B(M). The dual matroid M∗ is the

matroid with bases B(M∗) := {E − B : B ∈ B(M)}. We sometimes write B∗ when

the context is clear. Of course, it is necessary to verify that M∗ is indeed a matroid.

Proposition 3.1.1. Let M be a matroid with ground set E and bases B(M). Then

B(M∗) := {E −B : B ∈ B(M)} are the bases of a matroid.

Proof. Because there exists some B ∈ B, there is a complement E − B ∈ B∗, hence
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Figure 3.1: M∗(K4), the dual of the cycle matroid M(K4) shown in Figure 2.3. See Example
3.1.2.

(B1) is satisfied. Using the definitions of B and B∗, we have that, for all B′1, B′2 ∈ B∗

and x′ ∈ B′1−B′2, there exists y′ ∈ B′2−B′1 such that (B′1−x′)∪y′ ∈ B∗ if and only if

for all B1, B2 ∈ B and x ∈ B1−B2, there exists y ∈ B2−B1 such that (B1−x)∪y ∈ B.

Therefore, (B2) holds and B∗ is the collection of bases of a matroid.

From the above theorem, it is evident that, for a matroid M with basis B we

have r(M) = |B|; it follows that r(M) + r(M∗) = |E|. Moreover, it is evident that

(M∗)∗ = M .

A matroid which is isomorphic to its dual is said to be self-dual. The dual M∗(G)

of a graphic matroid M(G) is sometimes called the bond matroid or cocycle matroid

of G. A matroid which is isomorphic to the cocycle matroid of a graph is said to

be cographic. The following example exhibits a matroid which is both self-dual and

cographic.

Example 3.1.2. Figure 3.1 shows a geometric representation of M∗(K4), the dual

matroid of M(K4), the cycle matroid of the complete graph on four vertices. A

geometric representation ofM(K4) is shown in Figure 2.3. Comparing the two figures

it is evident that the two representations are the same save that the labels of the
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elements have been changed, indicating that M(K4) ∼= M∗(K4). Note that, e.g.,

B = {e3, e5, e6} is a basis for M(K4) and E −B = {e1, e2, e4} is a basis in M∗(K4).

Carrying on with the use of co- to indicate matroid duality, the bases of M∗

are called the cobases of M . We similarly define the coindependent sets, cocircuits,

cohyperplanes, and cospanning sets. The next two propositions, adapted from [7]

and [11], establish the relations between the distinguished sets of a matroid and those

of its dual.

Proposition 3.1.3. Let M be a matroid on a set E and let X ⊆ E. Then

(i) X is independent if and only if E −X is cospanning;

(ii) X is spanning if and only if E −X is coindependent;

(iii) X is a hyperplane if and only if E −X is a cocircuit;

(iv) X is a circuit if and only if E −X is a cohyperplane.

Proof. For 1 and 2, notice that a coindependent set X is contained in a cobasis, hence

E −X must contain a basis for M hence E −X spans M . To show 3 and 4, observe

that X is a hyperplane in M if and only if r(X ∪ y) = r(M) for all y /∈ X. Hence

E−X is dependent in M∗ but (E−X)−y is independent in M∗ and this is precisely

the definition of a cocircuit.

Proposition 3.1.4. Let M be a matroid and let C and C∗ be a circuit and cocircuit

of M . Then |C ∩ C∗| 6= 1.

Proof. Suppose not. Then C ∩ C∗ = x for some x ∈ E. Consider the hyperplane

H = E − C∗ and recall that cl(H) = H. Note that x ∈ C∗, hence x /∈ H but
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C − x ⊆ H. Moreover, x ∈ cl(C − x) hence x ∈ cl(H) = H. Then x /∈ C∗, a

contradiction.

The following proposition exactly dualizes the argument of Proposition 2.1.12.

Proposition 3.1.5. Let M be a matroid and let B be a basis of M . Then for all

y ∈ B, there is a unique cocircuit C∗ ⊆ (E −B) ∪ y.

The cocircuit described in the above proposition is called the fundamental cocircuit

of y with respect to B and is denoted as C∗(y,B).

3.1.1 Duals of graphic matroids

While Proposition 3.1.5 holds for all matroids it is not difficult to see the connection

with the well-known result in graph theory that associates an edge in a spanning tree

of graph G with a fundamental cut of the graph. The first proposition of this section

makes precise this intuitive connection between the cocircuits of a graphic matroid

and the cuts of the associated graph. Recall that a bond is a minimal cut in a graph

G.

Proposition 3.1.6. Let G be a graph with cycle matroid M(G). Then the cocircuits

of M(G) are precisely the bonds of G.

Proof. Recall from Proposition 2.2.8 that given a hyperplane H in a graphic matroid

M(G), E −H is a minimal cut in G. Combining this with (iii) of Proposition 3.1.3

gives the result.

An easy corollary to the above theorem follows from the graph-theoretic result

that any cycle and cut in a graph have even intersection.
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Corollary 3.1.7. Let G be a graph with cycle matroid M(G). Let C,C∗ be, respec-

tively, a circuit and cocircuit in M(G). Then |C ∩ C∗| is even.

When considering the duals of graphic matroids, it is natural to ask which graphic

matroids have duals which are also graphic. In other words, how do we characterize

those graphs which have graphic cocycle matroids? The next theorem, our main

result regarding cographic matroids, shows that these are exactly the planar graphs.

Theorem 3.1.8. A graph G is planar if and only if M∗(G) is graphic. Furthermore,

M(G∗) = M∗(G).

Our proof of this theorem will roughly follow that given in [7]. First we review

the necessary background.

Recall that a planar graph G is a graph which admits a plane drawing, i.e., an

embedding in the plane such that no two edge cross each other. Such an embedding

is called a plane graph. The dual graph of a plane graph, denoted G∗, has a vertex

for each face and an edge across every edge of G which separates two faces; an edge

of G contained in a face corresponds to a loop in G∗. It is known that the dual of

the complement of a spanning tree in G is a spanning tree in G∗; we shall make use

of this fact in the proof of Theorem 3.1.8.

Kuratowski’s theorem, a celebrated result in graph theory, characterizes planar

graphs. Recall that K5 is the complete graph on 5 vertices; K3,3 is the complete

bipartite graph with 3 vertices in each partition. A graph G′ is a topological minor

of a graph G if G contains a subgraph isomorphic to G′ via subdivisions of edges or

removal of degree 2 vertices.

Theorem 3.1.9 (Kuratowski). A graph is planar if and only if it has neither K5 nor

K3,3 as a topological minor.
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Kuratowski’s theorem motivates the next lemma, which will allow us to prove

Theorem 3.1.8.

Lemma 3.1.10. Neither M∗(K5) nor M∗(K3,3) is graphic.

Proof. We first show that M∗(K5) is not graphic. The proof is by contradiction. Say

that M∗(K5) is isomorphic to the cycle matroid of some graph G. Observe that K5

has ten edges and that a spanning tree ofK5 has four edges. ThereforeM(K5) has ten

elements and r(M(K5)) = 4. So M∗(K5) ∼= M(G) has ten elements and rank 6, thus

G has ten edges and a spanning tree of G has six edges. Hence G is a graph with seven

vertices and ten edges, hence an average vertex degree 2|E(G)|/|V (G)| = 20/7 < 3.

This implies that G has a vertex with degree at most 2, hence a minimal cut of

cardinality 1 or 2. This implies that M∗(G) has a circuit of cardinality 1 or 2 but

M∗(G) ∼= (M∗(K5))∗ = M(K5), but if this were true then K5 would have a loop or a

set of parallel edges and we have a contradiction.

To show thatM∗(K3,3) is not graphic, we again proceed by contradiction. Assume

M∗(K3,3) ∼= M(G) for some graph G. Similarly to the case of K5, we note that

M(K3,3) has nine elements and rank 5. So M(G) will have nine elements and rank

4, implying that G is a graph with nine edges and five vertices. Then G has average

vertex degree 18/5 < 4, hence a vertex v with d(v) ≤ 3. So M∗(G) ∼= M(K3,3) has a

circuit of cardinality at most 3, a contradiction.

We are now ready to prove that planar graphs are exactly those with graphic

cocycle matroids.

Proof of Theorem 3.1.8. Say G is planar, so G∗ exists and is planar. Recall that the

dual of the complement of a spanning tree T of G is a spanning tree T ∗ of G∗. Thus

33



the edges of T ∗ are in bijective correspondence with the edges of G \ T . Thus the

bases of M(G∗) are the complements of the bases of M(G), that is M(G∗) = M∗(G);

furthermore, M∗(G) is graphic.

Now suppose M∗(G) is graphic. Therefore, by Lemma 3.1.9, G cannot contain

K5 or K3,3 as a minor. Then by Kuratowski’s theorem, G is planar.

3.1.2 Duals of representable matroids

Recall that given an n×mmatrix A with entries in some field K, we can apply elemen-

tary row operations to put the matrix in the standard form [Ir|D] while preserving

the vector matroid M(A).

Theorem 3.1.11. Let M be a vector matroid with standard representation A =

[Ir|D]. Then the vector matroid associated to A∗ = [−DT |In−r] is the dual matroid

M∗.

Proof. Let E be the ground set ofM . As A and A∗ have the same number of columns,

we may also index the columns of A∗ by E. Note that r(M) = r. Let B be a basis

of M . We will find a set of columns in A∗ corresponding to a basis B∗ = E \ B of

M(A∗).

Consider the following block decomposition of A:

A =

I 0 D11 D12

0 I D21 D22

 .

We can arrange the columns of A (and therefore of A∗) so that the elements of

B correspond to the middle two blocks of columns in A. Because B is a basis, the
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columns of D11 are linearly independent. Therefore the first and fourth column blocks

of

A∗ =

−DT
11 −DT

21 I 0

−DT
12 −DT

22 0 I


are a maximal linearly independent set of columns. Call this set of columns B∗. Then

B∗ is a basis for M(A∗). Further, B∗ = E \ B; this shows that B∗ corresponds to a

basis for M∗.

The following corollary is immediate.

Corollary 3.1.12. If a matroid M is representable over a field K, then the dual

matroid M∗ is also representable over K.

The following proposition illustrates the connection between matroid duality and

vector space orthogonality.

Proposition 3.1.13. Let A = [Ir|D] and A∗ = [−DT |In−r]. Then the row spaces of

A and A∗ are orthogonal complements.

Proof. This follows from the construction of A and A∗. Notice that the rows of both

matrices have length n. In particular, the rows of the submatrix −DT have length r

and the rows of D have length n − r. Recall that taking the transpose of a matrix

preserves the position of the diagonal entries, thus the diagonal entries of −DT are

exactly the negatives of the diagonal entries of D. Further, the diagonal entries of D

and −DT are the only entries which will be multiplied by the non-zero entries in In−r

and Ir (respectively) in the bilinear form over K. Then for any ai in A and a′i in A∗,

we have

〈ai, aj〉 =
n∑

k=1
aika

′
ik = aii + a′ii = aii − aii = 0.
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Now observe that both A and A∗ are full rank, thus the row space of A has

dimension r and the row space of A∗ has dimension n− r.

Example 3.1.14. In Example 2.2.10, we saw that the matrix

A =


1 0 0 1 0 1

0 1 0 1 −1 0

0 0 1 0 1 1



represents M(K4) over R. Then the matrix

A∗ =


−1 −1 0 1 0 0

0 1 −1 0 1 0

−1 0 −1 0 0 1



represents M∗(K4) over R. It is not difficult to see that the geometric representation

of M∗(K4) in Figure 3.1 corresponds to the vector matroid M(A∗) = M∗(K4). It is

also straightforward to observe that every row of A∗ is orthogonal to every row of A.

3.2 Minors

Recall that a graph G′ which can be obtained from a graph G by deleting and con-

tracting edges is called a minor of G. We may similarly define a minorM ′ of a matroid

M .

36



3.2.1 Deletion and contraction

Let M be a matroid on ground set E, and let X ⊆ E. Recall that the restriction of a

matroid, denotedM |X , is simply the matroid we obtain by restricting the independent

sets, etc. of M to elements of X. If Y = E−X may equivalently refer to the deletion

of Y fromM ,M \Y . We define the contraction ofX fromM to beM/X = (M∗\X)∗.

A matroid M ′ obtained from M by a sequence of deletions and contractions is said

to be a minor of M .

It is straightforward to determine the bases of M \ e and M/e; from these bases

one may find the other distinguished sets of M \ e and M/e. Our development of this

material is standard, see e.g. [7] or [17].

Proposition 3.2.1. Let M be a matroid on ground set E. Let e ∈ E be such that e

is not a coloop. Then the bases of M \ e are the bases of M which do not contain e.

Proof. Let B1 be a basis for M such that e /∈ B1 and let B2 be a basis for M such

that e ∈ B2. Then B1 is still a maximal independent set inM \e. On the other hand,

the image of B2 in M \ e is B2− e and |B2− e| < |B1|, hence B2− e is not a basis of

M \ e.

Proposition 3.2.2. Let M be a matroid on ground set E and let e ∈ E be such that

e is not a loop. Then B is a basis of M/e if and only if B ∪ e is a basis of M .

Proof. Say B ∈ B(M/e). Recall that M/e = (M∗ \ e)∗. So B′ = (E − e) − B is a

basis for M∗ \ e, hence for M∗ as well. Therefore E −B′ = B ∪ e is a basis for M .

Now suppose B ∪ e ∈ B(M). So B′ = E − (B ∪ e) is a basis for M∗, hence for

M∗ \ e. Then (E − e)−B′ = B is a basis for (M∗ \ e)∗ = M/e.
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Figure 3.2: The Fano plane F7 (top left), the deletion F7 \5 (top right), and the contraction
F7/1 (bottom). See Example 3.2.1.

Proposition 3.2.3. Let M be a matroid and e be either a loop or coloop. Then

M \ e = M/e.

Proof. Let e be a loop. Then e is in no bases of M . Therefore all B ∈ B(M) are in

B(M \ e). Likewise, contracting e does not does not change the bases of M , hence

B ∈ B(M) implies that B ∈ B(M/e). Then B(M \ e) = B(M/e) and this gives the

result.

Now suppose that e is a coloop in M . Then e is in every basis of M , hence all

bases in M/e are of the form B − e for some B ∈ B(M). This is precisely the form

of the all bases of M \ e, and the result follows.

Example 3.2.4. Consider the three matroid representations in Figure 3.2. The

matroid on the top left is the Fano plane, the projective geometry on seven points.

Any three colinear points or four non-colinear points form a circuit and we interpret

the center circle as a line, so {4, 5, 6} form a circuit. The bases of F7 are the 3-element
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sets of non-colinear points. In particular, B1 = {1, 2, 3} and B2 = {2, 5, 6} are bases

of F7.

The matroid on the top right of Figure 3.2 is the deletion F7 \ 5; note that B1 ∈

B(F7 \ 5), but clearly B2 /∈ B(F7 \ 5). It is also worth noting that F7 \ 5 is isomorphic

to M(K4), as can be seen by comparing Figures 3.2 and 2.3; indeed, it is not difficult

to see that F7 \e ∼= (M(K4)) for all e. The matroid at the bottom is F7/1. The image

of B1 in F7/1, {2, 3}, is a basis for F7/1, but B2 is a dependent set.

If G is a graph, and X ⊆ E(G), then it is clear that M(G) \ X = M(G \ X).

Therefore M(G) \ X is also graphic, as G \ X is also a graph. Similarly, let A

be a matrix over a field K with columns indexed by a set E, and vector matroid

M(A). Let X ⊆ E and let A \ X be the matrix obtained from A by deleting the

columns with indices in X. Then it is clear from the definition of deletion that

M(A) \X = M(A \X). It follows that M(A) \X is also representable over K.

The next two propositions show that contractions of graphic matroids are graphic

and that contractions of representable matroids are also representable. Thus all mi-

nors of graphic (representable) matroids are graphic (representable). A class of ma-

troids all of whose minors are also members of the same class is said to be closed

under minors.

Proposition 3.2.5. Every minor of a graphic matroid is graphic.

Proof. Let G be a graph, and X ⊆ E(G). We know that M(G) \ X is graphic; it

remains to be shown that M(G)/X = M(G/X) for all X ⊆ E. The proof is by

induction on |X|.

For the base case, X = e. If e is a loop, then G \ e = G/e is also a graph,

hence M(G)/e = M(G) \ e = M(G \ e) = M(G/e). Now say e is not a loop. Let
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Y ⊆ E(G)−e. Let ve be the vertex obtained by contracting e in G. Observe that e is

in a cycle in G if and only if ve is a vertex in a cycle in G/e. Then Y ∪ e ∈ I(M(G))

if and only if Y ∈ I(M(G/e)), i.e. I(M(G)/e) = I(M(G/e)).

Now say |X| = n. By induction, the proposition holds for |X ′| = n − 1. So

I(M(G)/{e1, . . . , en−1}) = I(M(G/{e1, . . . , en−1})). The remainder of the argument

is identical to that in the base case, and this completes the proof.

Proposition 3.2.6. A matroid M is representable over a field K if and only if every

minor of M is also representable over K.

Proof. Let A be a matrix representingM overK with columns indexed by a set E. Let

X ⊆ E. We know thatM(A)\X = M(A\X) is representable overK; moreover,M∗ is

also K-representable. Then by the definition of contraction,M(A)/X = (M∗(A)\X)∗

is representable over K.

Now suppose that every minor of M is representable over K. Then M is repre-

sentable over K as M is a minor of itself.

In the proof of the previous proposition, we took the direct sum of two matrices

representing distinct matroids to obtain a third matroid. The next section more

closely examines the extension of the direct sum operation to matroids.

3.2.2 Direct sums

There are several ways to characterize matroid connectivity. Whitney [19] first devel-

oped the notion in terms of graph connectivity, using the rank function; Welsh [17]

defines connected matroids via their circuit sets; Oxley [11] discusses both of these

approaches and others as well. Our approach will be via direct sums, as in [7] and [11].
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Given two matroids M1 and M2 with disjoint ground sets E1 and E2 respectively,

we define the direct sum of M1 and M2, written as M1 ⊕M2, to be the matroid on

E1 t E2 with bases

B(M1 ⊕M2) = {B1 tB2 : B1 ∈ B(M1) and B2 ∈ B(M2)}.

It is not immediately evident that M1 ⊕M2 is indeed a matroid, but the proof is

routine.

Proposition 3.2.7. Let M1 and M2 with disjoint ground sets E1 and E2 respectively,

and let M = M1 ⊕M2. Then M is a matroid with bases as described above.

Proof. We show that M satisfies the basis axioms. Clearly B(M) 6= ∅, hence (B1)

is satisfied. Now say B,B′ ∈ B(M). Then B = B1 t B2 where B1 ∈ B(M1) and

B2 ∈ B(M2) and B′ = B′1 t B′2 where B′1 ∈ B(M1) and B′2 ∈ B(M2). If x ∈ B′ − B,

then either x ∈ B′1 − B1 or x ∈ B′2 − B2. In the first case there exists a y ∈ B1 − B′1

such that (B1 − x) ∪ y ∈ B(M1); the argument for the second case is identical. In

either case there exists a y ∈ B − B′ such that (B′ − x) ∪ y ∈ B(M) and (B2) is

satisfied.

A matroid M is connected if it cannot be expressed non-trivially as a direct sum

of matroids; equivalently, M is connected, for all x, y ∈M , there is a C ∈ C(M) such

that x, y ∈ C. If M is not connected, M is said to be separable. If M = M1 ⊕M2

is separable, then we call M1 and M2 the components of M . Evidently M1 and M2

are minors of M ; in particular M1 = M \M2 and M2 = M \M1. A separation of M

is a partition (X, Y ) of E(M) such that r(X) + r(Y ) = r(M). A k-separation of M

is a partition (X, Y ) of E(M) such that |X|, |Y | ≥ k and r(X) + r(Y ) − r(M) < k.
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Figure 3.3: The matroid M = U2,4 ⊕ U1,3. See Example 3.2.8.
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Figure 3.4: The Fano matroid F7 (left) and the non-Fano matroid F−7 (right). See Example
3.2.9.

A matroid is n-connected if there is no positive integer k < n such that M has a

k-separation.

Example 3.2.8. Recall that the uniform matroid Ur,n is the matroid on n elements

with all sets of cardinality less than r independent. Consider the matroidM in Figure

3.3. M = U2,4 ⊕ U1,3 with E1 = [4] and E2 = {a, b, c}. Then {1, 2, a} is a basis for

M , as is any set in E1 t E2 of the form B ∪B′ where B ∈ B(U2,4) and B′ ∈ B(U1,3).

Similarly, the circuits ofM are of the form C∪C ′ where C ∈ C(U2,4) and C ′ ∈ C(U1,3),

so e.g., {1, 2, 3, a, b} ∈ C(M).

We end this chapter with an example showing a non-representable matroid.

Example 3.2.9. Recall the Fano matroid F7 from Example 3.2.1. The non-Fano
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matroid F−7 is obtained from F7 by relaxing the requirement that {4, 5, 6} forms a

circuit. Both are shown in Figure 3.4. Let A be the matrix


1 0 0 1 1 0 1

0 1 0 1 0 1 1

0 0 1 0 1 1 1



with columns indexed by [7]. It is not hard to see that A is representation of F7 over

F2. The relaxation of the requirement that {4, 5, 6} form a circuit gives a represen-

tation of F−7 over F3. We claim that if M ∈ {F7, F
−
7 } is representable over a field K,

then A is the only representation of M over K. This will prove the following.

Proposition 3.2.10. The Fano matroids F7 is representable over K if and only if

the characteristic of K is 2. The non-Fano matroid F−7 is representable over K if and

only if the characteristic of K is 3.

There are several ways to prove this result; we prefer this method found in [11].

We can always assume that A = [I3|D], so the columns of I3 represent elements

1, 2, 3 in M . We may write [1 1 1]T for column 7, as 7 is a member of dependent sets

containing 1, 2, 3. So column 4 must be [1 a 0]T , 5 must be [1 0 b]T , and 6 must be

[0 1 c]T . Note that {1, 6, 7} is a circuit, hence c = 1. Likewise {3, 4, 7} is a circuit,

hence a = 1. Finally, {2, 5, 7} is a circuit and this forces b = 1. The proposition

follows.

We may now produce a non-representable matroid, namely M = F7 ⊕ F−7 . If M

were representable over some field K, then one or both of F7, F−7 would be repre-

sentable over fields of character other than 2 (respectively, 3).
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Chapter 4

Regular matroids

A representable matroid M is one which is isomorphic to a vector matroid M(A),

where A is a matrix over some field K. A regular matroid is one which has a totally

unimodular representation over R; we shall show that such a matroid is in fact rep-

resentable over any field. Much of the theory of regular matroids was developed by

Tutte [15], who characterized regular matroids not only in terms of representability,

but also, in an important result, in terms of excluded minors, those matroids which

are minimal obstructions to representability over some field.

4.1 Representability

This section will be devoted to proving the following theorem, due to Tutte [15],

which establishes three equivalent definitions of a regular matroid. Recall that a

matrix A over R is totally unimodular if every square submatrix A′ of A is such that

det(A′) ∈ {0,±1}. If we wish to emphasize this aspect of a regular matroid M , we

shall simply say that M is totally unimodular.
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Theorem 4.1.1. Let M be a matroid. Then the following are equivalent:

(i) M is totally unimodular.

(ii) M is representable over every field.

(iii) M is representable over F2 and another field of characteristic 6= 2.

Generally, we shall follow the presentation of the basic theory of regular matroids

in terms of representability in the standard reference [11]; this presentation is more

modern but essentially the same as Tutte’s.

A basic operation in linear algebra is transforming a matrix A into row echelon

form via a process some authors refer to as “pivoting”, which transforms the jth

column of A into the ith standard basis vector, provided aij 6= 0. Briefly, each row

k where k 6= i is replaced by row k − (akj/aij) row j, resulting in all zero entries in

column j other than aij; then row i is multiplied by 1/aij and this sets aij = 1. The

following lemma shows that a matrix obtained from a totally unimodular matrix by

a pivot operation is again totally unimodular.

Lemma 4.1.2. Let A be a totally unimodular matrix. If B is obtained from A by a

pivoting operation on an entry aij, then B is totally unimodular.

Proof. Let B′ be a square submatrix of B; we will show that det(B′) ∈ {0,±1}. Say

A′ is the corresponding submatrix of A. Say i is a row in B′ (and so also in A′).

Recall from linear algebra that scaling a row or column of a matrix by a constant

c changes the determinant by a factor of c; also recall that replacing a row r by a

linear combination of r and a scalar multiple of another row does not change the

determinant. Therefore, det(B′) = det(A′).
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Now suppose i is not a row in B′. If j is a column of B′, then the jth column of

B′ is zero, hence det(B′) = 0. Suppose j is not a column in B′. Construct matrices

A′′ and B′′ by adjoining row i and column j to A′ and B′ respectively. As in the

previous case, det(A′′) = det(B′′) and, as the only non-zero entry in column j in B′′

is 1, we have det(A′′) = det(B′′) = det(B′), hence det(B′) ∈ {0,±1}.

The previous lemma will allow us to prove the following lemma, which makes

precise the relation between a regular matroid and its totally unimodular matrix

representation.

Lemma 4.1.3. Let M be a matroid of rank r 6= 0 and let B = {b1, . . . , br} be a basis

for M . Then M is regular if and only if there is a totally unimodular matrix of the

form [Ir|D] representing M .

Proof. If such a matrix represents M , then clearly M is regular by definition.

Recall that any representable matroid M on a ground set E with m elements has

a standard representation of the form [Ir|D], where r is the rank of the matroid, Ir

the r × r identity matrix and D an r × (m − r) matrix. Therefore, if M ∼= M(A)

for some totally unimodular matrix A, Lemma 4.1.2 guarantees that we may pivot

successively on r non-zero elements of A to obtain a totally unimodular matrix A′ with

r standard basis vectors. Interchanging rows or columns to put A′ into the desired

form will change the determinant by at most a sign change, hence M is represented

by a totally unimodular matrix of the desired form.

Lemma 4.1.4. Let D1 be a matrix with all entries in {0,±1} such that [Ir|D1] is a

representation of a binary matroid M over K where K has characteristic 6= 2. Let
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[Ir|D2] be obtained from [Ir|D1] by pivoting on an entry dij ∈ D1. Then every entry

in D2 is also in {0,±1}.

Proof. It is clear from the construction of D1 and the definition of the pivoting oper-

ation that all entries of D2 in row i and column j are in {0,±1}. Consider the entries

in the other rows and columns of D2, i.e. those dkl for k 6= i and l 6= j. Again by

construction of D1, after the pivoting operation all such dkl ∈ D1 will be replaced in

D2 by (1/dij)(dijdkl − dkjdil) ∈ {0,±1} unless (dijdkl − dkjdil) ∈ {±2}. Assume that

this is the case; then D1 has a submatrix D′1 such that det(D′1) ∈ {±2}.

Let D# be the matrix obtained by replacing all non-zero entries in D1 by 1. Then

[Ir|D#] is a representation of M over F2 hence [Ir|D1] represents M over F2. Then

det(D′1) = 0 over F2. We claim that det(D′1) = 0 over K as well. To prove the

claim, let B be a basis for M and |B| = r. Say the rows of D′1 are indexed by

{p1, . . . , pg} and the columns by {c1, . . . , cg}. Then det(D′1) 6= 0 over F2 if and only

if B − {p1, . . . , pg} ∪ {c1, . . . , cg} is a basis for M over F2, and this is the case if and

only if B−{p1, . . . , pg}∪{c1, . . . , cg} is a basis for M over K, hence det(D′1) 6= 0 over

K. But this contradicts our previous assertion on det(D′1) ∈ {±2} over K.

Note that in particular the above result holds for K = R.

We require the following technical lemma in order to prove that (iii) implies (ii) in

our main theorem. The proof of the lemma is as in [11]. The matrix D# is as defined

in the proof of Lemma 4.1.4. G(D#) is defined to be the bipartite graph induced

by D#, i.e., we take the rows as the vertices on one side of the bipartiton and the

columns as the other; a non-zero entry indicates an edge between two vertices. Recall

that a chord is an edge connecting two non-adjacent vertices of a cycle.

Lemma 4.1.5. Let K be a field and let [Ir|D] be a representation of a binary matroid
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M over K. Let BD be a basis for the cycle matroid M(G(D#)). If every entry of

D corresponding to an edge in BD is 1, then every other non-zero entry of D has a

uniquely determined value in {±1}.

Proof. Let d be any non-zero entry in D not corresponding to an edge in BD, and

call the corresponding edge in G(D#) ed. Then BD ∪ ed gives the fundamental cycle

in G(D#) of ed with respect to BD, call it Cd. The proof is by induction on |Cd|.

Cd contains k edges for some k ≥ 2, hence there are k rows and k columns of

D corresponding to edges in Cd. Take Dd to be the submatrix of D corresponding

to those rows and columns. In each row and column of Dd, there are two non-zero

entries corresponding to edges in Cd. If Dd contains other non-zero entries, then those

entries correspond to chords in Cd. Let d′ be such an entry. Thus we have another

cycle Cd′ and |Cd′| < |Cd|. By induction, d′ ∈ {±1}, so every every entry of Dd except

possibly d is in {0,±1}.

Let G(D#
d ) be the subgraph of G(D#) induced by V (Cd). Take C ′d to be the

shortest cycle in G(D#
d ) containing ed. Then D′d is a submatrix of Dd induced by

V (C ′d) with j rows and columns for some j ≤ k with exactly two non-zero entries

corresponding to edges in C ′d and no others. Moreover, all entries in D′d are ±1 except

possibly d. If Dd contains no non-zero entries, then the same argument holds, simply

by taking D′d = Dd.

Consider det(D′d). As D′d has entries in {±1, d}, there are exactly two non-zero

terms in the summation of the determinant. Therefore, det(D′d) ∈ {1 + d, 1− d,−1 +

d,−1 − d}. Because M is binary, we know that [Ir|D#] represents M over F2. This

forces d = 1 in D#, hence det(D′d) = 0 over F2. Then, by an argument identical

to that in Lemma 4.1.4, det(D′d) = 0 over K as well. Hence d has a unique value
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in {±1}. The inductive step simply repeats the previous argument and the result

follows.

We may now prove Theorem 4.1.1.

Proof of Theorem 4.1.1. We will first show that (i) implies (ii); that (ii) implies (iii)

is trivial. The bulk of the proof will be devoted to showing that (iii) implies (i).

LetM be totally unimodular. Then by Lemma 4.1.3, M has a totally unimodular

representation of the form A = [Ir|D]. Let B be a basis of M ; we will also use B to

denote the corresponding columns of A. Then det(B) ∈ {±1} over R. Thus det(B)

is non-zero over an arbitrary field K. This implies that B is also a basis for A over

K, hence M is representable over K by A.

Now suppose that M is binary and representable over some field K with char-

acteristic 6= 2. We will show that M is totally unimodular. Let A be the standard

representation for M over K. Let BD be a basis for the cycle matroid of G(D#). We

may assume that all entries in D corresponding to elements of BD are 1. By Lemma

4.1.4, all other entries in D are in {0,±1}. Recall from the proof of Lemma 4.1.4 that,

for every square submatrix D′ of D, det(D′) = 0 over K if and only if det(D′) = 0

over R. It is clear that if det(D′) = 0 over R, then det(D′) = 0 over K. We will show

the converse by proving that if det(D′) 6= 0 over R, then det(D′) ∈ {±1} over R.

Say D′ has k columns and det(D′) 6= 0. Let dij be a non-zero entry in D′. By

pivoting on this entry in D over K, we can reduce column j to a standard basis vector

and this will also be a standard basis vector of length k in D′. Moving this column to

the ith position in the standard representation does not alter D′, only moves it within

A. Furthermore, by Lemma 4.1.2, this pivoting operation will result in a matrix all of

whose entries are still in {0,±1} and this holds of we consider the matrix over R. By

49



repeated pivots over entries in D, we eventually obtain a matrix in which all columns

of D′ are standard basis vectors of length k. These operations will at most change

the sign of det(D′), thus det(D′) 6= 0 over R. Furthermore, all entries in D′ are in

{0,±1}, hence det(D′) ∈ {±1} over R and M is totally unimodular.

The following result shows that the dual of a regular matroid is also regular.

Proposition 4.1.6. Let M be a regular matroid. Then the dual matroid M∗ is also

regular.

Proof. By Corollary 3.1.12, if M is representable over a field K, then M∗ is also

representable over K. Thus if M is representable over every field, so is M∗.

Theorem 4.1.1, together with Corollary 3.1.12 and the discussion following Propo-

sition 2.1.1, immediately proves the following.

Proposition 4.1.7. Let M be a graphic matroid. Then M and its dual M∗ are both

regular.

4.2 Regular matroid decomposition and

excluded minors

4.2.1 Seymour’s decomposition theorem

In the previous section, we characterized the class of regular matroids as those ma-

troids contained in the intersection of binary and ternary matroids and also as the
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smallest class of matroids containing both graphic and cographic matroids. A cel-

ebrated result due to Seymour [12] shows that in fact, all regular matroids can be

constructed from graphic and cographic matroids and a particular binary matroid

denoted R10 which is neither graphic nor cographic. Oxley points out that Seymour’s

theorem can thus be understood as addressing the question of what other than graphic

and cographic matroids is contained in the class of regular matroids. The proof of

this theorem is highly complex and technical, but as it provides an important char-

acterization of regular matroids, we state the theorem below, after summarizing the

necessary background.

We have already described direct sums of matroids; two related operations are

used in Seymour’s theorem. As usual, we follow the standard reference [11]. Let

M,N be matroids with at least two elements and E(M)∩E(N) = {e} such that e is

neither a loop nor a coloop of M or N . The 2-sum of M and N , M ⊕2N , has ground

set (E(M) ∪ E(N))− e and circuits

{C ∈ C(M) : e /∈ C} ∪ {C ∈ C(N) : e /∈ C}

∪ {(C1 ∪ C2)− e : C1 ∈ C(M), C2 ∈ C(N), e ∈ C1 ∩ C2}.

If one considers the geometric representation of a matroid, informally, a 2-sum is

easily understood as identifying two matroids at a point. A 3-sum of binary matroids

can likewise be informally understood as identifying two matroids along a 3 point

line, i.e., a 3-element circuit of M . More formally, we require that M1 and M2 be

binary matroids on ground sets E1 and E2 respectively with both ground sets having

at least seven elements. Say E1 ∩ E2 = T where T is a 3-element circuit of both M1
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and M2 but T ∩ C∗(M1) = T ∩ C∗(M2) = ∅. The 3-sum M1 ⊕3 M2 is a matroid with

ground set (E1 ∪ E2)− T with circuits C ∈ C(M1 \ T ), C ′ ∈ C(M2 \ T ), and also the

non-empty minimal sets of the form (C1 ∪ C2) − T where C1 ∈ C(M1), C2 ∈ C(M2),

and C1∩T = C2∩T 6= ∅. It is a result due to Brylawski that the direct sums, 2-sums,

and 3-sums of regular matroids are again regular; see for example [11] or [12].

The matroid R10 is represented over F2 by the following matrix:



1 0 0 0 0 1 1 0 0 1

0 1 0 0 0 1 1 1 0 0

0 0 1 0 0 0 1 1 1 0

0 0 0 1 0 0 0 1 1 1

0 0 0 0 1 1 0 0 1 1


.

R10 has several interesting properties. It is a 3-connected regular matroid that is

neither graphic nor cographic; in particular, R10 contains bothM(K3,3) andM∗(K3,3)

as minors. Moreover, the only regular 3-connected matroid having an R10 minor is

R10 itself.

Theorem 4.2.1 (Seymour’s Decomposition Theorem). Every regular matroid M can

be constructed using direct sums, 2-sums, and 3-sums, starting with graphic matroids,

cographic matroids, and R10.

4.2.2 Tutte’s excluded minors theorem

This section briefly discusses a theorem due to Tutte [16] which characterizes regular

matroids via excluded minors. The proof of this theorem is quite complex; Oxley [11]
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devotes a large section to what he describes as “the most elementary proof known”.

Theorem 4.2.2 (Tutte 1958). A matroid is regular if and only if it has no minor

isomorphic to U2,4, F7, and F ∗7 .

From Example 3.2.9, we know that F7 is binary but not ternary. To see that F7

is the minimal minor not representable over a field of characteristic 6= 2, we recall

two other previous examples. Example 3.2.1 showed that F7 \ e ∼= M(K4) for all e,

therefore deletions of F7 are graphic, hence regular. We also saw that contractions

of F7 give a rank 2 matroid with three dependent pairs and any three elements

forming a dependent set. This is exactly a 3-cycle with each edge replaced by a pair

of parallel edges, hence contractions of F7 are graphic and regular. By Corollary

3.1.12, a matroid M is representable over a field K if and only if its dual M∗ is also

representable over K, hence the result for F ∗7 follows.

The difficulty in proving Tutte’s excluded minor theorem lies in showing the con-

verse - that U2,4, F7 and F ∗7 are indeed the only excluded minors for the class of regular

matroids. Showing that this holds for F7 and F ∗7 is the bulk of Oxley’s material on

this theorem.

Showing that any excluded minor for binary matroids must be U2,4 is more

straightforward, as the next proposition shows. Our proof follows that given in [7].

Proposition 4.2.3. U2,4 is an excluded minor for the class of regular matroids. In

particular a matroid is binary if and only if it does not contain a U2,4 minor.

Sketch of proof. The proof in one direction has already been shown in previous ex-

amples throughout this thesis. We know that from Example 2.1.13 that U2,4 is not

graphic, hence cannot be binary. To see that it is the minimal such minor, note that
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removing any one element from U2,4 we obtain a matroid on three elements with a

2-element basis. This is exactly a 3-cycle, hence U2,4 \ e is graphic hence binary for

all e. If we contract an element in U2,4, we obtain U1,3 and this is the matroid of the

graph consisting of three parallel edges between two vertices.

Suppose M is a non-binary matroid. We claim that M has a U2,4 minor. We will

use the fact that for binary matroids, |C ∩C∗| is even for all circuits C and cocircuits

C∗ (this is proven in Proposition 5.2.5 below). Therefore M has a circuit C and

cocircuit C∗ such that |C ∩ C∗| is odd. This means |C ∩ C∗| ≥ 3 as |C ∩ C∗| 6= 1 by

Proposition 3.1.4; say {x, y, z} ⊆ C∩C∗. It follows that r(M) ≥ 2, hence H = E−C∗

is a hyperplane of rank ≥ 1 and H contains a rank r(M) − 2 flat F . Assume that

F can be chosen so that C ∩ F is a basis for F , so C = {x, y, z, e1, . . . , er(M)−2} and

B(F ) = {e1, . . . , er(M)−2}.

We claim that F is covered by 4 distinct hyperplanes H,F ∪ x, F ∪ y, and F ∪ z.

All are indeed hyperplanes as all have rank r(M)− 1. To see that they are distinct,

suppose without loss of generality that F ∪ x = F ∪ y. Then {x, y, e1, . . . er(M)−2}

is a basis for M , a contradiction. Contracting a basis for F leaves us with a rank 2

matroid. Any other elements in F will be loops after this; deleting these loops leaves

four rank 1 flats, and we conclude that M contains a U2,4 minor.

4.3 Orientability

We now extend our characterization of regular matroids to allow for the notion of an

orientation placed on a matroid. As a matroid abstracts certain common properties of

graphs and vector spaces over arbitrary fields, an oriented matroid can intuitively be
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understood as abstracting similar properties from directed graphs and vector spaces

over ordered fields. For material on oriented matroids, Björner et al [4] is the standard

reference; Taylor [14] gives a compact and easily accessible presentation of the basic

material.

Let M be a matroid on a ground set E. A signed subset of E is a map X : E →

{0,+,−}. Define X := {e ∈ E : X(e) 6= 0}; the set X is called the support of X. We

also define the sets X+ := {e ∈ E : X(e) = +} and X− := {e ∈ E : X(e) = −}. An

oriented matroid M = (E, C) is a non-empty set E with a collection of signed subsets

having the following properties:

(C ′1) C 6= ∅.

(C ′2) If C ∈ C then −C ∈ C.

(C ′3) If C1, C2 ∈ C and C1 ⊆ C2, then either C1 = C2 or −C1 = C2.

(C ′4) If C1, C2 ∈ C such that C1 6= −C2, and e ∈ C+
1 ∩ C−2 , there exists C3 ∈ C such

that C+
3 ⊆ (C+

1 ∪ C+
2 )− e and C−3 ⊆ (C−1 ∪ C−2 )− e.

The elements of C are called signed circuits. It is clear from these axioms that an

oriented matroid satisfies the circuit axioms for standard matroids, hence an oriented

matroid is indeed a matroid. As in the case with standard matroids, there are sev-

eral equivalent axiom systems for oriented matroids, but in this paper we are only

concerned with the oriented circuit axioms.

In one of the earlier works to introduce the notion of orientability for matroids,

Minty [10] defines an orientable matroid M as one which admits a partition of all of
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its circuits into (C+, C−) and all of its cocircuits into (C∗+, C∗−) such that

|C+ ∩ C∗+|+ |C− ∩ C∗−| = |C+ ∩ C∗−|+ |C− ∩ C∗+|.

We will say a matroid that meets this condition is orientable in the sense of Minty.

This is equivalent to saying that we may take a binary representation A of M and

change some of the 1’s to -1 in such a manner as to make the rows of A and AT

orthogonal to each other. Thus we have the following proposition.

Proposition 4.3.1. A matroid is orientable in the sense of Minty if and only if it is

regular.

In the standard text on orientable matroids, Björner et al. [4] define an orientable

matroidM as one whose circuits are the supports of the signed circuits of an oriented

matroid. The following definition, given in [8], extends orientability in the sense

of Minty to offer a more direct definition of an orientable matroid, based on the

observation that if the intersection of the supports of a signed circuit and signed

cocircuit is non-empty, then there is at least one coordinate where the signs agree

and one where they differ. Then a matroid M is orientable if there is a partition of

all of its circuits into (C+, C−) and all of its cocircuits into (C∗+, C∗−) such that, for

all C ∈ C and C∗ ∈ C∗,

(C+ ∩ C∗+) ∪ (C− ∩ C∗−) 6= ∅ if and only if (C+ ∩ C∗−) ∪ (C− ∩ C∗+) 6= ∅. (4.1)

With this definition, the following proposition is not difficult to prove.

Proposition 4.3.2. Let M be a matroid representable over the reals. Then M is
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orientable.

Proof. Let A be a representation of M over R. Then the circuits of M correspond to

elements of ker(A) and by duality, the row space im(AT ) corresponds to the cocircuits

of M . As ker(A) = im(AT )⊥, any x ∈ ker(A) will be orthogonal to any vector in the

row space of A, hence the non-zero terms in xTy cannot all have the same sign.

It follows from the above proposition that all regular matroids are orientable, but

not all orientable matroids are regular.

Example 4.3.3. Recall the matroid U2,4, which can be represented by the following

matrix over R.

A =

1 0 1 1

0 1 1 2

 .
The dual matrix is

A∗ =

−1 −1 1 0

−1 −2 0 1


We know that U2,4 is not graphic and so not regular, but it is orientable. By con-

sidering only the signs of elements of ker(A), we see that U2,4 has signed circuits

C1 = (+,+,−, 0), C2 = (+,+, 0,−), C3 = (+, 0,−,+), C4 = (0,+,+,−), and their

negatives. Considering the dual matroid A∗, we see that U2,4 has signed cocircuits

C∗1 = (0,+,+,+), C∗2 = (+, 0,+,+), C∗3 = (−,+, 0,+), C∗4 = (+,−,+, 0), and their

negatives. It is not hard to see by inspection that U2,4 is orientable under (4.1).

However U2,4 is not orientable in the sense of Minty. Let E = {e1, . . . , e4} and label

the columns of A,A∗ likewise from left to right. Take C = C1 and C∗ = C∗4 , then
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(C+∩C∗+)∪ (C−∩C∗−) = e1∪∅ = e1 and (C+∩C∗−)∪ (C−∩C∗+) = e2∪ e3, hence

|C+ ∩ C∗+|+ |C− ∩ C∗−| 6= |C+ ∩ C∗−|+ |C− ∩ C∗+|.

Evidently, the duals and minors of orientable matroids are also orientable. It is

also clear that not all matroids are orientable. In particular, F7 is not orientable and is

in fact a minimal example of a non-orientable matroid as all matroids on six or fewer

elements are orientable [5]. The non-orientability of F7 was first shown by Bland and

Las Vergnas (1978), who proved it “by exhaustive enumeration of possibilities” [4].

An interesting alternate proof of this fact, given by De Loera et al. [5], uses a system

of polynomial equations which have a solution if and only if a given binary matroid

is orientable. The following proposition is given as an exercise in [8].

Proposition 4.3.4. F7 is not orientable.

Proof. Number the elements of F7 as in Examples 3.2.4 and 3.2.9. Suppose F7 is

orientable. We may assume the all circuits containing 1 are positively oriented,

so we have (using a superscript to denote orientation) C1 = (1+, 2+, 4+), C2 =

(1+, 6+, 7+), and C3 = (1+, 3+, 5+). Then by (4.1), there must exist a cocircuit

C∗1 = (1+, 4−, 5−, 7−). Now look at the circuits C4 = (4, 5, 6), C5 = (3, 4, 7), and

C6 = 2, 5, 7. By (4.1), C∗1 forces (without loss of generality) the following orien-

tations: C4 = (4+, 5−, 6), C5 = (3, 4+, 7−), C6 = (2, 5+, 7−) where the unlabeled

elements in each circuit are not elements of C∗1 hence have no forced orientation.

Using the orientations on these six circuits we deduce that we have cocircuits C∗2 =

(3−, 5+, 6−, 7+) and C∗3 = (2−, 4+, 6−, 7+). Now look at C4, and say we place a posi-

tive orientation on 6, so C4 = (4+, 5−, 6+). Then (C+
4 ∩ C∗+2 ) ∪ (C−4 ∩ C∗−2 ) = ∅ but
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(C+
4 ∩ C∗−2 ) ∪ (C−4 ∩ C∗+2 ) = {6} ∪ {5} 6= ∅ hence F7 is not orientable.

The following proposition, as given in [4], establishes a fundamental relation be-

tween regular and orientable matroids.

Proposition 4.3.5. Let M be a matroid. Then M is regular if and only if M is

binary and orientable.

Proof. Let M be binary and orientable. As M is binary, it contains no U2,4 minor;

furthermore, because M is orientable, it contains neither F7 nor F ∗7 . Then by Tutte’s

excluded minor theorem, M is regular. Now suppose that M is regular. Clearly M

is binary and orientable.

We may, analogous to the case of standard matroids, define oriented bases B of

oriented matroids. Likewise, we have a notion of a fundamental oriented circuits

C(e, B) where B ∈ B and e ∈ E − B and fundamental oriented cocircuits C∗(e, B)

where e ∈ B. The fundamental circuits and cocircuits of oriented regular matroids

motivate the theory we develop in the next chapter.
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Chapter 5

Circuit and Cocircuit Lattices of

Regular Matroids

Given a directed graph G, one may assign real number preflow values to each oriented

edge; one may consider such an assignment to be a real-valued function on the edge

set of G. A flow on G is an assignment of preflow values with no accumulation at any

vertex, i.e., the incoming flow value equals the outgoing flow value at each vertex.

Consider the set of of all preflows as a vector space, then the set of all flows is a linear

subspace. The set of all integer-valued flows then forms a lattice (used here in the

discrete group sense) denoted Λ(G) within this subspace. The dual lattice, denoted

Λ(G)#, is defined to be the set of all fractional flows having integer dot products with

integral flows.

By taking the quotient Λ(G)#/Λ(G), Bacher, de la Harpe, and Nagnibeda [1]

define a finite abelian group, commonly referred to as the Jacobian of the graph,

denoted Jac(G), whose order is the same as the number of spanning trees of G. While

the work of Bacher, et al comes largely from the perspective of algebraic geometry,
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Biggs [3] integrates their work into the wider field which encompasses results from

areas as diverse as electrical engineering and chip-firing games on graphs.

The first section of this chapter characterizes the circuit and cocircuit lattices

of regular matroids. In the second section, we survey recent results generalizing the

Jacobian to the setting of regular matroids; in the final part we extend certain related

results due to Eppstein [6] from a graph-theoretic setting to a matroidal one.

5.1 Integral circuits and cocircuits

Our presentation of the background material in this section is drawn primarily from [2]

and [13]; for background on lattices, see [9].

Let A be a totally unimodular matrix representing a regular matroid M with

entries in Q. Then ΛA(M) := {ker(A) ∩ ZE} is the circuit lattice of M with respect

to the representation A. As our previous discussion of vector matroids and regular

matroids in particular has shown, M may be represented by more than one matrix,

indeed even by more than one totally unimodular matrix. However, Lemma 4.1.2

shows that we may transform one unimodular representation into another by a series

of row and column operations. Recall that an isometry of lattices Λ and Λ′ is a group

isomorphism ϕ : Λ → Λ′ such that both ϕ and ϕ−1 preserve the bilinear form on

the lattices. Then by the previous discussion, the isometry class of ΛA(M), denoted

Λ(M) is independent of A. We briefly note that this discussion indicates another way

of viewing a regular matroid, namely as an equivalence class of totally unimodular

matrices.

We also define Λ∗A(M), the cocircuit lattice of M with respect to A as Λ∗A(M) =
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row(M) ∩ ZE (here row denotes the row space of A). As in the case of the circuit

lattice, and by identical reasoning, the isometry class of Λ∗A(M) is independent of A;

this isometry class is denoted Λ∗(M). Recall that given M , we may always choose

A to be an r × m totally unimodular matrix [Ir|D] and take the set of column

vectors of Ir as a basis B. Then the dual matroid M∗ is represented by the matrix

A∗ := [−DT |Im−r], and the row spaces of A and A∗ are orthogonal. From this it is

evident that Λ(M) and Λ∗(M∗) are isometric. Now consider the totally unimodular

matrix X = A∗T ; clearly AX = 0. As the rank of X is the dimension of ker(A), the

columns of X form an ordered basis β(M,B) for Λ(M); this is sometimes called the

fundamental basis of Λ(M) with respect to B.

The following theorem, a folklore result proved by Taylor [14] shows that in fact,

every basis of M generates the entire circuit lattice. Our proof essentially follows

that given by Taylor, although we have attempted to streamline and clarify certain

aspects. Recall that the corank of a matroid is the rank of the dual matroid.

Theorem 5.1.1. Let M be an oriented matroid. Then the following are equivalent.

(i) M is regular.

(ii) Every basis of M generates the entire circuit lattice of M .

(iii) The rank of Λ(M) equals the corank of M .

Proof. The basic strategy of the proof is to show that (i) implies (ii) implies (iii),

then that (iii) implies (i). In order to prove the final implication, we will however

need to also show that (ii) implies (i) and this is the bulk of the proof.

Assume M is regular. By regularity of M , we may represent M over Q by some

matrix A. We will first show that property (ii) holds, then that (ii) implies (iii). Let
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Bi ∈ B and let C(Bi) be the set of fundamental circuits associated to Bi. Denote

the circuit lattice generated by C(Bi) as Λi. Likewise define C∗(Bi) as the set of

fundamental cocircuits of Bi and denote the cocircuit lattice as Λ∗i . The circuits ofM

are the minimal dependent sets and these correspond to the elements of ker(A)∩ZE

with minimal support. We know that the dimension of ker(A) is the corank of M ,

hence the rank of Λ(M) is at least the corank of M . For each Bi, the fundamental

circuits C(Bi) are independent considered as vectors over Q, thus C(Bi) generates

all of ker(A). Now fix one such Bi, and call it B. Then C(B) forms a basis for

ker(A)∩ZE over Q, hence over Z as well; we conclude that every basis ofM generates

the entire circuit lattice of M . Note that this implies that the size of a spanning set

of independent circuits, i.e. the rank of Λ(M), equals the corank of M .

We now show that if each basis generates Λ(M), then M is regular (this is (ii)

⇒ (i)). Now suppose that all Λi are equal and fix a basis B0. Let A′ be the matrix

[Ir|D] where the columns of Ir correspond to B0 and the columns of D are constructed

according to their dependencies in their fundamental circuits in C(B0). This implies

that all entries in all columns of D are in {0,±1}. Now A′ defines some matroid M0

and the circuits ofM0 are the minimal support elements of ker(A′)∩ZE. We will first

show that C(M) ⊆ C(M0), then that A′ is totally unimodular hence M0 is regular,

and finally we show that C(M0) ⊆ C(M).

By construction, C(B0) ⊆ C(M0) and by assumption C(B0) generates the circuit

lattice of M (recall that the Bi are bases of M). Thus a circuit C in M must

correspond to a linear dependence in the columns of A′. We need to show that this

dependence in A′ has minimal support in ker(A)∩ZE, i.e., is a circuit ofM ′. Suppose

not. Then there exists a circuit C0 ∈ C(M0) such that C0 ( C. Since C0 is an element
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of ker(A), we can write C0 = ∑k
i qici where q ∈ Q and ci ∈ C(B0). Let j be the least

common denominator of the qi, so jC0 is an integer linear combination of the ci, hence

jC0 is in the circuit lattice of M . But this says that jC0 is a dependent set in M

whose support is properly contained in C, contradicting the fact that C is a circuit

in M . Thus we conclude that C(M) ⊆ C(M0).

Now we show that A′ is unimodular, henceM0 is regular. We claim that it suffices

to show that every support-minimal dependent set of columns of A′ can be written

with coefficients in {±1}. Let A′′ be a square submatrix of rank r such that the

columns of A′′ are a basis for A′. We may assume that det(A′′) ∈ {±1} by scaling

columns if necessary; such a basis is called a unimodular basis. Consider a column

x ∈ A′ \ A′′. Then there is a unique linear dependence between the columns in A′′

and x; this gives the fundamental circuit C(x,A′′). If the non-zero coefficients of

this dependency are in {±1}, then by Cramer’s rule, the non-zero entries of x must

also be in {±1}. To see this, let A′′i,x be the matrix obtained by replacing the ith

column of A′′ with x. Then if det(A′′) ∈ {±1}, det(A′′i,x) ∈ {0,±1} for all i. This

shows that any basis obtained from a unimodular basis by exchanging one column

is also a unimodular basis. As any basis can be obtained from any other by a series

of exchanges, it is enough that A′ have a unimodular basis. But A′ has rank r and

contains Ir as a submatrix, and these give a unimodular basis for A′. Thus it suffices

to show that all support minimal dependencies of columns of A′ may written with

coefficients in {±1}.

Suppose there is such a dependency in A′. Then a1e1 + · · ·+akek = 0 where the ei

are columns of A′ and the ai are non-zero integers such that not all ai have the same

absolute value. This dependence is in ker(A), hence can be written as an integral
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linear combination of elements of C(B0). Therefore, there is some linear combination

of signed circuits inM giving this dependency, and the support of these signed circuits

is a dependent set in M , call it CM . Note that CM is by definition a circuit in M0,

but is not necessarily a circuit in M . So we have two cases: either CM is a circuit in

M or it is not. Suppose it is; then CM has minimal support in M . Because all Λi

are equal, CM is in Λ0. Hence CM − (a1e1 + · · ·+ akek) is also in the integral span of

C(B0). Choose n ∈ Z so that at least one term in nCM − (a1e1 + · · ·+ akek) cancels;

as not all ai have the same value, not all terms will cancel. Then there is some other

cycle in M ′ with support strictly contained in CM and this is a contradiction. So

suppose that CM is not a circuit in M , then there is some circuit C ′M in M such

that C ′M ( CM . But C(M) ⊆ C(M0) hence C ′M is also a circuit in M0 and we again

have a contradiction on the assumption that CM ∈ C(M0). This shows that every

linear dependency in the columns of A′ with minimal support must have coefficients

in {±1}, and it follows that M0 is regular.

Now we show that C(M) ⊆ C(M0); this will complete the proof that if every basis

of M generates the entire circuit lattice of M , then M is regular. Let Λ′j be the

lattice generated by the fundamental circuits associated to Bj ∈ B(M0). Because M0

is regular, all Λ′j are equal; by hypothesis, all Λi are also equal. By construction of

A′, Λ0 = Λ′0. Therefore M and M0 have the same circuit lattice and a common basis,

hence C(M) ⊆ C(M0). As the elements of C(M0) are the minimal support elements

of ker(A) ∩ ZE, so are the elements of C(M). Therefore A is a totally unimodular

representation for M , i.e., M is regular.

The final step is to show that if rank(Λ) = corank(M), then M is regular. We

prove the contrapositive. We know that M is regular if and only if every basis of
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M generates the entire circuit lattice of M . So suppose M is not regular. Then

there exist B1, B2 ∈ B(M) which generate different circuit lattices. So there is some

fundamental circuit C ∈ C(B2) which is not in the Z-span of C(B1). We will produce

an integrally linear independent set of circuits of size corank(M) + 1; this will show

that there is no C1 ∈ C(B1) in the integral span of (C ∪C(B1))−C1. Let C1 ∈ C(B1)

and suppose that C1 = aC+a2C2+· · ·+akCk where the ai ∈ Z and C2, . . . , Ck ∈ C(B1)

are distinct from C1. Because C is not in the Z-span of C(B1), |a| > 1.

Because C1 ∈ C(B1), there exists a unique e1 ∈ E − B1 such that e1 ∈ C1 and

e1 /∈ Cj for j 6= 1. So it must be the case that e1 ∈ C, hence |a| = 1 as all non-zero

coefficients in the dependency of C1 are in {±1}. This contradicts the assumption

that C is not in the integral span of C(B1). It follows that C ∪ C(B1) is a linearly

independent set of circuits of size corank(M) + 1 and this completes the proof.

Note that, by duality, we may apply these results to the case of fundamental

cocircuits, showing that M is regular if and only if all Λ∗i are equal. The proof is

identical.

5.2 The Jacobian

In the introduction to this chapter, we discussed the graph Jacobian, an abelian

group associated to a graph, as defined in [1] and [3]. In this section we generalize

this construction to regular matroids.

The Jacobian of a matroid M representable over Q, Jac(M) is defined to be the

determinant group of Λ(M), i.e., the quotient Λ(M)#/Λ(M) where Λ(M)# is the
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dual lattice, to Λ(M), i.e.

Λ(M)# = {y ∈ QE : 〈x, y〉 ∈ ZE for all x ∈ Λ(M)}.

Theorem 5.1.1 allows us to prove the following important corollary, which is dis-

cussed in [14] though not formally stated there.

Corollary 5.2.1. Let M be a matroid representable over Q. Then the Jacobian of

M is well-defined if and only if M is regular.

Proof. Theorem 5.1.1 shows that every basis of M generates all of Jac(M) if and

only if M is regular. Therefore if M is not regular, a given basis B1 of M may not

generate the same lattice as another basis B2 of M . Then each such lattice will have

a different dual, hence by definition a different Jacobian.

From this point we will assume that all matroids we discuss are regular. Moreover,

we assume that all matrix representations A are totally unimodular unless otherwise

stated.

Theorem 5.2.2. There are canonical isomorphisms

Λ(M)#/Λ(M) ∼= Λ∗(M)#/Λ∗(M) ∼=
ZE

ΛA(M)⊕ Λ∗A(M)
∼= coker (AAT )

for all A representing M .

The first two isomorphisms in the preceding theorem are shown for the graphic

case in [1]; the final isomorphism is shown in [2].
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Proof. Biggs [3] defines the orthogonal projection P from ZE → Λ∗(M) in the graphic

case at length and shows that Im(P ) = Λ∗(M)#. We claim that the map

ϕ : ZE

Λ(M)⊕ Λ∗(M) →
Im(P )
Λ∗(M)

given by [z]→ [Pz] where [z] ∈ ZE

Λ(M)⊕Λ∗(M) and [Pz] ∈ Im(P )
Λ∗(M) is an isomorphism; this

will show the second isomorphism in the statement of the theorem. The surjectivity

of the map is clear. To prove injectivity, we need to show that the if [Pz] = [0],

then [z] = 0. Observe that the claim is equivalent to the statement that z ∈ ZE

is in Λ(M) ⊕ Λ∗(M) if and only if Pz is in Λ∗(M). This follows from the identity

z = (z − Pz) + Pz. Now define Q to be the projection from ZE to Λ(M) and

ψ : ZE

Λ(M)⊕ Λ∗(M) →
Im(Q)
Λ(M)

given by [x] → [Qx] where [x] ∈ ZE

Λ(M)⊕Λ∗(M) and [Qx] ∈ Im(Q)
Λ(M) . By an identical

argument to that just given, we see that ψ is also an isomorphism.

To see the final isomorphism, let

ϕ : ZE

ΛA(M)⊕ Λ∗A(M) → coker (AAT )

be the map given by [x]→ [Ax]. Recall that Λ∗A(M) corresponds to the column space

of AT over Z, which we will denote colZ. Now observe that

A(ΛA(M)⊕ Λ∗A(M)) = A(Λ∗A(M)) = AcolZ = colZAAT .
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This equality shows that ϕ is both well-defined and injective. Recall that A can always

be placed in the standard form [Ir|D] with all entries in {0,±1}. Then Ax = b has a

solution in ZE for all b ∈ Zr, hence ϕ is also surjective.

Thus we may refer to any of these isomorphic objects as the Jacobian of M .

Theorem 5.2.3. LetM be a matroid with totally unimodular representation A. Then

the order of Jac(M) equals |B(M)|.

Proof. By the final isomorphism shown in Theorem 5.2.2, it suffices to show that

| Jac(M)| = |coker(AAT )|. We claim that |coker(AAT )| = det(AAT ). Recall that, up

to isomorphism, the cokernel of a matrix is unchanged by the usual row and column

operations. Note that these same operations change the determinant by at most a

sign change. We may diagonalize AAT ; after doing so, the determinant is given by the

product of the diagonal entries and the cokernel is the direct sum of the Zdi
, where

the di are the absolute values of the diagonal entries. Thus |coker(AAT )| = det(AAT ).

To calculate det(AAT ), we apply the Cauchy-Binet formula to the r× r submatrices

of A and AT and find that

det(AAT ) =
∑

I∈E,|I|=r

det(A|I) det(AT |I) =
∑

I∈E,|I|=r

det(A|I)2.

But A is totally unimodular, so det(A|I)2 = 1 if I is a basis and 0 otherwise. Thus

det(AAT ) = |B(M)|.

Biggs [3] shows that the Jacobian of a graph can be calculated from the Smith

normal form of the graph Laplacian. A similar process applies to the Jacobian of a

matroid. Theorem 5.2.2 shows that Jac(M) ∼= coker(AAT ) where A is a representa-

tion ofM . Then in the proof of Theorem 5.2.3, we observed that coker(AAT ) is given
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by the direct sum of the diagonalized form of AAT . The structure theorem for finite

abelian groups confirms this observation.

Example 5.2.4. Recall the matroid M(K4), familiar from previous examples. This

matroid has a totally unimodular representation

A =


1 0 0 1 0 1

0 1 0 1 −1 0

0 0 1 0 1 1



hence

AAT =


3 1 1

1 3 −1

1 −1 3

 .

We find that det(AAT ) = 16, so we know that | Jac(M(K4))| = 16. Diagonalizing

AAT gives the matrix 
1 0 0

0 4 0

0 0 −4


hence Jac(M(K4)) ∼= Z/4Z⊕ Z/4Z; this agrees with the calculation of det(AAT ). It

is known that Jac(Kn) ∼= (Zn)n−2, hence Jac(K4) ∼= Jac(M(K4)).
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5.2.1 Parity of the Jacobian in Eulerian and bi-

partite matroids

Recall that a connected graph G is said to be Eulerian if every vertex has even degree;

a graph G is bipartite if its vertex set admits a partition into two subsets such that

every edge in G has endpoints in different subsets. The corresponding notions were

introduced into matroid theory by Welsh [18]. The majority of the research into

these classes of matroids has taken place within the context of the study of binary

matroids, but as all regular matroids admit a binary representation, the theory easily

carries over. In this final section, we apply these matroidal notions to extend results

due to Eppstein [6] on the Jacobian of a graph to the more general setting of regular

matroids.

The circuit and cocircuit sets of a binary matroid M on a ground set E of cardi-

nality m can be viewed as subspaces of Fm
2 generated by the indicator vectors of the

circuits and cocircuits of M . The following proposition shows the orthogonality of

the circuit and cocircuit spaces of a binary matroid.

Proposition 5.2.5. Let M be a binary matroid. Then, for all circuits C ∈ C(M)

and cocircuits C∗ ∈ C∗(M), |C ∩ C∗| is even.

Proof. Let A be a representation of M in standard form over F2 and let A∗ be the

standard representation of M∗. We know that the row spaces of A and A∗ are

orthogonal, so any row in A will have zero dot product with a row in A∗; this is

the case over F2 if and only if there are an even number of non-zero entries in the

same position in these two vectors.
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Amatroid is said to be an Eulerian matroid if there exist disjoint circuits C1, . . . , Ck

such that E = C1 + · · ·+Ck. A bipartite matroid is a matroid in which every circuit

has even cardinality. The following result is due to Welsh [18].

Theorem 5.2.6. A binary matroid M is Eulerian if and only if its dual M∗ is

bipartite.

Proof. Let M be Eulerian and binary, so E = C1 t · · · t Ck. Let C∗ be a cocircuit

of M , so |Ci ∩ C∗| is even for all i. Say |Ci ∩ C∗| = 2ni where n ∈ {1, . . . , k}. Then

|C∗| = ∑k
1 |Ci ∩ C∗| = ∑k

1 2ni. This shows that M∗ is bipartite. Now suppose M is

bipartite. We will show thatM∗ is Eulerian. The proof proceeds by induction on |E|.

The base case is trivially true. Now assume that |E| = n and the proposition holds

for all matroids with ground sets of cardinality less than n. M must have at least one

cocircuit, otherwise there is some element x ∈M such that x is in every basis of M∗.

But then x is a loop in M , i.e., a one element circuit, contradicting the assumption

that M is bipartite. Say C∗ ∈ C∗(M). If C∗ = E, then we are done, so say C∗ ( E.

Let M ′ = M \ C∗. A circuit C ′ ∈ C(M ′) has the form Ci ∩ E ′ where E ′ = E − C∗.

Because M is bipartite, all Ci have even cardinality; because M is binary |C∗ ∩ Ci|

is even for all i. Thus |Ci ∩ E ′| is even for all i and M ′ is bipartite. But M ′ is also

binary, so by induction, E ′ = Z1 t · · · t Zk where Zi ∈ C∗(M ′). As a cocircuit in M ′

is a cocircuit in M , it must be the case that E = Z t Z1 t · · · t Zk where all Z are

cocircuits of M . Thus M∗ can be partitioned into a set of disjoint circuits, and this

is exactly the definition of an Eulerian matroid.

The following proposition, shown in the graph theoretic case by Spencer Backman,

further characterizes binary matroids.
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Proposition 5.2.7. Let M be a binary matroid on ground set E of cardinality m.

Let χF be the characteristic function of F ⊆ E. Then there exists some C ∈ C(M)

and C∗ ∈ C∗(M) such that χC + χC∗ = χE.

Proof. The proof is by induction on |E|. We take the empty matroid as the base case

and the result is trivial. Now consider a matroid M with |E| = m. We can delete

an element e to obtain a smaller matroid M \ e. By induction, χE(M\e) = χCe + χC∗e

where Ce ∈ C(M \ e) and C∗e ∈ C∗(M \ e). Adding an element cannot remove a

circuit, so Ce ∈ C(M) and either C∗e or C∗e + e ∈ C∗(M). If the latter, we are done,

so assume we are in the first case. Without loss of generality, assume C∗e ∈ C∗M for

all e ∈ M \ E. Note that for any e, f ∈ E, we have χC∗e + χCe + χC∗
f

+ χCf
= χe,f .

Now, for any A ⊂ E with |A| even, we can write χA as a sum of indicator vectors for

pairs of edges, extending the above equality and obtaining the result. So assume |E|

is odd. If M contains an odd circuit C, |E(M \ C)| is even and we are done. If M

has no odd circuits, then M is bipartite. Hence M∗ is Eulerian, hence E(M) can be

written as a disjoint union of circuits. It follows that χE(M) can be written as a sum

of indicator vectors of cocircuits. This completes the proof.

Example 5.2.8. In Examples 2.1.2 and 2.1.7, we saw the vector matroid associated

to the matrix

A =


1 0 0 1 1

0 1 0 1 0

0 0 1 1 0


over the real numbers. It is not difficult to see that A is totally unimodular, hence

M(A) is regular. Considering the same matrix over F2 does not change the depen-

dencies among the columns of A, so A over F2 generates the same matroid. Index the
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columns of A by c1, . . . , c5. The circuits of M(A) are {c1, c2, c3, c4}, {c2, c3, c4, c5} and

{c1, c5}; all have even cardinality, i.e., M(A) is bipartite. The dual matrix over F2 is

A∗ =

1 1 1 1 0

1 0 0 0 1



and this generates the dual matroid M∗(A). We can write the column label set as

the union of the circuits {c1, c4, c5} and {c2, c3}, so M∗(A) is Eulerian.

Theorem 5.2.9. Let M be Eulerian, with r(M) odd. Then | Jac(M)| is even.

Proof. Fix an ordering on the elements of B. Define G to be the graph with vertices

indexed by the elements of B. Two vertices are adjacent if the corresponding bases

differ by a basis exchange, i.e., if e is an edge between vertices i, j, then deleting

an element x from Bi and replacing it with an element of E − Bi gives a basis Bj.

Moreover, x ∈ Bi implies that x is in some cocircuit C∗i . By Theorem 5.2.6, M∗ is

bipartite, hence |C∗i | is even. Therefore, x is involved in an odd number of exchanges.

By hypothesis, Bi also has odd cardinality so the corresponding vertex vi ∈ V (G) has

odd degree. By the so-called Handshake Lemma of graph theory, which states that∑
v∈V (G) d(v) = 2|E(G)| we know that the number of odd degree vertices in G must

be even. As each vertex corresponds to a basis it must be the case that |V (G)| is

even, hence |B(M)| is even.

Example 5.2.10. Let A be the matrix


1 0 0 0 1

0 1 0 1 0

0 0 1 1 0
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over F2 with columns indexed as c1, . . . , c5. The matroid M(A) is regular (in fact,

graphic) and Eulerian; we can write the index set of the columns as {c1, c5} ∪

{c2, c3, c4}. M(A) has rank 3, so Theorem 5.2.8 says that Jac(M) will be even.

Note that if we consider A over R, M(A) does not change. Calculating AAT , we

obtain the matrix 
2 0 0

0 2 1

0 1 2


which has Smith normal form 

1 0 0

0 −3 0

0 0 2

 .

Therefore Jac(M(A)) ∼= Z/3Z⊕ Z/2Z and | Jac(M(A))| = 6.

Theorem 5.2.11. LetM be a bipartite matroid such that |B| = r and |E−B| = m−r

have the same parity. Then | Jac(M)| is even.

Proof. Let G be the graph as in the proof of the previous theorem. For any B ∈ B(M)

and x ∈ E−B, B∪x contains a unique circuit C. BecauseM is bipartite, |C| is even,

hence |B| = r is odd. The basis exchanges involving an edge in B correspond to a

deletion of an element from C, hence any e ∈ E−B is in an odd number of exchanges.

By hypothesis on the parity of m− r, there are an odd number of edges not in B, so

all v ∈ V (G) have odd degree. The proof continues as in Theorem 5.2.7.
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Example 5.2.12. Let A be the matrix


1 0 0 1 0 0

0 1 0 0 1 0

0 0 1 0 0 1



over F2 with columns indexed c1, . . . , c6. ThenM(A) has rank 3 and circuits {c1, c4}, {c2, c5}

and {c3, c6}, all of which have even cardinality, i.e.,M(A) is bipartite. Theorem 5.2.10

tells us that | Jac(M(A))| will be even. Considering A over the reals does not change

the matroid, so we may use A to find the Jacobian. Calculating AAT ,


2 0 0

0 2 0

0 0 2

 ,

we see that AAT is already a diagonal matrix. Thus we find that Jac(M(A)) ∼=

Z/2Z⊕ Z/2Z⊕ Z/2Z and | Jac(M(A))| = 8.

Theorem 5.2.13. Let M be Eulerian. Then g = gcd{|C| : C ∈ C(M)} divides

| Jac(M)|.

Proof. A flow F of 1/g units inM will have an integer dot product with any circuit in

M , hence (because M is Eulerian) with any integer flow on M (an element of Λ(M)).

Therefore F is an element of Λ#(M); in fact F is an element of Jac(M) of order g,

as gF ∈ Λ(M) but any smaller multiple of F has a non-integer value.

The following corollary follows immediately.

Corollary 5.2.14. Let M be a bipartite Eulerian matroid. Then | Jac(M)| is even.
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