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Abstract: Lottery experiments have been performed in many contexts to test theories of risk 
aversion and to measure risk preferences.  People are typically offered a series of lotteries with 
increasing expected payoffs and variances. A person with a concave utility function should 
switch from risky bets to safer bets at some point and never switch back.  Switching back implies 
preferences inconsistent with a concave utility function.  Our experiment, conducted with a 
population of adults in Rwanda, presents respondents with a series of binary-choice lotteries over 
gains and losses. We observe that 54-55% of subjects made at least one inconsistent choice over 
gains or losses, and 7-13% made at least two inconsistent choices. This holds for both 
hypothetical and real lottery payoffs. Inconsistent choices were less common when stakes were 
higher, and women are more likely to be inconsistent. While risk aversion alone is not correlated 
with actual economic outcomes, such as membership in savings (tontines) and insurance groups 
and holding a larger number of bank accounts, inconsistency is. 
 
 
 
 
 
 
 
 
 
 
 
 
* Corresponding author. Petrie thanks the World Council of Credit Unions (WOCCU) for funding the survey and 
allowing us the use of the data. 
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Introduction 
 

There is an intriguing disconnect in the literature on individuals’ decisions under risk.  

On the one hand, theoretical constructs in nearly all areas of microeconomics rely on parameters 

that describe risk preferences.  On the other hand, attempts to estimate risk preferences with 

lotteries, although simple and quite convincing in their design, often generate results that are 

unsatisfactory in explaining actual economic outcomes.1  

The results correlating risk preferences elicited using lottery experiments with real-world 

risky choices or economic outcomes are mixed.  For example, Eckel, Johnson, Montmarquette, 

and Rojas (2005) find no link, while Binswanger (1980) does find a modest link.  Bellemare and 

Shearer (2006) find a link between risk aversion measures and sorting into jobs. Additionally, it 

has been found that the institution in which risk preferences are elicited can have a strong effect 

on the risk preferences that are observed, even changing risk aversion rankings across people 

(Isaac and James, 1999 and 2000; Berg, Dickhaut, and McCabe, 2005).  We use a lottery choice 

experiment with certain monetary payoffs to investigate inconsistency in risk choices and 

examine whether that inconsistency is linked to demographic variables and to economic 

outcomes. 

Using an adult population in Rwanda, we perform binary-choice lotteries with increasing 

stakes and variances. The procedure is similar to Holt and Laury (2002), but our method differs 

from theirs in several important ways. First, our lotteries were presented sequentially, rather than 

all at once. Second, instead of fixing payoffs and changing probabilities, we fix probabilities at 

50-50 and change payoffs. These methods are theoretically equivalent. The sequential binary-

choice lotteries were also designed to be equivalent to presenting six lotteries at the same time 

                                                 
1 Harrison, List and Towe’s (2006) research suggests that some of this disconnect between risk preferences 
measured with lotteries and actual outcomes may well do with ignored background risk. They find that subjects are 
more risk averse when background risk is introduced in a binary-choice lottery experiment. 
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and having the subject choose one (as in Binswanger, 1980; Eckel, Johnson, Montmarquette, and 

Rojas, 2005).   Finally, in addition to lotteries over gains, we also present lotteries over losses. 

In the sequential binary-choice lottery procedure, each lottery pair consists of an “A” 

(risky) choice and a “B” (safe) choice.  The A lottery always has a higher expected payoff and 

variance than does the B lottery. In the next lottery in the sequence, the A lottery from the 

previous pair becomes the B choice and a new, riskier lottery is presented as the A lottery.  

A person who is risk-neutral or risk-loving should always choose the A lottery because 

the expected payoff is higher.2  However, a risk-averse person, one with concave preferences, 

should choose the riskier A lottery for lower stakes, and then the safer B lottery for higher 

stakes.3 The switching point from risky to safe lotteries depends on how risk-averse the person is 

and can be used as a risk aversion measure. Finally, a risk-averse individual should switch from 

risky to safe lotteries earlier over losses than over gains. 

If a person violates this pattern by switching from a safe to a risky lottery, that individual 

did not choose in a pattern consistent with concave preferences, or even convex preferences.  

This kind of switch would imply the presence of an inflection point right in the middle of this 

lottery’s wealth range. In these cases, people may be making “mistakes” (e.g. noisy choice or 

some systematic error), or they may be making intentional choices that are still rational (e.g. they 

may be intentionally “testing the waters” or their preferences are time-inconsistent or not 

concave over all lotteries). Since subjects do not know the outcome of their choices until all 

decisions have been made, these inconsistencies cannot be due to wealth effects. An alternative 

                                                 
2 Note that this is also an important difference between our design and that of Holt and Laury (2002). While a risk-
neutral person would switch from choosing the risky to the safe lottery somewhere in the middle of the range of 
lottery choices in Holt and Laury, in our design a risk-neutral subject would always choose the risky lottery. 
3 The true switching point for some risk-averse individuals may fall outside the range of wealth of our lotteries; thus, 
some risk-averse people will always choose the safe lotteries while others will always choose the risky lotteries.  
This design does not allow “mildly risk averse” individuals to be distinguished from risk neutral and risk loving 
individuals, as all of these will choose only risky lotteries. 
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explanation is that subjects make these unexpected decisions because they view the lotteries as a 

risk portfolio instead of as independent decisions.  Our experiment is not designed to isolate such 

effects, and we therefore assume that such effects are negligible.  Finally, a systematic error in 

lottery choice could occur due to the compounding of lotteries that occurs in a randomly-paid 

experiment.  However, that should simply make people behave in a consistent, but more risk-

averse, fashion in this experiment (Holt, 1986). 

Previous research has found varying degrees of inconsistent behavior using lotteries to 

measure risk preferences. Indeed, some research does not observe inconsistency because, by 

design of the experiment, subjects are forced to choose consistently. For example, in a 

simultaneous lottery presentation experiment (e.g. Binswanger, 1980 and 1981), the subject 

picks just one from an array of lotteries. Using the sequential binary-choice lottery, some 

research has avoided the inconsistency issue by asking the subject to choose a switching point 

rather than choose an option for each lottery (e.g. Tanaka, Camerer, and Nguyen 2006). 

Harrison, Lau, Rutstrom and Sullivan (2005) have an iterative method that allows them to hone 

in on a particular switching point, rather than allowing a subject to switch back and forth. Other 

inconsistent behavior has been found in the form of preference reversals, where the lottery 

valued at a lower price is chosen, using lottery auctioning tools such as the Becker-DeGroot-

Marshak mechanism.4 

Among research that does not force a switching point, there is evidence that people do 

make inconsistent choices. Holt and Laury (2002) present a series of binary lotteries to students 

and find inconsistencies in 5% to 13% of decisions in real and hypothetical treatments.  Stockton 

                                                 
4 Some relevant research includes, Ballinger and Wilcox (1997), discussing probabilistic choice; Holt (1986), 
discussing the pitfalls of the “random lottery” payoff mechanism in light of violations of the independence axiom; 
Grether and Plott (1979) on preference reversals in which the lottery not chosen is given a higher reservation price; 
Cox and Epstein (1989), in which it is determined that subjects violate the asymmetry axiom. 
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(2006) studied binary-choice risk preferences over hypothetical health outcomes with adults, and 

found that 11% of people make inconsistent choices.  A similar “switching back” has also been 

observed in decisions relating to time preferences.  Castillo, Ferraro, Jordan, and Petrie (2006) 

found that 42% of eighth-grade students demonstrated an inconsistent choice with real payments.  

Meier and Sprenger (2006) performed real payment time preference experiments with adults and 

found that 12% of the data show an inconsistent choice. This literature suggests that inconsistent 

behavior in binary-choice experiments is not uncommon, and it is observed in both real and 

hypothetical payment situations.5  

In our experiment, we found that 54-55% of subjects made at least one inconsistent 

choice, switching from the safe to the risky lottery, in each set of lotteries, and 7-13% made at 

least two inconsistent choices. We investigate the nature of this inconsistency and relate it to 

economic outcomes. We find that inconsistency is a better predictor of outcomes than the risk 

aversion parameter derived from the lotteries. 

Experiment 
 

The experiments were conducted in conjunction with a 2002 World Council of Credit 

Unions survey on the economic activities and household characteristics of credit union members 

and non-members in seven locations across Rwanda. In each location, fifty members and fifty 

non-members were interviewed, for a total of 700 survey respondents. Interviewed members 

were randomly selected from lists of active credit union members. Interviewed non-members 

                                                 
5 There is a debate in the experimental literature as to whether real monetary payoffs are necessary to incentivize 
“realistic” behavior in experimental settings. Largely, the conclusion has been that real, rather than hypothetical, 
payoffs are essential for believable results. Ortmann and Hertwig (2006) summarize the recent debate, concluding 
that financial incentives may be important in motivating economic behavior, particularly in some settings.  
Importantly, they emphasize the importance of a “do-it-both-ways” rule, so that experimenters can compare results 
of financially motivated and non-motivated treatments. Although our setting is one of those that Ortmann and 
Hertwig (2001 and 2006) find particularly compelling for the use of financial incentives, we note that we did try 
both monetary and hypothetical payments. We do not see a significant behavioral difference in our context between 
the real and hypothetical treatments at a given level of payoffs. 
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were randomly selected from neighborhoods served by the credit union. Survey respondents 

were at least 18 years old and were asked questions about household demographics, the 

economic activities of household members, and credit use. Interviews were conducted in 

Kinyarwanda, the primary Rwandan language, by Rwandan enumerators.6  

At the end of the survey, each survey respondent was asked to complete two lottery 

experiments, one with only positive earnings (the gain lotteries) and one with both positive and 

negative earnings (the loss lotteries).  Of the 700 respondents, 15 received test treatments that 

were not designed to generate usable data, another 62 were unable or unwilling to complete the 

full lottery experiment, so 623 individuals provided risk preference data.  Of those 623, 442 

received a treatment that presented five lottery pairs at once and asked the subject to choose one 

of those lottery pairs (as in Binswanger, 1980).  This five-pair simultaneous presentation 

treatment, by design, did not allow the subjects to choose inconsistently.  The remaining 181 

subjects received sequential binary-choice treatments that did permit inconsistent choices. 

Eighty-two subjects participated in a treatment with low payoffs (55 with hypothetical and 27 

with real payoffs) and 99 had a treatment with high payoffs (all hypothetical).  All 181 of these 

subjects lived either in the capital Kigali or in Gitarama or Butare, towns in the south of Rwanda.   

In the experiment, subjects face a series of five pairs of lotteries, each with 50-50 odds, 

and asked to choose one lottery (A or B) in each pair.  The lottery pairs are shown in 

                                                 
6 For a complete description of the data and survey design, refer to Petrie (2002). 
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Table 1. Before making their decisions, subjects are told that one of the five lotteries will be 

randomly chosen for payment by pulling a number between one and five from a hat. Then, a coin 

will be flipped to determine payment.  After the procedures are explained, the subject is allowed 

to practice briefly with a sample lottery pair.  Then, all lottery pairs are presented one at a time 

and in the same order for all subjects.  For example, in the gain lottery, subjects are first 

presented with the payoffs for G1 and are asked if they would prefer lottery A or lottery B.  

Next, they are presented the payoffs for G2 and asked to choose between A and B, and so on. 

Once subjects have made their decisions for the gain lotteries, they are presented the loss 

lotteries one by one and in the same order. When all lotteries have been completed, a lottery is 

randomly chosen for payment from the gain sequence and another from the loss sequence.  A 

coin is flipped for the chosen lottery in the gain sequence. There is another coin toss for the 

chosen lottery in the loss sequence.  If the coin turns up heads, the subject earns the first number 

in the payoff pair for the chosen lottery.  For example, if lottery G3 was randomly chosen in the 

low payoff treatment and the subject chose option A for G3, then if the coin flip turned up tails, 

the subject would earn 200 RWF.  

The gain and loss lotteries are increasing in expected payoff and variance, and in each 

pair, lottery B has a lower expected payoff and variance. Also, in each subsequent pair, option B 

has the same payoffs as option A in the previous pair.  If choices are consistent, this lottery 

exercise is equivalent to presenting subjects six lotteries simultaneously and asking them to 

choose one.  An individual with a concave utility function would start with option A and switch 

to lottery B as expected payoffs and variance increases and continue to choose option B.  Since 

the subject’s “switching point” may occur above or below the wealth range of the lotteries 



 7

presented to the subjects, strongly risk-averse subjects may always choose option B, while less 

risk-averse subjects may always choose option A. 
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Table 1: Lottery Treatment Payoffs (in Rwandan Francs, 500 RWF = $1 US7) 
Low Payoffs (real and hypothetical) 

 A B 
G1 (700, 400) (500, 500) 
G2 (900, 300) (700, 400) 
G3 (1100, 200) (900, 300) 
G4 (1300, 100) (1100, 200) 
G5 (1500, 0) (1300, 100) 

 
 A B 
L1 (700, -100) (500, 0) 
L2 (900, -200) (700, -100) 
L3 (1100, -300) (900, -200) 
L4 (1300, -400) (1100, -300) 
L5 (1500, -500) (1300, -400) 

 
High Payoffs (hypothetical only) 

 A B 
G1 (1650, 1000) (1250, 1250) 
G2 (2050, 750) (1650, 1000) 
G3 (2450, 500) (2050, 750) 
G4 (2850, 250) (2450, 500) 
G5 (3250, 0) (2850, 250) 

 
 A B 
L1 (1650, -200) (1250, 0) 
L2 (2050, -400) (1650, -200) 
L3 (2450, -600) (2050, -400) 
L4 (2850, -800) (2450, -600) 
L5 (3250, -1000) (2850, -800) 

 
Subjects in the real-payment treatment were given 500 RWF as a show-up fee and paid 

the outcomes of the coin tosses over gains and over losses. They were paid in cash. Subjects in 

the hypothetical treatments were not paid.  They were not given 500 RWF, and after the two coin 

flips, they were told their total hypothetical earnings, or what they would have earned had they 

been paid. 

                                                 
7 At the time of this research, median per capita annual income in Rwanda was 118,000 RWF, according to the US 
Department of State, so 500 RWF was roughly equivalent to a day’s wage. From our survey data, median monthly 
per capita income and expense measures were between 15,000 – 18,000 RWF, and this would imply a daily wage 
(based on 5 working-days a week) of 691- 830 RWF in our sample. 
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The 181 participants of the sequential-choice lottery game are similar to the larger survey 

population (of 700 individuals). Both have similar gender ratios (39.0% female for the 

sequential-choice lottery participants and 39.4% for the survey population), average ages (36.6 

and 37.2, respectively), and average monthly per capita incomes (30,897 RWF and 34,520 RWF, 

respectively). Like the survey population, 93% of the sequential-choice lottery participants are 

literate. Compared to the 2002 official Rwandan national census, the survey population is similar 

on many demographic dimensions. However, the survey population is slightly richer and more 

literate than the national average in Rwanda. This may be because credit union members, who 

made up 2% of the Rwandan population at the time of the survey, were over sampled. 

 
Results 
 

We look first at inconsistent choices. Then, we examine measurements of risk aversion. 

Finally, we relate risk aversion measures, inconsistency and real-life outcomes. 

Inconsistent Choices 

Of the 181 people who completed the sequential binary lottery treatment, 54-55% made 

at least one inconsistent choice over gains or losses.  
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Table 2 illustrates the distribution of lottery choices across categories of consistency.  The 

percentage of inconsistent choices made was not significantly different between gain-only 

lotteries, where 53.6% made at least one inconsistent choice, and lotteries that allowed a loss, 

where 54.7% made at least one inconsistent choice.  Between 8-27% of subjects could be 

classified as consistent strong risk averse over gains or losses, and 9-13% could be classified as 

consistent risk loving or as only very mildly risk averse. 
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Table 2: Percent of Lottery Choices Over All Sequential-Choice Lottery Treatments 
Type Gains Losses 

Consistent Strong Risk Averse (always chose safe) 7.7 27.1 
Consistent Risk Averse (chose risky, then switched to safe) 26.0 9.4 
Consistent Risk Loving (always chose risky) 12.7 8.8 
Inconsistent, One Switch 47.0 42.0 
Inconsistent, Two Switch 6.6 12.7 

 
 

We define an inconsistent choice as a switch from a safe lottery to a risky lottery, so in 

our five lotteries, an individual can make at most two inconsistent choices each over gains and 

over losses.  Of the subject population, 6.6% made two inconsistent choices over gains, and 

12.7% made two inconsistent choices over losses.  

There are other possible categorizations that could capture people who are consistent with 

some other decision mechanism.  For example, people may use a “rule of thumb” wherein a 

subject chose all A’s or all B’s but could deviate once (to test the waters).  Using this 

categorization only helped explain 30 more choices (16.6%) over gains and 37 (20.4%) more 

choices over losses, leaving 67 (37.0%) choices over gains and 62 (34.3%) over losses still 

classified as inconsistent.  While this is one more possible categorization of the data, we do not 

pursue this further as it would still collapse into an inconsistent choice for the purpose of our 

analysis. 

How do subjects’ choices change between gain and loss lotteries? The shaded region of 

Table 3 shows consistent choices over gains and losses.  Of those choosing consistently, most are 

strongly risk-averse in the loss lottery.  Conditioning on having made a consistent choice over 

gain and loss, 10% were more risk-averse over gain than over loss, 38% were equally risk-averse 

over gain and loss, and 52% were more risk-averse over loss than over gain. This means that of 

the subjects that made consistent choices, a little over half made choices consistent with a 

concave utility function over gains and losses. In terms of inconsistencies, roughly half of the 
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subjects made the same number of inconsistent choices over gain as over losses.  More people 

made two inconsistent switches over losses than over gains.  

Table 3: Choices over Gain and Loss – Numbers of Subjects 
Choices over loss 

 Consistent 
strong 
risk-
averse 

Consistent 
risk-
averse 

Consistent 
risk-
loving 

Inconsistent 
one-switch 

Inconsistent 
two-switch 

Total

Consistent 
strong risk-
averse 

9 1 0 3 1 14  

Consistent 
risk-averse 

14 6 4 21 2 47  

Consistent 
risk-loving 

9 3 4 5 2 23  

Inconsistent 
one-switch 

16 6 8 40 15 85  

Inconsistent 
two-switch 

1 1 0 7 3 12  

 

 

 

 

Choices 
over 
gain 

Total 49 17 16 76 23 181  
 

Looking at real versus hypothetical payments, there is no discernable difference in the 

distribution of inconsistent choices for low stakes payments. This gives us confidence that the 

inconsistency we observe in choices is not due to hypothetical payments.  Table 4 shows the 

distribution of lottery choices by treatment. Here, we collapse the consistent categories, strong 

risk averse, risk averse and risk loving, into a single category, labeled Consistent.  The difference 

in distribution of classifications for low payoffs across real and hypothetical payments is 

insignificant (chi-squared test p-value = 0.896).8  However, people tended to choose more 

consistently in the high-payoff hypothetical treatment as compared to the low-payoff real or 

hypothetical treatment (chi-squared test p-value = 0.000). This increase in consistency with high 

                                                 
8 There is also no significant difference in distributions when the Consistent category is further disaggregated into 
Strong Risk Averse, Risk Averse, and Strong Risk Loving. 



 13

payoffs could be explained by increased focus due to larger payoffs, or by the larger differential 

that exists between the A and B lotteries in the high-stakes treatment. 

Table 4: Percent of Lottery Choices by Treatment 
 Low Hypo Low Real High Hypo 

Consistency Category Gains Losses Gains Losses Gains Losses 
Consistent  24.3 32.7 25.9 22.2 62.6 58.6 
Inconsistent one-switch 61.8 43.6 51.8 59.3 37.4 36.4 
Inconsistent two-switch 10.9 23.6 22.2 18.5 0 5.1 
Number of observations 55 55 27 27 99 99 
 

 Measurement of Risk Aversion 

The overwhelming presence of inconsistent choices makes a risk measure based on a 

switching point from risky lotteries to safe lotteries in our data problematic, as many subjects 

have multiple switching points. We can, however, still look at a naïve measure of risk aversion 

(as in Holt and Laury, 2002) by counting the number of B (safe) choices the person made.  This 

gives us a risk-aversion rating between 0 and 5 for each set of lotteries for each person. The 

higher this rating, the more risk-averse the person is.   

We would like to compare this naïve measure for the sequential-choice lottery to the five-

pair simultaneous lottery risk aversion measure. Recall that 442 survey respondents were asked 

to choose one of five possible lotteries over gains and one over losses. Because these subjects 

had to choose one lottery, the risk aversion measure ranges from 1 to 5, with one indicating one 

safe choice and five indicating five safe choices. We normalized both to a common scale of 0-1. 

The five-pair risk-aversion measures were normalized by subtracting one and dividing by four.  

The sequential-choice risk-aversion measures were normalized by dividing by five.9   

Table 5 shows the mean risk aversion values over gains and losses by lottery treatment 

for this naïve measure. The average measure for sequential-choice lotteries over gains is 0.44, 
                                                 
9 Since the original risk measures took on only integer values on different scales, the adjusted measures share the 
same scale but do not take on coincident values within the range. 



 14

while that over losses is 0.59.  For the five-pair lotteries, the average risk-aversion measure is 

0.56 over gain and 0.53 over loss. Across these two treatments, there is a significant difference in 

the average over gains (t-test for difference in means p-value = 0.000), over losses (p-value = 

0.076), but not over a combined measure of gains and losses (p-value = 0.189).10 

Table 5: Mean Naïve Risk Aversion Measures by Lottery Treatment 
 Sequential-Choice 

Lotteries 
Simultaneous 

Five-Pair Lotteries 
Risk aversion over gain 0.44 

(0.29) 
0.56 

(0.37) 
Risk aversion over loss 0.59 

(0.33) 
0.53 

(0.37) 
Overall measure of risk 
aversion (gain + loss) 

0.51 
(0.22) 

0.54 
(0.32) 

Standard deviations in parentheses 

The inconsistent choices we observed may actually represent the individual’s preferences 

or may be mistakes. If they are mistakes, can we measure the severity of those mistakes? We 

considered three methods for reclassifying an inconsistent choice as a consistent choice the 

subject may have really preferred.  For the first two methods, we first change each inconsistent 

pattern to the consistent pattern that is closest to it by choosing the pattern that is the smallest 

number of changes away.  For example, the inconsistent pattern BBABB could be reclassified to 

BBBBB with one change or to AAABB with two changes. Thus, we would choose to change it 

to BBBBB.   

In some cases, this reclassification by the fewest changes does not uniquely identify a 

consistent choice. For example, the pattern ABABB could be reclassified to AAABB with one 

change or ABBBB with one change.  For these cases, in the second step, we create two 

                                                 
10 The distributions of the risk measures for the sequential-choice and five-pair lotteries yield similar results. Over 
both gains and losses, the distributions are significantly different across treatment types (chi-squared test p-value = 
0.000). For the sequential-choice lotteries, more people choose the most extremely risk-averse option (BBBBB) over 
losses than over gains.   
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reclassified risk aversion measures. The first, called the “safe rebin,” always chooses the safer 

lottery. The second, called the “risky rebin,” always chooses the riskier lottery.11 The latter 

method yields a lottery choice pattern with higher expected payoffs and higher variances than the 

former.  Each such reclassification is assigned a change cost. This is the absolute value of the 

difference in expected value between the safe and risky choices.   

Note that the safe and risky rebin cost measures are identical because there is only one 

reclassification cost.  The difference between the expected payoffs of the A and B lotteries had a 

single value for each set of lottery pairs.  This per-change cost was 50 for the gain and loss 

lotteries for the real and hypo-low treatments, 75 for the gain lotteries for the high treatments, 

and 100 for the loss lotteries for the high treatments. 

The third method, called the “first switch rebin,” does not reclassify lottery choices based 

on the fewest number of changes.  It assumes that the first time an individual chooses a safe 

choice is the person’s actual desired switching point. For example, a choice of ABAAA would 

be classified as ABBBB. We also calculate the costs of making these changes. 

The first-switch rebin, by design, is the most costly. Average cost for the low-payoff 

treatment is 144-158 RWF (min of 0, max of 350). For the high-payoff treatment, the average 

cost is 128 RWF (min of 0, and max of 700). For the safe/risky rebin, the average cost for the 

low-payoff treatments is 87-96 RWF (min of 0, max of 200). The average cost for the high-

payoff treatment is 75 RWF (min of 0, max of 275). Recall that there were fewer inconsistent 

choices in the high-payoff treatment, so costs should be lower. 

For each method of reclassification, new risk aversion measures were constructed just as 

they were constructed for the original raw lottery choices: the number of safe choices was 

                                                 
11 For example, the pattern ABABB would be reclassified as ABBBB for the safe rebin and as AAABB for the risky 
rebin. 
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counted, and the measure was then adjusted to be on the 0-1 range.  Combining all three 

treatments together, Table 6 shows the average risk measures over gains and losses and the 

distribution of risk classifications with our three methods of making choices consistent.12 As with 

the risk measure in Table 5, the risk aversion measures in Table 6 are higher for losses than for 

gains. Also, we see that the risky and safe rebin methods tend to distribute subjects similarly 

across all the three classifications for gains and losses. The first-switch method makes people 

more risk averse. 

Table 6: Risk Measures and Distribution After Choices are Made Consistent 
Sequential-Choice Lotteries 

(percentages, unless noted otherwise) 
 Risky Rebin Safe Rebin First Switch 

Rebin 
Risk Aversion Over Gains (mean) 0.37 0.46 0.65 
Risk Aversion Over Losses (mean) 0.56 0.64 0.81 
Gains    
Consistent Strong Risk Averse  11.0 17.7 32.0 
Consistent Risk Averse  57.0 55.4 55.2 
Consistent Risk Loving  32.0 25.9 12.7 
Losses    
Consistent Strong Risk Averse  37.6 44.2 59.1 
Consistent Risk Averse  42.6 32.6 32.0 
Consistent Risk Loving  29.8 23.2 8.8 
Gains and Losses    
More risk averse over gain than loss 24.9 25.4 20.4 
Equally risk averse over gain and loss 27.1 22.1 29.8 
More risk averse over loss than gain 48.1 52.5 49.4 

 
Looking at the distribution of people over gains and losses in Table 6 (the last three rows 

in the table), we see that, after “fixing” mistakes, about half of all subjects would be classified as 

more risk averse over losses than over gains. This is consistent with a concave utility function. 

                                                 
12 We show the distribution of risk aversion measures combining all treatments for ease of presentation. When 
disaggregated, the rebinned distributions for the hypothetical treatments yield slightly more risk-averse subjects than 
the real treatment. 
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About 25% are more risk averse over gains than over losses. This is consistent with a convex 

utility function. 

Risk Aversion, Inconsistency and Real-Life Outcomes 

Given the prevalence of inconsistent choices, we want to know if this has implications for 

understanding real-life decisions.  First, who is making these inconsistent choices?  Ordinary 

least squares regressions were used to see if inconsistencies could be explained by demographic 

and household variables.13  These variables include a dummy variable for being female, a 

dummy for being married, the subject’s age in years, the number of years of education the 

subject has completed, the subject’s per capita household monthly expenses, number of children 

(18 years and younger), the number of elderly (60 years and older), and a dummy variable for 

whether the treatment was low-stakes. The variables are summarized in Table 7. Because no 

difference was noted between real and hypothetical treatments for low stakes, these results are 

grouped together.14  

Table 7: Summary Statistics 
Variable Mean Std Dev 

Female 0.39 0.49 
Married 0.64 0.48 
Age  36.58 11.23 
Education – yearsa 8.84 3.78 
Per Capita Monthly Expendituresb  30.90 62.34 
Number of Children (<= 18 years) 2.97 2.15 
Number of Elderly (>= 60 years) 0.26 0.95 
Number of Financial Accounts 1.22 1.15 
Member of Savings Group (Tontine) 0.18 0.39 
Member of Insurance Group 0.20 0.40 
   
Number of Observations 623  

a There are 14 missing observations on education, so this is based on n=609. 
b Household per-capita monthly expenses in Rwandan Francs divided by 1000, range was 0 to 1007. 

                                                 
13 Logit regressions were also tried for all binary dependent variables, and Tobit and Ordered Logit regressions were 
tried for the number of inconsistencies. All alternative specifications yielded qualitatively similar results.  OLS 
results are reported for ease of interpretation of coefficients. 
14 If a dummy variable for the real payment treatment is included, it is not significant, and the results do not change. 
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Table 8 shows the results.  As the dependent variable, we use a dummy variable if the 

person made an inconsistent choice over gain, a dummy if he made an inconsistent choice over 

loss, and the total number of inconsistent choices the person made over gains and losses (an 

integer between zero and four).15 

Table 8: OLS Regressions of Inconsistency Measures 
Variable Inconsistent 

over gain 
Inconsistent 

over loss 
Number of total 
inconsistencies 

Female 0.095 
(0.240) 

0.157 
(0.050) 

0.318 
(0.032) 

Married 0.038 
(0.656) 

0.034 
(0.702) 

-0.062 
(0.705) 

Age -0.001 
(0.869) 

-0.004 
(0.250) 

-0.000 
(0.894) 

Education (years)a 0.016 
(0.099) 

-0.000 
(0.966) 

0.018 
(0.282) 

Monthly expenses -0.000 
(0.557) 

-0.001 
(0.044) 

-0.002 
(0.061) 

Number of children (<= 
18 years) 

0.004 
(0.853) 

0.015 
(0.453) 

0.044 
(0.269) 

Number of elderly 
(>=60 years) 

-0.029 
(0.132) 

-0.042 
(0.047) 

-0.079 
(0.037) 

Low stakes treatment 0.406 
(0.000) 

0.276 
(0.000) 

1.005 
(0.000) 

Constant 0.156 
(0.423) 

0.541 
(0.006) 

0.506 
(0.152) 

R2 0.173 0.167 0.282 
N* 178 178 178 

Note: p-values reported in parentheses. Robust standard errors are used. All regressions include village-level fixed 
effects. 
a There were missing values on education for three observations, so those observations are dropped. 

 

The variable that controls for low-stakes treatments was always significant and large.  

This fits well with previous theoretical and empirical work showing that individuals’ risk 

preferences are sensitive to the institution in which the preferences are elicited (Berg, Dickhaut, 

                                                 
15 The same results hold if we regress the switch cost in the safe/risky rebin or the first-switch rebin cost, in lieu of 
the total number of inconsistent choices. 
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and McCabe, 2005; Isaac and James, 2000; Holt and Laury, 2002; Harrison, List and Towe, 

2006).  The strongest and most consistent demographic result across all specifications was that 

females are significantly more likely to make inconsistent choices than are males. This is not 

significant in gain lotteries.   

Ultimately, we would like to know how risk and inconsistency measures relate to 

economic outcomes.  Outcomes tested included whether the subject had taken a formal or 

informal loan, the number of financial accounts the subject had, whether the subject was a 

member of a savings group (a tontine), a credit union or an insurance group, whether the subject 

was a business owner, and whether the subject had a checking account. We show results from the 

outcome variables that show a relationship with our inconsistency measure. These are 

membership in a savings group, membership in an insurance group, and the number of financial 

accounts. We start first by examining how outcomes are explained by risk aversion alone, 

ignoring any measures of inconsistency. We use the naïve risk aversion measure (without 

correcting for inconsistencies). We compare outcomes where choices were forced to be 

consistent to those that could be made inconsistently. 

Table 9 shows results from the outcome regressions, ignoring inconsistency.16 The top 

panel shows results for the five-pair lottery, where people were forced to choose consistently, 

and the bottom panel shows results from the sequential-choice lotteries, where people could 

choose inconsistently. To make these two sets of regressions comparable, we restrict the sample 

to areas where both types of lotteries were randomly administered. This occurred in two of the 

                                                 
16 Results were similar if we used the first-switch rebin cost, instead of the safe/risky rebin cost. Results are also 
robust to alternative specifications, such as Logit for binary outcome variables and Tobit and Ordered-Logit for 
truncated, count outcome variables. 
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seven survey locations.17 There is no significant relationship between risk aversion and any 

outcome. This is consistent with much of the previous research using risk measures alone. 

Table 9: OLS Results of Economic Outcome Regressions Without Inconsistency Measures 
Five-Pair Lotteries 

 Savings Group Insurance Group Number of Financial Accounts
Risk Aversion (gain) -0.014 

(0.898) 
 -0.106 

(0.446)
 -0.038 

(0.914) 
 

Risk Aversion (loss)  0.073 
(0.419)

 -0.108 
(0.401)

 -0.092 
(0.785) 

R2 0.063 0.069 0.074 0.074 0.493 0.494 
N 83 83 83 83 83 83 

Sequential-Choice Lotteries 
 Savings Group Insurance Group Number of Financial Accounts
Risk Aversion (gain) 0.274 

(0.162) 
 0.189 

(0.308)
 0.138 

(0.679) 
 

Risk Aversion (loss)  0.124 
(0.426)

 -0.067 
(0.649)

 0.231 
(0.517) 

R2 0.224 0.205 0.322 0.312 0.538 0.540 
N 90 90 90 90 90 90 

Note: p-values reported in parentheses. Robust standard errors are used. All regressions include the following 
control variables: gender, married, age, education, monthly per-capita expenses, children age 0-5, children age 6-10, 
children age 11-15, children age 16-18, adults age 60 and older, and village-level fixed effects. There were missing 
values on education for 14 observations (3 from the Sequential-Choice Lotteries and 11 from the Five-Pair 
Lotteries), so those observations are dropped. 

 

Table 10 shows the outcome regressions if we include measures of inconsistency. The 

additional variables are the presence of inconsistency, an interaction term of the risk-aversion 

measure and the presence of inconsistency, and the safe/risky rebin cost to reclassify the subject. 

The regressions use the risk and inconsistency measures over gains and the risk and 

inconsistency measures over losses – these are shown separately in the table. Once these 

measures are included, some risk aversion and inconsistency measures are related to outcomes.  

 

                                                 
17 The two groups are similar on most demographic and outcome variables. The only exception is that the 
participants in the five-pair lottery have higher monthly expenditures and were less likely to belong to a savings 
group than participants in the sequential-choice lottery. 
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Table 10: OLS Results of Economic Outcome Regressions Using Inconsistency Measures 
 Savings Group Insurance Group Number of Financial 

Accounts 
Risk Aversion (gain) 0.338 

(0.142)
 -0.048 

(0.818)
 0.564 

(0.115) 
 

Inconsistent dummy (gain) 0.428 
(0.061)

 -0.296 
(0.119)

 0.653 
(0.244) 

 

Risk aversion (gain) * Inconsistent 
dummy (gain) 

-0.485 
(0.191)

 0.814 
(0.014)

 -1.559 
(0.071) 

 

Risk Aversion (loss)  0.460 
(0.001)

 0.034 
(0.836)

 0.440 
(0.258) 

Inconsistent dummy (loss)  0.545 
(0.007)

 0.144 
(0.414)

 0.335 
(0.428) 

Risk aversion (loss) * Inconsistent 
dummy (loss) 

 -1.152 
(0.000)

 -0.221 
(0.500)

 -1.116 
(0.135) 

Cost to safe/risky rebin -0.002 
(0.088)

-0.000 
(0.647)

-0.000 
(0.991)

-0.000 
(0.716)

-0.001 
(0.606) 

0.000 
(0.919) 

R2 0.272 0.304 0.376 0.319 0.567 0.560 
N 90 90 90 90 90 90 

Note: p-values reported in parentheses. Robust standard errors are used. All regressions include the following 
control variables: gender, married, age, education, monthly per-capita expenses, children age 0-5, children age 6-10, 
children age 11-15, children age 16-18, adults age 60 and older, and village-level fixed effects. There were missing 
values on education for 3 observations, so those observations are dropped. 

 

Risk aversion and inconsistency interact in important ways. As risk aversion over losses 

increases, people who chose consistently are significantly more likely to belong to a savings 

group, while those who chose inconsistently are less likely. This relationship also holds for other 

outcomes but not significantly. The only exception to this general trend is for belonging to an 

insurance group and risk measures over gains. In this case, an inconsistent person is significantly 

more likely to belong to an insurance group as risk aversion over gains increases. 

In theory, a risk-averse individual would prefer to reduce variance in income and would 

be willing to pay a higher premium to avoid risk. Our results suggest that inconsistency in 

choices may lead to suboptimal behavior. As an individual becomes more risk averse, he should 

be more likely to insure against fluctuations in income that could produce losses (i.e. through a 

savings or insurance group), not less likely. 
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The coefficient magnitudes on the inconsistency measures over losses are economically 

large. A person with a risk aversion measure of 0.5 would be 3 percentage points more likely to 

belong to a savings group if he chose consistently than if he chose inconsistently. For someone 

with a risk aversion measure of 1.0, he would be 60 percentage points more likely to join a 

savings group if he chose consistently than if he chose inconsistently.  

Our results show that knowing whether people make mistakes is informative. Table 10 

shows that there are significant differences between those that make consistent choices from 

those that do not. Indeed, comparing the results of Table 9 and Table 10, we can say that 

knowing whether people can make consistent decisions is important in understanding the 

relationship between risk preferences and economic behavior.   

Conclusions 
 

We use lottery experiments over gains and losses to examine consistency in risky choices 

and how that explains outcomes. Adults in Rwanda are presented a series of sequential binary-

choice lotteries, first over gains only and then over gains and losses. The lotteries are designed to 

measure risk aversion by finding the switch point that a person with concave preferences would 

chose. A more risk-averse person would switch from risky to safe lotteries earlier. 

People make choices inconsistent with a concave utility function and it is this 

inconsistency, not the risk measure alone derived from the lottery choices, which is related to 

outcomes. Over half of all subjects display this type of inconsistency. Women and people in low-

stakes treatments are more likely to be inconsistent. 

What if the inconsistent choices are just mistakes? We consider three methods to correct 

for these mistakes. We do so by finding the fewest number of changes to make the subject’s 

choices consistent with a concave utility function and calculate a cost for changing choices 
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around. Once these “mistakes” are fixed, we find that about half of all subjects display concave 

utility functions over gains and losses. 

Relating the risk measures to outcomes, we find no evidence that risk measures alone 

explain outcomes. This has also been found in previous research. However, by incorporating 

inconsistency measures, we find that inconsistency and risk measures can explain some 

outcomes. A person who is inconsistent in risk choices over losses is more likely be in a savings 

group (a tontine) over low levels of risk aversion, but becomes less likely to belong as risk 

aversion increases. Inconsistency in choices seems to lead to sub-optimal decisions. 

 These results raise into question whether people have a smooth utility functions that can 

be characterized by a unique switch point. Experiments that are designed to elicit one switch 

point may be missing important, time-inconsistent information on behavior. Knowing if risk 

measures are generated by consistent choices may help explain some economic outcomes.  

The way we measure risk many times takes for granted that preferences are well-behaved 

and subjects are able to express them. Drawing from a heterogeneous sample of decision makers 

we find that this might not be the case. Therefore, we might need to think how to collect and 

understand the way people make mistakes before conclusions about attitudes towards risk are 

possible. 
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